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CHAPTER I 

 

INTRODUCTION 

 

 

Studying the thermodynamic properties of minerals and their phase equilibria 

under mantle conditions is important to mantle petrology and metamorphic petrology. 

Not only can the composition and structure of the Earth‟s mantle be better constrained, 

but also the tectonic history of ultra-high pressure (UHP) metamorphic rocks, including 

the pressure-temperature-time (P-T-t) path, can be better constrained. Generally speaking, 

there are two independent ways to study the phase equilibria of silicates under mantle 

conditions: either by doing high pressure and high temperature phase equilibrium 

experiments, or through thermodynamic calculation. Although doing phase equilibrium 

experiments is the most common way, thermodynamic calculation is used in this 

dissertation because it has two major advantages over the experiments. Compared with 

phase equilibrium experiments which are usually done at high temperatures, the 

thermodynamic calculation can cover the whole temperature range. Secondly, the slope 

of the phase transition boundary can be determined more precisely by thermodynamic 

calculation, especially for sluggish reactions involving silicates.  

Unfortunately, pure thermodynamic studies of phase transitions under mantle 
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conditions are extremely difficult to undertake because of the lack of low-temperature 

heat capacity data of many mantle phases. Heat capacity is a fundamental, material-

specific thermodynamic property, which provides the most precise way to obtain the 

entropy value, another critical property requisite for thermodynamic modeling of the 

phase relations in the Earth‟s interior. On the other hand, these high pressure phases must 

be synthesized experimentally, and the minimum amount of sample needed for low-

temperature heat capacity measurement by conventional low-temperature adiabatic 

calorimetry (low-TAC), which is 10-30 grams in general, would take hundreds of 

experimental runs just to make enough samples, hence prohibiting the heat capacity 

measurement in practice. However, the recently developed heat capacity option of the 

Physical Properties Measurement System (PPMS, produced by Quantum Design), 

based on heat-pulse calorimetry (HPC), which can give precise low-temperature heat 

capacity measurements of milligram-sized samples, provides an excellent solution to the 

dilemma. In this dissertation, PPMS is used to measure the low-temperature heat 

capacity data of some selected mantle phases, and the phase equilibria related to them are 

studied thermodynamically. 

The low-temperature heat capacity data of K-hollandite (KAlSi3O8), a phase 

isostructural to hollandite (BaMn8O16) and Si-wadeite (K2Si4O9), a phase isostructural to 

wadeite (K2ZrSi3O9) are reported in Chapter II and Chapter III, respectively. These two 

phases were selected because both of them are related to sanidine, one of the most 

abundant minerals of the continental crust. Sanidine or its polymorphs can be transported 
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into UHP condition along with the subducted slab, where it will transform to Si-wadeite 

and K-hollandite. The Si-wadeite forms in the coesite stability field and K-hollandite in 

the stishovite stability field, so they may serve as index minerals further delineating the 

pressures of UHP metamorphic rocks. In addition, 
40

K is an important heat source in the 

evolutionary history of the Earth, and previous experimental studies showed that Si-

wadeite and K-hollandite are stable phases at conditions corresponding to the Earth‟s 

upper mantle and transition zone (Ringwood et al. 1967; Kinomura et al. 1975; Yagi et al. 

1994; Urakawa et al. 1994). Therefore these two phases may be the potential reservoir of 

potassium in the upper mantle and transition zone. However, the phase equilibria related 

to K-hollandite and Si-wadeite are still not well constrained in terms of the slope of the 

reactions. The purpose of this research is to accurately study the phase boundaries in the 

system K2O−Al2O3−SiO2−H2O by thermodynamic calculation with the help of newly 

measured heat capacity data of K-hollandite and Si-wadeite. The results of Chapter II 

have been published in Physics and Chemistry of Minerals (Yong et al. 2006). Chapter 

III has been published in Contributions to Mineralogy and Petrology (Yong et al. 2008). 

Chapter IV is a calorimetric study of γ-Fe2SiO4, the high pressure polymorph of 

fayalite, which is one end-member of olivine, the most abundant mineral in the Earth‟s 

upper mantle. The motivation of this study lies in the fact that the phase transitions in the 

(Mg,Fe)2SiO4 system are generally considered to play an important role in the formation 

of seismic discontinuities in the Earth‟s mantle. Therefore studying the thermodynamic 

properties of γ-Fe2SiO4 would help better understand the phase transitions in the 
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(Mg,Fe)2SiO4 system, hence better constraining the composition and structure of the 

Earth‟s mantle. Pure γ-Fe2SiO4 was synthesized using a multi-anvil device at 8.5 GPa 

and 1,273K. The heat capacity option of PPMS was used to measure the low-temperature 

heat capacity of γ-Fe2SiO4 from 5 to 303 K and a broad λ-transition at 11.8 K, 

presumably due to paramagnetic−antiferromagnetic transition is documented. This 

chapter has been published in Physics and Chemistry of Minerals (Yong et al. 2007). 

The possible geological applications of the data for K-hollandite, Si-wadeite and 

γ-Fe2SiO4 are briefly discussed in Chapter V. The drawbacks in thermodynamic studies 

of minerals under deep mantle conditions are also summarized in this chapter. Two 

projects that are outside the scope of this dissertation have been attached as appendices.  
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CHAPTER II 

 

HEAT CAPACITY AND PHASE EQUILIBRIA OF 

HOLLANDITE POLYMORPH OF KAlSi3O8 
 

 

ABSTRACT 

The low-temperature heat capacity (Cp) of KAlSi3O8 with a hollandite structure 

was measured over the range of 5–303 K with a physical properties measurement system 

(PPMS). The standard entropy of KAlSi3O8 hollandite is 166.2  0.2 Jmol
-1

K
-1

, including 

an 18.7 Jmol
-1

K
-1

 contribution from the configurational entropy due to disorder of Al and 

Si in the octahedral sites. The entropy of K2Si4O9 with a wadeite structure (Si-wadeite) 

was also estimated to facilitate calculation of phase equilibria in the system K2O–Al2O3–

SiO2. The calculated phase equilibria obtained using Perple_x are in general agreement 

with experimental studies. Calculated phase relations in the system K2O-Al2O3-SiO2 

confirm a substantial stability field for kyanite-stishovite/coesite-Si-wadeite intervening 

between KAlSi3O8 hollandite and sanidine. The upper stability of kyanite is bounded by 

the reaction kyanite (Al2SiO5) = corundum (Al2O3) + stishovite (SiO2), which is located 

at 13-14 GPa for 1100-1400 K. The entropy and enthalpy of formation for K-cymrite 

(KAlSi3O8·H2O) were modified to better fit global best-fit compilations of 

thermodynamic data and experimental studies. Thermodynamic calculations were 
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undertaken on the reaction of K-cymrite to KAlSi3O8 hollandite + H2O, which is located 

at 8.3–10.0 GPa for the temperature range 800-1600 K, well inside the stability field of 

stishovite. The reaction of muscovite to KAlSi3O8 hollandite + corundum + H2O is 

placed at 10.0–10.6 GPa for the temperature range 900–1500 K, in reasonable agreement 

with some but not all experiments on this reaction. 

 

 

INTRODUCTION 

Ringwood et al. (1967) first discovered that potassium feldspar transforms into a 

hollandite structure when pressure exceeds 12 GPa. The K atoms in KAlSi3O8 hollandite 

are accommodated in tunnels formed by double chains of edge-sharing (Si,Al)O6 

octahedra (Ringwood et al. 1967; Yamada et al. 1984; Zhang et al. 1993). Kinomura et al. 

(1975) found an intermediate-pressure assemblage of kyanite (Al2SiO5), coesite (SiO2), 

and K2Si4O9 with a wadeite structure (Si-wadeite) separating the stability field of 

sanidine at low pressure and KAlSi3O8 hollandite at high pressure. This was verified by 

additional experiments (Urakawa et al. 1994; Yagi et al. 1994). The lower stability of 

KAlSi3O8 hollandite was located at pressures of 8-10 GPa for temperatures of 1000-1500 

K. With one-fourth of the Si atoms in octahedral sites, the structure of Si-wadeite 

(K2Si4O9) can be considered as three-membered rings of SiO4 tetrahedra connected by 

octahedrally coordinated Si atoms (Kinomura et al. 1977; Swanson and Prewitt 1983). 

Liu (1978) reported KAlSi3O8 hollandite plus a high-pressure form of KAlO2 forming 

from kalsilite (KAlSiO4) in the pressure range of 17-30 GPa. Faust and Knittle (1994) 
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documented the breakdown of a natural muscovite to KAlSi3O8 hollandite + corundum + 

H2O at pressures between 10.9 and 12.0 GPa at around 1073 K. The phase KAlSi3O8 

hollandite has also been reported in hydrated average upper continental crust, MORB, 

andesite and pelite compositions when pressure is greater than 8 GPa (Irifune et al. 1994; 

Schmidt 1996; Domanik and Holloway 1996, 2000; Ono 1998; Wang and Takahashi 

1999). Electron microprobe analyses of run product hollandite by Domanik and 

Holloway (2000) show 14-30% deficiencies in the K site that are not matched by excess 

Si. They inferred that phengite decomposed to KAlSi3O8 hollandite between 9 and 10 

GPa at 900°C. Domanik and Holloway (2000) noted that their hollandite was damaged 

by the electron beam but did not correct for elemental migration. Their low K site 

occupancies probably represent an analytical artifact rather than a vacancy substitution. 

Examination of their assemblages suggests progress of the reaction muscovite + 

coesite/stishovite = KAlSi3O8 hollandite + kyanite + fluid, as well as more complex 

reactions that involve magnesite, garnet and OH-topaz. Konzett and Fei (2000) reported 

KAlSi3O8 hollandite as one of the breakdown products at 20-23 GPa and 1773-1973 K in 

peralkaline and subalkaline rock compositions. Quench experiments by Tutti et al. (2001) 

showed that KAlSi3O8 hollandite is still stable at pressure as high as 95 GPa, consistent 

with previous suggestions that KAlSi3O8 hollandite is an important host for potassium in 

the lower mantle (Ringwood 1975; Prewitt and Downs 1998).  Occurrences of natural 

KAlSi3O8 hollandite and NaAlSi3O8 hollandite (NaAlSi3O8 with hollandite structure) 

have been reported in shocked meteorites (Akaogi 2000; Gillet et al. 2000; Langenhorst 



 9 

and Poirier 2000; Tomioka et al. 2000; Kimura et al. 2004). Sueda et al. (2004) 

demonstrated that KAlSi3O8 hollandite transforms to a new high-pressure phase 

(KAlSi3O8 hollandite II) at ~22 GPa at room temperature using in situ X-ray diffraction. 

They related this transition to the abrupt enrichments of Ca and Na components in 

KAlSi3O8 hollandite coexisting with a potassic basalt melt at ~22.5 GPa observed by 

Wang and Takahashi (1999). In situ X-ray diffraction study by Nishiyama et al. (2005) 

confirmed that this transition happens at pressures of 20-23 GPa and temperatures of 

300-1000 K. Collectively, the experimental studies suggest that KAlSi3O8 hollandite has 

an important role in transporting potassium during subduction of oceanic crust into the 

deep mantle.  

The thermodynamic properties of several phases are in need of further study in 

order to accurately determine the phase equilibria in the system K2O–Al2O3–SiO2, 

although some measurements have been made. The enthalpy of Si-wadeite and KAlSi3O8 

hollandite was determined by Geisinger et al. (1987) and Akaogi et al. (2004) using high-

temperature solution calorimetry. The high-temperature heat capacity of Si-wadeite was 

measured by Fasshauer et al. (1998). They generated an internally consistent 

thermodynamic data set for several phases but did not include KAlSi3O8 hollandite in 

their evaluation. Akaogi et al. (2004) measured the high-temperature heat capacity data 

of KAlSi3O8 hollandite and reevaluated the phase relations in the system K2O-Al2O3-

SiO2 by combining thermodynamic with experimental data. However, an approach 

totally independent of the experiments has not been applied to this system because the 



 10 

lack of low-temperature heat capacity data, and hence lack of entropy and Gibbs free 

energy, of the high-pressure phases. In this study, the low-temperature heat capacity of 

KAlSi3O8 hollandite was measured using a physical properties measurement system 

(PPMS, produced by Quantum Design®), and the entropy of KAlSi3O8 hollandite was 

calculated from the measured heat capacity data. The entropy of Si-wadeite was 

estimated from Holland (1989), and phase relations in the system K2O–Al2O3–SiO2 were 

calculated based on the new thermodynamic data. Several reactions involving KAlSi3O8 

hollandite were also investigated in the system K2O–Al2O3–SiO2–H2O.  

 

 

EXPERIMENTAL PROCEDURES 

Sample Synthesis and Characterization 

The KAlSi3O8 hollandite was synthesized using a 1000-ton Walker-type multi-

anvil device at the University of Minnesota. Tungsten carbide anvils with 8 mm 

truncations, cast MgO–Cr2O3 octahedra with 14 mm edge lengths and pyrophyllite 

gaskets were used for this study. KAlSi3O8 glass from Craig Manning at UCLA was used 

as the starting material. It was powdered and loaded into a cylindrical Re capsule, which 

also acts as the furnace. After being held at 14 GPa and 1673 K for 24 hours, the starting 

material was quenched at 14 GPa and slowly recovered to ambient pressure. Temperature 

was controlled by a W3Re97/W25Re75 thermocouple oriented vertically with respect to the 

heater. 

 The run product was confirmed to be KAlSi3O8 hollandite by X-ray diffraction 
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and electron microprobe (EMP) analysis. The tetragonal lattice parameters of the 

synthesized KAlSi3O8 hollandite were determined using the Scintag Crystallography 

program as a = 9.313(3) Ả and c = 2.723(3) Ǻ, which are in good agreement with the 

values, a = 9.315(4) Ǻ and c = 2.723(4) Ǻ, by Zhang et al. (1993) and deviate only 

slightly from the data, a = 9.3244(4) Ǻ and c = 2.7227(3) Ǻ of Yamada et al. (1984). The 

EMP analyses were performed using Cameca SX-100, and the avarage values for 25 runs 

of KAlSi3O8 hollandite are shown in Table 2.1. The column conditions were: accelerating 

voltage 15 kV, beam current 4 nA, peak and background counting times each 10 s, and 

beam scan area 55 µm. The low current was used because preliminary analyses showed 

the sensitivity of hollandite to an electron beam. The standards used for Na, Mg, Fe, Al, 

Si and K are Tiburon albite, synthetic MgTiO3, synthetic FeSiO3, K-feldspar from St. 

Gotthard, respectively. The small amounts of Na, Mg and Fe are around the detection 

limits, and their effects on the heat capacity measurement are negligible. Compared to 

previous EMP studies on synthetic KAlSi3O8 hollandite that indicated an apparent 

deficiency on the K site (Irifune et al. 1994; Schmidt 1996; Domanik and Holloway 1996, 

2000; Ono 1998; Wang and Takahashi 1999), the EMP analyses in this study shows no 

evidence for a vacancy on that site. Less accurate TEM analyses of natural KAlSi3O8 

hollandite from shock metamorphosed meteorites also showed an apparent vacancy on 

the K site (Langenhorst and Poirier 2000). It will be assumed that the KAlSi3O8 

hollandite in this study is pure and stoichiometric. 
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Heat Capacity Measurement 

The low-temperature heat capacity at constant pressure (Cp) of KAlSi3O8 

hollandite was measured at 1 atm using the heat capacity option of the PPMS at Salzburg 

University in Austria. Based on heat-pulse calorimetry (HPC), the PPMS is the first 

commercially available apparatus that can measure the low-temperature heat capacity of 

samples with milligram mass. Lashley et al. (2003) and Dachs and Bertoldi (2005) 

provided a detailed description of the PPMS, its use in heat capacity measurements, and 

an evaluation of measurement errors. The technique is summarized below. 

The central part of the PPMS calorimeter is the calorimeter puck, made up of the 

puck frame and the sample platform that holds the sample. The sample holder is a 44 

mm wide sapphire platform that has a thermometer and a heater attached to the lower 

side. Thin Pt wires attached to the sample platform provide the electrical connection and 

structural support between the platform and the puck frame. The puck is covered with a 

cap and resides at the base of a sample chamber, the inner part of the PPMS probe that is 

directly immersed in a liquid helium bath.  

In heat-pulse calorimetry (HPC) as employed in the PPMS calorimeter, a known 

amount of heat is applied to a sample at selected temperatures, and the resultant 

temperature change is recorded. Two separate measurements, known as “addenda run” 

and “sample run”, are carried out for the quantitative determination of heat capacity. In 

an addenda run, the heat capacity of the empty sample platform plus some grease applied 



 13 

to it is determined based on Fourier‟s law of heat conduction and the law of conservation 

of energy, as the following equation: 

 
bplw

plpl
T(t)TK

dt

(t)dT
CP(t)  p       (1) 

where “pl” stands for platform, dTpl(t)/dt is the thermal response of the platform to which 

a square pulse of heat P(t) is applied, Kw is the thermal conductance of the wires (in units 

W·K
-1

) and Tb is the temperature of the puck frame. A non-linear least-squares fit to the 

analytical solutions of equation (1) (Dachs and Bertoldi 2005: their equations 6a, 6b) 

yields the heat capacity of the empty sample platform, Cp
pl

, at the temperature Tpl. This 

procedure is then repeated at the desired temperature with the sample mounted on the 

sample platform during the sample run. The equations that describe the heat balance 

conditions in this case are: 

   

 
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
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where Kg is the thermal conductance due to the grease between the sample and the 

sample platform, Ts and Cp
s
 are the temperature and the heat capacity of the sample, 

respectively. Because Tpl can be directly mearured by PPMS, elimination of Ts in 

equation (2) will generate: 
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              (3) 

As Cp
pl

 is already known from the addenda run, the remaining four unknowns: Kg, 

Kw, Tb and Cp
s
, are calculated by applying the same non-linear least square fitting routine 

to the analytical solution of equation (3) (Dachs and Bertoldi 2005: their equations 10a, 

10b) based on the temperature-time response curve measured during the sample run (40-

200 data pairs for each measurement at a specific temperature). The standard deviation, 

σCp, of each measurement can also be obtained from this fitting procedure. The heat 

capacity contribution of the container is subtracted from the total heat capacity to give 

the net heat capacity of the unknown samples. Dachs and Bertoldi (2005) showed that 

heat capacity measurements on sealed powders by PPMS were systematically lower than 

low-temperature adiabatic calorimetry (LTAC) data by 1-2 % in the temperature range 

between 100 K and 300 K. At 5-20 K, where the absolute values of heat capacity are 

small, the measured data by PPMS may be up to 50% larger than those measured by 

LTAC. The entropies at 298.15 K derived from PPMS heat capacity measurements are at 

maximum 1-2 % lower than those calculated from LTAC experiments (Dachs and 

Bertoldi 2005). 

 

 

RESULTS 

Heat Capacity and Entropy of KAlSi3O8 Hollandite 
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The measured molar heat capacity (Cp) of KAlSi3O8 hollandite versus 

temperature is listed in Table 2.2 and shown in Figure 2.1. To obtain the entropy of 

KAlSi3O8 hollandite, a general polynomial with Cp = k0 + k1T
-0.5

 + k2T
-2

 + k3T
-3

 + k4T + 

k5T
2
 + k6T

3
 was chosen to fit the Cp data in Table 2.2 using the Experimental Data 

Analyst Package of Mathematica. The data were split into three temperature regions 

and each region was fitted individually with some overlap of data. The equation Cp = k0 

+ k1T
-0.5

 + k2T
-2

 + k3T
-3

 was used for fitting the high temperature portion of the data, the 

complete polynomial given above for the intermediate temperature portion and Cp = k4T 

+ k6T
3
 is for fitting at low temperature. The Cp data below 5 K were estimated by a linear 

extrapolation to 0 K from the lowest measured Cp point in the form of Cp = k6T
3
. The 

resulting Cp coefficients and temperatures at interval boundaries are given in Table 2.3, 

where the final entropy value varies only insignificantly (only in the second digit) upon 

choosing a different splitting temperature of the Cp data (Table 2.3, Fit 1 compared to Fit 

2). The uncertainty in the entropy at standard temperature and pressure was estimated by 

a Monte Carlo technique. A detailed description of error estimation is provided in Dachs 

and Bertoldi (2005). The entropy of KAlSi3O8 hollandite at 298.15 K calculated by 

integration of these fitted functions is 147.5  0.2 Jmol
-1

K
-1

 (error is one standard 

deviation). The crystal structure refinement of KAlSi3O8 hollandite shows that Al and Si 

atoms are fully disordered over the octahedral sites (Yamada et al. 1984; Zhang et al. 

1993), thus requiring addition of the configurational entropy, 
0S  to the entropy term. The 
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configurational entropy is calculated as 
0S  = −4R(0.25ln0.25+0.75ln0.75) = 18.7 Jmol

-

1
K

-1
. Including this contribution, the entropy obtained for KAlSi3O8 hollandite at 

standard temperature and pressure (STP) is 166.2  0.2 Jmol
-1

K
-1

. That value is in 

striking disagreement with the value of 65.3 Jmol
-1

K
-1

 that was estimated by Domanik 

and Holloway (2000). Their estimate was derived by summation techniques based on a 

complex dehydration reaction involving phengite in the system KMASH and is likely to 

have large errors that were not evaluated. The high-temperature Cp data of KAlSi3O8 

hollandite were measured by Akaogi et al. (2004) using differential scanning calorimetry. 

Their data were used for calculation of the enthalpy and entropy above ambient 

temperature (Table 3.4). The smooth fit of our Cp data with that of Akaogi et al. (2004) 

provides strong support for the STP entropy obtained in this study but not for the 

estimate of Domanik and Holloway (2000). 

 

 

Entropy of Si-wadeite and Phase Equilibria in K2O−Al2O3−SiO2 System 

High-pressure experimental studies on the phase transitions in KAlSi3O8 were 

carried out by Yagi et al. (1994) and Urakawa et al. (1994) on the following reactions: 

2 sanidine = Si-wadeite + kyanite + coesite      (4) 

Si-wadeite + kyanite + coesite = 2 KAlSi3O8 hollandite  (5) 

Si-wadeite + kyanite + stishovite = 2 KAlSi3O8 hollandite (6) 

The experimental results are shown in Fig. 2.2. The experiments by Yagi et al. 
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(1994) were revised by Akaogi et al. (2004) because the original pressure calibration was 

mainly on the coesite-stishovite transition by Yagi and Akimoto (1976), which is 0.3-0.4 

GPa higher than the most recent work by Zhang et al. (1996).  The results after 

recalibration are comparable to the in situ X-ray experiments of Urakawa et al. (1994), 

which were based on a NaCl pressure scale. 

Thermodynamic calculations were undertaken with the computer program 

Perple_x (Connolly and Kerrick 1987; Connolly 1990) using a modified Holland and 

Powell (1998) data base, and including the new data from this research for KAlSi3O8 

hollandite and Si-wadeite. Table 2.4 shows the sources of phase properties involved in 

this study. For the solid phases, the temperature dependence of the molar volume, Vº(T), 

is given by  














 

T

αdTV(T)V
298

298 1
        (7) 

where α and V˚298 are the thermal expansion and molar volume at standard state, 

respectively. The pressure dependence of the molar volume was calculated using the 

Murnaghan equation of state: 

K'

T

P
K

K
(T)VV(T,P)

1

'
1











 

      (8) 

where KT and K' are the isothermal bulk modulus and its pressure derivative, respectively. 

The compensated-Redlich-Kwong (CORK) equation from Holland and Powell (1991, 

1998) was chosen for the PVT-behaviour of H2O. 
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Unfortunately, the entropy of Si-wadeite has not been determined calorimetrically. 

Fasshauer et al. (1998) estimated a value of 23210 Jmol
-1

K
-1

 for 
298S  of Si-wadeite, 

about 33 Jmol
-1

K
-1

 larger than that calculated by Geisinger et al. (1987) from 

spectroscopic data. This is partly supported by the systematically higher Cp observed by 

differential scanning calorimetry (DSC) at T < 500 K than that derived from vibrational 

spectroscopy (Fasshauer et al., 1998). Thermodynamic calculations using Perple_x also 

favor a larger value for 
298S  of Si-wadeite. The calculated phase relations using 

298S (wad) 

= 232  10 Jmol
-1

K
-1

 are shown in Fig. 2.2 (dashed lines). Unfortunately, large 

discrepancies remain between the calculated phase boundaries and the experimental data 

of Yagi et al. (1994) and Urakawa et al. (1994). An even larger value for 
298S  of Si-

wadeite is necessitated to fit the experimental data with thermodynamic calculation.  

The 
298S  of Si-wadeite was therefore estimated from Holland (1989) as follows: 

 

1-1-

)(

]6[]4[

)(298

)(

]6[]4[

)(298)(

]6[]4[
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where k = 1.0 JK
-1

cm
-3

, which corresponds to solid-solid reactions involving no change 

in coordination state that have dP/dT = 10 barK
-1

. The values of   4

2SiOkVS   and 

  )(2 aOKkVS   can be found in Holland (1989), which are calculated from the regression 

of a set of 60 experimentally measured entropies and volumes of silicates and oxides. 

  4

2SiOkVS   and   )(2 aOKkVS   correspond the tetrahedral coordination for SiO2 and 

framework sites such as in feldspars for K2O, respectively. However, the value of 
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  6

2SiOkVS  , which represents the octahedral coordination for SiO2, is not included in 

that study. Here this value was calculated using stishovite data from Holland and Powell 

(1998) data base. The phase boundary of reaction (4) calculated with the revised entropy 

of Si-wadeite fits the experimental data of Yagi et al. (1994) and Urakawa et al. (1994) 

reasonably well (the lower solid line in Fig. 2.2). A small modification from  
298,fH  = 

−3801 ± 8 kJmol
-1

 to  
298,fH  = −3803.5 kJmol

-1
 that is within the error of  

298,fH of 

KAlSi3O8 hollandite was applied to bring the calculated phase boundaries of reaction (5) 

and (6) into better agreement with the experimental data of Yagi et al. (1994) and 

Urakawa et al. (1994) (the upper solid line in Fig. 2.2). The calculated boundary for the 

decomposition of sanidine into kyanite, coesite, and Si-wadeite in Fig. 2.2 is almost 

identical to that determined by Akaogi et al. (2004), and reasonable consistency is 

obtained with the experimental results of Yagi et al. (1994) and Urakawa et al. (1994) 

above 1100 K. The difference between the experimental data and the calculated phase 

boundary below 1100 K can be explained either by sluggish reaction rates or by 

remaining uncertainties in the thermodynamic properties (Akaogi et al. 2004). The phase 

boundary of  Si-wadeite + kyanite + SiO2 –polymorph (stishovite or coesite) = 

2KAlSi3O8 hollandite intersects the coesite-stishovite transition boundary at about 1575 

K and 9.5 GPa (Fig. 2.2), which generates reaction (5) at temperatures > 1575 K and 

reaction (6) at temperatures < 1575 K, respectively. The calculated locus of reactions (5) 

and (6) is 0.3 – 0.4 GPa higher than that of Akaogi et al. (2004). Choosing 8.7 GPa at 

1273 K for the phase boundary from Akaogi et al. (2004) might be a source of the 
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difference. Nonetheless, the result of this study and that of Akaogi et al. (2004) are 

consistent with the experimental study of Yagi et al. (1994) and Urakawa et al. (1994) 

within expected errors of a few kilobars. 

Using the estimated values of entropy and the refined enthalpy data of Si-wadeite 

and KAlSi3O8 hollandite as well as the modified Holland and Powell (1998) data base, a 

P-T diagram for the system K2O-Al2O3-SiO2 was calculated with Perple_x (Fig. 2.3). 

Fasshauer et al. (1998) suggested that sanidine would disproportionate first to kalsilite 

(KAlSiO4) + coesite at around 5 GPa when temperature is above 823 K, and this 

assemblage would remain stable until pressure reaches 6-7 GPa. However, the calculated 

P-T phase diagram in this study doesn‟t show a region where reaction (4) is metastable. 

The reaction kalsilite + sanidine = kyanite + Si-wadeite has been identified both by 

Fasshauer et al. (1998) and in this study, although the location of the boundary varies 

somewhat between the two works. For reactions with Si-wadeite, discrepancies between 

this study and Fasshauer et al. (1998) are mainly caused by different values of 
298S for Si-

wadeite. A calorimetric determination of 
298S  of Si-wadeite will be necessary to resolve 

remaining discrepancies in this system. Additional reactions involving corundum (Al2O3), 

which Fasshauer et al. (1998) didn‟t include in their study, have also been identified and 

located provisionally. The reaction kyanite = corundum + stishovite is located at about 

13-14 GPa at 1100-1400 K and represents the upper stability of kyanite. The calculated 

phase boundary is 0.1-0.2 GPa lower than the experimental results of Schmidt et al. 

(1997) (Fig. 2.3, triangles) at temperatures above 1500 K. The disagreement is certainly 
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within expected experimental errors, especially those related to pressure calibration of 

multi-anvil apparatus. Errors in the calculation may derive from difficulties in 

extrapolating the Cp data of stishovite to such high temperatures.  

 

 

Phase Equilibria in K2O-Al2O3-SiO2-H2O 

At high pressures and in the presence of water, K-feldspar reacts to form a 

hydrated phase KAlSi3O8·H2O, called “K-cymrite” (Massonne 1992) or “sanidine 

hydrate” (Thompson et al. 1998). A detailed crystal structure study of KAlSi3O8·H2O by 

Fasshauer et al. (1997) suggests that it is indeed isostructural with BaAl2Si2O8·H2O 

cymrite, although the Al and Si atoms are highly disordered in KAlSi3O8·H2O whereas in 

cymrite the Al and Si atoms are ordered. In this study the informal name K-cymrite will 

be used for the synthetic phase KAlSi3O8·H2O. Seki and Kennedy (1964) placed the 

phase boundary of the following reaction at around 1.8–2.8 GPa and 700–1000 K for K-

cymrite based on synthesis experiments of the following reaction: 

sanidine + H2O = K-cymrite     (9) 

However, experiments by Massonne (1992) on this reaction yielded a much flatter 

slope at around 2.5 GPa, and this result was confirmed by reversed experiments of 

Fasshauer et al. (1997), Thompson (1994) and Thompson et al. (1998). Fasshauer et al. 

(1997) applied a Bayesian method to evaluate the thermodynamic properties of the 

phases in reaction (9) and derived the standard enthalpy of formation and entropy for K-

cymrite. They treated the order-disorder relations of microcline to sanidine with a Landau 
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formalism following Carpenter and Salje (1994). We recalculated the entropy and 

enthalpy of formation for K-cymrite to best fit the experimental reversals by Fasshauer et 

al. (1997) and Thompson et al. (1998). The revised thermodynamic data are shown in 

Table 2.4 and the best fit phase boundary is shown in Figure 2.4. The revised enthalpy of 

formation and entropy for K-cymrite are ~5 kJmol
-1

 more negative and ~8 Jmol
-1

K
-1

 more 

positive than the respective values of Fasshauer et al. (1997). They added a footnote that 

their enthalpy of K-cymrite should be changed by –7 kJmol
-1

 to bring the enthalpy of 

microcline into accord with the data of Robie and  

Hemingway (1995). The enthalpy calculated in this study is in disagreement with the 

revised value of Fasshauer et al. (1997) by +2 kJmol
-1

, a relatively small error for such a 

calculation. The cause of the large discrepancy in the estimated entropy of K-cymrite is 

unclear, because the compressibility and thermal expansion data of Fasshauer et al. 

(1997) for K-cymrite were used in the present calculations. The phase boundary for 

reaction (9) calculated with the revised values of this study is in agreement with 

experimental reversals of Fasshauer et al. (1997) and Thompson et al. (1998). It is located 

at < 3 GPa at T < 1100 K (Fig. 2.4).  

The pressure needed for the formation of K-cymrite is less than the peak pressure 

of many ultrahigh-pressure metamorphic (UHPM) rocks (e.g. Schertl et al. 1991; Sharp et 

al. 1993; Kaneko et al. 2000; Chopin 2003; Yoshida et al. 2004). In nature the OH 2
a  may 

be reduced from unity in the presence of other components such as CO2 or NaCl, in the 
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absence of a fluid phase, or in the presence of a melt (e.g., Edwards and Essene 1988; 

Valley et al. 1990). Reaction (9) is successively shifted to higher pressures as OH 2
a  is 

reduced (Fig. 2.4), but even at an OH 2
a of 0.5 K-cymrite is still stable at UHPM 

conditions. It is expected that sanidine will hydrate to form K-cymrite during UHPM 

processes, although K-cymrite has not yet been reported in nature. Hwang et al. (2004) 

discovered a new polymorph of K-feldspar, kokchetavite, in the UHPM Kokchetav 

terrane of Kazahkstan. Reminiscent of the experiment by Thompson et al. (1998), who 

reported a hexagonal KAlSi3O8 phase (probably isostructural to kokchetavite) when K-

cymrite is dehydrated at T > 1273 K and ambient pressure, Hwang et al. (2004) suggested 

that kokchetavite could represent the dehydration product of K-cymrite during 

exhumation. Massonne and Nasdala (2003) also described inclusions in garnets made up 

of quartz, K-feldspar and micaceous material that possibly formed as pseudomorphs after 

K-cymrite in a diamondiferous quartzofeldspathetic rock from the Erzgebirge, Germany. 

K-cymrite probably dehydrates rapidly to sanidine during exhumation of K-rich UHPM 

rocks, especially in those that attained relatively high metamorphic temperatures (973-

1173 K). 

Harlow and Davies (2004) inferred a negative P/T slope for the breakdown of K-

cymrite based on two experimental runs: 9 GPa at 1473 K and 8 GPa at 1523 K for the 

reaction 

K-cymrite = KAlSi3O8 hollandite + H2O      (10) 
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However, the calculated phase transition boundary shows a slight positive P/T 

slope, which lies 0.4-1.4 GPa higher than the two experimental runs by Harlow and 

Davies (2004) (Fig. 2.5). A calorimetric study of K-cymrite and reversed experiments are 

indicated to address this discrepancy and better constrain the phase transition boundary 

of reaction (10). 

Faust and Knittle (1994) documented the breakdown of a natural muscovite, 

KAl3Si3O10(OH)2, to KAlSi3O8 hollandite at pressures between 10.9 and 12 GPa around 

1073 K via the following reaction: 

muscovite = KAlSi3O8 hollandite + corundum + H2O   (11) 

The PT location of reaction (11) was calculated with Perple_x and the 

thermodynamic data in Table 4 (Fig. 2.6). This reaction is located at about 10.1 GPa at 

1073 K and 10.5 GPa at 1600 K, ~1-2 GPa lower than the experimental results by Faust 

and Knittle (1994). Considering the large pressure uncertainties in the laser-heated 

diamond cell experiments by Faust and Knittle (1994), the calculated phase boundary is 

considered to be in reasonable agreement with their experiments. The calculated reaction 

curve has a significantly different slope than that of Sekine et al. (1991) (dashed line in 

Fig. 2.6). The discrepancy may result from their placement of the then less well 

constrained reactions (4) and (6), that were used to extrapolate the thermodynamic data 

of KAlSi3O8 hollandite. Experimental data on the breakdown reaction of phengite (a K-

rich mica) to KAlSi3O8 hollandite by Schmidt (1996) are in good agreement with our 
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calculations in this study and are plotted in Fig. 2.6 for comparison (dotted line). 

Sekine et al. (1991) and Faust and Knittle (1994) reported two other 

decomposition reactions of muscovite: 

muscovite = K-cymrite + corundum       (12) 

2 muscovite = Si-wadeite + 2 kyanite + corundum + 2 H2O (13) 

These two reactions are thought to occur at low pressures. However, the present 

thermodynamic calculations show that reaction (12) only proceeds above 1700 K, and 

reaction (13) is metastable, as it is located at pressures > ~11 GPa, where muscovite has 

already dehydrated to KAlSi3O8 hollandite + corundum + H2O. 

 

 

DISCUSSION 

The calculated PT locations of reactions (5) and (6) constrain the lower stability 

limit of KAlSi3O8 hollandite at 9-10 GPa for T > 1000 K. The occurrence of KAlSi3O8 

hollandite with stishovite in melt veins of the shocked meteorite Zagami (Langenhorst 

and Poirier 2000) supports this calculation. Although Tutti et al. (2001) showed that 

KAlSi3O8 hollandite is stable up to 95 GPa, representing a depth of 2200 km in the 

mantle, a study by Sueda et al. (2004) puts the upper P-stability limit of KAlSi3O8 

hollandite at 22-24 GPa, where it transforms to a new phase, hollandite II.  The locations 

of reaction (10) and (11) confirm that KAlSi3O8 hollandite is stable at pressures above 10 

GPa. It appears KAlSi3O8 hollandite is stable down to depths of 400-660 km in the 
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transition zone of the Earth‟s mantle, followed by hollandite II at greater depths. 

Besides occurrences in shocked meteorites, KAlSi3O8 hollandite has also been 

reported as an experimental run product between 8 and 11 GPa in bulk compositions 

corresponding to average continental crust, subducted terrigenous and pelagic sediment, 

basalts, and metapelites (Irifune et al. 1994; Domanik and Holloway 1996, 2000; 

Schmidt 1996; Ono 1998; Wang and Takahashi 1999).  However, Si-wadeite has not yet 

been identified in any of these experiments or in natural occurrences. Wang and 

Takahashi (1999) argued that K might be selectively partitioned into pyroxene and/or 

garnet in potassic basalt, thus inhibiting the formation of Si-wadeite in that bulk 

composition. In the presence of water, reaction (9) will take place at much lower pressure 

than reaction (4), which also prevents the formation of Si-wadeite from sanidine.  
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Table 2.1 Average composition of KAlSi3O8 glass and KAlSi3O8 hollandite determined 

by EMP 

Phase SiO2(wt %) Al2O3 K2O MgO Na2O FeO Sum 

KAlSi3O8 (glass) 64.57 17.63 16.92 0.01 0.01 0.02 99.16 

StdDev (wt %) 0.38 0.15 0.48 0.01 0.02 0.03  

Cations per 8 O 3.018 0.971 1.009 0.001 0.001 0.001 5.001 

KAlSi3O8 (hollandite) 64.30 18.34 17.36 0.04 0.04 0.19 100.27 

StdDev (wt %) 0.64 0.44 0.32 0.02 0.04 0.09  

Cations per 8 O 2.983 1.003 1.027 0.003 0.004 0.007 4.989 
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Table 2.2 Heat capacity of KAlSi3O8 hollandite
*
  

T 

(K) 

Cp 

(Jmol
-1

K
-1

) 

T 

(K) 

Cp 

(Jmol
-1

K
-1

) 

T 

(K) 

Cp 

(Jmol
-1

K
-1

) 

5.06 0.0177(6) 20.87 1.059(20) 86.45 35.52(40) 

5.52 0.0231(6) 22.68 1.371(25) 93.95 41.36(43) 

6.00 0.031(1) 24.65 1.792(37) 102.17 47.91(44) 

6.52 0.038(1) 26.80 2.307(44) 111.41 55.13(46) 

7.08 0.049(1) 29.14 2.986(58) 120.78 63.77(46) 

7.69 0.059(1) 31.68 3.807(73) 131.31 73.05(48) 

8.36 0.078(1) 34.45 4.810(89) 142.77 83.25(51) 

9.08 0.096(2) 37.46 6.02(11) 155.22 94.20(50) 

9.86 0.123(2) 40.74 7.48(14) 168.72 106.16(51) 

10.72 0.158(3) 44.29 9.03(17) 183.49 118.93(51) 

11.65 0.195(4) 48.15 11.00(21) 199.47 132.06(53) 

12.67 0.247(5) 52.35 13.25(23) 216.98 145.75(54) 

13.76 0.310(6) 56.92 15.87(26) 235.83 159.92(59) 

14.96 0.395(7) 61.88 18.81(29) 256.48 174.27(55) 

16.25 0.500(9) 67.28 22.16(34) 278.71 189.62(67) 

17.67 0.638(11) 73.14 26.05(35) 303.10 202.66(70) 

19.20 0.818(15) 79.52 30.30(39)   

*
The Cp data were measured with PPMS on 17.9 mg sample material. 
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Table 2.3 Coefficients of the Cp polynomial Cp = ko + k1T 
-0.5

 + k2T 
-2

 + k3T 
-3

 + k4T + k5T 

2
 + k6T 

3
 derived by fitting the PPMS Cp data of KAlSi3O8 hollandite given in Table 2.2

* 

Formula 

weight 403.129 g/mol 

Sample weight  17.91 mg 

 Fit 1 Fit 2 

      

k6 1.3828E-04 1.3828E-04 

T1 5.18 4.63 

ko 3.8615E+00 -5.7192E+00 

k1 -9.3952E+00 1.2055E+01 

k2 4.0668E+01 -3.7451E+01 

k3 -7.4326E+01 5.7584E+01 

k4 -1.5636E-01 3.3438E-01 

k5 3.8436E-03 -1.3217E-02 

k6 8.4027E-05 3.2949E-04 

T2 33.55 24.83 

k2 -5.1104E+02 1.0604E+02 

k4 -7.3461E-02 -1.3806E-01 

k5 7.2435E-03 9.0294E-03 

k6 -1.8727E-05 -3.0671E-05 

T3 122.36 91.31 

ko 6.4504E+02 6.3640E+02 

k1 -8.2990E+03 -8.1129E+03 

k2 3.6393E+06 3.3807E+06 

k3 -1.3325E+08 -1.1687E+08 

Tref 298.15 298.15 

Cp at 298 200.3(7) 200.2(7) 

S˚298 147.45(19) 147.49(18) 
*
At the bottom of the table, heat capacity at 298.15 K and standard entropy S

o
 are 

additionally given (numbers in parenthesis is 1 standard deviation and apply to the last 

digits). Fit 1 and Fit 2 only differ by the choice of temperatures T1, T2 and T3 at which 

the Cp data have been split into subsets. 
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Table 2.4  Phase property data used for phase boundary calculation. The numbers in 

parentheses are 2 standard deviations. 

Phase* H˚f,298  

(kJmol-1) 

S˚298 

(Jmol-1K-1) 

Cp=c1+c2T
-0.5+c3T

-2+c4T
-3 (J mol-1K-1) 

c1  10-2 c2  10-3 c3  10-6 c4  10-8 

KAlSi3O8 (hol) -3803.50a 166.2(0.4)d 3.896 -1.823 -12.934 16.307f 

K2Si4O9 (wd) -4301.2(5.7)b 251(8)e 4.991 -4.350 0 0b 

KAlSi3O8·H2O(kcym) -4238.00c 284.0c 4.812 -2.981 -9.931 14.165g 

Phase* V˚298 

(cm3 mol-1) 

α=a0+a1T (K-1) K0T 

(Gpa) 

K'0T 

 

a0x105 a1x108 

KAlSi3O8 (hol) 71.28h 3.300 0f 180l 4n 

K2Si4O9 (wd) 108.44i 2.950 0j 90m 4n 

KAlSi3O8·H2O(kcym) 114.37g 1.816 2.129k 45.1g 1.3g 

a
 Modified from Akaogi et al. (2004); 

b
 Fasshauer et al. (1998);  

c
 Modified from Fasshauer et al. (1997);  

d
 This study;  

e
 Estimated from Holland (1989);  

f
 Akaogi et al. (2004); 

g
 Fasshauer et al. (1997);  

h
 Yamada et al. (1984);  

i
 Swanson and Prewitt (1983);  

j
 Swanson and Prewitt (1986);  

k
 Calculated from Fasshauer et al. (1997);  

l
 Zhang et al. (1993);  

m
 Geisinger et al. (1987);  

n
 Assumed. 

* All the other phases involved in this study are from a modified Holland and Powell 

(1998) data base, called hp02ver.dat. More detailed information about hp02ver.dat can be 

found in http://www.perplex.ethz.ch/ 

 

 

 

 

http://www.perplex.ethz.ch/
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Fig. 2.1 Comparison of the low-T Cp of KAlSi3O8 hollandite measured using the PPMS 

calorimeter in this study with high-T Cp data from Akaogi et al. (2004) 
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Fig. 2.2 Phase diagram of the system KAlSi3O8. The dotted line represents the coesite-

stishovite transition boundary obtained with a modified Holland and Powell (1998) 

thermodynamic data base. Dashed lines show the phase boundaries calculated from 

S
o
298(Wd) = 232 Jmol

-1
K

-1
 (Fasshauer et al., 1998). The solid line represents the phase 

boundaries calculated from S
o
298(Wd) = 251 Jmol

-1
K

-1
 and modified enthalpy of KAlSi3O8 

hollandite. Dash-dotted lines are the phase boundaries of Akaogi et al. (2004). Circles 

represent quench experimental runs by Yagi et al. (1994) after pressure correction, and 

squares are the in situ X-ray experimental runs by Urakawa et al. (1994). Open, closed 

and shaded symbols represent hollandite, Si-wadeite+kyanite+coesite (or stishovite), and 

sanidine, respectively. Hol KAlSi3O8 hollandite; Wd Si-wadeite; Ky kyanite; Coe coesite; 

Stv stishovite; San sanidine 
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Fig. 2.3 Phase diagram of the system K2O-Al2O3-SiO2. Triangles represent the 

experimental results of Schmidt et al. (1997). Cor corundum; Ks kalsilite; Qz quartz; Lc 

leucite 
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Fig. 2.4 Calculated P-T diagram for the formation of K-cymrite. The open and closed 

triangles represent the experimental reversals by Fasshauer et al. (1997) and Thompson 

et al. (1998), respectively. The dashed line represents the microcline-sanidine transition 

boundary. Kcym K-cymrite; Mic microcline 
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Fig. 2.5 Calculated P-T diagram for the dehydration reaction of K-cymrite into 

KAlSi3O8 hollandite. Closed triangles represent two experimental runs by Harlow and 

Davies (2004)  
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Fig. 2.6 Calculated P-T diagram for the dehydration reaction of muscovite into 

KAlSi3O8 hollandite + Al2O3 + H2O. The solid line represents the calculated phase 

boundary in this study. The dashed line shows the calculated phase boundary by Sekine 

et al. (1991). The dotted line represents the breakdown reaction of phengite (a K-rich 

mica) by Schmidt (1996). Mu muscovite 
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CHAPTER III 

 

HEAT CAPACITY AND PHASE EQUILIBRIA OF 

WADEITE-TYPE K2Si4O9 
 

 

ABSTRACT 

The low-temperature heat capacity (Cp) of Si-wadeite (K2Si4O9) synthesized with 

a piston cylinder device was measured over the range of 5303 K using the heat capacity 

option of a physical properties measurement system. The entropy of Si-wadeite at 

standard temperature and pressure calculated from the measured heat capacity data is 

253.8 ± 0.6 Jmol
-1

K
-1

, which is considerably larger than some of the previous estimated 

values. The calculated phase transition boundaries in the system K2O-Al2O3-SiO2 are 

generally consistent with previous experimental results. Together with our calculated 

phase boundaries, seven multi-anvil experiments at 1400 K and 6.07.7 GPa suggest that 

no equilibrium stability field of kalsilite + coesite intervenes between the stability field of 

sanidine and that of coesite + kyanite + Si-wadeite, in contrast to previous predictions. 

First-order approximations were undertaken to calculate the phase diagram in the system 

K2Si4O9 at lower pressure and temperature. Large discrepancies were shown between the 

calculated diagram compared with previously published versions, suggesting that further 

experimental or/and calorimetric work is needed to better constrain the low pressure 
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phase relations of the K2Si4O9 polymorphs. 

 

 

INTRODUCTION 

Kinomura et al. (1975) first reported that a new crystalline phase of K2Si4O9, 

isostructural with wadeite (K2ZrSi3O9), would form as one of the decomposition products 

of potassium feldspar with increasing pressure. Inoue et al. (1998) showed that K2Si4O9 

wadeite (Si-wadeite) was one of the decomposition products of K-amphibole 

(K2CaMg5Si8O22(OH)2) at 1416 GPa and above 1473 K. Tronnes (2002) also reported 

Si-wadeite was one of the decomposition products of K-richterite 

(KNaCaMg5Si8O22(OH)2) at 1773 K above 10 GPa. Similar to the Zr atoms in wadeite 

(K2ZrSi3O9), one-fourth of the Si atoms in Si-wadeite are in octahedral sites (Kinomura 

et al. 1975). These octahedral Si atoms serve as the bridge to connect the three-

membered rings of SiO4 tetrahedra, while the K atoms occupy the large cages between 

the layers of those rings (Kinomura et al. 1977; Swanson and Prewitt 1983). 

Experimental studies by Urakawa et al. (1994) and Yagi et al. (1994) confirmed the 

report by Kinomura et al. (1975) that potassium feldspar transforms to Si-wadeite, 

kyanite (Al2SiO5) and coesite (SiO2) at about 6 GPa and at 1300 K, and these three 

phases reunite together into KAlSi3O8 hollandite when pressure increases to 9 GPa.  With 

all the Si atoms in octahedral sites, the structure of KAlSi3O8 hollandite can be viewed as 

the K atoms occupying the large tunnel formed by the double chains of edge-sharing 

(Si,Al)O6 octahedra (Ringwood et al. 1967; Yamada et al. 1984; Zhang et al. 1993).  
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Geisinger et al. (1987) performed calorimetric measurements on Si-wadeite and 

K2Si4O9 glass. Fasshauer et al. (1998) measured the heat capacity data of Si-wadeite in 

the temperature range 195598 K. They also generated an internally consistent 

thermodynamic data set that suggested sanidine would decompose first into kalsilite 

(KAlSiO4) + coesite at about 5 GPa when temperature is higher than 823 K. Akaogi et al. 

(2004) measured the enthalpies of Si-wadeite and KAlSi3O8 hollandite using high-

temperature solution calorimetry, based on which the enthalpy of formation (H˚f, 298) of 

Si-wadeite was derived by Xu et al. (2005) as 4288.7 ± 5.1 kJmol
-1

. The heat capacity 

of KAlSi3O8 hollandite was measured by differential scanning calorimetry (DSC) from 

160 K to 700 K (Akaogi et al. 2004) and by PPMS from 5 K to 303 K (Yong et al. 2006). 

However, the low temperature heat capacity of Si-wadeite had not been measured, and 

therefore the entropy of Si-wadeite could not be calculated, although several estimates 

have been proposed (Geisinger et al. 1987; Fasshauer et al. 1998; Yong et al. 2006; cf. 

Table 3.1). Due to the lack of entropy data for Si-wadeite, an evaluation of phase 

equilibrium relations totally independent of high temperature and high pressure phase 

equilibrium experiments has not been applied in the system K2OAl2O3SiO2. In this 

study, the heat capacity of Si-wadeite was measured from 5 K to 303 K by a physical 

properties measurement system (PPMS, produced by Quantum Design), and the 

standard entropy of Si-wadeite was calculated from the measured heat capacity data. The 

phase relations in the system K2OAl2O3SiO2 were studied including the new 

thermodynamic data and some additional experiments were undertaken in this system 
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with a multi-anvil device. 

 

 

EXPERIMENTAL PROCEDURES 

Sample Synthesis and Phase Equilibrium Experiments 

The Si-wadeite, KAlSi3O8 sanidine and KAlSiO4 kalsilite were synthesized using 

an end-loaded piston cylinder apparatus with 12.7 mm furnace assemblies and pistons. In 

each case, a single experimental run produced enough material for all of the phase 

equilibrium experiments, and an additional run was taken to make Si-wadeite for the 

calorimetric measurement. About 30 mg powdered starting material was put into 4 mm 

Pt capsule, which was inserted into a graphite furnace and BaCO3 pressure medium. The 

temperature was controlled by a W3Re97/W25Re75 thermocouple, which was located 

above the sample capsule and was isolated from the capsule by a 1 mm disk of low 

density MgO extrusion. Details of pressure and temperature calibrations for this 

apparatus are given in Xirouchakis et al. (2001). The pressure and temperature 

uncertainties are believed to be ±0.1 GPa and ±12 ºC, respectively (Xirouchakis et al. 

2001). The run products of these experiments were examined by a Scintag Powder XRD 

machine, and their average compositions were determined using a Cameca SX-100 

electron microprobe (EMP) and given in Table 3.2. It is very common to find crystals of 

the synthesized phases larger than 55 m
2
, even as large as 2020 m

2
, which should 

be large enough for reliable EMP analyses. The column conditions for the EMP were: 

accelerating voltage 15 kV, beam current 10 nA or 4 nA, peak counting time 10 s, 
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background counting time 5 s, beam scan area 22 m
2
. Natural K-feldspar (K, Al) and 

Tuburon albite (Si) were used as standards in the analyses.    

The starting material for Si-wadeite was K2Si4O9 glass, prepared from a 

homogenized mixture of K2CO3 and SiO2 at 1:4 molar ratio. The mixture was first heated 

at 973 K for 5 days and then kept at 1173 K for 24 hours before quenching to glass. The 

glass starting material was held in the piston cylinder at 3 GPa and 1273 K for 6 days, 

quenched at 3 GPa, and recovered to ambient pressure. The run product was confirmed 

as Si-wadeite by powder X-ray diffraction and EMP analysis (Table 3.2). The hexagonal 

lattice parameters of the synthesized Si-wadeite were determined using the Scintag 

Crystallography program as a = 6.6102(4) Å and c = 9.5061 (7) Å, which are comparable 

to the values of a = 6.6126(9) Å and c = 9.5101 (6) Å by Fasshauer et al. (1998) and a = 

6.614(1) Å and c = 9.512 (1) Å, by Akaogi et al. (2004). 

The sanidine used for the phase equilibrium experiments was synthesized from 

powdered KAlSi3O8 glass provided by Craig Manning at UCLA. The powdered glass 

was held at 3.2 GPa and 1473 K for 48 hours before it was quenched at 3.2 GPa. Powder 

X-ray diffraction and EMP analysis (Table 3.2) confirmed that the synthetic material is 

pure sanidine. 

The starting material for KAlSiO4 kalsilite was made from a mixture of K2CO3, 

Al2O3 and SiO2 at 1:1:2 molar ratio. The mixture was finely powdered and then heated at 

973 K for 6 days for decarbonation. This mixture was held at 3.2 GPa and 1273 K for 69 

hours for complete reaction. The run product was examined by powder X-ray diffraction 
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and EMP analysis (Table 3.2), confirming kalsilite phase of KAlSiO4 composition with a 

small amount of corundum (<5%). The unit cell parameters of the hexagonal kalsilite 

synthesized in this study were determined as a = 5.1614(3) Å and c = 8.7071 (9) Å, 

comparable to the values of a = 5.1627(3) Å and c = 8.7115 (6) Å by Fasshauer et al. 

(1998). 

Coesite was synthesized using the 1000-ton Walker-type multi-anvil (MA) device 

at the University of Minnesota. In order to produce sufficient quantities of coesite for the 

phase equilibrium experiments in a single synthesis run, the standard “12-TEL” assembly 

used at the University of Minnesota was modified to include a 4.8 mm diameter graphite 

heater, in which it is possible to fit a capsule with a larger diameter than the usual 1.5 or 

2 mm. The assembly consisted of tungsten carbide anvils with 12 mm truncations, a cast 

MgO-Al2O3-SiO2-Cr2O3 octahedron with integral gaskets, a 4.8 mm diameter graphite 

heater, 3 mm Au capsule and a W3Re97/W25Re75 thermocouple. About 35 mg of pure 

quartz powder (99.995% SiO2) was used as the starting material, which was subjected to 

6 GPa and 1573 K for 6 hours. Powder X-ray diffraction study confirmed single phase 

coesite in the run product. 

A natural white kyanite sample from Central Alps, Styria, Austria, was used for 

the phase equilibrium experiments.. Powder X-ray diffraction analyses of the kyanite 

revealed very weak peaks belonging to chlorite or muscovite; however, back scattered 

electron (BSE) image and EMP analyses didn‟t reveal any chlorite or muscovite. The 

slight amount of chlorite or muscovite in kyanite is assumed negligible and should not 
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affect the results of the phase equilibrium experiments. The average composition of this 

kyanite is given in Table 3.2.  

The aforementioned MA device was used to perform the phase equilibrium 

experiments. The experimental assemblage was the same as that described above, except 

that the heater and capsule diameters were 4 mm and 1.6 mm, respectively. The force–

pressure relationship for this 12-TEL assembly was determined using 298 K fixed points 

of the Bi I–II and Bi III–V transitions (Piermarini and Block 1975) and by multiple 

reversed brackets of high temperature phase transitions. The fixed points that define the 

force pressure curve used in this study are those of quartz–coesite at 973, 1273 and 1473 

K (Bose and Ganguly 1995), Fe2SiO4 olivine–spinel at 1273 K (Yagi et al. 1987), 

CaGeO3 garnet–perovskite at 1273 K (Susaki et al. 1985), and coesite–stishovite at 1273, 

1373 and 1473 K (Zhang et al. 1993). Multiple 15-20 tonne brackets of these phase 

transitions define a self-consistent calibration curve (Dasgupta et al. 2004), on the basis 

of which we estimate uncertainty in pressure to be ±0.3 GPa. The thermal profile of the 

12-TEL assembly has been evaluated using enstatite-diopside thermochemistry (Carlson 

and Lindsley 1988). At a nominal experimental temperature of 1773 K a total variation of 

36 K was measured throughout a 2 mm diameter Pt capsule. An additional series of 

experiments to determine the melting point of titanite indicate that at >1973 K, less than 

40 K increase in nominal experimental temperature was required to transform the entire 

contents of a 2 mm capsule from solid to liquid, in good agreement with the thermometry 

results. We therefore estimate that temperature gradients are < 20 K/mm. 
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Two sets of starting materials were used in this study. The first one is a mixture of 

sanidine, kalsilite and coesite at 1:1:2 nominal molar ratio, and the second one is a 

mixture of kalsilite, coesite, Si-wadeite and kyanite with a molar ratio of ~ 2:3:1:1. Due 

to the limitations of precision in weighing, both mixtures included a slight excess of 

coesite. The starting material was homogenized by grinding under ethyl alcohol in an 

agate pestle and mortar and examined by powder X-ray diffraction before loading into 

the capsule. About 4−5 mg starting material was loaded into the capsule for each 

experiment. After being held at the desired P-T condition for 12−96 hours, experiments 

were terminated by turning off the power supply to the heater and slowly depressurized 

to ambient pressure. Capsules were retrieved and opened from the end that was adjacent 

to the thermocouple junction during the experiment. Run products were extracted from 

the part of the capsule that was closest to the thermocouple junction and examined by 

powder X-ray diffraction. Since the analyzed run products were located with 1 mm of the 

thermocouple junction we expect the uncertainty in temperature to be better than ±20 K. 

 

 

Heat Capacity Measurement 

The heat capacity at constant pressure (Cp) of Si-wadeite in the temperature range 

of 5303 K was measured at 1 atm using the heat capacity option of the PPMS at 

Salzburg University in Austria. A powdered Si-wadeite sample (21.4 mg) was sealed into 

a small Al pan with a lid and placed on a 44 mm
2
 wide sapphire platform that has a 

thermometer and a heater attached to the lower side. Two runs were undertaken to collect 
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the Cp data from 5 K to 303 K. In the first run, Cp data were collected at 60 different 

temperatures with a logarithmic spacing whereas a linear spacing was used in the second 

run. Three measurements were performed at each temperature. Since it has been 

demonstrated that heat capacity values measured with the PPMS upon cooling compared 

well to those measured upon heating (Dachs and Bertoldi 2005), the Cp data were 

measured only upon cooling. More detailed descriptions of the method including 

discussions of the precision and accuracy of the Cp measurement by PPMS are given by 

Lashley et al. (2003) and Dachs and Bertoldi (2005). Other Cp data obtained in the same 

facility have been used to calculate phase equilibria at high pressures and temperatures 

(Yong et al. 2006, 2007; Manon et al. 2007). 

 

 

RESULTS AND DISCUSSION 

Heat Capacity and Entropy of Si-wadeite 

The measured heat capacity (Cp) data of Si-wadeite as a function of temperature 

are listed in eTable 1 and shown in Table 3.3 and Fig. 3.1. The Cp data of Si-wadeite from 

195 K to 598 K by Fasshauer et al. (1998) are also plotted in Fig. 3.1 for comparison. 

The two sets of data generally agree with each other in the overlapping region. The 

entropy of Si-wadeite at standard temperature and pressure (STP) was obtained by fitting 

the Cp data in Table 3.3 as a general polynomial, Cp= k0 + k1T
-0.5

 + k2T
-2

 + k3T
-3

 + k4T + 

k5T
2
 + k6T

3
 using the function LinearFit of the Experimental Data Analyst Package of 

Mathematica. The Cp data were split into three temperature regions with some overlaps 
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and each region was fitted slightly differently in terms of the Cp polynomial. The 

complete polynomial given above was only used for fitting the intermediate temperature 

region while Cp= k4T + k6T
3
 and Cp = k0 + k1T

-0.5
 + k2T

-2
 + k3T

-3
 were used for fitting the 

low temperature and high temperature regions, respectively. The Cp data were evaluated 

below 5 K by extrapolation from 5 to 0 K in the form of Cp = k6T
3
. The fitted Cp 

coefficients and the interval temperature boundaries are given in Table 3.4, and the 

entropy of Si-wadeite at STP was calculated to be 253.8 ± 0.6 Jmol
-1

K
-1

 (error is two 

standard deviations) by integration of these fitted polynomials. It was shown that the 

entropy at STP varies insignificantly (only in the second digit of the decimal) upon 

choosing different splitting temperatures for the Cp data (Yong et al. 2006). The 

uncertainty in the entropy at STP was estimated by a Monte Carlo technique; a detailed 

description of error estimation was given by Dachs and Geiger (2006).  

As shown in Table 3.1, the entropy of Si-wadeite calculated from the Cp data is in 

excellent agreement with the estimated value of 251 ± 8 Jmol
-1

K
-1

 by Yong et al. (2006), 

strongly supporting the reliability of the entropy estimation method used by Holland 

(1989). However, the calorimetrically determined entropy of Si-wadeite in this study is 

considerably larger than the entropy value of 198.9 ± 4.0 Jmol
-1

K
-1

 calculated from 

spectroscopic data (Geisinger et al. 1987).  It is also larger than the estimated value of 

232 ± 10 Jmol
-1

K
-1

 based on an internally consistent thermodynamic data base by 

Fasshauer et al. (1998). The good agreement of our Cp data with that of Fasshauer et al. 

(1998) in the overlapping region and with entropy estimates made by Yong et al. (2006) 
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provides reasonable support for the calculated entropy value of Si-wadeite in this study. 

Phase Equilibria in K2O-Al2O3-SiO2 System 

The computer program Perple_x (Connolly and Kerrick 1987; Connolly 1990) 

was used to calculate the phase boundaries. A modified Holland and Powell (1998) data 

base is used for the well established phases, and the thermodynamic data and their 

sources for KAlSi3O8 hollandite and Si-wadeite are given in Table 3.5. The transition 

boundary of a certain reaction is defined by the following equation: 

0'),'(),(
1

  dPTPVGTPG

P

atm

T


       (1) 

where ),( TPG  and ),( TPV  are Gibbs free energy  and molar volume change of 

reaction at pressure P and temperature T, respectively. 
TG  is the Gibbs free energy 

change at 1 atm and temperature T, and its temperature dependence is corrected using the 

heat capacity data of the relevant phases. The temperature dependence of the molar 

volume, )(TV  , is given by  














 

T
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298

298 1
          (2) 

where 
298V  and α are the molar volume at standard state and thermal expansion, 

respectively. The pressure dependence of the molar volume was expressed by the 

Murnaghan equation of state: 
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
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
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


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         (3) 

where TK  and K'  are the isothermal bulk modulus and its pressure derivative at 
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temperature T, respectively. 

The upper stability of sanidine and the lower stability of KAlSi3O8 hollandite are 

defined by reaction (4) and (5), respectively. Fig. 3.2 shows the calculated phase 

boundaries for these two reactions: 

2 sanidine = Si-wadeite + kyanite + coesite      (4) 

Si-wadeite + kyanite + coesite/stishovite = 2 KAlSi3O8 hollandite (5) 

Compared to the experimentally determined phase boundaries by Yagi et al. (1994, 

dashed lines in Fig. 3.2, after pressure recalibration by Akaogi et al. 2004) and by 

Urakawa et al. (1994, dotted lines in Fig. 3.2), our calculated transition boundary (solid 

lines in Fig. 3.2) for reaction (4) has a much steeper slope and is consistent with their 

boundaries within ±0.8 GPa. The phase boundary by Akaogi et al. (2004, lower dash-dot 

line in Fig. 3.2) has a very similar slope to that of our study, and only differs in its locus 

by ~0.1 - 0.2 GPa. Our calculated phase transition boundary of reaction (5) is slightly 

above the coesitestishovite transition boundary, 0.2~0.4 GPa higher than the 

experimental studies by Yagi et al. (1994) and Urakawa et al. (1994). The differences 

between this study and previous experiments can be explained by the pressure and 

temperature uncertainties of those experiments as well as the uncertainties of the 

thermodynamic data, especially the relatively large uncertainties of the enthalpy values. 

Fig. 3.3 shows the experimental data of Yagi et al. (1994, after pressure recalibration by 

Akaogi et al. 2004) and Urakawa et al. (1994) as well as the uncertainties of enthalpy 

data (Akaogi et al. 2004). As shown in Fig. 3.3, all the experimental syntheses of Yagi et 
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al. (1994) and the reversals of Urakawa et al. (1994) for reaction (4) agree with our 

calculation within one standard deviation (lighter shaded area). For reaction (5), except 

for one experimental run by Urakawa et al. (1994), all the other results are consistent 

with our calculated phase boundary within one standard deviation. That exceptional 

experiment at 1573 K and 9.49 GPa of Urakawa et al. (1994) is located inside the two 

standard deviation region of our calculation (darker shaded area, Fig. 3.3). Therefore, the 

thermodynamic data on Si-wadeite is considered to be in agreement with currently 

available experimental studies on its stability.  

Fasshauer et al. (1998) suggested a stable region of kalsilite + coesite at 

temperature above 823 K located between the field of sanidine and that of Si-wadeite + 

coesite + kyanite (Fig. 3.4). They suggested that sanidine would decompose into kalsilite 

+ coesite instead of Si-wadeite + coesite + kyanite at lower pressures, which is in 

disagreement with our calculations. One reason that may account for this discrepancy is 

the different entropy values of Si-wadeite between these two studies. A much lower 

entropy value for Si-wadeite derived from an internally consistent thermodynamic data 

set, 232.1 ± 10.4 Jmol
-1

K
-1

, was used in their study. As our entropy value for Si-wadeite 

is determined from much more precise calorimetric measurements, we doubt the 

existence of the narrow stability field for kalsilite + coesite. In addition, seven MA 

experiments ranging from 6.0 GPa to 7.7 GPa were undertaken to examine this stability 

field (Table 3.6, Fig. 3.4). The starting material in the seven MA experiments contains 

kalsilite and coesite, and the low pressure and the high pressure phases are also included 



 59 

in the starting material for reversal purposes. None of the run products of these 

experiments contains the assemblage kalsilite + coesite, suggesting no stability field for 

this assemblage in the pressure range 6.0 - 7.7 GPa at 1400 K. The run products of the 

two experiments at 6.9 GPa (M 314 and M 315), indicate that at temperature of 1400 K, 

the phase boundary of reaction (4) is exactly located at 6.9 GPa, which is 0.2 GPa higher 

than our calculated phase boundary of reaction (4) at 1400 K. Considering the 0.3 GPa 

uncertainties in these MA experiments and the errors in thermodynamic data, this small 

discrepancy is acceptable.   

Besides Si-wadeite, K2Si4O9 has two low-pressure polymorphs, which display an 

inversion similar to that of - quartz at 865 K and atmospheric pressure (Kracek et al. 

1929; Goranson and Kracek 1932). A crystallographic study of the low-temperature 

phase shows that it has a unique sheet-type structure (Schweinsberg and Liebau 1974). 

For the purpose of simple notation, instead of distinguishing between the two low-

pressure polymorphs, a single name of sheet-type K2Si4O9 is used to represent both of the 

phases. It was suggested that sheet-type K2Si4O9 has a very limited stability field, 

decomposing into K2Si2O5 + quartz above 0.125 GPa (Fig. 3.5A), and it melts at 1038 K 

at atmospheric pressure (Goranson and Kracek 1932). The calculated phase boundary 

(Fig. 3.5A) is only an approximation, because the thermodynamic properties of sheet-

type K2Si4O9 and K2Si2O5 needed for an accurate calculation were not available. The 

enthalpy and entropy for sheet-type K2Si4O9 are still not available, although some 

indirect estimates were obtained from optimization of the K2O-SiO2 system (Wu et al. 
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1993; Forsberg 2002). Due to the absence of thermal expansion and bulk modulus data 

for sheet-type K2Si4O9 and K2Si2O5, only a first-order approximation was undertaken to 

calculate the phase boundaries in the system K2Si4O9 (Figs. 3.5B,  3.5C). The 

thermodynamic data for quartz are from Holland and Powell (1998) and the 

thermodynamic data for Si-wadeite are given in Table 3.5. The resultant phase diagrams 

vary widely due to the different estimates of thermodynamic data for sheet-type K2Si4O9 

and K2Si2O5 (Fig. 3.5B uses the estimation of Wu et al. 1993 and Fig. 3.5C uses the 

estimation of Forsberg 2002). Both of the calculated phase boundaries of sheet-type 

K2Si4O9 decomposition reaction in Fig. 3.5B and Fig. 3.5C strongly disagree with that of 

Goranson and Kracek (1932) in Fig. 3.5A. These large discrepancies suggest that further 

experimental and calorimetric studies are needed to better constrain the phase relations 

for K2Si4O9 polymorphs at low pressures. Experimental determination of the sheet-type 

K2Si4O9 decomposition reaction may be very difficult due to a slow reaction rate below 

1000 K. Calorimetric studies seem to be more promising in this case. 

Liu (1987) reported that leucite (KAlSi2O6) composition breaks down into 

kalsilite + kyanite + Si-wadeite at 1273 K in the pressure range of 612 GPa through the 

reaction: 

3 leucite = kalsilite + kyanite + Si-wadeite     (6) 

This three-phase assemblage was also found in the system CaMgSi2O6-KAlSi2O6 at 7 

GPa probably due to reaction (6) (Safonov et al. 2003). It is well known that at lower 

pressures (below 3 GPa), leucite turns to decompose into kalsilite + sanidine (Liu 1987; 
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Fasshauer et al. 1998) by the reaction: 

2 leucite = kalsilite +sanidine        (7) 

Therefore, reaction (6) is probably due to a combination effect. Indeed Fasshauer et al. 

(1998) and Yong et al. (2006) suggested the possibility of another reaction, 

kalsilite + 2 sanidine = 2 kyanite + 2 wadeite    (8) 

which is located 0.2 GPa lower than reaction (4) (Yong et al. 2006). Reaction (6) can be 

obtained from combination of reactions (7) and (8).  Here it is concluded that reaction (7) 

and (8) are stable, and (6) is metastable. 

 Despite its occasional appearance in experimental studies, Si-wadeite has not 

been found in nature, probably due to the extremely high pressures required for its 

formation. The pressure range where Si-wadeite has been reported experimentally is 

516 GPa (Kinomura et al. 1975; Liu 1987; Urakawa et al. 1994; Yagi et al. 1994; Inoue 

et al. 1998; Tronnes 2002; Safonov et al. 2003, 2005), suggesting it might occur in 

metapelites and metagranitoids that are subducted into the earth‟s upper mantle at depths 

in excess of 170-200 km. However, almost all of the ultra-high pressure (UHP) rocks of 

continental origin that are recovered on the earth‟s surface do not show convincing 

evidence of exceeding 5 GPa (Withers et al. 2003; Liou et al. 2004). It seems unlikely 

that Si-wadeite would be found in those associations.  

 Peak metamorphic conditions were estimated as in the range of ca. 6-7 GPa 

(Ogasawara et al. 2000) and 6-9 GPa (Ogasawara et al. 2002) in UHP marbles from 

Kokchetav massif, northern Kazakhstan. However, Si-wadeite has not been observed in 
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those rocks, whereas K-feldspar was identified as part of the UHP assemblage, 

suggesting that the pressure was not high enough for K-feldspar to dissociate and form 

Si-wadeite (~6.4 GPa at 1273 K, Fig. 3.2). The presence of abundant K-feldspar also 

suggests that the fluid composition was not H2O-rich, because K-cymrite would have 

formed instead of sanidine (Yong et al. 2006). Ogasawara et al. (2000) concluded that 

temperature at the peak pressure was 1253-1523 K, although few data constrain those 

temperatures. Ogasawara et al. (2002) described titanite with exsolved coesite in 

Kokchetav marbles, which they inferred exsolved from 5.5-14.5% CaSi2O5 solid solution 

in the titanite. Decomposition of supersilicic titanite to coesite requires formation of an 

additional Ca phase as they noted, but very little calcite was found in the titanite. 

Supersilicic titanite may have reacted with CO2 to form titanite + coesite + aragonite, 

where most of the carbonate formed externally (and now is inverted to calcite). If so, 

reintegrations of titanite with exsolved coesite are suspect as sufficient Ca was not 

included. Ogasawara et al. (2002) concluded from the phase equilibria of Knoche et al. 

(1998) at 1623 K that the rocks attained at least 6 GPa, but conceded that the effect of T 

on the equilibria was unknown. The effect of 7-8% CaAlSiO4F solid solution in the 

titanite was also neglected in their analysis.  The fluid composition was inferred to be 

CO2-poor and H2O-rich in these diamond-bearing marbles by Ogasawara et al. (2002), 

who did not address the potential dilution by CH4. Sanidine may well be stable with 

supersilicic titanite at 1173-1273 K and ca. 5 GPa in the absence of fluid, but the lack of 

K-cymrite remains difficult to explain in the presence of H2O-rich fluid. Previously 
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formed K-cymrite or Si-wadeite may have totally back-reacted during decompression. 

Careful study of inclusions in zircon if present in the Kokchetav marble may be of 

interest in further addressing the nature of the potassium assemblages at or near peak P-T. 

Additional consideration of the fluid composition and its evolution in the Kokchetav 

marbles during metamorphism may also prove fruitful. 
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Table 3.1 Reported entropy and enthalpy data for Si-wadeite  

Reference S˚298  (J mol
-1

K
-1

) H˚f,298  (kJ mol
-1

) 

Geisinger et al. (1987) 198.9(4.0)  

Fasshauer et al. (1998) 232(10) 4301.2(5.7) 

Xu et al. (2005)  4288.7(5.1) 

Yong et al. (2006) 251(8)  

This study 253.8(0.6)  

The numbers in parentheses are 2 standard deviations. 
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Table 3.2 Average compositions of the phases in this study 

Phase Si-wadeite kyanite kalsilite sanidine 

SiO2 (wt%) 71.42(0.55) 37.19(0.21) 37.51(0.34) 64.15(0.29) 

K2O 28.70(0.23)  29.46(0.34) 16.85(0.16) 

Al2O3  62.40(0.43) 32.71(0.39) 18.80(0.23) 

Total 100.12 99.59 99.68 99.80 

Number of analyses 12 8 13 13 

Cations per given O 

O 9 5 4 8 

Si 3.989 1.007 0.992 2.979 

K 2.045  0.989 0.998 

Al  1.990 1.017 1.029 

Total 6.034 2.997 2.998 5.006 
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Table 3.3 Measured heat capacity of Si-wadeite  

T (K) Cp  

(Jmol-1K-1) 

T (K) Cp  

(Jmol-1K-1) 

T (K) Cp  

(Jmol-1K-1) 

T (K) Cp  

(Jmol-1K-1) 

5.12 0.056(1) 40.60 28.10(18) 5.12 0.054(1) 156.58 155.13(54) 

5.13 0.051(1) 40.61 28.13(18) 5.13 0.055(1) 156.66 155.36(50) 

5.13 0.054(1) 40.65 28.29(19) 5.13 0.051(1) 156.66 155.20(46) 

5.49 0.070(1) 43.52 32.04(21) 10.19 0.577(3) 161.68 159.75(54) 

5.49 0.069(1) 43.52 32.03(20) 10.20 0.584(3) 161.75 159.66(50) 

5.50 0.069(1) 43.57 32.17(22) 10.20 0.586(4) 161.77 159.77(59) 

5.88 0.084(1) 46.63 36.33(23) 15.20 2.035(11) 166.73 163.88(51) 

5.89 0.084(1) 46.64 36.35(23) 15.21 2.059(9) 166.81 163.90(47) 

5.89 0.087(1) 46.69 36.48(24) 15.22 2.062(9) 166.81 163.80(49) 

6.30 0.113(1) 49.98 40.86(26) 20.26 4.864(25) 171.73 168.67(55) 

6.31 0.110(1) 49.98 40.85(27) 20.28 4.888(25) 171.81 168.03(47) 

6.31 0.110(1) 50.04 40.98(27) 20.29 4.924(24) 171.82 168.41(63) 

6.77 0.149(1) 53.56 45.54(28) 25.35 9.315(55) 176.84 172.97(54) 

6.77 0.148(1) 53.57 45.56(29) 25.36 9.313(52) 176.92 172.65(49) 

6.78 0.146(1) 53.63 45.70(29) 25.36 9.242(54) 176.92 172.97(49) 

7.21 0.182(2) 57.41 50.68(32) 30.40 14.776(87) 181.84 176.71(52) 

7.21 0.182(1) 57.42 50.66(31) 30.40 14.796(85) 181.90 176.94(47) 

7.22 0.182(1) 57.47 50.86(32) 30.40 14.777(89) 181.91 176.49(65) 

7.72 0.228(2) 61.54 56.10(35) 35.43 21.19(14) 186.94 180.41(53) 

7.73 0.228(2) 61.54 55.97(32) 35.45 21.25(13) 187.03 180.59(45) 

7.73 0.228(2) 61.61 56.00(36) 35.45 21.23(13) 187.03 179.89(47) 

8.28 0.288(2) 65.96 61.72(34) 40.50 28.01(19) 191.94 184.07(54) 

8.28 0.286(2) 65.97 61.77(37) 40.50 28.03(18) 192.02 183.98(54) 

8.29 0.288(2) 66.04 61.99(39) 40.50 28.00(18) 192.02 183.70(52) 

8.87 0.367(3) 70.70 67.68(36) 45.46 34.43(23) 197.06 187.93(55) 

8.87 0.366(3) 70.72 67.66(37) 45.55 34.87(22) 197.14 187.91(51) 

8.88 0.367(2) 70.73 69.84(45) 45.55 34.87(22) 197.14 187.50(50) 

9.50 0.463(4) 75.72 73.80(37) 50.51 41.21(21) 202.04 191.72(77) 

9.51 0.462(3) 75.73 74.14(41) 50.60 41.66(26) 202.13 191.68(54) 

9.51 0.463(3) 75.81 74.06(42) 50.60 41.66(26) 202.14 191.62(48) 

10.18 0.584(4) 81.16 80.52(42) 55.57 47.99(26) 207.16 194.95(51) 

10.19 0.580(4) 81.16 80.92(41) 55.66 48.34(30) 207.24 195.06(49) 

10.19 0.583(4) 81.24 80.98(46) 55.66 48.38(30) 207.25 194.93(52) 

10.92 0.729(5) 86.97 87.20(41) 60.63 54.53(28) 212.14 198.25(74) 

10.92 0.729(4) 86.97 87.72(43) 60.72 55.01(35) 212.22 198.42(53) 

10.93 0.729(4) 87.06 87.66(47) 60.72 55.02(34) 212.23 198.75(50) 

11.70 0.915(7) 93.21 93.81(42) 65.69 61.07(31) 217.26 202.28(81) 

11.70 0.909(6) 93.21 93.65(43) 65.78 61.57(37) 217.35 202.66(51) 

11.71 0.912(5) 93.30 93.74(44) 65.78 61.58(36) 217.36 202.61(53) 

12.53 1.141(8) 99.91 101.09(39) 70.75 67.09(33) 222.31 205.61(76) 

12.54 1.135(6) 99.92 101.38(40) 70.83 67.74(35) 222.40 204.75(48) 

12.54 1.136(6) 100.01 101.60(45) 70.84 67.85(39) 222.41 206.25(50) 

13.43 1.425(10) 107.09 108.67(43) 75.80 73.23(34) 227.35 208.11(77) 

13.43 1.420(8) 107.09 108.61(40) 75.88 74.00(38) 227.45 208.71(53) 

13.44 1.425(7) 107.19 109.15(47) 75.89 74.23(41) 227.46 208.68(51) 

14.39 1.758(10) 114.79 117.14(46) 80.85 80.26(39) 232.40 211.22(78) 

14.40 1.765(12) 114.79 117.10(46) 80.93 80.10(40) 232.49 211.77(55) 

14.40 1.757(9) 114.88 117.56(47) 80.93 80.14(43) 232.51 212.09(73) 

15.42 2.173(11) 123.03 125.54(42) 85.89 85.68(48) 237.38 215.79(73) 

15.43 2.183(15) 123.04 125.13(44) 85.98 86.34(45) 237.47 216.01(52) 



 67 

15.43 2.178(11) 123.13 125.59(49) 85.98 86.48(49) 237.48 215.95(55) 

16.53 2.692(14) 131.88 133.63(43) 90.93 90.27(48) 242.52 219.89(70) 

16.53 2.692(14) 131.88 133.23(40) 91.01 91.38(40) 242.60 220.31(55) 

16.54 2.707(18) 131.97 133.77(46) 91.02 91.23(44) 242.61 220.43(55) 

17.72 3.316(18) 141.36 142.98(46) 95.99 96.07(49) 247.48 223.73(69) 

17.72 3.313(18) 141.37 142.85(46) 96.07 96.77(44) 247.56 223.59(53) 

17.73 3.326(22) 141.46 144.13(52) 96.07 96.91(47) 247.57 223.78(52) 

18.98 4.066(21) 151.52 152.16(45) 101.04 102.09(49) 252.59 226.28(81) 

18.98 4.054(21) 151.52 152.15(44) 101.12 102.29(45) 252.68 226.77(56) 

19.00 4.082(25) 151.62 151.99(52) 101.13 102.25(52) 252.70 227.16(77) 

20.34 4.983(26) 162.43 161.57(42) 106.09 107.49(51) 257.64 228.55(73) 

20.34 4.981(31) 162.43 161.47(44) 106.17 107.95(44) 257.72 228.61(56) 

20.37 5.024(29) 162.51 161.83(50) 106.18 107.46(42) 257.74 228.85(81) 

21.80 6.046(34) 174.13 172.85(48) 111.15 112.39(49) 262.61 232.19(72) 

21.80 6.063(33) 174.14 172.75(47) 111.23 112.92(46) 262.69 231.80(58) 

21.83 6.090(36) 174.21 172.90(55) 111.23 112.86(47) 262.69 231.68(58) 

23.35 7.347(44) 186.63 181.96(45) 116.20 118.50(50) 267.72 234.90(79) 

23.35 7.351(41) 186.63 181.83(48) 116.28 118.70(41) 267.81 235.26(58) 

23.39 7.399(43) 186.70 182.29(50) 116.29 118.74(48) 267.83 235.71(84) 

25.03 8.974(50) 200.02 192.31(48) 121.22 123.01(51) 272.76 237.36(79) 

25.03 8.981(52) 200.02 191.98(46) 121.30 123.84(47) 272.85 237.78(56) 

25.06 9.038(56) 200.08 192.65(57) 121.30 123.72(48) 272.87 238.25(83) 

26.82 10.805(62) 214.36 202.76(51) 126.27 127.81(54) 277.72 240.12(76) 

26.82 10.821(70) 214.36 202.56(50) 126.35 128.09(47) 277.80 240.24(59) 

26.85 10.767(77) 214.39 202.85(55) 126.35 127.95(45) 277.82 240.93(87) 

28.73 12.873(76) 229.74 211.91(56) 131.36 132.25(51) 282.84 242.70(82) 

28.73 12.846(79) 229.75 211.66(47) 131.44 132.52(46) 282.93 243.27(60) 

28.78 12.951(89) 229.75 211.46(50) 131.45 132.91(55) 282.96 243.66(89) 

30.79 15.207(95) 246.20 223.80(58) 136.42 137.26(57) 287.90 245.35(78) 

30.79 15.203(96) 246.25 223.87(53) 136.50 137.47(45) 287.98 245.47(60) 

30.83 15.30(10) 246.25 223.76(51) 136.50 137.21(45) 287.99 245.54(60) 

32.99 17.93(11) 263.79 233.18(74) 141.44 141.98(50) 292.86 249.15(71) 

32.99 17.96(11) 263.89 233.24(53) 141.51 142.10(46) 292.93 249.21(69) 

33.04 18.04(12) 263.90 232.82(56) 141.52 141.98(54) 292.93 249.13(66) 

35.36 20.98(14) 282.64 243.79(73) 146.53 146.41(46) 297.98 251.62(76) 

35.36 20.99(13) 282.81 243.81(61) 146.60 147.60(45) 298.06 251.91(61) 

35.40 21.14(15) 282.82 243.55(62) 146.61 147.38(44) 298.08 251.97(91) 

37.89 24.43(16) 302.79 256.88(72) 151.58 151.08(52) 303.02 254.56(70) 

37.89 24.40(16) 302.99 256.13(79) 151.65 151.07(44) 303.10 254.53(59) 

37.94 24.56(16) 303.04 255.55(88) 151.66 151.40(56) 303.12 255.22(85) 
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Table 3.4 Coefficients of the Cp polynomial Cp = k0 + k1T 
-0.5

 + k2T 
-2

 + k3T 
-3

 + k4T + 

k5T 
2
 + k6T 

3
 derived by fitting the PPMS Cp data of wadeite given in Table 3.3. At the 

bottom of the table, heat capacity at 298.15 K and standard entropy S˚298 are additionally 

given (numbers in parenthesis is one standard deviation and apply to the last digits). 

Different parts of the general Cp polynomial are relevant in different temperature 

intervals, defined by temperatures T1 up to Tref. At these temperatures, adjacent fits yield 

identical Cp. The final S˚298, derived by stepwise analytical integration, is not dependent 

on how the data set has been split. 

 

Formula weight 334.535 g/mol 

Sample weight  21.38 mg 

  

    

k6 4.0870E-04 

T1 4.83 

k0 4.0297E+00 

k1 -5.8806E+00 

k2 -5.6272E+00 

k3 3.3976E+01 

k4 -3.9081E-01 

k5 2.1525E-02 

k6 1.5306E-04 

T2 26.59 

k0 -3.7695E+02 

k1 1.7839E+03 

k2 -8.4735E+04 

k3 8.8530E+05 

k4 4.8894E+00 

k5 -2.3597E-02 

k6 5.4414E-05 

T3 140.01 

k0 6.3533E+02 

k1 -7.1269E+03 

k2 2.9642E+06 

k3 -1.1829E+08 

Tref 298.15 

Cp at 298.15 251.1(7) 

S˚298 253.8(3) 
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Table 3.5 Phase property data used for phase boundary calculation. The numbers in 

parentheses are 2 standard deviations. 

Phase* H˚f,298  

(kJmol
-1

) 

S˚298 

(Jmol
-1

K
-1

) 

Cp=c1+c2T
-0.5

+c3T
-2

+c4T
-3

 (J mol
-1

K
-1

) 

c1  10
-2

 c2  10
-3

 c3  10
-6

 c4  10
-8

 

KAlSi3O8 (hol) −3801.0
a
 166.2(0.4)

c
 3.896 -1.823 -12.934 16.307

e
 

K2Si4O9 (wd) −4288.7(5.1)
b
 253.8(0.6)

d
 4.991 -4.350 0 0

f
 

Phase* V˚298 

(cm
3 

mol
-1

) 

α=a0+a1T (K
-1

) 
K0T 

(GPa) 

K'0T 
 

a0  10
5
 a1  10

8
 

KAlSi3O8 (hol) 71.28
g
 3.320 1.09

i
 183  0.033T

i
 4

l
 

K2Si4O9 (wd) 108.44
h
 2.950 0

j
 90

k
 4

l
 

a
 Akaogi et al. (2004);  

b
 Xu et al. (2005);  

c
 Yong et al. (2006); 

d
 This study; 

e
 Akaogi et al. (2004); 

f
 Fasshauer et al. (1998); 

g
 Yamada et al. (1984); 

h
 Swanson and Prewitt (1983); 

i
 Nishiyama et al. (2005); 

j
 Swanson and Prewitt (1986);  

k
 Geisinger et al. (1987);  

l
 Assumed. 

 * The thermodynamic data for sanidine, quartz, coesite, kyanite and stishovite are from a modified 

Holland and Powell (1998) data base, called hp02ver.dat. More detailed information about hp02ver.dat can 

be found in http://www.perplex.ethz.ch/. The thermodynamic data for K2Si2O5 and K2Si4O9 (sheet) are 

from Forsberg (2002) and Wu et al. (1993). See text for details.  

 

 

http://www.perplex.ethz.ch/
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Table 3.6 Experimental data on kalsilite + coesite stability. 

 

Run # P (GPa) T (K) Run time (h) Starting material Run products 

M 307 6.0 1400 12 San + Ks + Coe San + slight amount of Coe 

M 323 6.5 1400 96 San + Ks + Coe San + slight amount of Coe 

M 308 6.8 1400 12 Ks + Coe + Wd + Ky San + small amount of Ks 

M 314 6.9 1400 24 Ks + Coe + Wd + Ky San + small amount of Ks 

M 315 6.9 1400 96 San + Ks + Coe Wd + Ky + Coe 

M 327 7.0 1400 96 Ks + Coe + Wd + Ky Wd + Ky + slight amount of Coe 

M 322 7.7 1400 96 Ks + Coe + Wd + Ky Wd + Ky + slight amount of Coe 

The slight amount of coesite in the run products of M307, M322, M323, M327 is due to 

the small excess coesite in the starting materials. The small amount of kalsilite in the run 

products of M308 and M314 results from the molar ratio of kalsilite vs. coesite in the 

starting material of 2:3, which is higher than that needed for the reaction  Ks + 2Coe = 

San 
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Fig. 3.1 Comparison of the heat capacity data of Si-wadeite measured by PPMS (circles) 

with those measured by DSC (crosses) 
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Fig. 3.2 Phase diagrams in the system KAlSi3O8. Solid lines are our calculated phase 

boundaries while dashed, dotted, and dash-dotted lines represent those by Yagi et al. 

(1994), Urakawa et al. (1994) and Akaogi et al. (2004), respectively. San sanidine; Wd 

Si-wadeite; Coe coesite; Stv stishovite; hol KAlSi3O8 hollandite 
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Fig. 3.3 Comparison of calculated phase boundaries with experimental data points of 

Urakawa et al. (1994) and Yagi et al. (1994). The light- and dark-shaded regions show 

the uncertainties of the phase boundaries due to one standard deviation and two standard 

deviations of the enthalpy data, respectively. Open, closed and shaded symbols represent 

hollandite, Si-wadeite+kyanite+coesite/stishovite, and sanidine, respectively 
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Fig. 3.4 Stability field of kalsilite + coesite proposed by Fasshauer et al. (1998) (grey 

dashed lines). The solid line is the calculated phase boundary for reaction (4). Triangles 

are the seven experimental runs in this study. Open triangles indicate sanidine is the 

stable phase, while solid triangles indicate Si-wadeite + kyanite + coesite is the stable 

assemblage. The position of the open triangle at 6.9 GPa offset by 20 K to avoid overlap 

of symbols. Ks kalsilite 
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Fig. 3.5 Phase diagrams in the system K2Si4O9. Fig. 3.5A is the calculated phase equilibrium 

diagram by Goranson and Kracek (1932). Fig. 3.5B and Fig. 3.5C were calculated with a 

first-order approximation neglecting thermal expansion and compressibility terms. 

Thermodynamic data for K2Si2O5 and K2Si4O9 (sheet) are from Wu et al. (1993) (Fig. 3.5B) 

and Forsberg (2002) (Fig. 3.5C) 
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CHAPTER IV 

 

HEAT CAPACITY OF γ-Fe2SiO4 BETWEEN 5 AND 303 K 

AND DERIVED THERMODYNAMIC PROPERTIES 

 

 

ABSTRACT 

A multi-anvil device was used to synthesize 24 mg of pure γ-Fe2SiO4 crystals at 

8.5 GPa and 1273 K. The low-temperature heat capacity (Cp) of γ-Fe2SiO4 was measured 

between 5 and 303 K using the heat capacity option of a physical properties measurement 

system (PPMS). The measured heat capacity data show a broad λ-transition at 11.8 K. 

The difference in the Cp between fayalite and γ-Fe2SiO4 is reduced as the temperature 

increases in the range of 50-300 K. The gap in Cp data between 300 K and 350 K of γ-

Fe2SiO4 is an impediment to calculation of a precise Cp equation above 298 K that can be 

used for phase equilibrium calculations at high temperatures and high pressures. The Cp 

and entropy of γ-Fe2SiO4 at standard temperature and pressure (S°298) are 131.1 ± 0.6 

Jmol
-1

K
-1

 and 140.2 ± 0.4 Jmol
-1

K
-1

, respectively. The Gibbs free energy at standard 

pressure and temperature (G°f,298) is calculated to be 1369.3 ± 2.7 Jmol
-1

 based on the 

new entropy data. The phase boundary for the fayalite–γ-Fe2SiO4 transition at 298 K 

based on current thermodynamic data is located at 2.4 ± 0.6 GPa with a slope of 25.4 

bars/K, consistent with extrapolated results of previous experimental studies. 
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INTRODUCTION 

Calorimetric measurements of the heat capacity (Cp) of many high-pressure 

phases are incomplete. The entropy value is critical to thermodynamic calculations of the 

phase equilibrium relations, and the most precise way to obtain the entropy value is by 

measuring the heat capacity as a function of temperature. However, high pressure phases 

must be synthesized experimentally in a multi-anvil device, and the minimum amount of 

sample needed for low-temperature heat capacity measurement by conventional low-

temperature adiabatic calorimetry (low-TAC, e.g. Robie and Hemingway 1972), which is 

10-30 grams in general, would take hundreds of experimental runs just to make enough 

sample, hence prohibiting the heat capacity measurement in practice. Recently, the heat 

capacity option of the Physical Properties Measurement System (PPMS, produced by 

Quantum Design), based on heat-pulse calorimetry (HPC), has been shown to give 

precise low-temperature heat capacity measurements of milligram-sized samples (e.g. 

Dachs and Bertoldi 2005; Yong et al. 2006).  

Fayalite (Fe2SiO4) is one end-member of olivine, the most abundant mineral in 

the earth‟s upper mantle. Numerous experimental studies on Fe2SiO4 have shown that 

fayalite transforms into a phase with a spinel structure (γ-Fe2SiO4) at pressures higher 

than 4-5 GPa at 700-1300 K (e.g. Akimoto et al. 1965, 1967; Inoue 1975; Sung and 

Burns 1976; Furnish and Bassett 1983; Yagi et al. 1987). The natural occurrence of γ-

Fe2SiO4 with Fe/(Fe+Mg) ratios ranging from 0.62 to 0.99 has also been reported in a 
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shocked chondrite meteorite (Xie et al. 2002; Xie and Sharp 2004).  The transition in 

(Mg,Fe)2SiO4 is regarded to play an important role in the formation of seismic 

discontinuities. Therefore, direct measurement of the thermodynamic properties of γ-

Fe2SiO4 and fayalite is of great importance in terms of understanding geophysical 

applications at mantle conditions. Although the thermodynamic properties of fayalite 

have been well characterized, those of γ-Fe2SiO4 are still in need of characterization. The 

enthalpy and high-temperature heat capacity of γ-Fe2SiO4 were measured by Akaogi et al. 

(1989) and Watanabe (1982), respectively. However, for the aforementioned reason, the 

low-temperature heat capacity and thus entropy value of γ-Fe2SiO4 was not determined 

calorimetrically. In this study, the heat capacity data of γ-Fe2SiO4 were measured 

between 5 and 303 K using the PPMS machine at Salzburg, and the entropy and Gibbs 

free energy at standard temperature and pressure (STP) were calculated from the 

measured heat capacity data. 

 

 

EXPERIMENTAL PROCEDURES 

Sample Synthesis and Characterization 

Fayalite was synthesized from a stoichiometric mixture of Fe3O4 and SiO2. After 

mixing in an agate pestle and mortar, the starting material was reacted at 1200 °C for 48 

hours in a CO–CO2 gas stream, adjusted to buffer oxygen fugacity at a value of two log 

units below fayalite–magnetite–quartz equilibrium. A 3 mm diameter Au capsule was 

loaded with more than 30 mg of fayalite powder and sealed by welding. The γ-Fe2SiO4 
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used in this study was synthesized from pure fayalite starting material in a 1000-ton 

Walker-type multi-anvil device at the University of Minnesota. The experimental 

assemblage consisted of tungsten carbide anvils with 12 mm truncations, a cast MgO–

Al2O3–SiO2–Cr2O3 octahedron, straight-walled graphite heater and internal MgO spacers. 

The temperature was controlled using a W3Re97/W25Re75 thermocouple, which was 

located on top of the Au capsule with a 0.35 mm disk of MgO extrusion for electrical 

isolation. The sample was pressurized to 8.5 GPa before heating at 1273 K for 12 hours. 

The experiment was quenched by turning off the power to the heater and then slowly 

depressurized to ambient pressure. The run product was examined by powder X-ray 

diffraction and electron microprobe (EMP) analysis, and single phase γ-Fe2SiO4 was 

confirmed.   

 

 

Heat Capacity Measurement 

The molar heat capacity at constant pressure (Cp) of γ-Fe2SiO4 in the temperature 

range of 5303 K was measured at 1 atm using the heat capacity option of the PPMS at 

Salzburg University in Austria. A powdered sample of γ-Fe2SiO4 (24.0 mg) was sealed 

into a small Al pan with a lid and placed on a 44 mm wide sapphire platform that has a 

thermometer and a heater attached to the lower side. The Cp data were first collected at 

60 different temperatures from 5 K to 303 K with a logarithmic spacing, and three 

measurements were performed at each temperature. More Cp data were collected around 

12 K and from 50 K to 303 K with a linear spacing in a second run. A brief summary of 
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this technique is given by Yong et al. (2006), and a more detailed description including 

discussions of the precision and accuracy of the Cp measurement by PPMS is in Lashley 

et al. (2003) and Dachs and Bertoldi (2005).  

 

 

RESULTS AND DISCUSSION 

The measured molar heat capacity (Cp) data of γ-Fe2SiO4 are listed in Table 4.1 

and plotted in Fig. 4.1. A Cp polynomial of the general form Cp = ko + k1T 
-0.5

 + k2T 
-2

 + 

k3T 
-3

 + k4T + k5T 
2
 + k6T

3
 was used to fit the measured molar Cp data, which were split 

into several temperature regions due to the -anomaly. The Cp data below 5 K were 

estimated from a plot of Cp/T versus T
2
 and a linear extrapolation to 0 K. The entropy of 

γ-Fe2SiO4 at STP is calculated from analytical and stepwise integration of the smoothed 

Cp data and was found to be identical within error when calculated by numerical 

integration. The resulting entropy value is 140.2 ± 0.4 Jmol
-1

K
-1

 (error is two standard 

deviations). The uncertainty in the entropy is estimated as described by Dachs and Geiger 

(2006). 

 In comparison with the Cp data of fayalite (Fig 4.2. triangles), which has a very 

sharp -transition at 64.9 K as well as a small rounded hump near 16 K (Robie et al. 

1982), the Cp data of γ-Fe2SiO4 (Fig. 4.2. circles) exhibit a broad maximum (-transition) 

at 11.8 K and a weak shoulder around 7 K, possibly related to a Schottky-anomaly (e.g. 

Gopal 1966) arising from the Fe
2+  

3d orbitals. The broad -transition is likely due to a 

paramagnetic-antiferromagnetic transition just as the 65 K transition in fayalite (Santoro 
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et al. 1966; Ehrenberg and Fuess 1993). The Cp of γ-Fe2SiO4 measured by PPMS is 

generally lower than that of fayalite (Robie et al. 1982) in the temperature range of 50-

300 K (Fig 4.2). However, the difference of Cp between the two polymorphs decreases 

with increasing temperature. As a result, the Cp data of γ-Fe2SiO4 and fayalite differ less 

than 1 Jmol
-1

K
-1

 at 300 K. If this trend continues to high temperatures, the entropy 

difference (S) and enthalpy difference (H) for the fayalite–γ-Fe2SiO4 transition will 

approach constant values, which means the only cause that can change the slope of the 

transition boundary will be a difference in volume. However, this situation is not 

supported by the Cp data of fayalite and γ-Fe2SiO4 measured between 350 K and 700 K 

by Watanabe (1982), who showed there is a 4–6 Jmol
-1

K
-1

 difference between the Cp 

values of these two phases in the range of 350–700 K. Unfortunately, the Cp of γ-Fe2SiO4 

between 300 K and 350 K has not yet been measured and the PPMS routinely measures 

the Cp data only in the range 2303 K. Therefore a reasonable and precise fitting of Cp 

polynomial above 298 K cannot be undertaken until the discrepancy between the 

available DSC data and the result of this study is resolved. Until then, an accurate 

representation of the phase boundary for the fayalite–γ-Fe2SiO4 transition at high 

pressures and temperatures is cumbersome. 

The entropy of γ-Fe2SiO4 at standard pressure and temperature (S°298) calculated 

from integration of the Cp data in this study may be compared with estimates from 

previous studies. The available estimates of the S°298 of γ-Fe2SiO4 range from 134 Jmol
-

1
K

-1
 to 146 Jmol

-1
K

-1
 (e.g. Fei and Saxena 1986; Fei et al. 1991; Fabrichnaya 1998; 
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Jacobs et al. 2001; Jacobs and de Jong 2005). The S°298 value of γ-Fe2SiO4 calculated 

from the measured Cp data in this study, 140.2 ± 0.4 Jmol
-1

K
-1

, in the midpoint of the 

range of estimates, will serve as a strong constraint and substantial improvement for the 

thermodynamic data base of the Fe2SiO4 system. The enthalpy of the fayalite–γ-Fe2SiO4 

transition at standard pressure and temperature (H°tr,298) is given by Akaogi et al. (1989) 

as 6.6 ± 2.4 kJmol
-1

. The enthalpy of formation at 298 K (H°f,298) of fayalite from 

elements is given by Robie and Hemingway (1995) as –1478.2 ± 1.3 kJmol
-1

. By 

combining these two studies, the H°f,298 of γ-Fe2SiO4 is calculated to be –1471.6 ± 2.7 

kJmol
-1

, which together with our new entropy value, results in the value of Gibbs free 

energy at standard pressure and temperature (G°f,298), –1369.3 ± 2.7 kJ mol
-1

. 

The fayalite–γ-Fe2SiO4 transition boundary at 298 K can be calculated using the 

equation defined as follows: 

0')298,'(15.298)298,(
0

298,298,  
P

trtr dPPVSHPG 
  (1) 

where 
298,trH and 

298,trS are enthalpy and entropy changes, respectively, for the 

fayalite–γ-Fe2SiO4 transition at standard temperature and pressure, and )298,(PV  is the 

volume change at pressure P and at 298 K. The pressure dependence of the molar volume 

was expressed by the Birch-Murnaghan equation of state: 
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where K0 and K0 are the isothermal bulk modulus and its pressure derivative, 
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respectively. The fayalite–γ-Fe2SiO4 transition at 298 K is calculated to be at 2.4 ± 0.6 

GPa based on current thermodynamic data given in Table 4.2. The error of the calculated 

pressure mainly results from the uncertainties of measured enthalpy change of the 

transition (Akaogi et al. 1989), with a small contribution from the uncertainties of 

measured entropies of fayalite and γ-Fe2SiO4 by Robie et al. (1982) and this study, 

respectively.  

The slope of the fayalite–γ-Fe2SiO4 transition at 298 K is also calculated using 

the Clausius-Clapeyron equation: 

)298,(

)298,(

PV

PS

dT

dP




             (3) 

where the entropy values at high pressure are corrected with a second order 

approximation using thermal expansion data at 298 K (Table 2) in the following way: 


298298)298,( VPSPS            (4) 

Substituting P = 2.4 GPa into equation (2), (3) and (4), the slope of the fayalite–γ-

Fe2SiO4 transition at 298 K is calculated to be 25.4 bars/K. 

 Experimental determinations of the fayalite–γ-Fe2SiO4 transition are plotted and 

extrapolated to 298 K for comparison with our calculated phase boundary location at 298 

K in Fig. 4.3.  Even though most of these experiments were undertaken at high 

temperatures, between 1000 K and 1500 K, the extrapolated locations of the transition 

boundaries by Akimoto et al. (1967) and Yagi et al. (1987) at 298 K agree with our 

calculation within 0.4 GPa, whereas the extrapolated position of the transition by 
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Akimoto et al. (1977) lies at higher pressure. Moreover, the calculated slope of the 

fayalite–γ-Fe2SiO4 transition, 25.4 bars/K, is in excellent agreement with these 

experimental studies (Fig. 4.3), where the slope was given by either 25 bars/K (Akimoto 

et al. 1977, Yagi et al. 1987) or 26 bars/K (Akomoto et al. 1967).  Because of the missing 

Cp data of γ-Fe2SiO4 between 300 and 350 K, a precise calculation of the phase boundary 

above 298 K cannot be completed at present.    
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Table 4.1 Measured heat capacity data of γ-Fe2SiO4 

T (K) Cp  

(Jmol-1K-1) 

T (K) Cp 

(Jmol-1K-1) 

T (K) Cp 

(Jmol-1K-1) 

T (K) Cp 

(Jmol-1K-1) 

5.14 1.863(9) 49.98 17.48(13) 12.05 13.181(41) 143.42 72.03(25) 

5.14 1.856(9) 50.03 17.53(13) 12.06 13.192(33) 143.43 71.97(23) 

5.14 1.852(9) 53.56 18.97(14) 12.06 13.204(32) 148.50 74.54(27) 

5.51 2.289(11) 53.56 18.96(14) 12.27 13.072(40) 148.57 74.81(23) 

5.51 2.286(11) 53.62 19.04(14) 12.28 13.064(32) 148.57 74.88(21) 

5.51 2.303(11) 57.41 20.83(16) 12.29 13.059(31) 153.60 77.38(28) 

5.90 2.855(14) 57.41 20.84(16) 12.50 12.897(34) 153.68 77.28(23) 

5.90 2.865(14) 57.47 20.87(16) 12.51 12.893(30) 153.69 77.34(31) 

5.91 2.885(13) 61.53 22.98(17) 12.51 12.889(29) 158.80 79.71(27) 

6.32 3.588(17) 61.53 22.95(16) 12.73 12.700(35) 158.88 79.78(22) 

6.32 3.591(16) 61.61 22.93(18) 12.74 12.702(30) 158.88 79.71(23) 

6.32 3.621(18) 65.95 25.41(17) 12.74 12.700(29) 163.96 82.21(28) 

6.77 4.424(21) 65.97 25.36(17) 12.96 12.500(38) 164.04 82.15(23) 

6.77 4.421(21) 66.04 25.54(20) 12.97 12.497(29) 164.05 82.27(30) 

6.77 4.458(21) 70.70 28.14(18) 12.97 12.489(29) 169.06 84.59(26) 

7.22 5.248(23) 70.71 28.12(19) 13.19 12.288(34) 169.14 84.61(23) 

7.22 5.253(24) 70.79 28.28(20) 13.19 12.287(28) 169.14 84.60(23) 

7.22 5.284(23) 75.78 31.31(20) 13.19 12.292(28) 174.27 87.38(27) 

7.74 6.144(26) 75.78 31.27(18) 13.41 12.090(31) 174.35 87.30(24) 

7.74 6.117(26) 75.85 31.24(27) 13.42 12.087(27) 174.36 87.44(30) 

7.74 6.112(25) 81.16 35.01(23) 13.42 12.086(26) 179.37 89.43(26) 

8.29 7.005(29) 81.16 35.07(19) 13.64 11.905(31) 179.45 89.55(23) 

8.29 6.987(27) 81.24 35.12(25) 13.65 11.896(26) 179.45 89.36(22) 

8.29 6.992(27) 86.98 38.55(23) 13.65 11.893(25) 184.57 91.87(26) 

8.88 7.936(31) 86.98 38.58(21) 13.87 11.716(31) 184.66 91.95(32) 

8.88 7.917(28) 87.07 38.58(23) 13.88 11.713(25) 184.66 91.65(24) 

8.88 7.927(28) 93.21 42.28(22) 13.88 11.714(25) 189.74 93.76(26) 

9.52 8.988(31) 93.22 42.17(22) 14.10 11.564(31) 189.82 93.51(23) 

9.52 8.994(31) 93.31 42.41(25) 14.11 11.560(25) 189.82 93.63(22) 

9.52 9.014(35) 99.92 46.81(23) 14.11 11.565(24) 194.90 96.38(25) 

10.20 10.339(35) 99.92 46.67(21) 14.32 11.436(30) 194.98 96.22(24) 

10.20 10.342(35) 100.01 46.70(24) 14.33 11.439(25) 194.99 96.01(22) 

10.20 10.356(37) 107.09 50.98(22) 14.33 11.438(24) 200.06 98.49(26) 

10.93 12.135(42) 107.09 50.84(22) 14.55 11.314(30) 200.14 98.32(23) 

10.94 12.138(39) 107.19 50.98(24) 14.56 11.326(24) 200.15 98.25(22) 

10.94 12.143(39) 114.79 56.07(23) 14.56 11.321(22) 205.22 100.45(26) 

11.70 13.176(39) 114.79 55.81(24) 14.77 11.234(31) 205.30 100.17(24) 

11.71 13.208(35) 114.88 56.21(27) 14.78 11.240(24) 205.30 100.11(25) 

11.71 13.211(34) 123.03 60.83(22) 14.79 11.238(23) 210.36 101.73(39) 

12.53 12.869(37) 123.03 60.86(24) 15.00 11.151(30) 210.45 101.72(24) 

12.55 12.863(30) 123.13 60.94(26) 15.01 11.160(24) 210.47 101.89(34) 

12.55 12.870(30) 131.88 65.61(23) 15.01 11.157(23) 215.52 103.82(40) 

13.42 12.084(36) 131.88 65.53(22) 15.22 11.040(28) 215.62 103.91(23) 

13.44 12.077(26) 131.97 65.78(24) 15.22 11.059(25) 215.62 103.89(37) 

13.44 12.077(25) 141.36 70.90(22) 15.23 11.071(27) 220.62 105.60(34) 

14.38 11.408(33) 141.36 71.03(24) 50.53 17.65(13) 220.70 105.63(25) 

14.40 11.411(24) 141.45 71.81(27) 50.60 17.74(13) 220.71 105.86(24) 
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14.40 11.411(23) 151.51 76.47(24) 50.60 17.73(13) 225.83 107.59(37) 

15.42 11.082(27) 151.51 76.37(23) 55.67 19.85(13) 225.92 107.43(25) 

15.43 11.081(21) 151.61 76.34(27) 55.76 19.99(15) 225.93 107.64(23) 

15.43 11.086(21) 162.40 81.91(22) 55.76 19.99(15) 230.91 109.16(33) 

16.53 11.009(24) 162.41 81.85(22) 60.83 22.43(14) 231.00 109.39(23) 

16.53 11.014(21) 162.49 81.75(27) 60.92 22.62(17) 231.01 109.54(34) 

16.53 11.018(22) 174.08 87.70(25) 60.93 22.56(17) 236.14 111.70(36) 

17.71 11.076(21) 174.08 87.68(23) 66.00 25.28(16) 236.23 111.76(24) 

17.71 11.082(20) 174.15 87.83(29) 66.09 25.48(19) 236.24 111.92(25) 

17.71 11.077(22) 186.65 94.28(23) 66.09 25.47(18) 241.31 113.72(35) 

18.97 11.167(23) 186.65 94.25(23) 71.16 28.26(17) 241.39 114.19(28) 

18.98 11.170(29) 186.72 94.25(27) 71.25 28.60(20) 241.40 114.00(27) 

18.98 11.170(21) 200.04 100.10(23) 71.25 28.45(20) 246.45 115.75(42) 

20.34 11.294(19) 200.04 100.19(22) 76.31 31.21(23) 246.54 116.30(25) 

20.34 11.291(21) 200.09 100.20(27) 76.40 31.81(18) 246.55 116.13(24) 

20.34 11.297(21) 214.38 105.70(24) 76.40 31.89(21) 251.61 117.74(33) 

21.79 11.413(21) 214.38 105.74(26) 81.46 35.16(23) 251.69 118.14(25) 

21.79 11.421(22) 214.41 105.57(29) 81.55 35.22(22) 251.70 117.85(23) 

21.80 11.414(21) 229.76 110.36(26) 81.56 35.10(23) 256.67 118.97(31) 

23.35 11.552(23) 229.76 110.34(23) 86.58 38.29(21) 256.75 119.20(23) 

23.35 11.552(23) 229.77 110.23(23) 86.66 38.43(21) 256.77 119.24(36) 

23.36 11.542(20) 246.24 116.64(29) 86.67 38.29(21) 261.89 120.81(39) 

25.02 11.742(35) 246.27 116.49(23) 91.75 41.30(26) 261.98 121.45(27) 

25.02 11.734(26) 246.28 116.48(24) 91.84 41.49(22) 262.07 121.55(33) 

25.04 11.732(25) 263.81 121.38(36) 91.85 41.55(25) 267.06 122.98(31) 

26.81 11.910(30) 263.92 121.30(26) 96.91 44.59(25) 267.13 122.98(24) 

26.81 11.898(27) 263.94 121.04(26) 97.00 44.71(23) 267.15 123.31(41) 

26.83 11.959(32) 282.70 126.59(36) 97.00 44.83(25) 272.11 124.38(28) 

28.73 12.070(35) 282.85 126.47(29) 102.07 48.10(24) 272.19 124.05(25) 

28.73 12.064(35) 282.85 126.58(29) 102.16 47.88(24) 272.21 124.15(40) 

28.75 12.086(33) 302.95 132.51(34) 102.16 48.12(25) 277.36 125.07(32) 

30.78 12.293(43) 303.14 132.30(25) 107.22 50.93(26) 277.43 125.24(27) 

30.78 12.296(50) 303.15 132.52(48) 107.31 51.29(23) 277.44 125.24(26) 

30.81 12.311(50)   107.32 51.15(25) 282.51 126.28(30) 

32.99 12.642(51)   112.35 54.25(26) 282.57 126.65(27) 

32.99 12.644(51) 10.68 11.502(44) 112.43 54.54(24) 282.59 126.69(24) 

33.02 12.664(60) 10.69 11.492(39) 112.44 54.41(24) 287.56 128.03(27) 

35.35 13.090(62) 10.69 11.491(38) 117.51 57.51(26) 287.62 128.05(26) 

35.35 13.089(60) 10.91 12.091(45) 117.59 57.70(22) 287.64 128.34(43) 

35.39 13.121(68) 10.92 12.104(39) 117.60 57.84(26) 292.8 129.95(30) 

37.89 13.739(75) 10.92 12.102(38) 122.70 60.65(26) 292.88 130.20(30) 

37.89 13.728(73) 11.14 12.582(44) 122.78 60.73(22) 292.88 129.94(27) 

37.92 13.756(75) 11.14 12.593(39) 122.79 60.86(27) 297.95 131.21(30) 

40.60 14.33(85) 11.14 12.589(38) 127.86 63.53(25) 298.02 131.15(25) 

40.60 14.326(86) 11.37 12.946(43) 127.94 63.61(21) 298.03 131.38(44) 

40.64 14.364(85) 11.37 12.944(37) 127.95 63.86(28) 302.99 132.38(26) 

43.51 15.14(10) 11.37 12.959(36) 133.02 66.05(28) 303.06 132.46(28) 

43.51 15.14(10) 11.59 13.145(41) 133.10 66.23(22) 303.06 132.60(27) 

43.56 15.18(10) 11.60 13.165(36) 133.10 66.22(25)   

46.63 16.20(11) 11.60 13.152(35) 138.14 69.07(28)   

46.63 16.20(11) 11.82 13.228(41) 138.22 69.16(24)   

46.68 16.25(11) 11.83 13.233(35) 138.22 69.02(21)   

49.98 17.45(13) 11.83 13.234(33) 143.34 71.84(28)   
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Table 4.2 Thermodynamic properties used for phase boundary calculation 

Phase H˚f,298  

(kJ mol
-1

) 

S˚298 

(J mol
-1

K
-1

) 

V˚298 

(cm
3
mol

-1
) 

K0 

(GPa) 

K'0  = a + bT + cT
-2

 (K
-1

)
j
 

a  10
5
 b  10

9
 c  10 

Fayalite –1478.2±1.3
a
 151±0.2

c
 46.28

e
 134

g
 4

i
 2.66 8.736 -2.487 

-Fe2SiO4 –1471.6±2.7
b
 140.2±0.4

d
 42.04

f
 197

h
 4

i
 2.455 3.591 -3.703 

a
 Robie and Hemingway (1995) 

b
 Calculated from Akaogi et al. (1989) 

c
 Robie et al. (1982) 

d
 This study 

e
 Akimoto et al. (1976) 

f
 Marumo et al. (1977) 

g
 Kudoh and Takeda (1986) 

h
 Sato (1977) 

i
 Assumed 

j
 Fei and Saxena (1986) 
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Fig. 4.1 Comparison of the heat capacity data of γ-Fe2SiO4 measured by PPMS (circles) with 

those measured by DSC (crosses). 



 96 

 

Fig. 4.2 Comparison of heat capacity data of γ-Fe2SiO4 (circles) with fayalite (triangles). 
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Fig. 4.3 Comparison of the phase transition boundary at 298 K calculated in this study with 

previous experimental studies. Black square represents our calculated location of phase 

transition boundary with two standard deviations. The calculated slope at 298 K is also 

plotted for comparison. A67 Akimoto et al. (1967); A77 Akimoto et al. (1977); Y87 Yagi et 

al. (1987) 
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CHAPTER V 

CONCLUSIONS 

 

 

This dissertation comprises a study of the thermodynamic properties of some high 

pressure phases and their phase equilibria under mantle conditions. Three phases were 

synthesized to undertake calorimetric measurements: K-hollandite (KAlSi3O8), Si-

wadeite (K2Si4O9) and γ-Fe2SiO4. The measured calorimetric results and their practical 

applications in mantle petrology and ultra-high pressure metamorphic petrology are 

presented in the corresponding three chapters (II, III and IV). The first thing that can be 

learned from these results is that the heat capacity option of Physical Properties 

Measurement System (PPMS) can routinely measure the heat capacity of milligram sized 

samples in the temperature range of 5-303 K, which is ideal for high pressure phases and 

synthetic materials. PPMS provides a powerful tool to study the high pressure 

mineralogy and petrology. 

In Chapter II, the phase equilibria related to K-hollandite are calculated 

thermodynamically with the help of newly measured low-temperature heat capacity data 

using PPMS. The contribution of configurational entropy due to disorder of Al and Si 

atoms in the octahedral sites is incorporated in the entropy of K-hollandite at standard 

state, which is 166.2 ± 0.2 Jmol
-1

K
-1

. Although these calculations generally agree with 
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previous experimental results, a better constraint in terms of the slopes of phase 

transition boundaries was achieved. Three reactions that can lead to the formation of K-

hollandite all suggest that K-hollandite can be formed at pressures above 9 GPa and will 

be stable until 22 GPa, where K-hollandite will transform to a new structure called 

hollandite II. Therefore, K-hollandite might be a possible host mineral for potassium in 

the earth‟s upper mantle and transition zone especially along the subduction slab. Three 

phase transitions that have not been discovered by experiments are also predicted after 

putting the thermodynamic data of K-hollandite and Si-wadeite into the current 

thermodynamic data base of K2O−Al2O3−SiO2 system. This demonstrates another merit 

of thermodynamic calculation. Not only can the existing phase transitions be calculated, 

but also the unknown phase transition can be predicted.  

  In Chapter III, the low-temperature heat capacity of Si-wadeite measured by 

PPMS is presented. From integration of the heat capacity data measured by PPMS, the 

entropy of Si-wadeite at standard pressure and temperature is calculated to be 253.8 ± 0.6 

Jmol
-1

K
-1

. The phase transitions related to Si-wadeite were studied both 

thermodynamically and experimentally, which preclude the previous prediction that 

suggests a possible equilibrium stability field of kalsilite + coesite intervening between 

the stability field of K-feldspar and that of coesite + kyanite + Si-wadeite. The 

uncertainties of thermodynamic calculation are also examined and compared with the 

uncertainties of high pressure experiments. The essence of an experimental result related 

to kalsilite and Si-wadeite is displayed through thermodynamic calculation. These 
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calculations and previous experiments all suggest that Si-wadeite is possible to be as an 

index mineral for ultra-high pressure metamorphic rocks, and yet needed to be confirmed 

by field observations. Besides, like K-hollandite, Si-wadeite is also a possible host 

mineral for potassium along the subduction slab in the Earth‟s mantle. 

In Chapter IV, the low-temperature heat capacity data of γ-Fe2SiO4 are reported 

for the first time. The entropy and Gibbs free energy at standard pressure and temperature 

are calculated to be 140.2 ± 0.4 Jmol
-1

K
-1

 and −1369.3 ± 2.7 Jmol
-1

K
-1

 based on the 

measured heat capacity data. Similar to other Fe-containing silicates, a broad λ-transition 

due to paramagnetic−antiferromagnetic transition is also exhibited in the low-

temperature heat capacity of γ-Fe2SiO4. The transition temperature, also known as the 

Néel temperature, is located to be at 11.8 K by the low-temperature heat capacity data of 

γ-Fe2SiO4. The gap in the heat capacity data between 303 and 350 K of γ-Fe2SiO4 is an 

obstacle to calculate the phase transitions at high temperatures. However, the phase 

transition boundary of fayalite−γ-Fe2SiO4 at 298 K can be located at 2.4 ± 0.6 GPa and 

the slope of the phase transition boundary is calculated to be 25.4 bars/K, which is 

consistent with extrapolated results of previous experimental studies.    

In conclusion, the major contribution of this dissertation is that the low 

temperature heat capacity data of these high pressure phases, which are critical to the 

thermodynamic modeling of phase relations that have direct application to mantle 

petrology and ultra-high pressure metamorphic petrology and yet not available 

previously due to practical reasons, are accurately measured for the first time. The 
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thermodynamic data of K-hollandite, Si-wadeite and γ-Fe2SiO4 would help us to better 

constrain and model the composition and structure of the Earth‟s mantle.  

It is unlikely that much K-hollandite and Si-wadeite would survive in the Earth‟s 

upper mantle and transition zone because most potassium would probably be dissolved 

into pyroxene and/or garnet, and there may not be enough potassium that can form its 

own phase in the mantle. However, it is quite possible that either or both of them can be 

found locally in the mantle especially along the subduction slab where the concentration 

of potassium is relatively higher than the normal mantle so that even some potassium 

minerals such as K-feldspar and muscovite can be stable. This hypothesis is supported by 

high pressure high temperature experiments in which K-hollandite has been reported 

among the experimental run products at pressures higher than 8−11 GPa in bulk 

compositions corresponding to average continental crust, subducted terrigenous and 

pelagic sediments, basalts and metapelites (Irifune et al. 1994; Domanik and Holloway 

1996, 2000; Schmidt 1996; Ono 1998; Wang and Takahashi 1999). Unlike K-hollandite 

whose experimental appearance can be found in various bulk compositions, Si-wadeite 

has only been reported experimentally in relatively simple systems in the pressure range 

of 5−16 GPa partly due to its high potassium concentration and its limited formation 

conditions compared to K-hollandite. Nonetheless it is still possible for Si-wadeite to 

occur in metapelites and metagranitoids that have been subducted at depths greater than 

170 km. Neither of them has been discovered in UHP rocks probably because the UHP 

rocks that exceeded >6 GPa have not been recovered on the Earth‟s surface so far. This 
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doesn‟t necessarily mean that such high pressure UHP rocks do not exist. Three decades 

ago, people didn‟t recognize the existence of UHP rocks until coesite and diamond were 

found in supracrustal rocks. There is no reason to underestimate the possibility of further 

surprises. Sooner or later UHP rocks >6 GPa may be found on the Earth‟s surface and 

either K-hollandite or Si-wadeite, or their decompressed equivalents, might be recovered 

from these rocks.  

The new thermodynamic data of γ-Fe2SiO4 will help to better constrain the 440 

km, 520 km and 660 km seismic discontinuities. The exact depth and thickness of these 

seismic discontinuities as well as the exact compositions of the upper mantle and 

transition zone can only be accurately modeled with precise thermodynamic data of the 

(Mg, Fe)2SiO4 system. Given the thermodynamic data of the end-members of 

(Mg,Fe)2SiO4 system, a good solid solution model is then needed for the thermodynamic 

calculation. Measuring themodynamic data of the solid solution series in the system will 

help us to establish a better solid solution model. Like K-hollandite, γ-Fe2SiO4 has also 

been found in meteorites (Xie et al. 2002), suggesting its possible existence in other 

planets.  

As with all techniques, thermodynamic calculations also have drawbacks. Several 

obstacles stand in the way of thermodynamic studies of phases under mantle conditions. 

For most mantle phases, the temperature dependence of bulk modulus is not available, 

which means the bulk modulus derived at room temperature is used for these high 

pressure phases, although the actual uncertainties may be more or less cancelled if the 
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lower pressure phases also use the bulk modulus at room temperature. The pressure 

dependence of bulk modulus is also not well studied for some mantle phases. This may 

cause unexpected error if the thermodynamic calculation is undertaken at higher 

pressures than the pressures at which the bulk modulus is derived. The thermal expansion 

of these high pressure phases is also derived at relatively limited temperature range, 

whereas the thermodynamic calculation is usually done at much high temperatures. The 

biggest challenge for thermodynamic calculation of minerals under mantle conditions 

probably comes from the extrapolation of the heat capacity data to high temperatures. For 

those high pressure phases, the heat capacity is usually measured up to 700 K. Above 700 

K, it is very difficult to obtain high quality data because these high pressure phases will 

start reacting back to its corresponding low pressure phases. Most phases would not fully 

excite all the lattice vibrations at 700 K, therefore the heat capacity data are still not close 

to the Dulong and Petit limit (Cv=3nR) and huge error might be produced if the heat 

capacity data are not extrapolated in the right form. This problem will continue to exist 

until a machine is invented that can measure the heat capacity and enthalpy under high 

pressures. Tightly reversed experimental phase equilibria could be combined with current 

thermodynamic data to better constrain the entropy and volume of the phases at higher P-

T.  This alternative approach is one way to produce thermodynamic data at high P-T.  The 

other approach is quantum mechanical calculations in order to better constrain these data 

in regions where it cannot be measured.  Such alternatives may provide sufficient data to 

undertake more general calculations of deep mantle phase equilibria in the more general 
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system K2O-Na2O-FeO-MgO-Al2O3-SiO2-H2O and predict deep assemblage along the 

mantle geotherms for common rock compositions.  Some of this work has been initiated 

by Stixrude and Lithogow-Bertelloni (2005) for basaltic and pyrolite bulk compositions. 
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APPENDIX A 

 

RAMAN SPECTROSCOPIC STUDY OF GRAPHITE IN 

MARBLES: APPLICATION AS A NEW 

GEOTHERMOMETER 
 

ABSTRACT 

Organic matter originally present in the sedimentary rocks is progressively 

transformed into graphite during metamorphism. The degree of graphitization may be a 

reliable indicator of metamorphic grade, especially in terms of the peak metamorphic 

temperature and is not affected by retrogression. Raman spectroscopy is a rather good 

technique to characterize the degree of graphitization. The previously determined 

relationship between the Raman spectra of the graphite and the peak metamorphic 

temperature of the host rocks was applied in this paper to some marbles from the Elzevir 

Terrane of the Grenville Orogen in southern Ontario. Raman spectra of graphite were 

collected on 10 thin sections and more than 80 graphite grains. The peak metamorphic 

temperature calculated by the Raman spectrum geothermometer is 380°C to 510°C, more 

than 100°C lower than the results based on conventional thermobarometers. This 

discrepancy is likely partially, if not mainly, caused by the different analytical procedures 

in different labs as mentioned in previous studies. A standard analytical procedure of 

Raman spectroscopy measurements for graphite in metamorphic rocks is suggested to be 

established to obtain reproducible results from different laboratories. The relation 
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between the Raman spectra of the graphite and the peak metamorphic temperature of the 

host rocks should be recalibrated with standard analytical procedures.  

 

INTRODUCTION 

Carbonaceous material (CM) that forms from the organic material originally 

present is a widespread component of metamorphosed sediments. The CM materials 

range from kerogen to highly crystalline graphite, representing different degrees of 

graphitization and hence different degrees of crystallinity of graphite. The mechanisms of 

coalification from peat to anthracite are generally well understood by laboratory study, 

which shows that they have a time-temperature dependence. However, mechanisms of 

coalification from anthracite to graphite, which is commonly referred to as graphitization, 

remain unclear (Bustin et al. 1995a; Bustin et al. 1995b).  

Many factors influence the degree of graphitization and the crystallinity of 

graphite: these include temperature, pressure, time, strain, original chemical composition 

and microtexture of the kerogen precursor (e.g., Bustin et al. 1995a). Landis (1971) 

tentatively concluded that graphitization is mainly controlled by metamorphic 

temperature, pressure and starting material. Itaya (1981) argued that graphitization is a 

rate process; the temperature of complete graphitization can vary between different 

metamorphic terranes due to different duration of metamorphism whereas the degree of 

graphitization is a useful indicator of relative metamorphic temperature in an individual 

metamorphic terrane. Buseck and Huang (1985) showed that the carbonaceous precursors 

in their study probably influence the graphitization. Pasteris and Wopenka (1991) showed 

that graphite structure records only the peak metamorphic temperature and therefore can 
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be used as a reliable indicator of metamorphic grade, and Wopenka and Pasteris (1993) 

correlated the degree of crystallinity of graphite with metamorphic grade. Wada et al. 

(1994) indicated that graphitization is mainly determined by temperature, duration of 

metamorphism and rock composition. Experiments of Bustin et al. (1995a, 1995b) 

indicated the high dependence on strain and strain energy in the formation of graphite 

under natural conditions. They also concluded that the crystallinity of graphite is a poor 

metamorphic index because graphitization is dependent on many factors. Suchy et al. 

(1997) further confirmed the importance of strain in the process of graphitization. The 

most important factor that influences the crystallinity of graphite is peak metamorphic 

temperature (Wada et al. 1994; Beyssac et al. 2002a, 2002b, 2003). Beyssac et al. (2002a) 

undertook experiments on the graphitization of CM and proposed a relationship of 

Raman spectra of graphite for use as a geothermometer in low to medium grade terranes.  

Three analytical techniques are used to study the structural characterization of 

graphite: X-ray diffractometry (XRD), high resolution transmission electron microscopy 

(HRTEM), and Raman spectroscopy. The interplanar spacing (d value) can be 

quantitatively measured by XRD method which requires the disaggregation of the host 

rock as well as several mg of separated graphite (Landis 1971; Diessel et al. 1978; Itaya 

1981; Bustin et al. 1995a, 1995b) . HRTEM can produce the images of the graphite and 

direct measurements of the dimension of stacks designated as Lc, the interplanar spacing 

d, and the lateral extent of carbon sheets, La (Buseck and Huang 1985; Bustin et al. 

1995a, 1995b; Beyssac et al. 2002b, 2003). Raman study is a relatively new method that 

can provides information about the molecular bonds of the constituent structural units as 

well as the degree of crystalline order in solids. Thus, Raman spectra are used to reflect 



 114 

the degree of crystallinity of graphite and turns out to be a more sensitive indicator of the 

metamorphic condition of the host rock than XRD or other types of studies (e.g., Pasteris 

and Wopenka 1991; Wopenka and Pasteris 1993; Beyssac et al. 2002a). Optical 

reflectivity measurements (vitrinite reflectance) have also used to characterize 

carbonaceous materials (Diessel and Offler 1975; Diessel et al. 1978; Okuyama-

Kusunose and Itaya 1987) 

The Raman spectrum of CM consists of two different spectral regions: the first 

between 1100 and 1800 cm
-1

 and the second between 2500 and 3100 cm
-1

 (Tuinstra and 

Koenig 1970; Nemanich and Solin 1979). They are usually referred to as “first-order” 

and “second-order” spectrum. In the first-order region, well-crystallized graphite has only 

one single peak at 1580 cm
-1

, usually referred to as the G peak. However, for less-ordered 

CM three new peaks appear at 1350, 1620
 
and 1500 cm

-1
, referred to as D1, D2 and D3 

peak respectively (Tuinstra and Koenig 1970, Beyssac et al. 2002a) (Fig. A1). In the 

second-order region corresponding to combination and overtone scattering, four peaks 

are placed at 2450, 2735, 2940 and 3248 cm
-1

 (Wopenka and Pasteris 1993). 

Beyssac et al. (2002a) identified a linear correlation between the R2 ratio and the 

peak metamorphic temperature in the temperature range of 330°C to 650°C: 

T(°C) = −445R2 + 641            (1) 

where R2 represents the D1/(G+D1+D2) peak area ratio. Raman spectra of graphite 

therefore can be used as a geothermometer to determine the peak metamorphic 

temperature of metasediments. Rahl et al. (2005) extended this calibration down to 100°C 

by studying the Raman spectra of a suite of low-temperature meta-sediments from the 

Olympics Mountains in the state of Washington. The thermal history of these samples is 
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constrained by the apatite and zircon fission-track and (U-Th)/He ages.  

Raman studies of graphite in metamorphic rocks have mainly focused on 

metapelites rather than marbles. The quantitative relationship between Raman spectra of 

graphite and the metamorphic grade of the host rocks especially marbles still needs to be 

further constrained. Graphitic marbles whose peak metamorphic temperatures are well-

constrained will be used for this study to test the role of host rocks. 

 

GEOLOGICAL BACKGROUND AND ANALYTICAL METHOD 

Field Area 

The Elzevir Terrane of the Grenville Orogen in southern Ontario (Fig. A2) is 

selected to be the field area of this study because of three great advantages. First, the 

Elzevir Terrane contains abundant graphitic marbles that were regionally metamorphosed 

from upper greenschist to upper amphibolite facies (Rathmell et al. 1999). Second, the 

peak metamorphic temperatures of these graphitic marbles were well studied and indicate 

a temperature range from 500-650°C by three conventional geothermometers (Rathmell 

et al. 1999). These well-constrained temperature conditions provide a good test for 

Raman-spectrometry. Third, mylonite marbles that occur in the Bancroft Shear zone 

(Carlson et al. 1990) can be used to study the influence of strain on the degree of 

crystallinity of graphite. Graphitic marbles were collected in several locations from this 

field area. 

 

Experimental Procedures 

Conventional petrographic thin sections are used to obtain the Raman spectra of 
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graphite contained in the black marble with two main advantages. First, in situ 

measurements can be performed and thus the relationship between CM and the 

surrounding mineral matrix can be carefully checked (Beyssac et al. 2002). A better heat 

removal can be obtained by the mineral matrix than similar grains laid on slides without 

matrix so that a higher signal to noise ratio can be achieved (Wopenka and Pasteris 1993). 

Thin sections were cut perpendicular to the foliation and parallel to the lineation 

whenever possible to avoid the orientation effects (Katagiri et al. 1988; Wang et al. 1989; 

Compagnini et al. 1997) except for the samples beginning with OODMC.  

Graphite was identified using the petrological microscope and the scanning 

electron microscope (SEM). It can be recognized by its characteristic anisotropy under 

reflected light and its opacity in transmitted light (Fig. A3). Most of the graphite grains in 

the thin sections are elongate tablets. In cross-section, the length of these graphite plates 

is 6-30 μm and the width is less than 3 μm. Although these are small grains, they can be 

located by examining opaque areas in the marble at high magnification in reflected light. 

Although graphite exists separately as thin tablets in most cases, irregular graphite 

clusters were also identified.  

Thin sections that contain graphite grains were chosen for Raman spectroscopic 

study. Different graphite grains in the same thin section were examined. Sometimes, even 

Raman spectra of different parts of the same big graphite grain were collected to test the 

homogeneity. Raman spectra were collected in the 1100−1800 cm
-1

 region which includes 

all the first-order peaks. Peak position, peak width and peak area are determined by 

fitting the spectrum with PseudoVoigts functions and the results are shown in Table A1. 

The minerals observed in each sample are shown in Table A2.  
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. 

RESULTS AND DISCUSSION 

In this study ten thin sections and more than 80 graphite grains were used to 

collect Raman spectra. The peak metamorphic temperatures of these graphitic marbles 

calculated using equation (1) are shown in Table 1. The average temperatures given by 

these Raman spectra of the thin sections range from 380 to 510°C, considerably lower 

than the peak metamorphic temperatures determined by three conventional 

geothermometers (Rathmell et al. 1999), which showed that the peak metamorphic 

temperatures of this region is in the range 500−650°C. If ignoring the results from those 

thin sections whose orientation has not been specially addressed (samples beginning with 

OODMC), the average temperatures given by the rest thin sections are even lower, 

ranging from 380 to 430°C. 

Several factors may explain the difference of peak metamorphic temperature of 

these marbles between the Raman spectra geothermometer and the three traditional 

geothermometers for the Madoc-Bancroft transect. The first one is that equation (1) is not 

suitable for marbles, because it was generalized based mostly on mica schist and black 

shale by Beyssac et al. (2002a). Only two marble samples were applied in their study. 

This may lead to certain error when using equation (1) on marble samples. Rock 

composition and carbonaceous precursors may influence graphitization by a catalytic 

influence on the formation of graphite (Diessel et al. 1978; Buseck and Huang 1985). 

Wada et al. (1994) showed that the degree of graphitization is different in limestones and 

pelitic rocks from the Ryoke metamorphic terrane and it indicated that the graphitization 

advanced further in limestones than in pelitic rocks in the low temperature range. As a 
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result, two different linear correlations between the degree of graphitization and 

metamorphic temperature were proposed. However, according to their studies, higher 

temperatures would be gained if applying the linear relationship of pelitic rocks to marble, 

which is in contradiction with the results from this study, in which lower temperature 

values were obtained. Therefore, the composition of the host rock is unlikely to be the 

main reason of the difference between results derived from Raman spectra and that from 

traditional geothermometers based on the studies by Wada et al. (1994).. 

The second factor that needs consideration is the graphite orientation effect of 

Raman spectrum. The effect of graphite orientation with respect to the incident laser 

beam on the recorded Raman spectrum is well known (Katagiri et al. 1988; Wang et al. 

1989; Wopenka and Pasteris 1993; Compagnini et al. 1997). An (001) plane (or basal 

plane, which is perpendicular to the c axis of the graphite crystal) shows a very different 

Raman spectrum than the vertical plane (called edge plane in their papers) which includes 

the c axis of graphite crystal. The 1350 cm
-1

 (D1 peak) almost disappears in the near 

horizontal orientation whereas in the near vertical position the D1 peak is maximized 

(Katagiri et al. 1988; Wang et al. 1989; Compagnini et al. 1997). In other words, the D1 

peak gradually changes from maximum to undetectable as the angle between the c axis of 

the crystal and the laser beam decrease from 90° to 0° (Wang et al. 1989).  Beyssac et al. 

(2002a) cut their thin sections perpendicular to the foliation and parallel to the stretching 

lineation so that the graphite is in the near vertical plane, i.e., the c axis of the crystal is 

perpendicular to the laser beam. Hence equation (1) is based on near vertical plane, but a 

large error will ensue if equation (1) is used in a plane far from the near vertical plane. If 

the graphite is not in the near vertical plane, the D1 peak will be weaker than that in the 



 119 

near vertical plane, thus the R2 value will be small, and hence the temperature calculated 

by equation (1) will be much higher. If the graphite is in the horizontal plane, equation (1) 

will almost gives the highest temperature value that it can ever provide, i.e. 641°C. The 

thin sections in this study were prepared in the same way as Beyssac et al. (2002a) except 

for samples beginning with OODMC. Therefore, the orientation effect should be 

negligible for most samples and would not cause the difference between results derived 

from the Raman spectra and that from the traditional geothermometers. The orientation 

effect should lead only to higher temperatures. This might be the cause of the high 

temperatures generated by nonoriented samples (Table A1, those beginning with 

OODMC). Those samples, generate Raman temperatures around 500°C, comparable to 

the results obtained by Rathmell et al. (1999).  

  The third factor that might result in different temperatures lies in the data 

analysis process. If different functions are selected to fit the background and the peaks, 

the parameters such as the peak high, peak area and even peak position will also be 

different, thus the temperature calculated based on these parameters will also be different. 

Beyssac et al. (2002a) used a flat background for the background. However, the 

background of the Raman spectra collected in this study is seldom flat. A tilted or curved 

background is found more commonly for the Raman spectra collected in this study. Wong 

et al. (2007) observed inclined backgrounds and examined the reproducibility of Raman 

spectroscopy measurements for carbonaceous material in metamorphic rocks. They 

reported that reproducible results are possible from different laboratories, but care must 

be taken with the background and the peak-fitting process. They found a second order 

polynomial is needed to fully remove the background and it was better to fit peaks to an 
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integrated spectrum of the individual spectra of a specific sample. Otherwise, significant 

bias in the results may be induced from laboratory to laboratory. The special treatment 

suggested by Wong et al. (2007) were not used by Beyssac et al. (2002a) in their 

derivation of equation (1), which means special care should be taken for other labs to 

collect Raman spectra and use equation (1) to calculate the peak metamorphic 

temperature. According to Wong et al. (2007), it is possible that quite different peak 

metamorphic temperatures for the same rock would be calculated using equation (1) in 

different laboratories, not to mention the comparison with other geothermometers. It is 

very likely that lower peak metamorphic temperatures of the marbles given by the Raman 

spectra in this study, are if not mainly, at least partially caused by the above analytical 

problems.  

The signal-noise ratio or the resolution of the Raman spectra collected in this 

study is variable. For those Raman spectra with poor signal-noise ratio or resolution, the 

uncertainties of the peak parameters from fitting may lead to large errors in the Raman 

temperatures. Nonetheless even the spectra that do have good resolution produce lower 

temperatures, which suggest that the error of this study, if there is any, is systematic, not 

random. A standard analytical procedure of Raman spectroscopy measurements for 

graphite in metamorphic rocks will greatly reduce such errors and should be established 

first before any precise results can be obtained through equation (1), or maybe even 

equation (1) should be recalibrated in such standard analytical procedures.  

The mylonite marbles shows no apparent difference compared to ordinary marble 

in terms of yielding temperatures from Raman spectra. Either strain doesn’t play a role in 

the graphitization process or its effect is too small to be detected. Considering the large 
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uncertainties in processing the Raman spectra of the aforementioned graphite samples, 

it’s impossible to distinguish these two under current condition.  
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Table A1 Parameters from decomposition of Raman spectra and calculated peak 

metamorphic temperature using equation (A1) 

Slide 

number 

Sample 

number 

G 

position 

D1 

position 

D2 

position 

R2 

ratio 

Temperature 

(°C) 

BA-04-01-2 BA12-11 1582.65  1355.33  1623.42  0.47  428  

(45’06623N BA12-12 1582.50  1355.74  1623.30  0.43  444  

77’82200W) BA12-21 1583.41  1355.18  1623.77  0.53  399  

 BA12-31 1582.91  1353.81  1623.78  0.43  444  

 BA12-41 1582.80  1354.18  1622.95  0.52  407  

 BA12-42 1582.70  1354.46  1622.99  0.45  435  

 Average  1582.83  1354.78  1623.37  0.47  425  

 1σ 0.32  0.75  0.36  0.04  19  

       

BA-04-01-3 BA13-11 1582.82  1355.98  1622.04  0.57  381  

(45’06623N BA13-21 1583.11  1354.38  1622.63  0.55  391  

77’82200W) Average  1582.96  1355.18  1622.34  0.56  386  

 1σ 0.21  1.13  0.42  0.02  7  

       

KL-04-03 KL31-1 1582.84  1355.64  1622.76  0.59  372  

(44’56065N KL31-2 1582.79  1355.39  1622.79  0.60  368  

77’24516W) KL31 1582.86  1355.77  1622.91  0.60  369  

 KL32-1 1582.38  1354.63  1621.97  0.56  387  

 KL32-2 1582.97  1354.19  1622.84  0.39  464  

 KL33-1 1582.53  1354.36  1623.01  0.52  406  

 KL34-1 1582.21  1354.08  1623.11  0.45  434  

 KL35-1 1581.77  1353.32  1622.46  0.35  484  

 KL36-1 1582.16  1353.69  1623.22  0.45  435  

 KL36-2 1582.37  1355.25  1623.40  0.57  380  

 KL37-3 1582.78  1355.09  1621.45  0.58  376  

 KL37-4 1583.25  1354.10  1622.71  0.59  375  

 KL37-5 1582.66  1355.53  1621.07  0.58  376  

 KL37-6 1582.74  1355.68  1622.42  0.59  372  

 Average  1582.59  1354.77  1622.58  0.53  400  

 1σ 0.38  0.81  0.67  0.08  39  

       

KL-04-04 KL41-1 1586.28  1357.00  1625.91  0.50  414  

(44’56065N KL41-2 1586.36  1357.70  1625.77  0.50  415  

77’24516W) KL41-3 1587.44  1358.79  1629.16  0.60  369  

 KL43-1 1586.63  1358.36  1625.89  0.57  381  

 KL43-3 1586.18  1356.18  1616.56  0.50  416  

 KL45-1 1586.63  1355.80  1630.62  0.49  417  
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 KL45-2 1587.80  1360.27  1627.27  0.57  383  

 Average  1586.76  1357.73  1625.88  0.53  399  

 1σ 0.62  1.56  4.51  0.05  21  

       

SH-04-01 SH10-1 1583.31  1355.99  1622.00  0.59  375  

(44’79494N SH10-2 1582.76  1355.00  1622.75  0.54  396  

76’69440W) SH10-3 1583.15  1355.36  1621.86  0.60  370  

 SH10-4 1582.76  1355.49  1622.92  0.58  378  

 SH11-1 1587.05  1360.07  1626.24  0.59  371  

 SH11-2 1586.84  1359.96  1627.67  0.55  391  

 SH11-3 1586.65  1359.23  1626.41  0.54  397  

 SH11-4 1586.77  1358.72  1628.25  0.48  423  

 SH12-1 1587.42  1359.71  1622.30  0.59  374  

 SH12-2 1587.42  1359.80  1625.14  0.57  384  

 SH12-3 1587.31  1358.86  1627.30  0.59  375  

 SH12-4 1588.00  1358.69  1631.37  0.58  376  

 SH13-2 1587.70  1360.56  1630.92  0.58  379  

 SH13-31 1583.17  1355.48  1618.87  0.50  415  

 SH13- 1583.89  1356.07  1624.88  0.58  379  

 SH14-1 1588.30  1358.66  1619.64  0.57  384  

 SH14-2 1588.67  1359.66  1635.21  0.56  387  

 SH15-1 1586.50  1359.38  1622.59  0.56  387  

 SH15-2 1583.15  1354.68  1623.18  0.54  396  

 SH15-3 1583.69  1354.89  1622.68  0.60  369  

 SH15-4 1583.97  1354.63  1621.33  0.64  351  

 SH16-1 1583.90  1355.03  1623.38  0.57  384  

 SH16-2 1582.29  1354.06  1621.21  0.61  364  

 SH17-2 1582.95  1355.86  1619.58  0.56  384  

 SH17-3 1583.37  1355.18  1618.84  0.57  383  

 SH18-1 1583.16  1355.92  1622.93  0.60  368  

 SH18-2 1582.96  1355.86  1622.19  0.58  376  

 SH19-1 1583.93  1352.92  1621.88  0.61  366  

 SH19-2 1583.08  1355.12  1622.87  0.58  376  

 SH 1583.00  1354.11  1619.33  0.58  379  

 Average  1584.90  1356.83  1623.86  0.57  381  

 1σ 2.13  2.29  3.90  0.03  14  

       

TH-04-02 TH21-1 1583.61  1353.85  1624.62  0.50  415  

(44’93493N TH22-1 1584.18  1355.60  1624.42  0.58  377  

78’30777W) TH22-2 1583.35  1355.21  1622.59  0.51  408  

 TH22-3 1583.93  1356.30  1624.69  0.50  415  
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 TH22-4 1584.54  1355.46  1624.25  0.57  384  

 TH22-5 1584.32  1355.46  1619.47  0.58  379  

 TH23-1 1584.57  1355.81  1623.69  0.57  383  

 TH23-2 1583.56  1355.33  1624.38  0.62  360  

 TH24-1 1583.84  1355.61  1623.40  0.53  398  

 TH24-2 1584.12  1354.60  1624.18  0.48  421  

 TH25-1 1584.17  1355.63  1620.86  0.53  401  

 TH25-2 1583.82  1354.99  1620.79  0.51  410  

 TH26-1 1580.33  1351.58  1620.19  0.47  429  

 TH26-2 1580.94  1352.36  1620.14  0.55  392  

 TH26-3 1582.04  1351.62  1620.00  0.59  371  

 TH26-4 1581.78  1351.70  1618.07  0.60  369  

 TH28-1 1581.58  1350.98  1618.58  0.62  361  

 TH29-1 1581.45  1352.44  1620.26  0.49  416  

 TH29-2 1580.09  1352.38  1618.88  0.47  429  

 TH211-1 1579.12  1349.64  1617.49  0.54  394  

 Average  1582.77  1353.83  1621.55  0.54  396  

 1σ 1.69  2.02  2.48  0.05  22  

       

OOMDC-19 g64 1577.41  1351.02  1615.14  0.36  475  

(44’50344N, 

77’50042W)       

OOMDC-20 g103 1577.89  1353.44  1615.92  0.33  492  

(44’50344N g110 1578.57  1353.24  1617.05  0.39  465  

77’50042W) g119 1576.77  1353.17  1617.89  0.32  493  

 g106 1570.44  1349.43  1609.01  0.09  601  

 Average  1575.92  1352.32  1614.97  0.28  513  

 1σ 3.73  1.93  4.05  0.13  60  

       

OOMDC-24 g123 1578.74  1352.81  1619.70  0.35  481  

(44’50344N g129 1577.89  1351.50  1617.21  0.35  482  

77’50042W) g135 1575.85  1351.96  1614.94  0.29  511  

 Average  1577.49  1352.09  1617.28  0.33  491  

 1σ 1.49  0.66  2.38  0.04  17  

       

OOMDC-34 g89 1578.89  1353.40  1620.40  0.32  497  

(44’50344N g93 1579.49  1352.77  1617.30  0.46  433  

77’50042W) Average  1579.19  1353.09  1618.85  0.39  465  

 1σ 0.42  0.45  2.19  0.10  45  
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Table A2. Minerals observed in each sample 

Sample Minerals Observed 

BA-04-01-2 talc, calcite/dolomite, graphite 

BA-04-01-3 talc, calcite/dolomite, graphite 

KL-04-03 tremolite, talc, calcite/dolomite, graphite 

KL-04-04 tremolite, talc, calcite/dolomite, graphite 

SH-04-01 talc, calcite/dolomite, graphite 

TH-04-02 talc, calcite/dolomite, graphite 

OOMDC-19 talc, calcite/dolomite, graphite 

OOMDC-24 calcite/dolomite, graphite 

OOMDC-34 calcite/dolomite, graphite 
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Fig. A1 Example of the first-order region of Raman spectrum of graphite. A linear 

function is used to fit the background. The Raman spectra are fitted with Pseudo Voigts 

functions to get the position and area parameters of the peaks. 
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Fig. A2 Tectonic map of south-eastern Ontario, Canada (from Rathmell et al. 1999). Stars 

represent the locations of the samples.  
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Fig. A3 Examples of graphite under microscope. Top photos: graphite in mylonite 

marbles. Bottom photo: graphite in ordinary marbles. Left photos: graphite under 

transmitted light. Right photos: graphite under reflected light. 



 129 

REFERENCES 

Beyssac O, Goffé B, Chopin C, Rouzaud JN (2002a) Raman spectra of carbonaceous 

material in metasediments: a new geothermometer. J Metam Geol 20:859–871 

Beyssac O, Rouzaud JN, Goffé B, Brunet F, Chopin C (2002b) Graphitization in a high-

pressure, low temperature metamorphic gradient: a Raman microspectroscopy and 

HRTEM study. Contr Mineral Petrol 143:19–31 

Beyssac O, Brunet F, Petitet JP, Goffé B, Rouzaud JN (2003) Experimental study of the 

microtextural and structural transformations of carbonaceous materials under 

pressure and temperature. Eur J Mineral 15:937–951 

Buseck P, Huang B (1985) Conversion of carbonaceous material to graphite during 

metamorphism. Geochim Cosmochim Acta 49:2003–2016 

Bustin RM, Ross JV and Rouzaud JN (1995a) Mechanisms of graphite formation form 

kerogen: experimental evidence. Internat J of Coal Geol 28:1–36 

Bustin RM, Rouzaud JN, Ross JV (1995b) Natural graphitization of anthracite: 

experimental considerations. Carbon 33:679–691 

Carlson KA, van der Pluijm BA, Hanmer S (1990) Marble mylonites of the Bancroft 

shear zone: evidence for extension in the Canadian Grenville. Geol Soc Am Bull 

102:174–181 

Cesare B, Maineri C (1999) Fluid-present anatexis of metapelites at EI Joyazo (SE Spain): 

constraints from Raman spectroscopy of graphite. Contr Mineral Petrol 135:41–

52 



 130 

Compagnini G, Puglisi O, Foti G (1997) Raman spectra of virgin and damaged graphite 

edge planes. Carbon 35:1793–1797 

Diessel CFK, Offler R (1975) Change in physical properties of coalified and graphitized 

phytoclasts with grade of metamorphism. Neues Jb Mineral Monatsh 1975: 11–26 

Diessel CFK, Brothers RN, Black PM (1978) Coalification and graphitization in high-

pressure schists in New Caledonia. Contr Mineral Petrol 68:63–78 

Itaya T (1981) Carbonaceous material in pelitic schists of the Sanbagawa metamorphic 

belt in central Shikoku, Japan. Lithos 14:215–224 

Katagiri G, Ishida H, Ishitani A (1988) Raman spectra of graphite edge planes. Carbon 

26:565–571. 

Landis CA (1971) Graphitization of dispersed carbonaceous material in metamorphic 

rocks. Contr Mineral Petrol 30:34–45 

Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size 

crystals of graphite. Phys Rev B 20:392–401 

Okuyama-Kusunose Y, Itaya T (1987) Metamorphism of carbonaceous material in the 

Tono contact aureole, Kitakami Mountains, Japan. J Metam Geol 5:121–139 

Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicators of degree of 

metamorphism. Can Mineral 29:1–9 

Rahl JM, Anderson KM, Brandon MT, Fassoulas C (2005) Raman spectroscopic 

carbonaceous material thermometry of low-grade metamorphic rocks: calibration 

and application to tectonic exhumation in Crete, Greece. Earth Planet Sci. Lett. 



 131 

240:339–354 

Rathmell MA, Streepey MM, Essene EJ, van der Pluijm BA (1999) Comparison of 

garnet-biotite, calcite-graphite, and calcite-dolomite thermometry in the Grenville 

Orogen; Ontario, Canada. Contr Mineral Petrol 134:217–231 

Suchy V, Frey M, Wolf M (1997) Vitrinite reflectance and shear-induced graphitization in 

orogenic belts: a case study from the Kandersteg area, Helvetic Alps, Switzerland. 

Internat J Coal Geol 34: 1–20 

Tuinsra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130 

Wada H, Tomita T, Matsuura K, Iuchi K, Ito M, Morikiyo T (1994) Graphitization of 

carbonaceous matter during metamorphism with references to carbonate and 

politic rocks of contact and regional metamorphisms, Japan. Contr Mineral Petrol 

118:217–228 

Wang A, Dhamelincourt P, Duvessy J, Guerard D, Landais P, Lelaurain M (1989) 

Chacterization of graphite alteration in an uranium deposit by micro-Raman 

spectroscopy, X-ray diffraction, transmission electron microscopy and scanning 

electron microscopy. Carbon 27:209–218 

Wong E, Brandon M, Pasteris J, Wopenka B, Dunn S, Karabinos P (2007) 

Reproducibility of Raman spectroscopy measurements for carbonaceous materials 

in metamorphic rocks. Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract 

V13D–1587 

Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies 



 132 

graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–

557 

 

 



 133 

 

 

APPENDIX B 

 

THE 
40

Ar/
39

Ar CHRONOLOGY OF AKSU PRECAMBRIAN 

BLUESCHISTS IN WESTERN CHINA 

 

ABSTRACT 

Three metapelite samples from the world’s best documented Precambrian blueschist 

terrane near Aksu, Xinjing, China, were dated by 
40

Ar/
39

Ar method on separated phengite 

grains. The resultant plateau ages are in the range of 740 to 760 (±5) Ma, which is in 

agreement with previous 
40

Ar/
39

Ar plateau age of 754±50 Ma measured on a Na-

amphibole and about 20−40 Ma older than earlier K-Ar and Rb-Sr ages. Considering the 

±20-30 Ma uncertainties of the K-Ar and Rb-Sr ages, the 
40

Ar/
39

Ar ages reported in this 

study are consistent with the K-Ar ages and Rb-Sr ages within the 2σ error region, and 

the 
40

Ar/
39

Ar ages of sample A-012 are in good agreement with their study within the 1σ 

error region. Due to the low peak metamorphic temperature of Aksu blueschist terrane 

(300−400°C), the 
40

Ar/
39

Ar plateau ages in this study are growth ages or very close to 

them, and they are inferred to represent approximately the timing of peak metamorphic 

temperatures. This is in good agreement with a previously proposed tectonic scenario that 

the Aksu region represents the collision zone between North and South Tarim blocks at 
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800−750 Ma based on geochronology and geochemistry on samples recovered from a 

deep well that reached a depth of >7000 m from the basement of the central Tarim basin. 

 

INTRODUCTION 

Although more than a dozen of Precambrian blueschist occurrences in the world 

have been reported (summarized by Liou et al. 1990), many of them have been shown to 

represent younger events. Only three Precambrian terranes may have experienced 

blueschist facies metamorphism in the Precambrian. The first one lies in the Western 

Africa along the Pan-Africa orogen, with the best documented area in northern Mali, 

where coesite inclusions were found in omphacite in an impure marble (Caby 1994). The 

estimated metamorphic condition is about 700−750°C and >27 GPa, representing eclogite 

facies and not a blueschist facices conditions. The peak metamorphic time was 

constrained by Rb-Sr and Sm-Nd mineral isochron age of about 620 Ma (Jahn et al. 

2001). The evidence of a blueschist event is based solely on old reports of glaucophanitic 

amphiboles in the terrane (Kaiser 1926; Kröner 1974). However, Frimmel and Hartnady 

(1992) showed that these blue amphiboles are either magnesio-riebeckite or variable 

edenite, pargasite to barroisite composition. As a result, this proposed blueschist 

occurrence must be regarded as equivocal.  

The second Precambrian blueschist terrane occurs along the Neo-Proterozoic 

Jiangnan belt of southeast China, where aragonite + jadeite + glaucophane schist and 
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schistose lawsonite marble have been described (Zhou 1989). The glaucophane schist 

was dated at 930 ± 34 Ma with a mineral Sm-Nd isochron (Xu and Qiao 1989), 866 ± 14 

Ma for two K-Ar ages on glaucophane (Shu et al. 1994), and 901 ± 19 Ma for 
40

Ar/
39

Ar 

for the blue amphibole from the same area (Xu et al. 1992). The third occurrence, the best 

documented Precambrian blueschist terrane is near Aksu, in the northwest margin of the 

Tarim craton, western China. This terrane was described by Xiong and Wang (1986), 

Liou et al. (1989), Nakajima et al. (1990) and Liou et al. (1996), and it is the basis of the 

present study.  

The 1540 km Aksu Group is mainly composed of pelitic, psammitic, mafic, 

quartzose schists and lack of melange (Nakajima et al. 1990). The pelitic schist consisting 

of phengite, quartz, chlorite and albite, is commonly interlayered with quartz schist on a 

millimeter to centimeter scale, indicating frequent change of protoliths from mudstone to 

quartzose sandstone (Liou et al. 1996). The major minerals in the psammitic schist are 

quartz and feldspar. The mafic schist contains mainly Na-amphibole in the southern part 

whereas both winchite and Na-amphibole are found in the northern part. The typical 

mineral assemblage for the mafic schist is Na-amphibole (or winchite) + epidote + 

chlorite + albite + quartz ± actinolite (Nakajima et al. 1990). The peak metamorphic 

condition of Aksu blueschist terrane was suggested to be 4−6 kbar and 300−400°C based 

on mineral parageneses and composition of Na-amphibole (Liou et al. 1989). However, 

the peak metamorphic pressure was later suggested to be higher by Zhang et al. (1999). 

They described deerite assemblages in association with the Aksu blueschists and used 
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phase equilibria for deerite yielding greater than 10 kbar in the temperature range of 

300−400°C. They inferred a cold geothermal gradient of 10°C/km, similar to that has 

been estimated for jadeite-quartz blueschists elsewhere.     

Two distinct deformation episodes were recognized by Liou et al. (1989) for the 

Aksu blueschist terrane. The first episode D1, which was contemporaneous with the 

blueschist facies recrystallization, produced the predominant foliations and lineations in 

all rock types. The second episode D2, which was after the peak metamorphism, 

produced the map-scale NE-SW oriented folding. A series of subparallel Precambrian 

dikes that intruded the Aksu terrane after peak metamorphism were also documented by 

Liou et al. (1996).  

The first evidence for the Precambrian age of the Aksu blueschist terrane comes 

from stratigraphy. Xiong and Wang (1986) concluded that the Aksu blueschist terrane is 

structurally coherent, lacks melange, and is unconformably overlain by Late Proterozoic 

age Sinian formations along its southern boundary. The age of these unbroken, 

unmetamorphosed Sinian rocks were considered to range from early to late Sinian based 

on paleontology and correlation with Late Proterozoic sections elsewhere (Gao et al. 

1985). Geochronological studies by Nakajima et al. (1991) and Liou et al. (1996) 

supported the Precambrian age of the Aksu blueschist terrane. Two mica-schist samples 

were used by Nakajima et al. (1991) to determine the age using K-Ar and whole rock − 

phengite isochron Rb-Sr methods. The ages vary from 698 ± 26 Ma to 718 ± 22 Ma. A 

40
Ar/

39
Ar plateau age of 754 Ma was given by Liou et al. (1996) using the step-heating 
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technique to analyze the Na-amphibole, although the error of the plateau age was not 

given. Combining these two studies, the blueschist metamorphism of the Aksu terrane 

were concluded to occur at 700 to 750 Ma. The purpose of this study is to more precisely 

constrain the metamorphic time of Aksu blueschist terrane by applying the step-heating 

40
Ar/

39
Ar dating method on the separated phengite grains from three metapelite samples.      

 

GEOCHEMISTRY 

The main minerals for the three metapelites of Aksu Precambrian blueschist 

terrain are phengite, chlorite, quartz, calcite, albite, apatite, zircon, rutile and/or sphene. 

The chemical compositions of phengite and chlorite of all the three samples as well as the 

chemical composition of apatite of sample B-001 were analyzed with the electron 

microprobe (EMP). A Cameca SX-100 at the University of Michigan was used to perform 

such analyses. For phengite and chlorite analyses, the column conditions were: 

accelerating voltage 15 kV, beam current 4 nA, beam scan area 25 µm
2
, peak counting 

time 10 s and background counting time 5 s. Topaz (F), synthetic plagioclase (Na, Si, Ca), 

pyroxene (Mg), zoisite (Al), synthetic alforsite (Cl, Ba), K-feldspar (K), synthetic 

geikielite (Ti), synthetic V2O5 (V), synthetic uvarovite (Cr), rhodonite (Mn) and synthetic 

FeSiO3 (Fe) were used as the standards. The EMP results of phengite and chlorite are 

given in Table B1, respectively. For apatite analyses, the column conditions were: 

accelerating voltage 15 kV, beam current 4 nA, beam size 10 µm, peak counting time 10 s 

and background counting time 5 s. The standards used for the EMP analyses are Topaz 
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Mountain topaz (F), Tiburon albite (Na), synthetic ScPO4 (P), alforsite (Cl), celestite (S, 

Sr), wollastonite (Ca), hematite (Fe), synthetic CePO4 (Ce), synthetic NdPO4 (Nd) and 

synthetic LaPO4 (La). The EMP results of apatite are given in Table B2.      

 

 

40
Ar/

39
Ar CHRONOLOGY 

Three samples of pelitic schist from Aksu Precambrian blueschist terrane were 

selected for 
40

Ar/
39

Ar dating. The samples were first broken down with a jaw crusher and 

then separated with a 180 μm size sieve. After being washed with de-ionized water, the 

samples smaller than 180 μm were segregated with a magnetic separator and pure 

phengite particles were further handpicked under a binocular microscope. For each 

sample, about 5−16 mg phengite grains were wrapped in pure Al foil and placed in 

evacuated quartz tubes and sent for irradiation in the McMaster Nuclear Reactor at 

McMaster University in Hamilton, Ontario, Canada. The neutron flux gradient (J) was 

monitored using the MMhb-1 standard whose age (520.4 Ma) was determined previously 

(Samson and Alexander 1987).  

The samples were unpacked after irradiation and loaded into 2 mm diameter wells 

in a copper disk. Absorbed atmospheric argon was removed by baking the samples at 

~150°C over night before putting into the VG1200S mass spectrometer at university of 

Michigan to measure the argon isotopes. Each sample was individually step heated by an 

automated argon-ion laser extraction system until complete fusion was achieved. Each 
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step consisted of 60 s heating followed by 120 s gas cleanup using a liquid N2 cold finger 

and two SAES 10 liters per second getters (alloy ST101). Fusion-system blanks were run 

after every five steps and corrected for all gas fractions. The blank levels were typically 

810
-19

, 210
-18

, 210
-19

, 810
-19

, 110
-16

 mol for masses 36 through 40, respectively. 

Corrections due to interfering nucleogenic reactions as well as 
37

Ar and 
39

Ar decay were 

also applied to the data.  

 

RESULTS 

The age spectra and volumes of gas released from each sample are given by Fig. 

B1. Duplicate runs were analyzed for each sample to assess sample variability and the 

reproducibility of the results. Among the six analyses for the three samples, five yielded a 

40
Ar/

39
Ar plateau age (Fig. B1). The criteria used to determine whether an analysis 

yielded a plateau age are: (1) Plateau spectra represent >50% of the 
39

Ar released in at 

least five consecutive heating steps. (2) Plateau spectra pass a chi-squared test of the 

squared weighted deviations from the weighted average age (McDougall and Harrison 

1999). The plateau ages are calculated as the inverse variance weighted mean of the ages 

from the steps which comprise the plateau. The errors for the plateau are reported as 1σ, 

which is derived from the weighted errors of individual steps. A complete analytical data 

set and the inverse isochron diagrams are also given in Table B3 and Fig. B1. Due to the 

old ages of these samples, virtually all the points were plotted on the pure radiogenic axis, 

so little information about initial argon in these samples can be derived from these 
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inverse isochron diagrams.  

 

DISCUSSION 

The difference between the total gas age and the plateau age is within the 1σ error 

for the five analyses that yielded plateau ages. For sample A-012, the plateau age was 

given as 740.7 ± 2.5 Ma, whereas the total gas ages were given as 737.3 ± 2.4 Ma and 

739.3 ± 2.4 Ma. For sample B-001 and A-014 that yielded both a plateau age and a total 

gas age in each analysis, slightly older ages in the range of 748−757 Ma were calculated. 

The ages yielded by duplicate analyses for each sample are the same within the 1σ error 

range, suggesting small grain variance and good reproducibility.  

Nakajima et al. (1990) applied the K-Ar method to analyze two phengite samples 

from the Aksu blueschist terrane that yielded 718 ± 22 Ma and 710 ± 21 Ma. Their ages 

are ~20−40 Ma younger than both the 
40

Ar/
39

Ar plateau ages and total gas ages yielded in 

this study, although the total gas ages of 
40

Ar/
39

Ar method should be similar with the K-

Ar age. Nakajima et al. (1990) also reported two phengite-whole rock Rb-Sr isochron 

ages (698 ± 26 and714 ± 24 Ma) that are similar to the K-Ar ages and much younger than 

the 
40

Ar/
39

Ar plateau ages of this study. Considering the large uncertainties of the ages 

reported in their study, the 
40

Ar/
39

Ar ages yielded in this study are much better in terms of 

precision. On the other hand, the 
40

Ar/
39

Ar ages reported in this study are consistent with 

the K-Ar ages and Rb-Sr ages by Nakajima et al. (1990) within the 2σ error, and the 

40
Ar/

39
Ar ages of sample A-012 are even in good agreement with their study within the 
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1σ error region. Liou et al. (1996) reported a 
40

Ar/
39

Ar plateau age of 754 Ma by 

analyzing the separated Na-amphibole (crossite) from the Aksu blueschist terrane. 

Although not given in their study, the uncertainty of the plateau age should be at least 50 

Ma based on the shape of their plateau spectrum. The very low level of K substituted in 

glaucophane, crosstie and riebeckite indicates a potential problem with Ar ages on these 

minerals. The Ar is unsupported by K in the amphiboles and is likely derived either from 

fluid inclusions or solid phengite inclusions in most studies. Nonetheless the reported 

40
Ar/

39
Ar plateau age of Liou et al. (1996) is in agreement with the results of this study.  

Excess argon has been well documented in phengite from HP and UHP rocks (e.g. 

Tilton et al. 1989; Li et al. 1994; Ruffet et al. 1995; Scaillet 1996; Boundy et al. 1997; 

Jahn et al. 2001; Sherlock and Kelley 2002; de Jong 2003). It only becomes apparent 

when phengite samples from the same location yielded considerably different 
40

Ar/
39

Ar 

ages or the 
40

Ar/
39

Ar ages significantly exceed Rb-Sr or Sm-Nd ages in the same samples. 

Boundy et al. (1997) identified domains of apparently old phengite in samples that 

contained high Na that may correspond to small paragonite domains that would provide 

access to excess 
40

Ar. The problem of excess argon is difficult to evaluate when the 

difference between 
40

Ar/
39

Ar ages and Rb-Sr ages is small or the Rb-Sr ages are absent in 

the same samples. The 
40

Ar/
39

Ar ages reported in this study belong to the latter case. All 

the three samples yielded consistent 
40

Ar/
39

Ar plateau ages in the range of 740−760 Ma, 

and these ages are concordant with less precise Rb-Sr mineral isochron (Nakajima et al. 

1990) within analytical error. Therefore, the excess argon, if any, doesn’t seem to have 
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had much influence on the 
40

Ar/
39

Ar ages in this study.   

Previous studies showed that the peak metamorphic temperature of Aksu 

blueschist terrane was about 300−400°C (Liou et al. 1989; Zhang et al. 1999), which is in 

the range of estimated closure temperature of the K-Ar system in muscovite: 350°C. 

Therefore, the yielded 
40

Ar/
39

Ar plateau ages in this study, which are in the range of 

740−760 Ma, represent approximately last crystallization of the phengite, which is 

interpreted as the timing of peak metamorphism.  

Liou et al. (1996) speculated that Aksu blueschist terrane may represent a remnant 

suture between the Tarim craton in the south and an unknown craton to the north. Guo et 

al. (2005) also proposed an Precambrian suture along the Aksu region, which represents 

the collision zone between North and South Tarim blocks at 800−750 Ma based on the 

geochronology and geochemistry studies on samples recovered from a deep well that 

reached a depth of >7000 m from the basement of the central Tarim basin. The 
40

Ar/
39

Ar 

plateau ages (740−760 Ma) yielded in this study fit reasonably well with the proposed 

tectonic sceneries of Tarim basin by Guo et al. (2005).   
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Table B1 Average compositions of phengite and chlorite 

 phengite  chlorite 

Sample B-001 A-012 A-014  B-001 A-012 A-014 

SiO2 48.67  48.55  49.65   25.19  24.62  24.77  

TiO2 0.09  0.14  0.14   0.03  0.04  0.05  

Al2O3 30.53  30.69  28.04   21.68  21.73  20.37  

Cr2O3 0.02  0.01  0.02   0.01  0.02  0.01  

V2O3 0.03  0.02  0.01   0.02  0.02  0.01  

FeO 1.70  1.93  3.17   25.24  28.46  30.12  

MnO 0.11  0.03  0.06   1.12  0.49  0.88  

MgO 2.18  1.99  2.42   13.15  11.06  9.75  

BaO 0.24  0.18  0.21   0.02  0.03  0.02  

CaO 0.02  0.01  0.01   0.02  0.02  0.04  

Na2O 0.37  0.36  0.17   0.01  0.02  0.03  

K2O 11.11  10.76  11.47   0.04  0.09  0.08  

F 0.41  0.29  0.29   0.15  0.11  0.12  

Cl 0.01  0.01  0.01   0.02  0.01  0.01  

Total 95.49  94.97  95.68   86.70  86.71  86.27  

 

Atom site distribution (12 tetrahedral and octahedral cations for phengite and 10 for chlorite basis) 

Si 6.52  6.51  6.68   2.72  2.71  2.77  

Al
IV

 1.48  1.49  1.32   1.28  1.29  1.23  

Al
VI

 3.35  3.36  3.13   1.49  1.52  1.46  

Ti 0.01  0.01  0.01   0.00  0.00  0.00  

Cr 0.00  0.00  0.00   0.00  0.00  0.00  

V 0.00  0.00  0.00   0.00  0.00  0.00  

Fe 0.19  0.22  0.36   2.28  2.62  2.82  

Mn 0.01  0.00  0.01   0.10  0.05  0.08  

Mg 0.44  0.40  0.49   2.12  1.81  1.63  

Ba 0.01  0.01  0.01   0.00  0.00  0.00  

Ca 0.00  0.00  0.00   0.00  0.00  0.01  

Na 0.10  0.09  0.04   0.00  0.00  0.01  

K 1.90  1.84  1.97   0.00  0.01  0.01  

A site 2.00  1.94  2.01      

F 0.17  0.12  0.12   0.05  0.04  0.04  

Cl 0.00  0.00  0.00   0.00  0.00  0.00  
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Table B2 Typical composition of apatite from Aksu blueschist terrane* 

F Na2O P2O5 Cl SO2 CaO MnO FeO SrO 

Ce2O

3 

Nd2O

3 

La2O

3 Total 

3.95 0.01 

43.6

0 0.01 0.01 

53.5

4 0.06 0.06 0.17 0.01 0.02 0.01 

101.4

5 

Atom site distribution based on 5 large cations 

F Na P Cl S Ca Mn Fe Sr Ce Nd La  

1.08

4 

0.00

2 

3.20

4 

0.00

1 

0.00

1 

4.98

0 

0.00

4 

0.00

4 

0.00

9 0.001 0.001 0  

* This analysis was mainly intended to detect the Sr concentration in apatite. Major 

elements and F have not been optimized for element diffusion.   
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Table B3 Detailed 
40

Ar/
39

Ar isotope analyses of phengites from Aksu blueschist terrane 

 e4a A012 mass=1  J= 6.84E-03 ± 2.66E-05 tot.gas.age= 736.261 ± 2.378 

F39 LasPow (mW) Vol36 Err36 Vol37 Err37 Vol38 Err38 Vol39 Err39 Vol40 Err40 Age(Ma) AgeErr 

0.0004  30  0.09  0.08  (0.58) 0.68  0.06  0.08  1.73  0.09  52.55  0.57  176.90  153.04  

0.0028  80  0.40  0.08  3.17  1.07  0.34  0.09  11.64  0.14  541.31  1.01  399.52  20.90  

0.0078  125  0.19  0.12  7.81  1.06  0.16  0.08  23.62  0.30  1370.58  1.21  582.02  14.56  

0.0193  180  0.10  0.06  22.45  0.71  0.14  0.08  53.81  0.23  3428.91  2.26  647.66  3.71  

0.0398  250  0.10  0.05  61.41  2.41  0.15  0.08  96.77  0.38  6513.30  4.95  680.40  2.59  

0.0668  300  0.05  0.05  12.46  0.83  0.23  0.06  127.15  0.36  8986.41  1.65  710.11  1.93  

0.1537  400  0.04  0.05  16.92  0.92  0.56  0.08  409.82  0.92  29996.58  9.22  731.68  1.40  

0.2615  500  0.00  0.07  7.62  1.19  0.49  0.08  508.14  0.97  37645.45  9.71  739.25  1.21  

0.3463  600  0.08  0.05  0.29  0.89  0.32  0.14  399.96  0.77  29654.44  5.88  739.23  1.22  

0.4348  700  0.10  0.07  0.66  0.92  0.32  0.08  416.87  0.60  30929.42  9.14  739.58  0.97  

0.5078  800  0.04  0.06  (0.84) 0.73  0.29  0.12  344.06  0.71  25513.86  8.96  739.59  1.34  

0.6019  1000  0.18  0.10  (0.01) 0.74  0.55  0.08  443.73  0.70  33126.96  9.90  742.93  1.12  

0.7129  1200  0.14  0.08  (0.20) 0.72  0.53  0.15  523.30  0.71  39095.73  10.67  743.74  0.92  

0.8456  1600  0.14  0.07  (0.40) 0.77  0.38  0.17  625.32  0.51  46644.05  12.24  742.86  0.59  

0.9615  2000  0.08  0.08  0.84  0.80  0.41  0.13  546.69  1.30  41015.98  6.86  746.58  1.50  

0.9833  2500  0.03  0.05  0.96  1.04  (0.01) 0.07  102.63  0.27  7677.70  2.34  744.47  2.04  

1.0000  3000  0.04  0.07  0.27  1.05  0.03  0.03  78.71  0.33  5849.76  2.94  739.93  3.43  

 e4b A012 mass=1J= 6.84E-03 ± 2.66E-05tot.gas.age= 739.373 ± 2.435 

F39 LasPow (mW) Vol36 Err36 Vol37 Err37 Vol38 Err38 Vol39 Err39 Vol40 Err40 Age(Ma) AgeErr 

0.0002  30  (0.08) 0.09  2.06  1.12  0.33  0.11  0.44  0.08  7.41  1.25  707.49  487.86  

0.0011  80  0.02  0.11  1.22  1.23  0.16  0.06  2.22  0.09  90.67  1.09  413.38  141.87  

0.0029  125  (0.07) 0.08  (0.14) 1.23  0.16  0.07  4.27  0.12  227.37  1.11  600.76  49.62  

0.0084  180  (0.09) 0.09  2.91  1.04  0.17  0.09  13.37  0.19  828.25  1.41  655.14  19.66  
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0.0197  250  (0.02) 0.08  9.23  1.11  0.18  0.09  27.45  0.25  1901.55  2.36  701.68  9.03  

0.0311  300  (0.04) 0.05  3.35  0.61  0.20  0.08  27.51  0.17  1966.56  2.71  721.82  5.58  

0.0610  400  0.13  0.13  16.64  0.62  0.10  0.09  72.30  0.22  5239.41  2.29  721.68  4.76  

0.2002  500  (0.05) 0.12  14.52  0.99  0.63  0.11  336.91  0.76  25149.94  5.01  744.23  1.62  

0.2710  600  0.04  0.07  42.41  1.30  0.33  0.10  171.41  0.69  12695.87  3.93  738.60  2.62  

0.3421  700  (0.03) 0.04  3.17  0.82  0.07  0.07  172.05  0.24  12838.22  3.53  744.11  1.02  

0.4133  800  0.01  0.07  (0.45) 0.83  0.09  0.08  172.29  0.45  12762.90  6.25  739.02  1.87  

0.4892  1000  0.00  0.10  3.42  1.18  0.05  0.06  183.73  0.47  13550.80  3.70  736.48  2.06  

0.6219  1200  0.22  0.10  9.76  0.96  0.29  0.11  321.02  0.71  23900.47  8.58  740.58  1.56  

0.7597  1600  0.04  0.10  10.85  0.86  0.17  0.08  333.42  0.33  24790.16  7.46  741.12  0.96  

0.9887  2000  0.14  0.08  4.24  0.97  0.47  0.13  554.20  1.16  41311.39  4.79  742.37  1.32  

0.9977  2500  (0.23) 0.09  (0.52) 1.07  0.13  0.09  21.81  0.16  1606.65  2.23  760.96  10.74  

1.0000  3000  (0.11) 0.10  1.20  1.00  0.22  0.08  5.53  0.14  412.48  1.25  791.63  43.78  

 e5a B001mass=1J= 6.81E-03 ± 2.70E-05tot.gas.age= 747.976 ± 3.278 

F39 LasPow (mW) Vol36 Err36 Vol37 Err37 Vol38 Err38 Vol39 Err39 Vol40 Err40 Age(Ma) AgeErr 

0.0004  30  0.01  0.05  0.94  0.81  0.06  0.06  0.14  0.09  1.30  0.57  (111.53) 1378.41  

0.0017  80  0.19  0.05  1.04  0.99  0.13  0.07  0.50  0.12  32.51  0.52  (718.23) 565.99  

0.0048  125  0.07  0.05  (0.50) 1.05  0.04  0.08  1.16  0.13  72.32  0.56  472.24  136.30  

0.0125  180  (0.02) 0.04  0.05  1.05  0.00  0.04  2.85  0.14  221.69  0.55  787.07  47.47  

0.0307  250  (0.06) 0.06  (0.11) 0.80  (0.04) 0.04  6.78  0.08  516.60  1.19  776.74  22.42  

0.0515  300  (0.01) 0.07  (3.17) 1.17  (0.07) 0.10  7.76  0.14  562.91  0.75  727.73  24.97  

0.1650  400  0.06  0.08  (2.93) 0.98  0.03  0.13  42.33  0.25  3173.58  2.69  741.06  5.79  

0.2566  500  0.02  0.05  (3.28) 1.33  0.02  0.08  34.18  0.12  2596.05  2.65  750.95  4.33  

0.3805  600  (0.05) 0.08  (2.91) 1.10  0.06  0.09  46.22  0.11  3542.48  3.03  760.17  4.29  

0.4892  700  (0.13) 0.05  (4.32) 1.27  0.11  0.08  40.55  0.31  3054.52  2.03  754.55  5.65  

0.5593  800  (0.02) 0.06  (0.90) 0.79  (0.08) 0.08  26.14  0.28  1986.95  2.22  754.41  8.46  

0.6726  1000  0.11  0.06  0.58  0.71  0.02  0.07  42.24  0.30  3220.84  2.63  748.55  5.70  
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0.7212  1200  0.04  0.05  0.98  0.56  0.05  0.10  18.16  0.22  1387.45  1.80  750.34  9.74  

0.7480  1600  0.11  0.09  (0.01) 0.49  0.05  0.07  9.97  0.12  730.38  1.34  702.51  24.03  

0.8075  2000  0.09  0.03  (1.09) 0.92  0.02  0.08  22.21  0.32  1726.31  2.11  756.59  9.69  

0.9200  2500  0.16  0.11  1.63  1.18  0.07  0.06  41.95  0.15  3183.56  2.33  742.33  6.53  

1.0000  3000  0.05  0.08  (1.02) 1.02  (0.02) 0.09  29.84  0.14  2309.56  2.00  759.87  7.25  

e5b B001 mass=1J= 6.81E-03 ± 2.70E-05tot.gas.age= 753.019 ± 2.755 

F39 LasPow (mW) Vol36 Err36 Vol37 Err37 Vol38 Err38 Vol39 Err39 Vol40 Err40 Age(Ma) AgeErr 

0.0001  30  0.06  0.07  1.05  1.12  0.09  0.10  0.10  0.09  9.38  0.92  (1351.80) 5625.41  

0.0012  80  0.12  0.09  0.56  0.88  0.08  0.05  0.97  0.12  69.36  1.06  373.41  266.97  

0.0030  125  (0.04) 0.16  (0.56) 1.15  0.09  0.07  1.70  0.11  108.61  1.23  715.96  237.81  

0.0095  180  0.08  0.08  (0.22) 0.69  0.00  0.08  5.94  0.14  390.93  1.31  632.92  36.32  

0.0235  250  0.04  0.08  0.48  0.82  0.05  0.07  12.73  0.22  906.22  1.71  705.62  18.39  

0.0375  300  0.07  0.08  (1.14) 1.60  0.02  0.09  12.75  0.19  948.42  1.52  726.54  18.24  

0.1462  400  (0.12) 0.07  (1.92) 1.25  0.13  0.08  99.21  0.23  7534.75  3.31  755.14  2.30  

0.2390  500  0.18  0.06  (3.57) 1.17  0.16  0.09  84.72  0.42  6532.89  3.02  756.59  3.55  

0.3250  600  0.20  0.10  (1.33) 1.87  0.11  0.09  78.44  0.44  6015.65  2.86  752.20  4.58  

0.4533  700  0.01  0.06  (1.24) 1.45  0.21  0.10  117.10  0.53  8974.97  4.08  757.55  3.07  

0.5613  800  0.10  0.07  0.92  1.09  0.17  0.11  98.63  0.19  7558.67  3.90  755.34  2.18  

0.6414  1000  0.02  0.09  0.63  1.26  0.21  0.08  73.05  0.33  5561.17  3.16  753.04  4.07  

0.7447  1200  (0.11) 0.06  1.06  1.38  0.19  0.08  94.31  0.41  7190.50  5.51  757.23  3.13  

0.8437  1600  0.18  0.08  1.89  1.33  0.19  0.09  90.30  0.40  6956.49  3.80  756.24  3.49  

0.9449  2000  0.25  0.07  0.58  1.28  0.15  0.07  92.36  0.40  7148.14  2.73  757.50  3.21  

0.9968  2500  0.08  0.11  3.73  1.05  (0.14) 0.10  47.35  0.22  3629.68  2.80  753.62  6.13  

1.0000  3000  0.17  0.10  0.48  0.95  (0.11) 0.09  2.95  0.13  250.01  0.93  682.03  90.36  

 e6a A014  mass=1  J= 6.80E-03 ± 2.73E-05  tot.gas.age=753.222 ± 2.549 

F39 LasPow (mW) Vol36 Err36 Vol37 Err37 Vol38 Err38 Vol39 Err39 Vol40 Err40 Age(Ma) AgeErr 

0.0006  30  0.15  0.09  (0.59) 0.84  0.14  0.07  1.74  0.12  56.30  0.46  77.28  171.09 



 

  

1
4
8
 

  

0.0030  80  0.19  0.07  (0.34) 0.84  0.24  0.11  7.48  0.15  386.37  0.95  471.97  27.21  

0.0072  125  0.09  0.08  (1.55) 0.71  0.21  0.07  12.89  0.16  846.95  1.20  648.13  17.12  

0.0159  180  0.06  0.08  0.58  0.85  0.10  0.07  26.96  0.15  1899.01  2.62  700.49  7.67  

0.0301  250  0.07  0.08  (1.42) 1.12  0.04  0.09  43.45  0.29  3192.95  2.91  727.28  6.19  

0.0597  300  0.13  0.13  1.24  0.87  (0.08) 0.13  91.26  0.50  6789.07  2.91  734.99  4.83  

0.2851  400  0.17  0.13  1.15  1.11  0.75  0.19  693.67  1.67  53144.89  11.70  755.83  1.55  

0.4133  500  (0.01) 0.13  (0.28) 0.90  (0.03) 0.17  394.54  0.87  30074.13  9.64  753.35  1.57  

0.4372  600  0.07  0.13  0.37  1.00  0.04  0.14  73.54  0.46  5598.12  1.85  750.13  5.71  

0.5020  700  (0.05) 0.13  (0.09) 0.87  0.11  0.13  199.21  0.65  15274.22  8.15  757.49  2.56  

0.5266  800  (0.19) 0.10  (1.07) 1.10  (0.09) 0.09  75.90  0.21  5749.39  0.94  755.46  3.66  

0.6144  1000  0.08  0.14  1.33  0.81  0.12  0.11  269.96  0.58  20584.81  3.81  752.73  1.79  

0.6802  1200  (0.02) 0.07  0.40  0.87  0.27  0.09  202.53  0.51  15516.56  6.13  756.63  1.79  

0.8868  1600  (0.03) 0.07  5.44  0.89  0.67  0.11  635.82  0.73  48806.70  8.20  757.70  0.77  

0.9693  2000  (0.01) 0.06  2.69  0.90  0.09  0.12  253.85  0.75  19490.27  7.26  757.80  1.92  

0.9838  2500  (0.08) 0.10  (0.73) 0.63  0.06  0.07  44.74  0.35  3442.26  2.45  763.25  7.21  

1.0000  3000  (0.04) 0.10  (0.02) 0.64  0.12  0.08  49.81  0.43  3876.66  3.13  768.02  7.17  

e6b A014 mass=1   J= 6.80E-03 ±2.73E-05tot.gas.age= 752.159 ± 2.523 

F39 LasPow (mW) Vol36 Err36 Vol37 Err37 Vol38 Err38 Vol39 Err39 Vol40 Err40 Age(Ma) AgeErr 

0.0004  30  (0.10) 0.11  (0.41) 0.96  0.03  0.06  1.39  0.05  46.03  0.67  564.31  210.84  

0.0020  80  0.06  0.10  (1.66) 0.91  0.07  0.07  6.54  0.15  326.90  1.52  501.19  44.07  

0.0052  125  (0.19) 0.11  (1.92) 1.13  0.14  0.07  12.77  0.14  796.72  1.98  675.54  22.81  

0.0119  180  (0.02) 0.14  (2.52) 1.34  (0.07) 0.07  26.60  0.26  1842.84  1.34  697.92  14.02  

0.0240  250  (0.18) 0.11  (0.92) 1.27  (0.03) 0.06  48.14  0.42  3468.96  2.84  728.10  7.64  

0.0384  300  0.02  0.11  (0.34) 1.28  0.19  0.09  57.22  0.30  4262.09  3.52  738.20  5.54  

0.1312  400  (0.16) 0.11  (0.06) 1.38  0.45  0.12  369.39  0.90  28102.84  5.26  753.12  1.65  

0.2085  500  (0.03) 0.11  (0.28) 1.14  0.55  0.12  308.04  0.71  23517.39  7.63  754.46  1.69  



 

  

1
4
9
 

0.3660  600  0.03  0.10  (0.68) 1.65  0.72  0.15  626.94  1.21  47860.78  12.10  754.10  1.26  

0.4708  700  0.08  0.12  3.05  1.10  0.79  0.15  416.94  0.70  31805.11  10.58  753.25  1.25  

0.5670  800  0.27  0.10  2.68  0.68  0.19  0.15  382.93  0.86  29172.53  7.08  751.27  1.51  

0.6867  1000  0.30  0.07  5.02  1.05  0.77  0.15  476.34  0.98  36498.39  9.29  755.00  1.33  

0.7898  1200  0.05  0.05  3.55  0.86  0.36  0.13  410.67  0.88  31300.74  7.68  752.93  1.36  

0.8997  1600  0.26  0.08  8.23  0.53  0.47  0.19  437.17  0.94  33527.77  7.63  755.63  1.41  

0.9705  2000  0.31  0.08  2.68  0.81  0.34  0.11  282.18  0.84  21559.29  4.75  752.11  1.95  

0.9841  2500  (0.00) 0.10  (0.18) 0.84  0.00  0.08  53.75  0.31  4111.91  2.83  755.66  5.82  

1.0680  1992  0.04  0.05  (3.02) 0.64  0.33  164.39  490.86  1.20  36738.20  9.35  860.46  (19.10) 
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Fig. B1 Total gas and plateau spectra (left column) and inverse isochron diagrams (right 

column) for the Aksu blueschist samples. 
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Fig. B1. Continued. 
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