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Abstract

Handling preferences over multiple objectives (or attributes) poses serious challenges to
the development of automated solutions to complex decision problems. The number of
decision outcomes grows exponentially with the number of attributes, and that makes elic-
itation, maintenance, and reasoning with preferences particularly complex. This problem
can potentially be alleviated by using a factored representation of preferences based on
independencies among the attributes. This work has two main components.

The first component focuses on development of graphical models for multiattribute
preferences and utility functions. Graphical models take advantage of factored utility, and
yield a compact representation for preferences. Specifically, I introduce CUI networks, a
compact graphical representation of utility functions over multiple attributes. CUI networks
model multiattribute utility functions using the well studied utility independence concept.
I show how conditional utility independence leads to an effective functional decomposition
that can be exhibited graphically, and how local conditional utility functions, depending on
each node and its parents, can be used to calculate joint utility.

The second main component deals with the integration of preference structures and
graphical models in trading mechanisms, and in particular in multiattribute auctions. I first
develop multiattribute auctions that accommodate generalized additive independent (GAI)
preferences. Previous multiattribute mechanisms generally either remain agnostic about
traders’ preference structures, or presume highly restrictive forms, such as full additivity. I
present an approximately efficient iterative auction mechanism that maintains prices on po-
tentially overlapping GAI clusters of attributes, thus decreasing elicitation and computation
burden while allowing for expressive preference representation.

Further, I apply preference structures and preference-based constraints to simplify the
particularly complex, but practically useful domain of multi-unit multiattribute auctions
and exchanges. I generalize the iterative multiattribute mechanism to a subset of this do-
main, and investigate the problem of finding an optimal set of trades in multiattribute call
markets, given restrictions on preference expression. Finally, I apply preference structures
to simplify the modeling of user utility in sponsored-search auctions, in order to facilitate
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ranking mechanisms that account for the user experience from advertisements. I provide
short-term and long-term simulations showing the effect on search-engine revenues.
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Chapter 1

Introduction

1.1 Multiattribute Preferences

The term preferences in the social sciences refers to the principle that guides choices made
by a decision-making entity. In artificial intelligence (AI) we model preferences that guide
the choices made by an artificial agent, which generally acts on behalf of a user or an
organization. Preferences are most commonly represented quantitatively through a utility

function. The concept of utility is ubiquitous in AI: it appears for example in the form of
value of states in Markov Decision Processes, as a reward to learning agents, or payoff
functions in game theory. In the general decision framework, based on the seminal work
by von Neumann and Morgenstern (1944), probability distributions are used to weigh the
utility values for each of the possible outcomes. Given a set of options, a rational agent
chooses the one that maximizes its expected utility, that is the one that in expectation leads
to the result it prefers the most, according to the preferences of the user or organization it
acts for. Preferences therefore, have a significant role in decision making, similar to that
of beliefs. Despite that, preferences and utilities have generally not received the level of
attention AI researchers have devoted to beliefs and probabilities.

In this work I address preference handling, and the role of preferences in electronic trad-
ing. Most of the major components of this thesis focus on specific problems of automated
trading, but the motivation and the main perspectives stem from the preference handling
problem. More specifically, this work deals with multiattribute preferences. Decision out-
comes are normally described by a set of features, or attributes, which can be seen as
different objectives of the decision maker. Specification of preferences over the outcomes
often requires reasoning about the tradeoffs among those attributes. The major challenge in
preference handling is usually the elicitation of the preference information from users. The
common approaches to practical preference elicitation (e.g., conjoint analysis, analytic hi-
erarchy process (Saaty, 1980), pricing out (Clemen, 1996), and other elicitation techniques
(Fishburn, 1967b)) is to assume that preferences are separable, or additive, meaning that
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the value of one attribute does not affect preferences over the other. This is particularly
the case in practical systems that require preference elicitation. Real preferences, in con-
trast, are rarely unconditional. Often the value of one attribute or objective depends on
the availability or the value of another objective (this claim is supported by evidence from
behavioral economics in reference to decision under uncertainty (Von Winterfeldt and Ed-
wards, 1986)). The additivity assumption may seem superficially simplifying, while in fact
the elicitation is less coherent when existing interdependencies are ignored. On the other
hand, there are more subtle and more applicable independence properties of preferences,
that can be employed to simplify elicitation and reasoning. Investigating and applying these
structural properties is a central theme of this thesis.

Structural properties of preferences can help to reduce the dimensionality of the utility
function, and thus achieve a compact representation of preferences. A compact represen-
tation streamlines computation tasks and communication, and most importantly reduces
the elicitation burden. Moreover, preference structures can be treated as qualitative infor-
mation that can often be reused over time, and sometimes across decision makers. It is
therefore useful to identify and isolate this information, and thus the elicitation in each
specific instance is limited to the quantitative information which is more variable. The
qualitative structure can streamline the elicitation of the quantitative information, and also
provide graphical insight into the problem. The combination of these goals is similar to
the motivation behind Bayesian Networks (Pearl, 1988), and other graphical models for
probability distributions, which have gained substantial academic and practical success. A
main contribution of this thesis is the development and the application of graphical models
for multiattribute utility functions.

1.2 Preferences and Multiattribute Auctions

A central goal in artificial intelligence is the automation of complex tasks, thus reducing
labor costs, improving accuracy, and improving coordination between different entities. An
important domain for automation in the Internet era is online trading. Several applications
in this domain are well known, and incorporated for example in various shopping websites:
auction, recommendation, and reputation systems, automated shopping software agents,
decision support tools for product comparison, and more. Less familiar but arguably even
more promising is the realm of business-to-business commerce. Significant portions of
business of most companies occur in transactions with other companies, rather than con-
sumers, creating an enormous potential market for online trading (Beil and Wein, 2003).
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The choice of suppliers and contract negotiation in procurement is a realm that usually
requires complex decision-making tasks, involving optimization problems, preferences of
multiple stake holders, and strategic considerations.

Computer science research (and AI research in particular) can address electronic trading
problems from several perspectives. Perhaps the two main perspectives are the following:

Optimization Algorithms for the selection of optimal allocations. In the procurement
domain this amounts to the selection of suppliers and the exact goods to be procured.

Mechanism Design The extraction of information from the various participants (in pro-
curement these are the procuring company and the candidate suppliers), while ac-
counting for the incentives of these parties to reveal their information, and predict
the outcome of the interaction using game-theoretic means (see Parkes (2001), Chap-
ter 2).

Both tasks involve the preferences of the participants: we must consider the domain of
possible outcomes, what are the preferences, or utilities of each party from each outcome,
and strive to achieve optimal results based on that. We can therefore consider a third per-
spectives through which AI research should address problems from the trading domain:
preference representation and elicitation, and application of preference structures such as
those mentioned above.

To facilitate the introduction of multiattribute auctions, I illustrate this high-level classi-
fication in a more familiar research area: combinatorial auctions. In combinatorial auctions
traders negotiate over combinations of goods, called bundles. Traders may bid on bun-
dles out of a given set of goods, and this allows them to account for complementarity and
substitutivity among the goods in the set. The computer science research in this field is
vast, and summarized in a recent book (Cramton et al., 2006). The optimization problem
here is to find an optimal allocation of the set of goods, given traders’ valuations of the
bundles. This is also called the winner determination problem and is addressed by, among
others, Leyton-Brown et al. (2000),Sandholm (2002),and Sandholm et al. (2005). The com-
binatorial auctions mechanism design literature considers direct revelation mechanisms
(MacKie-Mason and Varian, 1994) and iterative mechanisms (Wurman and Wellman, 2000;
Parkes, 2001; Ausubel and Milgrom, 2002). Finally, researchers considered the preferences
perspective, mainly through the eyes of bidding language design (Nisan, 2000; Boutilier
and Hoos, 2001), through the interaction of preference expressiveness, optimization, and
mechanism design (e.g., Lehmann et al. (2002) and Lehmann et al. (2006)), and through
mechanism design that is based on a preference elicitation approach (Conen and Sandholm,
2000; Sandholm and Boutilier, 2006).
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Combinatorial auctions are useful for various allocation problems, and in particular can
be useful in procurement. In this work I focus on multiattribute auctions, which I consider
an equally important component of procurement (see also Beil and Wein (2003)). Multiat-
tribute auctions offer the ability to negotiate over various characteristics (attributes) of the
good or service that is traded. An assignment of values to each of the attributes is called a
configuration. In contrast to combinatorial auctions, in multiattribute auctions preferences
are expressed over configurations of a specific good, rather than on bundles of different
goods. We can consider traditional, price-only auctions as auctions in which the good is
fully specified prior to the event. For example if a company wishes to procure pens through
a price-only auction, it will have to fully specify the sizes of the pen, color, type of ink,
and so on. In a multiattribute auction we can delay this commitment, and extract offers
from suppliers that specify various cost structures for various values of these attributes. We
can compare these offers with respect to the company’s preferences over those criteria, and
identify a configuration that maximizes the surplus of the deal. A utility-maximizing ap-
proach would seek to maximize the purchasing company’s surplus (which is the difference
between valuation and price), and a welfare-maximizing mechanism would consider the
total trade surplus as the goal. Multiattribute auctions can therefore increase the surplus
generated by the auction, because they extract multidimensional preferences from traders.
Moreover, sometimes it is not at all possible to fully specify the procured good or service
prior to the extraction of information from suppliers. In these cases multiattribute auctions
are essential in order to facilitate a procurement event.

Multiattribute auctions have received far lower attention in the literature, in partic-
ular the computer science literature, than have combinatorial auctions (see survey in
Section 2.3). In essence, both the combinatorial and multiattribute problems involve pref-
erences over multidimensional domains, and the complexities of both are derived from
the dimensionality. The combinatorial representation can be seen as a special case of the
multiattribute one, where each attribute is restricted to be binary (i.e., whether the corre-
sponding good is included or not). However, the allocation problem typically addressed
by the two types of auctions is inherently different. A combinatorial auction seeks to find
a combination of traders which together form the optimal assignment. A multiattribute
auction considers preferences of both the auctioneer and the bidders, and seeks to find a
bidder, and a configuration, which together yield the highest surplus with respect to the
auctioneer’s preferences.

Preference handling is a key issue in multiattribute auctions. A multiattribute mech-
anism must extract evaluative information over a complex domain of multidimensional
configurations. Constructing and communicating a complete preference specification can
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be a severe burden for even a moderate number of attributes, therefore practical mul-
tiattribute auctions must either accommodate partial specifications, or support compact
expression of preferences assuming some simplified form. By far the most popular multi-
attribute form is the fully additive one, which is the simplest to represent and reason with.
For example, several recent proposals for iterative multiattribute auctions (Beil and Wein,
2003; Bichler, 2001; David et al., 2002; Parkes and Kalagnanam, 2005) require additive
preference representations.

Such additivity reduces the complexity of preference specification exponentially (com-
pared to the general discrete case), but precludes expression of any interdependencies
among the attributes. In practice, however, interdependencies among natural attributes are
quite common. For example, the buyer may exhibit complementary preferences for size
and access time (since the performance effect is more salient if much data is involved), or
may view a strong warranty as a good substitute for high reliability ratings. Similarly, the
seller’s production characteristics (such as “increasing access time is harder for larger hard
drives”) can easily violate additivity. In such cases an additive value function may not be
able to provide even a reasonable approximation of real preferences.

On the other hand, fully general models are intractable, and it is reasonable to expect
multiattribute preferences to exhibit some structure. A major goal of this work, therefore,
is to identify the subtler yet more widely applicable structured representations, and exploit
these properties of preferences in trading mechanisms.

Therefore, there is a strong relationship between the preference handling perspective,
and the other two mentioned above: optimization and mechanism design. In the next sec-
tion I summarize the contributions of this thesis from each aspect.

1.3 Thesis Contributions

The contribution of this thesis is in the combination of preference handling theory with
multidimensional trading. I suggest novel multiattribute preference handling approaches,
and employ these and previously suggested tools to facilitate complex trading mechanisms
and optimization algorithms.

The bulk of the contribution addresses these three perspectives above (preference han-
dling, optimization, and mechanism design) simultaneously (Chapter 4, the first part of
Chapter 5, and Chapter 7). I propose a novel efficient mechanism for multiattribute auc-
tions that is based on an expressive modeling of preference structure. This mechanism is
the first multiattribute auction mechanism that addresses the problem described above: it
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accounts for essential interdependencies between attributes, but at the same time it takes
advantage of the independencies that do exist, and facilitates tractable auctions over the
multidimensional domain. Moreover, as an iterative, price-based mechanism it maintains
the privacy of the buyer’s information, in contrast to most previous literature. In order
to perform an experimental validation of the novel mechanism, I develop a framework
to quantify the benefits of an accurate preference modeling in comparison to the additive
representation.

I further carry the structured auctions idea on to a far more complex domain: that of
multi-unit multiattribute auctions. I apply preference handling techniques to simplify this
domain which has rarely been addressed in the mechanism design and auction literature
before. This domain is nonetheless important for practical applications, and has been ex-
plored in practical contexts, but in general not with the economic rigor that I adhere to in
this work. I propose the first mechanism design solution to a subset of this domain, relying
on a novel preference representation scheme. The preference structures here are used not
only to simplify the mechanism, but also to identify the subset of the domain to which it
can be applied.

Another contribution addresses preference representation independently of the trading
domain. I introduce a new graphical model for preferences, based on conditional utility

independence (CUI), a concept that has not been exploited for graphical models before .
The motivation is part of a general claim I make in this thesis: by using weak indepen-
dence concepts, that do not rely on additivity, we may be able to simplify complex decision
domains, which cannot be factored using the stronger additive conditions. The graphi-
cal modeling encapsulates qualitative information about the preference order, leads to a
compact representation of the utility function, and facilitates reasoning algorithms that I
develop.

I also investigate the interaction between preference modeling and the generalized sec-
ond price mechanism (GSP) implemented in sponsored-search auctions. Previous literature
on GSP pursues efficiency results that ignore the role of the user in the process, and rarely
consider the effect of sponsored search advertisements on the search user’s experience. I
propose a principled approach to the incorporation of user utility in the mechanism, which
requires modeling of the user’s utility from a set of advertisements on a search results page.
The role of preference structures here is to simplify the model of the user’s utility over the
space of possible sets of advertisements.

Another part of the work deals with optimization, ignoring mechanism design issues.
It is also the only part of the work that deals with two-sided auctions, that is a market for
multiple buyers and sellers. I consider the complexity of the global allocation problem in
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multi-unit multiattribute call markets, as a function of restrictions made on expression of
preferences. I provide a mapping between bid expressiveness and optimization complexity,
and suggest optimization algorithms for several important cases.

Several additional contributions are in extending and adapting previous multiattribute
theoretic results. Most notably, it facilitates the employment of recent AI-based research on
preference structures, which is usually confined to the expected utility (vNM) framework,
to the well-known framework of willingness-to-pay in economics.

1.4 Thesis Overview

After a detailed background on the major components of this work—multiattribute prefer-
ences, graphical models for preferences, and multiattribute auctions (Chapter 2)—I provide
(Chapter 3) several insights and extensions that facilitate some of the subsequent develop-
ments. I formally introduce the notions of complements and substitutes in the multiattribute
framework, notions that I find particularly useful in the realm of trading, and provide in-
sights as to the relationship between these concepts and the notion of utility independence.
Next, I lay out the utilitarian framework of the trading related work (Engel and Wellman,
2007), with several results that allow the application of particular preference structures in
these settings. I provide an example that illustrates the conditional independence concept
introduced there. Another such example, from the procurement domain, is provided in
Chapter 4.

Chapters 4 and 5 focus on multiattribute auctions. Chapter 4 (based on Engel and
Wellman (2007)) is the most direct example of the power of advanced preference handling
for multidimensional trading: After describing the mechanism, I provide a detailed ex-
ample, and show that the mechanism is approximately efficient under the assumption that
the auction possesses an accurate representation of the buyer’s utility function. I also an-
alyze computational properties. Next, I lay out a simulation framework that facilitates the
comparison of a mechanism that captures the accurate preference structure of the buyer,
with one that is restricted to additive preferences. The framework not only allows me to
validate the advantages of the newly proposed mechanism, but may also serve as a guide-
line for future similar experiments whose goal is to quantify the benefits of an elaborated
preference representation. I provide detailed simulation results regarding the efficiency,
information properties, and computational complexity of GAI auctions, and compare the
results with those obtained by an additive auction. The part of the chapter that deals with
the simulations is based on Engel and Wellman (2008b).
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Chapter 5 has two main components: in the first, based on Engel et al. (2007), I lay
out a preference representation framework, and identify preference structures under which
the mechanism of Chapter 4 can be generalized to this domain. The second part, based
on Engel et al. (2006), deals with the computational problem of clearing a two-sided mul-
tiattribute call market. Based on main result of the first part of that chapter, I provide
algorithms that simplify the clearing problem of several key special cases of bid expres-
siveness. I do that using intuitive and easy to implement network flow formulations, and
provide suggestive performance results.

I return to preference representation, in a general sense, in Chapter 6. I introduce CUI
networks, a graphical model for conditional utility independence. After comparison with
previously suggested representations, I first show how the CUI condition can be expressed
graphically by a directed acyclic graph, that supports a decomposition of the utility function
to a lower dimensional representation. Next, I show how the utility function decomposes
according to the CUI conditions, and can be represented compactly as local subutility func-
tions at the nodes of the DAG. Subsequently, I consider elicitation procedures, optimization
algorithms, and a graphical procedure that further reduces the dimensionality of the repre-
sentation. This chapter is based on Engel and Wellman (2008a).

The last technical chapter (Chapter 7) studies the modeling of user utility in sponsored-
search auctions. I construct a principled approach to this problem, through a utility-
theoretic model of user’s experience using expected utility, and the search engine pub-
lisher’s problem of trading off user’s utility and short-term expected revenue, and analyze
the resulting mechanism. I use simulations to study the effects of the proposed ranking sys-
tem and its parameters on short-term and long-term revenues (the first part of this chapter
is based on Engel and Chickering (2008)).
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Chapter 2

Background

In this chapter I provide the essential background, and cover previous literature relevant to
the three main aspects of the work: multiattribute utility theory (MAUT), graphical models
of preference and utility functions, and multiattribute auctions.

2.1 Multiattribute Value and Utility

I use standard terminology, concepts and notations from MAUT.1 The definitions and re-
sults, unless noted explicitly, are adapted from the definitive text by Keeney and Raiffa
(1976), and so are several results that are presented informally. As mentioned below, the
results regarding generalized additivity are based on Fishburn (1967a) and the introduction
to multiattribute measurable value functions is from Dyer and Sarin (1979). I present a uni-
fied view of multiattribute cardinal utility theory (mainly Section 2.1.3), which is a novel
perspective compared to previous literature.

2.1.1 Preferences and Utility

Let Θ denote a space of possible states, which we refer to as decision outcomes. A deci-
sion maker’s preferences are represented by a total pre-order, �, over Θ. Preference orders
considered in this work adhere to the economic notion of rationality, that is the order must
be complete and transitive.

A rational preference order can be represented numerically, using a value function.

Definition 2.1. v : Θ → ℜ is a value function representing � if for any θ ,ψ ∈ Θ,

v(θ)≤ v(ψ) iff θ � ψ .

1In some disciplines the term MAUT is used even when only the fully additive utility representation is
referred to.
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Clearly, any monotonic transformation of v(·) is also a value function for �.
In many cases it is useful to represent, beyond a simple preference order over outcomes,

a notion of strength of preferences. This requirement comes up when there exists some ex-
ternal factor that needs to be traded off with the strength of preferences over the outcomes.
For example, when uncertainty is involved in the decision, strength of preferences over out-
come must be weighed against their likelihood. In the von Neumann-Morgenstern (vNM)

framework, uncertainty is represented using probability distributions.The decision maker
does not choose a certain outcome, but rather an action, which results in some probability
distribution over Θ. A distribution that results from an action is also called a lottery. Let
P denote the set of lotteries that result from the possible actions, so that any p ∈P is a
probability distribution p : Θ→ [0,1]. As each action results in a given unique lottery, we
can consider the choice problem to be directly over P .

In the vNM framework, we assume the existence of a preference order �̃ over P .
A preference p �̃ q (for some p,q ∈P) means that the decision maker, understanding
the implication of each lottery, prefers that the distribution over the outcomes is p rather
than q. For example, a person buying a lottery card for $x expresses preference towards
the distribution of prizes promised by the card over the distribution that returns $x with
probability 1.

Based on a set of axioms over �̃ (Mas-Colell et al., 1995), the vNM framework es-
tablishes the existence of a value function that represents �̃. As standard in the decision
analysis literature, I use the term utility function in that framework.

Definition 2.2. A vNM utility function is a value function ũ : Θ→ℜ, restricted as follows.

For any p ∈P , let Eu(p) = ∑θ∈Θ p(θ)ũ(θ).
Then for any p,q ∈P ,

Eu(p)≤ Eu(q)⇔ p �̃ q.

A monotonic transformation of Ũ(·) preserves the ordinal preferences it represents (as
it is the case for any value function), but does not necessarily preserves the preference or-
der over lotteries. In other words, a monotonic transformation of ũ(·) still represents�, but
may or may not represent �̃.

Definition 2.3. vNM utility functions ũ1(·), ũ2(·) are called strategically equivalent if they

represent the same preference order �̃.

It can be inferred from the definition that any two vNM functions ũ1(·), ũ2(·), are strate-
gically equivalent if and only if there exist constants b > 0,a such that

ũ1(·) = a+bũ2(·).
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That is, �̃ is preserved under a positive affine transformation, and if two vNM functions
represent the same preference order then each must be a positive affine transformation of
the other.

This uniqueness property characterizes any cardinal utility function. I skip the precise
definition of the concept (Fishburn, 1976), but rather introduce another such function, one
that will be used extensively in this work. This function is derived from measurement
theory (Krantz et al., 1971), and it becomes useful in case the external factor is a measure-
ment for which we can tradeoff the differences in the values of different outcomes. My
terminology and definitions for this framework are based on Dyer and Sarin (1979).

In this framework we posit the existence of a preference order �̂ over pairs of out-

comes. For some θ1 � θ2 and ψ1 � ψ2, the statement (θ1,θ2) �̂ (ψ1,ψ2) is interpreted to
mean that the strength of preference of ψ2 over ψ1 is greater than or equal to the strength
of preference of θ2 over θ1. Krantz et al. (1971) establish the set of axioms ensuring the
existence of a utility function representing �̂.

Definition 2.4. A measurable value function (MVF) is a value function û : Θ→ ℜ, such

that for any θ1,θ2,ψ1,ψ2 ∈Θ, for which θ1 � θ2 and ψ1 � ψ2, the following holds:

û(θ2)− û(θ1)≤ û(ψ2)− û(ψ1)⇔ (θ1,θ2) �̂ (ψ1,ψ2)

Note that an MVF can also be used as a value function representing �, because
[θ ′,θ ] �̂ [θ ′′,θ ] iff θ ′ � θ ′′.

For a given decision problem of a specific decision maker, the MVF and the vNM func-
tions are two distinct functions. Intuitively, the vNM function can be said to express both
the preference difference expressed by the MVF, and in addition the risk attitude of the
decision maker.2 When the model involves uncertainty it is natural to apply utility under
the vNM framework. When the outcome is modeled as certain, that is the decision maker
directly selects an outcome from Θ, there is no point in modeling risk attitude. In fact,
it can obfuscate the notion of strength of preferences we are interested in: if we elicit a
vNM function from the decision maker, the difference in the utility values could reflect the
decision maker’s risk attitude.

I therefore employ MVF in the parts of this work that do not involve choice under
uncertainty (Chapters 4 and 5). Other parts of the work refer to any cardinal utility rep-
resentation, and I use the notation �∗ to denote any cardinal preference order and u(·) to
denote any cardinal utility function.

2Dyer and Sarin (1982) perform an analytic comparison of the relationship between vNM functions and
MVF.
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In the multiattribute utility theory framework, an outcome in Θ is represented by a vec-
tor of values for n variables A = {a1, . . . ,an}, called attributes (I sometimes use other letters
to denote attributes, but mention that explicitly). Each attribute a ∈ A has a domain D(a),
so that Θ ⊆ ∏

n
i=1 D(ai). I usually use capital letters to denote subsets of attributes, small

letters (with or without numeric subscripts) to denote specific attributes, and X to denote
the complement of X with respect to A. D(X) = ∏ai∈X D(ai) denotes the joint domain of
the set of attributes X . An assignment to specific attributes, as well as joint instantiations of
attribute subsets, is denoted by superscripts or prime signs. For example, X0 ∈D(X) stands
for the joint instantiation of a0

i for all ai ∈ X . To represent an instantiation of subsets X and
Y at the same time I use a sequence of instantiation symbols, as in X ′Y ′.

2.1.2 Preferential Independence

When A includes more than just a few attributes, reasoning over full outcomes is hard in
several ways. Most notably, it is difficult for humans to compare outcomes over many di-
mensions, and complex for machines to store and analyze preferences over a number of
outcomes that is exponential in the number of attributes. It is therefore useful to consider
preference order over the joint product of some X ⊂ A, considering the rest of the attributes
fixed on some predefined values. This is a conditional preference order. Such an order
is also often referred to as a ceteris paribus preference order—one partial outcome is pre-
ferred to another all else being equal. I refer to Domshlak (2002) for a discussion of the
validity of ceteris paribus preferences from a behavioral science point of view. Formally, it
is defined as follows.

Definition 2.5. Outcome Y ′′ is conditionally preferred to outcome Y ′ given Y ′, if Y ′Y ′ �
Y ′′Y ′. The conditional preference order over Y given Y ′ is denoted by �Y ′ .

In general, conditional preferences may depend on the particular value chosen for the
rest of the variables. More precisely, if Y ′ ≺Y ′ Y

′′, we can still find that Y ′′ ≺Y ′′ Y
′ for some

Y ′′ 6= Y ′. When this is the case, using the preference order �Y ′ may not provide any com-
putational benefits. Fortunately, in many cases one can identify subsets Y for which this
preference reversal does not occur, that is the preference order over Y is invariant to the
value of Y .

Definition 2.6. Y is preferential independent (PI) of Y if �Y ′ does not depend on the value

chosen for Y ′. This relationship is denoted by PI(Y,Y )

Preferential independence can be very useful for qualitative preference assessment.
first-order preferential independence (FOPI) (i.e., independence of a single attribute from
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the rest) is a natural assumption in many domains. For example, in typical purchase deci-
sions greater quantity or higher quality is more desirable regardless of the values of other
attributes. Preferential independence of higher order, however, requires invariance of the
tradeoffs among some attributes with respect to variation in others, a more stringent—
though still often satisfiable—independence condition. The standard PI condition applies
to a subset with respect to the full complement of remaining attributes. The conditional

version of PI specifies independence with respect to a subset of the complement, holding
the remaining attributes fixed.

Definition 2.7. Y is conditionally preferential independent (CPI) of X given Z (Z = XY ),
if for any Z′,�X ′Z′ does not depend on the value chosen for X ′. This relationship is denoted

by CPI(Y,X | Z).3

The value function is defined over the joint domain. Therefore, a tabular representation
of v(·) is exponential in |A|. Based on preferential independence, we can identify conditions
that yield factored representations of the value function.

Definition 2.8. The set of attributes A are mutually preferential independent (MPI) if

∀X ⊂ A, PI(X ,X).

The relationship between the MPI condition and the additive value function has been
identified and proved in various ways. The earliest proof was provided by Debreu (1959).

Theorem 2.1. Assume |A| ≥ 3. A is MPI iff there exists v̂(·), a value function for �, and a

set of functions vi : D(ai)→ℜ such that

v̂(A) =
n

∑
i=1

vi(ai).

This is called the additive representation and v̂ is called an additive value function.
Equivalently, vi(ai) can be replaced by local value functions v̄i(ai) that are normalized to
[0,1], and multiplied by scaling constants, or linear weights:

v̂(A) =
n

∑
i=1

kiv̄i(ai).

3In all of the independence concepts notation, I allow the arguments to refer to either sets or single
attributes. For example, CPI(y,X | Z) is allowed as a shorthand for CPI({y},X | Z).
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2.1.3 Utility Independence

The MPI condition entails additivity of value functions, but is not sufficient for this conve-
nient decomposition to hold for a cardinal utility function. Given MPI, there indeed exists
a value function v̂ = φ · u (for some monotonic function φ ) that is additive, but φ is not
necessarily linear, hence v̂ may not be strategically equivalent to u(·). In fact, a cardinal
utility function requires its specialized independence concepts to achieve useful decompo-
sitions. I introduce the basic notions of independence for cardinal utilities, followed by the
specialized extensions for the vNM and MVF frameworks.

The conditional cardinal preference order is defined similarly to the conditional pref-
erence order, and I use a similar notation, for example �∗Y ′ represents the conditional
cardinal preference order over Y given the fixed value Y ′ for Y . Also note that conditional
preference orders yield a functional representation in which the conditioning attributes are
fixed. For example, the preference order �̃Y ′ over lotteries on Y is represented by an MVF
conditional utility function, ũ(Y,Y ′).

The counterpart of PI is called utility independence.

Definition 2.9. Y is utility independence (UI) of Y , UI(Y,Y ), if the conditional cardinal

preference order over Y , �∗Y ′ , does not depend on value chosen for Y ′.

In the vNM framework, this condition requires the preference order over the lotteries
in which the value of Y is fixed on some Y ′, to be invariant to that fixed value. In the MVF
framework, UI requires the order over preference differences over Y to be invariant. That
means as follows: if given Y ′, the strength of which Y 2 is preferred over Y 1 is more than
the preference strength of Y 4 over Y 3, then this must also be the case given Y ′′.

If the conditional, cardinal preference order over Y does not depend on the value cho-
sen for Y ′, it means that any function representing �̂Y ′ will be strategically equivalent to a
function representing �̂Y ′′ for any Y ′′ ∈ D(Y ). Therefore, the conditional utility functions
representing �̂Y ′ and �̂Y ′′ must be positive affine transformations of one another. More
precisely, there exist constants a and b such that,

u(Y,Y ′′) = a+bu(Y,Y ′).

This holds for any Y ′′ ∈ D(Y ), with a potentially different constant for any such value.
Hence in general we can represent u(Y,Y ) = u(A) as follows:

u(A) = f (Y )+g(Y )u(Y,Y ′), g(·) > 0. (2.1)

This choice of Y ′ is arbitrary, and can be replaced with any instantiation of D(Y ), resulting
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in potentially different transformation functions f (Y ) and g(Y ). The utility function on the
right hand-side of this equation is conditional. This implies that the UI condition leads to a
functional decomposition of u(·): instead of one function of dimension |Y |+ |Y |, we need
two functions of dimension |Y | and one conditional utility function of dimension |Y |. The
functions f (·) and g(·) can also be represented in terms of conditional utility functions over
Y .

UI can also be framed as a conditional relation.

Definition 2.10. Y is conditionally utility independent (CUI) of X given Z (Z = XY ) if for

any Z′, �∗X ′Z′ does not depend on the value chosen for X ′. This relationship is denoted by

CUI(Y,X | Z).

CUI also supports functional decomposition. For any Z′, the conditional utility function
over Y given X ′Z′ is strategically equivalent to this function given a different instantiation
of X . However, the transformation depends not only on X , but also on Z′. Hence we can
write:

u(X ,Y,Z) = f (X ,Z)+g(X ,Z)u(X ′,Y,Z), g(·) > 0. (2.2)

Throughout the work I use the following notation, adapted from Fishburn (1967a). Let
(a0

1, . . . ,a
0
n) be a predefined vector called the reference outcome. For any X ⊆ A, the func-

tion u([X ]) stands for the projection of u(A) to X where the rest of the attributes are fixed
at their reference levels, meaning u([X ]) = u(X ,X0).

Continuing the analogy to ordinal preferences, the following is the global independence
condition based on UI.

Definition 2.11. A is mutually utility independent (MUI) if every subset X ⊂ A is UI of X.

It may be natural to expect that MUI leads to an additive decomposition of a cardi-
nal utility function, as does MPI for v(·). This is almost true—MUI may lead to either
additive, or multiplicative decomposition, in which the utility function is a product of
single-dimensional functions over the attributes. I provide the formal result, using the fol-
lowing notation: Let A0 and A1 be the least and most desired values, respectively, and u(·)
be a utility function representing �∗ and normalized such that u(A0) = 0 and u(A1) = 1.
Define ki = u([a1

i ]), where the reference value is A0, and ui(ai) = u([ai])
ki

. That is, ui(·) is the
conditional utility function over attribute ai given the least desired values of the rest of the
attributes, normalized to [0,1].

Definition 2.12. An MUI-factor of a set A of MUI attributes is a solution to

1+ k =
n

∏
i=1

(1+ kki).
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Keeney and Raiffa show that there is at most one MUI-factor in addition to zero (Ap-
pendix 6B of their text). This ensures the soundness of the following adaptation to their
MUI representation theorem:4

Theorem 2.2. Let A be a set of MUI attributes.
1. If the only MUI-factor of A is zero, then u(A) = ∑

n
i=1 kiui(ai).

2. Otherwise, let k 6= 0 be an MUI-factor. Then

u(A) = ∏
n
i=1[kkiui(ai)+1]−1

k
. (2.3)

Keeney and Raiffa go on to point out that if k > 0 we can define u′(A) = 1 + ku(A), a
strategically equivalent function to u(·), and turn (2.3) into a multiplicative representation.
This can be done in a similar fashion for k < 0. Further, they show that if MUI is known
to exist, one elicitation query is sufficient in order to determine whether the form of the
function is additive or multiplicative. In the next subsection I provide direct definitions for
additive cardinal utility functions.

A weaker combination of UI conditions leads to the multilinear representation. If each
Xi (possibly excluding one) is UI of its complement, U can be expressed as a multilinear
combination of subutility functions on the Xis. A drawback of the multilinear decomposi-
tion is that it requires specification of 2n scaling constants. The multilinear structure is not
used in this work.

2.1.4 Additive Independence

I initially limit the following discussion to the vNM framework.

Definition 2.13. Let I1, . . . , Ig be a partition of A. I1, . . . , Ig are called additive independent
(AI) if preferences over lotteries on I1, . . . , Ig depend only on their marginal distributions

over I1, . . . , Ig.

The following fundamental result relates this condition to an additive decomposition
(the proof is available in (Fishburn, 1982), Section 11.1).

Theorem 2.3. Let I1, . . . , Ig be as above. Then I1, . . . , Ig are additive independent if and

only if there exist real-valued functions f1, . . . , fg such that

ũ(a1, . . . ,an) =
g

∑
i=1

fi(Ii). (2.4)

4The theorem is adapted from Keeney and Raiffa (1976), Theorem 6.1, page 289.
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This decomposition can also be translated to use local, normalized utility functions
coupled with linear weights.

Definition 2.13 is general, and a couple of special cases are worth mentioning. First,
if |Ir| = 1 for all r = 1, . . . ,g, then this is the additive decomposition that may result from
MUI. Second, if g = 2 the condition is binary, similar to PI and UI. However, it is important
to note that AI is fundamentally a symmetric conditions, unlike PI and UI. Moreover, it is
straightforward to show that the binary AI(Y,Y ) entails UI(Y,Y ) and UI(Y ,Y ), and each of
these UI condition entails its PI counterpart.

Once we consider a binary AI, it is also useful to define its conditional version.

Definition 2.14. Let X ,Y,Z be a partition of the set of attributes A. X and Y are condi-
tionally additive independent (CAI) given Z, if preferences over lotteries on A depend only

on their marginal conditional probability distributions over X and Y . This relationship is

denoted by CAI(X ,Y | Z)

This condition leads to a decomposition of the utility function to the form:

ũ(A) = ũ(X ,Y 0,Z)+ ũ(X0,Y,Z)− ũ(X0,Y 0,Z). (2.5)

This is a decomposition of the utility function to two lower-dimensional functions, over the
two overlapping subsets X ∪Z and Y ∪Z. This provides greater flexibility compared to the
notion of additivity over disjoint subsets. Due to the inherent symmetry of AI, the idea of
a decomposition over potentially overlapping subsets can be generalized as follows.

Definition 2.15. Let I1, . . . , Ig⊆A such that
⋃g

i=1 Ii = A. I1, . . . , Ig are called generalized ad-
ditive independent (GAI) if preferences over lotteries on A depend only on their marginal

distributions over I1, . . . , Ig.

What is now known as the GAI condition was originally introduced by Fishburn
(1967a), and was named GAI and brought to the attention of artificial intelligence re-
searchers by Bacchus and Grove (1995). Graphical models and elicitation procedures
for GAI decomposable utility were developed under the vNM framework (Boutilier et al.,
2001; Gonzales and Perny, 2004; Braziunas and Boutilier, 2005), and for a cardinal repre-
sentation of the ordinal value function (Gonzales and Perny, 2005).

The following key result is proved by Fishburn (1967a).

Theorem 2.4. Let I1, . . . , Ig ⊆ A such that
⋃g

i=1 Ii = A. Then I1, . . . , Ig ⊆ A are GAI iff ũ(·)
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decomposes as follows.

u(A) =
g

∑
j=1

(−1) j
∑

1≤i1≤···<i j≤g
ũ([

j⋂
s=1

Iis]).

Note that (2.5) is a special case of this results. Further, the result implies that ũ(·)
decomposes to lower-dimensional functions over the subsets Ir, for example:

f1 = u([I1]), and (2.6)

for r = 2, . . . ,g, fr = u([Ir])+
r−1

∑
j=1

(−1) j
∑

1≤i1<···<i j<r
u([

j⋂
s=1

Iis ∩ Ir])

Fishburn’s proof relies directly on the definition of vNM utility. An interesting question
arises whether this structure is similar for other cardinal utility function, notably for MVF.
I provide a positive answer in Chapter 3. As background, I present previous work on
additive structures for MVF, adapted from Dyer and Sarin (1979).

The basic notion is that of difference independence. The term X∼̂Y means that both
X �̂ Y and Y �̂ X .

Definition 2.16. Attribute set X ⊂ A is called difference independent of X if for any two

assignments X1X ′ � X2X ′,

(X1X ′,X2X ′)∼̂(X1X ′′,X2X ′′)

for any assignment X ′′.

In words, the preference differences on assignments to X given a fixed level of X do not
depend on the particular level chosen for X .

Dyer and Sarin go on to define the conditions that achieve an analogous decomposi-
tion to that related to vNM from Theorem 2.3. Informally, given a partition I1, . . . Ig, the
following three conditions are required: A is MPI, at least one of the sets Ii is difference
independent of its complement, and A is difference consistent, a condition which ensures
that any conditional preference order over differences is consistent with the corresponding
conditional preference order over outcomes. A proof is provided by Dyer and Sarin (1977).

The concept of reference value mentioned above is worth a specific mention, as it is
used in many parts of the work. The independence concepts described above reduce the di-
mensionality of the representation by employing conditional utility functions—conditioned
on some predefined value. Though this value can be chosen arbitrarily, it is usually the most
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Figure 2.1: CAI Map.

convenient to pick the globally least desired value, usually denoted by A0 (for which we
normally assign u(A0) = 0), and use its projection to specific attributes as their reference
values. The notation u([X ]) for any X ⊂ A can then be used unambiguously instead of
u(X ,X0). When referring to a reference value I do not in general restrict it to be the least
desired one unless noted explicitly, but I do use this notation to with respect to an arbitrary
reference value A0.

2.2 Graphical Models of Preferences

Perhaps the earliest effort to exploit separable preferences in a graphical model was the ex-
tension of influence diagrams by Tatman and Shachter (1990) to decompose value functions
into sums and products of multiple value nodes. This structure provided computational
advantages, enabling the use of dynamic programming techniques exploiting value separa-
bility.

Bacchus and Grove (1995) were first to develop a graphical model based on conditional

independence structure. In particular, they establish that the CAI condition has a perfect

map (Pearl and Paz, 1987); that is, a graph with attribute nodes A such that node separa-
tion reflects exactly the set of CAI conditions on A. More specifically, for any two sets
of nodes X ,Y ⊂ A, CAI(X ,Y | XY ) holds if and only if there is no direct edge between a
node in X and a node in Y . For example, the graph in Figure 2.1 represents the attribute set
A = {a,b,c,d}, among which the two conditions CAI(a,d | {b,c}) and CAI(b,c | {a,d})
hold. I use the term CAI map of A when referring to the graph that reflects the perfect map
of CAI conditions, in the context of a preference order over Θ. Bacchus and Grove go on to
show that the utility function has a GAI decomposition over the set of maximal cliques of
the CAI map. A clique is a set of nodes in which each pair is connected by an edge, and a
maximal clique is a clique that is not contained within a larger one. For example, the max-
imal cliques of the graph in Figure 2.1 are {a,b}, {b,d}, {c,d}, {a,c}. Therefore, a utility
function over A, defined on four attributes, can be represented using four two-dimensional
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functions.
This result could seem to provide an alternative representation theorem to GAI, with a

significant advantage: the GAI condition can be detected incrementally based on a set of
CAI conditions. However, as noted by Bacchus and Grove, sometimes GAI conditions do
not correspond to a collection of CAI conditions. They give the “triangle example”: the set
of attributes A = {a,b,c}may exhibit a GAI structure over the subsets {a,b},{b,c},{a,c},
without satisfying any conditional additive or utility independence condition. However, the
possibility of taking advantage of such decompositions seems remote. No process to detect
or verify the GAI condition directly has been proposed in the literature. CAI conditions, in
contrast, are much simpler and more or less intuitive to detect, as they rule out any inter-
action between the independent subsets. It is sufficient to identify pairs of disjoint subsets
that are independent, given that the rest of the attributes are fixed. Furthermore, procedures
are available to verify CAI formally (Keeney and Raiffa, 1976). Therefore, it is much more
conceivable to identify GAI structures that rise from the graphical model of CAI.

Initiating another important line of work, Boutilier et al. (2004a) introduced CP net-

works, an efficient representation for ordinal preferences over multiple attributes. In a
CP network, each variable is conditionally PI of the rest given its parents. Ordinal mul-
tiattribute preference representation schemes (for decision making under certainty), and
especially CP networks, can dramatically simplify the preference elicitation process, based
as they are on intuitive relative preference statements that avoid magnitude considerations.
CP networks received a considerable amount of study in subsequent literature. One exten-
sion, called TCP networks (Brafman and Domshlak, 2002; Domshlak, 2002), introduces a
hierarchy of importance among the attributes, providing more expressive power. Further-
more, TCP nets allow the notion of importance between given attributes to be conditioned
on value of other attributes.

Note that CP nets express only first-order dependencies. When, for example, FOPI
holds for all attributes, a CP net is a disconnected graph that provides no information about
the preference order. TCP nets extend CP nets to exhibit second-order dependencies. In
practice, the dependencies may appear only at a higher order, meaning that the tradeoffs
within a set of attributes are influenced by the value of a different attribute or attribute set.
Moreover, this representation is limited to an ordinal preference order. In complex decision
problems, tradeoff resolution may hinge in a complicated way on attribute settings over
rich domains. This problem is particularly acute when continuous or almost continuous
attributes are involved, such as money or time. In such cases, as well as in the presence of
uncertainty, a cardinal preference order representation is required.

Boutilier et al. (2001) subsequently extended this approach to numeric, cardinal utility
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in UCP networks, a graphical model that utilizes the GAI decomposition combined with
a CP net topology. This requires dominance relations between parents and their children,
somewhat limiting the applicability of the representation. The GAI structure was applied
for graphical models in two other works: Gonzales and Perny (2004) employ the clique
graph of the CAI map (the GAI network, see also Chapter 4) for elicitation purposes. Braf-
man et al. (2004) related the generalized additive form of an ordinal preference relation to
a TCP-net structure.

Part of the motivation for graphical modeling of multiattribute utility is driven by the
success of Bayesian networks in achieving compact representation and graphical reason-
ing algorithms for probabilities, based on conditional independence concepts. It is natural
therefore that researchers explore the conceptual differences between probability and utility
functions, and examine the opportunity to transfer results from one field to another. This
direction was first advocated by Shoham (1997), who introduces a definition of a utility
distribution function. His major claim is that the differences between the two represen-
tations (most notably, that probability is a set function, while utility can be defined only
over points in the domain) is an arbitrary choice, and he goes on to define a notion of utility

distribution on which one can apply a “Bayes rule” and use a Bayes-net like representation.
Later, La Mura and Shoham (1999) redefined utility independence as a symmetric mul-

tiplicative condition, taking it closer to its probability analog, and supporting a Bayes-net
like representation. However, although multiplicative independence is different from addi-
tive independence, it is not necessarily weaker. Note that Utility Independence, as defined
above, generalizes both notions. Furthermore, the authors claim that the multiplicative no-
tion is more natural in preferences than the additive one, though this is not supported by
decision-theoretic literature. I argue that in fact it is the UI condition that is more likely
to hold and natural for decision makers to identify, as it expresses invariance of preference
order.

Recent work by Abbas and Howard (2005) defines a subclass of utility functions on
which a multiplicative notion of UI obeys an analog of Bayes’s rule.

A different and much earlier line of research was the introduction of utility trees by
Gorman (1968), which were later further developed by Von Stengel (1988). The later work
is the only graphical representation that uses UI as defined above. The utility tree relies on
the notion of separability of subsets of the attribute set, to create a hierarchical breakdown
that reduces the dimensionality of the representation to the dimension of the separable or
utility independent sets. The application of utility trees to preference representation for
planning was discussed by Wellman and Doyle (1992).

21



2.3 Multiattribute Auctions

The major application of this work on multiattribute preferences, is to multiattribute auc-

tions.
Multiattribute trading mechanisms extend traditional, price-only mechanisms by facili-

tating negotiation over a set of predefined attributes representing various non-price aspects
of the deal. Rather than negotiating over a fully defined good or service, a multiattribute
mechanism delays commitment to specific configurations, in order to identify configura-
tions that provide as high as possible surplus, under the preference representation and
elicitation limitations of the mechanism. For example, a procurement department of a
company may use a multiattribute auction to select a supplier of hard drives. Supplier of-
fers may be evaluated not only over the price they offer, but also over various qualitative
attributes such as volume, RPM, access time, latency, transfer rate, and so on. In addition,
different suppliers may offer different contract conditions such as warranty, delivery time,
and service. This example is developed in detail in Chapter 4.

2.3.1 Basic Concepts

The distinguishing feature of a multiattribute auction is that the goods are defined by vec-
tors of attributes. I use the basic notations introduced in previous sections, that is A denotes
a set of attributes describing the domain Θ. A configuration is a particular attribute vector,
θ ∈ Θ. The outcome of the auction is a set of bilateral trades. Trade t takes the form
t = (θ ,q,b,s, p), signifying that agent b buys q > 0 units of configuration θ from seller
s, for payment p > 0. For convenience, I use the notation θt to denote the configuration
associated with trade t (and similarly for other elements of t). For a set of trades T , I denote
by Ti that subset of T involving agent i (i.e., b = i or s = i). T denotes the set of all possible
trades.

A bid expresses an agent’s willingness to participate in trades. The semantics of a bid
are specified in terms of offer sets. Let OT

i ⊆Ti denote agent i’s trade offer set. Intuitively,
this represents the trades in which i is willing to participate.

In general, an outcome of a multiattribute auction may involve a set of trades. Auctions
that allow an agent to engage in multiple trades are called multi-unit, and those that re-
strict the outcome to a single trade per agent are called single-unit. The trade in single-unit
multiattribute auctions may include a quantity, but in that case the quantity can be framed
as an attribute in A. Initially I limit the discussion to single-unit auctions, and introduce
the multi-unit framework in Chapter 5. In the single-unit model I focus on procurement,

22



the common application of multiattribute auctions. In the procurement model there is a
single buyer, who has a utility function ub(θ) for purchasing θ ∈ Θ.5 There are m sellers
s1, . . . ,sm with cost functions ci(·), representing the cost for si to supply configurations in
Θ to the buyer. The following definitions are adapted from Parkes and Kalagnanam (2005).

Definition 2.17. The multiattribute allocation problem (MAP) is defined as:

max
i∈{1,...,m},θ∈Θ

ub(θ)− ci(θ). (2.7)

An allocation (s∗i ,θ
∗,) selected above is said to maximize the social welfare of the

procurement problem.
MAP can be decomposed to two subproblems: first find the most efficient configuration

for each trader, and then find the trader whose efficient configuration yields the highest
surplus. We call the first part as the multiattribute matching problem (Engel et al., 2006).

Definition 2.18. The multiattribute matching problem (MMP) for a buyer b and a seller si

is defined as:

MMP(b,si) = argmax
θ∈Θ

ub(θ)− ci(θ).

I call a configuration θ ∗ selected by MMP(b,si) a bilaterally efficient configuration for
si. Let t = (θt ,q,b,s j, p) represent an outcome of the auction. The buyer’s profit is defined
as ub(θt)− p, and the seller’s profit of s j is p−c j(θt). In many multiattribute procurement
auction designs, the term scoring rule refers to the function r : Θ→ [0,1] used by the auc-
tioneer to evaluate suppliers’ bids. It can be regarded as the buyer’s report of his utility
function, that is for a truthful buyer r(·) is strategically equivalent to ub(·).

2.3.2 Characterizations

I structure previous literature over the characterizations which I consider most crucial in
the design of multiattribute auctions.

Expressiveness The expressiveness of preferences, through bids. Previous literature can
roughly be divided according to whether or not preference representation is limited
to additive utility functions.

Economic Properties Whether the proposed mechanism provides economic guarantees,
under well-specified assumptions. A well-known goal is to maximize total welfare,

5In Section 3.3 I formalize the specific utility function used here.
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or surplus, of the trade (welfare maximization) (Myerson and Satterthwaite, 1983).
Another common goal in price-only auctions is to maximize the auctioneer’s (ex-
pected) revenue (Myerson, 1981). The multiattribute generalization of this concept
is utility-maximization (Beil and Wein, 2003), where the utility is the value of the
allocation net of payment.

Tractability Whether the auction can be practically executed for large domains. This cri-
terion refers to overall execution time, including the computation time required from
participants.

Preference Revelation Information revealed to sellers by the auction. The main issue is
the degree to which the auction reveals the auctioneer’s (buyer’s) utility function
prior to and during bidding.

Price Feedback Iterative mechanisms can guide bidders to the efficient parts of the config-
uration space by providing interim information that summarizes previous bids. This
is in contrast to direct revelation mechanisms, which require sellers to produce their
complete cost functions.

As explained below, the criterion of preference revelation by the auctioneer is a crucial
characterization of multiattribute literature. I therefore first consider papers that require the
full revelation of buyer’s utility prior to bidding. Also, I initially restrict the discussion to
welfare-maximizing mechanisms, and consider utility maximization in Section 2.3.6.

2.3.3 Buyer Revelation Mechanisms

An early economic analysis of multiattribute auctions is due to Thiel (1988). In Thiel’s
model, the procurer’s budget is fixed, and he does not value price reduction—a particularly
unrealistic assumption in procurement. The full scoring rule is revealed at the beginning of
the auction. The bidders bid vectors of attribute values, but since all parties know that these
bids are evaluate using r(·), this is equivalent to bidding the values r(·) directly. He shows
that some basic properties of pricing theory are retained, and the model therefore reduces
to a familiar single-dimensional environment.

Che (1993) analyzes two-dimensional (price and quality) procurement auctions, mod-
eled after some US government process. In Che’s model, the attributes domain Θ represents
the quality of the good. The buyer reveals a scoring rule r(·), and evaluates bids according
to ŝ(θ , p) = r(θ)− p where θ ∈ Θ and p denotes the price. A seller si has a private cost
function ci(·) over Θ.
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Under several assumptions, most notably that supplier costs are not correlated, he sug-
gests three types of auctions. In all of the three, bidders bid price and quality values.

First-score. Direct generalization of the first-price sealed-bid auction. The highest score
bidder wins and must supply the exact quality and price he committed to.

Second-score. The highest score bidder wins, and must provide a combination of price
and quality that achieves the second-best score.

Second-preferred offer. The highest score bidder wins and must supply the quality and
price offered by the second-best bidder.

Che shows the following basic result, which essentially reduces the bidding to a single
dimension.

Lemma 2.5. In any equilibrium of first-score and second-score auctions, seller si offers

the quality θi = argmaxθ ′∈Θ(r(θ ′)− ci(θ ′)).

Note that r(·) represents the buyer’s utility function as reported, hence θi above is in
fact the solution to MMP(b,si).

Che goes on to show as a result that the first-score auction is efficient under the unique
symmetric equilibrium of the game, which is a generalization of the first-price equilibrium
in single-dimensional auctions. In the second-score mechanism, the equilibrium in domi-
nant strategies is truthful bidding. A bidder si has only one truthful strategy: report θi as
above, and price ci(θi). These results generalize their single-dimensional counterparts, and
provide a theoretical basis for subsequent work on multiattribute auctions. In the second-
preferred offer protocol the actual quality and price values mean nothing to the bidder, and
the result above does not hold. Therefore, any combination of price and quality that achieve
the highest score that the bidder is capable of (meaning the highest score with nonnegative
profit), is a (symmetric) Bayes-Nash equilibrium. This protocol does not seem to provide
economic benefits in comparison to the other two.

Che’s results are the basis of what I see as the most popular approach in the multiat-
tribute procurement auction literature: The buyer reveals a full utility function to the sellers.
The sellers are then expected to find a configuration that maximizes the difference between
that utility and their own cost, and bid only on that configuration. This approach practi-
cally reducing the problem to single-dimensional bidding. The downside is of course the
information revelation burden it imposes on the buyer. There are two sources to this con-
cern. First, Che shows that the buyer has incentives to drive the quality evaluation below
the truthful value, potentially leading to inefficiency. Second, the buyer may be reluctant
to reveal this information for strategic reasons, as elaborated in Section 2.3.5.
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Che’s basic assumption of non-correlated costs is not applicable in practice—supplier
costs are much more likely to be correlated than not. The question is therefore how do the
results change when this assumption does not hold. This is one of the key topics explored
by Branco (1997). Branco generalizes Che’s model to correlated costs (efficiencies). A
firm’s efficiency depends on other firms’ efficiencies, and are not fully known to the firm
before the types of the other firms are revealed. Therefore, in contrast to Che’s model,
firms cannot bid optimal qualities in a single stage. Branco suggests a first stage for type
revelation, and a second one in which a bilateral bargaining procedure is conducted over
the quality to be provided. Since the full efficiency parameters are now known, optimal
quality can be calculated and the buyer can make a take-it-or-leave-it offer with the opti-
mal quality. The seller has incentive to accept that offer. Branco analyzes the equilibrium
behavior of firms for a first-score or second-score version of this mechanism, and finds that
in both cases the expected payment is optimal. Therefore, this generalizes Che’s revenue
equivalence result to correlated costs.

This foundational work does not explore any potential structure in the quality space,
hence does not address an issue that is key in practical and computational application of
multiattribute auctions: Preference representation over multidimensional domains.

A later work that requires buyer revelation and also remains agnostic to preference
structures is by Vulkan and Jennings (2000). These authors suggest a modified version
of English auctions (iterative auctions that require new bids to increment over current bid
price) under which bidders are required to improve current score, rather than price. This is
an adaptation of Che’s second-score auction to an iterative mechanism. In contrast to this
work, most later literature assumes that preferences are additive, and I survey some of that
literature below.

2.3.4 Assuming Additive Preferences

When considering multidimensional quality over a large set of attributes, the expression
of full utility functions over the domain becomes intractable, unless the representation is
restricted. As I mention in the introduction, most previous proposals take the extreme as-
sumption of full additivity. Bichler (2001) argues that an additive scoring function almost
always applicable, and there is no real need to model more complex preferences. In con-
trast, I believe that behavioral studies that claim to support the additive representation are
applicable only to the ordinal value function. I elaborate on that distinction in Chapter 3.

David et al. (2002) extend Che’s model by introducing m non-price attributes rather
than one. The authors assume both additive preferences, and in addition that the sellers’
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utility functions differ over a single cost parameter. Further, the mechanism requires full
revelation from the buyer’s side. Additivity is assumed in two more recent papers: I discuss
the work by Beil and Wein (2003) under utility maximizing mechanisms in Section 2.3.6,
and the one by Parkes and Kalagnanam (2005) in the Section 2.3.5.

In essence, the additive forms used in trading mechanisms assume MPI over the set
of attributes A ∪ {p}, where p is the monetary payment. Intuitively that means that
willingness-to-pay (WTP) for value of an attribute or attributes cannot be affected by the
value of other attributes. I formalize this notion in the next chapter.

2.3.5 Price Structures

The literature surveyed above emphasizes that auctions require the buyer to reveal a full
utility function prior to bidding. This is a major obstacle to practical adaptation of these
mechanisms. As argued by Rothkopf et al. (1990), auctions are rarely an isolated event, and
information obtained regarding valuation of a trader by some other traders can be used later
to his disadvantage. This is particularly true in procurement, where the buyer-supplier rela-
tionships evolve and change over time, and suppliers may retain significant market power
in subsequent interactions. Furthermore, events are sometimes conducted on a recurrent
basis, and several events may be conducted for related goods with correlated valuations. In
addition, the buyer may wish to keep secret the way her utility may be discriminating for
or against particular suppliers (Koppius, 2002).

One approach that avoids full revelation was suggested by Parkes and Kalagnanam
(2005) (PK). PK first state the sell-side Vickrey-Clarke-Groves (VCG) mechanism that
solves MAP. Assuming all traders reveal full utility functions, the winning seller gets his
VCG payment. The VCG payment is the amount that ensures that the seller’s profit is equal
to his marginal product, which is the difference between the value of MAP with and without
that seller. This scheme ensures that it is every seller’s best interest to reveal his true utility
function (i.e., the mechanism is incentive compatible for sellers), but it is not necessarily
the buyer’s best interest to report her accurate utility.

PK go on to introduce to the nonlinear and discrete (NLD) mechanism, which is an it-
erative mechanism: a descending-price auction for general preferences. In NLD, the buyer
reports her full utility function to the auction system—not to the sellers. A price is defined
for each configuration in Θ. In every round, sellers submit bids on configurations of their
choice, and the price is reduced on any configuration that received a seller bid except for
the one designated as the provisional allocation. The provisional allocation is selected to
maximize the buyer’s profit with respect to current prices.
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PK adapt the notion of of myopic best-response (MBR) to this context: sellers are
myopic best-responders if they bid optimally under the assumption that current prices are
final. PK’s MBR definition requires sellers to bid on all optimal configurations. If all sell-
ers follow this strategy, the auction leads to a competitive equilibrium with maximal prices
(which are also the VCG prices). This allows PK to show that this strategy profile is an
ex-post Nash Equilibrium and the outcome is efficient (in the limit, when the bid increment
is taken to zero). An ex-post Nash Equilibrium means that agents cannot improve their
outcome by changing their strategy unilaterally, regardless of the costs of other sellers, and
regardless of the reported utility function of the buyer.

NLD, however, is not tractable when there are more than a few attributes, because of
the exponential price space it needs to maintain and the potentially exponential number of
configurations that MBR bidders are expected to bid on. This leads the authors to suggest
auction additive and discrete (AD) . AD requires that all traders have additive preferences.
Prices are maintained for every value of each attribute (rather than on the joint domain)
and sellers place bids for levels of each attribute, rather than for configurations. The sellers
also bid a special discount value, so the price of a configuration from a seller is the sum
of the prices of the attribute level minus the discount suggested by the seller. The discount
allows surplus from one attribute to be transferred to other attributes. In other words, the
competition is per attribute level (in order to drive prices down), but at some point sellers
might get into a deadlock where a bidder currently winning on one attribute cannot beat
the winner of another attribute. In such case they are required to provide a discount. The
competition over the discount helps to select seller that can provide the maximal sum of
surpluses over the attributes.

The economic properties of AD are analyzed using a primal-dual formulation, over a
linear program that solves MAP. Because the linear program maximizes surplus, the com-
petitive equilibrium (CE) supports the efficient outcome. The auction protocol maintains
the (ε) complementary slackness condition and leads to the (maximal) CE. Maximal CE
prices correspond to VCG payments for the sellers.

The authors subsequently study the extent to which information is revealed by the buyer
and sellers in the auction, through simulation analysis. They model the amount of infor-
mation that a trader manages to keep as the subspace of feasible weights of attributes in
his utility function. They show how prices of configurations translate to constraints over
weights under the additive representation. They conduct the experiment for both auction
types, but the simulation framework assumes that preferences are additive also when ex-
perimenting with NLD. It is not clear how this might have affected the results.

Whereas auction NLD requires sellers to provide their exact weights, auction AD allows
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sellers to retain 30-50% of their private information.
It is important to note that the mechanisms suggested by PK do not provide strong in-

centive guarantees on the buyer side. The buyer can achieve higher surplus by reporting an
untruthful utility function. This must be considered with respect to the well known impossi-
bility result by Myerson and Satterthwaite (1983). Roughly, this states that no mechanism
exists that is efficient (i.e., achieves maximal surplus in an equilibrium) when monetary
transfer is restricted to be between the agents, and no agent expects to lose from participat-
ing in the mechanism. Given that, relaxing the buyer’s incentives is arguably a reasonable
compromise. In order to increase her profit, the buyer needs to change the utility function
such that the difference between the top two sellers is reduced. To do that she must predict
the bidding of sellers and guess the configurations each would ultimately land on. It is hard
to see how this is possible without knowing sellers’ cost functions.

These two auction protocols are extended by Sunderam and Parkes (2003), to incor-
porate proxy bidding. The proxy is a bidder agent, which collects information about the
preferences of the bidder and submits bids on her behalf. A single-dimensional version is
the simple mechanism employed by eBay, encouraging a bidder to submit a stronger bid
than the minimum currently required to win (up to his true willingness-to-pay) but increas-
ing the winning bid only with the minimum increment until reaching the value given by the
bidder. The multiattribute version is of course more interesting, and can potentially save
more bidding effort. The paper focuses on methods by which the proxy learns the bidder’s
weights, using the information measurement approach discussed above. Each choice the
bidder makes puts a constraint on the relevant weights. When a proxy needs to submit a
specific bid in order to become the provisional winner, it needs to verify that the required
bid is implied by the current set of constraints, and only when it is not the proxy needs
to elicit more information from the bidder. The potential of proxies in MA auctions is
intriguing, and invites further research.

Another relevant work is due to Shachat and Swarthout (2002). Their EBC auction is
a two phase mechanism: in the first phase the buyer assigns bidding credit to sellers ac-
cording to the quality of the good they offer, and in the second the sellers compete in an
English auction which is effectively conducted over the surplus they provide to the buyer.
This method also avoids the buyer revelation issue, but compromises surplus: the space of
bilateral matches between the buyer and each of the seller is not explored (i.e., the trading
configuration might not constitute a solution to MMP), hence the mechanism potentially
misses configurations that yield higher surplus than the configurations suggested by the
bidders.

To summarize this part, Table 2.1 provides an outlined view of previous multiattribute

29



Full Buyer Revelation Incremental Buyer Revelation
Additive Preferences Bichler (2001) AD (Parkes and K., 2005)

David et al. (2002)
General Preferences Che (1993); Branco (1997) NLD (Parkes and K., 2005)

Vulkan and Jennings (2000)

Table 2.1: Previous literature on welfare maximizing multiattribute auctions.

literature. Considering the design criteria above, I limit the discussion to mechanisms
that provide welfare-maximization (or approximate maximization) guarantees (under spe-
cific assumptions), and map previous literature according to the information revelation and
preference expressiveness criteria. Most of the mechanisms above are designed to promote
competition. Some of them (Che, 1993; Branco, 1997) provide abstract results that can lead
to iterative implementations. A key motivation for Chapter 4 is to design a mechanism for
the most attractive quadrant of Table 2.1 (general preferences and incremental revelation),
that can be tractable for a large set of attributes.

2.3.6 Utility-Maximizing Mechanisms

Another common design objective for economic mechanisms is to maximize the auction-
eer’s own utility, rather than the total welfare. Note that the maximization is defined with
respect to the space of all possible mechanisms and under some notion of equilibrium be-
havior. A mechanism that is expected to achieve maximal utility in that sense is called
an optimal auction. The only work I am aware of that directly addresses the problem of
optimal multiattribute auction design is due to Ronen and Lehmann (2005).

These authors propose a simple two-stage VCG-based mechanism. The idea is that if
agents reveal their cost functions, we can choose the k agents whose cost functions generate
the highest potential surplus (over all configurations) and drop the others. The second stage
is a VCG mechanism in which the remaining agents participate, with a reserve utility that
is equal to the potential surplus of the best dropped agent. The reserve utility ensures that
no dropped agent would have had incentive to misrepresent its type in order to make it to
the next stage. The second stage VCG mechanism can be made optimal (under the reserve
utility constraint) based on the distribution over the cost functions of the surviving agents
(ignoring their previous reports), conditioned on the reported cost functions of the dropped
agents. The authors prove that the expected utility of the proposed mechanism is at least
half of the expected utility of the optimal one.
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Beil and Wein (2003) suggest an iterative mechanism for buyer’s utility maximization in
procurement. Under the assumption of truthful sellers, the buyer conducts iterative rounds
in order to extract information about the sellers’ cost functions, and uses this information
to design a scoring function that extracts maximal surplus from the winning seller.

My approach follows PK, under the belief that welfare-maximizing mechanisms are
more beneficial in the long-term. They promote trust between the buyer and his trading
partners, and encourage sellers to participate. In PK’s work and in mine the buyer is as-
sumed to bid truthfully, and the mechanism ensures incentive compatibility to the sellers.
This is justified by a similar argument, relying on the buyer’s interest in maintaining healthy
long-term relationship with the chosen suppliers.

2.3.7 Experimental Results

A few papers report results of lab experiments on multiattribute auctions. Bichler (2000)
examined the core questions of multiattribute utility theory in a relatively realistic envi-
ronment. The auction is conducted by an electronic broker for OTC financial derivatives.
Buyers are invited to start auctions and provide their additive utility function—a rare ex-
periment in extracting scoring functions from users. Buyers first enters weights (called
importance values) for each of the attributes. They are asked to provide attribute value

functions (single dimensional function on each attribute), either as ratio values for dis-
crete attributes, or linear functions for continuous variables. Under the assumption that
the scoring function represents the buyer’s utility function, the multiattribute auctions, not
surprisingly, achieved significantly higher utility values than price-only auctions. Next, the
author compared first-score and second-score auctions. The result is that revenue equiv-
alence (or, more precisely, the utility equivalence) is not achieved—first score achieves
higher utility values (for the buyer) than an English auction. Even more surprisingly, the
English auction achieves higher value than a direct revelation second-score mechanism
(Sealed Bid). However, these results were repeated (and even aggravated) in the single-
dimensional auction experiment, therefore it does not seem to characterize multiattribute
auctions in particular.

Strecker and Seifert (2004) compare two second-score mechanisms—one iterative and
the other direct revelation. The iterative mechanism is an English auction, where sell bids
are compared based on the buyer’s scoring function. The buyer’s full scoring function is
revealed to suppliers up front in the two experiments, and the suppliers know their exact
cost schedule. As in Bichler’s experiments, English auctions achieve higher utility for the
buyer, and with it a larger surplus, than does second-score direct revelation.
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Here too, the interesting question that is not addressed is to what extend this result can
be attributed to the fact that the auctions are multiattribute. It might indeed be the case that
the additional difficulty of calculating their optimal bids under the second-score format
causes bidders to deviate from their dominant strategy. However, it is important to note
that the subjects of this experiments were inexperienced. In practice, I expect suppliers
who participate in serious procurement events to employ experienced decision makers with
sensible bidding methodology.

In a different experiment (Strecker, 2003), two kinds of English auctions are compared:
one in which buyer reveals full utility function (TF) and one in which the buyer does not
reveal the utility function (TN). The results is that TF led to more efficient outcomes.
Koppius (2002) performed experiments in which subjects bid in a procurement event of
a chemical. The chemical had two attributes in addition to price. He also finds that re-
vealing the buyer’s utility function (coupled with price feedback) increases the efficiency
of multiattribute auctions.

These results are quite expected, as can be predicted by Che’s analysis, because sellers
that know the buyer’s preferences can optimize their own bidding to those points that yield
higher surplus, in order to increase their chances to win. The approach advocated by PK,
whose spirit I follow in Chapter 4, avoids this tradeoff between efficiency and the buyer’s
privacy of information, and allows to retain both through the use of a multiattribute price
structure.

2.4 Strategic Sourcing

The term strategic sourcing refers to the repeated process in which a company identifies
goods or services for which it wishes to engage in a new procurement contract, selects a
supplier or suppliers, and implements contractual engagement. The common practice for
the selection of suppliers is, very roughly, as follows. The procurement department of the
company sends out a request for quotes (RFQ) to a set of candidate suppliers. Through the
RFQ the department collects prices offered by suppliers, and additional information that
includes characteristics of the good each supplier offers, such as quality measurements,
performance, and so on, other aspects of the deal such as warranty and payment terms, and
information about the supplier. Various stakeholders within the company, which may for
example represent departments that have interest in the decision, consider the suppliers’ re-
sponses, bring in additional information they might have about each supplier, and together
choose the supplier that best answers everybody’s needs. In some cases the selection pro-
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cess is divided to two stages: a Request for Information stage, in which suppliers provide
information about their companies, after which the procurement department sends an RFQ
to a selected subset of the responders. In most cases, the process takes several additional it-
erations involving sequential or simultaneous bilateral negotiation with particular suppliers
(Beall et al., 2003).

A sourcing software can automate or partially automate this lengthy process, and can
yield various advantages to the company (Beall et al., 2003; Sandholm, 2007). In particular,
automation of the RFQ can provide the following benefits:
• Reduce the cost of the event by various means, in particular by automating, or at least

aiding the decision making process using preferences elicited from the various stake
holders and other sources of data.
• Increase social welfare of the outcome, by using advanced auction technologies (e.g.

multiattribute auctions), and by accommodating participation from a larger number
of suppliers without a significant increase in the cost of the event.
• Increase the buyer’s share of the surplus, by creating more competitive pressure

through iterative auctions.
In this work I focus on the multiattribute component of the problem: as described above,
the information provided by a supplier usually contains values to numerous attributes of the
good, the contract, and the supplier. For example, in 2001 KLM Royal Dutch Airlines per-
formed a (single) sourcing event to select a supplier of buttercups for its in-flight service.
This apparently simple procurement item required 77 attributes!6

Despite the potential benefits described above, procurement auction softwares have not
been widely adopted in the industry (Beall et al., 2003). When auctions are used, most com-
monly these are price-only auctions (Bichler et al., 2006), which as I argue in Section 2.3,
and as argued by Sandholm (2007), may yield inferior efficiency. This slow adoption could
be a result of several challenges in the development of such software, which have not been
fully addressed in practice or in academic literature. First, the elicitation of preferences
from various stake-holders is extremely challenging in such high-dimensional domains.
Furthermore, as described in Section 2.3, there are difficulties in designing multiattribute
auctions, in particular the design of tractable, efficient, iterative auctions, that do not com-
promise the privacy of the buyer’s preference information. In this work I attempt to provide
answers to some of these challenges.

6Source: http://www.negometrix.com
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Chapter 3

Extensions to MAUT for the Trading
Domain

In this chapter I present several developments that extend previous results in multiattribute
utility theory. These results, though mostly straightforward to show, are necessary in order
to support some of the work in the next chapters. They are either motivated by the trading
domain (Section 3.1) or required to adapt MAUT results for that domain (Sections 3.2 and
3.3).

3.1 Substitutes, Complements, and Utility Independence

Utility independence, as introduced by Keeney (1971), provides a way to reduce the di-
mensionality of preference representation, under a reasonable and intuitive independence
assumption. One of the motivations to use UI is the substantial previous work in eliciting
and employing this condition (Keeney and Raiffa, 1976). In this section I examine intuitive
properties of the UI and CUI conditions, and additional means to establish their existence.

The UI decomposition (2.1) employs two transformation functions, f (Y ) and g(Y ).
Keeney and Raiffa (1976) show that these functions can be represented using conditional
utility functions over Y . I first adapt this result to CUI. Assume CUI(Y,X | Z) holds. Then
we can determine f (·) and g(·) of (2.2) by solving the system of two equations below,
applying the specific instantiations Y 1 and Y 2:

u(X ,Y 1,Z) = f (X ,Z)+g(X ,Z)u(X0,Y 1,Z),

u(X ,Y 2,Z) = f (X ,Z)+g(X ,Z)u(X0,Y 2,Z),
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yielding

g(X ,Z) =
u(X ,Y 2,Z)−u(X ,Y 1,Z)

u(X0,Y 2,Z)−u(X0,Y 1,Z)
, (3.1)

f (X ,Z) = u(X ,Y 1,Z)−g(X ,Z)u(X0,Y 1,Z). (3.2)

Note that Y 1,Y 2 are selected such that Y 1 ≺X0 Y 2 (this relation does not depend on Z),
meaning u(X0,Y 2,Z)−u(X0,Y 1,Z) 6= 0.1

Whereas additivity practically excludes any interaction between utility of one attribute
or subset (X in Definition 2.14) to the value of another (Y ), utility independence admits
common notions of dependency. These types of dependency are known as complements

and substitutes. These concepts are known primarily in the context of combinatorial pref-
erences, that is preferences over combinations of distinct items. In the multiattribute
framework, these relationships can be intuitively described as follows. Two (sets of) at-
tributes are complements if an improvement in the value of both is worth more than the sum
of the same improvement of each independently, whereas the two attributes are substitutes
if it is the other way round. Clearly, these concepts are meaningful only with respect to (sets
of) attributes that are preferentially independent, otherwise the notion of “improvement” is
conditional on the value of other attributes.

As argued earlier, typical purchase and sale decisions exhibit first-order preferential in-
dependence. In other types of decisions this condition is also rather common, as it occurs
whenever an attribute has some natural order of quality. Therefore, it is intuitively easier to
initially limit the definition to a relationship between single attributes.

Definition 3.1. Let û(·) be a measurable value function over S′. Let a,b ∈ S′, and

Z = S′ \ {a,b}, and assume that a and b are each FOPI of the rest of the attributes. At-

tributes a and b are called complements if for any ai > aî (ai,aî ∈ D(a)) and any b j > b ĵ

(b j,b ĵ ∈ D(b)), and any Z′ ∈ D(Z),

û(ai,b j,Z′)− û(aî,b ĵ,Z′) > û(ai,b ĵ,Z′)− û(aî,b ĵ,Z′)+ û(aî,b j,Z′)− û(aî,b ĵ,Z′).

Attributes a and b are substitutes if the inequality sign is (always) the other way round.

Now consider two subsets of attributes, X ,Y ⊂ A, each of which is PI of its comple-
ment. Definition 3.1 can easily be extended to such subsets: X and Y are complements,
for example, if the preference differences between joint values of X are magnified given

1In the rare case that such Y 1 and Y 2 do not exist, a different X0 can be selected. If for any X0, indifference
holds for any two values of Y , the attributes of Y are not essential for the decision problem.
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a more desirable joint value of Y . If all of those differences are magnified such that the
order over them does not change, X may still be UI of Y . Note also that if Y and X are
complements (substitutes) then any pair x ∈ X and y ∈ Y are complements (substitutes).

Next I establish a connection between Definition 3.1 and factors that are used in the UI
driven decompositions.

Theorem 3.1. Let A be a set of attributes, and X ,Y,Z a partition of A, such that CUI(Y,X |
Z). Let g(X) be the corresponding factor in the decomposition (2.2). Then

1. Y and X are complements iff g(X) > 1, for any choice of X0.
2. Y and X are substitutes iff g(X) < 1, for any choice of X0.

The proof (in Appendix A) relies on the formulation (3.2) above. Intuitively, this equa-
tion reflects the ratio between improving the value of Y given X , and the same improvement
of Y given X0� X (Z is fixed for all outcomes). If the ratio is greater than one, it means that
the first improvement is worth more than the second. The formal definition characterizing
the case of g(X) = 1 is provided in the next section. As explained in the next chapter, the
result can help in preference elicitation of compact utility functions.

Theorem 3.2. Let A be a set of MUI attributes, such that there is a MUI-factor k 6= 0. Then

k > 0 iff all pairs of attributes in A are complements, and k < 0 iff all pairs of attributes in

A are substitutes.2

This result can provide intuitive help in determining the MUI-factor. In addition, it can
be useful for experimental purposes. Suppose that a modeler wishes to simulate, with ran-
dom data, an application that operates based on users’ preferences. In order for the random
data to imitate utility of real users, the modeler might like to consider sets of attributes
which are complements or substitutes. This provides a single control parameter (the MUI-
factor) to determine the strength of complementarity or substitutivity, and allows one to
express simulation results as a function of that parameter. I do exactly that in Chapter 4.

Attributes often can be shown to be complements or substitutes intuitively (see exam-
ples in this chapter and in Chapter 4). However, even when such meaningful dependencies
do not hold, there are more subtle relations that rule out additive independence. In the vNM
framework, one such condition is the so-called multiattribute risk aversion. Von Winter-
feldt and Edwards (1986) bring the following example: consider a choice between two
even-chance lotteries, α and β . By choosing α , we either win a fancy TV, or win a fancy
Wi-Fi system. With β , we either win both or nothing. The two lotteries yield the same
marginal probability, 0.5, over each of the two attributes (“win fancy TV” and “win fancy

2An intuition for this result, limited to the specific case of MUI between two attributes, is also given by
Keeney and Raiffa (1976).
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Wi-Fi”). However, a risk-averse decision maker naturally prefers lottery α , to ensure that
he wins at least one of the prizes, and therefore the attributes are not additively indepen-
dent. Von Winterfeldt and Edwards (1986) cite behavioral economics experimental results,
supporting the claim that the additive representation is usually a poor representation of
preferences under uncertainty. The authors refer to multiattribute risk aversion as a major
explanation for that phenomena.

I will now argue that this example can be adapted to illustrate that additivity is too re-
strictive under the MVF framework as well. The reasoning is as follows: under uncertainty,
nonlinearity of a single-dimensional utility function is often justified as risk aversion (or
risk proneness). When no uncertainty is involved, single-dimensional utility function may
still be nonlinear, if the decision maker exhibits decreasing (or increasing) marginal utility.
Similarly, the notion of multiattribute risk aversion has an analogous notion which can be
referred to as decreasing multiattribute marginal utility. Consider the following example:
a car buyer is asked for the amount he is willing to pay for having a sun roof in the car,
the amount he is willing to pay for an upgrade of the audio system, and the amount he is
willing to pay for both. If the decision maker have decreasing margins over fancy additions
to the car—he is reluctant to add two large amounts at the same time for something that is
not a necessity—the latter amount would be lower than the sum of the other two, meaning
that the two attribute are not difference independent, again ruling out an additive form. The
two attributes in such case are substitutes according to the definition above, even though
there is nothing inherent in one that substitutes for the other.

3.2 Generalized Additivity Framework for MVF

Since the CAI and GAI conditions are defined based on preferences over lotteries, we
cannot apply Bacchus and Grove’s result (Section 2.2) and Fishburn’s (Theorem 2.4) to
MVF without first establishing an alternative framework based on preference differences.
I develop such a framework, ultimately producing a GAI decomposition (Eq. 3.5) of the
MVF.

3.2.1 Conditional Difference Independence

My first step is to generalize Definition 2.16 to conditional independence.

Definition 3.2. Let X ,Y,Z be a partition of the set of attributes A. X is conditionally
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difference independent (CDI) of Y given Z, denoted as CDI(X ,Y | Z), if

∀Ẑ ∈ D(Z), X1,X2 ∈ D(X), Y 1,Y 2 ∈ D(Y ), (X1Y 1Ẑ,X2Y 1Ẑ)∼̃(X1Y 2Ẑ,X2Y 2Ẑ).

The conditional set is always the complement of the independent sets (here Z =
A\ (X ∪Y ), hence I sometimes leave it implicit, using the abbreviated notation CDI(X ,Y )
(and similarly for the CUI and CPI conditions).

CDI leads to a decomposition similar to that obtained from CAI (Eq. 2.5).

Lemma 3.3. Let û(A) be an MVF representing preference differences. Then CDI(X ,Y | Z)
iff

û(A) = û(X0,Y,Z)+ û(X ,Y 0,Z)− û(X0,Y 0,Z).

A convenient generalization of Lemma 3.3 is as follows.

Corollary 3.4. CDI(X ,Y | Z) iff there exist functions ψ1(X ,Z) and ψ2(Y,Z), such that

û(X ,Y,Z) = ψ1(X ,Z)+ψ2(Y,Z). (3.3)

An immediate consequence of Corollary 3.4 is that CDI is a symmetric relation. Fur-
thermore, Theorem 3.1 can be extended as follows: CDI(X ,Y | Z) holds iff g(X) = 1, for
any choice of X0.

The conditional independence condition is much more applicable than the uncondi-
tional one. For example, if attributes a ∈ X and b /∈ X are complements or substitutes, X

cannot be difference independent of X . However, X \{a} may still be CDI of X given a.

3.2.2 GAI Structure for MVF

A single CDI condition decomposes the value function into two parts. I seek a finer-grain
global decomposition of the utility function, and in particular it seems plausible that MVF
supports a GAI condition, analogous to Definition 2.15. To this purpose I now employ the
results of Bacchus and Grove (1995), who establish that the CAI condition has a perfect

map (see Section 2.2). Their proofs can easily be adapted to CDI, since they rely only on the
decomposition property of CAI that is also implied by CDI according to Proposition 3.4. I
refer to this CDI equivalent of a CAI map as a CDI map.

Theorem 3.5. Let G = (A,E) be a perfect map for the CDI conditions on A (the CDI map).

Then

û(A) =
g

∑
r=1

fr(Ir), (3.4)
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where I1, . . . , Ig are (overlapping) subsets of A, each corresponding to a maximal clique of

G.

Given Theorem 3.5, we can now identify an MVF GAI structure from a collection of
CDI conditions. The CDI conditions, in turn, are particularly intuitive to detect when the
preference differences carry a direct interpretation, as in the case with monetary differ-
ences discussed below. Moreover, the assumption or detection of CDI conditions can be
performed incrementally, until the MVF is decomposed to a reasonable dimension. This is
in contrast with the fully additive decomposition of MVF that requires mutual preferential
independence (Dyer and Sarin, 1979).

Theorem 3.5 defines a decomposition structure, but to represent the actual MVF we
need to specify the functions over the cliques. The next theorem establishes that the func-
tional constituents of MVF are the same as those for GAI decompositions as defined by
Fishburn (1967a) for vNM (Theorem 2.4).

Theorem 3.6. Let G = (A,E) be a perfect map for the CDI condition on A, and {I1, . . . , Ig}
a set of maximal cliques as defined in Theorem 3.5. Then the elements of functional decom-

position (3.4) can be defined as

f1 = û([I1]), and (3.5)

for r = 2, . . . ,g, fr = û([Ir])+
r−1

∑
j=1

(−1) j
∑

1≤i1<···<i j<r
û([

j⋂
s=1

Iis ∩ Ir])

The proof (in Appendix A) directly shows that if graph G = (A,E) is a perfect CDI
map, û(A) decomposes to a sum over the functions defined in (3.5). Thus this proof does
not rely on the decomposition result of Theorem 3.5, only on the existence of the perfect
map.

The result is a GAI form which is analogous to a vNM GAI condition that is constructed
from a collection of CAI conditions. The analogy is therefore not complete—as mentioned
in Section 2.2, in vNM a GAI decomposition may exist without any related CAI condition.
However, as also discussed in that section, such a GAI condition is rarely useful.

To summarize, the results of this section generalize additive MVF theory. In particular
it justifies the application of methods recently developed under the vNM framework (Bac-
chus and Grove, 1995; Boutilier et al., 2001; Gonzales and Perny, 2004; Braziunas and
Boutilier, 2005) to representation of cardinal value under certainty.

39



3.3 Reasoning with Willingness-to-Pay

Trading decisions represent a special case of decisions under certainty, where choices in-
volve multiattribute outcomes and corresponding monetary payments. In such problems,
the key decision often hinges on relative valuations of price differences compared to dif-
ferences in alternative configurations of goods and services. Theoretically, price can be
treated as just another attribute, however, such an approach fails to exploit the special char-
acter of the money dimension, and can significantly add to complexity due to the inherent
continuity and typical wide range of possible monetary outcome values.

As explained in Section 2.1.1, we might opt for an MVF representation when we can
point out specific attributes that can be used as a relative preference measurement for oth-
ers. A natural choice for trading is to use monetary scaling, where the preference difference
over a pair of outcomes represents the difference in willingness to pay (WTP) for each.

3.3.1 Construction

In this section I apply measurable value to represent differences of willingness to pay for
outcomes. I assume that the agent has a preference order over an outcome space. The
outcome space is represented by a set of attributes A, and an attribute p representing mon-
etary consequence. Note that in evaluating a purchase decision, p would correspond to the
agent’s money holdings net of the transaction (i.e., wealth after purchase), not the purchase
price. An outcome in this space is represented for example by (θ ′, p′), where θ ′ ∈ Θ is an
instantiation of A and p′ is a value of p. I use the notation �̄ to denote a preference order
over the domain Θ×D(p). I further assume that preferences are quasi-linear in p (Mas-
Colell et al., 1995), that is there exists a value function of the form v(A, p) = ū(A)+L(p),
where L is a positive linear function.3

The quasi-linear form immediately qualifies money as a measure of preference differ-
ences, and establishes a monetary scale for ū(A).

Definition 3.3. Let v(A, p) = ū(A)+L(p) represent �̄, where p is the attribute representing

money. ū : Θ→ℜ is called a willingness-to-pay (WTP) function.

Note that WTP may also refer to the seller’s “willingness to accept” function. Since

(θ1, p′)� (θ2, p′′)⇔ ū(θ1)− ū(θ2)≤ L(p′′− p′)
3In many procurement applications, the deals in question are small relative to the enterprises involved,

so the quasi-linearity assumption is warranted. This assumption can be relaxed to a condition called corre-
sponding tradeoffs (Keeney and Raiffa, 1976), which does not require the value over money to be linear. To
simplify the presentation, however, I maintain the stronger assumption.
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(where θ1,θ1 ∈Θ), the WTP function can be used to choose among priced outcomes.
Naturally, elicitation of a WTP function is most intuitive when using direct monetary

values. In other words, we elicit a function in which L(p) = p, so v(A, p) = ū(A)+ p. We
define a reference outcome (θ 0, p0), and assuming continuity of p, for any assignment θ̂

there exists a p̂ such that (θ̂ , p̂)∼ (θ 0, p0).4 As v(·) is normalized such that v(θ 0, p0) = 0,
p̂ is interpreted as the WTP for θ̂ , or the reserve price of θ̂ .

Theorem 3.7. The WTP function is an MVF over differences in the reserve prices.

Note that the WTP function is used extensively in economics, and that all the develop-
ment in Section 3.2 could be performed directly in terms of WTP, relying on quasi-linearity
for preference measurement, and without formalization using MVFs. This formalization
however aligns this work with the fundamental difference independence theory by Dyer
and Sarin.

In addition to facilitating the detection of GAI structure, the CDI condition supports
elicitation using local queries, similar to how CAI is used by Braziunas and Boutilier
(2005). I adopt their definition of conditional set of Ir, noted here Sr, as the set of neighbors
of attributes in Ir not including the attributes of Ir. Clearly, Sr is the separating set of Ir in
the CDI map, hence CDI(Ir,Vr), where Vr = A \ (Ir ∪ Sr). From the definition of CDI, for
any I1

r , I2
r ,V 1

r ,V 2
r we have:

ū(I2
r S0

rV 1
r )− ū(I1

r S0
rV 1

r ) = ū(I2
r S0

rV 2
r )− ū(I1

r S0
rV 2

r ).

Eliciting the WTP function therefore amounts to eliciting the utility (WTP) of one full
outcome (the reference outcome θ 0), and then obtaining the function over each maximal
clique using monetary differences between its possible assignments, technique known as
pricing out (Keeney and Raiffa, 1976; Clemen, 1996), keeping the variables in the con-
ditional set fixed. These ceteris paribus elicitation queries are local in the sense that the
decision maker does not need to consider the values of the rest of the attributes. Further-
more, in eliciting MVFs we can avoid the global scaling step that is required for vNM
functions. Since the preference differences are extracted with respect to specific amounts
of the attribute p, the utility is already scaled according to that external measure. Hence,
once the conditional utility functions ū([I j]) are obtained, we can calculate ū(A) according
to (3.5).

This last step may require (in the worst case) computation of a number of terms that
is exponential in the number of max cliques. In practice however GAI decomposition is

4The term “reference outcome” is used here as a baseline for valuation of other outcomes, which is a
different context than the “reference value” used for conditional utility.

41



expected to be sufficiently structured to limit the number of these terms (Braziunas and
Boutilier, 2005). To take advantage of that we can use the search algorithm suggested by
Braziunas and Boutilier (2005), which efficiently finds all the nonempty intersections for
each clique.

In the rest of the work, when it is clear from the context that the utility function is an
MVF scaled to express willingness-to-pay, as is the case in Chapters 4 and 5, I drop the bar
from the notation of ū(·).

3.3.2 Optimization

As shown, the WTP function can be used directly for pairwise comparisons of priced out-
comes. Another preference query often treated in the literature is optimization, or choice
of best outcome, possibly under constraints.

Under FOPI, the unconstrained optimization of unpriced outcomes is trivial, because
it amounts to a serial selection of the most desired value of each attribute. Therefore, I
consider choice among attribute points with prices. Since any outcome can be best given
enough monetary compensation, this problem is not well-defined unless the combinations
are constrained somehow.

A particularly interesting optimization problem is the MMP (Definition 2.18), which
arises in the context of auctions or negotiations between a buyer with utility ub(·) and a
seller with utility us(·). If ub(·) and us(·) are each in a GAI form, then ub(A)− us(A) has
the GAI form implied by the combined CDI map: one that includes the edges of the CDI
map of ub(·) as well as the edges of the CDI map of us(·). We can therefore employ well-
studied combinatorial optimization procedures, such as variable elimination (e.g. Dechter
(1996)), to find the best trading point under GAI structure (see also Gonzales and Perny
(2005)). Similarly, this optimization can be done to maximize surplus between a trader’s
utility function and a pricing system that assigns a price to each level of each GAI ele-
ment, and this way guide traders to their optimal bidding points. In Chapter 4 I develop a
multiattribute procurement auction that builds on this idea.

3.3.3 An Example Scenario

My example purchase decision is of a vacation package, based on the TAC travel game
(Wellman et al., 2007). In TAC (trading agent competition), clients provide their (addi-
tive) preference information to trading agents. The agents bid in a combination of auctions
to purchase flight tickets, nights at hotels, and entertainment tickets. Their performance
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Figure 3.1: Map of CDI conditions. Utility function decomposes over maximal cliques.

is measured by the total surplus they provide to their clients. In a hypothetical multiat-
tribute version of this scenario clients would provide agents with a compact representation
of their full WTP function, and agents’ performance would be measured with respect to
that function.

In the original scenario, travel packages cover a given five-day period. My extended
version includes the following attributes: SD (start day of trip, 1-3), L (length of stay, 2-4
nights), HR (hotel rating, 2-4 stars), HL (hotel location, 0-10 blocks away from the center),
E1 and E2 (each can be one of two types of entertainment tickets, or none), FC (flight
class, business or coach).

Assume the following reasonable set of difference independencies:

CDI(SD,{HL,HR,E1,E2,FC})

CDI(L,{E1,E2,FC})

CDI(HR,{E1,E2})

CDI(FC,{HL,E1,E2})

For example, the WTP and even preference order over the start date (SD) may depend on
the length, but can be independent of the other attributes. Now looking at HR, we may be
willing to pay more to relax in a fancier hotel after traveling coach, or if we are located far
from the center (and therefore likely to spend more time at the hotel), or if we stay longer.
However, this WTP does not depend on what type of entertainment we go to. Note that
unconditional difference independence cannot be applied at all for this problem.

The CDI conditions are illustrated in Figure 3.1. Each pair of nodes that are CDI
are not connected by an edge. The maximal cliques of this graph are I1 = {SD,L},
I2 = {L,HR,HL}, I3 = {E1,E2,HL}, and I4 = {FC,HR}.

The deepest nonempty intersections of cliques are pairwise. The local functions are
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defined according to (3.5) as follows:

u1(I1) = u([SD,L])

u2(I2) = u([L,HR,HL])−u([L])

u3(I3) = u([E1,E2,HL])−u([HL])

u4(I4) = u([FC,HR])−u([HR])

The number of entries required to represent u(·) under this decomposition is the sum of en-
tries required for the functions u([SD,L]),u([L,HR,HL]),u([E1,E2,HL]), and u([FC,HR])
(note that the intersection domains are subsets of these domains), which is 213, whereas
the full representation requires 5,346 entries, calculated as the full product of the sizes of
the attributes’ domains.

The function u(·) can be elicited, by the agents and from the clients, as follows. Ini-
tially the client is asked for her WTP for a reference package—for example SD = 1, L = 2,
HR = 2, HL = 10, E1 =none, E2 =none, FC =coach. Then u([FC,HR]) is extracted: The
client specifies her WTP to improve from a 2-star hotel to a 3-star one given that she is
flying in coach. Then she provides her WTP to improve from coach to business class given
2 stars, and from 2 stars to 3 stars given business. Finally she specifies the WTP to improve
from 3 stars to 4 stars given FC=coach and then given FC=business. Since S4 = {L,HL},
in all these queries the values of L and HL must be fixed on the reference points, and the
values of E1,E2,SD can be ignored. The number of queries for full elicitation is exponen-
tial in the size of the clique. Though it may still be too many for large problems, it is a
better starting point for the application of heuristic techniques such as curving (eliciting a
few sample points and fitting a function).

3.3.4 Beyond Quasi-Linearity

The quasi-linearity assumption in the money attribute is a key in the modeling of
willingness-to-pay above. It in fact includes two assumptions: first, that the utilities of
money and the attributes are additively separable, and second that the utility of money is
linear. Linearity of money may be violated when large amounts of money are involved
(due to diminishing returns), and I therefore relax this assumption in this section. The
assumption that I still maintain is formalized as follows.

Definition 3.4. Let � be a preference relation over A∪{p}. Then � is additive in p if �
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can be represented by

v(A, p) = u(A)+ vp(p).

Keeney and Raiffa (1976) describe a necessary and sufficient condition, called the cor-

responding tradeoffs condition, for such binary additive representation to hold. In essence,
it holds if A and p can be transformed to scales (u(A) and vp(p)) on which their marginal
rate of substitution is constant. Keeney and Raiffa suggest verification techniques for this
condition.

Now assuming only that preferences are additive in p, u(A) is still the WTP function,
and

(A1, p′)� (A2, p′′)⇔ u(A1)−u(A2)≤ vp(p
′′
)− vp(p

′
).

Definition 3.5. Let A1,A2,A3, and A4 be points in the domain of A. Then

[A1,A2]�̄[A3,A4]

if and only if for any values p1, p2, p3, p4 of p such that (A1, p1)∼ (A2, p2) and (A3, p3)∼
(A4, p4),

vp(p1)− vp(p2)≤ vp(p3)− vp(p4).

Corollary 3.8. u(A) is an MVF representing �̄.

As in the quasi-linear case, we can obtain the reserve price pi such that v(Ai, pi) = 0.
To illustrate how this WTP function supports nonlinearity, assume that Alice is looking

to buy a new car, and has the following reserve prices.
• Subaru with some configuration Ŝ: $20000.
• Subaru with Ŝpl (Ŝ with power locks): $20100.
• Mercedes with configuration M̂: $40000.
• Mercedes with configuration M̂g (M̂ with GPS): $40090.

If Alice’s preferences over money exhibit diminishing evaluation, it may be the case that
vp(w− 20100)− vp(w− 20000) < vp(w− 40090)− vp(w− 40000) (w represents Alice’s
current wealth). In that case [Ŝpl, Ŝ] �∗ [M̂g,M̂], even though the monetary difference im-
plies the opposite.

Now if M̂g costs 35100 and Ŝ costs 15000, which of the two options should Alice
choose? she would choose M̂g if and only if

u(M̂g)−u(Ŝ) = vp(w−40090)− vp(w−20000)≥ vp(w−35100)− vp(w−15,000).

Again this formalization of the WTP as an MVF lets us use the compact representations
developed in Section 3.2 to represent u(A). Representation of vp(p) is less of a concern
since it is a single-dimensional function, usually with a well defined curve.
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Elicitation using pricing-out can still be used, however taking non-linearity into ac-
count. We start from the reference outcome (A0, p0), v(A0, p0) = 0, and normalize u(A)
such that u(A0) = 0 by compensating through vp(p). That also ensures vp(p0) = 0. Elici-
tation of each u([I j]) is still aimed at finding the reserve price of each outcome, using the
same local queries as those in the quasi-linear case: WTP differences over the assignments
to the cliques I j, keeping S j fixed, and ignoring the value of Vj. However here the result
is in terms of vp(p), rather than p. Assuming we obtained vp(p), u(A) can be calculated
again using (3.5).

This shown that with a relatively reasonable effort we can avoid the assumption that
preferences over money are linear. However, to simplify the analysis of mechanisms pro-
posed in this work I retain the quasi-linearity assumption throughout.
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Chapter 4

Structured Multiattribute Auctions

4.1 Introduction

In this chapter I propose a multiattribute auction that addresses problems discussed in Sec-
tion 2.3. In particular, no previous welfare-maximizing mechanism is at the same time
expressive (i.e., allows traders to express non-additive preferences), tractable (does not
depend on the fully exponential domain), and preserves buyer’s privacy of information.
In order to propose a mechanism that exhibits these properties, I combine previous ap-
proaches to multiattribute procurement with preference representation tools introduced in
Chapter 3. I suggest a multiattribute mechanism that decreases elicitation and computation
burden, approximately maximizes social welfare of the outcome, and creates an open com-
petition between suppliers over a multi-dimensional domain. This mechanism is inspired
by the auction design approach of Parkes and Kalagnanam (2005) (PK), that employs a
price structure to drive traders to their efficient configurations. This allows us to avoid the
sometimes unrealistic burden on the buyer to reveal his full utility function to sellers prior
to bidding (see Section 2.3), which is required by most previous multiattribute auction lit-
erature. PK suggest two mechanisms, discussed in details in Section 2.3, which represent
two extremes: NLD makes no assumption on traders’ preference structure, whereas AD
assumes fully additive preferences.

I motivate the approach I take in comparison to PK using the following example. A
procurement department considers purchasing new hard drives (HD) for the desktops of a
large number of employees, for example to allow more storage space, better performance,
and to take advantage of a quantity discount. The company cares about several charac-
teristics of the hard drives and the contract, listed below. Each attribute is listed with a
designated attribute name (the first letter), and its domain. In some cases (e.g., attribute
C) I use arbitrary number or letters to represent domain values. We can assume that these
values have some meaningful interpretation.
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RPM (R) 3600, 4200, 5400 rpm

Transfer rate (T) 3.4, 4.3, 5.7 MBS

Volume (V) 60, 80, 120, 160 GB

Compatibility (C) (with various types of desktops) 1, 2, 3

Quality rating (Q) (of the HD brand) 1, 2, 3, 4, 5

Delivery time (D) 10, 15, 20, 25, 30, 35 days

Warranty (W) 1, 2, 3 years

Insurance (I) (for the case the deal is signed but not implemented) α , β , γ

Payment timeline (P) 10, 30, 90 days

In practice, application scenarios may be extremely more complex, in both the number of
attributes and the domains of each attribute (see the KLM example in Section 2.4). But
even the simplified domain above poses a serious challenge for an auction such as NLD:
the full domain has 87,480 distinct configurations, and the auction must obtain the buyer’s
valuation for each, maintain a price for each, and solicit bids for each. On the other hand, I
argue below that using an additive auction such as AD misses important interdependencies
among the attributes.

Consider, for example, the pair of attributes RPM and Volume. If the RPM is low (e.g.,
3600), it is not desirable to have a very large hard drive such as 160GB, because the perfor-
mance is going to be particularly poor. Even if some people would always prefer the larger
HD, it is unreasonable to assume that their willingness-to-pay for the extra gigabytes does
not depend on the RPM. A similar kind of relationship will typically exist between Volume
and Transfer rate. Note that these pairs of attribute are complements (Definition 3.1).

Furthermore, I find it reasonable that Volume complements both Quality and Warranty.
Larger hard drives are more prone to failures, therefore a larger one is more valuable when
the quality is known to be high or if a longer warranty is promised. The use of the word
“or” in the previous sentence implies another type of relationship: Quality and Warranty
are very likely to be substitutes. Other reasonable dependencies are between Delivery, In-
surance and Payment Terms (e.g., later delivery requires better insurance, later payment
reduces the need of insurance) and perhaps between Insurance and Warranty (if the insur-
ance covers the case that the supplier runs out of business during the warranty period). The
corresponding CDI map is depicted in Figure 4.1a. As described in Chapter 3, the utility
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(a) (b)

Figure 4.1: HD procurement problem: (a) CDI map, (b) GAI network.

function decomposes over the maximal cliques of its CDI map. It is therefore useful to
view the clique graph of the map, or the GAI network (Gonzales and Perny, 2004). The
corresponding GAI network is shown in Figure 4.1b.

This is by no means the exact set of dependencies that holds for the preferences of
any procurement department faced with this problem. For example, RPM and Transfer
Rate may also have a complementarity relationship between them, because one can be uti-
lized better when the value of the other is higher. In this example, we might say that this
relationship is weak enough to allow us to ignore it.

To illustrate the need to support GAI preferences I consider the case of traders with
non-additive preferences bidding in an additive price space such as in auction AD (Parkes
and Kalagnanam, 2005). If the buyer’s preferences are not additive, choosing preferred
levels per attribute (as in auction AD) admits undesired combinations and fails to guide
the sellers to the efficient configurations. Non-additive sellers face an exposure problem,
somewhat analogous to traders with complementary preferences that participate in simul-
taneous auctions (Wellman et al., 2008).1 A value a1 for attribute a may be optimal given
that the value of another attribute b is b1, and arbitrarily suboptimal given other values of
b. Therefore bidding a1 and b1 may result in a poor allocation if the seller is outbid on b1

but left winning a1.
Instead of assuming full additivity, the auction designer can come up with a GAI pref-

erence structure that captures the set of common interdependencies among attributes. If
traders could bid on clusters of interdependent attributes, it would solve the problems
above. For example, if a and b are interdependent (meaning CDI(a,b) does not hold), we
should be able to bid on the cluster ab. If b in turn depends on c, we need another cluster
bc. This is still better than a general pricing structure that solicits bids for the cluster abc.
I stress that each trader may have a different set of interdependencies, and therefore to be

1If only the sellers are non-additive, the auction design could potentially alleviate this problem by collect-
ing a new set of bids each round, and also guiding non-additive sellers to bid on only one level per attribute
in order to avoid undesired combinations.
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completely general the GAI structure needs to account for all.2 However, in practice many
domains have natural dependencies that are mutual to traders.

4.2 GAI Auctions

In the procurement setting a single buyer wishes to procure a single good, in some con-
figuration θ ∈ Θ from one of the candidate sellers s1, . . . ,sm. The buyer has some private
valuation function (WTP) ub : Θ→ℜ+, and similarly each seller si has a private valuation
function (willingness-to-accept), or cost function, ci. The multiattribute allocation prob-
lem (Parkes and Kalagnanam, 2005) is the welfare optimization problem in procurement
over a discrete domain (Definition 2.17), and the multiattribute matching problem (MMP)
is a subproblem of MAP. MMP(b,si) is defined to be a configuration that maximizes the
surplus between the reported valuations of the buyer b and a seller si.

4.2.1 GAI Preferences in Procurement

Assume that preferences of all traders are reflected in a GAI structure I1, . . . , Ig. I call each
Ir a GAI element, and any assignment to Ir a sub-configuration. I use θr to denote the
sub-configuration formed by projecting configuration θ to element Ir.

Definition 4.1. Let α be an assignment to Ir and β an assignment to Ir′ . The sub-

configurations α and β are consistent if for any attribute a j ∈ Ir ∩ Ir′ , α and β agree on

the value of a j. A collection Φ of sub-configurations is consistent if all pairs α,β ∈Φ are

consistent. The collection is called a cover if it contains exactly one sub-configuration αr

corresponding to each element Ir, r ∈ {1, . . . ,g}.

Note that a consistent cover {α1, . . . ,αg} represents a full configuration, which I denote
by (α1, . . . ,αg).

For example, consider the procurement of a good with three attributes, a,b,c. Each at-
tribute’s domain has two values (e.g., {a1,a2} is the domain of a). Let the GAI structure be
I1 = {a,b}, I2 = {b,c}. Figure 4.2 shows the simple CDI map and the corresponding GAI
network, which is a GAI tree. Here, sub-configurations are assignments of the form a1b1,
a1b2, b1c1, and so on. The set of sub-configurations {a1b1,b1c1} is a consistent cover,
corresponding to the configuration a1b1c1. In contrast, the set {a1b1,b2c1} is inconsistent.

2This requirement is relaxed in Section 4.3.3.

50



ya
yb

�
�
� ycZ

Z
Z

(i)

�
 �	a,b
�
 �	b,c

(ii)

Figure 4.2: An example CDI map and GAI network. (i) CDI map for {a,b,c}, reflecting
the single condition CDI(a,c). (ii) The corresponding GAI network.

In this work I propose auctions with GAI pricing structure, that is a structure that as-
signs a price for each sub-configuration in a given GAI decomposition of Θ. A crucial
property of this pricing scheme is that if the GAI price structure matches the trader’s GAI
structure, then traders do not face an exposure problem: no suboptimal configurations can
be constructed from a set of optimal configurations. More precisely, if Ψ is a set of profit-
maximizing configurations for a trader, and Φ is the collection of sub-configurations in Ψ,
then any consistent cover over Φ is optimal as well.

This property can be ensured (see Lemmas 4.1 and 4.3) only if the GAI network is in
the form of a tree or a forest (the GAI tree). A tree structure can be achieved for any set of
CDI conditions by triangulation of the CDI map prior to construction of the clique graph
(GAI networks and GAI trees are defined by Gonzales and Perny (2004), who also describe
the triangulation algorithm). In the HD example above, we can ensure the tree structure by
adding a dependency between RPM and Transfer rate, which would lead to a merge of the
nodes (R,V ) and (T,V ) into (R,T,V ) in the GAI network.

Under GAI, the buyer’s value function ub and sellers’ cost functions ci can be decom-
posed as in (3.4). I use fb,r and fi,r to denote the local functions of buyer and sellers
(respectively), according to (3.5).

4.2.2 The GAI Auction

I define an iterative multiattribute auction that maintains a GAI pricing structure: that is, in
any round t, there is a price pt(·), corresponding to each sub-configuration of each GAI-
tree element. The price pt(θ) of a configuration θ at round t is defined in terms of the
sub-configuration prices and a global discount term ∆,

pt(θ) =
g

∑
r=1

pt(θr)−∆.

Bidders submit sub-bids on sub-configurations and on the global discount ∆.3 Sub-bids

3The discount term could be replaced with a uniform price reduction across all sub-configurations.
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are submitted in each round and they expire in the next round. A sub-bid in round t for
configuration θr is automatically assigned the price pt(θr). The set of full bids of a seller
contains all consistent covers that can be generated from that seller’s current set of sub-
bids. The existence of a full bid over a configuration θ represents the seller’s willingness
to accept the price pt(θ) for supplying θ .

At the start of the auction, the buyer reports (to the auction, not to sellers) a complete
valuation function ub(·) in GAI form ( fb,1, . . . , fb,g), such that ub(θ) = ∑r fb,r(θr). The
initial prices of sub-configurations are set at some level above the buyer’s valuations, that
is, p1(θr) > fb,r(θr) for all θr. The discount ∆ is initialized to zero. The auction has the dy-
namics of a descending clock auction: at each round t, bids are collected for current prices
and then prices are reduced according to price rules. A seller is considered active in a round
if she submits at least one full bid. In round t > 1, only sellers who were active in round
t − 1 are allowed to participate, and the auction terminates when no more than a single
seller is active. I denote the set of sub-bids submitted by si by Bt

i , and the corresponding
set of full bids is

Bt
i = {θ = (θ1, . . . ,θg) ∈Θ | {θ1, . . . ,θg} ⊆Bt

i}.

In the example, a seller could submit sub-bids on a set of sub-configurations such as
{a1b1,b1c1}, and that combines to a full bid on a1b1c1.

The auction proceeds in two phases. In the first phase (A), at each round t the auc-
tion computes a set of buyer-preferred sub-configurations M t . Section 4.3.1 shows how to
define M t to ensure convergence, and Section 4.3.2 shows how to efficiently compute it.

In phase A, the auction adjusts prices after each round, reducing the price of every sub-
configuration that has received a bid but is not in the preferred set. Let ε be the prespecified
price increment parameter. Specifically, the phase A price change rule is applied to all
θr ∈

⋃n
i=1 Bt

i \M t :
pt+1(θr)← pt(θr)−

ε

g
. [A]

Let Mt denote the set of configurations that are consistent covers in M t :

Mt = {θ = (θ1, . . . ,θg) ∈Θ | {θ1, . . . ,θg} ⊆M t}.

The auction switches to phase B when all active sellers have at least one full bid in the
buyer’s preferred set:

∀i. Bt
i = /0∨Bt

i ∩Mt 6= /0. [SWITCH]

Let T be the round at which [SWITCH] becomes true. At this point, the auction selects the
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buyer-optimal full bid ηi for each seller si.

ηi = arg max
θ∈BT

i

(ub(θ)− pT (θ)). (4.1)

In phase B, si may bid only on ηi. The prices of sub-configurations are fixed at pT (·) during
this phase. The only adjustment in phase B is to ∆, which is increased in every round by
ε . The auction terminates when at most one seller (if exactly one, designate it sî) is active.
There are four distinct cases:

1. All sellers drop out in phase A (i.e., before rule [SWITCH] holds). The auction
terminates with no allocation.

2. All active sellers drop out in the same round in phase B. The auction selects the best
seller from the preceding round as sî, and applies the applicable case below.

3. The auction terminates in phase B with a final price above the buyer’s valuation,
pT (ηî)−∆ > ub(ηî). The auction offers the winner sî an opportunity to supply ηî at
price ub(ηî).

4. The auction terminates in phase B with a final price pT (ηî)−∆≤ ub(ηî). This is the
ideal situation, where the auction allocates the chosen configuration and seller at this
resulting price.

The overall auction is described by high-level pseudocode in Procedure GAI-Auction.
The role of phase A is to guide the traders to their efficient configurations (MMP solutions):
prices are reduced on configurations that are optimal for a seller but not preferred by the
buyer, making it either less attractive to the seller or preferred by the buyer. Phase B is a
one-dimensional competition over the surplus that remaining seller candidates can provide
to the buyer. In the next section I formalize the notions mentioned above: optimal for the
seller, and buyer-preferred, prove that phase A indeed converges, and that phase B selects
a seller whose efficient configuration yields (approximately) the highest surplus. In Sec-
tion 4.3.2 I discuss the computational tasks associated with the auction, and Section 4.4
provides a detailed example.

4.3 Analysis

4.3.1 Economic Properties

When the optimal solution to MAP (2.7) provides negative welfare and sellers do not bid
below their cost, the auction terminates in phase A, no trade occurs and the auction is
trivially efficient. I therefore assume throughout the analysis that the optimal (seller, con-
figuration) pair provides non-negative welfare. Furthermore, efficiency results below hold
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Procedure:GAI Auction
Collect a reported valuation, ub(·) from the buyer;
Set high initial prices, p1(θr) on each sub-configuration θr, and set ∆ = 0;
while not [SWITCH] do

Collect sub-bids from sellers;
Compute M t ;
Apply price change by [A];

end
Compute ηi;
while more than one active seller do

Increase ∆ by ε;
Collect bids on (ηi,∆) from sellers;

end
Implement allocation and payment to winning seller;

when the buyer is truthful (as reasoned in Section 2.3), meaning that ub(·) is her real utility
function. Another way to interpret the efficiency results is that they apply to the face value
of the buyer’s report. At this point I do not assume truthful sellers.

The buyer profit from a configuration θ is defined as4

πb(θ) = ub(θ)− p(θ),

and similarly πi(θ) = p(θ)− ci(θ) is the profit of seller si. In addition, for µ ⊆ {1, . . . ,g},
I denote the corresponding set of sub-configurations by θµ , and define the profit from a
configuration θ over the subset µ as

πb(θµ) = ∑
r∈µ

( fb,r(θr)− p(θr)).

πi(θµ) is defined similarly for si. Crucially, for any µ and its complement µ̄ and for any
trader τ ,

πτ(θ) = πτ(θµ)+πτ(θµ̄).

The function σi : Θ→ ℜ represents the welfare, or surplus function ub(·)− ci(·). For any
price system p,

σi(θ) = πb(θ)+πi(θ).

Definition 4.2. A seller is called a straightforward bidder (SB) if at each round t she bids

4I drop the t superscript in generic statements involving price and profit functions, understanding that all
usage is with respect to the (currently) applicable prices.
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on Bt
i as follows: if maxθ∈Θ πt

i (θ) < 0, then Bt
i = /0. Otherwise let

/0⊂Ω
t
i ⊆ argmax

θ∈Θ

π
t
i (θ)

Bt
i = {θr | θ ∈Ω

t
i,r ∈ {1, . . . ,g}}.

Intuitively, an SB seller follows a myopic best response strategy (MBR), meaning they
bid myopically rather than strategically by optimizing their profit with respect to current
prices. Note that SB sellers may bid on any nonempty subset of their myopically optimal
configurations.

In order to calculate Bt
i , sellers need to optimize their current profit function, as dis-

cussed in Section 3.3.2.
The following lemma shows that sellers do not face the exposure problem described

earlier.

Lemma 4.1. Let Ψ be a set of configurations, all maximizing profit for a trader τ (seller

or buyer) at the relevant prices. Let Φ = {θr | θ ∈Ψ,r ∈ {1, . . . ,g}}. Then any consistent

cover in Φ is also a profit-maximizing configuration for τ .

The proof (in Appendix A) relies on the tree structure of the GAI network.

Corollary 4.2. For SB seller si,

∀t,∀θ ′ ∈ Bt
i,π

t
i (θ
′) = max

θ∈Θ

π
t
i (θ).

Next I consider combinations of configurations that are only within some δ of optimal-
ity.

Lemma 4.3. Let Ψ be a set of configurations, all are within δ of maximizing profit for a

trader τ at the prices, and Φ defined as in Lemma 4.1. Then any consistent cover in Φ is

within δg of maximizing utility for τ .

This bound is tight, that is for any GAI tree and a non-trivial domain we can construct
an example set Ψ as above in which there exists a consistent cover whose utility is exactly
δg below the maximal.

Next I formally define M t . For connected GAI trees, M t is the set of sub-
configurations that are part of a configuration within ε of optimal. When the GAI tree
is in fact a forest, we apportion the error proportionally across the disconnected trees. Let
G be comprised of trees G1, . . . ,Gh. I use θ j to denote the projection of a configuration θ

on the tree G j, and g j denotes the number of GAI elements in G j.
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M t
j = {θr | πt

b(θ j)≥ max
θ ′j∈Θ j

π
t
b(θ
′
j)−g j

ε

g
,r ∈ G j}

Then define M t =
⋃h

j=1 M t
j .

Let e j = g j−1 denote the number of edges in G j. I define the connectivity parameter,
e = max j=1,...,h e j. As shown below, this connectivity parameter is an important factor in
the performance of the auction.

Corollary 4.4.
∀θ ′ ∈Mt ,πt

b(θ
′)≥max

θ∈Θ

π
t
b(θ)− (e+1)ε

Lemmas 4.5 through 4.8 show that through the price system, the choice of buyer pre-
ferred configurations, and price change rules, phase A leads the buyer and each of the
sellers to their mutually efficient configuration.

Lemma 4.5. maxθ∈Θ πt
b(θ) does not change in any round t of phase A.

The proof shows that if the buyer profit of a configuration θ increases, due to price
reduction, then the price change rules ensure that the profit of θ must have been smaller
than the maximal profit, by at least the amount of the price reduction.

Lemma 4.6. The price of at least one sub-configuration must be reduced at every round in

phase A.

The proof connects the price reduction rule with the choice of buyer-preferred set: in
phase A there must be a seller that bids on a configuration that has an element that is not in
the preferred set, and therefore its price must be reduced.

Lemma 4.7. When the solution to MAP provides positive surplus, and at least the best

seller is SB, the auction must reach phase B.

This leads to the following key result.

Lemma 4.8. For SB seller si, ηi is (e+1)ε-efficient, that is its surplus is within (e+1)ε of

the surplus provided by MMP(b,si).

In the fully additive case this loss of efficiency reduces to ε . On the other extreme, if
the GAI network is connected then e+1 = g. Also note that if we do not assume any pref-
erence structure, meaning that the CDI map is fully connected, g = 1 and the efficiency loss
is again ε . The proof is straightforward: ηi maximizes the profit of the si, and at the same
prices approximately maximizes the profit of the buyer. This establishes the approximate
bilateral efficiency of the results of phase A (at this point under the assumption of SB).
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Based on phase B’s simple role as a single-dimensional bidding competition over the
discount, I next assert that the overall result is efficient under SB, which in turn proves to
be an approximately ex-post equilibrium strategy in the two phases.

Lemma 4.9. If sellers si and sĩ are SB, and si is active at least as long as sĩ is active in

phase B, then

σi(ηi)≥max
θ∈Θ

σĩ(θ)− (e+2)ε.

Theorem 4.10. Given a truthful buyer and SB sellers, the auction is (e+2)ε-efficient: the

surplus of the final allocation is within (e+2)ε of the maximal surplus.

Following PK, I rely on an equivalence to the one-sided VCG auction to establish in-
centive properties for the sellers. In the one-sided multiattribute VCG auction, the buyer
reports valuation ub, the sellers report costs functions ĉi, and the buyer pays the sell-side
VCG payment to the winning seller.

Definition 4.3. Let (θ ∗, i∗) be an optimal solution to MAP. Let (θ̃ , ĩ) be the best solution

to MAP when i∗ does not participate. The sell-side VCG payment is

VCG(ub, ĉi) = ub(θ ∗)− (ub(θ̃)− ĉĩ(θ̃)).

It is well-known that truthful bidding is a dominant strategy for sellers in the one-sided
VCG auction. It is also shown by PK that the maximal regret for buyers from bidding truth-
fully in this mechanism is ub(θ ∗)−ci∗(θ ∗)− (ub(θ̃)− ĉĩ(θ̃)), that is, the marginal product

of the efficient seller.
Usually in iterative auctions the VCG outcome is only nearly achieved, but the devia-

tion is bounded by the minimal price change. I show a similar result, and therefore define
δ -VCG payments.

Definition 4.4. A Sell-side δ -VCG payment for MAP is a payment p such that

VCG(ub, ĉi)−δ ≤ p≤VCG(ub, ĉi)+δ .

Lemma 4.11. When sellers are SB, the payment at the end of GAI auction is sell-side

(e+2)ε-VCG.

When payment is guaranteed to be δ -VCG sellers can affect their payment only within
that range, therefore their gain by falsely reporting their cost is bounded by 2δ .

Theorem 4.12. SB is (3e + 5)ε ex-post Nash equilibrium for sellers in the GAI auction.

That is, sellers cannot gain more than (3e + 5)ε by deviating from SB, given that other

sellers follow SB.
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However, in order to exploit this potential gain sellers need to know, for a given con-
figuration in Mt , whether it was explicitly selected as approximately optimal for the buyer,
or it is a combination of sub-configurations from approximately optimal configurations. It
seems highly unlikely for sellers to have such information. They are more likely to lose if
they do not bid on their myopically optimal configurations.

4.3.2 Computation and Complexity

The size of the price space maintained in the auction is equal to the total number of
sub-configurations, meaning it is exponential in maxr |Ir|. This is also equivalent to the tree-

width (plus one) of the original CDI map. For the purpose of the computational analysis,
I define I =

⋃g
r=1 ∏a j∈Ir D(a j), the collection of all sub-configurations. The first purpose

of this sub-section is to show that the complexity of all the computations required for the
auction depends only on |I|, i.e., no computation depends on the size of the full exponential
domain.

I first consider the computation of M t . Since Mt grows monotonically with t, a naive
application of optimization algorithm to generate the best outcomes sequentially might end
up enumerating significant portions of the fully exponential domain. However as shown
below this plain enumeration can be avoided.

Proposition 4.13. The computation of M t can be performed in time O(|I|2). Moreover,

the total time spent on this task throughout the auction is O(|I|(|I|+T )).

The bounds are in practice significantly lower, based on results on similar problems
from the probabilistic reasoning literature (Nilsson, 1998).

One of the benefits of the compact pricing structure is the compact representation it
lends for bids: sellers submit only sub-bids, and therefore the number of them submitted
and stored per seller is bounded by |I|. Several additional computation tasks are performed
by the auction: Bt

i 6= /0, rule [SWITCH], and choice of ηi. All these tasks involve the set Bt
i,

but their performance depends only on the size of the (potentially more compact) set Bt
i ,

because they can all be conducted by performing combinatorial optimization over Bt
i and

Bt
i ∩M t .

Next, I analyze the number of rounds it takes for the auction to terminate. Phase B
requires maxi∈{1,...n}πT

i (ηi)1
ε
. Since this is equivalent to price-only auctions, the concern

is only with the time complexity of phase A. We can obtain a bound on the number of
rounds of phase A by comparing the sum of prices of all sub-configurations in round 1
and in round T . By Lemma 4.5, and assuming no negative valuations, this sub of prices in
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round T cannot be negative. Also, in each round at least one price is reduced by g
ε
. Hence

an upper bound on the number of rounds required is

T ≤ ∑
θr∈I

p1(θr)
g
ε
.

This bound is rather loose, and its purpose is to ensure that the number of rounds does
not depend on the size of the fully exponential domain. It depends on the number of
sub-configurations, and on the result of dividing the initial price by the minimum price
decrement.

Usually Phase A will converge much faster. Let the initial negative profit chosen by
the auctioneer be m = maxθ∈Θ π1

b (θ). In the worst case, phase A needs to run until
∀θ ∈ Θ.πb(θ) = m. This happens for example when ∀θr ∈ I.pt(θr) = fb,r(θr) + m

g . In
general, the closer the initial prices reflect buyer valuation, the faster phase A converges.
One extreme is to choose p1(θr) = fb,r(θr)+ m

g . That would make phase A redundant, at
the cost of full initial revelation of buyer’s valuation as done in other mechanisms (Sec-
tion 2.3). Between this option and the other extreme, which is ∀α, α̂ ∈ I, p1(α) = p1(α̂),
the auctioneer has a range of choices to determine the right tradeoff between convergence
time and information revelation. In the example below, the choice of a lower initial price for
the domain of I1 provides some speedup by revealing a harmless amount of information—
that I2 is less important than I1. In the simulations described later in this chapter I also set
constant initial prices within each GAI element.

Another potential concern is the communication cost associated with the descending
auction style. The sellers need to send their bids over and over again at each round. A sim-
ple change can be made to avoid much of the redundant communication: the auction can
retain sub-bids from previous rounds on sub-configurations whose price did not change.
Since combinations of sub-bids from different rounds can yield suboptimal configurations,
each sub-bid should be tagged with the number of the latest round in which it was submit-
ted, and only consistent combinations from the same round are considered to be full bids.
With this implementation sellers need not resubmit their bid until a price of at least one of
its sub-configurations has changed.

4.3.3 Assumptions on Preferences

A key aspect in implementing GAI based auctions is the choice of the preference structure,
that is, the elements {I1, . . . , Ig}. In some domains the structure can be more or less robust
over time and over different decision makers. When this is not the case, extracting reliable
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I1 I2
a1b1 a2b1 a1b2 a2b2 b1c1 b2c1 b1c2 b2c2

fb 65 50 55 70 50 85 60 75
f1 35 20 30 70 65 65 70 61
f2 35 20 25 25 55 110 70 95

Table 4.1: GAI utility functions for the example domain. fb represents the buyer’s valua-
tion, and f1 and f2 costs of the sellers s1 and s2.

structure from sellers (in the form of CDI conditions) is a serious challenge. This could
have implications on the applicability of the auction for such domains, but in fact it can
be overcome. It turns out that we can run this auction without any assumptions on sellers’
preference structure. The only place where this assumption is used in the analysis is for
Lemma 4.1. If sellers whose preference structure does not agree with the one used by the
auction are guided to submit only one full bid at each round, or a set of bids that does not
yield undesired consistent combinations, all the properties of the auction still hold. The
configuration ηi obtained for seller si in the end of phase A is still bilaterally efficient: At
the same set of prices, it is optimal for si and approximately optimal for the buyer.

It is therefore essential only that the buyer’s preference structure is modeled accurately.
The optimization problem solved by sellers in each round is more complex, but still man-
ageable because they can use the union of their GAI structure with the auction’s structure,
as explained in Section 3.3.2. Of course, capturing sellers’ structures as well is still pre-
ferred since it can speed up the execution and let sellers take advantage of the compact bid
representation.

In both cases the choice of clusters may significantly affect the complexity of the price
structure and the runtime of the auction. It is sometimes better to ignore some weaker
interdependencies in order to reduce dimensionality. The complexity of the structure also
affects the efficiency of the auction through the value of e.

4.4 Example

I use the example settings introduced in Section 4.2.1. Recall that the GAI structure is
I1 = {a,b}, I2 = {b,c} (note that e = 1). Table 4.1 shows the GAI utilities for the buyer
and the two sellers s1,s2. The efficient allocation is (s1,a1b2c1): the buyer’s valuation is
55 + 85 = 140, the valuation of s1 is 30 + 65 = 95, hence the surplus is 45. The maximal
surplus of the second best seller, s2, is 25, achieved by a1b1c1, a2b1c1, and a2b2c2. I set
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I1 I2

t a1b1 a2b1 a1b2 a2b2 b1c1 b2c1 b1c2 b2c2

1 75 75 75 75 90 90 90 90
s1,s2 ∗ s1,s2 ∗

2 75 71 75 75 86 90 90 90
s2 s1 ∗ s2 ∗ s1

3 75 67 71 75 82 90 90 86
s1,s2 ∗ s2 ∗ s1 ∗

4 75 63 71 75 78 90 86 86
s2 s1 ∗ s2 ∗,s1 ∗,s1

5 75 59 67 75 74 90 86 86
s2 ∗,s1 ∗ s2 ∗,s1 ∗,s1

6 71 59 67 75 70 90 86 86
s2 ∗,s1 ∗ ∗,s1 s2 ∗,s1

7 71 55 67 75 70 90 82 86
s2 ∗,s1 ∗ s2 ∗,s1 ∗,s1

8 67 55 67 75 66 90 82 86
∗ s2 ∗,s1 ∗ ∗ ∗,s1 s2 ∗,s1

9 67 51 67 75 66 90 78 86
∗,s2 ∗,s1 ∗ ∗,s2 ∗,s1 ∗,s1

Table 4.2: Auction progression in phase A. Sell bids and designation of M t (using ∗) are
shown below the price of each sub-configuration.

all initial prices over I1 to 75, all initial prices over I2 to 90, and ε = 8, meaning that price
reduction for sub-configurations is 4. The difference in the valuations of the two sellers
is lower than the potential efficiency loss of Theorem 4.10 (here (e + 2)ε = 24). How-
ever, in this case it is guaranteed that s1 wins, either with the efficient allocation, or with
a1b2c2 which provides a surplus of 39. The reason is that these are the only two configura-
tions of s1 which are within (e+1)ε = 16 of the solution to MMP(b,s1) (45), therefore by
Lemma 4.8 one of them must be chosen as η1. Both of these configurations provide more
than ε surplus over s2’s most efficient configuration (and this is sufficient in order to win in
phase B).

Table 4.2 shows the progress of phase A. Initially all configuration have the same cost
(165), so sellers bid on their lowest cost configuration which is a2b1c1 for both (with profit
80 to s1 and 90 to s2), and that translates to sub-bids on a2b1 and b1c1. M 1 contains the
sub-configurations a2b2 and b2c1 of the highest value configuration a2b2c1. Price is there-
fore decreased on a2b1 and b1c1. After the price change, s1 has higher profit (74) on a1b2c2

and she therefore bids on a1b2 and b2c2. Now (round 2) their prices go down, reducing
the profit on a1b2c2 to 66 and therefore in round 3 s1 prefers a2b1c2 (profit 67). After the
next price change the configurations a1b2c1 and a1b2c2 both become optimal (profit 66),

61



and the sub-bids a1b2, b2c1 and b2c2 capture the two. These configurations stay optimal for
another round (5), with profit 62. s2 however sticks to a2b1c1 during the first four rounds,
switching to a1b1c1 in round 5. At this point s1 has a full bid (in fact two full bids: a1b2c2

and a1b2c1) in M5, and she no longer changes her bids because the price of her optimal
configurations does not decrease. It takes four more rounds for s2 and M t to converge
(M 10∩B10

2 = {a1b1c1}).
After round 9 the auction sets η1 = a1b2c1 (which yields more buyer profit than a1b2c2)

and η2 = a1b1c1. For the next round (10) ∆ = 8, increased by 8 for each subsequent round.
Note that p9(a1b1c1) = 133, and c2(a1b1c1) = 90, therefore πT

2 (η2) = 43. In round 15,
∆ = 48 meaning p15(a1b1c1) = 85 and that causes s2 to drop out, setting the final alloca-
tion to (s1,a1b2c1) and p15(a1b2c1) = 157−48 = 109. That leaves the buyer with a profit
of 31 and s1 with a profit of 14, less than ε below the VCG profit 20.

The welfare achieved in this case is optimal. To illustrate how some efficiency loss
could occur consider the case that c1(b2c2) = 60. In that case, in round 3 the configura-
tion a1b2c2 provides the same profit (67) as a2b1c2, and s1 bids on both. While a2b1c2

is no longer optimal after the price change, a1b2c2 remains optimal on subsequent rounds
because b2c2 ∈M t , and the price change of a1b2 affects both a1b2c2 and the efficient con-
figuration a1b2c1. When phase A ends B10

1 ∩M10 = {a1b2c2} so the auction terminates
with the slightly suboptimal configuration and surplus 40.

In the rest of this chapter I describe an analysis of GAI auctions via simulations. The
analysis considers economic efficiency, computational issues, and information revelation
properties.

4.5 Experimental Design

The main idea behind the GAI auctions is to improve efficiency over the auctions that
assume the additive representation, when the preferences are in fact not additive. How-
ever, the theoretical efficiency guarantee of GAI auctions depends on e, the connectivity
of the GAI network. This implies a potential conflict: more accurate modeling improves
efficiency with respect to the true utility, but may cause loss of efficiency due to higher
connectivity. Therefore, an obvious goal for an experimental analysis is to test whether
the more accurate preference modeling is indeed more efficient; in particular, whether GAI
auctions are more efficient than additive auctions, given that the preferences are not ad-
ditive. I assume that the buyer’s preferences have some GAI structure, and compare the
performance of the GAI auctions that model this structure with the performance of an auc-
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tion that is restricted to an additive representation. As the auction additive approximation

(AP) , I use an instance of GAI auction in which the pricing structure is additive. This auc-
tion is in fact very similar to auction AD (Parkes and Kalagnanam, 2005). To the best of my
knowledge, AD is the only welfare maximizing multiattribute auction that has been pro-
posed based on additive preferences, beside those that require full revelation of the buyer’s
utility (see Section 2.3).

4.5.1 GAI Random Utility

For experimental purposes, I generate random utility functions to represent the buyer’s
value function and the sellers’ cost functions. In order to imitate realistic, GAI-structured
utility functions, I employ results by Braziunas and Boutilier (2005), who establish that
GAI utility can be represented using locally normalized functions, weighed by scaling con-
stants, similarly to additive utility. Let ūr(Ir) = ur([Ir]) denote a local utility function over
Ir. The function ūr(Ir) is distinct for each r, so we can normalize each to [0,1]. Next,
let f̄r(Ir) be defined using formula (3.5), with u([Ir]) replaced with ūr(Ir). Braziunas and
Boutilier show that there exist scaling constants λr ∈ [0,1] such that

ū(S) =
g

∑
r=1

λr f̄r(Ir). (4.2)

The implication for the generation of random GAI utility functions is that we can draw the
functions ūr(·) independently over [0,1], and perform a global scaling afterwards. Note
that (3.5) is much simplified for GAI trees, because each element Ir intersects with at most
one preceding element, its parent Ip(r):

f̄r = ūr(Ir)− ūr([Iir ∩ Ip(r)]). (4.3)

I refer to the functions ūr([Ir]) as subutility functions. Note that values of the form
ūr([Iir ∩ Ip(r)]) are drawn only once and used in both ūr(Ir) and ūr(Ip(r)). This representa-
tion lets us draw random GAI functions, for a given GAI tree structure, using the following
steps:

1. Draw random subutility functions ūr(Ir),r = 1, . . . ,g in the range [0,1].
2. Compute f̄r(·),r = 1, . . . ,g using (4.3).
3. Draw random scaling constants and compute ū(S) by (4.2).

The scaling constants represent the importance that the decision maker accords to the cor-
responding GAI element in the overall decision. This procedure results in utilities that are
normalized in [0,1]. To accommodate means and variances of different agents, I then scale
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ū(·) to u(·) in the desired range.

4.5.2 Structured Subutility

A subutility function in the model above may represent any valuation over the subspace. in
practice we may often find additional structure within each GAI element. I introduce two
structures which I consider most typical and generally applicable, and I use them for the
simulations, along with completely random local functions.

As I argue in Section 2.1.2, typical purchase and sale decisions exhibit FOPI, under
which most or all single attributes have a natural ordering of quality. For example, in
a hard drive procurement setting, the buyer always prefers more memory, higher RPM,
longer warranty, and so on. To implement FOPI, I let the integer values of each attribute
represent its quality. For example, if a belongs to some GAI element Ir = {a,b}, I make
sure that ūr(ai,b′)≥ ūr(a j,b′) for any ai > a j, ai,a j ∈D(a), and any b′ ∈D(b). This must
of course hold in any GAI element that includes a, and for any attribute a that is (first-order)
preferential independent. I enforce the condition after all the values for that GAI element
have been drawn, through a special-purpose sorting procedure, applied between steps 1 and
2 above.

The FOPI condition makes the random utility function more realistic, and in particular
more appropriate to the target application. Once attributes exhibit FOPI, the dependencies
among different attributes are likely to be framed as complements or substitutes (Defini-
tion 3.1). This relationship between attributes is ruled out under an additive utility function,
but (as discussed in Chapter 3) admitted under mutual utility independence (MUI, Defini-
tion 2.11). MUI is a very demanding condition, and imposes far more structure than FOPI.
It is however, still more flexible than the additive form.

A set S′ of MUI attributes may still include complements or substitutes, but only if the
same type of condition (complementarity or substitutivity), with the same strength, occurs
for every two attributes in S′. Therefore, given MUI assumption, we can use a single vari-
able to control the level of complementarity or substitutivity within each GAI element, as
shown in Chapter 3. If a set S′ is MUI, it can be represented using a single-dimensional
subutility function, and |S′|+ 1 constants. The first |S′| constants, k1, . . . ,k|S′|, (roughly)
determine the weights of the attributes. The last constant, which is the MUI-factor k, is
computable from k1, . . . ,k|S′| (Keeney and Raiffa, 1976). According to Theorem 3.2, k can
be regarded as a measurement of substitutivity or complementarity: if −1 < k < 0, the at-
tributes of S′ are substitutes, if k > 0 they are complements, and if k = 0 they are additively
independent. The more extreme the value of k is within the range (the further away it is
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from zero), the stronger is the substitutivity or complementarity.
In an elicitation procedure, one would normally extract the |S′| scaling constants from

a user, and then compute k according to Definition 2.12 (Keeney and Raiffa, 1976). For my
purposes, I first determine k according to the relationship I wish to impose on the attributes,
and then draw MUI scaling constants that are consistent with this value. More explicitly, I
draw random scaling constants, and then iteratively modify all the constants, until a set of
constants is found that is consistent with k. The next step is to compute ūr(Ir) according
to the MUI formula (Equation 2.3). The ūr(Ir) (for all r) are in the range [0,1], hence at
this point we can proceed with steps 2 and 3 above. Note that in this procedure several
distinct sets of scaling constants are used: the g constants used in step 3 scale the different
GAI elements, whereas the MUI constants, per GAI element, scale the attributes within the
element.

4.5.3 Additive Approximation

The goal stated above is to test whether using the GAI price structure improves the effi-
ciency of a multiattribute auction in comparison to the previously suggested additive price
structure. To do that, we should test the performance of the additive price structure given
that traders’ preferences are not additive, that is they require a GAI structure with some
overlapping components. In GAI auctions, the price structure needs only to model the
buyer’s preferences. If a seller bids on a single configuration in every round, he is not
exposed to undesired combinations of values (see Section 4.3.3). The problem is there-
fore how to select the approximately buyer-preferred sets of configurations, given that the
buyer’s preferences are not additive. The approach I have taken is to come up with an
additive function that approximates the buyer’s true utility function, and use it throughout
the auction. I do not rule out the possibility that there are better strategies. Note, however,
that any such strategy must be consistent: whenever a point is selected as (approximately)
optimal, it must remain optimal with respect to the buyer’s revealed preferences throughout
the auction.

A natural approach to generate a linear approximation ∑i f̂i(·) for an arbitrary func-
tion ub(·) is to use linear regression. I define an indicator variable xi j for any ai j ∈ D(ai),
and consider any value of an assignment as a data point. For example, the assignment
a1 j(1), . . . ,am j(m) creates the following data point:

m

∑
i=1

∑
ai j∈D(ai)

ci jxi j = u(a1 j(1), . . . ,am j(m)),
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in which the value of the variable xi j is 1 if j = j(i) and 0 otherwise. The coefficients ci j

result from the regression and represent the values to be used as f̂i(ai j).
When the problem includes a large number of attributes, it is not possible to use all

the data points in Θ. Given that the function has a compact GAI representation, meaning
a relatively small number of data points can fully describe the function, it is sensible to
expect that we could use a smaller number of points for the regression. I therefore tried a
regression that models a separate set of data points for each GAI element, meaning it simul-
taneously performs a regression to the g functions fr(·) in the GAI decomposition. I found
that an auction AP that uses this method achieves lower efficiency compared to auction AP
that performs regression over the full joint utility. The reason is that the regression through
the compact representation minimizes the error per each sub-configuration, and that may
result in larger errors for full configurations. Fortunately, I also found (at least for the sizes
of problems I tested) that we can use a small random sample of data points from the joint
utility, and that yields an approximation that does as well as an approximation that uses all
of the data points of the joint utility. More precisely, for the largest domain I tested (25
attributes, each with domain of size 4) I found that the efficiency of AP does not improve
when increasing the number of sampled points beyond 200. I show a chart supporting this
claim in the efficiency analysis section, and I use 300 points for all of the experiments.

It is important to note that this method of comparison probably overestimates the qual-
ity of an additive approximation. The reason is that typically we will not have the accurate
utility function available to us when we generate the approximation. The extraction, or
elicitation of the utility function is usually the most serious bottleneck of a multiattribute
mechanism. Therefore, the major reason to use an additive approximation is to reduce the
burden of elicitation. Hence in practice we will try to obtain the additive function directly,
rather than obtain the full utility and then approximate it. The result of such process is
somewhat unpredictable, because the elicitation queries may not be coherent: if the will-
ingness to pay for a1 depends on the value of b, then what is the willingness to pay for a1

when we do not know b? I therefore consider this method of approximation a best case of
the extent to which an additive approximation may be successful in practice.
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4.6 Simulation Results

4.6.1 Measuring Efficiency
All of my efficiency results are measured in terms of percentage of the maximal possible
surplus, that is the surplus corresponding to the optimal pair of seller and configuration.
The efficiency of the auctions depends on many factors, such as:

1. d, the size of the domains of the attributes (to simplify, I use the same domain size
for all the attributes).

2. m, the number of sellers participating.
3. ε , the amount of price decrement.
4. The distribution from which utility functions are drawn.

The goal, however, is to measure the effect of preference modeling on efficiency, and I
therefore focus on the parameters reflecting the GAI structure of the buyer’s preferences.
As shown in the theoretical results, this structure affects efficiency through the factor e.
Further, the size of the GAI elements is expected to affect the efficiency obtained by AP.
I found that the size of the largest GAI element (denoted by ξ ) is particularly crucial for
AP. To isolate these factors that I care about, I first describe how the results vary according
to the choices of the side factors: the buyer’s mean µb, the sellers’ mean µs, σ , d, and m,
for several fixed GAI structures with fully random subutility functions (the results of these
experiments are provided in Appendix B). This allows me to justify the parameter values I
used for the rest of the simulations.

I expect seller’s costs to be generally lower than buyer’s valuations, otherwise there is
no potential surplus. I arbitrarily selected the buyer’s mean to be 600, and varied a term
I call the general sellers’ mean from 700 down to 300. Normally, different sellers have
different cost levels, so I uniformly draw means for each seller from an interval of size 2σ

around the general sellers’ mean. I experimented with several values (between 50 and 250)
for σ , for both the buyer and the sellers. I found that the choice of these parameters does
have a serious effect on the efficiency, particularly the efficiency of AP. The difference
between the buyer’s mean and the general sellers’ mean has similar effect on both AP and
GAI (auctions are more efficient when the difference is larger). I picked the value 500 as
the general sellers’ mean, reflecting costs that are reasonably lower than the buyer’s valu-
ation. I also noticed that the smaller the variance is, the better an additive approximation
performs. I postulate that it is simply easier to approximate the function when there is less
to lose by being wrong. I picked the value σ = 200, to make sure the problem is sufficiently
challenging.

Next, I varied d, between two to ten, for all the attributes. As expected, the larger the
domain is, the more challenging the problem is for the additive approximation. Perhaps
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Figure 4.3: Efficiency as a function of: (i) the size of largest GAI element (ξ ), given e = 5,
(ii) the number of GAI elements (e+1), given ξ = 5.

less expected is the fact that the size of the domain seems to have no effect on the GAI
auctions. I used domain sizes of three to five for the rest of the simulations. As for number
of sellers, I varied this parameter from 2 to 40, and did not find a significant effect on either
auction types. I used five sellers for the rest of the simulations.

Instead of ε , I use the parameter δ = ε

g , which is the actual price decrement per element.
I used a few different values for δ , as mentioned below.

4.6.2 Efficiency and GAI Structure

In the next experiment I used a roughly fixed GAI structure, with six elements and e = 5
(that is, the GAI network is a tree, not a forest), and δ = 4 (ε = 24 in this structure). I
vary the number of attributes by varying the size of each element. Figure 4.3i shows the
efficiency obtained with respect to ξ , the size of the largest GAI element. As expected, the
size of the GAI elements has negligible, or no effect on the efficiency of GAI auctions. It
has a dramatic effect on the efficiency of AP. When ξ = 1, the decomposition is in fact ad-
ditive and hence AP performs optimally. The performance then deteriorates as ξ increases.

I performed the same test when using utility in which all attributes are FOPI. Clearly,
given FOPI, the additive approximation is much more efficient compared to random utili-
ties. Somewhat surprisingly, the GAI auctions are slightly less efficient given this prefer-
ence structure, again compared to random utility. Nevertheless, the additive approximation
achieves lower efficiency compared to the accurate preference modeling, with differences
that pass the statistical significance test (P < 0.01), for ξ ≥ 4. Moreover, in practice FOPI
may apply just to a subset of the attributes, in which case it is reasonable to assume that the
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efficiency of AP is somewhere between its efficiency under FOPI and its efficiency under
random preferences. Also note that the performance of GAI auctions can always be im-
proved using a smaller value of ε and δ , whereas this hardly improves performance of AP.
With δ = 2, a statistically significant difference (with the same confidence level) is already
detected for ξ ≥ 2. I used δ = 2 hereafter.

The next experiment (Figure 4.3ii) measures efficiency as a function of e, for a given
fixed ξ . I did not test GAI forests, only trees, so e is equivalent to the number of GAI
elements minus one. I tested structures with e varying from 1 to 10, all elements of size
3 to 5, and ξ = 5 for all the structures.5 On a single element, the GAI auction is similar
to NLD (Parkes and Kalagnanam, 2005), which is an auction that assigns a price to every
point in the joint domain. Here e = 0, hence the efficiency of GAI is close to perfect. This
structure is on the other extreme compared to an additive representation, and indeed the
performance of AP is particularly inferior (only 70% efficient).

With more GAI elements, the efficiency of GAI auctions declines at a very slow pace.
The theoretical potential error (e + 2)ε , is mostly a result of efficiency loss of ηi for the
winning seller, based on Lemma 4.3. Such efficiency loss may occur only if each sub-
configuration in ηi belongs to a configuration that yields the lowest profit allowed in the
buyer-preferred set—a particularly rare case. In practice, the loss is closer to eδ , which is
a much smaller error.

The performance of AP improves when the number of elements grows while their max-
imal and average sizes are fixed. The intuitive reason is that changing the structure that way
takes it closer to an additive representation. Under FOPI, we see a similar phenomenon as
before. However, the difference between GAI FOPI and AP FOPI, even for ten elements,
is still significant (and in particular, statistically significant).

Figures 4.4i and 4.4ii show efficiency as a function of the MUI-factor k, for comple-
ments and substitutes, respectively. I used a fixed GAI structure with four elements, the
largest of which has four attributes, and imposed the same k on all the elements. As ex-
pected, the stronger the complementarity is among the attributes, the lower the efficiency of
AP, whereas this relationship does not affect the efficiency of GAI auctions. The results are
different for the case of substitutes. Here, it seems the the additive approximation performs
well, and the performance starts to deteriorate only for extreme values of k. Very roughly,
we can say that when relationship among attributes (within each GAI element) is limited
to (mild) substitutions, it could be a good idea to use an additive approximation. Unfor-
tunately, my interpretation of the parameter k lacks quantitative scaling: there is no clear

5I did not find the particular tree structure to be influential on the results; the final structure used in the
reported results has a maximum of three children per node.
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Figure 4.4: (i) Efficiency as a function of k≥ 0 (complements). (ii) Efficiency as a function
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the additive approximation.

intuition of what the actual numbers mean, beyond the qualitative classification mentioned
above.

Finally, I show an experiment supporting the claim in Section 4.5.3: a larger set of
sampling points than the one I used for the linear regression of the utility function cannot
improve the efficiency of AP. Figure 4.5 shows the efficiency of AP as a function of the
number of sampling points used, for the largest domain I used in the experiments: 25 at-
tributes with d = 4 (e = 9 and ξ = 5). Similar results were shown for other distributions
and for FOPI preferences. This chart is a result of 150 experiments for each of 10 points on
the x-axis, the largest number of tests I used. I found that for a smaller set of experiments
the non-monotonicity (exhibited in this chart as well) is aggravated.
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4.6.3 Information Revelation

A key difference between the mechanism proposed here and most previous literature is in
the extent to which the buyer is required to reveal preference information. In GAI auctions,
the buyer does not need to reveal all of its private preference information up front. Of
course, the price changes do reveal some of the buyer’s information. Another experimental
question is therefore whether this mechanism significantly reduces the overall amount of
information revealed by the buyer.

PK study information revelation by both the buyer and the seller, under an additivity
assumption. When the utility function is additive the amount of information revealed can
be measured as the part of the simplex that is bounded by constraints on the linear weights.
Sellers can infer constraints on the buyer’s set of weights, and the amount of information
hidden from them is represented by the portion of the simplex that satisfies those con-
straints. This simplex analysis is not possible for GAI utilities. We suggest an alternative
that is geared towards the kind of information revealed by the GAI auctions.

In GAI auctions, the buyer’s private information is partially revealed through the se-
lection of the buyer’s preferred set M t . The auction does not need to announce which
sub-configurations are in M t , so the sellers can infer that a sub-configuration is in M t

only by observing that it received a bid (usually the will only know that for their own bids),
yet its price does not change in the next round. We therefore measure exactly that—for
how many sub-configurations θ r there was at least one round t such that θ r ∈M t ∩Bt

i

for some i. More specifically, we define such a sub-configuration as revealed, and within
each GAI element we measure the fraction of sub-configurations that are revealed by the
end of the auction. This measurement overestimates the information that can actually be
inferred by the sellers, because our notion of a revealed sub-configuration provides some
relative information regarding the maximal distance of a given configuration from the max-
imal buyer’s profit, but does not reveal the actual values of the functions fb(·). Moreover, it
assumes that each seller observes all bids (meaning that sellers share bid information with
each other) an unrealistic event in practice.

Based on this criteria, GAI auctions reveal on average 15%–25% of the buyer’s prefer-
ences when preferences exhibit FOPI, and 10%–15% when the subutilities are completely
random. It does not seem to systematically depend on any other parameter I tested. This
validates our claim as to the advantage that GAI auctions promise over second-score types
of auctions.
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4.6.4 Computation and Complexity

The computational tasks required by auction simulations were performed using the algo-
rithms described in Section 4.3.2. These algorithms have been suggested and applied for
combinatorial optimization problems before, therefore the computation time is not of par-
ticular interest to this work. Instead, I focus on the number of rounds the auction requires.
I do however refer to actual time below in order to give a flavor of the overall time com-
plexity.

I tested the number of rounds required by auction GAI and auction AP, under fully ran-
dom and FOPI preferences. The purpose is twofold: get a sense of the complexity of using
GAI auctions, for example with various values of ε , and compare it with AP in order to
quantify the cost, in terms of number of rounds, required to achieve the higher efficiency
provided by GAI auctions. The number of rounds were tested with respect to three of the
parameters: ξ (size of largest GAI element), e (connectivity), and δ .

The complexity, in terms of number of rounds, with respect to ξ , is shown in Fig-
ure 4.6i. The number of rounds required when δ = 2 is, not surprisingly, roughly twice as
many as required when δ = 4. The perhaps surprising result is that for ξ ≥ 5, the FOPI case
requires significantly more rounds to converge than the case of random preferences. Under
FOPI, the buyer and all the sellers agree on which attribute values represent high quality
and which represent low quality. Therefore, the sellers’ and the buyer’s preferences can in
general be seen as opposites: at the same price, and for a specific attribute, the buyer prefers
higher quality, whereas the sellers prefer lower quality (given fixed values for the rest of
the attributes). It therefore takes longer for them to converge. The apparent difference in
the growth rate (the FOPI case seems to have a steeper curve) is somewhat misleading:
for ξ = 8 (not shown) GAI under random preferences is already caught up with the same
curve we see for the FOPI case. For AP, the only implication of increasing ξ is the re-
spective increase in the number of attributes. It therefore has very mild implication—the
complexity of AP (not shown) grows very slowly with the increase in ξ . For the FOPI
case, with δ = 2, it takes an average of 481 rounds for ξ = 1 (6 attributes) and 546 rounds
for ξ = 6 (19 attributes). The numbers are slightly higher for random preferences (523
to 628). Whereas AP executes most of the rounds during phase B, it is the opposite case
for GAI, which requires a much larger number of rounds in phase A. Phase B in GAI re-
quires a smaller number of rounds than in AP because the sellers have already lost a more
significant portion of their profit in phase A.

The results are somewhat surprising in Figure 4.6ii, which shows the number of rounds
as a function of e, when ξ = 5. Here the difference between the complexity of GAI auc-
tions under FOPI and random preferences seems to be of a qualitative nature. Under FOPI,
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Figure 4.6: Number of rounds as a function of: (i) the size of largest GAI element (ξ ),
given e = 5, (ii) the number of GAI elements (e+1), given ξ = 5 and δ = 2.

the number of rounds required for a single GAI element of size 5 is very large (3331 on
average) and this number drops quickly when the number of overlapping GAI elements
increases, until it converges around e = 6. Under random preferences the complexity actu-
ally increases slowly with e. The explanation regarding the FOPI phenomenon is that when
the number of GAI elements increases, the variance in the buyer’s preferences is divided
between the elements. With a single element the variance over that element is the largest,
and given the opposite preferences of the sellers, it takes many rounds until the buyer’s
preferred set starts to spread and include more sub-configurations, and therefore it takes
longer for phase A to terminate. Under random preferences, this factor is less significant;
more salient is the fact that for a smaller e the convergence needs to occur for a smaller
number of elements. I found a similar phenomenon for other values of ξ ≥ 3. However,
the overall computation time required by the auction increases with e even for the FOPI
case, despite the fact that the number of rounds decreases.

To summarize this part, the GAI auctions require a larger number of rounds to converge,
compared to AP. However, on the size of examples I used, the factor is usually below
2. Under FOPI, and a small number of GAI elements, the number of rounds required is
fairly large. That might provide an insight as to the complexity of an auction such as NLD
(Parkes and Kalagnanam, 2005) that does not use a factorization of the domain. It is also
important to note that when we expect the participants of these auctions to use automatic
bidding agents, the number of rounds in the ranges I observed in these experiments should
not particularly concern. The total computation time, carried out by a GAI auction with 10
elements, ξ = 5, d = 3, δ = 2, and the rest of the parameters fixed as above, is around 11
seconds on average, using an Intel Dual Core (2.00 Ghz) CPU, with 2048 MB RAM.
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4.6.5 Comparison for a Fixed Number of Rounds

I expect bidding in high dimensional multiattribute auctions to usually employ automatic
bidding agents, each equipped with the cost function of the seller on behalf of which it bids.
Under these circumstances, as mentioned, we need not worry about the auction taking up
to thousands of rounds. However, if for some reason rounds are expensive, we might need
to reconsider using the additive auctions, and sacrifice efficiency in order to decrease the
number of rounds. Alternatively, we could keep using GAI auctions and increase δ . The
final experiment compares these two alternatives. In this experiment I vary the level of δ ,
in order to view the efficiency as a function of the number of rounds (Figure 4.7). The
structure used for this experiment had e = 5 and ξ = 5.

As evident from the chart, in most cases GAI achieves better efficiency even for a fixed
number of rounds. The only exception is when the budget of rounds is very small (under
200), and FOPI holds. In such case we need to pay with more rounds in order to get the
higher efficiency.

4.7 Summary

I propose a novel exploitation of preference structure in multiattribute auctions. Rather
than assuming full additivity, or no structure at all, I model preferences using the GAI
decomposition. I developed an iterative auction mechanism directly relying on the decom-
position, based on the results of Chapter 3 which provide direct means of constructing the
representation from relatively simple statements of willingness-to-pay. My auction mech-
anism generalizes PK’s preference modeling, while in essence retaining their information
revelation properties. It allows for a range of tradeoffs between the expressiveness of the
buyer’s preferences and both the complexity of the pricing structure and efficiency of the
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auction, as well as tradeoffs between buyer’s information revelation and the time required
for convergence.

I performed a simulation study of my proposed multiattribute auctions, compared to a
mechanism that assumes additive preferences. The study validated the usefulness of GAI
auctions when preferences are non-additive but GAI, and allowed me to quantify the ad-
vantages for specific classes of preferences. In particular, I found significant benefit to
supporting the accurate preference structure, especially when the GAI subutilities do not
exhibit FOPI. When the local functions do exhibit structure of their own, in most cases
the benefit of an accurate GAI model is still significant. Using an additive approximation
may be a reasonable approach when the GAI structure is fairly similar to an additive one,
or when attributes within each GAI element are restricted to be substitutes.

I believe this study provides several methodological lessons applicable to a broader
class of preference research problems. First, I investigated the problem of generating struc-
tured random utility functions. These functions are random to the extent that they conform
to a specific GAI structure, and that the preference order over each element exhibit a struc-
ture of our choice: FOPI, or MUI with some predetermined level of complementarity or
substitutivity. Second, I studied the problem of finding an additive approximation to an
arbitrary GAI function. I found that performing linear regression using a relatively small
set of random points achieves an approximation that does as well as one performed using
all the points in the domain.
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Chapter 5

Multi-Unit Multiattribute Auctions

5.1 Introduction

In this chapter I investigate problems associated with multi-unit multiattribute auctions. I
use this term to refer to auctions in which the quantity is not treated as a regular attribute.
Rather, the quantity desired by a trader can be divided in some way between different trad-
ing partners, resulting in multiple trades for a given trader. Single-unit auctions refer to
auctions that are restricted to allocate a single trade per trader, but quantity may still be
supported as a regular attribute.

Perhaps due to the complexity of multiattribute auctions, nearly all prior proposals for
preference handling and mechanism design for multiattribute procurement auctions are re-
stricted to the single-unit case, also called single-sourcing, meaning that a single bidder
is selected as supplier. As single-supplier relationships introduce a risk of cost overruns
and supply disruptions or stock-outs, buyers often have a preference for multi-sourcing,
where supply contracts are distributed among multiple winners. Limited supplier capac-
ities may also contribute to the need for multi-sourcing. In practice, many procurement
auctions have dealt with multiple units over multiattribute goods (e.g., (Metti et al., 2005;
Sandholm et al., 2006)). To my knowledge, however, these do not support structured mul-
tiattribute preferences or theoretical properties regarding the efficiency across the space of
configurations.

To address multi-sourcing issues, I consider multi-unit multiattribute (MUMA) auc-
tions. Due to the inherent complexity of this problem, I first consider the representation
of preferences over this domain in isolation, and later extend the focus to mechanism de-
sign and algorithmic problems. The MUMA problem combines the dimensionality of the
single-unit multiattribute domain with the combinatorial complexity of multi-unit auctions
of heterogeneous goods. I consider the problem in its full generality, then suggest simplifi-
cations based on assumptions over preference structure.
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Some issues relevant to my work are explored in the literature on side constraints, which
place hard constraints on the space of allocations acceptable to the bid taker in multi-object
and combinatorial auctions. Sandholm and Suri (2001) show that most such constraints
posed by the bid taker render the winner determination problem NP-hard. Bichler and
Kalagnanam (2005) explicitly consider the problem of multi-unit multiattribute procure-
ment auctions, focusing on the winner determination problem given various buyer-imposed
constraints. My approach is a general framework to express preferences over the multi-unit
multiattribute domain rather than hard constraints. In that sense another relevant work is
that of Boutilier et al. (2004b), which opts for a utility-based representation over allocation
attributes in combinatorial auctions, and focuses on the elicitation of tradeoffs between
constraints and cost.

The preference representation perspective brings several advantages. It captures a fully
general representation of this domain, a capability that previous literature lacked. It lends
itself easily to the expression of the welfare maximization problem, and most importantly
allows the use of well-founded tools from multiattribute utility theory to simplify the prefer-
ence representation. This framework lets me use meaningful preference structure in order
to achieve value decomposition, which I apply to effectively decouple the multiattribute
domain from the multi-unit problem. I then leverage this result to create an auction mech-
anism for multi-sourcing procurement.

The second part of this chapter considers another major generalization: two-sided auc-
tions, that is an exchange involving multiple buyers and multiple sellers. A two-sided
auction is an economic tool that can yield higher efficiency by aggregating buyers and sell-
ers in a central trading institution. I study the problem of clearing a two-sided multi-unit
multiattribute call market. Here, I address the algorithmic problem but not the strategic
issues. In particular, I reason directly from bid expressiveness to the computational com-
plexity of clearing, finding constraints on the bidding language which lead to tractable
algorithms.

5.2 MUMA preferences

5.2.1 The Global Multiattribute Allocation Problem

Given that the scope of the chapter include the two-sided auction settings, I present the pref-
erence framework for the general settings of two-sided auctions. I first lay out the global

multiattribute allocation problem, in which a set of buyers B and a set of sellers S wish to
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trade amounts of a particular multiattribute good. For example, in an exchange between car
dealers, each has various preferences on the mix of cars they wish to add to their lot. The
multi-unit procurement problem is of course a special case of this setting in which |B|= 1.

When allowing multiple trades for a single trader at the same time, we need to consider
traders’ preferences over several issues that do not come up in single-unit allocations:

1. How many trading partners would a trader prefer to trade with? For example, a pro-
curement department may wish to distribute the purchased quantity over at least two
suppliers, but also to limit that number to four. Another common preference is over
the distribution of the expenditure rather than the quantity.

2. Must all trades be on the exact same configuration? Examples can be given of cases
in which configurations should not vary over the trades, but also to opposite cases in
which companies would prefer to trade a mixture of different configurations. Often,
a trader would be willing to trade different configurations, as long as some specific
attributes are restricted to be homogenous, that is carry the same value in all the trades
(Bichler and Kalagnanam, 2005).

3. How to treat preferences over quantities? In many cases, preferences are linear in
quantity (at least within some bounded range), but not always. Suppliers, for exam-
ple, may have nonlinear preferences over the quantity they supply, due to fixed costs
associated with production.

Initially, I present a framework that allows for fully general preference expression over
these issues. Later, I restrict specific components in order to achieve economic and algo-
rithmic results. To simplify the presentation, I refer to a buyer’s preferences in forming
the definitions and claims, but they all apply to sellers with only minor modification. In
Sections 5.4 and 5.5 I present an auction mechanism which is restricted to the procurement
case, before returning to the exchange setting in Section 5.6.

For any global set of trades T ⊂T (see notations in Section 2.3.1), I denote the alloca-
tion to buyer b̂ by Tb̂,

Tb̂ = {(θ ,q,b,s) ∈ T | b = b̂}.

Note that
∀T,

⋃
b∈B

Tb =
⋃
s∈S

Ts = T. (5.1)

Let Tb̂ denote the set of all possible trades in which b̂ participates:

Tb̂ = {(θ ,q,b,s) ∈T | b = b̂},

and let Ob̂ denote the set of all possible allocations to b̂:

Ob̂ = {Tb̂ | T ⊂T }= 2Tb̂.
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Any element of Tb̂ ∈ Ob̂ can be described using a non-negative vector of length |Θ||S|,
where each component designates the number of units that b̂ buys of a specific (θ ,s) pair
(where zero quantity reflects no trade). As in other parts of the work, I assume that b̂ has a
full preference order over Ob̂, the set of possible outcomes to b̂.

I adopt the following common assumptions from mechanism design:
1. free disposal, meaning that the utility of b̂ can only increase when an item is added

to Tb̂.
2. The utility of b̂ is not affected by the allocations Tτ for any trader τ 6= b̂.

Under these assumptions, and as described in Section 2.1.1, b̂’s preferences can be rep-
resented by a utility function (MVF) ub̂ : Ob̂ → ℜ. As described in Section 3.3, ub̂ can
be scaled to monetary terms, and represent willingness-to-pay per allocation. In the case
of a seller s, the utility us(·) is usually referred to as cost, and represented in bidding as
willingness-to-accept. I use the term WTP in referring to both buyers and sellers.1

I define the welfare optimization problem for this domain:

Definition 5.1. The global multiattribute allocation problem (GMAP) is defined as follows:

GMAP = max
T⊆T

(
∑
b∈B

ub(Tb)−∑
s∈S

us(Ts)

)

Note that MAP is a special case of GMAP in which |B|= 1 in the input, and |T |= 1 is
a constraint on the result.

5.2.2 Preference Structures

The first restrictive assumption I make is that a trader can trade only a single configuration
with each trading partner. Though non-trivial, I find this assumption reasonable for this do-
main. Unlike combinatorial auctions, the primary goal of multiattribute auctions is to trade
on surplus-maximizing configurations, rather than a surplus-maximizing combination of
goods. From a buyer’s perspective, the primary goal of the multi-unit generalization is to
achieve an ideal supplier mix, while achieving a heterogeneous configuration mix is at best
secondary. The heterogeneity of supply from the same supplier, if desired at all, is even
lower in priority. On a seller side, there is also very little motivation to prefer a mix of
configurations with the same buyer.

This assumption leads to an exponential reduction in dimensionality: any allocation can
now be defined by a vector of length (n+1)|S| (note |A|= n), which I represent as a matrix

1I use u j when referring to a seller s j, and drop the subscript altogether in generic statements about utility,
when not referring to a particular trader.
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of n+1 columns (one for each attribute, and one for the quantity of the trade) and |S| rows
(one per trading partner). I call this matrix an allocation matrix, because an instance of
this matrix represents an allocation. For example, in buyer b̂’s matrix, row j represents a
trade between b̂ and seller s j, where the first n columns define the trade configuration (as
values to attributes a1 j , . . . ,an j), and the attribute at the last column, q j, defines the trade
quantity. The term “attributes” used here includes the (n + 1)|S| elements of the matrix,
that is the attributes of the multi-unit domain. It is important to stress that an instantiation
of this matrix represents a single allocation, and that expressing WTP over all allocations
requires the definition of a reserve price for every possible such instantiation.

Even with this significant simplification, the domain is still too large. The representa-
tion of utility over the allocation matrix is at best exponential in the number of elements
of the matrix (assuming all attribute domains are discretized and bounded). Given such a
representation we cannot expect computational mechanisms to solve GMAP for more than
tiny instances. However, since the domain is now representable by a restricted set of at-
tributes, we can use tools from multiattribute utility theory to tame it further. In particular, I
use the GAI representation scheme (Section 3.2). Recall the following functional structure
from Equation (3.5):

f1 = u([I1]), and (5.2)

for r = 2, . . . ,g, fr = u([Ir])+
r−1

∑
j=1

(−1) j
∑

1≤i1<···<i j<r
u([

j⋂
s=1

Iis ∩ Ir]).

Though complicated on the surface, this expression bears intuitive meaning. We simply
add up utilities of subsets, but to avoid double counting we subtract utilities of pairwise
intersections, at which point we have over-deducted and must add back those of three-wise
intersections, and so on. I explicitly apply this functional form in some of the results below.

I denote the attributes that refer to the trade with s j by t j = {a1 j , . . . ,an j ,q j} (the set
containing the attributes in row j), and denote the set of attributes in the quantity column
of the matrix by ~q = {q1, . . . ,q|S|}.

The functional form above relies on predefined reference values for all attributes. For
the MUMA domain I define zero as the reference value for each attribute q j ∈ ~q. For
the remaining attributes ai j I use constants ãi, which comprise the reference configuration
θ̃ = (ã1, . . . , ãn). This means for example that ub([t j]) corresponds to the WTP of b for the
trade (θ j,q j,b,s j), as if it is the only trade in the allocation to b, and that ub([q j]) is the
WTP for q j units of θ̃ , again as the only trade in the allocation. Based on this notion, I for-

80



mally introduce preferences over a single-unit allocation, which I designate by the utility
(WTP) function µb : Θ×S→ℜ+:

µb(θ̂ ,s j) = ub([{a1 j , . . . ,an j ,q j}]), (a1 j , . . . ,an j) = θ̂ ,q j = 1,

referring to the WTP of b for an allocation that contains a single-unit trade between b and
s j over configuration θ̂ . The single-unit utility of sellers is defined similarly using the
notation µs, or µ j when referring to a particular seller s j.

The single-unit utility function is a multiattribute WTP function, used in previous sec-
tions, with the minor generalization: it admits an additional argument for the identity of
the trading partner. This is just a minor generalization, because it could be accommodated
before as an additional attribute in A. The MMP is therefore the same problem as presented
in Definition 2.18, denoted here as follows:

MMP(b,s) = argmax
θ∈Θ

(µb(θ ,s)−µs(θ ,b)).

The next step is to define several restrictive classes of traders’ preferences.

Definition 5.2. A buyer b is called configuration aggregating if her preferences exhibit GAI

structure over the following collection of subsets:

{t1, t2, . . . , t|S|,~q}.

In words, a configuration aggregating buyer has additive utility over different trades,
subject to preferences over distribution of quantity. Though this rules out any constraints
on aggregation of configurations, it does not rule out various allocation preferences as
explained below. Note that the collection of GAI elements in the above definition is dis-
joint, with the exception of t j

⋂
~q = {q j}. Therefore when applying the functional form in

Equation (5.2) we get a summation over all elements minus those pairwise intersections:

ub(Tb) =
|S|

∑
j=1

ub([t j])+ub([~q])−
|S|

∑
j=1

ub([q j]). (5.3)

The second and third terms above together are what I call the “quantity factor”, which is
the utility factor of buyer b over the GAI element ~q, denoted by f q

b (·):

f q
b (~q) = ub([~q])−

|S|

∑
j=1

ub([q j]). (5.4)

81



The interpretation of the quantity factor is that it expresses utility over the combinations of
trades from different trading partners, whereas the factors ub([t j]) represent utility of each
trade as an allocation by itself. Section 5.3.1 provides a full exposition of this concept.

Definition 5.3. Buyer b’s preferences exhibit linear trade utility if there exist qb and q̄b such

that

ub([t j]) = gb(q j)µb(θ ,s j) for j = 1, . . . , |S|,

and

gb(q j) =


0 q j < qb

q j qb ≤ q j ≤ q̄b

q̄b q j > q̄b.

The bounds qb and q̄b are called minimal and maximal trade quantity, respectively.

Similarly q j and q̄ j denote the bounds for s j.

In words, the utility of each single trade (as the only trade in the allocation) is linear in
quantity, subject to strict trader-specified upper and lower bounds. In the case of sellers,
the utility (cost) below the lower bound equals the cost at the lower bound, and cost above
the upper bound is considered infinite. Although linear trade utility is a hard constraint
(required to achieve the result of Theorem 5.1), it does not compromise the flexibility of
the quantity factor f q

b (~q).

5.2.3 MMP-GMAP decomposition

The combination of linearity in trade quantity and configuration aggregation leads to a
significantly simplifying result.

Theorem 5.1. 1. If all traders exhibit configuration aggregation and linear trade util-
ity, then there exists a solution to GMAP that consists of a set of trades, each of which
is on a configuration that is a solution to MMP for its specified pair of traders.

2. For any sets of traders B and S (and either |B| > 1 or |S| > 1 or both), if the pref-
erence structure of at least one of the traders τ does not agree with configuration
aggregation, then for any utility functions for the rest of the traders, there exists a
utility function uτ(·) such that any solution to GMAP includes a trade on a non-MMP
configuration.

To prove the first claim, I first show, based on the definition of the quantity bounds and
free disposal, that a trade can occur only within the quantity bounds of all traders (or can be
replaced with one that does). We can therefore assume gb(q j) = q j, and then the following
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functional decomposition is implied by the conditions above:

ub(Tb) =
|S|

∑
j=1

q jµb(θ j,s j)+ f q
b (~q), (5.5)

and similarly for sellers. It is then easy to show that improving any bilateral solution would
improve the total surplus of GMAP.

The usefulness of this decomposition is in the fact that the global optimization prob-
lem no longer depends on the attributes, because the attributes need to be considered only
in the MMP stage. It effectively separates the problem to a multiattribute problem, and a
price-only multi-unit problem. This opens the way to to a procurement mechanism, and
a generalized network flow algorithm for GMAP, both introduced later in this chapter.
The conditions of configuration aggregating and linear trade utility are fairly restrictive,
however they still allow a wide variety of expressive preferences, as described next.

5.3 Aggregation Preferences

5.3.1 Aggregation over Trading Partners

Theorem 5.1 generalizes a previous result (Engel et al., 2006) by accommodating arbitrary
functions over the vector of quantities, thus enabling aggregation preferences over trading
partners. For example, a buyer may want to reduce the number of suppliers she deals with,
but finds a hard constraint (e.g., at least x suppliers) overly restrictive, since she might want
to balance her preference for more suppliers against the cost of including inefficient suppli-
ers. The trade elements cannot express such preferences, but the quantity factor f q

b (·) can
vary the total WTP based on the distribution of quantity.

Consider the form of the quantity factor in Equation (5.4). This factor can increase the
WTP for allocations in which multiple elements of ~q are non-zero. That happens when the
utility of all the trade quantities taken together (or the utility of the quantity distribution),
ub([~q]), is greater than the sum of the individual trade quantity utilities, ub([q j]). Similarly,
preferences towards a small number of suppliers result in ub([~q]) < ∑

|S|
j=1 ub([q j]) for allo-

cations that have too many suppliers, meaning that the quantity factor penalizes the total
WTP. Note that a different choice of reference values (non-zero values for q̃ j) would not
interfere with this interpretation since the non-relevant units cancel out in Equation (5.3).

For example, assume a buyer b̂ wishes to buy up to six units, and prefers to divide the
quantity evenly among two sellers. In such case the value of ub̂([~q]) is highest for ~q that
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have exactly two equal non-zero elements, lower the more uneven the distribution is, and
also lower for vectors with more than two non-zero elements. The term ∑

|S|
j=1 ub([q j], on the

other hand, does not depend on the distribution of quantity. Therefore f q
b̂
(·) modifies the

WTP according to how close is the allocation to b̂’s quantity distribution preference. More
generally, any configuration-independent preferences over the distribution of the allocation
to suppliers can be generated by the quantity factor. These preferences cannot depend on
specific configurations, because that would violate the GAI structure. For example, a con-
figuration aggregating buyer cannot express a preference such as “increase the number of
suppliers when the quality of insurance is low”. Such a statement can be expressed using
another GAI element, which includes ~q and the column of the “insurance” attribute. Note
that better insurance per se is rewarded through the configuration utility factors ub([t j]).

As mentioned, the definitions and analysis apply to sellers with minor adjustments. It
is important to note however that when there is a single seller, f q

b (~q) = 0 according to (5.4).
Similarly, in procurement mechanisms with a single buyer there are no quantity factors for
sellers.

To illustrate the expressiveness of the model and its limitation, I consider the following
problem. A buyer b̂ represents a procurement department that wishes to purchase LCD
monitors for the company’s employees. Negotiable attributes include contractual aspects
such as warranty, delivery, insurance of deal, and payment terms. Suppliers are also eval-
uated on a measure of product quality and supplier reliability reputation, data which is
available to b̂. Each configuration also provides product specifications over resolution,
number of colors, number of nits, and its compatibility with wall mounting hardware.

It is reasonable to assume that b̂ does not object to having suppliers with different
contractual attributes and different quality and reliability ratings, as long as the payment
for each supplier reflects those values. It is also likely that interdependencies among the
attributes exist. For example, the WTP for longer warranty can depend on the product
quality. These kind of interactions at the multiattribute level are not ruled out by the model.
b̂ can also express preferences over the number of suppliers and the distribution of quan-
tities using the quantity factor. The restrictions of Theorem 5.1 begin to arise if b̂ has
particular preferences on the mix of qualities. For example, b̂ might wish to have some
percentage of higher-end monitors (higher resolution, # colors, etc...) and some of lower-
end, cheaper ones, for different types of employees. Though not directly supported, b̂ could
specify higher-end suppliers and lower-end suppliers and consider only a partial domain for
each. In addition, b̂ might prefer that all suppliers have the same value for wall-mounting
compatibility, so b̂ will not need to purchase different kinds of such hardware. These
considerations violate configuration aggregation (Definition 5.2) and hence cannot be ac-
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commodated by mechanisms designed according to Theorem 5.1. However, they can still
be expressed by the preference representation scheme, as detailed in the next subsection.

5.3.2 Restricting Configuration Aggregation

Configuration aggregation, required by Theorem 5.1, prevents traders from expressing
any constraints or preferences on the mix of configurations in their allocation. More
specifically, if a trader is aggregating she must be willing to trade any combination of
configurations, at prices defined by her WTP per configuration and trading partner. This
is quite restrictive, since traders may wish to limit the variance of specific attributes (for
example, “items from all suppliers must be delivered at the same time”, or the compat-
ibility issue in the monitors example). Bichler and Kalagnanam (2005) introduced such
preferences as homogeneity constraints, treating them as hard constraints on acceptable
allocations.

Another, more expressive way to describe these types of preferences is to say that con-
figurations have marginal utilities which vary based on the allocation in which they are
traded. This can be expressed in the GAI framework by expressing a penalty term which
includes the relevant attributes. For example, a trader might have a preference against the
aggregation of units of different colors. Assume that c represents the attribute color (with
values c1,c2), and a1, . . . ,an−1 represent the rest of the attributes. For simplicity assume
there are only two potential sellers, s1,s2. The preference for homogeneity indicates the
following:

∀q′1,q′2,u([c1
1,c

2
2,q
′
1,q
′
2]) < u([c1

1,q
′
1])+u([c2

2,q
′
2])

That means that the utility for an allocation with two configurations of different colors
is less than the combined utility of two allocations, each includes only one of the colors. To
extend the GAI representation of an aggregating trader to support such expressiveness, we
thus have to add another GAI element, ĉ = {c1,c2,q1,q2}. Since the two utility terms on the
RHS above are defined over ĉ

⋂
t1 and ĉ

⋂
t2 respectively, the explicit GAI decomposition

from (5.2) lends itself easily to expression of the penalty:

u(Tb) = u([t1])+u([t2])+u([c1
1,c

2
2,q
′
1,q
′
2])−u([c1

1,q
′
1])+u([c2

2,q
′
2])

In this model, the utility of allocation is an additive sum of the utility of trades, as long as
the colors are the same.

The key lesson from this discussion is that this preference handling approach–using
GAI decomposition over the allocation matrix–flexibly adds complexity only as required
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by traders’ preferences. This framework avoids specifying hard constraints on allocations,
and allows for expression of specific non-regularities by adding GAI elements to the model.
For the specific conditions of Theorem 5.1, this framework leads to useful computational
and economic results as I demonstrate in the next section.

5.4 MUMA GAI Auctions

With the decomposition guaranteed by Theorem 5.1, it seems natural to design a two-
phased mechanism for the multi-unit multiattribute domain: a single-unit multiattribute
mechanism to solve MMP for all pairs of traders, followed by a multi-unit price-only auc-
tion to determine the quantity distribution. In this section I propose such a mechanism for
the (one-sided) procurement problem. The mechanism relies on the single-unit GAI auc-
tions introduced in Chapter 4: in essence, we use the same Phase A and generalize Phase B
to multi-unit.

Assume traders have MUMA preferences that satisfy the conditions of Theorem 5.1.
In addition, we retain the GAI structure I1, . . . , Ig ⊆ A of the single-unit function µ(·) as in
Chapter 4, and it is independent of the preference structure of the allocation matrix imposed
by Definition 5.2.

I define MUMA GAI auctions as follows. The buyer initially reports her valuation
under the structure of Theorem 5.1, which can be represented using a single-unit valua-
tion function µ(·) (decomposed by its GAI structure), trade quantity bounds qb and q̄b,
and a quantity factor f q

b (~q). We then execute Phase A, identical to the one defined for the
single-unit case. As mentioned earlier, the notion of MMP is identical in the single-unit
and multi-unit frameworks, and therefore from Lemma 4.8 we get that the configurations
η j are approximate MMP solutions for each seller s j.

In the single-unit version, Phase B is a price-only ascending clock auction (the dis-
count term corresponding to a price). Similarly, for Phase B in the multi-unit case we use
a multi-unit (price-only) auction. For the purpose of the analysis below, I use a direct reve-
lation VCG mechanism, in which each seller s j reveals µ j(η j) and q̄ j (recall that a seller’s
quantity factor must be zero when there is only one buyer, and that we require q j = 0 ).

Theorem 5.2. Under the preference restriction of Theorem 5.1, and assuming SB sellers

and a truthful buyer, a MUMA GAI auction which employs an efficient (price-only) mecha-

nism as Phase B, achieves total surplus which is within qε(e+1) of the efficient allocation,

where q is the number of units allocated by the efficient solution.
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If (instead of VCG) we use in Phase B a mechanism that guarantees only an approx-
imate solution within some δ of optimum, the theorem above and its proof can be easily
adapted to show that the auction would achieve surplus within δ + qε(e + 1) of optimum.
For example, the mechanism we apply in the special case of single-unit (Chapter 4) is
ε-efficient, resulting in the overall approximate efficiency of Theorem 4.10.

The incentive properties of the auction can be established based on those of Phase B.

Theorem 5.3. Given a truthful buyer, if the mechanism used in Phase B yields sell-side

VCG prices (with respect to its input), then SB is an ex-post 2qε(e +1)-Nash Equilibrium

for sellers in the MUMA GAI auction. That is, sellers cannot gain more than 2qε(e+1) by

unilaterally deviating from SB.

As with the previous result, this theorem can be adapted to approximate VCG mecha-
nisms, adjusting the potential gain accordingly. Since these results assume nothing about
the Phase B mechanism other than efficiency and VCG prices, they apply to any efficient
iterative mechanism implementing the VCG outcome. A direct generalization of the single-
unit mechanism would be an iterative forward auction over a discount from Phase A prices,
(e.g., Ausubel (2004)). However, the problem of non-convex utility on the bid taker side
(buyer in our case), reflected in f q

b (·), is rarely addressed in the context of iterative mech-
anisms. We therefore might have to resort to a direct revelation VCG mechanism when a
non-trivial buyer quantity factor f q

b (·) exists. Indeed, the computational problem associ-
ated with the WDP of the VCG mechanism can be intractable, but several useful cases of
non-convex utility can be handled using generalized network flow algorithms explored later
in this chapter. These algorithms are later shown to perform reasonably well in clearing a
two-sided market with up to hundreds of traders.

There are other, well-known drawbacks to a direct revelation approach, for example in
the communication burden of full evaluation. I therefore stress that the advantage achieved
with this mechanism is the reduction of the multiattribute problem to a price-only problem,
by the means of using Phase A and Theorem 5.1. In practice, procurement problems rarely
involve more than a few potential suppliers, and the quantity can be discretized to keep the
total number of units low. In such case the WDP of Phase B is tractable, even though the
attributes domain can be extremely large. Again I refer to the KLM buttercup procurement
example. The problem had 77 attributes (as mentioned earlier), but only seven potential
suppliers, two of which were pre-eliminated.2 Therefore, the combination of compact rep-
resentation for the single-unit preferences and the decoupling of the multiattribute domain
from the multi-unit problem can render the problem solvable.

2Source: http://www.negometrix.com
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5.5 Example

For this example, the buying agent b̂ procures a large quantity of hard drives for internal
use. b̂ is willing to accumulate hard drives with various characteristics, as long as the pay-
ment varies accordingly. Specifically, there are three attributes, with two possible values
each:

Capacity (c) c1 = 60GB, c2 = 120GB.

RPM (r) r1 = 3600rpm, r2 = 5400rpm.

Warranty (w) w1 = 3mths, w2 = 6mths.

The GAI structure is I1 = {r,c}, I2 = {c,w} (note that e = 1). The resulting sub-
configurations are therefore r1c1,r2c1,r1c2,r2c2, and c1w1,c2w1,c1w2,c2w2.

I1 I2
r1c1 r2c1 r1c2 r2c2 c1w1 c2w1 c1w2 c2w2

µb̂ 60 85 70 95 40 60 60 70
µ1 50 60 55 75 25 30 40 50
µ2 35 45 65 90 20 40 30 50

Table 5.1: GAI utility functions for the example domain. µb represents the b̂’s valuation,
and µ1 and µ2 costs of s1 and s2.

The procurement department of b̂ considers two potential suppliers, s1 and s2. Since
the company wishes, for future reasons, to maintain relationship with both, it has some
preference towards dividing the quantity between the two suppliers. For simplicity I divide
the large quantity to two equal units, meaning q̄b̂ = 2. All traders’ utilities exhibit config-
uration aggregation and linear configuration utility. The sellers’ lower quantity bound is
zero, and their capacity is unlimited in the relevant range (meaning q̄1, q̄2 ≥ 2).

The buyer’s and the sellers’ single-unit utility functions, µb,µ1,µ2 are given in Table
5.1. The buyer’s preference towards distribution of supply is expressed through the quantity
factor f q

b̂
of her utility as follows:

f q
b̂
(q1,q2) =

30 q1 = q2 = 1

0 2≥ qi > 0,q j = 0 (i 6= j ∈ {1,2})

I first analyze Phase A, whose progress is given in Table 5.2. Let ε = 8, so the price
decrement per sub-configuration is 4. The efficient allocation is (s2, r2c1w2), yielding a
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I1 I2
r1c1 r2c1 r1c2 r2c2 c1w1 c2w1 c1w2 c2w2

1 100 100 100 100 75 75 75 75
s1,s2 * s1,s2 *

2 96 100 100 100 71 75 75 75
s1,s2 * s1,s2 *

3 92 100 100 100 67 75 75 75
s2 s1 * s2 s1 *

4 88 100 96 100 63 71 75 75
s2 s1 * s1,* s2 *

5 88 96 92 100 63 71 71 75
s2 s1 * s2 s1,* *

6 84 96 88 100 59 71 71 75
s2 s1 * s1,* s2 *

7 84 92 84 100 59 71 67 75
s2 * s1 * s2 s1,* * *

8 80 92 80 100 55 71 67 75
s2,* s1,* s1,* s1,* s2,* *

Table 5.2: Auction progression in phase A. Sell bids are denoted by s1,s2 and designation
of M t by ∗.

surplus of 145−75 = 70. s1’s efficient configuration is r2c2w1 with surplus of 50. We set
high initial prices, 100 for all sub-configurations in I1 and 75 for I2.

Initially, prices of all configurations are equal, causing the sellers to bid on their cheap-
est configuration (r1c1w1). The buyer’s preferred configuration is his most valuable one
(r2c2w2). s1 changes his bid to r1c2w1 in round 3, since its current profit is 175−85 = 90,
compared to 159− 75 = 84 of r1c1w1. This configuration remains optimal until round 8
(though the profit is reduced to 151−85 = 66), in which r2c2w1 becomes optimal too, with
the same profit. s2 remains on r1c1w1 until round 4, and alternates between this and r2c1w2

at each round. In round 7, r2c1w2 finally becomes buyer preferred (with buyer profit of
−14) and in the next round, when s2 bids r2c1w2 again, both sellers are bidding on config-
urations that are in the buyer’s preferred set. Phase A therefore terminates with η1 = r2c2w1

(which is chosen over r1c2w1 since it yields higher buyer profit) and η2 = r2c1w2. If we had
been using an iterative mechanism for phase B, the sellers would compete on a discount
from the prices of round 8, and given their profit margins π1(η1) = 171− 105 = 66 and
π2(η2) = 159−75 = 84, s1 would have dropped out once the discount exceeded 66.
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However to take f q
b̂
(·) into account, we use a direct VCG mechanism for Phase B.

Assuming s1 and s2 reveal their true valuations, the WDP is as follows:

GMAP = max
q1,q2

(q1µb(η1)+q2µb(η2)+ f q
b̂
(q1,q2)−q1µ1(η1)−q2µ2(η2)) =

max
q1,q2

( f q
b̂
(q1,q2)+50q1 +70q2)

Since the bonus given by f q
b̂

for an even distribution is larger than 20, which is the gain
from assigning the second unit to s2 as well, the solution is q1 = q2 = 1, yielding a surplus
of 30 + 50 + 70 = 150. To calculate the price for each seller s j we must find the surplus
given that s j does not participate, meaning that the other trader is allocated both units.

GMAP−1 = 70 ·2 = 140, GMAP−2 = 50 ·2 = 100

This takes into account the loss of the bonus for quantity distribution. The profit of s1

should be 150−140 = 10, and the profit of s2 should be 50. The final prices are therefore:

p(η1) = 105+10 = 115, p(η2) = 75+50 = 125.

5.6 Two-Sided Multiattribute Call Market

Up to the end of this chapter I focus on two-sided multiattribute auctions, where multiple
buyers and sellers submit bids, and the objective is to construct a set of deals maximizing
overall surplus. The typical context I expect such an exchange to take place in is differ-
ent than the typical setting I considered for procurement auctions. Rather than negotiating
high-stake contracts for long-term supply of goods and services, an exchange is more likely
to be used for commodities, such as cars or PCs. Therefore, some of the key preferences
considered before, such as the distribution of quantity, do not play a significant role here.

Previous research on such auctions includes works by Fink et al. (2004) and Gong
(2002), both of which consider a matching problem for continuous double auctions
(CDAs), where deals are struck whenever a pair of compatible bids is identified.

In a call market, in contrast, bids accumulate until designated times (e.g., on a periodic
or scheduled basis) at which the auction clears by determining a comprehensive match over
the entire set of bids. Because the optimization is performed over an aggregated scope,
call markets often enjoy liquidity and efficiency advantages over CDAs (Economides and
Schwartz, 1995). In the interim between clears, call markets may also disseminate price
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quotes providing summary information about the state of the auction (Wurman et al., 2001).
Such price quotes are often computed based on hypothetical clears, and so the clearing
algorithm may be invoked more frequently than actual market clearing operations. The ad-
vantages of price feedbacks in multiattribute call markets were studied by Lochner (2008).

Clearing a multiattribute CDA is much like clearing a one-sided multiattribute auction.
Because nothing happens between bids, the problem is to match a given new bid (say,
an offer to buy) with the existing bids on the other (sell) side. Multiattribute call mar-
kets are potentially much more complex. Constructing an optimal overall matching may
require consideration of many different combinations of trades, among the various poten-
tial trading-partner pairings. The problem can be complicated by restrictions on overall
assignments, as expressed in side constraints (Kalagnanam et al., 2001).

The goal of this part of the work is to explore tradeoffs between expressive power of
agent bids and computational properties of auction clearing. I conduct the exploration in-
dependent of any consideration of strategic issues bearing on mechanism design. As with
analogous studies of combinatorial auctions (Nisan, 2000), I intend that tradeoffs quanti-
fied in this work can be combined with incentive factors within a comprehensive overall
approach to multiattribute auction design. I therefore treat the reported utility, through bids,
as a faithful representation of the preferences.

From the starting point of Theorem 5.1, I address the two parts of the problem, MMP

and GMAP. After considering MMP, I develop a family of network flow problems that
capture corresponding classes of GMAP optimizations. Experimental trials provide prelim-
inary confirmation that the network formulations provide useful structure for implementing
clearing algorithms.

5.7 Utility Representation and MMP

I first consider the problem of finding a best deal between pairs of traders. MMP is an opti-
mization problem over µb(·)−µs(·), and therefore depends pivotally on the representation
of µ(·) in the bid. Note that issues of utility representation and MMP apply to a broad
class of multiattribute mechanisms, beyond multiattribute call markets. For example, the
complexity results contained in this section apply equally to the bidding problem faced
by sellers in second-score auctions, given a published buyer µb(·). As mentioned earlier,
MMP comes up even in a price driven auction, such as the GAI auctions discussed earlier,
when optimizing the difference between µ(·) and current prices.

The simplest representation of µ(·) is a direct enumeration of configurations and asso-
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ciated quantities and payments. This approach treats the configurations as atomic entities,
making no use of attribute structure. A common and inexpensive enhancement is to enable
a trader to express sets of configurations, by specifying subsets of the domains of com-
ponent attributes. Associating a single quantity and payment with a set of configurations
expresses indifference among them; hence I refer to such a set as an indifference range.3

Indifference ranges include the case of attributes with a natural ordering, in which a bid
specifies a minimum or maximum acceptable attribute level. The use of indifference ranges
can be convenient for MMP. The compatibility of two indifference ranges is simply found
by testing set intersection for each attribute, as demonstrated by the decision-tree algorithm
of Fink et al. (2004).

Alternatively, bidders may specify their WTP µ(·) in terms of compact functional
forms. Enumeration based representations, even when enhanced with indifference ranges,
are ultimately limited by the exponential size of attribute space. Functional forms may
avoid this explosion, but only if µ(·) reflects structure among the attributes. Moreover,
even given a compact specification of µ(·), we gain computational benefits only if we
can perform the matching without expanding the µ(·) values of an exponential number of
configuration points.

Under fully additive utility representations of both sides, MMP is simple—the optimal
match over Θ reduces to finding the optimal match separately for each attribute. A com-
mon scenario in practical procurement has the buyer define an additive scoring function,
while suppliers submit enumerated offer points or indifference ranges. This model is still
very amenable to MMP: for each element in a supplier’s enumerated set, we optimize each
attribute by finding the point in the supplier’s allowable range that is most preferred by the
buyer.

A special type of scoring (more particularly, cost) function was defined by Bichler
and Kalagnanam (2005) and called a configurable offer. This idea is geared towards
procurement auctions: assuming suppliers are usually comfortable with expressing their
preferences in terms of cost that is quasi-linear in every attribute, they can specify a price
for a base offer, and additional cost for every change in a specific attribute level. This
model is essentially a “pricing out” approach. For this case, MMP can still be optimized on
a per-attribute basis.

As advocated in previous chapters, we would often prefer the more flexible GAI rep-
resentation. As GAI retains the summation structure, the complexity of the matching is
similar to the complexity of optimizing a single function, since the sum function is in the

3These should not be mistaken with indifference curves, which express dependency between the attributes.
Indifference curves can be expressed by the more elaborate utility representations discussed below.
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form (6.4) as well, as discussed in Section 3.3.2.

5.8 Solving GMAP under Allocation Constraints

The problem of clearing a multiattribute call market is a combinatorial optimization prob-
lem, which is NP-hard with an input size that is twice exponential in the number of
attributes. The MMP-GMAP decomposition is a significant simplification, but the space
still needs to be severely restricted in order to allow reasonably tractable algorithms. I
therefore define constraints that map to classes of bids, and inspect the complexity of opti-
mization under various combinations of these restrictions.

The main restriction is called configuration parity. Configuration parity reduces the
expressiveness of preferences in another dimension: instead of the quantity factor, traders
can only specify q̄b and qb. Traders express bounds on the total quantity they wish to ob-
tain, and they cannot specify how that quantity is divided between suppliers. This is quite
restrictive, but as argued above may be reasonably realistic for an exchange.

Definition 5.4. A configuration parity bid Bb̂ contains the following components:
• a representation of a single-unit utility function µ̄b̂(·).

4

• quantities q̄b̂ and qb̂.
• a boolean flag AGG.

Bb̂ with AGG = true indicates that b̂ is willing to engage in any allocation T , with

Tb̂ = {(θ ,q, b̂,s)} such that qb̂ ≤ ∑t∈Tb̂
qt ≤ q̄b̂ and pay a total of ∑t∈Tb̂

qt µ̄b̂(θt ,st). With

AGG = false, Bb̂ indicates the same with the additional restriction |Tb̂|= 1.

It is straightforward to show that any willingness-to-pay represented by a configuration
aggregating bid is within the restrictions of Theorem 5.1. In other words, if for any Tb̂ the
amount expressed by Bb̂ is ub̂(Tb̂), then b̂ exhibits configuration aggregation and linear
trade quantity. We can therefore apply the MMP-GMAP decomposition to find the optimal
allocation given a set of buy and sell bids.

In the rest of this section I consider the clearing problem for configuration parity bids.
I first define several special cases of such bids.

Aggregating Bids Bb̂ for which AGG = true

Non Aggregating Bids Bb̂ for which AGG = false

All or None (AON) Bids Bb̂ for which qb̂ = q̄b̂.

4Usually some bidding language structures the expression of µ̄(·) in some compact way, but I do not get
into this topic and assume that it contains an enumeration of points.
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Divisible Bids Bb̂ for which qb̂ = 0.

These correspond to the same classes of bids expressiveness defined in Engel et al.
(2006), where they are introduced as a set of constraints over the space of all possible
combination of trades.

5.8.1 Notation and Graphical Representation

The clearing algorithms are based on network flow formulations of the underlying opti-
mization problem (Ahuja et al., 1993). The network model is based on a bipartite graph,
in which nodes on the left side represent buyers, and nodes on the right represent sellers.
Traders may submit multiple bids with an OR semantics, meaning they are willing to trade
based on any subset of their bids. We can treat OR bids by the same traders as different
traders without changing the result. Therefore, B and S refer to the bids, but I use the terms
“bids” and “bidders” interchangeably.

I define two graph families, one for the case of non-aggregating bids (called single-

unit), and the other for the case of aggregating bids (called multi-unit).5 For both types, a
single directed arc is placed from a buyer i ∈ B to a seller j ∈ S if and only if h(MMP(i, j))
is positive, where h(MMP(·)) refers to the value of the MMP solution. I denote by T (i) the
set of potential trading partners of trader i, i.e., the nodes connected to buyer or seller i in
the bipartite graph.

In the single-unit case, I define the weight of an arc (i, j) as wi j = h(MMP(i, j)). For
the multi-unit case, the weights are defined similarly, and the quantity q̄i is associated with
the node for bid i. I also use the notation qi j for the mathematical formulations to denote
partial fulfillment of qt for t that solves MMP(i, j).

5.8.2 Handling Indivisibility and Aggregation Constraints

Under the restrictions of Theorem 5.1 and configuration parity, and when the solution to
MMP is given, GMAP exhibits strong similarity to the problem of clearing double auctions
with assignment constraints (Kalagnanam et al., 2001). A match in the bipartite repre-
sentation corresponds to a potential trade in which assignment constraints are satisfied.
Network flow formulations have been shown to model this problem under the assumption
of indivisibility and aggregation for all bids. The novelty in this part of the work is the use

5In the next section, I introduce a hybrid form of graph accommodating mixes of the two trader categories.

94



of generalized network flow formulations for more complex cases where aggregation and
divisibility may be controlled by traders.

Initially I examine the simple case in which all bids are non-aggregating. Observe that
the optimal allocation is simply the solution to the well known weighted assignment prob-

lem (Ahuja et al., 1993) on the single-unit bipartite graph described above. The set of
matches that maximizes the total weight of arcs corresponds to the set of trades that maxi-
mizes total surplus. Note that any form of (in)divisibility can also be accommodated in this
model via the constituent MMP subproblems.

The next formulation solves the case in which all traders are aggregating and divisi-
ble. This case can be represented using the following linear program, corresponding to the
multi-unit graph described above:

max ∑
i∈B, j∈S

wi jqi j

s.t. ∑
i∈T ( j)

qi j ≤ q̄ j j ∈ S

∑
j∈T (i)

qi j ≤ q̄i i ∈ B

qi j ≥ 0 j ∈ S, i ∈ B

Recall that the qi j variables in the solution represent the number of units that buyer
i procures from seller j. This formulation is known as the network transportation prob-

lem with inequality constraints, for which efficient algorithms are available (Ahuja et al.,
1993). It is a well known property of the transportation problem (and flow problems on
pure networks in general) that given integer input values, the optimal solution to the corre-
sponding linear program is guaranteed to be integer as well. Figure 5.1 demonstrates the
transformation of a set of bids to a transportation problem instance.

The problem becomes significantly harder when aggregation is given as an option to
bidders, requiring various enhancements to the basic multi-unit bipartite graph described
above. In general, I consider traders that are either aggregating or not, with either divisible
or AON offers.

Initially I examine a special case, which at the same time demonstrates the hardness of
the problem but still carries computational advantages. Let one side (e.g., buyers) be de-
fined as restrictive (AON and non-aggregating), and the other side (sellers) as unrestrictive
(divisible and aggregating). This problem can be represented using the following integer
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Figure 5.1: Multi-unit matching with two boolean attributes, A1 and A2. (a) Bids, with
offers to buy in the left column and offers to sell at right. q@p indicates an offer to trade q
units at price p per unit. (b) Corresponding multi-unit assignment model. W represents arc
weights (unit surplus), s represents source (exogenous) flow, and t represents sink quantity.

programming formulation:

max ∑
i∈B, j∈S

wi jqi j

s.t. ∑
i∈T ( j)

q̄iqi j ≤ q̄ j j ∈ S

∑
j∈T (i)

qi j ≤ 1 i ∈ B

qi j ∈ {0,1} j ∈ S, i ∈ B

(5.6)

This formulation is a restriction of the generalized assignment problem (GAP) (Fisher et al.,
1986). Although GAP is known to be NP-hard, it can be solved relatively efficiently by ex-
act or approximate algorithms. GAP is more general than the formulation above as it allows
buy-side quantities (q̄i above) to be different for each potential seller. This formulation is
NP-hard as well (even the case of a single seller corresponds to the knapsack problem),
illustrating the drastic increase in complexity when traders with different constraints are
admitted to the same problem instance.

Other than the special case above, I found no advantage in limiting AON constraints
when traders may specify aggregation constraints. Therefore, the next generalization al-
lows any combination of the two boolean constraints, that is, traders choose among four
bid types:

NI Bid AON and not aggregating.
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AD Bid allows aggregation and divisibility.

AI Bid AON, allows aggregation (quantity can be aggregated across configurations, as
long as it sums to the whole amount).

ND No aggregation, divisibility (one trade, but any quantity is acceptable).

In the next formulation B and S are each divided into four subsets corresponding to the
types above. I indicate the set using the type name and a subscript, so that NIb indicates
buyers in NI. I omit the subscript when it is clear whether I refer to a buyer or to a seller.

I introduce an integer programming (IP) representation for the problem under these
setting. The following additional variables are used in the formulation. Boolean (0/1) vari-
ables ri and r′j indicate whether buyer i and seller j participate in the solution (used for
AON traders). Another indicator variable, yi j , applied to non-aggregating buyer i and seller
j, takes the value 1 iff i trades with j. For aggregating traders, yi j is not constrained. The
IP formulation is as follows.

max ∑i∈B, j∈SWi jqi j (5.7a)

s.t. ∑ j∈T (i) qi j = q̄iri i ∈ AIb (5.7b)

∑ j∈T (i) qi j ≤ q̄iri i ∈ ADb (5.7c)

∑i∈T ( j) qi j = q̄ir′j j ∈ AIs (5.7d)

∑i∈T ( j) qi j ≤ q jr′j j ∈ ADs (5.7e)

xi j ≤ q̄iyi j i ∈ NDb , j ∈ T (i) (5.7f)

xi j ≤ q̄ jyi j j ∈ NIs , i ∈ T ( j) (5.7g)

∑ j∈T (i) yi j ≤ ri i ∈ NIb∪NDb (5.7h)

∑i∈T ( j) yi j ≤ r′j j ∈ NIs∪NDs (5.7i)

int qi j (5.7j)

yi j ,r
′
j,ri ∈ {0,1} (5.7k)

Problem (5.7) has additional structure as a generalized min-cost flow problem with in-
tegral flow.6 A generalized flow network is a network in which each arc may have a gain

factor, in addition to the pure network parameters (which are flow limits and costs). Flow
in an arc is then multiplied by its gain factor, so that the flow that enters the end node of

6Constraint (5.7j) could be omitted (yielding computational savings) if non-integer quantities are allowed.
Here and henceforth I assume the harder problem, where divisibility is with respect to integers.
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Figure 5.2: Generalized network flow model. B1 is a buyer in AD, B2 ∈ NI, B3 ∈ AI,
B4 ∈ ND. V 1 is a seller in ND, V 2 ∈ AI, V 4 ∈ AD. The g values represent arc gains.

an arc equals the flow that entered from its start node, multiplied by the gain factor of the
arc. The network model can in turn be translated into an IP formulation that captures such
structure.

The generalized min-cost flow problem is well-studied and has a multitude of efficient
algorithms (Ahuja et al., 1993). The faster algorithms are polynomial in the number of arcs
and the logarithm of the maximal gain, that is, performance is not strongly polynomial but
is polynomial in the size of the input. The main benefit of this graphical formulation to
the matching problem is that it provides a very efficient linear relaxation. Integer program-
ming algorithms such as branch-and-bound use solutions to the linear relaxation instance
to bound the optimal integer solution. Since network flow algorithms are much faster than
arbitrary linear programs (generalized network flow simplex algorithms have been shown
to run in practice only 2 or 3 times slower than pure network min-cost flow (Ahuja et al.,
1993)), I expect a branch-and-bound solver for the matching problem to show improved
performance when taking advantage of network flow modeling.

The network flow formulation is depicted in Figure 5.2. Non-restrictive traders are
treated as in Figure 5.1. For a non-aggregating buyer, a single unit from the source will
saturate up to one of the yi j for all j, and be multiplied by q̄i. If i ∈ ND, the end node of yi j

will function as a sink that may drain up to q̄i of the entering flow. For i ∈ NI an indicator
(0/1) arc ri is used, on which the flow is multiplied by q̄i. Trader i trades the full quantity
iff ri = 1.

At the seller side, the end node of a qi j arc functions as a source for sellers j ∈ ND,
in order to let the flow through y′i j

arcs be 0 or q̄ j. The flow is then multiplied by 1
q̄ j

so
0/1 flows enter an end node which can drain either 1 or 0 units. For sellers j ∈ NI arcs r′j
ensure AON similarly to arcs r j for buyers.
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Having established this framework, we are ready to accommodate more flexible ver-
sions of the constraints. The first generalization is to relax the boolean choice between
AON and divisibility, allowing any minimal quantity q. In the network flow instance we
simply need to turn the node of the constrained trader i (e.g., the node B3 in Figure 5.2) to
a sink that can drain up to q̄i−qi units of flow. The integer program (5.7) can be also easily
changed to accommodate this extension.

Using gains, we can also apply another popular type of side constraint, called batch

size. A batch size constraint relaxes linear trade quantity, allowing trader to specify an
integer β such that the total quantity traded is must equal γβ for any integer γ . If a trader
specifies a batch size β , we change the gain on the r arcs to β , and set the available flow of
its origin to the maximal number of batches q̄i/β .

5.8.3 Nonlinear Value of Quantity

A key assumption in the results up to this point is linear trade quantity, which allows us
to restrict attention to per-unit valuations. Divisibility without linear trade quantity allows
expression of concave willingness-to-pay functions, corresponding to convex preference
relations. Bidders may often wish to express non-convex offer sets, for example, due to
fixed costs or switching costs in production settings (Schvartzman and Wellman, 2007).

The framework can be extended to accommodate nonlinear valuation of quantity in the
form of enumerated payment schedules—that is, defining a function µ̂ : Θ× d̄(q)→ ℜ+

(D̄(q)⊆ D(q)) which assigns values µ(x,q) for a select set of quantities q.

Definition 5.5. A schedule bid Bb̂ is a set of configuration parity bids with XOR semantics,

that is b̂ is willing to engage in an allocation and payment implied by exactly one of the

bids in the set.

To handle nonlinear valuations, the network is augmented to include flow possibilities
corresponding to each of the XOR bids, plus additional structure to enforce exclusivity
among them. In other words, the network treats the offer for a given quantity as in Sec-
tion 5.8.2, and embeds this in an XOR relation to ensure that each trader picks only one
allocation implied by one of the bids. Since for each such quantity choice we can apply
Theorem 5.1, the solution we get is in fact the solution to GMAP.

The network representation of the XOR relation (which can be embedded into the net-
work of Figure 5.2) is depicted in Figure 5.3. For simplicity I assume that all bids are
divisible or AON, but minimal quantities can be treated as above. For a trader i with K

XOR bids, I define dummy variables, zk
i , k = 1, . . . ,K. Since we consider trades between
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Figure 5.3: Extending the network flow model to express an XOR over quantities. Buyer
B2 has 3 XOR points for 6, 3, or 5 units.

every pair of quantity points we also have qk
i j

, k = 1, . . . ,K. For buyer i ∈ AI with XOR
points at quantities q̄ik , replace (5.7b) with the following constraints:

∑
j∈T (i)

qk
i j

= q̄ikzk
i k = 1, . . . ,K

K

∑
k=1

zk
i = ri

zk
i ∈ {0,1} k = 1, . . . ,K

(5.8)

Figure 5.3 depicts the generalized network flow formulation.

5.8.4 Homogeneity Constraints

The model (5.7) handles constraints over the aggregation of quantities from different trad-
ing partners. When aggregation is allowed, the formulation permits trades involving arbi-
trary combinations of configurations. A homogeneity constraint (Bichler and Kalagnanam,
2005) restricts such combinations, by requiring that configurations aggregated in an overall
deal must agree on some or all attributes.

In the presence of homogeneity constraints (as shown by Theorem 5.1) we can no longer
apply the convenient separation of GMAP into MMP plus global bipartite optimization, as
the solution to GMAP may include trades not part of any MMP solution. For example, let
buyer b specify an offer for maximum quantity 10 of various acceptable configurations,
with a homogeneity constraint over the attribute “color”. This means b is willing to ag-
gregate deals over different trading partners and configurations, as long as all are the same
color. If seller s can provide 5 blue units or 5 green units, and seller s′ can provide only 5
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green units, we may prefer that b and s trade on green units, even if the local surplus of a
blue trade is greater.

Let {x1, . . . ,xH} be attributes that some trader constrains to be homogeneous. To pre-
serve the network flow framework, we need to consider, for each trader, every point in
the product domain of these homogeneous attributes. Thus, for every assignment x̂ to the
homogeneous attributes, we compute MMP(b,s) under the constraint that configurations
are consistent with x̂. This is the same approach as in Section 5.8.3: solve the global opti-
mization, such that the alternative x̂ assignments for each trader are combined under XOR
semantics, thus enforcing homogeneity constraints.

The size of this network is exponential in the number of homogeneous attributes, since
we need a node for each point in the product domain of all the homogeneous attributes
of each trader.7 Hence this solution method will only be tractable in applications where
the traders can be limited to a small number of homogeneous attributes. It is important to
note that the graph needs to include a node only for each point that potentially matches a
point on the other side. It is therefore possible to make the problem tractable by limiting
one of the sides to a less expressive bidding language, and by that limit the set of potential
matches. For example, if sellers submit bounded sets of XOR points, we need to consider
only the points in the combined set offered by the sellers, and the reduction to network flow
is polynomial regardless of the number of homogeneous attributes.

If such simplifications do not apply, it may be preferable to solve the global problem
directly as a single optimization problem. I provide the formulation for the special case of
divisibility under configuration parity. Let i index buyers, j sellers, and Hi,H j represent
the sets of homogeneous attributes respectively. Variable xh

i j
∈ D(Xh) takes the value of

attribute Xh in the trade between buyer bi and seller s j. Integer variable qi j represents the
quantity of the trade (zero for no trade) between bi and s j. The complexity is NP-hard as
an Integer Programming formulation, and in addition it introduces potential non-linearity

7If traders differ on which attributes they express such constraints, we can limit consideration to the rel-
evant alternatives. The complexity will still be exponential, but in the maximum number of homogeneous
attributes for any pair of traders.
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Aggregation Hom. attr. Min. quantity linear tr. quant. Technique Complexity
No aggregation N/A Any Not required Assignment problem Polynomial
All aggregate None Divisible Required Transpor. problem Polynomial

One side None Aggr side div. Aggr. side GAP NP-hard
Optional None Any, batch Required Generalized ntwrk flow NP-hard
Optional Bounded Any, batch Bounded size schdl. Generalized ntwrk flow NP-hard
Optional Not bounded Any, batch Not required Non-linear integer opt NP-hard

Table 5.3: Mapping from combinations of allocation constraints to the solution methods of
GMAP.

in the form of µ(·).

max ∑
bi∈B,s j∈S

[qi j µbi(xi j ,s j)−qi j µs j(xi j ,bi)]

∑
j∈S

qi j ≤ q̄i i ∈ B

∑
i∈B

qi j ≤ q̄ j j ∈ S

xh
1 j

= xh
2 j

= · · ·= x|B| j s j ∈ S,h ∈ {1, . . . ,H j}

xh
i1 = xh

i2 = · · ·= xi|S| bi ∈ B,h ∈ {1, . . . ,Hi}

(5.9)

Table 5.3 summarizes the mapping I presented from allocation constraints to the com-
plexity of solving GMAP. One Side means that one side aggregates and divisible, and the
other side is restrictive. Batch means that traders may submit batch sizes. Configuration
parity is assumed for all cases but the first. “Down to q” means divisibility with minimum
quantity.

5.9 Experimental Results

I approach the experimental aspect of this work with two objectives. First, to obtain a
general idea of the sizes and types of clearing problems that can be solved under given
reasonable time constraints. Another goal is to compare the performance of a straight-
forward integer program as in (5.7) with an integer program that is based on the network
formulations developed here. Since I used CPLEX, a commercial optimization tool, the
second objective could be achieved to the extent that CPLEX can take advantage of network
structure present in a model.

I found that in addition to the problem size (in terms of number of traders), the percent-
age of aggregating traders plays a crucial role in determining complexity. When most of
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Figure 5.4: Alternative generalized network flow model. B1 is a buyer in AD, B2 ∈ AI,
B3 ∈ NI, B4 ∈ ND. V 1 is a seller in AD, V 2 ∈ AI, V 4 ∈ ND. The g values represent arc
gains, and W values represent weights.

the traders are aggregating, problems of larger sizes can be solved quickly. For example,
the IP model solved instances with 600 buyers and 500 sellers, where 90% of them are
aggregating, in less than two minutes. When the aggregating ratio was reduced to 80% for
the same data, solution time was just under five minutes.

These results were obtained because the network model (Figure 5.2) assigns a regular
node to each aggregating trader, and treats non-aggregating traders as the special case. This
seem to miss the fact that non-aggregation should be easier to handle (for the same reason
the assignment problem is easier than the transporation problem). This motivated me to de-
velop a new network model. Rather than treat non-aggregating traders as a special case, the
new model takes advantage of the single-unit nature of non-aggregating trades, and treats
the aggregating traders as the special case. This new model outperformed the other models
on most problem instances, exceptions being those where aggregating traders constitute a
vast majority (at least 80%).

This new model (Figure 5.4) has a single node for each non aggregating trader, with
a single-unit arc designating a match to another non-aggregating trader. An aggregating
trader has a node for each potential match, connected (via y arcs) to a mutual source node.
Unlike the previous model I allow fractional flow for this case, representing the traded
fraction of the buyer’s total quantity. This fraction is then multiplied by the gain factor of
the subsequent q arc, and the integrality constraint there ensures that the traded quantity
remains integer.

I tested all three models on random data in the form of bipartite graphs encoding MMP

solutions. In my experiments, each trader has a maximum quantity uniformly distributed
over [30,70], and minimum quantity uniformly distributed from zero to the maximal quan-
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Figure 5.5: Average performance of models when 30% of traders aggregate.

Figure 5.6: Average performance of models when 50% of traders aggregate.

tity. For each pair of a buyer and a seller, the solution to MMP is drawn in two steps: first,
it is chosen to be positive (meaning that the buyer and seller match) with probability 0.75.
For each matching pair the surplus is drawn uniformly from [10,70].

The size of the problem is defined by the number of traders on each side, but the prob-
lem complexity depends in fact on the product |B||S|. In all of the tests shown, for a given
number of traders N, I define |B| and |S| according to the worst case |B| = |S| = N

2 . Each
data point is averaged over six samples. In figures 5.5–5.8, the direct IP (Eq. 5.7) is des-
ignated “SW”, the first network model (Figure 5.2) “NW”, and the revised network model
(Figure 5.4) “NW 2”.

Figures 5.5–5.7 depict the comparison of the three models as a function of the number
of traders, given various percentages of aggregating traders. Figure 5.8 shows how the var-
ious models are affected by a change in the percentage of aggregating traders, holding the
problem size fixed.8

8All tests were performed on Intel 3.4 GHz processors with 2048 KB cache. Tests that did not complete
by the one-hour time limit were recorded as 4000 seconds.
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Figure 5.7: Average performance of models when 70% of traders aggregate.

Figure 5.8: Performance of models when varying percentage of aggregating traders

Due to the integrality constraints, I could not test available algorithms specialized for
network-flow problems on the test problems. Thus, I cannot fully evaluate the potential
gain attributable to the network structure. However, the model I built based on the insight
from the network structure clearly provided a significant speedup, even without using a
special-purpose algorithm. Model NW 2 provided speedups by a factor of 4–10 over the
model SW. This was consistent for all the problem sizes I tested, including the smaller sizes
for which the speedup is not visually apparent on the chart.

5.10 Summary

I present a preference handling approach for the domain of multi-unit multiattribute auc-
tions. I show how GAI decomposition can be leveraged to express structured MUMA
preferences, and that its functional form naturally expresses non-regularities in traders’
utilities. Specific restrictions allow the decoupling of the multi-unit problem from the
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multiattribute domain, leading to an auction mechanism that yields approximate efficiency
under approximate incentive properties, and takes advantage of GAI structure in both the
multiattribute and the MUMA domains.

Furthermore, I study the clearing problem of multiattribute exchanges. The space of
feasible such mechanisms is constrained by computational limitations imposed by the clear-
ing process. The extent to which the space of feasible mechanisms may be quantified a
priori will facilitate the search for such exchanges in the full mechanism design problem.

Specifically, I investigate the space of two-sided multiattribute auctions, focusing on
the relationship between constraints on the offers traders can express through bids, and
the resulting computational problem of determining an optimal set of trades. Based again
on the decoupling result of the multiattribute matching problem from the global allocation
problem, I developed network flow models for the overall clearing task, which facilitate
classification of problem versions by computational complexity, and provide guidance for
developing solution algorithms and relaxing bidding constraints.
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Chapter 6

CUI Networks

6.1 Motivation

The motivation for the development of graphical models for multiattribute utility func-
tions is described in Chapter 1. Foremost, a graphical model usually supports a compact
representation of lower dimension, and reduces the amount of data needed to be elicited
and maintained. Furthermore, the graphical representation encapsulates the dependency
structure between the attributes. This qualitative preference information can potentially be
reused over time, while the actual utility numbers may be changing. For example, it is
reasonable that a particular CDI map can be used for repeated instances of a GAI auction.
Finally, the graphical structure may help in the design of efficient reasoning algorithms
(e.g., the GAI network facilitates optimization algorithms). As described in the previous
chapters, graphical models suggested so far rely on notions of additivity, and in particular
on GAI (Boutilier et al., 2001; Gonzales and Perny, 2004). The most obvious benefit of
a model based instead on (conditional) utility independence is the generality admitted by
a weaker independence condition, in comparison to the additivity required by CDI, CAI,
and GAI (see discussion in Section 3.1). Perhaps for this reason, concluding their pioneer
work on graphical models for conditionally additive independent preferences, Bacchus and
Grove (1995) suggest investigating graphical models of other independence concepts, in
particular utility independence.

In Chapter 4 I introduced auctions that employ the GAI and CDI scheme. This scheme
possesses certain advantages for auction design. First, as an additive form, a GAI price
structure can naturally represent decomposition of prices. Second, the GAI form becomes
a fully additive decomposition in the extreme case, in which all GAI elements are of size
one. This can help the adaptation of the mechanism for a market in which the current
practice is limited to the fully additive form.

Sometimes, however, additive forms may not be sufficient to achieve a low-dimensional
decomposition. In Chapter 4, I introduced an example of a CDI map and GAI network con-
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structed for a hard drive procurement problem. In practice, the problem will have a larger
number of attributes, describing a finer grain characterization of hard drives. For example,
performance can be described, in addition to the attributes Transfer Rate and RPM, by the
attributes Latency and Access Time. It is plausible that all of these attributes are comple-
ments, because one performance measurement is utilized better when the value of another
is higher. In addition, they may all be complements of Volume, because a larger volume re-
quires better performance. This results in a clique of size 5. Elicitation of utility functions
of this dimension already poses a much tougher challenge. As mentioned in Chapter 3, util-
ity independence can accommodate complements, and therefore we can expect to achieve
lower dimensionality with an appropriate graphical modeling. For the reasons mentioned
above, I expected that GAI will still be preferable for iterative auction design, but the new
graphical modeling can be applied for other forms of trading, in particular for direct revela-
tion mechanisms. It is also important to note that the model presented in this chapter is not
by any means restricted to the trading domain. This model applies to any cardinal utility
function, in particular to the vNM function for decision problems under uncertainty.

The utility tree (Von Stengel, 1988) is the only previous graphical decomposition sug-
gested for utility functions that employs the original, non-symmetric notion of utility
independence. The utility trees however lead to a hierarchical decomposition. In contrast,
the approach taken in this chapter is closer to modern graphical models, in which con-

ditional independence assumptions lead to decomposition to independent functions. This
opens the way to adaptation of reasoning tools as the optimization algorithms described
later. I therefore do not directly compare CUI networks with utility trees.

6.1.1 CUI Compared to other Independence Concepts

Bacchus and Grove (1995) exemplify the difference between additive and utility inde-
pendence on a simple state space of two boolean attributes: Health and Wealth. In
their example, shown in Table 6.1, the attributes are not additive independent (as can
be immediately seen using preference differences), because H and W are complements:
u(H,W ) > u(H,¬W )+ u(¬,W ). This pair of attributes would be substitutes if, for exam-
ple, u(W,H) = 4 and u(W,¬H) = 3. In both cases H and W are nonetheless preferential
independent, since we always prefer to be richer (all else being equal) and we always prefer
to be healthier (all else being equal). For boolean variables, first-order preferential inde-
pendence and first-order utility independence are equivalent (we always prefer lotteries that
assign higher probability to the more preferred level) and therefore Health and Wealth are
also UI of each other.
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H ¬H
W 5 1
¬W 2 0

Table 6.1: Utility values for the Health and Wealth example (Bacchus and Grove, 1995).

The next example shows the following two phenomena:
1. A case where PI holds but not UI.
2. No cardinal independence holds, except for a non-symmetric CUI.

The first phenomenon requires the domains of H, or W , or both to include at least three
values.1 In order to demonstrate conditional independence, a third attribute must be added
to the outcome space: location (L), indicating whether we live in the city or in the country-
side (Table 6.2). Wr means rich, Wm is medium income, Wp means poor. H f is healthy and
at top fitness, Hg means good health, and Hs means sick. Lci stands for city location, and
Lco means countryside location.

I begin by refuting the potential unconditional UI relations. In order to show that
UI(H,{W,L}) does not hold, it is enough to find that it is violated for one pair of lotteries.
Given the partial outcome (Wr,Lci) we prefer the equal chance lottery over 〈H f ,Hs〉, whose
expected utility is 12+5

2 , to the sure outcome Hg (value 8), whereas given (Wp,Lci) we are
indifferent (expected utility of 2 to both lotteries). Intuitively, it may be the case that the
additional value we get from fitness (over good health) is higher if we are also rich, making
it more significant than the value Hg adds over Hs. Similarly, UI(W,{H,L}) does not hold,
by comparing the even-chance gamble over 〈Wr,Wp〉 and the sure outcome Wm, first given
(H f ,Lci) and then given (Hs,Lci).

Therefore, neither W nor H are utility independent, but it is easy to see that each is (first-
order) preferential independent. L, however, is not: when we are rich we would rather live
in the city, and the other way round when we are poor, except for the case of being poor
and sick under which we prefer the city.

Lci Lco
H f Hg Hs H f Hg Hs

Wr 12 8 5 10 6 4
Wm 6 4 3 6 3 2
Wp 3 2 1 4 1.5 0

Table 6.2: Utility values for the Health, Wealth, and Location example.

Therefore, no symmetric independence condition exists here, and that rules out any ad-
ditive or multiplicative independence, conditional or not, between any subsets of attributes.

1I extend the domains of both W and H because in both PI intuitively holds, and I do not want UI to hold.
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Also, since no single variable is unconditionally UI, no subset can be unconditionally UI.
Further, the fact that preferences over L depend on the combination of H and W rules out a
GAI decomposition of the form {W,L},{W,H},{H,L}.

We can, however, achieve decomposition using CUI. It is the case that CUI(W,L|H),
since each column on the left matrix (Lci) is an affine transformation of its counterpart on
the right side (Lco). For example, to transform the first column (H f ), multiply by 2

3 and add
2.

This example illustrates the subtlety of utility independence. In particular, whereas
preferences over L depend on W , W may still be (conditionally) UI of L. A CAI assump-
tion for the same attributes must inevitably ignore the reversal of preferences over L for
different values of W , hence a decision maker that will be queried for preferences under
this assumption may not be able to provide meaningful answers.

The interaction with a system that requires preference representation normally requires
the identification of structure, and then the extraction of the utility values that are required
by the compact representation. It is therefore most important that these two tasks are as
simplified as possible, whereas the functional form handled by the system may be more
sophisticated. This is exactly the tradeoff made by CUI networks. It improves upon a
GAI-based representation on these two most difficult tasks, for the following reason: a
GAI condition can either be based on a collection of CAI conditions, or not. If it is (as
is the case in Chapter 4), CUI networks achieve lower dimensionality (Section 6.6), and
therefore easier elicitation. If it is not, the GAI condition is hard to identify, as discussed in
Section 2.2. In CUI networks achieves lower dimension using an easier to verify indepen-
dence condition, paying with a more complex functional form and algorithms, but these are
handled behind the scenes.

6.1.2 Graphical Models for CUI

Founding a graphical model on UI is more difficult, in comparison for example to the
additive conditions, as utility independence does not decompose the utility function as ef-
fectively as does additive independence. In particular, the condition UI(Y,X) ensures that
Y has a subutility function, but since X does not have one it is harder to carry on the decom-
position into X . Hence in the case that X is large the dimensionality of the representation
may remain too high. My approach therefore employs CUI conditions on large subsets
Y , in which case the decomposition can be driven further by decomposing the conditional
utility function of Y using more CUI conditions.

In the sequel I show how serial application of CUI leads to functional decomposition.
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The corresponding graphical model, a CUI network, provides a lower-dimension represen-
tation of the utility function in which the preference information at each node depends only
on the node and its parents. I demonstrate the use of CUI networks by constructing an
example for a relatively complex domain. Next I elaborate on the technical and semantic
properties of the model and knowledge required to construct it. Subsequent technical sec-
tions present optimization algorithms and techniques for further reducing the complexity
of the representation.

6.2 CUI Networks

I begin by constructing a directed acyclic graph (DAG) representing a set of CUI conditions,
followed by a derivation of the functional decomposition over the nodes of the DAG.

6.2.1 CUI DAG

Suppose that we obtain a set σ of CUI conditions on the variable set A = {x1, . . . ,xn}, such
that for each x ∈ A, σ contains a condition of the form

CUI(A\ ({x}∪P(x)) , x | P(x)).

In other words, the set P(x) separates the rest of the variables from x. Such a P(x) always
exists, because for P(x) = A \ {x} the condition above trivially holds. The set σ can be
represented graphically as a directed acyclic graph by Procedure CUI-DAG.

Procedure:CUI-DAG
Choose an order over the set A (here assume ordering x1, . . . ,xn for convenience);
Define the set of parents of x1 as Pa(x1) = P(x1);
for i = 2, . . . ,n do

Define D̃n(xi) as the smallest subset of {x1, . . . ,xi−1} that satisfies the following
condition:

[xi ∈ Pa(x j) ∨ ∃k ∈ {1, . . . , i−1}.xk ∈ D̃n(xi)∩Pa(x j)]⇒ x j ∈ D̃n(xi). (6.1)

Define the parents of xi to be the nodes in P(xi) which are not already
descendants of xi,

Pa(xi) = P(xi)\ D̃n(xi).

We choose an order of the attributes, and iterate over the attributes in that order. For
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each attribute xi we set its set of parents, as the attributes in P(xi) that were not already de-
fined to be its descendants. The formal definition of D̃n(xi) in the procedure simply means
the set of intermediate descendants of xi: the set of nodes in x1, . . . ,xi−1, for which (at this
iteration) xi is a parent or another descendant of xi is a parent. Let Dn(x) denote the final
set of descendants of x. It is the set defined by Equation (6.1), when replacing {1, . . . , i−1}
with {1, . . . ,n}). By their definitions, Dn(x)⊇ D̃n(x), hence

Pa(x)∪Dn(x)⊇ Pa(x)∪ D̃n(x) = P(x). (6.2)

Proposition 6.1. Consider the DAG defined by Procedure CUI-DAG for a set of attributes

A. For any x ∈ A,

CUI(A\ ({x}∪Pa(x)∪Dn(x)) , x | Pa(x)∪Dn(x)). (6.3)

As an example, I show the construction of the structure on a small set of variables
A = {x1,x2,x3,x4,x5,x6}, for which we are given the following set of CUI conditions:

σ = {CUI({x4,x5,x6},x1 | {x2,x3}),CUI({x4,x3,x6},x2 | {x1,x5}),

CUI({x2,x4,x6},x3 | {x1,x5}),CUI({x1,x3,x5},x4 | {x2,x6}),

CUI(x6,x5 | {x1,x2,x3,x4}),CUI({x1,x2,x3,x5},x6 | x4)}.

Construction of the network using the order implied by the indices results in the CUI
DAG illustrated in Figure 6.1. The minimal separating set for x1 is {x2,x3}. For x2, we get
D̃n(x2) = {x1}, and the only non-descendant variable that is required to separate it from the
rest is x5, which is therefore its only parent. The rest of the graph is constructed in a similar
way. When x4 is placed, we find that P(x4) = {x2,x6}. Therefore, x4 becomes descendant
of x2 after x2 is placed, in other words Dn(x2) = D̃n(x2)∪{x4}= {x1,x4}.

ix4

ix6

? ix1

ix2
Z
Z
Z~

�
�
�=

ix5
�
�
�= ix3

�
�
�=

Z
Z
Z~

Figure 6.1: CUI DAG given σ and order x1,. . . ,x6.

Definition 6.1. Let u(A) be a utility function representing cardinal preferences �∗ over Θ.

A CUI DAG for u(·) is a DAG, such that for any x ∈ A, (6.3) holds.
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Procedure CUI-DAG yields a CUI DAG by Proposition 6.1. For the other direction,
any given CUI DAG G (in which parents and descendants are denoted by PaG(·),DnG(·),
respectively) can be constructed using Procedure CUI-DAG, as follows. Define P(x) =
PaG(x)∪DnG(x) and a variable ordering according to the reverse topological order of G,
and complete the execution of CUI-DAG. It is straightforward to show that the set of par-
ents selected for each xi is exactly PaG(xi), hence the result is a DAG that is identical to
G.

6.2.2 CUI Decomposition

I now show how the CUI conditions, guaranteed by Proposition 6.1, can be applied itera-
tively to decompose u(·) to lower dimensional functions. The first step is to pick a variable
ordering that agrees with the reverse topological order of the CUI DAG. To simplify the
presentation, I rename the variables so the ordering is again x1, . . . ,xn. The CUI condition
(6.3) on x1 implies the following decomposition, according to (2.2):

u(A) = f1(x1,Pa(x1),Dn(x1))+g1(x1,Pa(x1),Dn(x1))u([A\{x1}]). (6.4)

Note that Dn(x1) = /0.
Recall that u([A \ {x1}]) on the right-hand side is the conditional utility function on A

given that x1 is fixed at an arbitrarily chosen reference point x0
1.

By applying the decomposition based on the CUI condition of x2 on the conditional
utility function u([A\{x1}]), we get

u([A\{x1}]) = f2(x,Pa(x2),Dn(x2))+g2(x2,Pa(x2),Dn(x2))u([A\{x1,x2}]). (6.5)

Note that Dn(x2)⊆ {x1}, and x1 is fixed to x0
1, hence f2 and g2 effectively depend only on

x2 and Pa(x2). This point is exploited below.
Substituting u([A\{x1}]) in (6.4) according to (6.5) yields:

u(A) = f1 +g1( f2 +g2u([A\{x1,x2}])) = f1 +g1 f2 +g1g2u([A\{x1,x2}]).

The arguments to the functions f j,g j are always (x j,Pa(x j),Dn(x j)), hence I omit them for
readability.
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Continuing in this fashion we get

u(A) =
i−1

∑
k=1

( fk

k−1

∏
j=1

g j)+
i

∏
j=1

g ju([xi, . . . ,xn]),

and apply the CUI condition of xi,

u([xi,xi+1, . . .xn]) = fi(xi,Pa(xi),Dn(xi))+gi(xi,Pa(xi),Dn(xi))u([xi+1, . . . ,xn]). (6.6)

For convenience, I define the constant function fn+1 ≡ u(x0
1, . . . ,x

0
n). Ultimately we obtain

u(A) =
n+1

∑
i=1

[ fi(xi,Pa(xi),Dn(xi))
i−1

∏
j=1

g j(x j,Pa(x j),Dn(x j))]. (6.7)

The variable ordering is restricted to agree with the reverse topological order of the graph,
hence in (6.6), Dn(xi)⊆ {x1, . . . ,xi−1}. Therefore, all the variables in Dn(xi) on the right-
hand side of (6.6) are fixed on their reference points, so fi and gi depend only on xi and
Pa(xi). Formally, let y1, . . . ,yk be the variables in Dn(xi). With some abuse of notation, I
redefine fi(·) and gi(·) as follows:

fi(xi,Pa(xi)) = fi(xi,Pa(xi),y0
1, . . . ,y

0
k),

gi(xi,Pa(xi)) = gi(xi,Pa(xi),y0
1, . . . ,y

0
k).

(6.8)

Now (6.7) becomes

u(A) =
n+1

∑
i=1

( fi(xi,Pa(xi))
i−1

∏
j=1

g j(x j,Pa(x j))). (6.9)

This term is a decomposition of the multiattribute utility function to lower-dimensional
functions, whose dimensions depend on the number of variables of Pa(x). As a result, the
dimensionality of the representation is reduced (as in Bayesian networks) to the maximal
number of parents of a node plus one.

I illustrate how the utility function is decomposed in the example of Figure 6.1. We
pick the ordering x4, x1, x6, x3, x2, x5 that agrees with the reverse topological order of the
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graph (note that variables are not renamed here).

u(A) = f4(x4x2x6)+g4(x4x2x6)u([A\{x4}])

u([A\{x4}]) = f1(x1x2x3)+g1(x1x2x3)u([A\{x4x1}])

u([A\{x4x1}]) = f6(x6)+g6(x6)u([x2x3x5])

u([x2x3x5]) = f3(x3x5)+g3(x3x5)u([x2x5])

u([x2x5]) = f2(x2x5)+g2(x2x5)u([x5])

u([x5]) = f5(x5)+g5(x5)u(x0
1, . . . ,x

0
6)

Note that each fi and gi depends on xi and its parents. Merging the above equations, and
using the definition f7 ≡ u(x0

1, . . . ,x
0
6) produces

u(A) = f4 +g4 f1 +g4g1 f6 +g4g1g6 f3 +g4g1g6g3 f2 +g4g1g6g3g2 f5 +g4g1g6g3g2g5 f7.

(6.10)
Equation (6.9) establishes that u(A) can be represented using a set of functions F , that

includes, for any x ∈ A, the functions ( fx, gx) resulting from the decomposition (2.2) based
on the CUI condition (6.3). This means that to fully specify u(A) it is sufficient to obtain
the data for functions in F (this task is discussed in Section 6.4).

Definition 6.2. Let u(A) be a utility function representing cardinal preferences �∗ over Θ.

A CUI network for u(·) is a triplet (G,F ,A0). G = (A,E) is a CUI DAG for u(A), A0 is

a reference point, and F is the set of functions { fi(xi,Pa(xi)),gi(xi,Pa(xi)) | i = 1, . . . ,n}
defined above.

The utility value for any assignment to A can be calculated from the CUI network ac-
cording to (6.9), using any variable ordering that agrees with the reverse topological order
of the DAG. In this example, we can choose a different variable ordering than the one used
above, such as x1, x3, x4, x2, x5, x6, leading to the following expression.

u(A) = f1 +g1 f3 +g1g3 f4 +g1g3g4 f2 +g1g3g4g2 f5 +g1g3g4g2g5 f6 +g1g3g4g2g5g6 f7.

This sum of products is different than the one in (6.10). However, it is based on the same
CUI decompositions and therefore the same functions fi and gi.
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6.2.3 Properties of CUI Networks

Based on Procedure CUI-DAG and the decomposition following it, I conclude the follow-
ing.

Proposition 6.2. Let A be a set of attributes, and σ a set of CUI conditions on A. If σ

includes a condition of the form CUI(A \ (x∪Zx),x | Zx) for each x ∈ A, then σ can be

represented by a CUI network whose dimensionality does not exceed maxx(|Zx|+1).

Note that Zx denotes here a minimal set of attributes (variables) that renders the rest
CUI of x. This bound on the dimensionality will be obtained regardless of the variable
ordering. We can expect the maximal dimension to be lower if the network is constructed
using a good variable ordering. A good heuristic in determining the ordering would be to
use attributes with smaller dependent sets first, so that the attributes with more dependents
would have some of them as descendants. Based on such an ordering I expect the less im-
portant attributes to be lower in the topology, while the more crucial attributes would either
be present higher or have a larger number of parents.

From this point I usually omit the third argument when referring to a CUI condition, as
in CUI(X ,Y ), which is taken equivalent to CUI(X ,Y | A\ (X ∪Y )).

In order to achieve a low dimensional CUI network, we are required to detect CUI con-
ditions over large sets. This may be a difficult task, and I address it through an example in
Section 6.3. The task is made somewhat easier by the fact that the set has to be CUI of a
single variable; note that the condition CUI(Y,x) is weaker than the condition CUI(Y,X)
when x ∈ X . Furthermore, Section 6.6 shows how the dimensionality can be reduced if the
initial CUI decomposition is not sufficiently effective.

Based on properties of CUI, we can read additional independence conditions off the
graph. First, we observe that CUI has a composition property at the second argument.

Lemma 6.3. Let CUI(X ,Y ) [X ,Y ⊂ A], and CUI(B,C) [B,C ⊂ A]. Then

CUI(B∩X , Y ∪C).

This property leads to the following claim, which allows us to derive additional CUI
conditions once the graph is constructed.

Proposition 6.4. Consider a CUI network for a set of attributes A. Define Pa(X) =⋃
x∈X Pa(x) and Dn(X) =

⋃
x∈X Dn(x). Then for any X ⊂ A,

CUI(A\ (X ∪Pa(X)∪Dn(X)) , X).
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The proof is by recursion on X , using Lemma 6.3 and Proposition 6.1.
The next result presents the reverse type of independence: it defines a set of nodes that

renders a set CUI of the rest. This dual perspective becomes particularly useful for opti-
mization (Section 6.5), because optimization based on the preference order over an attribute
is meaningful only when holding enough other attributes fixed to make it CPI or CUI of the
rest. Let Ch(X) denote the union of children of nodes in X , and let An(X) denote all of the
ancestors of nodes in X , in both cases excluding nodes which are themselves in X .

Proposition 6.5. Consider a CUI network for a set of attributes A. CUI(X ,A\(X∪An(X)∪
Ch(X))) for any X ⊆ A.

Finally, the following result relates CUI DAGs to CAI maps.

Proposition 6.6. Let G = (X ,E) be a CAI map, and x1, . . . ,xn an ordering over the nodes

in X. Let G′ = (X ,E ′) be the DAG such that there is a directed arc (xi,x j) in E ′ iff i < j

and (xi,x j) ∈ E. Then G′ is a CUI DAG.

Note, however, that CAI maps decompose the utility function over the maximal cliques,
whereas CUI networks decompose over nodes and their parents. Section 6.6 bridges this
gap. In addition, this result is used in Section 6.5.3.

6.3 CUI Modeling Example

To demonstrate the potential representational advantage of CUI networks we require a do-
main that is difficult to simplify otherwise. The example I use is the choice of a software
package by an enterprise that wishes to automate its sourcing (strategic procurement) pro-
cess. I focus on the software’s facilities for running auction or RFQ (request for quotes)
events, and tools to select winning suppliers either manually or automatically.

I identified nine key features of these kinds of software packages. In this choice sce-
nario, the buyer evaluates each package on these nine features, graded on a discrete scale
(e.g., one to five). The features are, in brief:

Interactive Negotiations (IN) allows a separate bargaining procedure with each supplier.

Multi-Stage (MS) allows a procurement event to be comprised of separate stages of dif-
ferent types.

Cost Formula (CF) buyers can formulate their total cost of doing business with each sup-
plier.
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Supplier Tracking (ST) allows long-term tracking of supplier performance.

MultiAttribute (MA) bidding over multiattribute items, potentially using a scoring func-
tion.2

Event Monitoring (EM) provides an interface to running events and real-time graphical
views.

Bundle Bidding (BB) bidding for bundles of goods.

Grid Bidding (GB) adds a bidding dimension corresponding to an aspect such as time or
region.

Decision Support (DS) tools for optimization and for aiding in the choice of the best sup-
plier(s).

We observe first that additive independence does not widely apply in this domain. For
example, Multi-Stage makes several other features more useful or important: Interactive
Negotiations (often useful as a last stage), Decision Support (to choose which suppliers
proceed to the next stage), and Event Monitoring (helps keep track of how useful was each
stage in reducing costs). Conversely, in some circumstances Multi-Stage can substitute for
the functionality of other features: MultiAttribute (by bidding on different attributes in dif-
ferent stages), Bundle Bidding (bidding on separate items in different stages), Grid Bidding
(bidding on different time/regions in different stages) and Supplier Tracking (by extracting
supplier information in a “Request for Information” stage). The potential dependencies for
each attribute are shown in Table 6.3.

Attr Complements Substitutes CUI set
EM CF ST MS IN,DS,MA,GB,BB
IN ST MS MA EM,CF,ST,DS,GB,BB
CF EM MS DS MA GB BB DS MA,GB,BB
ST EM MS IN DS MA IN,CF,GB,BB
MA IN DS CF MS BB ST GB GB,BB
MS DS EM IN ST GB BB MA CF MA,GB,BB
DS CF MA GB ST BB MS IN,EM
GB CF DS MA MS BB MA,BB
BB CF DS MA MS GB MA,GB

Table 6.3: Dependent and independent sets for each attribute.

2I hope the fact that the software itself may include facilities for multiattribute decision making does not
cause undue confusion. Naturally, I consider this an important feature.
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The presence of a complement or substitute relation precludes additive independence.
From this fact we can identify a set of six attributes that must be mutually (additive) depen-
dent: {BB,GB,DS,MA,MS,CF}. In consequence, the best-case dimensionality achieved
by a CAI map (and other CAI-based representations, see Chapter 2), for this domain would
be six, the size of the largest maximal clique.

In order to construct a CUI network we first identify, for each attribute x, a set Y that is
CUI of it. We can first guess such a set according to the complement/substitute informa-
tion in Table 6.3; typically, the set of attributes that are neither complements nor substitutes
would be CUI. This is the approach taken for the attributes EM and DS. However, attributes
that are complements or substitutes may still be CUI of each other, and we therefore attempt
to detect and verify potentially larger CUI sets. Keeney and Raiffa (1976) provide several
useful results that can help in detection of UI, and those results can be generalized to CUI.
In particular they show that we can first detect a conditional preferential independence con-
dition in which one element is also CUI. Based on this result, in order to verify for example
that

CUI({BB,GB,MA},CF | A\{BB,GB,MA,CF}), (6.11)

the following two conditions are sufficient:

CPI({BB,GB,MA},CF | A\{BB,GB,MA,CF}), (6.12)

CUI(BB,{GB,MA,CF} | A\{BB,GB,MA,CF}). (6.13)

Detection and verification of these conditions are also discussed by Keeney and Raiffa. For
the example, we observe that the features BB, GB, and MA each add a qualitative element
to the bidding. Each bidding element is best exploited when cost formulation is available,
so complements CF. The complementarity is similar for each feature, thus implying (6.12).
Moreover, BB is a crucial feature and therefore the risk attitude towards it is not expected to
vary with the level of CF, MA, and GB, and that implies (6.13), together leading to (6.11).

In a similar fashion, we observe that the nature of the substitutivity of the three
mechanisms BB,GB,MA in MS is similar: each can be simulated using multiple stages.
That means that the tradeoffs among the three do not depend on MS, meaning that
CPI({BB,GB,MA},MS) holds. Next, the dependency among the triplet {BB,GB,MA} is
also a result of the option to substitute one by another. As a result, each pair is CPI of
the third. Finally, we find that the complementarity of ST and IN is marginal and does not
affect the tradeoffs with other attributes. We can therefore verify the following conditions:
CUI({BB,GB,MA},MS), CUI({BB,GB},MA), CUI({ST,EM,CF,DS,GB,BB}, IN), and
CUI({GB,BB,CF, IN},ST). The resulting maximal CUI sets for each attribute are shown
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Figure 6.2: An example CUI network. The maximal number of parents is 3, leading to
dimension 4.

in Table 6.3.
To construct the network we start with the variable with the largest CUI set, IN, which

needs only MS and MA as parents, after which it is EM that gets CF, MS, and ST as par-
ents. Next, we consider ST which needs four attributes in its conditional set, but EM is a
descendant, therefore only DS, MS, and MA are needed as parents. The next variable to
choose is MS, which needs only CF and DS as parents since the other dependant variables
are descendants. Had we chosen CF before MS it would have needed four parents: IN, MS,
ST , and DS (note that although IN is CUI of CF and so is the set {BB,GB,MA}, this is not
the case for the union {BB,GB,MA, IN}). Now that we choose CF after MS it has MS, ST ,
and IN as descendants and therefore only DS is a parent. The complete variable ordering
is IN, EM, ST , MS, CF, DS, MA, GB, BB, and the resulting CUI network is depicted in
Figure 6.2. The maximal dimension is four.

The structure obtained over the utility function in the above example is based largely on
objective domain knowledge, and may be common to various sourcing departments. This
demonstrates an important aspect of graphical modeling captured by CUI networks: en-
coding qualitative information about the domain, thus making the process of extracting the
numeric information easier. This structure in some cases differs among decision makers,
but in other cases (as above) it makes sense to extract such data from domain experts and
reuse this structure across decision makers.
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6.4 Representation and Elicitation

In this section, I discuss how to elicit utility information from judgments about relative
preference differences.

6.4.1 Node Data Representation

Representing u(·) by a CUI network requires that we determine the f (·) and g(·) functions
for each CUI condition. At any node y the functions f ,g represent the affine transformation
of the conditional utility function u(x0,Y,Z) (here Z = Pa(x)) to strategically equivalent
utility functions for other values of x. It is shown in Chapter 3 that these transforma-
tion functions can be represented in terms of the conditional utility functions u(x,Y 1,Z)
and u(x,Y 2,Z) for suitable values Y 1 and Y 2—as described by Equations (3.1) and (3.2),
repeated here for convenience:

g(X ,Z) =
u(X ,Y 2,Z)−u(X ,Y 1,Z)

u(X0,Y 2,Z)−u(X0,Y 1,Z)
, (6.14)

f (X ,Z) = u(X ,Y 1,Z)−g(X ,Z)u(X0,Y 1,Z). (6.15)

6.4.2 Elicitation of Measurable Value Functions

A vNM utility function should be obtained through elicitation of preferences over lotter-
ies, for example using even-chance gambles and their certainty equivalents (Keeney and
Raiffa, 1976). Based on the preceding discussion, to fully specify u(·) via a CUI network,
we need to obtain the numeric values for the conditional utility functions u(x,Y 1,Pa(x))
and u(x,Y 2,Pa(x)) for each node x. This is significantly easier than obtaining the full
n-dimensional function, and can be done using methods described in the preference elic-
itation literature (Keeney and Raiffa, 1976). In this section I show how elicitation can be
conducted in cases when the choice problem is among certain outcomes, but a cardinal
representation is nevertheless useful in order to represent willingness-to-pay (Section 3.3).

As already argued in Section 3.3, a simple way to elicit the MVF is by asking the de-
cision maker to provide her WTP to improve from one outcome to another, particularly
when these outcomes differ over a single attribute. With this motivation in mind, we first
observe from (6.14) that g(x,Z) can be elicited in terms of preference differences, between
outcomes that possibly differ over a single attribute.

Furthermore, Theorem 3.1 provides valuable intuition that can help extracting g(·). It
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is plausible that we can detect whether x and Y are CAI, complements, or substitutes first,
and thus provide constraints on the value of g(·). Furthermore, though both Y and x may
depend on Z, in practice I do not expect the level of dependency (in terms of complements
and substitutes) between Y and x to depend on the particular value of Z. In that case g

becomes a single-dimensional function, independent of Z.
f (x,Z), intuitively, is a measurement of WTP to improve from x0 to x. The value

u(x0,Y 1,Z) is multiplied by g(x,Z) to compensate for the interaction between Y and x, al-
lowing f (·) to be independent of Y . If we perform the elicitation obeying the topological
order of the graph, the function u(x0,Y 1,Z) can be readily calculated for each new node
from data stored at its predecessors. First, note that the representation of f (·) in (6.14)
allows us to arbitrarily choose any Y 1 � Y 2. Choose Y 1 = Y 0, and let Z = {z1, . . . ,zk}, or-
dered such that children precede parents. Since Y,x are fixed on the reference point, we can
decompose u(x0,Y 0,Z) based on the CUI network on the subgraph induced by Z, obtaining
the following:

u(x0,Y 0,Z) =
k

∑
i=1

( fzi

i−1

∏
j=1

gz j) fn+1().

Now we can obtain f (x,Z) as follows: first we elicit the preference difference function
e(x,Z) = u(x,Y 1,Z)−u(x0,Y 1,Z). Then, assuming g(x,Z) was already obtained, calculate:

f (x,Z) = e(x,Z)− (g(x,Z)−1)u(x0,Y 1,Z).

6.5 Optimization

One of the primary uses of utility functions is to support optimal choices, as in selecting an
outcome or action. The complexity of the choice depends on the specific properties of the
environment. When the choice is among a limited set of definite outcomes, we can recover
the utility of each outcome using the compact representation and choose the one with the
highest value. For instance, in the software example of Section 6.3 we would normally
choose among an enumerated set of vendors or packages. In this procurement scenario the
utility is an MVF, and we usually choose the outcome that yields the highest utility net of
price. In case of decision under uncertainty, when the choice is among actions that lead
to probability distributions over outcomes, the optimal choice is selected by computing the
expected utility of each action. If each action involves a reasonably bounded number of
outcomes with non-zero probability, this again can be done by exhaustive computation.

Nevertheless, it is often useful to directly identify the maximal utility outcome given a
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quantitative representation of utility. In case of a direct choice over a constrained outcome
space, the optimization algorithm serves as a subroutine for systematic optimization proce-
dures, and such can be adapted from the probabilistic reasoning literature (Nilsson, 1998).
The algorithm may also be useful as a heuristic aid for optimization of expected utility or
net utility mentioned above, when the set of possible outcomes is too large for an explicit,
exhaustive choice.

In this section, I develop optimization algorithms for discrete domains, and show how
in many cases CUI networks can provide leverage for optimization of CAI maps. As is
typical for graphical models, the optimization algorithm is particularly efficient when the
graph is restricted to a tree.

6.5.1 Optimization over CUI Trees

Definition 6.3. A CUI tree is a CUI network, in which the CUI DAG has the property that

no node has more than one child.

Note that this type of graph corresponds to an upside-down version of a standard di-
rected tree (or a forest).

Let T be a CUI tree. Assume WLOG that T is connected (a forest can be turned into
a tree by adding arcs). As an upside-down sort of tree, it has any number of roots, and a
single leaf. I denote the root nodes by {a1, . . . ,ak}, the child of ai ∈ {a1, . . . ,ak} by bi, and
so on. For each root node ai, define the function

hai(bi) = arg max
a′i∈D(ai)

u(bi,a′i),

denoting the selection of an optimal value of ai corresponding to a given value of its child.
From Proposition 6.5, hai does not depend on the reference values chosen for A \ {ai,bi}.
The function hai(·), which I call the optimal value function (OVF) of ai, is stored at node
ai since it is used by its descendants as described below.

Next, each bi has no children or a single child ci, and any number of parents. For sim-
plicity of exposition I present the case that bi has two parents, ai and a j. The maximization
function for bi is defined as

hbi(ci) = arg max
b′i∈D(bi)

u(ci,b′i,hai(b
′
i),ha j(b

′
i)).

In words, we pick the optimal value of bi for each assignment to its child and its parents.
But since we already know the optimum of the parents for each value of bi, we need only
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(i) (ii)

Figure 6.3: CUI networks in optimization examples: (i) Tree (ii) Non-tree

consider this optimum for each evaluation on the domain of bi.
The only external child of the set {ai,a j,bi} is ci, and it has no external ancestors, hence

{ai,a j,bi} is CUI of the rest given ci, therefore the maximization above again does not de-
pend on the reference values of the rest of the attributes. Similarly, when computing hci(di)
for the child ci of bi, each value for ci fixes bi (and any other parents of ci), and that fixes
ai and a j (and the other ancestors of ci). The last computation, at the leaf x, evaluates each
value of x. Each value x′ causes this cascade of fixed values to all of the ancestors, meaning
we finally get the optimal choice by comparing |D(x)| complete assignments.

I illustrate the execution of the algorithm on the CUI tree of Figure 6.3i. We com-
pute ha(c) which is the optimal value of a for each value of c, and similarly hb(c). Next,
to compute hc(e), for each value e′ of e we compare all outcomes (e′,c′,ha(c′),hb(c′)),
c′ ∈ D(c). At node d we compute hd( f ), which is independent of the other nodes. At
node e we compute he( f ) = argmaxe′ u( f ,e′,hc(e′),hb(hc(e′)),ha(hc(e′)) (node d can be
ignored here) and at node f it is

h f () = arg max
f ′∈D( f )

u( f ′,he( f ′),hd( f ′),hc(he( f ′)),hb(hc(he( f ′))),ha(hc(he( f ′))).

Note how each candidate value of f causes the cascade of optimal values to all of its
ancestors. The solution is then h f () and the resulting values of all the ancestors.

This optimization algorithm iterates over the nodes in topological order, and for each
xi it calculates the OVF hxi(x j), where x j is the child of xi. This calculation uses the val-
ues of the OVF stored for its parents, and therefore involves comparison of |D(xi)||D(x j)|
outcomes. In case the numeric data at the nodes is available, factoring in the time it takes
to recover the utility value for each outcome (which is O(n)), the algorithm runs in time
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O(n2 maxi |D(xi)|2).

6.5.2 Optimization Over General DAGs

A common way in graphical models to apply tree algorithms to non-trees is by using the
junction graph. However, the common notion of a junction graph for DAG is a polytree,
whereas the algorithm above is specialized to a (unit) tree. Instead, I generalize the tree
algorithm in order to optimize the CUI network directly.

In the tree case, fixing the value of the child of a node x is sufficient in order to separate
x from the rest of the graph, excluding ancestors. We consider each value of the child at a
time, so it also determines the values for all the ancestors. In a general DAG it is no longer
sufficient for the OVF to depend on the children, because they do not provide sufficient in-
formation to determine the values of An(x). Hence I generalize this notion to be the scope

of x (Sc(x), defined below), which is a set of nodes on which the OVF of x must depend, in
order for an iterative computation of the OVF to be sound.

With this generalization, the DAG algorithm is similar to the tree algorithm. Let G be
a CUI DAG, and x1, . . . ,xn a variable ordering that agrees with the topological order of G

(parents precede children). For each xi (according to the ordering), compute hxi(Sc(xi)) for
any instantiation of Sc(xi). The optimal instantiation can now be selected backwards from
hxn(), since for each node xi that is reached the values for Sc(xi) are already selected.

Sc(xi) is computed as follows: scan variables xi+1, . . . ,xn in this order. When scanning
x j, add x j to Sc(xi) if the following conditions hold:

1. There is an undirected path between x j and xi.
2. The path is not blocked by a node already in Sc(xi).

By these conditions, Sc(xi) includes all the children of xi, but none of xi’s ancestor since
they precede xi in the ordering. In addition, Sc(xi) includes all nodes that are needed to
block the paths that reach xi through its ancestors. For example, if xk,x j are children of an
ancestor xa of xi, and k < i < j, then x j must be in Sc(xi), because of the path through xa.
The children of x j are blocked by x j, so unless they have another path to xi they will not
be in Sc(xi). The children of xk, if ordered later than xi, will be in Sc(xi) (but their children
will not), and so on.

Figure 6.3ii is an example of a CUI network that is not a CUI tree. I consider the scopes
under the variable ordering a,b, . . . , j. The scope of roots always equals their set of children
(because there is no other path reaching them), meaning Sc(a) = {d,e}, Sc(b) = {d,e, f},
Sc(c) = {e, f ,h}, Sc(i) = { j}. The scope of d must include its child g and its siblings e and
f . All paths of h, j, and i to d are blocked by g,e, f therefore Sc(d) = {g,e, f}. For e, we
must include its child g, and its “younger” sibling f . Node h has a blocked path to e through
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f ∈ Sc(e), but also a non-blocked one through c /∈ Sc(e), therefore Sc(e) = {g, f ,h}. Sim-
ilarly, g and h are in the scope of f due to paths through b and c respectively, hence
Sc( f ) = {g,h, j}. For g, in addition to its child h we add j whose path to g through f ,b,e

is not blocked (Sc(g) = {h, j}) and finally Sc(h) = Sc(i) = { j} and Sc( j) = {}.
The next step, computing the OVF, requires that we compare a set of outcomes that

differ on xi ∪Co(xi), where Co(xi) is a set of nodes whose OVF can be determined by
xi ∪ Sc(xi) (hence they are covered by xi). For this maximization to be valid, the condi-
tion CUI(xi ∪Co(xi),A \ (xi ∪Co(xi)∪ Sc(xi))) must hold. I formally define Co(xi), and
establish this result which is proved in the appendix.

Definition 6.4. Co(xi) is the smallest set of nodes that satisfied the following condition

∀ j < i, Sc(x j)⊆ ({xi}∪Sc(xi)∪Co(xi))⇒ x j ∈Co(xi). (6.16)

Intuitively, x j is covered by xi if each node xk 6= xi in its scope, is either in the scope
of xi or was determined (according to its own scope) to be covered by xi. In Figure 6.3ii,
f ∈ Co(g) because Sc( f ) = {g}∪ Sc(g). e ∈ Co(g) because Sc(e) ⊂ {g}∪ Sc(g)∪{ f}.
Moreover, Sc(d) = {g,e, f} hence d ∈ Co(g) as well, and similarly we find that a,b ∈
Co(g). In this example all the nodes preceding g in the ordering are covered, but this is not
necessarily always the case.

Lemma 6.7. An assignment to xi and Sc(xi) is sufficient to determine hx j(·) for each

x j ∈Co(xi).

Lemma 6.8. For any node xi, CUI({xi}∪Co(xi),A \ ({xi}∪Co(xi)∪ Sc(xi))). Meaning

that xi and the nodes it covers are CUI of the rest given Sc(xi).

When the algorithm reaches node xi, every choice of assignment to Sc(xi)∪{xi} de-
termines optimal values for Co(xi) (Lemma 6.7). We compare the |D(xi)| assignments
which differ over the values of xi and Co(xi), and select an optimal one as the value of
hxi(Sc(xi)). This optimum does not depend on the nodes in A \ ({xi}∪Co(xi)∪ Sc(xi)))
due to Lemma 6.8.

To illustrate, examine what happens when the algorithm reaches node g in Figure 6.3ii.
At this point hx(Sc(x)) is known for any x that precedes g. As showed, all these nodes
are in Co(g). Indeed, the assignment to Sc(g) = {g,h, j} directly determines the value for
h f (·), and then together with h f (·) it determines the value for he(·), and further it cascades
to the rest of the nodes. The CUI network shows that CUI({a,b,c,d,e, f ,g},{i}) (given
{h, j}) and therefore the maximization operation (over the choice of value for g) is valid
regardless of the value of i.
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The performance of the optimization algorithm is exponential in the size of the largest
scope (plus one). Note that this would be seriously affected by the choice of variable order-
ing. Also note, that in the case of a tree this algorithm specializes to the tree optimization
above, since there is no node that has a path to an ancestor of xi, except for other an-
cestors of xi which must precede xi in the ordering. Therefore it is always the case that
Sc(xi) = Ch(xi), meaning that hxi(·) is a function of its single child. Based on that, I expect
the algorithm to perform better the more similar the CUI network is to a CUI tree.

6.5.3 CUI Tree for Optimization of CAI Maps

The optimization procedure for CUI trees is particularly attractive due to the relatively low
amount of preference information it requires. In some cases the comparison can be per-
formed directly, without even having the data that comprises the utility function. Aside
from the direct benefit to CUI networks, I am interested in applying this structure to the
optimization of CAI maps. In some domains a CAI map is a simple and effective way to
decompose the utility function. However, the optimization of CAI maps is exponential in
the size of its tree width, and it requires the full data in terms of utility functions over its
maximal cliques. If a CAI map happens to have a simple structure, such as a tree, or the
CP condition, faster optimization algorithms can be used. However, it could be the case
that a CAI map is not a tree, but more subtle CUI conditions might exist which cannot
be captured by CAI conditions. If enough such conditions could be detected to turn the
CAI map into a CUI tree (or close enough to a tree), we could take advantage of its simple
optimization procedure.

Definition 6.5. Let G = (V,E) be a CAI map. An enhanced CAI map is a directed graph

G′ = (V,A), in which a pair of arcs (u,v),(v,u) ∈ A implies the same dependency as an

edge (u,v) ∈ E, and in addition for any node x, CUI(A \ ({x}∪ In(x)),x) (In(x) denoting

the set of nodes y for which (y,x) ∈ A). I call the pair of arcs (u,v),(v,u) ∈ A a hard link
and an arc (u,v) ∈ A s.t. (v,u) /∈ A a weak link.

For any CAI map, an enhanced CAI map can be generated by replacing each edge (u,v)
with the arcs (u,v) and (v,u). This does not require any additional CUI conditions because
these are entailed by the CAI map. However, if additional CUI conditions as above can be
detected, we might be able to remove one (or both) of the directions. Figure 6.4i shows
a CAI map which contains a cycle. If we could detect that CUI({a,d, f},b), we could
remove the direction (a,b) and get the enhanced CAI map in Figure 6.4ii. The set of CUI
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Figure 6.4: (i) A CAI map containing a cycle. (ii) Enhanced CAI map, expressing CUI of
{a,d, f} in b. (iii) An equivalent CUI tree.

conditions implied by the enhanced CAI map can now be expressed by a CUI tree, as in
Figure 6.4iii.

Proposition 6.9. Consider an enhanced CAI map G. Let ω be an ordering on the nodes of

G, and G′ a DAG which is the result of removing all arcs (u,v) whose direction does not

agree with ω . If for any such removed arc, v is an ancestor of u in G′, then G′ is a CUI

network.

For hard links, the removal of (u,v) leaves v as a parent of u, so the condition trivially
holds. To obtain a CUI tree, the key is therefore to find a variable ordering under which
enough weak links can be removed to turn the graph into a tree, maintaining the condition
of Proposition 6.9. For a large number of variables, an exhaustive search over variable
orderings may not be feasible. However in many cases it can be effectively constrained,
restricting the number of orderings that we need to consider. For example, in order to break
the cycle in Figure 6.4ii it is clear that the weak link (b,a) must be implied by the ordering,
so that a could be an ancestor of b. The only way for this to happen (given the existing hard
links), is that c is a parent of b, d is a parent of c, and a a parent of d.

Proposition 6.10. Let c = (y1, . . . ,yk) be a cycle in an enhanced CAI map G. Assume that

c contains exactly one weak link: (yi,yi+1) for some i < k, or (yk,y1). Let ω be a variable

ordering that does not agree with the order of the path p = (yi+1,yi+2, . . . ,yk,y1, . . . ,yi).
Then any CUI network constructed from G and ω (by Proposition 6.9) is not a tree.

Therefore any cycle that contains one weak link leads to a constraint on the variable
ordering. Cycles with more than one weak link also lead to constraints. If c above has
another weak link (y j,y j+1), one of the two links must be removed, and the ordering must
agree with either the path p above or the path p′= (y j+1,y j+2, . . . ,yk,y1, . . . ,y j). Assuming
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WLOG that j > i, the paths (yi+1, . . . ,y j) and (y j+1, . . . ,yi) are required for both p and p′,
and therefore can be used as constraints. Similarly we can find the intersection of the paths
implied by any number of weak links in a cycle.

Sometimes the constraint set can lead to an immediate contradiction, and in such case
search is redundant. If it does not, it can significantly reduce the search space. However,
the major bottleneck in preference handling is usually elicitation, rather than computation.
Therefore, given that a good variable ordering may lead to the reduction of the optimization
problem to a simpler, qualitative task, eliminating the need for a full utility elicitation, it
would be worthwhile to invest the required computation time.

6.6 Nested Representation

From Section 6.4.1 I conclude that node data can be represented by conditional utility func-
tions depending on the node and its parents. But this may not be the best dimensionality
that can be achieved by a network. Perhaps the set Z = Pa(x) has some internal structure,
in the sense that the subgraph induced by Z has maximal dimension lower than |Z|. In
such a case we could recursively apply CUI decomposition to the conditional utility func-
tions for this subgraph. This approach somewhat resembles the hierarchical decomposition
represented by the utility trees (Keeney and Raiffa, 1976; Von Stengel, 1988). For exam-
ple, to represent f1 for the network of Figure 6.1, we require the conditional utility function
u(x1,x1

4,x
1
5,x

1
6,x2,x3). However from the network we can see that CUI(x3,x2 | x1,x4,x5,x6).

Hence we can decompose this conditional utility:

u(x1,x1
4,x

1
5,x

1
6,x2,x3) = f ′(x1,x2)+g′(x1,x2)u(x1,x3,x0

2,x
1
4,x

1
5,x

1
6).

I use the notation f ′ and g′ since these are not the same as the f and g functions of the
top-level decomposition.

A nested representation can be generated systematically (Algorithm CUI-Nested),
by decomposing each local function at node x (x’s utility factors) whose argument set
Z ⊆ Pa(x) does not form a clique. We do that by performing a complete CUI decom-
position over the subgraph induced by Z (keeping in mind that all the resulting factors
depend also on x). The algorithm works as follows: Process node in reverse topological
order (outermost loop). Decompose each factor stored at current node, whose parents do
not form a clique. At each such parent xr (innermost loop) store resulting new factors.
These are defined over xr, those of xr’s parents that are also in Pa(xi) (this is Qd

r ), and a
clique Ad

r on which the original factor depends. Each time a factor is decomposed its set
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Q shrinks. When it is empty, K is a clique. ui
j is shown in the proof to be the conditional

utility function u([Ki
j]).

Algorithm:CUI-Nested
Data: CUI Utility factors u(x,Pa(x),Ŷ ),u(x,Pa(x),Ỹ ) at each node x
/* note: Ŷ ,Ỹ ∈ D(Y ) */
Determine order x1, . . . ,xn;
for j = 1, . . . ,n do /* initialization */

K1
j = {x j}∪Pa(x j) ; /* scope of utility factors */

Y 1
j = A\K1

j ; /* rest of variables */

Q1
j = Pa(x j);

A1
j = /0, d j = 1;

end
for j = 1, . . . ,n do

for i = 1, . . . ,d j do /* loop on factors in node j*/
if Qi

j 6= /0 and Ki
j is not a clique then

Let Gi
j be the subgraph induced by Qi

j;
Decompose ui

j(K
i
j) according the CUI network on Gi

j;
foreach xr ∈ Qi

j do
Let dr = dr +1 (current num. of factors at xr) and denote d = dr;
Ad

r = Ai
j∪{x j}, Qd

r = Pa(xr)∩Qi
j;

Kd
r = Ad

r ∪{xr}∪Qd
r , Y d

r = A\Kd
r ;

Store new CUI factors of xr: u(Kd
r ,Ŷ d

r ),u(Kd
r ,Ỹ d

r );
/* Ŷ d

r ,Ỹ d
r are fixed assignments to Y d

r */
end
Remove factors u(Ki

j,Ŷ
i
j),(K

i
j,Ỹ

i
j);

end
end

end

Proposition 6.11. Let G be a CUI network for utility function u(A). Then u(A) can be

represented by a set of conditional utility functions, each depending on a set of attributes

corresponding to (undirected) cliques in G.

6.6.1 Discussion

This result reduces the maximal dimensionality of the representation to the size of the
largest maximal clique of the CUI network. For instance, applying it to the example in
Section 6.3 reduces dimensionality from four to three. An important implication is that we
can somewhat relax the requirement to find very large CUI sets. If some variables end up
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with many parents, we can reduce dimensionality using this technique. As the example
below illustrates, this technique aggregates lower-order CUI conditions to a more effective
decomposition.

The procedure may generate a complex functional form, decomposing a function mul-
tiple times before the factors become restricted to a clique. The ultimate number of factors
required to represent u(A) is exponential in the number of such nesting levels. However,
each decomposition is based on a CUI network on a subgraph, and therefore typically
reduces the number of entries that are maintained.

I expect the typical application of this technique to be for composition rather than de-

composition. We execute Algorithm CUI-Nested without the actual data, resulting in a list
of factors per node (that are conditional utility functions over cliques of the graph). That
means that for elicitation purposes we can restrict attention to conditional utility functions
over maximal cliques. Once these are obtained, we have sufficient data for all the fac-
tors. We can then recover the original, more convenient CUI-network representation of the
function and store it as such (more on that in the example below). Therefore, the effective
dimensionality for elicitation is that of the maximal cliques. The storage for efficient usage
requires the potentially higher dimension of the original CUI network, but typically this is
less of a concern.

With this result and Proposition 6.6, CUI networks are shown to always achieve weakly
better dimensionality than CAI maps, since both representations reduce the dimensionality
to the size of the maximal clique.

6.6.2 Example

I illustrate this result using a simple example. Consider a domain with four attributes
(a,b,c,d), and the following CUI conditions:

CUI(b,c),CUI(c,b),CUI(d,a)

The CUI network corresponding to the variable ordering a,b,c,d is depicted in Figure 6.5.
Since the CUI sets are small (a single variable each), for any variable ordering there must
be a node with two parents, meaning dimensionality of three. The nesting operation below
combines these lower-order conditions to reduce the dimensionality to two.

Initially, the utility function is represented using the conditional utility functions listed
according to their corresponding nodes in the column “Level 0” in Table 6.4. To remove
the three-dimensional factors, we need to decompose the functions of node a according to
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Figure 6.5: Nesting example

the CUI network on {b,c}, which contains no arcs. This proceeds as follows:

u(a,b,c,d1) =

f 1
b (a,c)+g1

b(a,c)u(a,b,c0,d1) = f 1
b (a,c)+g1

b(a,c)( f 1
c (a,b)+g1

c(a,b)u(a,b0,c1,d1))

u(a,b,c,d2) =

f 2
b (a,c)+g2

b(a,c)u(abc0d2) = f 2
b (a,c)+g2

b(a,c)( f 2
c (a,b)+g2

c(a,b)u(a,b0,c0,d2))

The resulting functions are f i
b(a,c), gi

b(a,c), f i
c(a,b), gi

c(a,b), i = 1,2. The functions
f i
b(a,c) and gi

b(a,c) can be represented using the conditional utility functions u(a,b1,c,di)
and u(a,b2,c,di), and similarly the other two functions. We can delete the factors of a,
u(a,b,c,di), and add the new lower dimensional factors as a second column to a’s parents
b and c. Though we had to multiply the number of factors we store by four, all the new fac-
tors are conditional utility functions over subdomains of the (deleted) higher dimensional
factors. The algorithm continues to node b, and loops over its six factors. If there are
factors that are defined over a set of parents of b that are not a clique it decomposes them
and store the new factors in the next table column. In case a factor from column “level 1”
could be decomposed, we would add a “level 2” column to store the result. In my simple
example no further decomposition is possible.

Attr Level 0 (CUI net) Level 1
a u(a,b,c,d1), u(a,b,c,d1)

b u(a0,b,c1,d),
u(a0,b,c2,d)

u(a,b,c1,d1), u(a,b,c2,d1)
u(a,b,c1,d2), u(a,b,c2,d2)

c u(a0,b1,c,d),
u(a0,b2,c,d)

u(a,b1,c,d1), u(a,b2,c,d1)
u(a,b1,c,d2), u(a,b2,c,d2)

d u(a0,b0,c0,d)

Table 6.4: Nested CUI decomposition.
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The reverse direction mentioned above is done as follows. We run Algorithm CUI-
Nested without any data, resulting in a table such as Table 6.4 (without the actual utility
values). We then elicit the data for the non-deleted factors (all are limited to maximal
cliques). Next, we recover the more convenient “level 0” CUI representation using the
table, by computing each deleted factor (going from rightmost columns to the left) as a
function of the factors stored at its parents.

6.7 Summary

I present a graphical representation for multiattribute utility functions, based on condi-
tional utility independence. CUI networks provide a potentially compact representation
of the multiattribute utility function, via functional decomposition to lower-dimensional
functions that depend on a node and its parents. CUI is a weaker independence condition
than those previously employed as a basis for graphical utility representations, allowing
common patterns of complementarity and substitutivity relations disallowed by additive
models.

I propose techniques to obtain and verify structural information, and use it to construct
the network and elicit the numeric data. In addition, I develop an optimization algorithm
that performs particularly well for the special case of CUI trees. In some cases it can also
be leveraged for efficient optimization of CAI maps. Finally, I show how functions can be
further decomposed over the set of maximal cliques of the CUI network. With this tech-
nique, CUI networks can achieve the same dimensionality of graphical models based on
CAI and GAI decompositions, yet with more broadly applicable independence conditions.
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Chapter 7

Modeling Preferences for Sponsored
Search

This chapter presents another application of preference structures in electronic trading.
Sponsored search auctions are conducted by search engines to select the advertisements
that appear beside the results shown to a user in response to a search query. Sponsored
search is an emerging market yielding billions of dollars of search-engine revenues per
year.

7.1 Introduction

The most popular search engines, Google, Yahoo, and MSN Live, currently rank and price
ads using an auction mechanism, which works as follows. Advertisers place per-click bids
on search keywords that are relevant to their ads. Each time a search user types in a query,
all the advertisers that have bids that match the query are then sorted using a ranking func-
tion, and the top advertisers have their ads shown, according to the order of the sort, along
with the results returned by the search engine. An advertiser is charged only if the search
user clicks on his ad, in which case the user is directed to the advertiser’s web site, called
the landing page. The common implementation of this auction, called generalized second

price (GSP), uses a generalization of the pricing rule of the well-known second-price auc-
tions: the per-click charge to each winning advertiser is the minimum bid needed to retain
his position in the ad ranking.

In most analyses of the GSP auction, the ranking function is assumed to be either the
per-click bids, or the “per impression” bids obtained by multiplying each per-click bid by
the click-through rate (CTR) of the corresponding ad. The latter method is sometimes re-
ferred to as ranking “by revenue”. I refer to GSP auctions using these ranking functions as
GSPB and GSPR, respectively.
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GSPB and GSPR may be appropriate for extracting short-term revenue from the adver-
tisers, but they do not represent the value of the ads to the search user. This could result
in displaying of low-quality ads, that can hurt the search experience, and that in turn can
lead users to switch to another search engine. Moreover, having negative experiences may
cause users to click less on ads in the future. Both these outcomes may reduce the long-term
revenues of the search engine.

In GSPR, the problem of low-quality ads is mitigated to some degree by having the
click-through rate in the ranking function: the lower the ad CTR, the higher the per-click
cost to the advertiser. Despite this, the quality problem remains for GSPR for at least two
reasons. First, a low CTR advertisement may still be displayed if there is no sufficient
competition for the particular search query. Second, advertisers can maintain high CTRs
by submitting ads that appear relevant to the query, regardless of whether or not a typical
user clicking on the ad will find the resulting web site relevant to his search. Such ads,
whose cost is reduced due to their higher CTR, can be profitable for advertisers who for
various reasons gain from increasing traffic volume to their web site.

Search engines have existing methods for reducing the number of low-quality ads. Sev-
eral use a ranking function that includes a quality measure, but the specifics regarding how
this measure is obtained, or how it is used are not disclosed.

In this chapter, I study principled methods for incorporating ad quality into a ranking
function. The two main contributions in this topic are as follows. On the theoretical side, I
design a family of utility functions to represent user preferences over ads. I use construc-
tions from multiattribute utility theory that allow these functions to be represented using
a reasonably small number of parameters, while still allowing for rich preferences to be
expressed. Next, I show how the search-engine publisher can make explicit trade-offs be-
tween user utility and short-term revenue, leading to a mechanism that is similar to GSP,
but its ranking function includes the utility of the user. The other contribution is in two
types of simulations I perform. Short-term simulations show the loss of short-term revenue
required to improve user satisfaction under various parameterizations of the system. Then,
I simulate the effect of the ranking system on long-term revenues through its impact on
user satisfaction. Both types of simulations allow to evaluate the various utility models I
suggest.

The chapter is structured as follows. First, I present the utility-theoretic framework
(Section 7.3) and a ranking system that deals with the conversion between user’s utility and
revenue (Section 7.5). The second part describes the simulation analysis. In Section 7.7, I
present short-term, static simulations of the new ranking system. In Section 7.8, I build a
model of long-term user interaction with the system and provide simulation results.
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7.2 Related work

There is a growing body of literature that discusses sponsored search mechanisms, most of
which considers various variations of the GSP mechanism. Varian (2007) defines a Nash
Equilibrium concept for GSP auctions, based on the equilibrium of the corresponding one-
shot static game of complete information. In equilibrium bidders cannot improve their
value by acquiring a different slot. That means that their payoff from increasing their bid to
improve their position, or their payoff from reducing their bid to achieve a lower position,
cannot exceed their current payoff.

Varian further introduces a more specific notion of equilibrium, called symmetric Nash

Equilibrium (SNE). SNE holds if bidders cannot gain from bidding the current price of po-
sitions either below or above their current position. In SNE, the GSP outcome is efficient,
in the sense that bidders are ranked according to their valuations per per-click (in GSPB) or
impression (in GSPR).

A variation of symmetric equilibrium was also introduced by Edelman et al. (2007),
who use the term locally envy-free equilibrium. They describe a generalized English auc-
tion that converges to an outcome of a locally envy-free equilibrium (which is also shown to
be bidder-optimal), and might indicate that bidding converges to this outcome in practice.

Both these authors generalize their results to the case that slots are not allocated directly
according to bid amount, but rather using GSPR (or, in general, a product of the bid and a
quality measure of the ad). Lahaie (2006) analyzes the properties of GSP with ranking
in either methods. Börgers et al. (2006) generalize the efficiency implication of SNE to
a more general model, in which bidders’ click valuation varies according to the position
of their ad. In this work I stay within Varian’s framework in assuming that click value is
position independent.

Particularly relevant to this work are several papers that explicitly consider the user as
a player in the mechanism, or consider the user’s experience as an objective. Lahaie and
Pennock (2007) consider the click-through rate of an ad as an indicator its of relevance
to the user’s search. In their model, ads are ranked according to a product of the bid by
click-through rate, but the CTR is raised the power of some q ∈ [0,1], so it captures both
rank-by-bid and rank-by-revenue as special cases. They suggest specifying a minimum
acceptable level of user’s experience, indicated by the extent to which CTR is considered
in the ranking (i.e., the level of q), and optimize q within the acceptable range using a
simulation technique. In contrast, my starting point is that the CTR may not be an ac-
curate indication to the relevance of the ads, because advertisers may have incentives to
misrepresent their ad as more relevant to the query than the resulting landing page actually
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is.
Abrams and Schwarz (2007) take a more specific approach to user’s experience, and

model the user’s utility from a click as a hidden cost. Athey and Ellison (2007) suggest
the following model for their equilibrium analysis: an advertiser’s value from a click corre-
sponds to the probability that the ad meets the consumer’s need. Consumers scan ads from
top to bottom, and click until an ad meets their need or until the cost of clicking exceeds
the expected value of clicking. In the simulations, I adopt Athey and Ellison’s modeling of
the user’s click decision according to computation of expected utility. In contrast to both
Athey and Ellison and Abrams and Schwarz, I focus on a principled method to model the
user’s utility, based on available or computable information such as the relevance of the
landing page to the query, and use it as a practical ranking method. Further, I perform sim-
ulations that incorporate the user’s trust in the system as an adaptive parameter that affects
the expected utility of a click.

7.3 Modeling User Experience

In this section, I describe models for search-user utility as a function of the interactions that
the user has with the ads that are shown. Initially, I limit the discussion to models that are
additive over these interactions; that is, the utility for the interactions on a set of ads Λ is
simply the sum of the utility for the interaction on each individual ad λ ∈ Λ.

Let λ ∈ Λ be a particular ad shown to the user. I define the following four mutually
exclusive and collectively exhaustive interactions events I(λ ) that the user can have with
this ad:

I(λ ) = is The user looks at λ but does not click (“scan”).

I(λ ) = icg The user looks at λ , clicks, and finds the resulting page relevant (“good”).

I(λ ) = icb The user looks at λ , clicks, and does not find the resulting page relevant (“bad”).

I(λ ) = iig The user does not look at λ (“ignored”).

In this model, a user must look at an ad before clicking it; hence whenever a user clicks on
an ad, we know the interaction is either icg or icb.

I postulate the existence of a vNM utility function over interaction events, U : I(λ )→ℜ.
Note that the utility U(i) is defined over the four possible events, independently of a partic-
ular ad λ . A natural assumption is that the maximum value u for U(i) occurs when i = icg
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and that the minimum value u occurs when i = icb. The function U(·) is scaled and normal-
ized, without loss of generality, such that u−u = 1 and U(iig) = 0. As a result the function
has two free parameters: U(is), and either U(icb) or U(icg).

7.4 Publisher Utility Model

Search users currently do not participate in any monetary transfer with the search engine,
and therefore it is up to the publisher to incorporate user utility into the search mecha-
nism through the choice of which ads are shown. In this section, I show how to construct
a publisher ranking function that makes an appropriate tradeoff between user utility and
revenue.

7.4.1 Publisher Value of User Utility

Let v(u,r) denote the publisher’s value, in dollars, of providing utility u to the user and
receiving short-term revenue r. There are two simple ways that might be reasonable to
consider the tradeoff between u and r. In a multiplicative function, the publisher is willing
to lose a fixed fraction tm of the revenue in order to improve the user utility from the mini-
mum value to the maximum value; that is, v(u,r) = v(u,(1− tm)r). In an additive publisher
utility function, a publisher is willing to lose a fixed absolute amount ta in order to improve
the user utility from the minimum value to the maximum value; that is, v(u,r) = v(u,r−ta).
Note that each indifference constraint is satisfied by a family of functions.

There are advantages to each version of the publisher utility function, and we can get
the advantages of both by assuming a multi-linear form for v(u,r) that accommodates both
a multiplicative and an additive indifference. The combined indifference constraint is as
follows:

v(u,r) = v(u,(1− tm)r− ta). (7.1)

That is, the publisher is willing to spare a fraction tm of the revenue and an additional ta
dollars from the remainder in order to increase user utility from the minimum u to the
maximum u. By specifying a non-zero tm, the publisher indicates that he values the user
experience in high-stake searches more than the experience in searching for a cheap item.
On the other hand, if the publisher is always willing to spare a constant small amount ta in
order to improve a user’s utility, then for low-revenue auctions he can improve user utility
dramatically with low cost.
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A simple multi-linear form that satisfies (7.1), given that u−u = 1, is

v(u,r) = tau+ tm(u−u)r +(1− tm)r. (7.2)

This form is consistent with assuming that the publisher’s preferences exhibit mutual utility
independence of u and r (Definition 2.11). In the experiments, I consider publisher utility
functions of the form of (7.2).

7.4.2 Probabilistic Model

A utility maximizing publisher will rank sets of ads by expected (publisher) utility given
a particular query. For the purpose of computing this expectation, I model the probability
distribution over the interaction events in this section.

I assume that the interaction events for a set of ads are mutually independent, and thus
the joint probability for all events decomposes into a product of probabilities Pλ ,k(·) that
are specific to each ad λ and a position k1. The independence assumption is violated if the
probability of the user clicking on one ad depends on the quality and/or quantity of other
ads clicked. More accurate models can be estimated from data; for the purpose of this
work, however, I keep the independence assumption for simplicity.

User-interaction events decompose into up to three sub-events: the user looks at the ad
or not, the user clicks on the ad or not, and a clicked ad is relevant or not. As common in
the sponsored-search-auction literature (Edelman et al., 2007; Varian, 2007; Börgers et al.,
2006; Lahaie, 2006), I assume that the click probability α

j
λ

of an ad λ in position j is the
product of an ad effect πλ , and a positional effect β j, so that α

j
λ

= πλ β j. Both the posi-
tional effect β j and the ad-specific factor πλ are computed based on data.2 In the model the
positional effect is interpreted as the probability that the user looks at the ad (“scan”). To
complete the probabilistic model, we need the probability ρλ that the landing page of an ad
is relevant to the query given that the ad was clicked. In the experiments, I computed ρλ as
follows: I used a computed similarity score between the text of the ad-destination page and
the text of the organic search-result summaries shown in the results page, and converted
this score to a probability using a calibration model constructed from human-labeled data.3

Putting these pieces together, now Pλ , j(is) = β j · (1−πλ ) (the user looked at the ad but

1Note that Pλk,k(·) will certainly depend on the given query; this dependence is left implicit to simplify
notation.

2The positional effect can be estimated by observing click rates of the same ad shown in different posi-
tions. In the experiments I used a shared positional model for every query.

3The development of the similarity score algorithm, the collection of human-labeled data, and the statis-
tical analysis of the data were all performed by Microsoft AdCenter.
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did not click), Pλ , j(icg) = β j ·πλ ·ρλ (the user looked at the ad, clicked, and the landing
page was relevant), Pλ , j(icb) = β j ·πλ · (1−ρλ ) (the user looked, clicked, and the landing
page was not relevant), and Pλ , j(iig) = 1−β j (the user did not look at the ad).

7.4.3 Publisher Ranking Function

I now show how to compute the expected publisher utility for a set of ads by combining the
models from the previous two subsections.

Given an advertisement λ with bid bλ in position j, the publisher’s expected utility
ve(λ ,bλ , j) is computed by summing over the interaction events:

ve(λ ,bλ , j) = ∑
i

Pλ , j(i)v(U(i),r(i,bλ ))

The short-term revenue r that results from a click is the advertiser’s bid b, hence b replaces
r when (7.2) is computed per-click. Hence if i is a click event (icg or icb) then r(i,bλ ) = bλ .
Because under GSP the price is the lowest bid needed to retain the given position, it follows
that using the bid in the publisher utility function will rank ads in the same order as if we
had used the true revenue (i.e., the price). If i is not a click event (is or iig), then r(i,bλ ) = 0.

Now each of the utility terms in the sum above is expanded using the publisher-utility
model (7.2). When i = icg, the publisher utility is

vcg(bλ ) = taU(icg)+ [tm(U(icg)−u)+(1− tm)] ·bλ ,

and similarly when i = icb, the publisher utility is

vcb(bλ ) = taU(icb)+ [tm(U(icb)−u)+(1− tm)] ·bλ .

When i = is, the publisher utility is taU(is) (there is no short-term revenue), and when i = iig
the user utility and the revenue are both zero and thus the publisher utility is zero. Com-
bining with the probability model, and using the definitions vcg and vcb above, we have:

ve(λ ,bλ , j) = β
j(1−πλ )taU(is)+β

j
πλ (ρλ vcg(bλ )+(1−ρλ )vcb(bλ )). (7.3)

A utility-maximizing publisher will allocate ads so as to maximize the sum of (7.3) over
all positions. Without loss of generality, assume that the positional effects β j are monoton-
ically decreasing with j (i.e., the click rate of a particular ad will be higher if it is placed
higher in the list). We can achieve the utility-maximizing allocation by using a position
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independent ranking function µ(λ ,bλ ) to greedily assign ads to positions, starting from
j = 1 and continuing until all slots are filled or until the best unassigned ad has a negative
value.

µ(λ ,bλ ) =
ve(λ ,bλ , j)

β j = (1−πλ )taU(is)+πλ (ρλ vcg +(1−ρλ )vcb) (7.4)

The equivalence of ranking by (7.3) and by (7.4) follows from the fact that the total ex-
pected utility ∑ j ve(λ ,bλ , j) for a set of ads is the dot product of the vector of µ(·) values
for each position and the corresponding vector of positional effects. In particular, because
the positional effects are monotonically decreasing with j, the total expected utility is max-
imized by placing ads with highest value of µ(·) in the positions with the highest positional
effects.

Furthermore, we can use a reserve price to guarantee that prices are such that we only
show ads whose expected utility is positive. The same argument as above, based on the
properties of GSP, ensures that using the bid b is equivalent to using the price in terms of
deciding what ads to show.

7.5 Sponsored Search Mechanism

In the previous section, I derived a position-independent ranking function that allows pub-
lishers to incorporate user utility into the selection of ads. Note that the ranking function
from (7.4) can be expressed as follows:

µ(λ ,bλ ) = fλ +gλ bλ . (7.5)

That is, by expanding the definitions of vcg(bλ ) and vcb(bλ ) and grouping terms as ap-
propriate, the ranking function can be expressed as a linear function of the bid value. In
this section, I study properties of the GSP mechanism when using any ranking function
of the form of (7.5). Note that this class of ranking function includes as special cases the
two common ranking functions described in Section 7.1—ranking by bid is achieved with
fλ = 0 and gλ = 1, and ranking by revenue is achieved with fλ = 0 and gλ = πλ .

I now provide a formal definition of GSP. Let Φ denote the candidate ads for a particu-
lar query. Let BΦ = {bλ | λ ∈Φ} denote the corresponding set of bids. Let µ(λ ,bλ ) be an
arbitrary position-independent publisher ranking function. The sorted series resulting from
applying µ(·) on BΦ is denoted by Λµ , and its jth element by Λµ( j). Finally, I use m to
denote a reserve price.
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Definition 7.1. GSPµ is an allocation and pricing scheme that allocates slot j to λ =
Λµ( j), for all j ≤M for which µ(λ ,bλ )≥ m. The price paid by λ is p j

λ
such that

µ(λ , p j
λ
) = max(µ(φ ,bφ ),m), (7.6)

where φ = Λµ( j +1).

That is, GSPµ ranks by µ(·) and charges a bidder the minimum price required to remain
in his position. Let Λ̃µ denote the set of slots allocated by µ(·); note that Λ̃µ is Λµ truncated
to the number of slots actually allocated. When µ represents expected publisher utility, a
natural choice for m here is zero, ensuring that an ad is displayed only if it is rational to do
so.

When µ(·) is of the linear form of (7.5), we use GSPL to denote the corresponding
mechanism. Based on (7.6), the price assigned by GSPL to the slot j won by λ is

pλ =
fψ − fλ +gψbψ

gλ

, (7.7)

where ψ = Λµ( j +1).4

7.5.1 Equilibrium Properties

Properties of GSP have been analyzed in previous literature (Lahaie, 2006; Edelman et al.,
2007; Varian, 2007; Börgers et al., 2006). I mainly follow the settings and definitions
of Varian (2007), which analyzes GSPB but also considers the Google variation, in which
µ(λ ,bλ ) = qλ bλ for some unknown quality factor qλ .5 GSPL is different from this variation
of GSP due to the additive element that is included in the ranking formula.

I denote the valuation—the amount by which a bidder truly values a click—for the
advertiser of λ by hλ . I follow Varian’s complete-information setup: because traders can
adjust their bid at any time, a stable set of bids can be seen as an equilibrium of a static
game in which traders know each other’s bids. In all of the following discussion, the case
in which the price is determined by m is ignored for simplicity. Further, s and t each refer
either to a position in Λ̃µ or to a losing position (i.e., a position j > |Λ̃µ | for which β j = 0).
I use ΛB in place of Λµ to denote the result of ranking by GSPB.

4More accurately, the price is the maximum over pλ and m.
5Recently, Yahoo! has started using an unknown quality factor as well.
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Definition 7.2 (Varian (2007)). Let λ = ΛB(s). A set of bids is a Nash Equilibrium (NE) in
GSPB if for all s 6= t,

α
s
λ
(hλ − pλ )≥ α

t
λ
(hλ − pψ), (7.8)

where for t < s, ψ = ΛB(t), and for t > s, ψ = ΛB(t +1).

In words, the advertiser for each ad λ is making more total return in his current position
than he would by adjusting his bid to move to another position. The asymmetric conditions
under (7.8) reflect the fact that in order for λ to be moved to a higher ranked position t,
the bid needs to exceed that of the current holder of position t, whereas to move to a lower

ranked position t, the bid need only beat the bid of the current holder of t +1.
I now adapt Definition 7.2 to the more general linear ranking function of (7.5). To em-

phasize the ranking function in the notation, I use L(λ ,bλ ) in place of µ(λ ,bλ ) and I use
ΛL in place of Λ. The main change to the definition results from the fact that the per-click
prices depend on the advertiser.

Definition 7.3. Let λ = ΛL(s). A set of bids is a Nash Equilibrium (NE) in GSPL if for all

s 6= t,

α
s
λ
(hλ −

fφ − fλ +gφ bφ

gλ

)≥ α
t
λ
(hλ −

fψ − fλ +gψbψ

gλ

)∀t,

where φ = ΛL(s+1) and for t < s, ψ = ΛL(t +1), and for t > s, ψ = ΛL(t).

Varian (2007) also introduces symmetric Nash equilibrium in which ψ in Definition 7.2
refers to ΛB(t + 1) regardless of the relative values of s and t. This more restrictive equi-
librium has the advantage that it leads to a tractable computation of equilibrium bids.
Generalizing the definition to GSPL yields:

Definition 7.4. Let λ = ΛL(s). A set of bids is a symmetric Nash equilibrium (SNE) in

GSPL if for all s 6= t,

α
s
λ
(hλ −

fφ − fλ +gφ bφ

gλ

)≥ α
t
λ
(hλ −

fψ − fλ +gψbψ

gλ

),

where φ = ΛL(s+1) and ψ = ΛL(t +1).

The following observation, which is similar to the one used by Varian in discussing the
Google variation of GSP, shows that through the ranking function L(·) there is a simple
one-to-one mapping between equilibria in GSPL and GSPB.
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Theorem 7.1. Let BΦ = {bλ | λ ∈ Φ} be a bids profile, and let B̂Φ = {L(λ ,bλ ) | λ ∈ Φ}.
Further, let HΦ = {hλ | λ ∈Φ} be the valuations of the advertisers, and ĤΦ = {L(λ ,hλ ) |
λ ∈ Φ}. Then: (1) BΦ is NE in GSPL with valuations HΦ if and only if B̂Φ is NE in GSPB

with valuations ĤΦ. (2) BΦ is SNE in GSPL with valuations HΦ if and only if B̂Φ is SNE in

GSPB with valuations ĤΦ.

This mapping allows us to easily adapt results about equilibrium points in GSPB to re-
sults about equilibrium points in GSPL. Using this technique, and given known results on
GSPB in SNE (Varian, 2007), it can be established that GSPL not only optimizes publishers
utility with respect to bids, but also with respect to true valuations:

Theorem 7.2. Let BΦ be SNE bids in GSPL with valuations HΦ. Then, out of all rankings

over Φ, ΛL maximizes
|ΛL|

∑
j=1

( fΛL( j) +gΛL( j)hΛL( j))β
j. (7.9)

When L(·) is defined using publisher utility as in (7.4), we see that the optimized term
is precisely the total expected publisher’s utility, with the true value hλ in place of the bid
bλ . Intuitively, Proposition 7.2 shows that in equilibrium GSPL “does the right thing” with
respect to publisher utility. More precisely, following Lahaie (2006), we call a ranking that
would have been selected if we knew the true bidders’ valuations a standard allocation,
and this result shows that in SNE, GSPL selects a standard allocation.

7.5.2 Welfare Maximization

Proposition 7.2 can be seen as a generalization of efficiency results of GSPB and GSPR (Var-
ian, 2007). When we restrict GSPL to be GSPR, that is fλ = 0 and gλ = πλ , the maximized
term can be seen as the total welfare of the advertisers. If the publisher is assumed to have
no value for the ads, then SNE in GSPR is efficient, meaning it maximizes total welfare.
A natural question here is whether we can say something similar about GSPL. Is there an
interpretation of ve(·) under which Proposition 7.2 suggests some kind of efficiency?

To this end, we should first reformulate the problem as a welfare maximization prob-
lem, rather than publisher’s utility maximization. That means we should reinterpret ve(·)
as an expected total welfare. We stay faithful to our interpretation of user utility: it is in-
corporated into the mechanism, represented as the publisher’s welfare, and its monetary
equivalence is expressed through v(u,r). We cannot, however, interpret directly ve(·) as the
sum of the publisher’s and the advertisers’ welfare because v(u,r) exhibits a multiplica-
tive dependency between u (user utility/publisher’s welfare) and r (advertisers’ reported
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welfare). Fortunately, we observe that the multiplicative term only captures the fact that
the publisher attributes higher value to higher-stake searches, and does not express real
dependency in any specific bid. Rather, this term captures a general revenue potential of
the query. We can modify slightly the publisher’s utility such that v(u,r) is a sum over the
revenue r and the monetary equivalence of utility, where the latter does not depend on r but
rather on some other value r̂ that indicates the revenue potential of the query:

v̂(u,r) = tau+(tm(u−u)− tm)r̂ + r (7.10)

in which tau + (tm(u− uη)− tm)r̂ represents the monetary value of user utility. We can
derive sensible values for r̂ by using the bids of similar queries or by using the bids of the
same query from previous instances. We can now replace all instances of v(u,r) in (7.3) by
v̂(u,r). Thus (7.9), which sums over ve(·), represents true total welfare because the bids are
replaced with true valuations. Proposition 7.2 can be proved for this modified mechanism
as well (omitted), which shows efficiency of GSPL in SNE.

This is of course, efficiency only with respect to the equilibrium behavior. Moreover, it
is only the case in SNE, which is a restricted subset of NE. We also note that the study by
Börgers et al. (2006) found no evidence that SNE is likely to occur in practice.

7.6 Model with Nonadditive Utility

Until this point I ignored potential dependencies among the user utilities from different ads
in the same impression. This assumption may be too restrictive, if we expect the utility
from an ad to change depending on what kind of experience the user had with other ads
in the page. For example, the negative impact of a second irrelevant ad may be viewed as
either stronger or weaker than the impact of the first irrelevant ad; furthermore, this impact
may be different depending on whether the user also encounters a relevant ad. I discuss
these potential implications in detail in Section 7.6.2.

To relax this assumption, we should consider the expected utility of a set of ads. For
a given set of ads Λ, I assume that the user has exactly one interaction with each ad. Let
ns(Λ) denote the number of ads in Λ for which the user has interaction I = is, and similarly
ncg(Λ), ncb(Λ) and nig(Λ) denoted the number of ads for which the other interaction events
occurred. When Λ is clear from context, I use ns,ncg, ncb and nig without arguments to
simplify notation.

Consider a user who is shown five ads Λ = {λ1, . . . ,λ5} with his search results. Sup-
pose the user ignores the first ad, looks at the next two ads (without clicking), clicks on
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the fourth ad and finds it irrelevant, and then clicks on the fifth ad and finds useful infor-
mation. Then the five interaction events are I(λ1) = iig, I(λ2) = is, I(λ3) = is, I(λ4) = icb,
and I(λ5) = icg, and the corresponding counts are ns(Λ) = 2, ncg(Λ) = 1, ncb(Λ) = 1, and
nig(Λ) = 1.

Another assumption is that the user’s utility for a set of ads Λ depends only on the space
Θ of triplets 〈ns,ncg,ncb〉, and the utility function u : Θ→ℜ, is a vNM utility function. Each
possible series of ads Λ leads to a known probability distribution (lottery) over the outcomes
(the space Θ), and the utility is taken with expectation over this space. More specifically,
for a given query we obtain (Section 7.6.1) a probability distribution PΛ : Θ→ [0,1]—I
leave the dependence on the query implicit to simplify notation. We compute the expected
utility ue(Λ) for Λ by summing over all interaction-event counts that sum to |Λ|:

ue(Λ) = ∑
ncg+ncb+

ns+nig=|Λ|

u(ncg,ncb,ns)PΛ(ncg,ncb,ns,nig). (7.11)

Note that the utility function does not depend on the number of ads for which I = iig; if a
user does not look at an ad, then that ad plays no role in the utility of the set shown.

7.6.1 Extending the Probabilistic Model

To simplify notation in this section, I use P(·) instead of PΛ(·) throughout. To derive the
model P(ncg,ncb,ns,nig) over the set of event counts, I first consider the probability of any
sequence of interaction events that a user can have with an ordered sequence of ads. More
specifically, given an ordered sequence of ads Λ = (λ1, . . . ,λK), we construct an event

model Pe({I(λ1), . . . , I(λK)}) that represents the probability of each of the 4K interaction
sequences. Note that the dependence of this model on the query and actual sequence of ads
is again left implicit. As detailed below, we will obtain P(·) for a given set of counts by
summing Pe(·) over all event sequences consistent with those counts.

I retain the probabilistic independence assumption over the ads; each interaction event
in the sequence depends only on the position and identity of the corresponding ad:

Pe({I(λ1), . . . , I(λK)}) =
K

∏
k=1

Pe
λk,k

(I(λk)). (7.12)

Given the assumption of Eq. (7.12), we can construct the count model P(ncg,ncb,ns,nig)
incrementally as follows. Let Pk(ncg,ncb,ns,nig) denote the count model for the first k ele-
ments of Λ, and thus we have that P(·) = P|Λ|(·). We can derive Pk from Pk−1 by summing
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over the possible interaction events for the kth element of Λ. Letting λ denote this kth
element we have:

Pk(ncg,ncb,ns,nig) =

Pk−1(ncg−1,ncb,ns,nig) ·Pe
λ ,k(icg)

+Pk−1(ncg,ncb−1,ns,nig) ·Pe
λ ,k(icb)

+Pk−1(ncg,ncb,ns−1,nig) ·Pe
λ ,k(is)

+Pk−1(ncg,ncb,ns,nig−1) ·Pe
λ ,k(iig)

(7.13)

Note that in Equation (7.13), the sum of the event counts ncg +ncb +ns +nig is necessarily
equal to k. Also, if any of the counts are negative, then the corresponding probabilities in
the recursion are defined to be zero. The base case for the recursion is for k = 0, corre-
sponding to an empty sequence of ads, for which P0(0,0,0,0) is one. The term (7.13) can
be computed efficiently using dynamic programming, that is starting from P0(0,0,0,0) and
increasing k at each iteration.

7.6.2 Utility Models

Throughout this section, I use superscript integers to denote the assignment of a specific
numeric value to an argument to u(·) (e.g., I use n1

cg to denote ncg = 1). This is also used
in notation such as u([n1

cg]), in which n0
cg,n

0
cb,n

0
s serves as the reference point. u([n1

cg]) is
therefore a shorthand for u(ncb = 0,ncg = 1,ns = 0). With some abuse of notation, I omit
the brackets because the full argument list is always the same, that is u(n1

cg) is used instead
of u([n1

cg]). u(·) is normalized such that u(n0
cg,n

0
cb,n

0
s ) = 0, which means that seeing no ads

results in zero utility. Normally, the marginal utility of a relevant clicked ad will be posi-
tive, and the marginal utility of an irrelevant clicked ad or scanned ad will be negative. An
irrelevant clicked ad, called here a “bad” ad, is usually more costly to the user’s experience
than a merely scanned ad.

The additive model analyzed above takes the assumption that u(ncg,ncb,ns) is con-
strained to the following linear form:

u(ncg,ncb,ns) = ncgu(n1
cg)+ncbu(n1

cb)+nsu(n1
s ). (7.14)

In words, each ad contributes a constant additive utility depending on its interaction type.
I first obtain Equation (7.14) and other forms of u(·) to follow more formally from

specific MAUT assumptions. In the discussion that follows, I use N to denote the set of
count attributes {ncg,ncb,ns} that define the outcome space Θ. First, consider the assump-
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tion that the set of attributes N = {ncg,ncb,ns} is additive independent (Definition 2.13).
If we further restrict each of the (one-dimensional) functions in the additive representation
(Equation 2.4) to be linear, we get Equation (7.14). I denote by LIN the family of utility
function that are restricted to this form.

In the simulations, I use as a benchmark a particular member of the LIN family in which
the utility is the accumulated relevance probability of the clicked ads. I name this specific
utility function UER for “utility equals relevance”. If we use the UER model, the contri-
bution of each ad λ to the user’s expected utility simplifies to the product of the (landing
page) relevance and CTR for λ . In addition, for the simulation purposes I define two addi-
tional linear utility models. LIN-LC (“low cost”), in which the value of a clicked relevant
(“good”) ad (u(n1

cg)) exceeds the cost of a clicked irrelevant (“bad”) ad (u(n1
cb)) by about

50%, and LIN-HC (“high cost”), where the cost of a bad ad is 25% higher than the value
of a good ad.

The LIN form requires the assessment of only two parameters. As mentioned above,
it may be too restrictive if we expect that the utility of an ad depends on its context. For
example, the negative impact of a second irrelevant ad may be viewed as either stronger or
weaker than the impact of the first irrelevant ad; in other words, we might have decreas-
ing or increasing margins over ncb. Similarly, the utility we get from clicking on the first
relevant ad may be higher than the utility we get from the second relevant ad, and so on.

The margins of an attribute may also be affected by the value of a different attribute.
For example, we may be less annoyed from irrelevant clicked ads when we also experience
relevant clicked ads. Or, in contrast, the user’s experience over a set of ads may resemble
a bag of apples, in which one rotten instance ruins all, meaning it is enough that one irrel-
evant ad is clicked to eliminate the positive experience from relevant ads. I refer to utility
models that accommodate the first dependency (and are linear otherwise) as LCBG (less
cost of bad ads given good ads), and to the one rotten apple model by ORA.

With this kind of dependency we can no longer assume additive independence as in
Definition 2.13. We can, however, still take advantage of preference structure. For exam-
ple, the cost of scanning and the cost of clicking irrelevant ads may still be additive, for
any fixed value of ncg. We can therefore apply conditional additive independence (Defini-
tion 2.14). The assumption CAI(ncb,ns | ncg) means that preferences over lotteries depend
only on their margins over {ncb,ncg} and {ns,ncg}. This condition results in the following
functional decomposition (Eq. 2.5):

u(ncg,ncb,ns) = u(ncg,ns)+u(ncg,ncb)−u(ncg). (7.15)
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This allows to capture the dependency between ncg and ncb. The two-dimensional func-
tions u(ncg,ncb) and u(ncg,ns) may still be decomposed by using the weaker UI condition
(Definition 2.9). I postulate that UI(ncg,ncb).6 As mentioned before, UI is not necessar-
ily a symmetric condition. Under the ORA model, clicking on an irrelevant ad is much
more costly when the user also clicked on a relevant ad, and this can be shown to violate
UI(ncb,ncg).

The assumption UI(ncg,ncb) leads to the following decomposition, based on Equa-
tion 2.1:7

u(ncg,ncb) = u(ncb)+
u(n1

cg,ncb)−u(ncb)
u(n1

cg)
u(ncg) (7.16)

This means that instead of the two-dimensional function u(ncg,ncb), we need to assess three
one-dimensional functions, u(ncg), u(ncb), and u(n1

cg,ncb). To express an ORA model we
can set u(n1

cb) = u(ni
cb) to a low (high negative) value, and set u(n1

cg,n
1
cb) = u(n1

cg,n
i
cb) to

be only slightly better. To express LCBG, we set u(n1
cg,ncb)−u(ncb) > u(n1

cg) for ncb > 0
(and the difference gets bigger the larger ncb is). This way the marginal contribution of ncg

gets larger with more bad ads, so it offsets some part of their cost.
The cost of the scanned ads ns reflects, in addition to the loss of screen space, poten-

tial annoyance of the user from having paid ads in the search results page. If the user
clicks some ads and gets useful information, this part of the cost of the scanned ads may
be mitigated. That means that the marginal utility of ns may be higher (less negative) when
ncg > 0. For this reason, I do not assume that CAI holds between ncg and ns. Nevertheless,
the condition UI(ns,ncg) may hold. We do value the scanned ads at a higher cost when
ncg = 0, but this may not affect the preference order over lotteries over ns.

In addition we may assume UI(ncg,ns) (whether ads were scanned or not does not affect
the preference over lotteries on ncg). The two-directional independence is in fact mutual
utility independence (Definition 2.11) and it therefore leads to the following form, which
is a special case of Equation 2.3.

u(ncg,ns) = u(ncg)+u(ns)+Ku(ncg)u(ns) (7.17)

I define a utility model that accommodates lower cost for scanned ads given a good ad
(LCSG). Such a model can be achieved by a negative value for K: when u(ncg) > 0, some
of the negative utility of scanned ads cancels out.

The result of the above assumptions is that we can accommodate models such as ORA,
LCBG, and LCSG and still represent u(·) in terms of single dimensional functions: u(ncb),

6Technically, we say that CUI(ncg,ncb | ns).
7For an exact derivation of this form see proof of Theorem 3.2 in appendix.
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u(ncg,ncb,ns) =(7.15)

⊕



u(ncg,ncb) =(7.16) u(ncb)+
u(n1

cg,ncb)−u(ncb)
u(n1

cg)
u(ncg)

u(ncg,ns) =(7.17) ⊕


u(ncg)
u(ns)
Ku(ncg)u(ns)

−u(ncg)

Figure 7.1: Functional decomposition of u(ncg,ncb,ns).

u(n1
cg,ncb), u(ncg), u(ns) (and the constant K). More generally, I believe that these as-

sumptions are reasonable and the resulting models can accommodate the most significant
dependencies that we would expect to find in a user’s utility function. Figure 7.1 shows the
series of decompositions described above.

To further reduce the assessment burden, I assume that u(ns) and u(ncg) are linear, and
that u(ncb) and u(n1

cg,ncb) are quadratic, which results in at most six free parameters to
any one of the utility models. To complete the specification of explicit versions of these
models, for simulation purposes, I fixed the free parameters using subjective assessment.

7.6.3 Mechanism for Nonadditive Utility

A utility maximizing publisher would like to select a set of ads Λ that maximizes the ex-
pected value of v(u,r). When the utility is not additive across the ads, we must consider
all possible combinations of ads in order to achieve the optimal outcome. To simplify the
computation, and to retain the GSP pricing methodology, I define the mechanism GSP-G,
which is a greedy, heuristic simplification: the ad placements are computed incrementally,
such that for each position j we pick the optimal ad given that the set of ads Λ for positions
1, . . . , j− 1 are determined. For this purpose, the ranking function computes the marginal
publisher’s utility ve(Λ j−1,λ , j) of each candidate ad λ for the next position j based on
its expected revenues and its effect on the overall user utility. This effect is the marginal

expected user utility of each candidate, given the ads in previous spots, and it is computed
as the difference in the value of (7.11) with and without the candidate. The price can then
be defined according to the GSP principle: advertiser of λ that is selected for position j

pays the minimum bid he had to submit to win this position, given the ads already selected
for positions 1, . . . , j−1.
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Note that because under GSP the price is the lowest bid needed to retain the given posi-
tion, it follows that this ranking function will rank ads in the same order as if we had used
the true price instead of bλ in ve(·). Furthermore, setting ve(Λ j−1,λ , j) = 0 as the reserve
price ensures that the choice of how many ads to show is also done based on true revenue.

The greedy approach biases in favor of the higher positions, which is a desired effect
because the ads in higher position might have more impact on the user’s experience, merely
because they are positioned higher. GSP-G is used in the simulations.

7.7 Short-Term Simulations

In the first type of simulations I performed, I took a set of bids for a given query and re-
ranked them using GSP-G. This allowed me to test the effect on expected revenues, the
relevance of displayed ads, and how it handles “bad” ads, that is ads that have low rele-
vance and high CTR. In the next section I simulate the effect of ranking with user’s utility
on the long-term revenues.

I used real advertisers’ bids submitted to Microsoft Live Search, for a set of about 1000
queries, and a total of 7500 bids. I retrieved up to 8 bids per query, and limited the number
of ads shown to 6. I measured two types of ratio: the improvement in relevance to loss
of revenue, and the appearance of bad ads to loss of revenue. These ratios cannot capture
the subtleties of the user experience as I model it, but nonetheless they can help the pub-
lisher find the right tradeoff in terms of the values of ta and tm. In addition, I compared the
performance of different utility functions. In Figures 7.2i and 7.2ii I measure the ratio of
total expected revenue of the ads (as sum of prices multiplied by CTR) to relevance. The
publisher makes an explicit choice of the tradeoff between user utility and bids; the results,
however, are measured directly in terms of relevance and actual prices.

I calculated the relevance score by shifting the relevance probability to be between−0.5
to 0.5, so that ads more likely to be irrelevant had a negative effect on the score. I aggre-
gated ad relevance across positions using the information retrieval notion of discounted
cumulative gain (DCG) (Järvelin and Kekäläinen, 2000). In all of the simulations I tested
the ratio obtained by varying ta from 0 to 99 cents.

Figure 7.2i compares the results of using LIN-LC and UER, using several choices of tm
(0, 0.2, 0.4, 0.8). First note the deep slope on the right end of each line, which corresponds
to ta varying from 0 to 30− 40 cents. This shows how using the additive factor allows
significant gains in relevance for small amounts of revenue loss, verifying my expectations
based on the discussion in Section 7.5. The choice of tm shifts the whole series up and to
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Figure 7.2: Revenue loss for improvement of relevance: (i) using LIN (ii) other utility
functions, with tm = 0.4

the left, that is it leads to a more drastic loss of revenue for higher overall relevance. It does
not significantly affects the ratio of relevance to revenue except that for high tm we must
use higher values for ta as well or else the ratio would be lower.

Figure 7.2ii compares relevance vs. revenue across the example utility models, with
tm fixed to 0.4, and in addition shows ORA and LIN-LC with tm = 0 for comparison. As
evident from both figures, the simple model UER is clearly dominated by the others. This
is due to the fact that it never assigns negative utility, and therefore always shows M ads or
the maximum available. The other example utilities do not show some of the less relevant
ads, resulting in a better score, and better ratio despite the revenue loss from the dropped
ads. When LIN was hard-coded to show all the ads, even when they yield negative pub-
lisher utility, it achieved a slightly lower ratio than UER. Also note that LSCG exhibits
better ratio then LIN because it has lower scanning costs in some cases. The scanning cost
improves utility in a way that is not measured by Figure 7.2ii, because it is not affected by
relevance. If we believe that this cost is indeed less significant when the user’s search need
is met by the ad, this function allows to achieve the improved revenue to relevance ratio
without hurting overall utility.

I consider the experience of clicking on an irrelevant ad particularly costly, therefore, I
am interested specifically in those ads which combine high CTR and low relevance. These
ads promise a higher revenue potential, but with a greater cost to user experience. Because
they are likely to be “bad” and counted in ncb, I refer to them as “bad ads”. When using
appropriate utility functions, bad ads may be removed, demoted to a lower position, or re-
main in their position but pay a higher price. Each of these has different implications on
revenue, and I examined these implications as affected by different utility functions.

I defined a bad ad as an ad λ with relevance ρλ < 0.45 (1197 bids out of a total of
7504), and CTR πλ > 0.1. That selected close to a half of the bids (3451). The intersec-
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Figure 7.3: Revenue concession for: (i) demotion of bad ads, assuming all ads are shown,
(ii) removal of bad ads.

tion, containing 350 bids, defined the set of bad ads. With these definitions and with about
six ads per impression, a user views an attractive but irrelevant ad roughly once in three
search queries. Figure 7.3i shows how many bad ads were demoted when I used each of
the utility functions with tm = 0.4 (ta varies as above). UER is clearly dominated, because
it does not target bad ads specifically, while ORA achieves a somewhat better ratio than
the others. Here too, I point out that the additive tradeoff term improves performance. For
example, using ORA and tm = 0, between 80 and 100 bad ads are demoted with hardly any
effect on revenue. As evident from the charts of ORA and LIN-LC for tm = 0 and tm = 0.4,
this effect cannot be achieved by tm on its own.

Bad ads were removed, by being demoted below the top six positions, or sometimes
by showing less ads. The ratio of bad ad removal to revenue was similar for all utility
functions, except for UER (Figure 7.3ii). For example, 218 bad ads were removed by ORA
with ta = 30 and tm = 0.4, with revenue loss of 3.2%. Additionally, all utility functions
increase the average price paid by a bad ad that has not been demoted.

I conclude this section by describing a sample test point. LSCG with tm = 0.4 and
ta = 39, achieved relevance score (DCG) of 0.175 (compared to 0.083 of GSPR), shows 3.6
ads on average (instead of 5.11), removes 61 bad ads, and demotes 48. The other 58 bad
ads pay on average 2 cents more. This was achieved for a sacrifice of 6% of the short-term
revenues.

7.8 Long-Term Simulations

My basic postulation is that by incorporating user’s utility into the ranking, the publisher
may be sacrificing a portion of the short-term revenues, but increasing the potential for
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long-term revenues due to the greater trust that the users will have in the system. In this
section, I describe a dynamic simulation method in which I build a simple model of how
users react to clicking on relevant and irrelevant ads, and how their future behavior changes
accordingly. The dynamic simulations serve two purposes: first, to show that based on
several reasonable assumptions, using a ranking system that incorporates user utility can
lead to higher long-term revenues. Second, it can be used to help the publisher choose the
system parameters ta and tm.

The basic framework is as follows: a large number of search agents are querying the
search system. For each query, the system returns a set of ads using a ranking system cur-
rently tested. An agent gets a set of ads, and decides if and which ads to click on. Those ads
could be either relevant or not. Irrelevant ads decrease the trust of the agent in the system,
and with it the probability that he will click on ads in the future.

The experimental setup is as follows. I obtained bid data for a set of about 4000 arbi-
trarily chosen queries (not the same set used for the static simulations). In each simulation,
I chose a ranking system (with values for tm, ta and a utility type) and launched a large num-
ber of artificial agents (100,000). In each iteration, each agent selects a query at random
and obtains a set of ranked ads from the system. The agent scans and clicks on some of
the ads according to the model detailed below. The number of iterations that I use varies.
In particular, I do short-term simulations (500 iterations) and long-term simulations (2500
iterations). I compare the results of various simulations with respect to the revenue per
iteration and the total revenue.

7.8.1 Click Model
Agent i gets a set of results for a given query. It loops over the ads, and clicks on an ad in
current position j if the following two conditions hold:

1. The agent scanned the ad.
2. The expected utility of clicking the ad, according to the user’s utility function, is

positive.
I consider the act of scanning as “looking at the ad with intention to click on ads that seem
relevant”. To check the first condition, we need the probability of scanning an ad in position
j. This measure depends on the query, because the more commercially oriented the query
is, the more likely a user is to consider clicking on ads. The CTR of a pair (query, ad) is a
product of the probability of scanning and the probability that the ad is clicked given that
it was scanned. In the model the second term indicates the probability that a user considers
the snippet of the ad relevant. As before, I model the position dependent component of the
CTR, that is β j in α

j
λ

= β jπλ , as a query specific probability of scanning, and now πλ is
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the probability that the snippet is relevant.
Clearly, the probability of scanning (e.g. for position 1) for a query q cannot be lower

than the highest CTR of the set of ads for q, because in each click the ad must have been
scanned. Moreover, I make the assumption that there is at least one ad with a relevant snip-
pet in each set of results. That means that for the ad λ ∗ with the highest CTR in the set,
πλ ∗ = 1. As a result β j cannot be larger than α

j
λ ∗ . From these two properties we get that

β j = α
j

λ ∗ and πλ =
α

j
λ

α
j

λ∗
. Therefore, to decide whether agent i scans ad j the system flips

a coin with probability α
j

λ ∗ . Note that if an agent scans ad j− 1 and does not click, the
probability of scanning ad j is only the positional difference between j−1 and j, meaning

β j

β j−1 .
To compute the expected utility of a click, given that the ad is scanned, we need to

define the user’s belief over the ad’s relevance. Two signals affect this belief: the relevance
of the snippet πλ , and the history of ads that user encountered. The effect of the history
can be regarded as a measurement of the trust of the user in the system, or the probability,
in the user’s eyes, that if the snippet is relevant, the landing page would be relevant too.
Let ωi denote this belief. User i’s belief that the landing page of ad λ is relevant (ρ i

λ
) is a

product of the probability that the snippet is relevant, and the probability that the landing
page is relevant given that the snippet is relevant:

ρ
i
λ

= πλ ωi.

Given a user’s utility model, we can now compute the expected utility E i
u(λ ) for user i from

a click on λ . If the utility model is additive over the ads, the expected utility computation
need only consider the current ad. The expectation is taken over the two possible outcomes
of the click, that is that the landing page is relevant (icg) or not (icb):

E i
u(λ ) = ρ

i
λ

u(n1
cg)− (1−ρ

i
λ
)u(n1

cb).

For nonadditive utility functions, the search agent remembers the number of good, bad and
scanned ads resulted this far from the current query (ncg,ncb,ns respectively), and deter-
mines the expected utility of the next ad as follows:

E i
u(Λ j−1,λ ) = u(ncg +1,ncb,ns)ρ i

λ
+u(ncg,ncb +1,ns)(1−ρ

i
λ
)−u(ncg,ncb,ns). (7.18)

Note that we deduct the utility obtained so far to get the marginal effect of the next ad.
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It is left to discuss how the user computes and maintains ωi. ωi represents the likelihood
that the system will return a relevant page, given a relevant snippet. In other words, it is the
belief about the correlation between perceived relevance and real relevance. The user clicks
on an ad when he sufficiently believes that the ad is relevant, therefore we can determine
ωi by comparing the number of ads that the user clicked and were relevant to those that the
user clicked and were not relevant. I model this belief as a beta distribution over these pa-
rameters. Let αi denote the number of relevant ads that user i encountered, and βi denotes
the number of irrelevant ads. I define ωi = αi

αi+βi
, the mean of the beta distribution. α and

β are initialized in the beginning of the simulation, as described next. After each click, the
system flips a coin according to the computed probability of relevance of the landing page,
to determine whether the ad was relevant or not, and increments α or β accordingly.

An important simulation parameter is the initial pair α,β , that is the initial belief of the
user, and his confidence in that belief. When the user has an initial confident belief that the
system is trustworthy, the default ranking system will do well for a longer period of time.
Using the click model above, I found that the default ranking system returns a relevant ad
with probability 0.6 (six out of ten ads have ρλ > 0.5). In order to model transition from
the default system to a new one, each agent’s α parameter is drawn uniformly in the range
[0,120], and the β parameter is drawn from [0,80]. Using other values lead to different
results over a small number of iterations, but the results are not qualitatively different over
a large number of iterations.

The simulations do not model the possibility that advertisers respond to the new rank-
ing system and change their bid. I cannot rule out the possibility that the advertisers will
respond in a way that changes the results. However, it is reasonable to assume that adver-
tisers would be lead to improve the relevance of their landing page, and perhaps mitigate
the discrepancy between the snippet relevance and the real relevance, both of which are
desired effects.

7.8.2 Varying Tradeoff Knobs

In the first experiment, I used various combinations of ta and tm, and compared how the
amount of revenue achieved by each combination changed over time. In all the experiments
of this section I used LIN-LC as the utility function for the ranking system, and assumed
that agents’ utility function is LIN-LC as well. The combination of ta = 0 and tm = 0 is
equivalent to the default ranking system GSPR. Figure 7.4i shows the results during 400
iterations. Initially, the default ranking system provides higher revenue per iteration, but
that quickly changes in favor of the new ranking system. Interestingly, the combination
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Figure 7.4: Revenue each iteration, using various ta, tm, with different initial beliefs. (i)
α = 600, β = 400 (ii) α = 60, β = 40. Series names are ta, tm. “0,0” refers to GSPR.
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Figure 7.5: Total revenue for 2500 iterations, varying ta and tm. (i) varying tm, with ta be-
tween 0 and 50. m stands for tm. (ii) varying ta, with tm between 0 and 0.99. a stands for
ta.

with ta = 20, tm = 0.4 yields higher revenue than the default already in the first iteration,
meaning that the effect of better ranking leads to more clicks within the first impression.

Figure 7.4ii shows similar results, with the same mean, but a higher initial count: α is
drawn (uniformly) from [0,1200] and β from [0,800].

In Figures 7.4i and 7.4ii I used a few sample combinations of tradeoff knobs. Next, I
performed a more systematic study to optimize this choice. I compared the total revenue
achieved after 1500 iterations, when fixing the value of tm and varying ta (Figure 7.5i), and
the other way round (Figure 7.5ii). Evidently, it is beneficial to increase ta up to some point,
after which the long-term revenues start to decline slightly. The exact value of this point
depends on tm: for example, with tm = 0.4, a value of 30 for ta is sufficient. Note that the
starting point of the series tm = 0 represents the performance of the default system.
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7.8.3 Varying Utility Functions

The key question I examine in this section is whether having a system that models the util-
ity function used by the users results in higher long-term revenue than a system that does
not model it correctly. The relevance model is not sufficient to capture the effect of the
utility model associated with a user. For example, if the user considers the cost of click-
ing a bad ad higher than the value of seeing a good ad, it results in a more cautious click
model, but the result of the click in terms of user experience are not fed back into the model.
As describe next, I introduce this effect through the relevance count. This means that the
relevance count is now interpreted more broadly, as a general user satisfaction measure.

I first apply this idea to LIN-LC and LIN-HC. To model the effect of the utility on the
satisfaction, each good ad encountered is added to the count of relevant ads, weighed by
the utility of a single good ad. Each bad ad encountered is added to the count of irrele-
vant ads, weighed by the utility of a single bad ad. I performed two experiments. First, I
compared a system that uses LIN-LC with a system that uses LIN-HC given that the agents
are modeled with LIN-HC. Next, I compared the the two systems given that the agents are
modeled by LIN-LC. The results are after 2500 iterations (given ta = 20, tm = 0.5) indicate
that the system performs better when the utility is modeled correctly. Given LIN-HC users,
the revenue achieved by a LIN-HC system was 2.5% higher than the revenue achieved
by a LIN-LC system. Given LIN-LC users, the revenue achieved by a LIN-LC system
was slightly higher than the one achieved by LIN-HC system. When the tradeoff knobs are
lower, the impact of using the correct utility function is of course weaker, but the qualitative
result does not change.

Consider a user whose utility function is ORA, that is given that he encountered one
bad ad or more, it “erases” any positive experience from other ads in the same impression.
A way to model it in the simulations is as follows. Let α,β denote the counts of relevant
and irrelevant ads the user encountered, as before. The system accumulates the results of
an impression, and increase α by the number of relevant ads the user clicked on if and only
if he did not click on any bad ad. If he did click on at least one bad ad, only β increases,
by one.

I experimented with the value of ranking by ORA, compared to ranking with LIN-LC,
when the agents behave according to ORA. I got a consistent improvement of roughly 2.7%
in total revenues after 2500 iterations (tradeoff knobs as above). However, it turns out that
using ORA in the ranking model improves the long-term revenues even if the users behave
according to LIN-LC, but by a smaller margin, 1.6% (after 2500 rounds).

In the last simulation, I modeled a user whose utility function is LCBG, that is the cost
incurred by a bad ad is alleviated when another ad was helpful. Again I reflected the overall
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experience through the relevance count, as follows. A user whose utility function is LCBG
does not count the irrelevant ads within an impression that also produced relevant ads. Here
the results were clearly positive: when users behave according to LCBG, the system that
ranks with that function achieved about 2.8% higher total revenue (same parameters as
above). When users behave according to LIN-LC, the two ranking systems (using LCBG
and LIN-LC) achieved roughly the same amounts.

To conclude, I found a correlation between improvement in long-term revenues with a
correct modeling of the additive and non-additive utility function. As an exception, it seems
that using the more risk-averse ORA utility model in the ranking is generally beneficial in
the long-term.

7.9 Summary

The revenue model of sponsored search relies on the user clicks, which in turn depend on
whether or not the ads provide positive utility to the user. Therefore, to maintain search
traffic and ad-revenue for the long-term, it is important to address the user’s experience in
the ad selection mechanism. For this reason, I studied methods for incorporating the user
utility in Sponsored Search auctions. I proposed mechanisms in which utility user models
can be incorporated, and studied their properties via simulations. I also simulated long-term
effect of the new mechanism on the revenue, and showed that incorporating user’s utility
in the GSP mechanism, on the expense of short-term revenue, may increase the overall
revenues in the long-term. Simulations also provided indications that correct modeling of
user’s utility can improve those long-term revenues.
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Chapter 8

Conclusions

In this work I bring together two distinct areas of research: structured preference repre-
sentation, and multiattribute auctions. An auction is in essence a (multi-agent) preference
elicitation mechanism. In multiattribute auctions in particular, the preference elicitation
problem is complicated due to the typically large domain and the difficulty of comparing
outcomes over a large number of attributes. I showed how research results on structured
preference representation can be leveraged to simplify representation and elicitation of
preferences over such domains. My main contribution is therefore the novel application
of modern preference-handling tools in electronic trading, where it is much needed but has
not yet been applied systematically. My other contributions are in the area of structured
preference representation, where the trading domain serves as an inspiration for my work
on graphical models.

The first contribution to preference representation is in the extension of previous key
results in this field, which originally rely on the vNM framework, to the trading domain
(Chapter 3). The GAI framework, as defined by Fishburn (1967a), and later adapted to cap-
ture the structure resulting from a collection of the more intuitive CAI conditions (Bacchus
and Grove, 1995), is limited in the previous treatments to preferences over lotteries. The
willingness-to-pay representation does not involve lotteries, therefore the GAI factorization
of this type of functions requires its own representation theorem.

My main contribution in the area of preference representation is the introduction of
CUI networks (Chapter 6). (Conditional) Utility Independence is well-studied indepen-
dence concept, which relies on a relatively intuitive notion: the invariance of preference
order over one set of attributes to the value of another set of attributes. This invariance
condition qualifies UI under any cardinal preferences model, in contrast to additive inde-
pendence which rises from a fundamentally different set of axioms for each such model
(see Section 2.1.4). Moreover, UI is a more general independence concept than additive
independence, and not necessarily symmetric: it can be applied in one direction and allow
the accommodation of a potential dependency in the other direction. The CUI network
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is the first modern graphical model for utility independence. Due to the weaker indepen-
dence concept, it is capable of simplifying more complex domains where the stakes are
high enough to motivate the most accurate representation possible. This motivation points
back to the multiattribute electronic trading domain, which I believe provides the appro-
priate challenge and motivation for this new representation. For this reason some of the
algorithmic parts of the contribution are geared towards trading, and the main example of
the chapter is based on a procurement problem. I stress, however, that CUI networks are
as applicable to other domains, including typical AI problems involving decisions under
uncertainty.

In the multiattribute auctions area, the main difference between my approach and pre-
vious literature is in the application of advanced preference handling tools. Although
one might argue that multiattribute utility theory has been applied before in this domain
through use of the additive representation, such treatment is seriously limiting. In most
interesting cases preferences are not additive, and claims regarding efficiency of additive
mechanisms are not accurate when preferences exhibit interdependencies. In fact, as I
show experimentally in Chapter 4, auctions that are limited to an additive representation
may lose significant portions of the potential trading surplus. The approximately efficient
mechanism I introduce in Chapter 4 is unique compared to previous literature, by being
both expressive (traders’ preferences can exhibit interdependencies among attributes) and
tractable (performance is exponential only in the size of the GAI elements).

Furthermore, in Chapter 5 I introduce a practically important domain in which the addi-
tive representation is clearly short of capturing crucial preferences. These preferences are
typically referred to as allocation constraints. I show that despite the inherent dependency
that these constraints impose on different trades, preferences are still amenable to meaning-
ful factorization using the GAI representation. In Chapter 7 I introduce another domain in
which the additive representation misses potentially useful preference information. Here,
an additive representation of the search user’s utility leads to desirable economic proper-
ties of the resulting mechanism, but fails to account for natural dependencies between the
user’s value from one advertisement and his experience from the other advertisements. I
show how independence concepts introduced earlier can account for interdependencies but
yet reduce the representation to single-dimensional functions. It is crucial to understand
the utility of search users from sponsored-search advertisements, and incorporate it into the
auction mechanism, in order to retain the tremendous economic benefits of this application.

Multiattribute mechanism design is interesting for additional reasons, beyond the multi-
dimensional preference elicitation challenge. First, multiattribute mechanisms are typically
applied in highly valued business settings. Therefore, the preference elicitation problem
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gets even more difficult due to the strategic sensitivity of the preference information. As
for any trading mechanism for selfish agents, we must carefully evaluate the strategic con-
siderations of traders whose goal is to maximize their own utility. However, in this domain
in particular we must also consider the future implications of information revelation by the
traders. This privacy of information problem, which is in my view a major roadblock to
the practical implementation of previous multiattribute auctions research, reflects another
major distinction between my approach and most previous treatments of the domain. The
buyer’s preference information revealed to suppliers through the mechanisms proposed in
Chapters 4 and 5 is limited to be a small fraction of the utility function, as I show exper-
imentally in Chapter 4). As iterative auctions they also require limited revelation by the
suppliers.

The multiattribute allocation problem exhibits a rich mathematical structure, which I
believe can be leveraged to other areas in computer science, beyond trading. Combinato-
rial auctions have been shown to apply to various problems involving allocation of multiple
resources to potentially selfish agents. Similarly, multiattribute auctions can capture vari-
ous problems in which the allocation involves a multi-objective decision. That is, we need
not only to determine to which agent a resource should be allocated, but we also have to
consider how to configure the resource, while extracting preferences of the agents over the
configurations. For example, consider a server, that can allocate portions of its incoming
traffic to competing agents. The server can allocate sockets of different sizes, the larger
ones being more expensive to the server. The agents have different valuations over the at-
tention of the server, and in addition different requirements in terms of the volume of traffic
they need to deliver, and they therefore need to negotiate on the volume attribute, in addi-
tion to price. A direction for future research in this niche is therefore taking multiattribute
auctions closer to the core of computer science research.

Another potential direction is in other applications of structured preferences in elec-
tronic commerce. There are other social applications that could potentially benefit from
preference factorization, such as recommendation, voting, and ranking systems. A third
direction is to take a main idea developed here—the employment of advanced preference
representations in automation problems—to other fields in AI which could benefit from it.
As I argue in the introduction, preferences are a key component of most core AI areas. One
approach, taken in Chapter 6, is to separate the preference representation problem, simplify
it as much as possible, and apply it in whichever problem it is needed. It is plausible that
in some areas utility factorization can be employed directly within the reasoning frame-
work, as done here for multiattribute auctions. For example, Guestrin et al. (2003) apply
preference decomposition to Markov decision processes.
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To summarize, in this work I investigated the combination of preference handling and
electronic trading. This combination promises significant benefits to electronic trading
applications, which in turn inspire and yield advances of structured preference handling ap-
proaches. Beyond the accomplishments in this thesis, there are several promising directions
in which this research can progress further.
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Appendix A

Proofs

A.1 Chapter 3

A.1.1 Theorem 3.1

Proof. As clear from the development leading to (3.2), given the CUI conditions the rhs of
(3.2) is the same for any choice of pair Y 1,Y 2. WLOG I assume Y 1 �Y 2 and X0 � X . Now
suppose that g(·) > 1, meaning

u(X ,Y 2,Z)−u(X ,Y 1,Z) > u(X0,Y 2,Z)−u(X0,Y 1,Z),

or equivalently

u(X ,Y 2,Z)−u(X0,Y 1,Z) > u(X0,Y 2,Z)−u(X0,Y 1,Z)+u(X ,Y 1,Z)−u(X0,Y 1,Z).

This holds for any choice of X0. The reverse direction of (1) follows immediately, and
(2) follows with opposite inequality signs. When we use an equal sign above, we get the
definition of CDI.

A.1.2 Theorem 3.2

Proof. The proof is based on Keeney and Raiffa (1976) (KR), as explained below.
Assume that u(·) is normalized such that u(A0) = 0. For each attribute a ∈ A, let

a = {a}, and we know UI(a,a), therefore from Equation (2.1),

u(A) = f (a)+g(a)u(a,a0)
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With the assignment a0 we get

u(a0,a) = f (a)+g(a)u(a0,a0) = f (a)

Hence f (a) = u(a0,a), and g(a) = u(A)−u(a0,a)
u(a,a0) (this development is done by KR). With

u(A0) = 0, we get g(a) = u(A)−u(a0,a)
u(a,a0)−u(a0,a0) . This is a special case of g(·) as defined above for

the CUI condition. We can therefore use Theorem 3.1.
In proof of Theorem 6.1, KR define the MUI-factor as follows:

k =
g(a)−1
u(a0,a)

The denominator is always positive. From this and Theorem 3.1 we get the desired re-
sult.

A.1.3 Lemma 3.3 and Proposition 3.4

Proof. I prove Proposition 3.4. Lemma 3.3 falls out of the proof construction.
Let X0,Y 0 be arbitrary instantiations. I define

ψ1(X ,Z) = u(X ,Y 0,Z)−u(X0,Y 0,Z)

ψ2(Y,Z) = u(X0,Y,Z)

Note that ψ1 does not depend on the choice of Y 0 due to the CDI condition,

ψ1(X ,Z) = u(X ,Y,Z)−u(X0,Y,Z).

Thus,

ψ1(X ,Z)+ψ2(Y,Z)

= u(X ,Y,Z)−u(X0,Y,Z)+u(X0,Y,Z)

= u(X ,Y,Z).

That proves CDI sufficiency for the functional decomposition. For the other direction as-
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sume there exist ψ1 and ψ2 as in (3.3) and decompose u(A) as follows:

u(X ,Y,Z)−u(X0,Y,Z)

= ψ1(X ,Z)+ψ2(Y,Z)− (ψ1(X0,Z)+ψ2(Y,Z))

= ψ1(X ,Z)−ψ1(X0,Z).

Since the difference measurement does not depend on Y , we have CDI(X ,Y | Z).

A.1.4 Theorem 3.6

I first prove a somewhat weaker result.

Claim 1. There exists a collection Q = {C1, . . . ,Cw} of cliques of G, that includes all the

maximal cliques, and

u(A) =
w

∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤w
u([

k⋂
s=1

Cis]). (A.0)

Proof. Let G0 = (A,E0) be the complete graph over the nodes of G. Note that each edge
(x,y) ∈ E0 \E implies CDI(x,y). I use induction on a series of edge removals. starting
from the graph G0, at each step i we remove an edge in E0 \E to get graph Gi. After the
last step i = |E0|− |E| and G|E

0|−|E| = G. The induction properties maintained after each
step i are as follows:

1. Equation (1) holds for some collection Qi = {Ĉ1, . . . ,Ĉwi} of cliques of Gi.
2. For each maximal clique M of G there exists Ĉl ∈Qi such that M ⊆ Ĉl .

Since A is a clique in G0, in step 0, Q0 = {A} and both properties trivially hold. Following
the process for step 1 provides intuition as for how the final decomposition is obtained.
We pick a pair of nodes (x,y) such that CDI(x,y). By Lemma 3.3 (I use the notation
S−d = S\{d} for any set S):

u(A) = u(x,y,A−x,y) (A.1)

= u(x0,y,A−x,y)+u(x,y0,A−x,y)−u(x0,y0,A−x,y)

= u([A−x])+u([A−y])−u([A−x∩A−y]).

Define Q1 = {A−x,A−y}. Equation (A.1) shows that (1) holds for Q1, and it is easy to see
that the second induction property holds for Q1 as well.

Assuming the properties 1 and 2 hold at step i, I will prove for step i + 1. Let (x,y)
denote the edge removed in step i + 1. Let Ĉ1, . . . ,Ĉd (WLOG) indicate all the sets in Qi
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that include both x and y. Similar to (A.1), we observe that

u([Ĉ1]) = u([Ĉ−x
1 ])+u([Ĉ−y

1 ])−u([Ĉ−x
1 ∩Ĉ−y

1 ]). (A.2)

Similarly for any k = 1, . . . ,wi−1, and 1 < i1 < · · ·< ik ≤ wi,

u([
k⋂

s=1

Ĉis ∩Ĉ1]) = u([
k⋂

s=1

Ĉis ∩Ĉ−x
1 ])+u([

k⋂
s=1

Ĉis ∩Ĉ−y
1 ])−u([

k⋂
s=1

Ĉis ∩Ĉ−x
1 ∩Ĉ−y

1 ]). (A.3)

In (1) (assumed to hold before this step) each term that includes Ĉ1 can be substituted ac-
cording to (A.2) or (A.3). Doing so will result in (1) holding for the set (Qi \ {Ĉ1})∪
{Ĉ−x

1 ,Ĉ−y
1 }.

We repeat the same operation for C2, . . . ,Cd , and define the resulting collection

Qi+1 = (Qi \{Ĉ1, . . . ,Ĉd})∪{Ĉ−x
1 ,Ĉ−y

1 , . . . ,Ĉ−x
d ,Ĉ−y

d }.

All elements in Qi+1 are subsets of elements in Qi. Since the only difference between Gi

and Gi+1 is the removed edge (x,y), and since no set in Qi+1 includes both x and y, every
set in Qi+1 must be a clique in Gi+1. Also, if M is a maximal clique in G, then M ⊆ Ĉl for
some Ĉl ∈Qi. Since M cannot include both x and y, If l ∈ {1, . . . ,d} then either M ⊆ Ĉ−x

l

and/or M ⊆ Ĉ−y
l . In any case M is contained within an element of Qi+1. This proves the

induction step.
As a result, in the last step the decomposition (1) holds for the set Q = Q|E0|−|E|, which

is a set of cliques in G. Induction property 2 ensures that Q|E0|−|E| includes all maximal
cliques of G.

(Theorem 3.6). The result of Claim 1 can be strengthened such that the decomposition is
restricted to maximal cliques. Though the resulting set Q may include additional (smaller)
cliques, or multiple elements for the same clique, all the terms that correspond to those
redundant elements cancel themselves out. To see this, take an element Ĉp ∈Q which is
not a max clique, or a duplicate element for a maximal clique. In both cases there exists (at
least one) max clique M = Cq ∈Q such that Cp ⊆Cq. Clearly,

u([Cp]) = u([Cp∩Cq]).

Since these two terms appear in (1) with opposite signs they cancel out. More generally, we
assume WLOG that q = 1 and p = r. Then for any k = 1, . . . ,ri−2, and 1 < i1 < · · ·< ik < r,
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u([
k⋂

s=1

Cis ∩Cp]) = u([
k⋂

s=1

Cis ∩Cp∩Cq]) (A.4)

Since the intersection on the right hand side is over one more element than the one on the
left, their corresponding terms have opposite signs and cancel out. Clearly, any term in (1)
must appear in on of the sides of an instance of (A.4). Therefore all these terms cancel out
and we get (still p = w)

w

∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤w
u([

k⋂
s=1

Cis]) =
w−1

∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤w−1
u([

k⋂
s=1

Cis]).

Meaning that (1) holds for the collection of cliques Q \{Cp}. We do the same for the
next non maximal clique or duplicate element in Q \{Cp} and ultimately get that (1) holds
for the set of g maximal cliques of G.

From here, it is easy to see that the functions f1, . . . , fg can be defined according to
(3.5).

A.1.5 Theorem 3.7

Proof. To qualify as an MVF, we first need to define an order over preference differences.

Definition A.1. Let� be a quasi-linear preference order over (A, p), and let θ1,θ2,θ3,θ4 ∈
Θ. Then

[θ1,θ2]�∗ [θ3,θ4]

iff for any values p1, p2, p3, p4 of p such that (θ1, p1)∼ (θ2, p2) and (θ3, p3)∼ (θ4, p4),

p1− p2 ≤ p3− p4. (A.5)

Due to quasi-linearity, if Definition A.1 holds for one set of prices, it holds for any (un-
der the indifference restriction). It is immediate from the definition that the WTP function
is an MVF over �∗. The interpretation of the statement [θ1,θ2]�∗ [θ3,θ4] is that “willing-
ness to pay to improve from θ2 to θ1 is no greater than willingness to pay to improve from
θ4 to θ3”.
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A.2 Chapter 4

A.2.1 Proofs of Section 4.3.1

Lemma 4.1

Proof. Let θ be a consistent cover in Φ. Let µ ⊂ {1, . . . ,g} be any subtree of the GAI tree.
Let γ be the parent of the root of µ , or an arbitrary element out of µ if µ is disconnected
from the rest of the graph. Let θ̂ ∈Ψ be the source of θγ . Let y be the number of elements
in µ , and finally let θµ1, . . . ,θµy denote the sub-configurations in θ corresponding to the
elements in µ . I define the operation trim(µ,θ) as follows:

trim(µ,θ) = (θ̂µ1, . . . , θ̂µy ,θµ̄1, . . . ,θµ̄g−y).

That is we replace each of θµr by the corresponding sub-configuration in θ̂ . θ ′ =
trim(µ,θ) must be consistent: the elements θ̂µ1, . . . , θ̂µy are internally consistent because
they have a mutual source θ̂ , the other elements are internally consistent because they are
both sub-configurations of θ , and these two subsets can only intersect between the root of
µ and γ , which are consistent having a mutual source θ̂ . I call a trim operation simple if
θµ1, . . . ,θµy have a mutual source. A trivial trim is a trim of a disconnected component µ .

Claim 2. Let Ψ and Φ be defined as above, and let θ denote a suboptimal consistent cover

in Φ. If θ ′ = trim(µ,θ), and the trim operation is simple, then θ ′ must also be suboptimal.

Proof. Let θ̃ ∈ Ψ denote the single source of θµ1, . . . ,θµy . If θ ′ is optimal, meaning
πτ(θ ′) > πτ(θ), then

πτ(θ ′) = πτ(θ ′µ)+πτ(θ ′µ̄) > πτ(θµ)+πτ(θµ̄).

Since θµ = θ ′µ
πτ(θ ′µ) > πτ(θµ)

Define the following cover:

θ̂ = (θ ′µ1
, . . . ,θ ′µy

, θ̃µ̄1, . . . , θ̃µ̄r−y)

θ̂ is consistent, since again the only intersection is between the root of µ (in θ ′) which
is consistent with the same element in θ , and its parent (in θ̃ ) which is also consistent with
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its parallel in θ . Now

πτ(θ̂) = πτ(θ ′µ)+πτ(θ̃µ̄) > πτ(θµ)+πτ(θ̃µ̄) = πτ(θ̃).

The last equation follows from the fact that all sub-configurations of θµ are from θ̃ . This
contradicts optimality of θ̃ ∈Ψ.

Let θ 1 be a consistent cover of sub-configurations from configurations in Ψ such that
πτ(θ 1) is suboptimal. We now perform a series of trim operations, resulting in a series
θ 1, . . . ,θ L (L ≤ g). The last element θ L is such that all its element have a mutual source,
meaning θ L ∈ Ψ. If I show that in each step the trim is simple, the result θ g must be
suboptimal contradicting optimality of Ψ.

I define a series µ1, ...,µg, by traversing each tree in order corresponding to backtrack-
ing in Depth-First-Search: that is, starting from the rightmost leaf, next its siblings, next
their parent, and in general once all its children of a node γ j are visited, the next µ j is the
subtree of γ j. Each time we get to a leaf we start from an empty set again, therefore each
µ j corresponds to a subtree. Clearly, trim(µ j,θ j) is simple because for each leaf |µ j|= 1,
and after trim(µ j,θ j) all elements of µ j+1 have a mutual source therefore trim(µ j+1,θ j+1)
is also simple. It is possible that L < g because if the subtree µ j and its parent γ already
have a mutual source no trim is needed.

Lemma 4.3

Proof. We perform the same series of trim operations as in the proof of Lemma 4.1.
However, here πt

τ(θ
j+1) can be up to δ above configurations in Ψ without breaking δ -

optimality of Ψ. Therefore instead of claiming that if θ j is suboptimal so is θ j+1, I
claim πt(θ j+1)≤ πt(θ j)+ ε . The number of trim operations is clearly bounded by g−1,
therefore after the final trim L, πτ(θ L) ≤ πτ(θ 1)+ (g− 1)δ . Let M = maxθ∈Θ πτ(θ). If
πτ(θ 1) < M−gδ then πτ(θ L) < M−δ and this is a contradiction since θ L ∈Ψ.

Lemma 4.5

Proof. I prove the lemma per each tree G j. The optimal values for disconnected compo-
nents are independent of each other hence if the maximal profit for each component does
not change the combined maximal profit does not change as well. If the price of θ ′j was
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reduced during phase A, that is pt+1(θ ′j) = pt(θ ′j)−δ , it must be the case that some w≤ g j

sub-configurations of θ ′j are not in M t
j , and δ = wε

g . The definition of M t
j ensures

π
t
b(θ
′
j) < max

θ∈Θ

π
t
b(θ j)−g j

ε

g
.

Therefore,

π
t+1
b (θ ′) = π

t(θ ′)+δ = π
t(θ ′)+

wε

g
≤max

θ∈Θ

π
t
b(θ j).

This is true for any configuration whose profit improves, therefore the maximal buyer
profit does not change during phase A.

Lemma 4.6

Proof. In each round t < T of phase A there exists an active seller i for whom Bt
i ∩Mt = /0.

However to be active in round t, Bt
i 6= /0. Let θ̂ ∈ Bt

i. If ∀r.θ̂r ∈M t , then θ̂ ∈ Mt by
definition of Mt . Therefore there must be θ̂r 6∈M t .

Lemma 4.7

Proof. By Lemma 4.6 prices must go down in every round of phase A. Lemma 4.5 ensures
a lower bound on how much prices can be reduced during phase A, therefore the auction
either terminates in phase A or must reach condition [SWITCH].

We set the initial prices are high such that maxθ∈Θ π1
b (θ) < 0, and by Lemma 4.5

maxθ∈Θ πt
b(θ) < 0 during phase A. The assumption is that the efficient allocation (θ ∗, i∗)

provides positive welfare, that is σi∗(θ ∗) = πt
b(θ
∗)+ πt

i∗(θ
∗) > 0. si∗ is SB therefore she

will leave the auction only when πt
i∗(θ

∗) < 0. This can happen only when πt
b(θ
∗) > 0,

therefore si∗ does not drop in phase A hence the auction cannot terminate before reaching
condition [SWITCH].
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Lemma 4.8

Proof. ηi is chosen to maximize the buyer’s surplus out of Bt
i at the end of phase A. Since

Bt
i ∩Mt 6= /0, clearly ηi ∈Mt . From Corollary 4.4 and Corollary 4.2, for any θ̃ ,

π
T
b (ηi)≥ π

T
b (θ̃)− (e+1)ε

π
T
i (ηi)≥ π

T
i (θ̃)

⇒ σi(ηi)≥ σi(θ̃)− (e+1)ε

Lemma 4.9

Proof. From SB and the definition of phase B, sĩ drops when ∆ > πT
ĩ (ηĩ). If si did not drop

before that point then πT
i (ηi)≥ ∆− ε > πT

ĩ (ηĩ)− ε . Together with ηi ∈Mt we get

π
T
b (ηi)+π

T
i (ηi)≥max

θ∈Θ

π
T
b (θ)+π

T
ĩ (ηĩ)− (e+2)ε.

From Corollary 4.2, πT
ĩ (ηĩ) = maxθ∈Θ πT

ĩ (θ). Therefore

σi(ηi) = π
T
b (ηi)+π

T
i (ηi)≥

max
θ∈Θ

π
T
b (θ)+max

θ∈Θ

π
T
ĩ (θ)− (e+2)ε ≥max

θ∈Θ

σĩ(θ)− (e+2)ε.

Theorem 4.10

Proof. From Lemma 4.7 the auction terminates with an allocation (si,ηi). From Lemma
4.8, the theorem is immediate in case the winning seller si is the efficient seller. Otherwise
the efficient seller is sĩ who dropped before or with si. The result is now immediate from
Lemma 4.9.

Lemma 4.11

Proof. Trivially, we consider only the winning seller si. First, assume the final price is not
above the buyer’s valuation. The payment to the winning seller is pT (ηi)−∆. Let s j be the
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second best seller. From the timing that s j drops,

∆+ ε > π
T
j (η j) = max

θ∈Θ

π
T
j (θ). (A.6)

From Corollary 4.4,

ub(ηi)− pT (ηi)≥max
θ∈Θ

π
T
b (θ)− (e+1)ε.

Therefore (using (A.6))

pT (ηi)−∆≤ ub(ηi)−max
θ∈Θ

πb(θ)+(e+1)ε−∆ <

ub(ηi)−max
θ∈Θ

π
T
b (θ)+(e+2)ε−max

θ∈Θ

π
T
j (θ)≤ ub(ηi)−max

θ∈Θ

σ j(θ)+(e+2)ε (A.7)

Also from the timing of s j’s drop

∆≤ π
T
j (η j)+ ε

Meaning:
pT (η j)−∆≥ c j(η j)− ε (A.8)

From Corollary 4.4

ub(ηi)− pT (ηi)≤ ub(η j)− pT (η j)+(e+1)ε

Therefore (using (A.8))

pT (ηi)−∆≥ ub(ηi)−ub(η j)+ pT (η j)− (e+1)ε−∆≥

ub(ηi)− (ub(η j)− c j(η j))− ε− (e+1)ε ≥ ub(ηi)−max
θ∈Θ

σ j(θ)− (e+2)ε (A.9)

Equations (A.7) and (A.9) place the payment pT (ηi)−∆ within (e + 2)ε from si’s VCG
payment.

In the case that final price is above buyer’s valuation the payment ub(ηi) is exactly the
VCG payment.
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Theorem 4.12

Proof. Let s1 play some arbitrary strategy ρ1 against SB sellers s2, . . . ,sn. If s1 does not
win she would clearly have done no worse using SB, therefore we assume s1 wins η1 in
final price p̃ and that she gains at least (3e+5)ε from the trade. Let i ∈ 2, . . .n. The calcu-
lation of (A.7) assumed nothing on the winning trader’s strategy, therefore it applies here
as well:

p̃ = pT (η1)−∆≤ ub(η1)−max
θ

σi(θ)+(e+2)ε (A.10)

Next, define the following cost function: ĉ1(η1) = p̃− (2e+3)ε and ĉ1(θ ′) = ∞,∀θ ′ 6= η1.
Assume s1 plays SB for ĉ1.

Claim 3. By playing SB assuming cost ĉ1, s1 is still the winner, and her profit (wrt to c1(·))
is within (2e+3)ε of her profit playing ρ1.

Proof. Clearly, s1 bids only on η1. Let p̂(·) denote prices in the end of phase A in the new
instance of the auction, let π̂b(·) denote the buyer’s profit, and let ∆̂ be the final discount.
Now assume that prices reach s1’s limit, that is ∆̂ = p̂(η1)− (p̃− (2e+3)ε).

Using (A.10),

∆̂ = p̂T (η1)− p̃+(2e+3)ε

> ub(η1)− π̂
T
b (η1)− (ub(η1)−max

θ

σi(θ)+(e+2)ε)+(2e+3)ε

= max
θ

σi(θ)− π̂
T
b (η1)+(e+1)ε

(A.11)

Let η̂i denote the configuration chosen for i at the end of phase A in the new instance.
Since η̂i ∈MT in the second instance, we get that π̂T

b (η̂i)≥ π̂T
b (η1)− (e+1)ε . Therefore

∆̂≥ σi(η̂i)− π̂
T
b (η̂i) = p̂T (η̂i)− ci(η̂i) (A.12)

That shows that s1 wins in the second instance as well, and since the value of ∆̂ above is
the maximal value in which the best si, i = 2, . . .n leaves the auction, the final price p̂ paid
to s1 is at least p̃− (2e+3)ε .

From Lemma 4.11:

p̂≤VCG(ĉ1,c2, . . . ,cn)+(e+2)ε
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Truthful reporting is a dominant strategy for sellers in one-sided VCG auctions. Therefore

VCG(ĉ1,c2, . . . ,cn)≤VCG(c1,c2, . . . ,cn).

With the result of the claim we get

p̃≤ p̂+(2e+3)ε ≤VCG(c1,c2, . . . ,cn)+(3e+5)ε.

Therefore by playing ρ1, s1 could not have gained more than (3e+5)ε above her worst-
case payoff for playing SB with respect to her true cost c1.

A.2.2 Proposition 4.13

Proof. For simplicity of notations I assume that the GAI-tree is connected. The exten-
sion to multiple connected components is immediate since each component is optimized
separately.

As mentioned, functions in GAI format can be optimized using variable elimination
schemes. In particular I refer to Nilsson (1998), on which the partitioning method below is
based.

Finding the best configuration is exponential in the tree-width of the CDI-map and
therefore linear in |I|. The sub-configurations of the optimum is obviously in M t . Next we
need to find the second-best configuration, and so on. Each such optimization is equivalent
to finding the optimal configuration in Θ\Mt , and this can be done by first performing each
of the following g optimizations:

Θi = {θ ∈Θ | θ1, . . . ,θi−1 ∈M t and θi /∈M t}

θ
i = max

θ∈Θi
π

t
b(θ)

.
The best configuration in Θ\Mt will simply be

θ
∗ = max

i=1,...,g
π

t
b(θ

i)

If πt
b(θ
∗)≥maxθ∈Θ πt

b(θ)−ε , then each sub-configuration of θ ∗ that is not already in M t

is added to M t . Otherwise, M t is ready.
Each maximization adds at least one sub-configuration to M t or ends the computa-

tion for round t. Therefore the number of times this task is done per round is bounded by
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the number of sub-configurations |I| plus one. Moreover, M t is monotonically increas-
ing in the auction hence the total number of times this task is done throughout the auction
is bounded by |I|+ T . By considering that each such task takes time O(|I|) we get the
required results.

A.3 Chapter 5

A.3.1 Theorem 5.1

Proof. By linear trade utility,

ub([t j]) = gb(q j)ub([t1
j ])

Therefore, for any T ⊂T , based on the GAI decomposition in (5.3):

∑
b∈B

ub(Tb)−∑
s∈S

us(Ts) =

∑
b∈B

|S|

∑
j=1

gb(q j)ub([t1
j ])−∑

s∈S

|B|

∑
j=1

gs(q j)us([t1
j ])+ ∑

b∈B
(ub([~qb])−

|S|

∑
j=1

ub([q j]))−∑
s∈S

(us([~qs])−
|B|

∑
j=1

us([q j])) (A.13)

Let t ′= (θ ′,q′,b′,s′), such that q′< qb′ . Clearly, under free disposal (and our non-zero util-
ity assumption) a solution including such trade cannot be optimal, since the total welfare
is higher without that trade. A trade for which q′ > q̄s′ will not occur due to infinite cost.
If q′ > q̄b′ , modifying the trade with q′ = q̄b′ cannot decrease welfare: it does not decrease
b′’s utility and cannot decrease a seller’s cost (recall that the claim is that there exists at
trade that consists of solutions to MMP). We can therefore assume that ∀b, j,q j is within
both ranges, and gb(q j) = gs j(q j) = q j.

We can now replace gb(q j) and gs j(q j) in (A.13) with q j. Using (5.1) we observe,

∑
b∈B

|S|

∑
j=1

q jub([t1
j ])−∑

s∈S

|B|

∑
j=1

q jus([t1
j ]) =

∑
b∈B

|S|

∑
j=1

q j(ub([t1
j ])−us j([t

1
j ])) = ∑

b∈B

|S|

∑
j=1

q j(µb(θ j,s j)−µs j(θ j,b)) (A.14)
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From (A.13) and (A.14), the solution to GMAP is equivalent to

max
T⊂T

(∑
b∈B

|S|

∑
j=1

q j(µb(θ j,s j)−µs j(θ j,b))+ ∑
b∈B

(ub([~qb])−

|S|

∑
j=1

ub([q j]))− (∑
s∈S

(us([~qs])−
|B|

∑
j=1

us([q j])))) (A.15)

For any fixed choice of ~q, this term is maximized by picking the maximal value for each
of the terms (µb(θ j,s j)− µs j(θ j,b)), each of which is a solution to MMP for the pair of
traders of trade t j. Note that the values for ~q are chosen independently of configurations.

To prove the necessity of configuration aggregation, we assume that it does not hold,
that is there exists a trader b1 whose utility ub̂ includes a GAI element Id that includes ei-
ther the pair of attributes (ai

j,a
h
k) for some attribute indices i,h and trades j 6= k, or the pair

(ai
j,qk) (again j 6= k). It is sufficient to show an instance of the problem in which the solu-

tion to GMAP includes suboptimal solutions to MMP. Indeed, assume there exists a utility
component f (ai

j,a
h
k) (potentially depending on more attributes). Let θ̂ = â1

j , . . . , â
m
j be a bi-

laterally suboptimal configuration to b1 and sk, and θ̃ = ã1
k , . . . , ã

m
k an optimal configuration

(solves MMP(b1,sk)).
We could set f (âi

j, ã
h
k) high enough to cause GMAP to pick θ̂ for the trade between b1

and s j. Similarly this can be done in the case that the additional component is (ai
j,qk).

A.3.2 Theorem 5.2

Proof. Let T̂ represent the set of trades which is the solution to GMAP. Define n = |S|, and
let q′1, . . . ,q

′
n represent the quantity allocated to each seller (some might be zero), for the

configurations θ1, . . . ,θn respectively. We decompose buyer’s utility by (5.5). Then

σ(T̂ ) =
n

∑
j=1

(q′j(µb(θ j)−µ j(θ j))+ f q
b (~q) (A.16)

By Lemma 4.8, ∀ j = 1, . . . ,n,

µb(θ j)−µ j(θ j)≤ ε(e+1)+ µb(η j)−µ j(η j)
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And since q = ∑
n
i=1 q′j,

n

∑
j=1

(q′j(µb(θ j) − µ j(θ j)) ≤ qε(e + 1) +
n

∑
j=1

(q′j(µb(η j) − µ j(η j)) (A.17)

Note that the winner determination problem (WDP) solved by Phase B is almost exactly
GMAP, with the one difference that each seller s j supplies the configuration η j. We can
construct a solution to the WDP as follows: take the solution to GMAP from (A.16), and
replace each θ j with η j. This is a valid solution to Phase B WDP, and yet (by (A.17)) it
must be within qε(e+1) from the solution to GMAP.

A.3.3 Theorem 5.3

Proof. We assume all traders play SB, and examine how much can s1 gain by deviating.
Phase B is a (seller-side) VCG mechanism, whose only inputs are the values of

vi = πi(ηi)∀i (for the purpose of the proof we can assume that sellers that dropped out
during Phase A, continued to bid with negative valuations, and participate in Phase B with
their appropriate negative values for vi).

Therefore, the only way in which s1 could gain is by affecting the values of vi. To im-
prove her own profit, s1 would either improve her own value v1 or reduce her competitors’
values. Note that σi(ηi) = πb(ηi)+ vi. By Lemma 4.8, if si plays SB,

MMPi ≥ πb(ηi)+ vi ≥MMPi− ε(e+1)

From Lemma 4.5 the buyer’s maximal utility during Phase A is a constant MU , and
therefore

MU ≥ πb(ηi)≥MU− ε(e+1)

Together it shows that s1 cannot affect vi by more than 2ε(e + 1). Note that this potential
gain is per unit, therefore totals in 2qε(e+1)

The same two equations hold for v1 if s1 was to play SB, therefore by deviation s1

cannot improve v1 by more than 2ε(e+1) compared to playing SB. This is again per unit,
therefore the total possible gain from deviation is 4qε(e+1).
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A.4 Chapter 6

A.4.1 Proposition 6.1

Proof. By the definitions of Pa(x) and P(x), (6.3) holds when replacing Dn(x) with D̃n(x).
From the definition of CUI, it is straightforward that

CUI(A\ (Y ∪W ) , Y |W )⇒ CUI(A\ (Y ∪W ∪Z) , Y |W ∪Z),

because invariance of preference order over A \ (Y ∪W ) implies invariance of preference
order over its subset A \ (Y ∪W ∪Z), when the difference set Z is fixed. Given (6.2), and
taking W = Pa(x)∪ D̃n(x) and Z = Dn(x)\ D̃n(x), we get (6.3).

A.4.2 Lemma 6.3

Proof. Let Z = A \ (X ∪Y ) and C = A \ (A∪B). We simply apply the two independence
conditions consequentially, and we can define f̂ , ĝ such that:

u(A) = u(XY Z) = f (Y Z)+g(Y Z)u([A\Y ]) = f (Y Z)+g(Y Z)( f ′((BC)\Y )

+g′((BC)\Y )u([A\ (Y B)])) = f̂ (ZBYC)+ ĝ(ZBYC)u(A\ (Y B)).

Since Z∪Y ∪B∪C = A\(A∩X), the last decomposition is equivalent to the decomposition
(2.2) for the condition CUI(A∩X , Y ∪B).

A.4.3 Proposition 6.5

Proof. Let y /∈ X ∪Ch(X)∪An(X). Then clearly ∀x ∈ X ,x /∈ Pa(y)∪Dn(y). Hence from
Proposition 6.1, CUI(X ,y). We apply Lemma 6.3 iteratively for each y /∈ X ∪Ch(X)∪
An(X) (note that the first argument is X for each CUI condition, so it is X in the result as
well), and get the desired result.

A.4.4 Proposition 6.6

Proof. A CAI condition is stronger than a CUI condition, in that CAI(x,y)⇒ CUI(x,y)∧
CUI(y,x). To be a CUI network, for each node xi it must be the case that all other nodes
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are CUI of it given its parents and descendants. This is obvious since xi is CAI of all other
nodes given its parents and children.

A.4.5 Lemma 6.7

Proof. To determine hx j(·), any y ∈ Sc(x j) needs to be determined. If y ∈ {xi} ∪ Sc(xi)
we are done, if not its own scope is covered and therefore recursively determined by the
assignment to {xi}∪Sc(xi).

A.4.6 Lemma 6.8

I first introduce two additional lemmas.

Lemma A.1. Ch({xi}∪Co(xi))⊆ ({xi}∪Sc(xi)∪Co(xi))

Proof. Let x j ∈ {xi}∪Co(xi), and y ∈ Ch(x j). If x j = xi the proof is immediate because
Ch(xi)⊆ Sc(xi). Assume x j ∈Co(xi). We know from Definition 6.4 that Ch(x j)⊆ Sc(x j)⊆
({xi}∪Sc(xi)∪Co(xi)), and this proves the lemma.

Lemma A.2. An({xi}∪Co(xi))⊆Co(xi)

Proof. Let x j ∈ An(xi) (clearly j < i, therefore x j /∈ Sc(xi)). Let x j1 ∈ Sc(x j). Then j1 > j

and there is an undirected path from x j1 to x j, not blocked by Sc(x j). If j1 ≥ i, then
x j1 ∈ Sc(xi)∪{xi} because it has an unblocked path to x j (and from there to xi). Other-
wise, let x j2 ∈ Sc(x j1), and apply the same argument to x j2 . We continue until x jk such that
∀xy ∈ Sc(x jk), y > i at which point xy ∈ Sc(xi)∪{xi} by the path xy,x jk , . . . ,x j1,x j,xi and
the recursion halts (note that it includes empty scopes), proving that x j ∈Co(xi).

It is left to prove that An(Co(xi)) ⊆Co(xi). Let x j ∈Co(xi),y ∈ An(x j). Applying the
first part of the proof on x j, we get that y∈Co(x j). From Definition of Co(x j), we get y < j
and ∀w ∈ Sc(y), either w = x j, w ∈ Sc(x j) or w ∈Co(x j). To show that y ∈Co(xi), we need
to prove for each of the cases that w ∈ {xi}∪Sc(xi)∪Co(xi).

1. If w = x j immediately w ∈Co(xi).
2. If w ∈ Sc(x j), from x j ∈Co(xi) we get that either w = xi, w ∈ Sc(xi) or w ∈Co(xi).
3. If w ∈Co(x j), we repeat the argument recursively ∀z ∈ Sc(w). Note that z precedes

w therefore the recursion will halt at some point.

Lemma 6.8. Let X = {xi}∪Co(xi). From Lemma A.2, X has no external ancestors. From
Lemma A.1, all external children of X are in Sc(xi). Therefore A\ (X ∪An(X)∪Ch(X)) =
A\ (X ∪Sc(xi)) and the result is immediate from Proposition 6.5.
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A.4.7 Proposition 6.9

Proof. Let x be a node in G′. Let Y = A\ (x∪ In(x)) in G and Ŷ = A\ (x∪Pa(x)∪Dn(x))
in G′. By definition of G, we know that CAI(Y,x), so also CUI(Y,x). Let y /∈ Y,y 6= x (so
y ∈ In(x) in G). If y ∈ Ŷ , then y /∈ Pa(x) = In(x) in G′. Then the arc (y,x) was removed,
meaning that y ∈ Dn(x). It therefore must be the case that y /∈ Ŷ . Therefore Ŷ ⊆ Y hence
CUI(Ŷ ,x).

A.4.8 Proposition 6.10

Proof. For G to become a CUI tree, for each cycle at least one weak link must be removed.
Since (yi,yi+1) is the only weak link for c, it must be removed. By Proposition 6.9, the
variable ordering must ensure that yi+1 is an ancestor of yi. This can be done through the
path according to the order of p, or there might be another path from yi+1 to yi. Let p1 be
such path. Then the combination of p1 and p is another cycle c1, which therefore must be
broken. Since p comprises of strong links, there must be at least one weak link (u,v) in
p1. For (u,v) to be removed, v must be an ancestor of u. This can be done through the
path in the cycle c1, and this path includes p, or through another path if such exists, for
which we can repeat the argument. At each stage we get a larger cycle ci, and a larger path
pi ⊃ pi−1. Therefore at some point there will be just one path pi that must be guaranteed
by the variable ordering, and this path includes p.

A.4.9 Proposition 6.11
Proof. I show that Algorithm CUI-Nested leads to a functional decomposition over cliques.
The outer loop in the algorithm maintains the following iteration properties:

1. ∀a ∈ Ai
j,Q

i
j ⊆ Pa(a)

2. u j
i is defined over Ki

j
3. Ai

j∪ x j is a clique
These properties hold trivially after initialization. Assume they are valid for all factors
stored in the network until outer iteration j and inner iteration i, I next show that they
remain valid for each factor ud

r that is created in iteration j, i:
1. By definition Ad

r = Ai
j ∪ x j. From previous iteration and definition of Qd

r , ∀a ∈
Ai

j,Q
d
r ⊆ Qi

j ⊆ Pa(a). From definitions of Qi
j and Qd

r we get Pa(x j) ⊇ Qi
j ⊇ Qd

r ,
and together it yields the result.

2. ud
r is a factor in the CUI decomposition of ui

j(K
i
j) over Gi

j. Its scope contains: (i)
the nodes that are not affected by the last CUI decomposition, i.e. in Ki

j \Qi
j =

Ai
j ∪ x j = Ad

r , (ii) its node xr, and (iii) the parents Pa(xr) which were not fixed
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in ui
j (i.e. Pa(xr ∩Ki

j)). We know Ki
j = Ai

j ∪ x j ∪Qi
j, and x j /∈ Pa(xr) (because

xr ∈ Pa(x j)), and also Pa(xr)∩Ai
j = /0 (using a similar argument and property 1).

Therefore (Pa(xr)∩Ki
j)⊂ Qi

j, and from (i),(ii),(iii) we get that Kd
r = Ad

r ∪ xr∪Qd
r .

3. Ad
r is a clique by its definition and the same property of previous iteration. xr ∈ Qi

j,
therefore from property 1 of previous iteration xr ∈ Pa(a) for each a ∈ Ai

j. Also
xr ∈Qi

j⊆Pa(x j) (the last containment is immediate from definition of Qi
j). Therefore

xr is a parent of all members of Ad
r , and as a result Ad

r ∪ xr is a clique.
By the iteration properties, either Kd

r is a clique, or Qd
r is non empty and decomposition

can be applied once we reach node r in the outer loop. At the end of the process all factors
which are not defined on cliques where removed. All the factors that remained are defined
on cliques. u(A) can be still represented by the new set of factors since we only applied
valid decompositions to its factors.
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Appendix B

Additional Simulation Data

For the sake of completeness, I provide the results of the tests described in Section 4.6.1.
In all the tests I used a GAI structure of 10 attributes with ξ = 3 and e = 5. Table B.1
summarizes the results of varying the means and variances. The general seller mean is 600
in all the tests. The results also include a second-score auction (SE-SC) (in which sellers
are provided with the buyer’s utility function) which is guaranteed to be within δ of the
optimum given SB sellers. In addition, I provide the result of an AP auction that uses a
randomly generated additive utility function (RAND)—which obviously performs much
worse than AP. The results in which all auctions achieve maximal efficiency occur in the
two cases where the surplus of all the auctions is zero, because the buyer’s mean is above
the sellers’, and the variance is low. Figure B.1 shows the performance of GAI and AP as
a function of the number of sellers m and the size of the attribute domain d.
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Figure B.1: Efficiency of each auction as a function of: (i) the number of sellers (m), (ii)
the size of the domain of each attribute (d).
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SE-SC GAI AP RAND Buyer Seller Variance
1 0.982 0.781 0.545 700 600 250
1 0.994 0.901 0.838 600 600 250
1 0.995 0.936 0.905 500 600 250
1 0.997 0.958 0.927 400 600 250

0.999 0.997 0.966 0.942 300 600 250
1 0.960 0.625 0.462 700 600 200
1 0.991 0.898 0.819 600 600 200
1 0.992 0.927 0.912 500 600 200
1 0.996 0.962 0.949 400 600 200
1 0.997 0.971 0.950 300 600 200
1 1 1 1 700 600 100

0.999 0.963 0.906 0.831 600 600 100
0.999 0.984 0.955 0.939 500 600 100

1 0.991 0.970 0.962 400 600 100
1 0.994 0.981 0.974 300 600 100
1 1 1 1 700 600 50

0.999 0.914 0.908 0.830 600 600 50
1 0.974 0.972 0.962 500 600 50
1 0.988 0.985 0.981 400 600 50

0.999 0.989 0.989 0.986 300 600 50

Table B.1: Efficiency achieved by each auction type, given buyer and seller means, and
variance of both.
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