
SYSTEMS-LEVEL SUPPORT FOR

MOBILE DEVICE CONNECTIVITY
by

Anthony J. Nicholson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2008

Doctoral Committee:

Associate Professor Brian D. Noble, Chair
Associate Professor Mingyan Liu
Assistant Professor Jason Nelson Flinn
Assistant Professor Zhuoqing Morley Mao

c© Anthony J. Nicholson
All Rights Reserved 2008

To Cory.

ii

ACKNOWLEDGEMENTS

While the responsibility for all errors, misstatements, and outlandish claims contained

herein is soley mine, credit for the positive aspects of this dissertation lies with many

people.

First, Brian Noble, my advisor. You were an excellent mentor, not just in the ways of

computer science. Most importantly, you helped me make the transition from a software

engineer who expected micromanagement to a more autonomous researcher and thinker.

Thanks for helping undo the damage of several years spent as a code monkey before grad-

uate school.

Besides Brian, I would also like to thank my other co-authors and collaborators: Mark

Corner, Scott Wolchok, David Wetherall, Ian Smith, Mike Chen, Yatin Chawathe, Jeff

Hughes, Junghee Han and David Watson. Each of you helped shape the document to

follow, whether you like it or not.

The other members of my committee—Mingyan Liu, Jason Flinn, and Morley Mao.

Your feedback and suggestions were invaluable, and my work certainly benefited from

fresh viewpoints outside of our research group.

My undergraduate advisor at Kansas, Arvin Agah. I never seriously considered grad-

uate school until I did my senior thesis with you. Thanks also for suggesting I work for a

few years first—I would have certainly burned out otherwise.

Thanks also to the Michigan Mobility Group, past and present: Mark Corner, Landon

Cox, Minkyong Kim, James Mickens, Sam Shah, along with the students in Jason Flinn’s

iii

and Pete Chen’s groups. We created, discussed, and put out of their misery many different

ideas together.

I would not have made it this far without the support of my parents, Nick and Terri, and

my sisters Sarah and Blake. Thanks for acting interested when I bored you with details of

my research.

To little Andre. By the time you read this—if ever—I’ll be even older and more boring

than I am today. Thanks for your help with the final revisions of this document. You

always knew where to mash some keys with your fist to emphasize a point.

Most importantly, I thank my wife, Cory. You have been endlessly supportive over the

five years that we have been together. I owe you big for dropping everything and camping

out in Ann Arbor for the past two years while I finally finished up. At least you got a baby

out of the deal!

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

1.1 Thesis Statement . 4
1.2 Challenges . 4
1.3 Overview of the Dissertation 5

2. DISCOVERING NETWORK CONNECTIVITY 7

2.1 Contributions . 10
2.2 Definitions . 10
2.3 Legal and Security Issues . 10
2.4 Field Study . 12

2.4.1 Methodology . 12
2.4.2 Access Point Statistics 15
2.4.3 Missed Connectivity Opportunities 16
2.4.4 All APs Are Not Created Equal 17

2.5 Virgil . 19
2.5.1 Probing an AP . 20
2.5.2 Leveraging History 21
2.5.3 Choosing the “best” AP 22
2.5.4 User Feedback . 23

2.6 Prototype . 24
2.6.1 Active Scanning . 24
2.6.2 Tracking open connections 25

2.7 Evaluation . 26
2.7.1 Connection Time and Quality 27

v

2.7.2 History . 28
2.7.3 Client Overhead . 30
2.7.4 Reference Server Overhead 33

2.8 Chapter Summary . 34

3. FORECASTING NETWORK CONDITIONS 36

3.1 Contributions . 37
3.2 Background . 37

3.2.1 Determining AP Quality 37
3.2.2 Estimating Client Location 39

3.3 Connectivity Forecasting . 39
3.3.1 Predicting Future Mobility 40
3.3.2 Forecasting Future Conditions 42
3.3.3 Example . 45

3.4 Implementation . 46
3.4.1 Scanning Thread . 46
3.4.2 Application Interface 47

3.5 Sample Applications . 48
3.5.1 Methodology . 48
3.5.2 Forecast Accuracy 50
3.5.3 Sample Applications 52
3.5.4 Overhead . 59

3.6 Chapter Summary . 60

4. EXPLOITING AMBIENT CONNECTIVITY 62

4.1 Contributions . 64
4.2 Background . 65
4.3 Juggler . 66

4.3.1 Assigning Flows to Networks 68
4.3.2 Sending and Receiving Packets 69
4.3.3 Switching Between Virtual Networks 70
4.3.4 User-level Daemon 71
4.3.5 Implementation Details 72

4.4 Experimental Setup . 73
4.5 Microbenchmarks . 74
4.6 Application Scenarios . 76

4.6.1 Soft Handoff . 77
4.6.2 Data Striping and Bandwidth Aggregation 80
4.6.3 Mesh and Ad Hoc Connectivity 85

4.7 Chapter Summary . 87

5. RELATED WORK . 89

vi

5.1 Discovering Network Connectivity 89
5.2 Mobility Modelling and Path Prediction 90
5.3 Utilizing Multiple Networks . 93

5.3.1 Virtual link layers, multiple interfaces 93
5.3.2 Network discovery and handoff 95
5.3.3 Data striping and aggregation 95
5.3.4 Mesh networks and side channels 96
5.3.5 Robustness through diversity 97

6. CONCLUSIONS . 98

6.1 Contributions . 99
6.2 Impact of Future Device and Connectivity Technologies 100
6.3 Future Work . 101

BIBLIOGRAPHY . 103

vii

LIST OF TABLES

Table

2.1 Field Study, AP Statistics. 13
2.2 Field Study, Ports of interest. 18
2.3 Evaluation: AP statistics. 26
3.1 Access point statistics. 49
3.2 Bandwidth at grid locations. 50
3.3 Overhead, space requirements. 59
4.1 Juggler, CPU overhead benchmarks 75
4.2 Soft handoff, discovery and fail-over 79

viii

LIST OF FIGURES

Figure

2.1 A sea of bandwidth. 8
2.2 Field study script. 12
2.3 Field Study, Histogram, APs encountered per scan. 14
2.4 Field Study, Simulated percentage of scans that found a usable AP. . . . 15
2.5 Field Study, RTT and bandwidth. 16
2.6 Evaluation: Histogram, APs per scan. 25
2.7 Evaluation, Improvement of Virgil over SSS. 27
2.8 History: Percentage of successful scans. 29
2.9 History: Mean time to complete one AP selection cycle. 30
2.10 Overhead, Time to scan one AP, by phase. 31
2.11 Overhead, Cost of manual AP selection. 32
2.12 Reference server load testing results. 33
3.1 Generating states from mobility history. 41
3.2 Pseudocode: best bandwidth at a state and connectivity forecasts. 43
3.3 Example Markov model with best-bandwidth results. 45
3.4 Visited grid locations and commute ground truth. 48
3.5 Mobility model prediction accuracy. 51
3.6 CDF, bandwidth prediction error. 52
3.7 Evaluation, Map Viewer. 54
3.8 Evaluation, Streaming Media. 55
3.9 Evaluation, Opportunistic writeback. 57
3.10 Connectivity forecast overhead. 60
4.1 Juggler network stack . 67
4.2 Laboratory setup . 74
4.3 Soft handoff, throughput of primary AP 78
4.4 Data striping, throughput improvement 81
4.5 Streaming video, total playback gap per run 82
4.6 BitTorrent, torrent download time . 85
4.7 Mesh connectivity, TCP throughput 86

ix

CHAPTER 1

INTRODUCTION

The recent past has seen the advent of mobile computing devices. As compared to more

conventional computers such as laptops or desktops, handhelds are resource-constrained

with regard to CPU, storage, user interface, and battery life. Ameliorating these various

shortcomings has been the focus of a great deal of research. As a result, the increasing

capabilities of these devices let users run the same applications as on more powerful ma-

chines.

However, mobile data access has lagged behind because the combination of device

mobility and dependence on fleeting wireless network connections invalidates some basic

assumptions often made by operating systems designers. Specifically, much systems re-

search on support for mobile networking in fact addresses only nomadic usage cases, with

adverse consequences for the user experience.

Nomadic computing refers to using a device primarily while stationary at one location,

but subsequently deactivating the device, moving to a new location, and resuming work.

Mobile computing refers to continual use of a device while its user moves around their

daily environment. For example, laptop computers are primarily used nomadically, while

PDAs and mobile phones are also suited for mobile usage.

Nomadic devices and mobile devices do share common problems. The bandwidth and

latency provided by wireless connections is often far inferior to that of a wired connec-

tion. Such connectivity is sporadically available, depending on the link technology (e.g.

WiFi, GPRS), the geographic layout of access points, and the quality of APs’ back-end

connections. Also, there are often multiple access points to choose from at a location.

1

2

Improving network access for nomadic devices, however, is essentially just a series of

optimizations for local conditions. Consider a typical laptop computer user. During the

course of his day, he may use his laptop at home, at work, at a coffee shop after work, and

again at home in the evening. But whenever he is traveling between locations, his laptop

remains in his backpack, deactivated. Only when he is stationary at a location does he open

the lid, at which point the operating system attempts to connect to a wireless network.

The situation is somewhat more complex for truly mobile devices. Consider a different

user who carries a smartphone with her throughout the day. This device features both a

WiFi and 3G cellular data connection, along with modest flash storage and battery life.

Her phone remains active the entire day, tucked away in her pocket. Even though she

rarely interacts with the screen and keys, whenever she does open the phone she wants

her email inbox and RSS feeds already to be up-to-date. Other network applications also

run in the background, performing their tasks on her behalf whenever sufficient network

bandwidth exists.

The fundamental difference between these two scenarios lies in the stability of the

wireless network connection. The nomadic user’s day is a set of unrelated sessions at a

sequence of fixed locations. Once the best available network at each discrete location has

been discovered, the network endpoint remains stable and static until the user closes his

laptop and leaves. The mobile user’s day, however, is one continuous computing session

with a network connection that is constantly in flux. At times the mobile user finds her-

self within range of several high-quality WiFi APs. At other points, her device relies on

the lower-bandwidth (but more ubiquitious) 3G connection, or finds itself entirely discon-

nected. Mobile devices must therefore acknowledge that fluctuating network connections

are a fact of life, and plan accordingly.

These observations are not entirely new. A great deal of systems research has focused

on solving the problems introduced by device mobility. Despite their varied benefits, none

sufficiently handles the most fundamental issue of mobile computing—the movement of

devices and their users. For example, if a device is currently in an area of low connec-

tivity, but the user is about to turn a corner and encounter plentiful, high-quality WiFi,

the device ideally would delay non-critical traffic briefly. But applications of location

3

prediction to mobile computing have by and large been centralized solutions, intended to

allow pre-provisioning of resources in mobile phone [3, 4, 13, 49, 58, 77] or VoIP [72]

networks. This centralization is problematic, given privacy concerns and the fact that such

information has significant value when out of range of network infrastructure.

Furthermore, although public spaces are increasingly awash in wireless connectivity,

these opportunities are not currently exploited to their fullest potential. Prior work has rec-

ognized that at one physical location more than one usable access point is often present,

and lets devices connect to many networks simultaneously using just one physical radio.

This is a step in the right direction, because devices can now exploit all available connec-

tivity in their vicinity, but data flows must manually be bound to a specific AP, however.

User mobility complicates this task even further, because the connection qualities of avail-

able APs are constantly changing as the device associates with different access points. This

forces every application to experimentally measure important connection qualities such as

bandwidth, latency, or port restrictions, before requesting a flow be bound to a given AP.

This dissertation advances the argument that networking support in current operating

systems fails to handle device mobility sufficiently. Although the issues noted above have

been partially addressed in the literature, a more holistic approach to networking support

in operating systems is still needed. Of primary concern to mobile devices is how the

wireless connectivity available to the device changes, as a result of user mobility and the

uneven deployment of public access points. In other words, we should be concerned with

the derivative of connectivity—how it changes over time.

The remainder of this document presents an architecture for system-wide networking

support that considers both the opportunities and the challenges raised by mobile devices.

4

1.1 Thesis Statement

It is my thesis that:

By considering how network coverage changes over time and exploiting avail-

able connectivity to the fullest, operating systems can greatly improve network

quality and availability for mobile devices without requiring explicit manage-

ment by users or application designers.

1.2 Challenges

Designing this new architecture meant first confronting the following challenges in-

herent to mobile computing:

• Non-uniform physical deployment by unrelated administrators. Apart from cer-

tain exceptions such as campuses and office parks, wireless connectivity available

in public spaces is deployed without concern for overall availability. WiFi access

points are located wherever their owner’s home or office happens to be, not where

they are most needed or in a uniform layout. Even when privately-owned APs are

deliberately made available for use—by commercial providers such as T-Mobile or

WayPort, or as part of grassroots wireless collectives [11, 57, 68]—locating APs

requires human intervention to study deployment maps or databases.

• Non-uniform connection quality. Publicly-available access points offer signifi-

cantly varying qualities of service. Clients accessing remote Internet hosts through

wireless access points see a large variance in the bandwidth and latency of such con-

nections. Different wireless network providers set their own policies with regard to

blocking, redirecting, or allowing transport-layer traffic on a per-port basis. Many

access points do not allow anonymous clients to use their infrastructure at all.

• Multiple, overlapping radio technologies of differing capabilities. Mobile de-

vices increasingly feature multiple wireless radios that support different link-layer

technologies. Each link-layer technology was designed with a certain usage model

5

in mind. For instance, GPRS provides broad coverage over long distances, but the

connections it provides typically have far higher latency and lower bandwidth than

connecting directly to the Internet via a WiFi access point. Point-to-point technolo-

gies like Bluetooth and ZigBee connect pairs of devices in close physical proximity,

rather than devices and wired network infrastructure. WiMax, a long-range version

of WiFi, mixes qualities of WiFi and of GPRS. All of these access technologies have

varying monetary costs as well. Furthermore, in the case of WiFi multiple APs of

differing quality may be present at one location.

• Energy constraints of mobile devices. In contrast with traditional stationary com-

puting, the energy supply of a mobile device must be a first-class concern. Wireless

radios are one of the leading energy consumers on these devices. Judicious use of

wireless interfaces can therefore benefit the overall user experience immensely.

1.3 Overview of the Dissertation

This thesis was validated through the design and implementation of a comprehensive

set of changes to the systems-level software typically found on mobile devices. This

project had several distinct parts.

Chapter 2 examines the problem of selecting the best wireless access point from among

many possible choices. The strategy most prevalent in contemporary operating systems—

selecting the unencrypted AP with the strongest link signal—often fails to select the AP

with the best application-level quality of connection to the Internet. These results motivate

the design of a new AP selection daemon that quickly connects to each available access

point and determines its suitability for use. Evaluation results show a 22–100% increase

in the percentage of scans that successfully found a usable AP, as compared to selecting

based on signal strength alone.

Chapter 3 augments this technique with a user-centric mobility model that tracks not

only user movement but also the quality of APs seen at different locations. Applications

query this service to obtain connectivity forecasts—estimates of the quality of network

connectivity that will be available to the device at a certain point in the future. A prototype

6

implementation was deployed for several weeks of real usage, and the resultant data used

to evaluate the efficacy of these connectivity forecasts to several applications of interest to

mobile device users.

Chapter 4 presents Juggler, a virtual link layer that allows a mobile device to con-

nect simultaneously to many wireless access networks through just one physical WiFi

radio. Because mobile devices often encounter multiple usable WiFi APs at once, choos-

ing only one results in forgoing the full potential for network access that that location.

Given the varied quality of such wireless links, one can ill afford such under-exploitation

if a consistent, high-quality user experience is to be maintained. Using a deployed proto-

type, this chapter shows how Juggler enables nearly instantaneous WiFi handoff, striping

of data flows across multiple low-quality links in parallel, and maintaining simultaneous

foreground Internet connectivity and a low-bandwidth side channel. This side channel

is appropriate for communication to mesh networks, the user’s personal area network, or

other ad-hoc groups.

The dissertation concludes with discussion of related work and a summary of the con-

clusions to be drawn from this work.

CHAPTER 2

DISCOVERING NETWORK CONNECTIVITY

Mobile users have come to expect nearly constant connectivity, provided in part by

the ever-increasing density of wireless access points. 802.11 wireless LAN access points

(APs) are increasingly widespread in urban areas, with users commonly finding multiple

APs on each scan.

Access point selection is still a critical problem, however. Consider the scenario il-

lustrated in Figure 2.1. Customers at a sidewalk cafe encounter four access points—one

from the coffee house, two from residents on the floors above (who may not even allow

strangers to use their access points), and another next door, part of the city’s free WiFi

deployment. Which AP will provide the best quality of service?

Unfortunately, these APs are under decentralized control, and are managed by a varied

set of residents and businesses. Consequently, many APs reject or restrict foreign users

in a variety of ways. Since there is no common administrative control, there is also no

centralized database to guide users’ selection policies in favor of the APs providing the

best service. While many searchable databases of “wardriving” maps exist [39, 74], these

maps become outdated quickly and provide no information about access points apart from

the basic information broadcast in the beacon signal.

Worse, AP selection is driven by the physical layer. The selection policy currently

used by most operating systems for automatically selecting an access point simply scans

for APs and then chooses the unencrypted one with the highest signal strength. However,

this policy, which is known as strongest signal strength, or SSS, ignores other factors that

matter to the end user. For example, the AP with the strongest signal might belong to a

7

8

Users increasingly must choose the “best” access point from many (circled in the illus-
tration).

Figure 2.1: A sea of bandwidth.

pay service, to which the user does not subscribe. APs that appear open may use MAC

address filtering to block traffic from foreign users. The bandwidth and latency of an AP’s

Internet connection depends on the type of ISP to which its owner subscribes—a cable

modem, DSL, or dial-up. The signal strength of the access point is orthogonal to such

considerations.

Currently this problem can be solved by hand-tuning connection preference tables,

to enumerate the APs and networks to which one’s device should connect. This is only

feasible for the most common locations a user visits. At other locations, users might have

to try several available networks before finding a usable connection. This is an onerous

task at best that should be automatic.

Furthermore, users’ computing devices are increasingly always-on, pervasive devices

with wireless radios. Such devices continually need to find the best wireless connection

at new locations without any user input as their owners move through their daily routine.

For this usage paradigm to be possible, one needs to reduce the friction mobile devices

currently encounter when trying to easily find the best available wireless connection.

To determine the scope of the problem, I conducted a small field study, examining the

efficacy of strongest-signal selection. The results showed that the SSS algorithm often

9

chose an unusable AP when a usable AP existed, and in fact performed no better than

choosing an AP at random. Usable in this case means an AP which both grants an IP

address to unknown clients via DHCP, and allows Internet traffic through at least one port.

This suggested that signal strength is an insufficient predictor of AP quality.

Ideally, wireless clients should quickly examine all available connection points, and

automatically select the one appropriate for current needs that provides the best quality

of service. In this chapter, I present Virgil1, an improved access point selection system.

Virgil quickly associates to each new AP found in a scan set and runs a battery of simple

tests designed to probe the AP’s suitability for use. Virgil uses a small set of reference

servers spread throughout the Internet to estimate expected bandwidth and round-trip-time

to remote servers.

Users also want seamless mobility from an application-level perspective, but different

access points may allow or deny traffic on different network ports. Virgil therefore con-

nects to reference servers on a wide range of TCP and UDP ports to check for port traffic

blocked or redirected by each prospective AP. Based on the test results, Virgil chooses the

best access point available, rather than guessing based on metrics like signal strength.

Evaluation results from five neighborhoods in three different cities show Virgil found a

usable access point from 22% to 100% more often than selecting based on signal strength.

I also show that maintaining a database of application-level AP test results, not just the

link layer information one might find in wardriving databases, boosts these success rates

even higher for neighborhoods a user visits often. Finally, analysis reveals that Virgil’s

overhead, while not negligible, is still reasonable enough to be useful to users. Compared

with selecting access points manually, Virgil is faster and fully automatic, removing an

unnecessary burden from users. Furthermore, overheads in revisited neighborhoods are

indistinguishable from that required by strongest-signal-strength policies.

In the course of my field study and subsequent evaluation of the prototype implemen-

tation of Virgil, I encountered and tested nearly 4000 access points. The trace logs and AP

databases are now freely available to the community through the CRAWDAD2 archive.

1In The Divine Comedy, Virgil was Dante’s guide through the underworld.
2http://crawdad.cs.dartmouth.edu/

10

2.1 Contributions

This chapter makes the following contributions:

• First, I show that the AP selection algorithm most frequently in current use (strongest-

signal-strength) often performs no better than selecting access points at random.

• Second, I illustrate the benefit of quickly associating to each available AP and testing

the suitability of each for use.

• Third, I present detailed data on the properties of over 4000 real-world access points,

including not just beacon frame information but also application-level test results.

2.2 Definitions

In the remainder of this chapter, I repeatedly refer to several properties of access points,

and will therefore define them here.

A given TCP port is open via an access point if a client can receive data from a remote

server over a TCP connection on that port number.

A port is closed for a given AP if it is not possible to establish such a TCP connection

on that port number.

A port is redirected for a given AP if it is possible to establish a TCP connection on

that port number to a remote host, but the connection is in fact redirected to a different

end host than expected. This is common for pay access point that require “splash screen”

logins.

An access point is deemed usable if it both grants a DHCP address to anonymous

clients and at least once TCP port is open to the remote reference server. For example, a

public hotspot that blocks all TCP traffic except port 80 (HTTP) would still be considered

usable.

2.3 Legal and Security Issues

Previous “war-driving” studies passively scanned the air for beacon signals that access

points willingly broadcast. What I am proposing—actively connecting to each open ac-

11

cess point and transmitting a small amount of data to estimate that AP’s connectivity to

the Internet—arguably raises the question of whether it is legal to connect to any open (but

possibly private) wireless network. While most jurisdictions worldwide prohibit unautho-

rized access to computer systems, it is not clear how these laws apply to using someone’s

wireless connection [43].

Such concerns are not trivial. However, it is also true that many individuals (and

enterprises) are completely willing to allow strangers to connect to the Internet via their

wireless networks. Many coffee shops offer free wireless connectivity. Most major cities

have one or more “grassroots” wireless collectives, such as the Bay Area Wireless Users

Group [11], Seattle Wireless [68], and NYCWireless [57]. Many local governments are

deploying free APs in public spaces as well. For example, we will see that the field study

often detected APs belonging to the city’s infrastructure and to a grassroots organization in

the same location. In the presence of such truly open networks, I argue that my technique

is still useful. If it were possible to modify the 802.11 broadcast beacons to include an

“open” flag, one could leverage it to restrict the search to only open networks.

A second problem with scanning and using relatively unknown wireless networks is

caused by the rise of “evil twin” or “pharming” attacks on public access points [12]. In

such attacks, a criminal uses his laptop to masquerade as a wireless AP. When other users

connect to his “AP”, he interposes on all their data traffic before forwarding it on to a valid

AP (or simply dropping it altogether). Thus, even if users negotiate encryption keys—by

using HTTPS, for example—the attacker can interfere with key establishment and steal all

subsequent credit card numbers, bank data, or passwords protected by such session keys.

I argue that if users cannot trust their network access points, end-to-end encryption

is the only reliable way to protect sensitive data. My prior work [55, 56] focused on

solving this problem of establishing end-to-end trust when neither party trusts any of the

intervening network hops completely—not even their network access points. This and

other related work [18, 52, 65] are complementary to the main focus of this chapter—

improving the wireless access point discovery process.

12

scan for all available APs
log AP beacon information for all APs
for each unencrypted AP do

try to get IP address by DHCP
if DHCP successful then

(1) estimate round-trip-time to reference server
(2) test open ports
(3) estimate bandwidth to reference server

Figure 2.2: Field study script.

2.4 Field Study

Many popular operating systems (including Windows XP, Mac OS, and Linux) use

essentially the same policy to guide wireless access point selection when more than one AP

is available. If the system finds one of the APs in a list of “preferred networks” explicitly

saved by the user, it chooses that AP. Otherwise, it simply scans for all available APs and

chooses the unencrypted AP with the strongest signal strength. I will call this algorithm

strongest-signal-strength or SSS.

The problem of AP selection first drew my interest because I suspected selecting APs

based on signal strength is often the wrong thing to do. Specifically, I designed a field

study to answer the following questions:

1. Do users commonly see multiple access points each time they scan for a new AP?

2. Does strongest-signal-strength selection often choose an unusable access point when

a different, usable AP was available?

3. Do usable access points vary significantly with regard to the quality of Internet con-

nection they provide?

2.4.1 Methodology

For the field study setting, I chose Chicago, the third-largest city in the United States

(population: 2.8 million [15]). Since all cities have different neighborhoods of varying

density, I studied three representative neighborhoods:

13

(a) All Encountered Access Points

Downtown Residential Suburban
APs found 797 464 256

APs per scan 2.4 2.0 1.8
APs granted IP address 78 (9.8%) 81 (17.5%) 43 (16.8%)
APs using encryption 445 (55.8%) 287 (61.9%) 148 (57.8%)

(b) Open Access Points

Downtown Residential Suburban
APs granted IP address 78 81 43

Usable APs 42 (53.9%) 81 (100%) 42 (97.7%)
APs redirect port 80 38 (48.7%) 1 (1.2%) 1 (2.3%)

APs with open port 80 37 (47.4%) 75 (92.6%) 39 (90.7%)
APs with closed port 80 3 (3.8%) 5 (6.2%) 3 (7.0%)

I walked an approximately 1.3 km2 area in each of three Chicago neighborhoods. Usable
APs were APs that granted an IP address to our handheld device and allowed port traffic
through at least one TCP port.

Table 2.1: Field Study, AP Statistics.

• The Loop (Downtown): Chicago’s central business district. Workday population

density: 235,000/km2 [15].

• Wicker Park (Residential): A middle-class, high-density urban neighborhood. Res-

idential population density: 7400/km2 [15].

• Evanston (Suburban): An upper-middle-class suburb and college town, north of the

city limits. Residential population density: 3700/km2 [15].

In all three neighborhoods, I walked a 1/2 mi2 (1.3 km2) grid of streets with a PDA

containing a WiFi card. I chose to “warwalk” rather than “wardrive” so the script would

have time to associate with APs and run tests, rather than just log 802.11 beacon informa-

tion. The PDA ran Familiar Linux, a distribution targeted for handheld devices [35].

Note that these results are not intended to represent any realistic mobility model. I quite

literally walked up and down streets in these neighborhoods in a grid fashion. The results

in aggregate, however, are useful for drawing conclusions about the quantity, quality and

frequency of wireless connectivity available in the target neighborhoods.

14

Percentage of scans for each neighborhood that found a given number of APs.

Figure 2.3: Field Study, Histogram, APs encountered per scan.

I used a Compaq iPAQ handheld with an 802.11b wireless LAN card to collect data on

the density and properties of different access points in an urban environment. Figure 2.2

summarizes the field study script in pseudocode.

The reference server (RS) was a dedicated machine at the University of Michigan,

directly connected to the Internet. To estimate round-trip-time, the script simply pinged

the RS twice, and used the second result to avoid transient ping timeouts often seen on

the first attempt. The RS also ran a simple daemon which listened on 37 common TCP

ports, including SSH (22), SMTP (25), HTTP (80), Windows DCOM (135) and Samba

(445). To test for open ports, the field study script sent a random integer nonce to the

RS on each TCP port number and the RS returned (nonce + 1). I performed this nonce

exchange rather than simply testing for establishment of TCP connections in order to verify

that the access point was not redirecting traffic on that port to its own server.3 If the

script received anything other than the expected nonce + 1 value, the port was marked

redirected. If the connect to the reference server failed, the port was marked closed. To

estimate bandwidth to the RS, the script connected to a special reserved port on the RS.

The RS then transmitted random data at full speed over the TCP connection. The script

received data for one second and then broke the connection. To avoid the effects of TCP
3Many commercial access points redirect all traffic to a special sign-on page (a splash screen).

15

Downtown Residential Suburban
0%

5%

10%

15%

20%

25%

30%

35%

random

SSS

omniscient

%
 s

ca
ns

 s
uc

ce
ss

fu
lly

 f
ou

nd
 A

P

Random algorithm chooses an unencrypted AP at random. SSS chooses the unencrypted
AP with the strongest signal strength. Omniscient simulates an algorithm which uses the
results of AP probes to choose the AP with the best bandwidth.

Figure 2.4: Field Study, Simulated percentage of scans that found a usable AP.

slow start, I discarded the first 500 ms of data and calculated the bandwidth estimate from

the remainder. Note that an unavoidable consequence of this strategy is that some APs

may be tested when the client is at the very edge of the AP’s usable range, resulting in an

overly pessimistic data point.

2.4.2 Access Point Statistics

I encountered a total of 1517 unique access points in all three neighborhoods. How-

ever, as Table 2.1 shows, few of these granted a DHCP address to the iPAQ handheld. It

is interesting to observe that well over half of all APs had WEP or WPA encryption en-

abled. This suggests that a majority of users were proactive enough about their security to

manually enable a feature that typically defaults to off on most consumer-grade APs.

Figure 2.3 shows the histogram of APs found per scan in each neighborhood. Note that,

for a substantial percentage of scans, multiple APs were available. This is encouraging

since, when foraging for bandwidth, only one access point out of many need be usable at

a given location for a user to be satisfied.

Table 2.1 also gives statistics for the subset of access points that granted a DHCP

address to the client. Around half of the open APs in the central business district block

16

0 50 100 150 200 250 300 350 400 450 500 550 600
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Downtown

Residential

Suburban

Bandwidth estimates (KB/s)

(a) Bandwidth

0 12.5 25 37.5 50 62.5 75 87.5 100 112.5 125 137.5 150
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Downtown

Residential

Suburban

Round-trip-time estimates (ms)

(b) Round-trip-time

Cumulative distribution functions. Note the variance in RTT and bandwidth per AP
within each neighborhood.

Figure 2.5: Field Study, RTT and bandwidth.

all TCP port traffic, and redirect port 80. This corresponds to the expected use of “splash-

screen” logins for commercial hotspots. As I will see, such APs are a major source of

error for the strongest-signal-strength AP selection policy, since what appears to be an

open AP with a strong signal is in fact useless unless the user has an account with the

service provider.

2.4.3 Missed Connectivity Opportunities

For each of the three neighborhoods studied, I took a 60-minute trace segment and

applied a sliding window to generate several 30-minute “walks”. Each walk represents a

sequence of scans with a different set of seen APs.

For each walk, I first simulated a “random” algorithm, which simply chooses a random

unencrypted AP. Next, I simulated the strongest-signal-strength selection algorithm. This

generated a sequence consisting of the strongest signal strength APs from each scan in

the walk. Lastly, I applied an omniscient algorithm, which used the results of the tests to

choose the “best” AP from each scan set. For this experiment, the best AP was the one that

granted a DHCP address and had at least one port open. If more than one AP qualified,

the simulator picked the one that had the best bandwidth estimate to the reference server.

17

For each generated AP sequence, the evaluation metric was the percentage of scans

that would have found a usable AP. The difference between the performance of the om-

niscient algorithm and the SSS algorithm represents the time during which a client using

SSS would have been disconnected even though there was a usable AP within range. I

averaged the results of all the different 30 minute walks for each algorithm (random, SSS

and omniscient), and graphed the results above.

As Figure 2.4 shows, in comparison to SSS, the omniscient algorithm found a usable

AP 56%, 11%, and 16% more often in the downtown, residential and suburban neigh-

borhoods, respectively. This represents significant missed connectivity opportunities for

users. As noted above, this is partly due to hotspots with “splash screen” logins. But

since such hotspots were almost entirely confined to downtown, the connectivity gap in

the residential neighborhoods cannot be accounted for solely by SSS choosing commer-

cial hotspot APs. This suggests SSS is often passing on usable APs because of their signal

strength, when the APs with stronger signals are in fact unusable.

Most strikingly, the simulations show that simply choosing an AP at random outper-

forms SSS for downtown, and is roughly the same in the other two neighborhoods. I

interpreted this result as yet another validation of my belief that an AP’s signal strength is

a poor predictor of its suitability for use.

Furthermore, across all three neighborhoods, only 10.8% of access points were usable,

but 22.6% of scan sets had a usable AP. This further reinforced my belief that choosing

the best access point out of all the ones that can be seen at any given point is critical.

2.4.4 All APs Are Not Created Equal

Lastly, the field study sought to examine how access points vary in the quality of

service they provide. If different APs all provide basically the same quality connection,

then when multiple usable APs were present at one spot an AP selection algorithm might

as well just choose one at random.

However, the results showed access points are heterogeneous. Figure 2.5 shows the

cumulative distribution functions for both the round-trip-time and bandwidth estimates,

for all APs encountered during the field study. None of the CDFs converge rapidly to

18

Downtown Residential Suburban
port # service open redir closed open redir closed open redir closed

135 DCOM 36 8 34 30 1 50 0 3 40
445 SMB 29 8 41 27 1 53 0 4 39
25 SMTP 28 9 41 31 0 18 36 0 7
21 FTP 29 16 33 63 1 17 37 0 6
22 SSH 37 8 33 69 2 10 37 0 6
23 telnet 39 10 29 73 1 7 37 0 6
79 finger 40 9 29 70 2 9 40 0 3
80 HTTP 37 38 3 75 1 5 39 1 3

DCOM (Microsoft’s RPC) and Samba (Windows file sharing) were the most filtered.

Table 2.2: Field Study, Ports of interest.

100%, indicating a large variance in the results. This further bolstered my belief that,

when multiple usable APs are present at one location, an AP selection algorithm should

use the results of tests like those conducted for this field study to guide its choice.

I also found that access points vary widely with regard to what TCP port traffic they

allow, block, or redirect. Table 2.2 illustrates the results of port scans for the eight most-

blocked services. While most APs allowed the majority of port traffic, these were some

notable exceptions. Ports 135 (DCOM) and 445 (Samba) are used by Microsoft Windows

for remote procedure calls and file sharing. These are common points of entry for hackers,

and are often blocked at the ISP for that reason. Port 25 handles the Simple Mail Transfer

Protocol (SMTP). ISPs often block this port to prevent spammers from using the AP as

a broadcast point. Finally, note that in downtown, HTTP traffic is often redirected (for

splash-screen logins), but such hotspots are rarely seen in the residential neighborhoods.

These port results suggest it is useful for AP selection algorithms to know what port

traffic a given AP allows. For example, suppose a user has configured her e-mail program

to send e-mail by connecting to her own ISP’s SMTP server over port 25. When she moves

to a new location and opens her laptop, several usable networks are available. All things

being equal, she would prefer that her computer uses an access point that allows her to

connect directly to her ISP’s SMTP server without blocking or redirecting port 25 traffic.

Otherwise, she must close Thunderbird and switch to a webmail interface which may or

may not be available from her mail server.

19

2.5 Virgil

The results of the field study motivated my belief that selecting access points based on

signal strength results in a significant waste of potential network connectivity. Given that

SSS performed no better than random selection in the field study simulations, I concluded

that signal strength is an insufficient criterion to consistently predict AP usability.

Armed with these lessons, I designed a new AP selection system, named Virgil. Vir-

gil scans for available APs, then quickly and cheaply probes each for suitability of use.

Virgil’s algorithm for selecting a new access point is as follows:

1. Scan for all available APs

2. Test each unencrypted AP in the scan set

• Get AP properties (SSID, MAC address, signal strength, et cetera)

• Try to get DHCP address from AP

• If successful, probe the AP and store test results in a local database

3. Select the “best” AP, based on test results

In addition to open access points, the user may have authorization to use certain non-

public APs. For example, she may encrypt her home wireless AP, and/or buy service from

a hotspot provider. Virgil therefore allows users to manually enumerate “closed” APs (or

SSIDs, for pay services such as T-Mobile) that should be considered for use when seen.

The user must obviously enter either the WEP/WPA encryption key for encrypted access

points, or her username/password credentials for APs with “splash-screen” logins.

Since Virgil stores tests results in a local database, it improves performance by not res-

canning often-seen APs. Our design consists of a user-level AP selection daemon running

with root-level privileges. This process scans for new APs in the background, building

this history database. Virgil chooses a new access point when (1) the device first boots, or

returns from hibernation or suspend, and (2) the current AP is no longer usable. The se-

lection daemon uses a simple heartbeat to a reference server to determine when the current

AP is no longer usable.

20

2.5.1 Probing an AP

The goal of the AP selection daemon is to always choose the “best quality” access point

out of all the APs available at a given physical location. “Quality” is highly subjective, but

Virgil considers the following to be important criteria:

• Bandwidth from the Internet to the client via this AP

• Port traffic that this AP blocks or redirects

• Round-trip-time from the client to remote servers

Since AP selection must be quick to be beneficial to users, Virgil performs all of these

tests in parallel by spawning a thread to handle each port test and the RTT and bandwidth

tests.

To aid in AP testing, Virgil uses a set of reference servers that is diverse in terms

of both geography and network topology. Reference servers simply listen for TCP and

UDP connections on a wide range of port numbers (e.g., 1–65535) and respond to port

and bandwidth probe requests. At the start of each scan set, Virgil randomly chooses a

reference server to use for that round of testing. This mitigates false negatives in the case

where an AP is fine but the Internet route to a certain reference server is broken. Another

option would be to use multiple reference servers simultaneously, and average the results.

I chose not to do this because of the additional network traffic required, in order to be

conservative of the iPAQ’s battery.

As in the field study, Virgil tests the status of a hand-compiled list of 45 common

port numbers. Additionally, however, this base set is augmented at runtime by other TCP

and UDP ports that are currently in use by the client, or have recently been used. For

example, suppose the user is currently connected to her office through a virtual private

network (VPN), on a port number not in the base set. When migrating to a new access

point, she would obviously prefer an AP which permits traffic on that port number, so her

VPN services remain available.

21

For UDP ports, Virgil simply sends the nonce (since there is no concept of “connect”

for UDP). If it receives (nonce+1), the port is “open”. If it receives something different,

the port is “redirected”. If it receives nothing before a timeout expires, the port is “closed”.

Round-trip-time and downstream bandwidth from the reference server were calculated

in the same fashion as for the field study above. Virgil focuses on estimating down-

stream bandwidth rather than upstream bandwidth because applications such as web traf-

fic, streaming media, email, and newsgroup reading are overwhelmingly unidirectional. A

recent study of wireless traffic on a campus WLAN [36], however, showed that upstream

traffic comprised a significant portion of not just peer-to-peer but also web traffic. It is

unclear if such workloads comprise as large a fraction of network traffic for the general

population (as opposed to college students). If so, it would be useful to revise the design

to estimate bandwidth in both directions.

2.5.2 Leveraging History

Each time Virgil scans an AP, it saves the AP’s information in a local database. Each

database record includes the following information for all APs:

• ESSID, MAC address, channel number

• Encryption status

• Signal strength, noise level, transmit power

• DHCP success (did the AP grant an IP configuration?)

• Timestamp of last scan, number of time seen since last scan

For APs that granted an IP configuration via DHCP, some additional information is

recorded:

• Round-trip-time estimate (milliseconds)

• Bandwidth estimate (bytes/second)

• Port status for each scanned port (open, closed, redirected)

22

Virgil keeps this database to improve performance, by not repeatedly rescanning access

points that the user frequently encounters. Therefore, when Virgil examines the APs seen

in a scan set, it only tests APs that do not already have a database record.

Naïvely, this would forever “blacklist” any APs which performed poorly the first time

they were seen. The quality of service provided by an access point can change over time

(as network conditions change, customers switch to different ISPs, or the access point load

fluctuates).

Virgil therefore forces periodic re-scans of access points. Each time Virgil sees an

access point that is already in the database, it doesn’t re-scan it but updates its timestamp

field, and increments the number of times it has been seen since it was last scanned. The

user configures two thresholds—the maximum time that should pass between forced res-

cans, and the maximum number of times seen. Once either threshold has been exceeded,

the next time the AP is seen in a scan set, Virgil forces a rescan and resets the “times seen”

counter to zero.

To ensure freshness, Virgil periodically re-scans the AP currently being used by the

user. Since her device is already associated with that AP, there is no interruption of service

apart from the minimal network load imposed by the AP tests. By default, Virgil freshens

the current AP’s database record every 30 minutes, but this is a configurable value.

2.5.3 Choosing the “best” AP

Once Virgil is finished with a scan set, each AP in the set has a record in the database.

Based on these test results, Virgil chooses an AP, associates with it, and retreats into the

background until needed to choose an AP again.

As the obvious first step, Virgil creates a candidate set consisting of only those APs

which were open. By “open”, I mean that both (1) the AP granted a DHCP address to the

client, and (2) at least one port was found to be open. To this set one adds APs the user

has manually configured, such as pay hotspots to which she subscribes and/or encrypted

APs for which she holds a key. This eliminates other pay hotspots (which block and/or

redirect all traffic until users subscribe) and APs that selectively block traffic based on (for

example) MAC addresses.

23

This may often leave more than one candidate. The user specifies how they would

like such ties to be broken. If the user is primarily browsing the web or transferring large

amounts of data, an obvious choice is to use bandwidth as a tie-breaker. On the other hand,

if the user is dealing with latency-sensitive applications (for example, ssh), he may choose

RTT. Finally, if a certain critical application needs an open port, the user may prefer APs

which allow such traffic. Automatically negotiating the optimal tradeoff between these

considerations is a focus of future work.

2.5.4 User Feedback

Most of the AP selection mechanism described thus far happens automatically without

any intervention or attention from the user. Once Virgil settles on a new AP, it notifies the

user by raising an alert (similar to the alert balloons used by Windows XP) in the corner

of the screen.

Some users may want more information about the ramifications of this choice. Such

users click on the notice, loading a status screen. This status screen summarizes the test

results of the AP that was just chosen. Most importantly, this summary indicates which

applications currently in use may stop working as a result of using this new AP. Recall

the earlier example of a user who uses SMTP mail. If she moved to an access point that

blocks port 25, this summary screen would inform her that her email program will not be

able to send email at this location. Virgil infers that Thunderbird is an email program from

the well-known port number of the connections it has established in the past. The user is

not merely told that port 25 is blocked, since that information is meaningless to the vast

majority of users.

If the user decides that using her mail reader is critically important, she indicates this,

causing Virgil to review the most recent scan set and see if another open AP is available

that doesn’t block the port in question. If so, it associates to this new access point and

informs the user. If no other AP is available, the user is informed so she can decide to

walk to another location, for instance.

24

2.6 Prototype

I implemented a Virgil prototype on Linux, and have cross-compiled it for both x86

laptops and ARM-based handhelds (specifically, the Compaq iPAQ). The prototype imple-

ments all aspects of the design outlined above, with three exceptions. First, Virgil does not

constantly scan for new access points in the background. Ideally, Virgil would leverage a

system such as Juggler (see Chapter 4) to continuously scan for new access points, without

having to disassociate from its current AP, but the results presented below do not reflect

this. Instead, AP scanning happens when the current AP becomes unusable. Second, I

have not implemented the user feedback component described in Section 2.5.4. Third,

rather than using multiple reference servers, Virgil uses the same, single reference server

as for the field study.

When multiple usable APs were available, the prototype used bandwidth to the refer-

ence server as the tiebreaker.

2.6.1 Active Scanning

When scanning for new access points, the primary challenge is the tension between

delay and false negatives. If one cuts off testing too early, Virgil may not find all usable

access points. On the other hand, if the delay Virgil imposes is burdensome to users, they

will abandon the system.

As a result, the prototype has some built-in timeouts. Specifically, DHCP address

acquisition times out and fails after 5 seconds. Similarly, port scans fail and return “closed”

if the TCP connect takes longer than 5 seconds, or if Virgil has not received a response

to the nonce in 5 seconds. I experimentally chose the value of 5 seconds by successively

lowering the timeout value until I started to notice false negatives. That is, DHCP attempts

and port scans were failing simply because there was not enough time for the process to

complete. This also caps the average time to scan an unusable AP at around 5 seconds.

The prototype leverages the Linux wireless extensions toolkit. It uses the output of

iwlist scan to generate a scan set at the start of AP discovery, and uses iwconfig to

record each AP’s MAC address, channel number, et cetera, in the local database.

25

Percentage of scans for each neighborhood that found a given number of APs.

Figure 2.6: Evaluation: Histogram, APs per scan.

All of the tests on a given AP (port probes, RTT, and bandwidth estimates) occur in

parallel for maximum efficiency. Virgil uses pthreads to spawn a thread for each of the

tests, and the main thread performs a pthread_join on each thread to wait until all tests

have finished before proceeding.

2.6.2 Tracking open connections

Our prototype uses the Linux utility netstat to track open TCP and UDP connections.

A thread wakes every 60 seconds, runs netstat, and updates an in-memory database.

Since the report generated by netstat buffers all used ports for the last 60 seconds, this

lets Virgil capture even the briefest port activity.

Each record in this database corresponds to one port number and type (UDP or TCP).

For TCP connections, it notes if the connection was inbound (listening), or outbound.

Finally, a timestamp notes the last time that the port was seen to be in use. By sorting this

database in order by timestamp, Virgil easily determines which ports have been in most

26

Downtown Residential Suburban
Chicago Chicago Chicago Seattle Ann Arbor

APs seen 559 438 273 870 225
Scan sets 91 103 114 142 29

APs per scan set 6.1 4.3 2.4 6.1 7.8
DHCP success 23 (4.1%) 61 (13.9%) 41 (15.0%) 54 (6.2%) 25 (11.1%)
Encrypted APs 292 (52.2%) 261 (59.6%) 128 (46.9%) 475 (54.6%) 151 (67.1)

Percentages in parentheses are percent of total number of APs seen.

Table 2.3: Evaluation: AP statistics.

recent use, and are therefore most important to ensure remain open when migrating to a

new AP.

2.7 Evaluation

In evaluating the prototype implementation, I sought answers to the following ques-

tions:

• Compared to selecting on signal strength, how much more successful is Virgil in

finding a usable network connection?

• How much better are the connections that Virgil finds?

• How beneficial is tracking AP history?

• Is Virgil’s overhead reasonable such that it is useful to users?

I used a similar methodology to that of the earlier field study. Along with the three

neighborhoods in Chicago previously studied, I also tested Virgil in Seattle, Washington

(city population: 573,000, metropolitan area: 3.8 million) and Ann Arbor, Michigan (pop-

ulation: 114,000) [15]. These two cities gave us data points for medium- and small-sized

cities, respectively.

Figure 2.6 charts the histogram of APs encountered per scan, for each of the five neigh-

borhoods. I found more APs per scan on average when evaluating Virgil than during the

field study. This may partly result from the fact that, while I re-walked the same three

Chicago neighborhoods, I did not retrace my steps exactly. I also used different hardware

27

Chicago
Downtown

Chicago
Residential

Chicago
Suburban

Seattle Ann Arbor
0%

10%

20%

30%

40%

50%

60%

random

SSS

Virgil

%
 s

ca
ns

 s
uc

ce
ss

fu
lly

 f
ou

nd
 A

P

(a) Percentage of Scans Successful

Chicago
Downtown

Chicago
Residential

Chicago
Suburban

Seattle Ann Arbor
0

50

100

150

200

250

300

random

SSS

Virgil

A
ve

ra
ge

 b
an

dw
ith

 /
A

P
(K

b/
s)

(b) Average Bandwidth of Open APs (KB/s)

Virgil finds usable APs more frequently than selecting based on signal strength—from
22% to 100% more often. The quality of the APs Virgil finds is also better (based on
bandwidth to the network).

Figure 2.7: Evaluation, Improvement of Virgil over SSS.

(a different iPAQ) for the evaluation runs than for the field study, due to equipment failure.

As Table 2.3 shows, Virgil encountered 2365 different APs. As stated above, the evalu-

ation log data and the logs from the field study are freely available via the CRAWDAD

archive.

2.7.1 Connection Time and Quality

I returned to Chicago with the completed Virgil prototype on the same iPAQ handheld.

In Seattle and Ann Arbor, I walked a similarly-sized portion (∼1.3 km2) of each city’s

downtown area.

As I walked each neighborhood, Virgil ran in the background, handling AP selection

for the Linux operating system on the iPAQ. Virgil was configured to log information on

all APs seen on each scan, the test results of all APs that were probed, and the final choice

of AP for each scan set.

This log data let me reconstruct, after the fact, the sequence of access points that the

strongest-signal-strength algorithm would have chosen. Based on the test results of probed

APs, I calculated two metrics. The first was the percentage of scans which would have

found a usable AP, given the selection algorithm (random, SSS or Virgil). The second was

28

the estimated average bandwidth, in KB/s, of the APs that each algorithm selected. The

results are shown in Figure 2.7.

For all five neighborhoods, Virgil found a usable AP significantly more often than

did SSS or random selection. The improvement over SSS ranged from 22% (in Seattle)

to 100% (in downtown Chicago). While Virgil’s connectivity percentages (ranging from

19.7% to 58.6%) are still insufficient for applications requiring seamless connectivity, it

represents a significant improvement over the current state of the art.

Figure 2.7(b) illustrates the average bandwidth estimates of the open APs chosen by

each algorithm. Virgil still outperforms SSS, but by a much smaller margin than for con-

nectivity. The reason for this is that SSS may only find a handful of APs in a neighbor-

hood, but the ones it finds may happen to have high bandwidth to the reference server. On

the other hand, Virgil finds more APs and therefore must average across a wide range of

bandwidth connections.

2.7.2 History

Next, I sought to quantify the benefit of storing AP test results in the local database.

A rough estimate of the space overhead imposed by this database can be derived from the

test results above. Roughly two hours of constant scanning and walking in each neigh-

borhood generated databases on the order of 20-30 KB in size. These are unoptimized,

text-file databases. Clearly, though, if the results showed storing this history leads to little

performance benefit, then they could be discarded.

I walked a 1.5 km loop from downtown Ann Arbor to campus and back five times,

logging Virgil’s output as before. The walk was meant to simulate the daily mobility of

a hypothetical student who lives downtown, attends class on central campus, and walks

roughly the same route between the two each day.

Figure 2.8 shows the percentage of scans, for each algorithm, that a usable AP was

selected on each “lap” around Ann Arbor. As expected, Virgil outperforms SSS on the

first lap, finding a usable AP twice as often. On the subsequent laps, however, Virgil

maintains its steady success rate while the random and SSS algorithms fluctuate wildly.

This is partly a consequence of unreliable AP scanning algorithms. Running a utility such

29

Lap 1 Lap 2 Lap 3 Lap 4 Lap 5
0%

5%

10%

15%

20%

25%

random

SSS

Virgil

%
 s

ca
ns

 f
ou

nd
 u

sa
bl

e
A

P
Five walks along the same 1.5 km length path from downtown, to campus, and back. The
AP history database helps Virgil consistently find better access points more often.

Figure 2.8: History: Percentage of successful scans.

as Linux’s iwlist scan several times in succession, from the same location, can return

varied sets of access points. This happens because APs broadcast their beacon signals at

unpredictable times, and do not always respond to beacon requests in a timely fashion [63].

On subsequent laps, all three algorithms (Virgil, SSS and random) may find new access

points. In the case of Virgil, if it sees an AP that it happens to “remember” from a previous

lap, Virgil will continue to use it unless the new AP proves to be of even higher quality. On

the other hand, SSS does not have the benefit of such history information and has to make

a spot decision based on instantaneous measurements. Thus, SSS may pick “correctly”

one lap and incorrectly the next, but once Virgil finds a good AP, it will stick with it.

One of the biggest advantages of maintaining history information for Virgil is the abil-

ity to reduce the average time to complete a scan cycle. I measured the difference between

laps in the average time to complete an entire scan cycle. This includes the time to dis-

cover all available access points, test each new, unencrypted AP, and finally acquire an

IP address from the chosen AP. Figure 2.9 shows the average time to complete one scan

cycle, for each lap. Additionally, the rightmost bar shows the mean time to only perform

the scan for new APs. After the first two laps, mean time per scan cycle is nearly indistin-

guishable from the mean time to simply scan for APs. This is due to the effects of history.

Once Virgil has “mapped-out” all the APs on a given path, it need not re-probe them. It

simply scans for all available APs and chooses the best one from the list, based on its past

30

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Lap 1

Lap 2

Lap 3

Lap 4

Lap 5

iwlist scan

se
co

nd
s

Time to scan for available APs, and test all new APs. The rightmost bar (“iwlist scan”)
is the mean time to just scan for available APs.

Figure 2.9: History: Mean time to complete one AP selection cycle.

history. This confirms my belief that history will mitigate the overhead Virgil incurs in the

AP probing process. Users who run Virgil every day will soon map out the routes they

most commonly traverse, and per-scan overhead would be no more than current schemes

such as SSS.

2.7.3 Client Overhead

I collected a diverse set of data on the time overhead inherent to our prototype imple-

mentation.

Across all five neighborhoods, for all 204 APs that granted an IP address, I calculated

the time spent in each phase of the AP probing process. As Figure 2.10 shows, probing an

AP took just over 11 seconds on average. This time was split fairly evenly between first

acquiring an IP address via DHCP, and then running the port, RTT, and bandwidth tests.

Since the timeout was 5 seconds for both of those operations, it is unsurprising that few

AP tests or DHCP attempts exceeded that value.

Virgil sets this timeout to the relatively high value of five seconds, discovering more

APs than it would have with a lower timeout. I argue that this scanning overhead, while

not negligible, is acceptable. Virgil will quickly map the neighborhoods users spend most

of their time in, erasing such overhead for subsequent visits.

31

0

2

4

6

8

10

12

Other

AP tests

DHCP

se
co

nd
s

Note that the time to run AP tests and to associate with the AP are comparable.

Figure 2.10: Overhead, Time to scan one AP, by phase.

Virgil would ideally be integrated with my Juggler virtual link layer, which allows one

device to simultaneously associate with multiple access points (see Chapter 4). This hides

most of this per-AP scan overhead, since Virgil could associate to the first candidate AP it

finds, and keep scanning other APs in the background while the user is connected.

Most importantly, I argue that using Virgil to automatically select an access point, even

with the overhead shown above, is still faster than the current practice of forcing users to

choose manually. To reinforce this point, I measured the time required for a user to select

an AP using Windows XP’s integrated selection tool.

When Windows XP first boots or wakes from hibernation, it scans for all available APs.

If it finds an AP which the user has previously selected as a “preferred” AP, it automatically

associates to it. Otherwise, it raises the alert balloon shown in Figure 2.11(a). The user

must see the alert, move the mouse to the corner of the screen and click on it. This raises

a screen which lists all available APs. The only information users are given is SSID,

encrypted status and signal strength (0-5 bars). Based on this information, the user chooses

an AP from the list. XP then attempts to associate with the AP and receive an IP address

via DHCP.

A user performed this task 10 times, and recorded the time required for three oper-

ations: (1) time between the balloon’s appearance and the user clicking on it, (2) time

between the AP selection window’s appearance and the user clicking “Connect” to choose

32

(a) Windows XP’s manual AP
discovery notice.

Click on Choose DHCP Total
balloon an AP acquire

mean 2.7 3.6 13.4 19.7
median 2.5 3.8 13.1 19.4

σ 1.1 0.8 1.8 1.4

(b) Statistics for manual AP selection in Windows XP.

0

2

4

6

8

10

12

14

16

18

20

Register with
network

Choose a
network

Click on balloon

se
co

nd
s

(c) Breakdown of manual AP selection in
Windows XP.

Many operating systems require users manually intervene to choose an AP.

Figure 2.11: Overhead, Cost of manual AP selection.

an AP, and, (3) time Windows XP required to associate with the AP, acquire an IP address,

update internal state, and update the AP selection window to indicate success.

This is clearly not an exhaustive study of user behavior. However, it does provide us

with some evidence of the time required to associate a Windows laptop with an AP using

existing techniques. Figures 2.11(b) and 2.11(c) show it takes a user roughly 20 seconds

to manually select an AP in Windows XP. I argue this is a hard bottom limit, since the user

knew exactly which SSID he was looking for a priori, and wasted no time deciding on the

selection screen, as a real user would in an unfamiliar environment.

It is curious that the time to associate with the AP dominates, since in the tests the

AP was nearby and signal strength remained excellent throughout. Regardless, the time

spent in active user work is significant. Furthermore, after choosing an AP, the user would

need to try to load a web page, or otherwise check that the connection is usable before

proceeding with her work. All of this incurs significant overhead and is burdensome to

users.

33

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

11

of simultaneous clients

%
 C

P
U

 u
til

iz
ed

Figure 2.12: Reference server load testing results.

2.7.4 Reference Server Overhead

Finally, I sought to quantify the load the suite of AP tests would impose on the refer-

ence servers.

First, a script ran a full set of AP tests (bandwidth, round-trip-time, and 35 TCP port

status tests) against the reference server. This script ran the test set 25 times in a row. This

attempted to simulate a worst-case scenario, where a Virgil client found a large number of

new, open APs at one location, and tested them all in rapid sequence.

Since multiple clients may be connecting to one reference server at the same time, I

ran 20 trials, each time running the script described above on one additional machine.

The reference server was 2.40 GHz Intel CPU with a 512 KB L1 cache and 768 MB of

system RAM. It was connected to a 10-Mbps wired Ethernet LAN. All 20 machines used

to launch test clients have a 3.40 GHz Intel CPU with a 2048 KB L1 cache and 2 GB of

system RAM.

To launch multiple tests as simultaneously as possible, I first pre-positioned the test

script on each. To start k instances of the test script, then, from a separate machine I

forked k copies of a Python script that used ssh to remotely launch the test script on a

given machine.

Because not all copies were in fact started at the same time, I measured the peak CPU

utilization during each run. This is presumably the point at which all k copies of the script

are finally hammering the reference server.

34

Figure 2.12 shows that CPU utilization rises more or less linearly with the number

of clients actively using the reference server. At the maximum load, with 20 different

machines each running the AP test suite 25 times in quick succession, the CPU of the

reference server was only 10.5% utilized. During none of the tests was memory a consid-

eration.

These results suggest that a reference server with modest hardware resources can easily

support dozens of client connections per second. It is unclear how many APs a typical

user would need to test per day. Understanding this demand for reference server resources

is crucial to ongoing work that seeks to determine how many reference servers would be

needed to deploy Virgil on a large scale. Any such deployment would also need to consider

the vulnerability of these servers to denial-of-service attacks, because without them Virgil

clients would be unable to update their AP databases.

2.8 Chapter Summary

802.11 access point density has exploded in urban areas, to the point where users

commonly have multiple APs to choose from on each scan. Since these access points are

managed by a variety of individuals, businesses, and governments, a small percentage are

open and usable. The quality of Internet connection APs provide often varies widely due

to choice of service provider, AP load, and wireless network conditions.

A critical fact is that users’ computing devices are increasingly always-on, pervasive

devices with wireless radios. Such devices continually need to find the best wireless con-

nection at new locations without any user input as their owners move through their daily

routine. I argue that this vision of seamless usage is not possible without reducing the

friction mobile devices currently encounter when trying to easily find the best available

wireless connection.

Current selection algorithms focus on AP signal strength as an important metric. I

conducted an extensive field study of three neighborhoods in Chicago, which showed that

choosing an AP based on signal strength misses significant opportunities for Internet con-

nectivity.

35

Motivated by the results of the field study, I presented the design and implementation

of Virgil, an automatic AP discovery and selection system. Virgil quickly associates to

each AP found during a scan, and runs a battery of tests designed to discover the AP’s

suitability for use by estimating the bandwidth and round-trip-time to a set of reference

servers. Virgil also probes for blocked or redirected ports, to guide selection in favor of

preserving application services currently in use.

I evaluated Virgil in five different neighborhoods across three different cities. The

results show Virgil finds a usable connection from 22% to 100% more often than simply

selecting based on signal strength alone. By caching AP test results, Virgil improves both

performance and accuracy for neighborhoods the user commonly travels. I showed the

overhead to be acceptable and less burdensome than current selection techniques which

require user intervention.

CHAPTER 3

FORECASTING NETWORK CONDITIONS

The previous chapter explored wireless network management in the moment, reactively

choosing connections only when circumstances change. This is a reasonable position to

take if most users are merely nomadic, and the few truly mobile users rely on homogeneous

access points.

Unfortunately, this static and simple world is fast becoming the exception, not the

rule as mobile devices become primary computing platforms. Users demand continuous

functionality while navigating a sea of diverse connection alternatives. In this environment

applications cannot make reliable assumptions about the quality of connectivity. Instead,

it fluctuates based on both the path taken through uncoordinated public deployments and

the varied quality of individual access points.

This setting presents both new challenges as well as opportunities. Reactive manage-

ment performs poorly, because once one has optimized for the current environment, often

the device has moved and the situation has changed. Instead, one must consider the deriva-

tive of connectivity—how it changes over time—to properly support mobile, networked

applications.

This chapter describes BreadCrumbs, a system that lets a mobile device exploit this

derivative of connectivity as its owner moves around the world. BreadCrumbs maintains

a personalized mobility model on the user’s device, and a history of observed networking

conditions. Together, these predict near-term connectivity given a user’s current move-

ment. Because people are creatures of habit, these connectivity forecasts can be accurate

with even minimal training time. Applications, or the operating system itself, can use

36

37

these forecasts to defer less time-sensitive or low-priority work to a time that will improve

performance, or reduce power consumption, or both.

To demonstrate the efficacy of this approach, I used a BreadCrumbs prototype for

several weeks of day-to-day activity. During this time, both the quality and the availability

of publicly-accessible APs were quite uneven. In spite of this, BreadCrumbs was able to

predict the device’s next-step downstream bandwidth from the Internet within 10 KB/s for

over half of the time, and within 50 KB/s for over 80% of the time. These results were

achieved with only one week of training.

I further explored how BreadCrumbs’ connectivity forecasts could aid three example

applications: (1) updating a handheld map application as the user moves, (2) streaming

media content from a remote server, and (3) opportunistic writeback of created media

content. Compared to prediction-ignorant baselines, BreadCrumbs’ forecasts let all three

applications improve the user experience in domain-specific ways.

3.1 Contributions

This chapter makes the following contributions:

• First, I introduce the concept of connectivity forecasts for mobile devices.

• Next, I demonstrate that such forecasts can be accurate over regular, day-to-day use,

without requiring GPS hardware or extensive centralized infrastructure.

• Finally, I illustrate the potential benefits of the system through three example appli-

cations.

3.2 Background

3.2.1 Determining AP Quality

There is little point to developing a complex system for forecasting the quality and

availability of public wireless connections if they are few and far between, or all access

points have equivalent connection quality. I explored the current state of affairs in the pre-

38

vious chapter, which described Virgil—an AP selection tool that considers the application-

visible quality of access points.

Much in the same way, BreadCrumbs uses a reference server to estimate the connec-

tion quality of the access points encountered by mobile devices. In addition to downstream

bandwidth, BreadCrumbs also estimates upstream bandwidth via the AP. Rather than sim-

ply pinging the reference server, BreadCrumbs estimates latency by opening a TCP con-

nection and ping-ponging a integer nonce back and forth. This was an attempt to more

closely mimic how real applications would utilize a network connection. Finally, Bread-

Crumbs omits the port status tests in order to shorten the testing process. In summary,

BreadCrumbs uses the techniques described above to estimate the following three values

for each open access point the mobile device encounters: (1) downstream TCP bandwidth

from an Internet host, (2) upstream TCP bandwidth to the Internet, and, (3) latency from

the device to remote destinations.

If BreadCrumbs were broadly deployed and all users relied on the same reference

server, the system would clearly not scale well. However, different users are free to use

reference servers of their own choosing. BreadCrumbs is not attempting to quantify the

quality of connection to a specific end host but rather to the more fuzzy notion of an

arbitrary Internet destination.

It is true that one reference server cannot possibly represent the myriad network des-

tinations that applications might contact. But note that the first hops—the wireless AP

and its backend connection, e.g. a DSL or cable modem—are constant no matter what the

remote destination of a connection ultimately is. From there, the path through the network

core depends on the peering agreements between the AP’s ISP and that of the destination.

I argue that when choosing between two APs, it is far more likely that the overall quality

of an end-to-end link depends on edge effects rather than core routing issues. This claim

is validated by a recent measurement study [27] that found residential broadband links are

overwhelmingly the bottleneck in end-to-end Internet paths.

39

3.2.2 Estimating Client Location

In order for a device to predict its future mobility, it needs some way to determine its

location. This location could be descriptive (“at the Union”), relative to known locations,

or absolute. In this case, BreadCrumbs uses latitude and longitude coordinates as the basic

building blocks of each device’s mobility model. Typically, this can be provided by GPS.

Even for devices without GPS technology, it is possible to estimate one’s position with

reasonable accuracy, using technologies like Place Lab [47]. This project exploits the fact

that a plethora of fixed-position beacons exist in the everyday environment—namely, WiFi

access points and GSM mobile phone towers. A nice benefit of Place Lab is that it works

well when GPS does not—indoors and in urban canyons.

Place Lab relies on public wardriving databases, which map beacon MAC addresses to

GPS locations. For example, wigle.net currently tracks over 11 million distinct access

points in its database. Place Lab generates a GPS fix by first scanning for all beacons in

the device’s vicinity, then triangulating based on the GPS location of each beacon source.

Their evaluation results (in 2005) found the mean accuracy of Place Lab’s location esti-

mates to be on the order of 20-30 meters from the GPS “ground truth” when only WiFi

beacon sources were utilized. As we shall see, such error is acceptable for the needs of

BreadCrumbs.

3.3 Connectivity Forecasting

By leveraging Virgil and either Place Lab or GPS data, one can determine both the

locations a user has previously visited and the application-level quality of network con-

nectivity at those locations. My goal is to combine these two sets of data to yield what I

will call connectivity forecasts. A connectivity forecast is an estimate of the quality of a

given facet of network connectivity at some future time. An example would be the esti-

mated upstream bandwidth from the client to a remote host 20 seconds in the future. This

is a function both of the user’s mobility—which APs will be in range at that time—and of

the quality of these APs’ network connections.

40

A wide variety of applications can exploit such forecasts. For example, consider a

distributed file system client that needs to re-integrate some data to a remote file server. If

energy consumption is a first-class concern—as it is for handheld devices—the best policy

for the client would be to transmit data to the file server when the mobile device has the

highest-bandwidth network connection that it will enjoy in the near future.

This section first discusses how BreadCrumbs maintains a personalized device mobil-

ity model, based on the past sequence of GPS locations the user visits. Next, I describe

how BreadCrumbs applies the principles of Virgil to estimate the quality of different ac-

cess points, and combines this data with the predictions of the mobility model. The section

concludes with a concrete example of how connectivity forecasts are generated.

3.3.1 Predicting Future Mobility

Mobility prediction is a well-studied area, particularly in the domain of mobile phone

networks. The majority of applications of such techniques focus on allowing a central

authority to track the movement of devices to pre-provision network resources [3, 4, 13,

49, 58, 71, 77]. As did Place Lab, I note that tracking mobility history at a central point is

problematic. When such databases are compromised—either accidentally, maliciously, or

under subpoena—the precise movements of users are disclosed without consent. Further-

more, mobile devices may need this information the most at precisely the times when they

are disconnected from the network and cannot query the centralized server.

Synthetic mobility models [75] or aggregate models derived from the movements of

many users [45, 76] are useful when a network provider needs the big picture of how their

network will be utilized. However, such models have little chance of accurately capturing

the very unique paths one user takes through their environment.

The most compelling reason to maintain the mobility model on the device itself is that,

unlike for a mobile phone network, there exists no one centralized authority who controls

all public WiFi APs that the user encounters. This limits the choice of mobility models

to those that can reasonably be maintained on resource-constrained, handheld devices.

Song et al [72] previously evaluated the accuracy of several common mobility prediction

models, using mobility data collected on the campus of Dartmouth College during the

41

State Last GPS Current GPS
1 — (80.275,-80.747)
2 (80.275,-80.747) (80.276,-80.747)
3 (80.276,-80.747) (80.277,-80.746)
4 (80.277,-80.746) (80.277,-80.746)
5 (80.277,-80.746) (80.277,-80.745)

Each state in the second-order Markov model encodes the current GPS location and the
previous location. GPS fixes are estimated at a set period τ that is the time interval
between state transitions in the model.

Figure 3.1: Generating states from mobility history.

2003-2004 academic year [46]. This dataset tracks the AP association history of over

7000 users to over 550 WiFi access points of known location.

Their evaluation found a second-order Markov model, with fallback to a first-order

model when the second-order model has no prediction, was the most accurate of all tech-

niques examined. Conveniently, Markov models are ideal for use on resource constrained

devices. Their CPU needs are low because model querying and maintenance involves

merely reading and writing individual entries in arrays. Since these arrays are generally

sparse, storage requirements are modest.

I chose geographic longitude and latitude coordinates as the fundamental building

block of the model. Since I have chosen a second-order Markov model, each state consists

of two sets of coordinates: the location where the device was during the last state, and

its current location. Tracking this second-order state is useful for distinguishing between

different mobility paths that share a common point. For example, this can disambiguate

between the user walking eastbound and westbound on the same street.

Model resolution is bounded both by the accuracy of location sensing and the resource

constraints of mobile devices. To avoid a state space explosion, BreadCrumbs rounds

GPS values to three decimal places. While the size of one degree of latitude is constant

everywhere, the distance between two degrees of longitude shrinks as one moves further

away from the equator. In Ann Arbor, a 0.001◦× 0.001◦ grid square is 110 m×80 m.

42

While a higher degree of location precision than 110×80 meters would seem desirable,

this was impractical for two reasons. First, location estimates inherently have some amount

of error from the “ground truth”. As noted above, BreadCrumbs relies on PlaceLab [25]

to estimate GPS location from observed WiFi beacons. The authors of PlaceLab found

an average error of ±20 or 30 meters for their technique, as compared to GPS. Second,

even if a GPS antenna is available on a mobile device, one must be mindful of the state-

space explosion in the Markov model that would occur if a small grid size were chosen.

BreadCrumbs is intended for small devices with limited storage, CPU and battery power.

When choosing a type of mobility model, I was mindful of these constraints. For example,

maintaining a type of model that required a large number of complex, synchronous floating

point operations would result in more CPU activity (and more power consumption) than

the simpler Markov-based solution I chose.

The frequency with which BreadCrumbs estimates the device’s GPS location bounds

the resolution of the mobility model. This model can be thought of as a discrete-time

Markov chain where a state transition fires every τ seconds. Figure 3.1 illustrates how the

model generation process works. The first state is state 1. This is a special state with no

“Last GPS” component, just the initial location. Then, τ seconds later BreadCrumbs fixes

the device’s location at (80.276,−80.747), and creates the new state 2. The remaining

states in the example are generated in a similar fashion.

For each state in the model, BreadCrumbs updates the Markov transition matrix when-

ever the model is in the state and transitions to another. These transitions occur every τ

seconds. Note that if the user remains at one location for long periods, the model will have

a heavy transition probability towards the self-loop (back to the same state) at that location.

This is an easy way for BreadCrumbs to identify what others have termed hubs [32]—

popular, long-term destinations.

3.3.2 Forecasting Future Conditions

Chapter 2 above described prior work on determining the application-visible quality

of WiFi access points. I use similar techniques here to build an AP quality database. The

purpose of maintaining this database is to estimate the “quality” of a connection to the

43

BBW (state x)

best← 0.00
foreach ap ∈ {APs seen at state x}

if ap.bandwidth > best
best← ap.bandwidth

return best

(a) Best bandwidth algorithm

CF (state xi, int steps)

if steps≤ 1
return ∑∀ j{pi j · BBW(x j)}

else
return ∑∀ j{pi j · CF(x j,steps−1)}

(b) Connectivity forecast algorithm

The best bandwidth algorithm has been simplified to assume BreadCrumbs tracks one
type of bandwidth, when in fact it differentiates between upstream and downstream con-
nectivity.

Figure 3.2: Pseudocode: best bandwidth at a state and connectivity forecasts.

Internet, for all the different access points a mobile device encounters. As with Virgil,

when BreadCrumbs first encounters an unencrypted AP, it attempts to associate and obtain

an IP address through DHCP. If successful, BreadCrumbs then estimates downstream and

upstream bandwidth, and latency to remote Internet destinations.

Building an AP quality database from scratch is admittedly taxing on mobile devices,

given their limited battery life. In the previous chapter, I discussed how caching results

in a local database hides this expense after an initial training period. As part of future

work, I hope to deploy BreadCrumbs on the COPSE mobile device testbed1 to investigate

how sharing of these databases among co-located users can reduce this scanning overhead

further.

A subtle point is that one access point may be visible from multiple grid locations,

since the chosen grid size (0.001◦× 0.001◦) is only 110m×80m at Ann Arbor’s latitude.

The quality of an AP may vary at different grid locations, however, because of varying

distances from the AP, physical interference, et cetera. BreadCrumbs therefore tags all

AP test results with the GPS coordinates at which they were taken. Multiple test results

for a single AP co-exist in the quality database if they were probed at different GPS grid

locations.

1http://copse.cs.duke.edu/

44

The test database tracks access points both by ESSID and by MAC address. This is

crucial to differentiate between APs sharing the same ESSID, either intentionally as part

of a coordinated deployment or unintentionally because the default ESSID (e.g. linksys,

netgear) has not been changed.

This test process incurs a reasonable but non-trivial overhead in terms of time and

energy. BreadCrumbs therefore caches test results for performance. When an access point

is detected, BreadCrumbs checks if a test results exists in the database for that AP at the

GPS grid location containing the user’s current position, and does not retest the AP if one

exists. In order to age stale test results out of the database, however, BreadCrumbs retests

such previously-probed APs probabilistically a small fraction of the time.

BreadCrumbs combines the custom user mobility model and the AP quality database

to provide connectivity forecasts. Figure 3.2 describes a simplified version of this algo-

rithm. This example takes two arguments: a state in the mobility model, and an integer

number of steps in the future. In my actual implementation of BreadCrumbs, the algorithm

also considers what network quality is to be forecast (downstream/upstream bandwidth, or

latency). To simplify the pseudocode I assume the algorithm only considers one network

quality metric, bandwidth.

First, consider the limiting case where steps is one. This is a request for the projected

network bandwidth one transition past the specified state. In other words, for the model

transition period τ, one step is τ seconds in the future. BreadCrumbs calculates this fore-

cast as the weighted sum, across all states in the model, of the best bandwidth previously

seen from an AP at that potential next state. This sum is weighted by the transition proba-

bility that model will transition from state xi to a state x j. Thus, the best bandwidth seen at

states which are likely successors of the state contributes more to the connectivity forecast

than transitions which are unlikely. In practice, the number of successor states from any

given state will be small as compared to the whole state space, because states are grounded

in geographic reality.

If steps is greater than one, connectivity forecasts are calculated recursively. At each

step up the recursion tree, results from leaf nodes are weighted-summed in proportion to

the transition probabilities.

45

Figure 3.3: Example Markov model with best-bandwidth results.

3.3.3 Example

Consider the Markov chain in Figure 3.3. The value below each state’s name is the

best downstream bandwidth probed while at that state—for a state xi, this is BBW(xi).

The current state is x0. One wants to know the expected downstream bandwidth at the

next time step. From Figure 3.2(b) above, this yields:

CF(x0,1) = ∑
∀ j

p0 j · BBW(x j) (3.1)

In other words, the expected downstream network bandwidth one step in the future is

the sum (over all states in the Markov chain) of the best bandwidth observed at each state,

weighted by the probability that the Markov chain will transition from the current state x0

to each given state x j. When calculating a connectivity forecast, one need not actually sum

across all the states in the Markov chain, but only across those with a non-zero transition

probability. Returning to the example, one sees from Figure 3.3 that the only possible

transitions out of state x0 are to states x1 and x2, and a self-loop back to x0. Therefore,

Equation 3.1 above is simplified to:

CF(x0,1) = p00 · BBW(x0)+ p01 · BBW(x1)+ p02 · BBW(x2)

= 0.12 ·174.91+0.70 ·45.07+0.18 ·0.00

= 52.54 KB/s

46

For instance, if the time step of the model was ten seconds, then this would be the esti-

mated downstream network bandwidth available to the device ten seconds from the current

time. To calculate connectivity forecasts further into the future, the connectivity forecast

algorithm calls itself recursively as shown in Figure 3.2(b). The downstream bandwidth

20 seconds ahead (two steps) is therefore the following:

CF(x0,2) = ∑
∀ j

p0 j · CF(x j,1)

= p00 · CF(x0,1)+ p01 · CF(x1,1)+ p02 · CF(x2,1)

3.4 Implementation

I have implemented a BreadCrumbs prototype on Linux, as a user-level privileged

process. This process consists of two threads, each of which is described in a subsection

below.

3.4.1 Scanning Thread

One thread periodically scans for access points and fixes the device’s GPS coordinates

by triangulating on the locations of AP beacons in the Place Lab database. This scanning

period is a configurable parameter (τ), set to 10 seconds in the current implementation.

The scanning thread also handles the probing of AP connection quality, as described in

Section 3.2.1, whenever an open AP is encountered that has not been probed at the current

GPS grid location. Test results are then stored in a local database.

After fixing its current GPS location every τ seconds, this thread then updates the

Markov model. This consists of updating the transition probability from the previous state

to the new current state (because of the new location estimate).

The reference server used to estimate AP connection quality was located on the Uni-

versity of Michigan campus, connected directly to the Internet on the wired EECS net-

work with no firewall. Given that the subsequent evaluation took place in the same city,

one might be skeptical that connecting to this server from different wireless access points

in the same city would truly approximate the average latency and bandwidth one would

encounter when connecting to arbitrary remote destinations. Due to peering agreements

47

between the university’s ISP and ISPs providing service elsewhere in town (usually Com-

cast or AT&T), network traffic between the reference server and off-campus endpoints

passes into the network core before returning to Ann Arbor. In fact, for a subset of loca-

tions I performed a traceroute to the reference server, and in all cases the shortest path

from the wireless AP to the departmental network detoured several hundred kilometers

away before returning to Ann Arbor. I am therefore confident that this configuration rea-

sonably approximates the latency and bandwidth one would encounter when contacting

typical Internet destinations that require a trip through the network core.

3.4.2 Application Interface

The other thread handles application requests for connectivity forecasts. Applications

send requests to BreadCrumbs via a named pipe. These requests consist of two values: (1)

the criterion of interest—downstream bandwidth, upstream bandwidth, or latency—and

(2) an integer number of seconds in the future.

BreadCrumbs converts the value in seconds into the number of corresponding state

transitions in the future of the model. This depends both on the scanning period τ and the

number of seconds left until the start of the next scan, because the mobility model is a

discrete time Markov chain where a state transition fires every τ seconds.

First, BreadCrumbs subtracts the time left until the start of the next scan from the

value passed by the application. Then, it performs integer division of the remaining time

by τ. The result is the number of steps in the future of the model at which to generate a

connectivity forecast.

For example, assume that BreadCrumbs scans for APs and updates the mobility model

every 10 seconds (as in the implementation), starting at t = 0. At t = 9, an application

queries for the forecasted downstream bandwidth 25 seconds in the future (at t = 36). This

is b(36− 1)/10c = 3 steps in the future. BreadCrumbs then generates the connectivity

forecast at that point in the future, for the given criterion, and returns the value to the

calling application through the named pipe.

48

Small squares are all GPS grid locations fixes from two weeks of user mobility traces
collected. The black line is the ground truth path through the map taken by the user on
his daily commute between home and work.

Figure 3.4: Visited grid locations and commute ground truth.

3.5 Sample Applications

In evaluating the usefulness of BreadCrumbs, I designed several simple applications

that one might commonly find on mobile devices. I then examined how well BreadCrumbs

can improve the user experience for these applications, as compared the best effort one

could make without any connectivity forecast information.

The error bars in all subsequent figures in this section represent the standard error of

the mean: SE = σ/
√

n.

3.5.1 Methodology

Rather than rely on existing mobility traces or synthetic models, I installed Bread-

Crumbs on an iPAQ h5555 handheld, with an integrated 802.11b WiFi card, running Fa-

miliar Linux (a distribution targeted for handheld devices [35]). I carried the handheld

with me continuously for two weeks during weekday, daytime hours (before seven pm).

Clearly, most users are stationary for large portions of their day (e.g. sitting at a desk).

Predicting connectivity in such situations is trivial. I was more concerned with how well

BreadCrumbs forecasts connectivity when users are in motion. I therefore edited the logs

by hand to remove portions of time when I was stationary for more than five minutes.

49

mean σ max min n
APs per scan 10.23 7.73 32 0 5227

unique APs 1621
open APs 282 (17.40%)

encrypted APs 1339 (82.60%)
grid locations visited 110

locations with usable AP 61 (55.45%)

Locations with usable AP are those grid locations where at least one access point had a
probed downstream bandwidth greater than zero.

Table 3.1: Access point statistics.

BreadCrumbs ran continuously in the background, scanning for new access points

every ten seconds. After each scan, BreadCrumbs estimated the device’s current GPS

coordinates by cross-referencing the MAC addresses of detected APs with the Place Lab

database (as described in Section 3.2.2). The GPS coordinates and MAC addresses were

then logged, along with a timestamp. For each AP in the scan set that had not been

previously probed at those coordinates, BreadCrumbs attempted to associate and probe AP

quality as described in Section 3.2.1. The probe results (upstream bandwidth, downstream

bandwidth, latency) were then appended to a test results database.

Recall from Section 3.3.1 that BreadCrumbs divides the world into grid locations,

where each grid box is 0.001◦ of latitude by 0.001◦ of longitude. At Ann Arbor’s latitude,

this is 110 m×80 m. All GPS fixes that fall within the same box are considered to be the

same position. The small squares in Figure 3.4 are all the unique grid locations visited

during the two weeks of user traces. The solid black line represents the ground truth path

of my daily commute between home and work. This trip is a mix of walking and bus

riding, and is responsible for the vast majority of motion during the two week period. The

spread of visited grid locations is not strictly limited to the commute path, however. This

is a result both of Place Lab GPS error and noise introduced by other, non-commuting

trips. For example, the trace set includes instances of me walking from home to various

downtown destinations, and driving to several different locations.

As noted above, the logs were split into discrete trips by excising any stationary periods

lasting longer than five minutes. This resulted in 26 different trips over the two week

50

mean σ max min n
down BW 68.38 114.41 385.54 0.00 110

down non-zero 123.30 129.74 385.54 0.29 61
up BW 33.98 49.85 241.66 0.00 110

up non-zero 64.44 52.44 241.66 4.10 58

Values in KB/s. According to Place Lab estimates, during the evaluation period the mo-
bile device visited 110 unique grid locations (0.001◦ latitude by 0.001◦ longitude). Non-
zero refers to omitting those locations where no encountered AP had a probed bandwidth
greater than zero.

Table 3.2: Bandwidth at grid locations.

period—the longest lasted 52 minutes and 55 seconds, while the shortest was only three

minutes and 50 seconds. The mean trip duration was 24:49, with a standard deviation of

12:14, indicating a large variance in the length of trips in the traces.

Tables 3.1 and 3.2 summarize the frequency and quality of network connectivity that

BreadCrumbs encountered during the course of the evaluation. BreadCrumbs scanned for

available APs 5553 times during the two weeks of traces. For only 368 of those scans

(6.63%) were no APs detected whatsoever. As Table 3.1 shows, on average BreadCrumbs

detected roughly 10 APs per scan, but this value has a high variance as well. While only

17% of all access points encountered were unencrypted, BreadCrumbs was able to dis-

cover a usable AP at over half of all visited grid locations. I define usable to mean there

existed an AP at that location whose probed downstream bandwidth was greater than zero.

As Table 3.2 shows, I found that the quality of publicly-available access points varies

significantly. For each of the 110 grid locations visited during the two weeks of trace

collection, I calculated the best upstream and downstream bandwidth available. Even

when those locations where no AP had a non-zero bandwidth are omitted, the variance

is quite large. This bolsters my claim that the quality of WiFi connectivity fluctuates

significantly as users move around the world.

3.5.2 Forecast Accuracy

I first wanted to quantify how accurate connectivity forecasts are, given the two weeks

of traces I collected. As a reminder, BreadCrumbs estimates its GPS coordinates at a

fixed frequency. For the evaluation I set this period to ten seconds. Thus, the traces are a

51

 0

 20

 40

 60

 80

 100

k=1 k-2 k=3 k=4 k=5 k=6

%
 s

te
p

s
in

 t
ra

ce

binary connectivity accurate
next state accurate

k indicates the number of steps into the future BreadCrumbs forecasts.

Figure 3.5: Mobility model prediction accuracy.

series of scan sets—listing all AP beacons detected, plus current GPS coordinates and a

timestamp—separated by ten seconds of real time.

I used the first week of traces as the training set that built BreadCrumbs’ mobility

model. The second week of traces was then the evaluation set. For each step (scan set)

in the evaluation set of traces, I compared the grid location where BreadCrumbs predicted

the device would be in the next step with where it actually did move. I then repeated this,

varying the number of steps BreadCrumbs looked ahead (k) from one through six. The

white bars in Figure 3.5 indicate the percentage of steps across all two weeks of traces

where BreadCrumbs’ predicted grid location was correct, for 1 ≤ k ≤ 6. The accuracy is

over 70% for k = 1 but quickly degrades as BreadCrumbs must extrapolate further into

the future. This is intuitive because when predicting many states into the future, if the

mobility model chose incorrectly at any previous junction in the projected walk, then the

odds of ending up at the correct grid location by the kth prediction are quite low. Thus,

errors in prediction compound as BreadCrumbs looks further into the future.

The crucial insight, however, is that BreadCrumbs need not predict the user’s mobil-

ity perfectly. If BreadCrumbs predicts the user will move to one location, and they in

fact move to another, as long as the quality of network connectivity available at the two

locations is comparable this “mistake” is unimportant. The gray bars in Figure 3.5 repre-

52

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300
%

 s
te

p
s

in
 t

ra
ce

bandwidth (KB/s)

k=1
k=2
k=3
k=4
k=5
k=6

k indicates the number of steps into the future BreadCrumbs forecasts.

Figure 3.6: CDF, bandwidth prediction error.

sent the percentage of steps where BreadCrumbs’ prediction and the actual next location

matched with regard to binary connectivity. A given location is considered connected if at

least one AP seen at that location had a probed downstream bandwidth greater than zero.

BreadCrumbs was over 90% accurate in predicting binary connectivity one step ahead.

This accuracy remained high when looking further into the future—nearly 80% accurate

six steps ahead.

Next, I examined how the bandwidth predicted by connectivity forecasts matched the

bandwidth actually encountered. Figure 3.6 charts the difference between predicted and

actual bandwidth as a cumulative distribution function (CDF). Even six steps in the future,

BreadCrumbs’ bandwidth forecasts were within 10 KB/s of the actual value for over 50%

of the trace period, and within 50 KB/s for over 80%.

It is important to note that these results were achieved with a training set of only

one week duration. As users run BreadCrumbs for increasingly-long periods, the device-

centric mobility model can only benefit from increased exposure to the user’s patterns.

3.5.3 Sample Applications

The goal of BreadCrumbs is to improve application- and user-visible experiences for

mobile devices. To evaluate the system, it was necessary to examine how different mobile

applications could benefit from connectivity forecasts.

53

I evaluated the performance of different applications using the collected traces, rather

than executing the applications “live” on a mobile device. This makes it possible to directly

compare the performance of prediction-unaware algorithms and BreadCrumbs on identical

sequences of user motion and APs seen, to ensure an accurate comparison.

The subsections that follow investigate three such scenarios. Clearly, connectivity

forecasts are most useful for background or opportunistic tasks, where an application has

some flexibility in when a network operation must occur.

As in Section 3.5.2, the first week of traces was the training set that built the mo-

bility model, and the second week the evaluation set. For each scenario I devised three

algorithms that accomplished the same objective—one that was ignorant of any future

predictions, another that utilized BreadCrumbs’ connectivity forecasts, and a third that

used a random walk mobility model. For each trace in the evaluation set, I ran all three

algorithms, recorded the results, and subsequently averaged across all the runs. A “step”

in each trace corresponds to 10 seconds of real time.

At each step in the trace, for all algorithms, the simulation declared the device as-

sociated to the AP with the best downstream bandwidth among all APs present that that

location. This corresponds to the device using the aforementioned Virgil AP selection sys-

tem to choose the current AP, rather than simply selecting based on signal strength. The

No Prediction algorithm therefore represents the best one could do making no predictions

of future connectivity, but using the best AP available a the current location for each step.

Map Viewer

The first sample application is a map viewer, commonly found on mobile devices like

the Nokia N800. This application displays a map of the user’s current location, and is

typically linked to a GPS receiver so as the user moves, the currently-displayed map tile

is updated to reflect this movement. Beyond simple street maps, these map tiles can con-

tain rich contextual information—such as menus and reviews of nearby restaurants—or

detailed geographic information, such as provided by Google Earth.

When the user moves out of one map tile and into another, the tile’s information must

either be fetched synchronously or already be present in a cache. Otherwise the user

54

 0

 1

 2

 3

 4

 5

 6

 7

Current Tile Blank Tiles Fetched

T
ra

ce
 D

u
ra

ti
o

n
 (

n
o

rm
al

iz
ed

 t
o

 O
ra

cl
e)

No Prediction
BreadCrumbs

Random

Current Tile Blank are steps in the trace where the tile corresponding to the current GPS
location is not present in the device’s cache, and insufficient network bandwidth exists to
download it synchronously. Tiles Fetched is the total number of map tiles fetched over the
course of each trace. All values are normalized to those of an Oracle algorithm that uses
perfect knowledge of future mobility to minimize Current Tile Blank. The BreadCrumbs
algorithm avoids unnecessary network traffic by not pre-fetching neighboring tiles when
upcoming network conditions are predicted to be good, while incurring a slightly higher
rate of missing tiles.

Figure 3.7: Evaluation, Map Viewer.

experience degrades as blank tiles appear in the map. A policy of always pre-fetching all

neighboring map tiles provides good coverage, but at the cost of wasted network operations

if those tiles are never visited or displayed.

I investigated if BreadCrumbs’ forecasts could be used to “roll the dice” and avoid

wasteful pre-fetching in cases where BreadCrumbs predicted that the device will have

sufficient network bandwidth available to synchronously fetch a new map tile as soon as

the user moves to that location. I therefore designed four algorithms for comparison.

First, No Prediction ensures that the user’s current map tile, and all eight surrounding

tiles, are in the cache whenever sufficient network bandwidth exists to do so. Second, at

each step in each trace, the BreadCrumbs algorithm generates a connectivity forecast one

step in the future. If the forecast indicates that the device will have enough bandwidth

to synchronously download the new tile, the BreadCrumbs algorithm does not pre-fetch

neighboring blocks. If the predicted next-step bandwidth is low, however, it pre-fetches

neighboring blocks just as No Prediction. Third, the Random algorithm is identical to

BreadCrumbs, but instead of using BreadCrumbs’ connectivity forecasts, this algorithm

55

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Gaps in Playback Radio Active

T
ra

ce
 D

u
ra

ti
o

n
 (

n
o

rm
al

iz
ed

 t
o

 O
ra

cl
e)

No Prediction
BreadCrumbs

Random

Gaps in Playback is the trace duration where the stream was not playing on the device be-
cause the buffer was empty and inadequate network connectivity existed at that location.
Radio Active is the trace duration that the WiFi radio was actively downloading data. All
values are normalized to those of an Oracle algorithm that minimizes Gaps in Playback
by downloading the entire stream as fast as possible with an infinite buffer size. The
BreadCrumbs algorithm avoids pre-filling the buffer if forecasts indicate that upcoming
network bandwidth will be sufficient to service the stream. This conserves energy while
not significantly increasing playback gaps.

Figure 3.8: Evaluation, Streaming Media.

chooses a random successor state to the current state, and takes the best bandwidth ob-

served at that state as the bandwidth the device will have at the next step in the trace.

Finally, the Oracle algorithm uses perfect knowledge of future mobility to achieve the

minimum possible number of blank tiles per trace. Note that minimizing one criterion

(Current Tile Blank) does not necessarily optimize for the other (Tiles Fetched). In fact,

we will see that the BreadCrumbs algorithm fetches fewer tiles than the Oracle because it

risks blank tiles in order to fetch as few tiles as possible from the remote server.

Tiles correspond to the 110×80 meter tiles of the model, and each tile is assumed to

be 100 KB in size. The results in Figure 3.7 are all normalized to those of the Oracle algo-

rithm. One sees that by not pre-fetching neighboring tiles when upcoming connectivity is

predicted to be good, the BreadCrumbs algorithm avoids wasting energy by fetching tiles

that will never be displayed. At the same time, this gamble results in only a three percent

higher rate of missing map tiles than the No Prediction algorithm.

56

Streaming Media

Next, I considered issues raised when streaming media content from a remote server

onto a handheld device while the user is in motion. A media stream has a well-defined

quality-of-service metric—specifically, the encoded bit rate of the stream. When mobile

in public, however, the user’s device moves from connection to connection at different

locations. Some locations may have sufficient bandwidth to service the stream, some may

not, and some locations may be devoid of network connectivity altogether.

One option is to define a buffer size and fetch the stream as fast as possible at every

given moment, up to the point where the buffer is filled. This is the strategy commonly

employed today by streaming media applications, corresponding to the No Prediction al-

gorithm for this application. This algorithm downloads the stream as fast as possible at

each step in the trace, given the available network connectivity, up until the point that a

two-minute buffer has been filled.

Second, at each step the BreadCrumbs algorithm generates connectivity forecasts for

each of the next six steps—up to one minute in the future. If the future connectivity is

predicted to be sufficient to service the media stream, the algorithm does not pre-fetch

data into the buffer. In other words, this algorithm risks incurring the (hopefully) rare con-

sequence of guessing incorrectly—an interrupted media stream—in order to aggresively

reduce the amount of network traffic it generates. The Random algorithm is identical, ex-

cept that instead of using connectivity forecasts to predict future network conditions, it

generates a random walk from the current location into the future.

Finally, the Oracle algorithm downloads the entire stream as fast as possible, without

a buffer size cap. This is less of an “oracle” than a bound on how quickly any algorithm

could fetch the data comprising the stream for the trace duration. Note that while this

minimizes Gaps in Playback it results in the radio being active for longer than any of the

other algorithms.

For this evaluation, I simulated a 64 KB/s video stream, of over two hours in length—

comparable to that of a feature film. Note that, as described above, I broke the traces

up into segments demarcated by idle periods of five minutes or more. None of the trace

57

 0

 5

 10

 15

 20

 25

 30

Writeback Completed Radio Active

T
ra

ce
 d

u
ra

ti
o

n
 (

p
er

ce
n

t)

No Prediction
BreadCrumbs

Random

Writeback Completed is the total elapsed trace time until all data was safe on the remote
server. Radio Active is the total trace time that the WiFi radio was actively transmit-
ting data. All values are percentages of total trace duration. By utilizing BreadCrumbs’
connectivity forecasts, the prediction-aware algorithm delays data writeback briefly to
selectively use high-bandwidth access points. As a result, the total time until data is safe
on the remote server is comparable, but BreadCrumbs activates the WiFi radio 30% less
often than with no prediction, translating into significant energy savings.

Figure 3.9: Evaluation, Opportunistic writeback.

segments were longer than the length of the stream. Figure 3.8 shows that all three algo-

rithms (No Prediction, BreadCrumbs, and Random) result in comparable gaps in playback.

The BreadCrumbs algorithm, however, activates the WiFi radio 30% less often than the

prediction-unaware algorithm. By employing BreadCrumbs’ connectivity forecasts, that

algorithm is able to provide the same playback experience to the user while using signifi-

cantly less of the mobile device’s battery as compared to a prediction-ignorant algorithm.

Opportunistic Writeback

The final scenario considers a user who has generated some content on his handheld

device while away from home. These files are digital photos taken by the camera on his

smartphone. The user previously configured a distributed file system client to ensure all

content he generates will be safely reintegrated to his remote file server. This file server

could be a dedicated machine at his home or work, or a web service such as Flickr. I

assume the only network connectivity available to the smartphone is whatever open WiFi

is available.

58

For evaluation purposes, I set the number of photos that our hypothetical user took at

eight, each with a filesize randomly uniform between 1 MB and 5 MB. The filesizes were

generated once and then the same set used across the entire evaluation for consistency.

The No Prediction algorithm simply tried to transmit the eight image files as quickly

as possible, at each step using the AP with the best upstream bandwidth available at that

location. The algorithm that utilized BreadCrumbs sought to reduce the amount of time

the WiFi radio was active, while not delaying data writeback unreasonably. The simple

prediction-aware algorithm worked as follows. At each step of trace playback:

1. Determine which AP has the best upstream bandwidth at the current location.

2. Query BreadCrumbs for its connectivity forecast of upstream bandwidth 10, 20, and

30 seconds in the future. If any of those three future points are predicted to have

better upstream bandwidth, do nothing at this time. Else, transmit data to the remote

server as fast as possible during this step.

This algorithm is admittedly somewhat naïve. This was intentional as I sought to

evaluate how useful BreadCrumbs’ connectivity forecasts could be for applications that

have made very minimal modifications. A third algorithm, Random, operated the same as

the BreadCrumbs algorithm but instead of using connectivity forecasts to predict future

network conditions, Random simply generated a random walk through the geographic

neighbors of a given state in order to “predict” future mobility and connectivity.

I ran all three algorithms once for each of the traces in the evaluation set. The evalua-

tion metrics were (1) total elapsed time until the all data was safely on the remote server,

and (2) total time the WiFi radio was actively transmitting. Figure 3.9 illustrates the re-

sults. On average, the BreadCrumbs algorithm completes writeback only slightly slower

than the aggressive, prediction-ignorant algorithm. In fact the difference is nearly within

the error bounds of the mean for both algorithms.

On the other hand, utilizing BreadCrumbs’ connectivity forecasts lets the prediction-

aware algorithm activate the WiFi radio 30% less often. By attempting to only transmit

data at high-bandwidth locations, the prediction-aware algorithm makes more efficient use

of the wireless radio. While small for desktops or even laptops, this is significant for

59

states in model 652
model size 27984 bytes (42.92 B/state)

test results 1335
test DB size 92132 bytes (69.01 B/entry)

The test database is currently stored in unoptimized, ASCII format.

Table 3.3: Overhead, space requirements.

mobile devices where wireless NIC usage is a large fraction of total energy expenditure.

For example, Anand et al [7] found that, for an iPAQ handheld, the power required to

actively transmit data over the WiFi interface (even in power-save mode) was nearly equal

to the measured quiescent power consumption of the entire device when the radio was

inactive.

3.5.4 Overhead

Table 3.3 shows the storage required on the iPAQ to store the mobility model and test

database generated in the course of the evaluation. With 652 different states in the model,

the total model size is approximately 27.3 KB, or 43 bytes per state on average. Recall

that, because this is a second-order Markov model, each state represents the current GPS

grid location of the user and their previous location. As Table 3.1 shows, BreadCrumbs

visited 110 different grid locations during the evaluation period. If every combination of

current location and previous location were generated as a state, the model would have

110×110 = 12100 states. Even a model of such complexity would only require 508 KB

of space on the mobile device. Given the sparseness of these models in practice, a model

of that size would be most likely be sufficient to cover an entire metropolitan area.

Likewise, the overhead imposed to store the test database is reasonable—69 bytes per

test entry on average. For convenience, the database was implemented as an ASCII flat

file, unoptimized. Even so, the records for the 1335 test results generated by the evaluation

require 90 KB of storage space, but only 7.04 KB when in compressed form.

Figure 3.10 examines the CPU overhead imposed when generating connectivity fore-

casts. The parameter k is the number of steps in the future of the model, given a current

state, that an application requested a connectivity forecast of downstream bandwidth from

60

 0

 20

 40

 60

 80

 100

ti
m

e
(m

s)

 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

Results on a Compaq iPAQ handheld (400 MHz CPU), 128 MB RAM.

Figure 3.10: Connectivity forecast overhead.

BreadCrumbs. This graph represents only the instrumented CPU time required for the

calculation, not any communications overhead between BreadCrumbs and the application

requesting the forecast. All results were measured on a Compaq iPAQ h5555, with a 400

MHz ARM processor and 128 MB of system RAM.

An application requested a connectivity forecast for each of the 652 states in the model

the evaluation generated, varying the size of k from 1 to 10. Because this is a recursive

algorithm (see Figure 3.2) one would expect the overhead to grow exponentially. Up to six

steps ahead, the overhead is less than 2.5 ms. Even the mean overhead of 75 ms at k = 9

is not prohibitive for applications that perform such intensive operations rarely. Note that

I did not implement caching of calculated forecasts or other possible optimizations in the

implementation.

3.6 Chapter Summary

Operating systems currently focus on immediate conditions when managing wireless

networking. But today, users are highly mobile, utilizing a patchwork of public access

points of varying capabilities and uneven distribution. Applications would like to oppor-

tunistically perform background or low-priority work, but cannot make reliable assump-

tions about connection quality at any given moment in the future.

61

I argue that the increased mobility of users demands a focus on how connectivity

changes over time—its derivative. This chapter described BreadCrumbs, my system that

let a mobile device track this trend of connectivity quality as its owner moves around the

world. BreadCrumbs maintains a personalized mobility history on the device, and tracks

the APs encountered at different locations. BreadCrumbs also probes the application-level

quality—bandwidth and latency to the Internet—of the open connections the device en-

counters.

Together, the predictions of the mobility model and the AP quality database yield con-

nectivity forecasts. These forecasts let applications take domain-specific action in response

to upcoming network conditions. I evaluated the efficacy of these forecasts with several

weeks of real-world usage. BreadCrumbs was able to predict downstream bandwidth at

the next step of the model within 10 KB/s for over 50% of the evaluation period, and

within 50 KB/s for over 80% of the time, with only one week of training data to build

the model and AP quality database. I also evaluated how three example applications, with

minimal modification, can utilize connectivity forecasts. The results showed that with as

little as one week training time, BreadCrumbs can provide improved performance while

reducing power consumption, a critical concern for resource-constrained mobile devices.

CHAPTER 4

EXPLOITING AMBIENT CONNECTIVITY

Up to this point, this dissertation has focused first on discovering wireless network

connectivity, and subsequently on predicting future connectivity based on device mobility

patterns and the discovered AP deployment in the user’s environment. The underlying

assumption throughout was that devices connect to only one access network (e.g. WiFi

access point) at a time. The log data from the Virgil and BreadCrumbs field evaluation,

however, show that devices are often within range of more than one usable AP. Restrict-

ing devices to just one results in underutilization of the potential wireless connectivity

available.

I showed in previous chapters that the quality of wireless data connections can vary

widely. This is a result of many causes, including distance from the access point, inter-

ference from buildings, collisions from other clients transmiting on the same frequency,

and poor quality of the AP’s backhaul link to the Internet. No matter what the cause, how-

ever, given the unreliable quality of such connections one cannot afford to ignore potential

bandwidth opportunities.

There is increasing recognition that, in this situation, wireless clients can often ben-

efit from additional radio interfaces. For example, multiple interfaces can increase ef-

fective bandwidth through provider diversity [60], alleviate spot losses with spectrum di-

versity [53], and improve mobility management through fast handoff [8]. Despite such

compelling advantages, however, software developers cannot assume all target devices

will feature multiple radios.

62

63

VirtualWiFi seeks to provide these benefits with one radio [21]. It virtualizes a single

wireless interface, multiplexing it across a number of different end points. While promis-

ing, this work remains incomplete. Switching times, even with chipsets supporting soft-

ware MAC layers, are at least 25 ms. This may still be too high for many potential multi-

interface applications. Furthermore, VirtualWiFi’s API can be cumbersome, exposing the

multiplexed interfaces at the application layer. This forces the application to explicitly

manage networks that come and go, complicating applications whether they can benefit

from this functionality or not. Finally, VirtualWiFi has primarily been applied to point-to-

point, ad hoc communication [1, 9, 23]. The benefit of such techniques when clients are

communicating with Internet destinations over infrastructure APs is still unclear.

FatVAP [41] somewhat hides the complexity of multiple virtual networks from users,

unlike VirtualWifi. This system connects simultaneously to many Wifi access points, and

bundles the bandwidth provided into one logical connection. Applications simply send and

receive packets as normal, and the operating system handles the details of multiplexing

connections across different links. As we will see in this chapter, however, data striping is

not the only useful application enabled by the capability to connect to many networks at

once.

This chapter presents Juggler, a refinement of VirtualWiFi’s virtual network scheme.

It provides switching times of approximately 3 ms, and less than 400 µs when switch-

ing between endpoints on the same channel. Juggler provides a single network interface

to applications that desire such simplicity, but provides a mechanism for applications to

manage connectivity explicitly if they can benefit from doing so.

I present the design and implementation of Juggler, with a prototype built in the Linux

2.6 kernel. Juggler is able to multiplex across infrastructure base stations, ad hoc peers or

mesh networks, and a passive beacon-listening mode with minimal delay. Juggler is im-

plemented as a stand-alone kernel module, together with a user-level daemon, jugglerd.

The latter manages the configuration of multiple endpoints and the transmission schedule

across them, making experimentation easy.

The bulk of this chapter evaluates this prototype across a variety of benchmarks, ex-

ploring the benefits and drawbacks of virtual interfaces in wireless networks for three

64

different scenarios. The first, AP handoff, demonstrates that by devoting only 10% of the

wireless duty cycle to AP scanning, a client can switch APs within tens of milliseconds

of detecting lost connectivity. Importantly, this 10% duty cycle loss reduces foreground

transfer throughput by only a few percent.

The second scenario explores the degree to which various applications can exploit data

striping and bandwidth aggregation. I evaluate three applications—a multi-threaded file

transfer, a streaming video application, and a peer-to-peer file sharing client. Typically,

these applications benefit most when the bandwidth on the wireless side of the AP is

significantly higher than the back-end, wired side. For example, the file sharing client

obtains benefit through data striping up to back-end bandwidths of 2.4 Mbps—a typical

rate for private broadband access.

The final scenario demonstrates Juggler’s ability to support a small side channel for ad

hoc connections to nearby peers without interrupting primary flows to the infrastructure

APs. The TCP throughput offered by this scheme is relatively low, due primarily to time-

outs induced by the short ad hoc duty cycle. Nevertheless, the achieved rate of 320 Kbps

for a 10% share of a 4 Mbps connection is reasonable for many opportunistic applications.

4.1 Contributions

This chapter makes the following contributions:

• First, I show how Juggler significantly improves on the switching overhead of Vir-

tualWiFi by tightly integrating with the lowest layers of the OS software stack.

• Second, I introduce Juggler’s novel interface to the upper layers of the software

stack. Unlike other extant virtual link layers, Juggler hides the complexity of mul-

tiple wireless networks by presenting an unchanging, static network interface to the

network layer and up. This removes the burden of dealing with this complexity from

users and application designers.

• Third, I present evaluation results of the Juggler prototype implementation in use in

three application scenarios of importance and interest to mobile devices.

65

4.2 Background

Juggler’s design is based on VirtualWiFi [21]. This system maintains a set of virtual

networks that are each active on the WiFi radio in turn. When a virtual network is not ac-

tive, any outbound packets are buffered for delivery the next time the network is activated.

Switching from one AP or ad hoc network to the next involves updating such wireless pa-

rameters as the SSID, BSSID (station MAC address), and radio frequency on the wireless

card.

Most current WiFi cards perform the IEEE 802.11 protocol in firmware rather than a

software device driver. The problem is that hardware designers and firmware authors did

not envision a scenario where it would be advantageous to change the radio frequency or

SSID every 100 ms. The firmware of such legacy cards often performs a card reset when

changing certain wireless parameters.

VirtualWiFi reduced switching time from three or four seconds to 170 ms by sup-

pressing the media connect/disconnect messages that wireless cards generate when these

parameters are changed. Otherwise, these notifications cause upper layers of the network-

ing stack to believe that the network interface is briefly disabled, and no data can flow for

several seconds.

They further reduced switching time to 25 or 30 ms when Native WiFi cards were

used. These are cards that perform the MAC layer in software, not on the card itself. The

software device driver can therefore be modified to perform only those operations that are

necessary, and omit any wasteful firmware resets. The Native WiFi cards used in the eval-

uation of VirtualWiFi still performed the 802.11 association procedure automatically—in

firmware—whenever the network was rotated.

Juggler uses wireless cards that implement the MAC layer entirely in the device driver.

This lets it suppress the association process to further reduce switching time. When Juggler

first communicates with an AP, it must perform the slow 802.11 association sequence in

order to make itself known to the AP. Subsequently, Juggler only associates to an AP again

if it receives an explicit 802.11 deauthentication message. This may occur if Juggler fails

to respond to too many ACKs because it was tuned to a different radio frequency.

66

Another problem when connecting to multiple networks simultaneously is that packets

destined for the device may arrive at an AP while the WiFi radio is communicating with a

different AP or ad hoc peer. Because the first AP does not know this, it will transmit data

but the client’s radio will not detect the packets because it is tuned to a different channel.

VirtualWiFi uses the 802.11 power saving mode (PSM) to coerce APs into buffering

downstream packets intended for the client while the client is communicating with another

AP or peer. In standard PSM operation, a client is connected to one base station but

periodically deactivates its WiFi interface to conserve power. Before turning off the WiFi

radio, the client sends a null IEEE 802.11 frame to the base station, with a PSM mode

bit set. At a fixed frequency, the client reactivates its radio and listens passively for the

AP’s beacon frame. One field of the beacon—a Traffic Indicator Map (TIM)—indicates

which of the many clients connected to the AP have buffered packets waiting for them.

Clients are uniquely identified by an association ID (AID) previously received as part of

the 802.11 association process.

If the client finds it has no buffered packets waiting, it deactivates its radio until the

next timeout. But if data is pending, the client transmits a special PSPOLL frame to the

access point. The AP then transmits the first buffered packet to the client. Each packet

received by the client has a bit in the 802.11 header indicating if there are yet more packets

buffered on the AP. The client continues to transmit PSPOLL packets until all buffered data

has been retrieved.

Downstream packet buffering was described in the original VirtualWiFi paper, and

subsequently implemented in follow-up work [1]. I also have implemented this technique

in the Juggler prototype.

4.3 Juggler

Figure 4.1 illustrates a standard network stack, modified to include Juggler. Rather than

force all applications to explicitly bind their data flows to specific access points [21, 78],

Juggler presents a single, unchanging network interface to upper layers of the stack. This

pseudo-device impersonates a wired Ethernet interface with a static, private IP address.

All data flows are bound to this network interface and IP address.

67

One unchanging network interface is visible to upper layers of the network stack and to
applications. Juggler maintains connection parameters (SSID, frequency, DHCP config-
uration) for each virtual network with which it is associated, assigns sockets to virtual
networks, buffers packets destined for inactive networks, and performs network address
translation (NAT) between internal and external IP addresses.

Figure 4.1: Juggler network stack

The system consists of two main parts. The first is an in-kernel component that sits

between the network and link layers of the OS networking stack. The second is an

application-level, privileged process that handles access point discovery and configura-

tion.

Juggler can connect to 802.11 ad hoc or mesh networks as well as infrastructure access

points. I use the general term virtual network in the remainder of this paper to refer the

configuration for either an infrastructure AP or an ad hoc group. For every configured

virtual network, Juggler tracks the following state:

• Network type (infrastructure or ad hoc)

• SSID

• MAC address (BSSID)

• Frequency (channel number)

• IP address, default gateway, netmask, DNS server(s)

• An outbound packet queue

68

• An ARP cache

• Radio duty cycle fraction that the network is active

Data flows are distributed among virtual networks at the granularity of the socket ab-

straction. A process can therefore “stripe” data across many virtual networks by creating

multiple sockets with appropriate options, but all packets belonging to a given socket are

always transmitted over the same AP. I made this design decision to preserve the semantic

definition of a socket endpoint as an (IP address, port) pair. This preserves communication

with unmodified end hosts that need not even be aware that a client is using Juggler.

4.3.1 Assigning Flows to Networks

Juggler was designed with flexibility and ease of use as primary concerns. Applica-

tions need not specify which virtual network should handle a given data flow, but they are

provided with a simple interface to do so if desired. After creating a socket, applications

may set a new socket option with the MAC address of a preferred network. This is anal-

ogous to using the SO_BINDTODEVICE socket option to bind a socket to an interface when

multiple NICs are available.

When Juggler receives data for a previously unseen socket from the network layer,

it assigns the socket to a virtual network. If a preferred network’s MAC address was

previously set via the new socket option, the socket is assigned to that virtual network.

Otherwise, Juggler simply assigns it to whichever network is currently active on the WiFi

radio.

Thus, a data flow created without specifying an AP preference is pseudo-randomly

assigned to one of the active virtual networks. My ongoing work examines how Juggler

can handle this matchmaking in a more intuitive fashion. I intend to add a socket option

so applications can specify the general properties of a data flow (e.g. background bulk

transfer, interactive session). Juggler will then match these needs with the connection

quality of different virtual networks, probed in a fashion similar as my Virgil AP selection

daemon 2.

69

4.3.2 Sending and Receiving Packets

As illustrated in Figure 4.1, upper layers of the network stack see only one network

device. This pseudo-device emulates a wired Ethernet interface, with an IP address in the

private address range. All sockets are bound to this interface and IP address when they are

created.

It is critical that Juggler maintain a unique ARP cache for each virtual network, bypass-

ing the system-wide ARP cache completely. IP address namespaces of different virtual

networks may collide because access points commonly use network address translation

(NAT) to share a wired link and assign IP addresses from private blocks. If Juggler relied

on the system-wide ARP cache instead, this cache would need to be flushed constantly

because, for example, different hosts connected to different APs might be assigned the

address 192.168.1.1 but have different MAC addresses.

This pseudo-device is implemented by the kernel component of Juggler. All outbound

data flows therefore pass through Juggler before reaching the WiFi device driver. Handling

an outbound data packet is a four-stage process:

1) Determine the owning virtual network If this is the first time data has been seen on

this socket, assign the flow to a virtual network.

2) Construct the Ethernet header If the destination IP address falls inside the subnet,

as determined by the virtual network’s assigned IP address and netmask, then get the

destination MAC address from the network’s ARP cache. Otherwise, use the MAC address

of the default gateway.

3) Network address translation Because all sockets are bound to the internal pseudo-

device, packets received from the network layer will have their IP source address set to

the internal IP address. The different virtual networks have different external IP addresses,

however, that were either assigned to them by a DHCP server running on an access point,

or statically configured. Juggler therefore rewrites the IP and transport-layer headers as

needed to reflect the real source IP address.

70

4) Forward for transmission If the virtual network that owns this socket is currently

active on the WiFi radio, Juggler immediately passes the packet to the WiFi device driver

for transmission. This is done through the same interface that the network layer would

use to contact the device driver if Juggler were not installed. The device driver therefore

thinks the packet has arrived from the network layer, and proceeds as expected. If the

virtual network that owns the socket is not active, however, the packet is enqueued in the

virtual network’s outbound packet queue.

When constructing an Ethernet header, Juggler may not find the MAC address it needs

in the virtual network’s ARP cache. In that case, Juggler first enqueues the outbound data

packet in the virtual network’s outbound packet queue. Next, it constructs an ARP request

for that IP address and broadcasts the request when the virtual network is next active on

the WiFi radio. Once the device owning that IP address responds with its MAC address,

Juggler adds the mapping to the virtual network’s ARP cache, and continues with the

outbound transmission of the original data packet.

Receiving data packets is easier than sending. Juggler simply performs NAT to trans-

late the destination IP address in the packet to that of the internal pseudo-device and for-

wards the packet up to the network layer.

4.3.3 Switching Between Virtual Networks

Each active virtual network is allotted an adjustable fraction of the radio’s duty cycle.

Virtual networks are active in a round-robin fashion, each for their configured time. After

activating a given virtual network, Juggler sets a kernel timer to be invoked again once the

new network’s timeslice has expired. Thus, Juggler need not run at a constant frequency

but only when needed to switch to the next virtual network.

Switching the WiFi radio from one AP or ad hoc network to the next is a multi-stage

process. First, Juggler coerces the current access point into buffering packets destined for

the client while the radio is communicating with another virtual network. This is done by

transmitting a null IEEE 802.11 frame with the power-save mode (PSM) bit set, indicating

that the client is entering PSM.

71

Next, Juggler updates the radio’s wireless parameters via the device driver. If the next

virtual network is not on the same channel as the previous one, the radio frequency must

be modified. Juggler updates the SSID and MAC address to that of the new AP or ad hoc

group, and updates the mode (infrastructure or ad hoc) and/or encryption parameters if

these have changed.

If this is the first time the virtual network has been activated—because it was just

added—or if Juggler has recently received a deauthentication message from the access

point, Juggler must force the WiFi device driver to perform the entire association process

in order to obtain an association ID.

Juggler then transmits a power-save poll (PSPOLL) frame to the new AP, indicating

the client returned from its (fake) power-save mode. If the AP has any enqueued packets

destined for the client, it transmits the first one. Juggler sends PSPOLL packets until all

enqueued packets have been received. Finally, Juggler transmits any outbound packets

that were enqueued for this virtual network when it was previously inactive.

In addition to infrastructure APs and ad hoc networks, Juggler recognizes a third, spe-

cial type of network: a scanning slot. When this virtual network comes up in the rotation,

Juggler simply sets the link status of the WiFi card to unlinked (to passively listen for bea-

cons) and changes the frequency of the WiFi radio. Each time the scanning slot is sched-

uled Juggler listens on a different frequency, so that the entire channel space is eventually

searched. In our current implementation, Juggler rotates among the three non-overlapping

channels 1, 6, and 11.

4.3.4 User-level Daemon

A user-level process, jugglerd, is responsible for general configuration of the Juggler

kernel module. The two communicate via the /proc filesystem in Linux. To add a virtual

network to the rotation, jugglerd sends the kernel module the following information:

• Mode (infrastructure, ad hoc, or scanning slot)

• SSID and MAC address of the AP or ad hoc group

• Channel number

72

When the kernel module receives the request, it creates a virtual network structure

(containing the outbound packet queue, ARP queue, et cetera) and adds the new network

to the end of the round-robin rotation. The new network is assigned the default times-

lice duration—100 milliseconds. If the new network is an infrastructure AP, Juggler will

perform the slow 802.11 association the first time the network is activated.

Optionally, jugglerd can include an IP configuration (address, netmask, default gate-

way, and DNS server) all at once with the network add request, or update those values at

a later time. No data flows will be assigned to a virtual network until its network layer

parameters have been configured.

To delete a virtual network, jugglerd simply writes the network’s MAC address to

another /proc file. If the network is currently active, Juggler pre-emptively switches to

the next network before deleting the network’s state.

To adjust the relative timeslices of active virtual networks, jugglerd writes network

MAC addresses, and a relative weight for each, to the kernel. These weights are interpreted

as multiples of the current default switching timeout. For example, consider the case

where two APs are active and the default switching timeout is 100 ms. To give AP1 90%

of the radio duty cycle and AP2 10%, jugglerd would give AP1 a weight of 9 and AP2

a weight of 1. Because the default timeout was 100 ms, AP1 would then be active for

900 ms, followed by 100 ms of AP2, then 900 ms of AP1. The default switching timeout

is also configurable at runtime, allowing jugglerd to assign a radio schedule of desired

granularity.

4.3.5 Implementation Details

The vast majority of the Juggler kernel code is a standalone kernel module. A small

kernel patch was required for two reasons. First, I modified the socket() system call to

automatically bind all sockets to the pseudo-device created by Juggler in order to capture

all outbound flows. Second, network device drivers forward inbound data packets up to

the network layer by calling a well-known function (netif_rx()). To allow Juggler to

perform inbound NAT processing, I added one line to netif_rx() that calls Juggler’s

inbound NAT function before performing network-layer processing.

73

I used WiFi cards with the Realtek 8185 chipset for development and testing. This

chipset performs all MAC-layer functions in software, letting Juggler optimize the re-

peated switching process. I used the open-source rtl-wifi driver1, which leverages the

common Linux ieee80211 software MAC layer.

To encourage future portability, I made as few changes to the rtl-wifi driver and

ieee80211 MAC layer as possible. The ieee80211 layer maintains one large global

structure containing information on the currently-associated AP—channel number, SSID,

association ID, sequence numbers, et cetera. Juggler stores a copy of this global structure

for each active network in a linked list, and each time Juggler switches between networks

it updates ieee80211 to point to the correct version of the structure.

In the rtl-wifi driver, I modified the overly-cautious delay imposed whenever the

device driver writes a value to the card over the PCI bus. For example, changing the

radio frequency requires 6 sequential writes to the card. By default, the driver waits 5 ms

between each write to allow the PCI bus to stabilize. I was able to reduce this delay to 500

µs without problem. Thus, Juggler can switch the radio frequency in 6× 500µs = 3 ms

rather than 30 ms.

4.4 Experimental Setup

Before evaluating Juggler, one must consider what sort of usage environment is in-

tended to be modelled. Previous evaluations of virtual link layers focused primarily on

communicating with peers over ad hoc, point-to-point links [9, 21, 23]. Throughput in

such situations is limited by the 802.11 link speed (e.g. 10 or 54 Mbps) and interference

on the wireless channel.

I am focused on mobile devices that primarily communicate with remote Internet des-

tinations, by means of wireless access points where wireless bandwidth outstrips that of

the AP’s back-end connection. This is certainly the case when the back-haul link is a DSL

line or cable modem, typical for residential settings, coffee houses, and other opportunistic

public connectivity. Note that this assumption may be invalid on corporate or academic

campuses where APs may connect directly to Gigabit Ethernet networks.
1http://rtl-wifi.sourceforge.net/

74

A test laptop running Juggler can connect wirelessly to one of two 802.11g access points,
or to another laptop in ad hoc mode. Two gateway routers use NIST Net to selectively
throttle the bandwidth between each AP and the remote server. This allows simulation
of varied link quality between the test laptop and a remote server across the Internet. In
real usage, network bandwidth is dependent both on wireless link characteristics and the
quality of an AP’s backplane link to the Internet.

Figure 4.2: Laboratory setup

Figure 4.2 illustrates the test setup in the laboratory. The test laptop at left repre-

sents a mobile client with one WiFi network card. I configured two Linksys WRT54G

802.11g access points, on disjoint channels (1 and 11) and different subnets (192.168.0.x

and 192.168.1.x). A second laptop was also present to act as an ad hoc peer for certain

experiments. The remote server at the far right represents an arbitrary Internet end host

with which the mobile client wishes to communicate. This machine was configured with

a static IP address of 192.168.2.5, outside either AP’s subnet.

As illustrated in Figure 4.2, APs and the remote server were connected by gateways.

The gateways used IP forwarding and NAT to forward packets from each access point’s

subnet to the subnet (192.168.2.x) of the remote server. To evaluate the effect of different

back-haul bandwidths from APs to remote Internet hosts, I installed NIST Net [19] on

all gateway machines. NIST Net configures a Linux host to act as a router, delaying or

dropping packets to shape flows to a desired bandwidth or emulate a given loss rate.

4.5 Microbenchmarks

Juggler works by interposing between the network layer of the Linux kernel and the

link layer functionality provided by the WiFi interface’s device driver and the ieee80211

75

mean std. err
switch (different channel) 3.328 ms 0.021 ms

switch (same channel) 0.381 ms 0.011 ms
process ingress packet 284.0 cycles 1.6 cycles
process egress packet 6975.3 cycles 39.2 cycles

Table 4.1: Juggler, CPU overhead benchmarks

software MAC layer. To quantify the overhead this introduces, I instrumented Juggler to

measure the overhead imposed for (1) switching from one virtual network to the next, and

(2) performing network address translation (NAT) on ingress and egress data packets.

The minimum resolution of a standard kernel timer in Linux depends on the frequency

with which the scheduler timer fires. For the Linux 2.6 kernel, this time interval—known

as a jiffy—is 4 ms. This is clearly too coarse-grained when we want to time operations that

occur in microsecond timeframes. Instead, I use an x86 assembly language instruction,

rdtsc, which reads the current value of the processor timestamp counter. This counter

holds the number of processor cycles executed since the processor was last reset. By

wrapping a set of instructions with calls to rdtsc, one can estimate the number of CPU

cycles that elapsed in the interim.

To ensure reliable results, prior to benchmarking I disabled the second processor in

the multi-core CPU of the test laptop, and disabled CPU frequency scaling as to ensure

a constant conversion rate between CPU cycles and time. The test machine contained an

Intel Core 2 Duo CPU, 1.79 GHz per core. The wireless network interface was a CardBus

adapter based on the Realtek 8185 chipset.

I loaded Juggler, connected to two different APs on different channels, and recorded

the time required to switch networks over 10000 times. I next repeated the experiment

while connected to two APs that share the same channel. As Table 4.1 shows, the time to

switch the radio’s frequency clearly dominates switching time.

This switching time of just over 3 ms allows very fine-grained multiplexing of virtual

networks. Even when switching as often as every 100 ms, only 3.3% of each usage pe-

riod would be lost to overhead. VirtualWiFi’s best cited switching time was was 25 ms,

resulting in 25% overhead for the same switching frequency.

76

As discussed above, changing the radio frequency on the Realtek chipset requires six

sequential writes to the interface over the PCI bus. The driver must pause in between each

write to allow the PCI bus to stabilize. I set this timeout as 500 µs, for a total of 3 ms delay

to make six writes. It was not possible to lower this timeout much below 500 µs without

degraded performance and lost data.

I also examined inbound and outbound packet processing overhead. The most heavy-

weight operation is rewriting network-layer headers to perform NAT to and from the in-

ternal IP address of the pseudo network device. The results in Table 4.1 have been left in

units of cycles due to their extremely small size. The overhead required is clearly mini-

mal. Note that this does not account for packet queuing delay when an outbound packet is

destined for a virtual network that is currently inactive. I was interested here in the CPU

overhead imposed by the presence of Juggler in the critical path of the network stack.

4.6 Application Scenarios

The primary contribution of this chapter is the exploration of several realistic usage

scenarios where the ability to multitask one wireless interface is beneficial. In this section,

I apply Juggler to three application domains: (1) soft handoff between WiFi APs, (2) data

striping and bandwidth aggregation, and (3) mesh and ad hoc connectivity.

I use NIST Net as described above to simulate different network conditions on the

link between a wireless AP and the Internet core. During real usage, the bandwidth and

latency a mobile device experiences when communicating with a given remote destination

depends on several factors:

• Properties of the wireless link (interference, link speed)

• Congestion from many clients sharing one AP

• Quality of the AP’s wired back-haul link to its ISP

• Network core congestion

• Edge delays in the destination network

77

Residential broadband providers promise fairly high data rates. In the United States,

for example, SBC advertises DSL links of 384 to 768 Kbps upstream and 768 to 6144

Kbps down, while Comcast claims the same upstream bandwidth and 4096 to 8192 Kbps

downstream over a cable modem. Verizon’s FiOS fiber optic service is even faster—on the

order of 10 or 20 Mbps.

These are theoretical maximum rates, however, from the client to the service provider’s

edge network, not through the network core. As shown in Chapter 2 above, in real public

deployments the bandwidth achievable by an application-level TCP flow is far lower—

typically several hundred Kbps. Independent measurements of broadband connectivity

quality support these results [42].

For all figures in the remainder of this section, error bars represent± the standard error

of the mean (σ/
√

n).

4.6.1 Soft Handoff

Handoff between WiFi APs is far from seamless. The IEEE 802.11 protocol requires

a time-consuming association and authentication process be completed before a client can

communicate with an access point. If a device can only be connected to one AP at a

time, migrating to a new AP requires a significant gap between the time data was last sent

over the previous AP and association to the new AP is complete. This overhead can be

reduced by either requiring two physical radios or modifying AP firmware [22, 63]. Once

associated to a new AP, however, the client must often configure IP-layer settings through

DHCP before any useful data can flow.

Ideally, WiFi handoff would be as seamless as the handoff a mobile phone makes from

one GSM tower to the next. Such fluid transfers would be possible if, before the current

AP becomes unusable, the device (1) knew which AP it will use next, (2) had already

completed association, and, (3) had already received a DHCP configuration (if applicable).

In this section, I use Juggler to do just this. Juggler uses variable timeslicing to assign

90% of the radio’s duty cycle to the current “primary” AP. This is the highest-quality AP at

the device’s current location. The remaining 10% of radio cycles are devoted to scanning

for new APs and maintaining association with one or more secondary APs.

78

 0

 20

 40

 60

 80

 100

25 50 75 100 125 200 300 400 500

N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t
(%

)

AP bandwidth (KB/s)

100%
90%

90% of the radio’s activity period is devoted to a “primary” AP that handles all data flows,
while 10% is used to discover new APs and maintain association with the backup AP(s).
The reduction in primary bandwidth is small despite the loss of 10% of the radio duty
cycle.

Figure 4.3: Soft handoff, throughput of primary AP

While the device is using the primary AP to transfer data, Juggler scans for new APs

in the background, and pre-emptively associates with them and obtains DHCP leases. The

user-level Juggler daemon probes the application-visible quality of newly-discovered APs

using techniques adapted from Virgil. Low-quality APs are dropped, and high-quality ones

are assigned a small portion of the 10% background slice in order to maintain association.

When the primary AP later becomes unusable or its signal fades, Juggler promotes the

best secondary AP to be the new primary.

First, I wanted to ensure that reducing the primary AP’s radio slice from 100% (with-

out Juggler) to 90% would not adversely impact foreground data traffic. I used a simple

TCP client and server to transfer data from the test laptop, through one AP, to a remote

server representing an Internet host. As illustrated in Figure 4.2, the gateway machines be-

tween each AP and the remote server made it possible to simulate a range of bandwidths.

Figure 4.3 plots TCP throughput as a function of AP bandwidth between the client and a

remote Internet server. For each bandwidth value, there are two data series: 100% (entire

radio devoted to one AP) and 90% (radio split between the AP at 90% and background

scanning at 10%). The results show that reserving 10% of the WiFi radio’s duty cycle for

background tasks has a negligible impact on foreground data throughput.

79

mean standard error
Association 1.071 0.167

DHCP 1.817 0.191
Failover time 1.008 0.055

Socket timeout 1 —

Juggler listened for AP beacons for 10% of the duty cycle. Association is the total elapsed
time from when the new AP began broadcasting beacons until Juggler finished associat-
ing with it. DHCP is the total elapsed time to obtain a network configuration via DHCP.
Failover time is the total elapsed time from when the primary link was deactivated to
when the remote server received the next packet in the data flow (over the new AP).
Socket timeout is the minimum time required to detect failure of the primary AP. All
times in seconds, 20 trials.

Table 4.2: Soft handoff, discovery and fail-over

I next quantified how quickly Juggler can discover and configure new access points.

The client connected to a primary AP with 90% duty cycle, and the remaining 10% was

allotted for background scanning. I then activated a new access point on a different channel

from the primary AP, and measured the time between when the new AP began broadcasting

beacons and the client completed the 802.11 association process. Table 4.2 shows that

on average, Juggler discovered and associated with the new AP within one second of its

introduction to the environment. The second row of Table 4.2 is the time required for the

client to obtain a DHCP configuration from the new AP, after the association process is

completed. This takes just under two seconds due to the connectionless nature of DHCP

(atop UDP) and the fact that the background discovery operations are limited to only 10%

of the radio cycles.

Finally, I examined how quickly Juggler could perform soft handoff from one AP

to the next. A simple user-level process transferred data bi-directionally over TCP with

the remote server as fast as possible over the current primary AP at 90% timeslice. The

secondary AP was already configured and associated at a 5% timeslice, with scanning

and discovery allocated the last 5%. I then deactivated the link of the primary AP. The

user-level process detected this failure through the standard TCP socket timeouts (SO_-

SNDTIMEO,SO_RCVTIMEO). I set these timeouts to one second for this evaluation. After

detecting a socket timeout, the user-level process requested that Juggler fail over to the

secondary AP, and then resumed the data transfer.

80

I measured the total time elapsed between when the primary AP deactivated its link

and the remote server received a new TCP connection, signalling the resumption of data

transfer. As Table 4.2 shows, the total time the data transfer lapsed is just slightly longer

than the socket timeout value—on average, 8 ms longer. This is roughly the time required

for one round-trip between the client and server in the laboratory, to establish a new TCP

connection. It is clear that if the link failure of the primary AP could be detected more

quickly then the response would be even faster. There is a tension, however, between

the sensitivity of this detection and the false positive rate. Even this gap of one second is

usable, however, for such real-time applications as Internet telephony and video streaming.

4.6.2 Data Striping and Bandwidth Aggregation

Outside of corporate and campus settings, bandwidth to Internet hosts via a wireless

AP is rarely constrained by the 802.11 link rate. Rather, it depends on the quality of the

AP’s back-end link (e.g. DSL, cable modem), congestion on the AP, or interference. A

wireless radio that transmits at 10 or 54 Mbps can often push bits into the network faster

than the AP can forward them.

Striping is a well-known technique for improving throughput by breaking one logical

flow into multiple chunks, which are then transmitted in parallel over different paths. Prior

work has shown the efficacy of this technique when multiple network interfaces are present

on a device [60, 61, 64]. This section explores how well Juggler lets applications and users

enjoy the benefits of striping while avoiding the costs of multiple network interfaces.

I first quantified how the throughput improvement gained by striping is affected by the

bandwidth available through each access point. Next, I simulated the behavior of a video

streaming client that had been modified to fetch video frames over multiple APs. Finally,

I modified KTorrent, a popular BitTorrent client, to stripe data torrent downloads across

multiple access points.

Throughput Improvement

Recall the laboratory setup shown in Figure 4.2. I used a simple TCP client on the

test laptop to repeatedly download a 10 MB file from the remote server. For the baseline

81

 0

 25

 50

 75

 100

 125

 150

 175

 200

 50 100 150 200 250 300 350 400 450 500

N
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t
(%

)

Bandwidth per AP (KB/s)

baseline: 1 AP
striped: 2 APs

2 cards

For various AP bandwidths, the client downloaded a 10 MB file from a remote server.
The “baseline” case was the device associated with one AP, using one TCP socket for the
download. The “striped” case was Juggler associated with two APs simultaneously, 50%
duty cycle for each AP, and using two TCP sockets to each download 1/2 of the file over
a different AP. “2 cards” used two physical WiFi cards, associated with different APs,
each downloading 1/2 of the file over a TCP socket in parallel.

Figure 4.4: Data striping, throughput improvement

case, the client used one AP exclusively to transfer the entire file over one TCP socket

connection. For the second case, Juggler associated simultaneously with both APs, each

with 50% duty cycle, switching between APs every 100 ms. The client made one request

for each half of the file using two threads, assigning each thread to a different AP by

setting the new Juggler socket option. The multithreaded server then sent each half of the

file in parallel. The third case—two cards—was the same, except that the client used two

physical WiFi cards instead of having Juggler share one radio. Each card was associated

with a different access point, and each of the two sockets bound to a different interface

(using the SO_BINDTODEVICE socket option).

The remote server in the lab configuration represents an arbitrary Internet destina-

tion. By using the gateways lying between each AP and the remote server to throttle

bi-directional bandwidth, I explored a range of application-level bandwidths between the

TCP client and server. I repeated each case for the range of AP bandwidths. The throttled

bandwidths for each AP were always equal and changed together.

Figure 4.4 shows the mean throughput achieved during the download as a function of

available bandwidth on each AP. All values are normalized to those of the one card, single

82

 0

 50

 100

 150

 200

 250

 300

25 50 25 + 25 25 + 50 50 + 50

T
o

ta
l p

la
yb

ac
k

g
ap

 (
s)

Bandwidth per AP (KB/s)

Times in seconds. Video length was 204.8 s (10 MB encoded at 400 Kbps). Series labels
refer to bandwidth available through the AP(s) over which the video was streamed. For
instance, 25 + 50 means the client was connected to two APs at once, one of which had
25 KB/s of bandwidth, the other 50 KB/s.

Figure 4.5: Streaming video, total playback gap per run

AP case. For modest AP bandwidths, striping using Juggler results in the same throughput

as using two physical radios—close to the theoretical speed-up limit. As AP bandwidth

increases, gains from striping decrease more rapidly for Juggler than for the two radio

case. However, striping over Juggler is still beneficial until AP bandwidth reaches approx-

imately 500 KB/s (4 Mbps). This is far higher than upstream data rates for residential

broadband, and roughly equal to the downstream quality over cable or DSL links under

ideal conditions.

Streaming Video

Unlike simple bulk downloading, streaming video is concerned with when specific

parts of the video are downloaded. Blocks toward the beginning of the file will be needed

earlier, because the purpose of the application is to allow the user to watch the beginning

of the video while further content is still being transferred. A simulator modeled a simple

video player that uses an earliest deadline first policy to chose which block to download

next. This experiment assumes all blocks are of uniform size, a condition that may not

hold true for some real-world video encoding schemes. The TCP streaming client creates

one thread per available AP and each thread downloads the earliest unfetched block. For

83

example, if there were two threads downloading at the same rate, downloading the earli-

est unfetched block should have the effect of assigning one thread all the even-numbered

blocks and the other all the odd-numbered blocks. However, if the APs have any asymme-

try in available bandwidth, this scheme may not minimize the finish time of each block. To

compensate for any asymmetry in the available bandwidth at each AP, each thread tracks

which block it previously downloaded and subtracts the next block number to download

from the number of the previously-downloaded block to obtain a “delta”. In the symmetric

case, each delta should be two—the current thread just downloaded one block and in that

time, the other thread downloaded one block. If delta is greater than two, the thread’s AP

must be slower than the other thread’s AP, so we download the block that is delta blocks

after the earliest unfetched block to compensate.

Streaming video clients typically buffer data to compensate for transient fluctuations in

available bandwidth. If the buffer is emptied during playback, clients stop playing video

until the buffer is again filled. However, buffering and displaying video to the user do

not affect the optimal assignment of blocks to APs, so the simulator simply emulated the

network behavior of the client, recorded the finish times of each block, and post facto

calculated the time spent buffering. This calculation derives a deadline for each block

from the video bitrate and block size, taking into account the fact that the buffer is filled

before the video begins playing. If a block misses its deadline, video playback stops, and

the time to refill the buffer is added to the total buffering time.

For this experiment, the simulated video client repeatedly streamed a 10 MB video—

encoded at a bitrate of 400 Kbps—from the remote server. This filesize and encoding rate

corresponds to 204.8 seconds of simulated video. The client block size was 16 KB. For

the first baseline case, the client used one AP exclusively with only 25 KB/s bandwidth

to the server available to transfer blocks. As a second baseline, I repeated the baseline,

but increased the available bandwidth to 50 KB/s. For the striping cases, the client used

Juggler to associate simultaneously with both APs, for various combinations of AP band-

width. The server from Section 5.2.1 was reused, as it simply responds to requests for a

number of bytes at a given offset in a file.

84

Figure 4.5 shows the results. Note that the video encoding rate of 400 Kbps is equiv-

alent to 50 KB/s. For the first case, where the available bandwidth is only half the video

bitrate, the total playback gap is nearly 300 s. This is not merely a case of a long up-front

buffering time. I calculated the average size of playback gaps and the period in between

gaps—during which time the video is playing. For the case of one AP at 25 KB/s, the

average gap size (6.091 seconds) is larger than the average inter-gap period (4.931 s). This

results in an incredibly poor user experience, because the video is constantly starting and

stopping.

When the single AP bandwidth is increased to 50 KB/s, one sees a small glitch here

and there but overall the video player is able to stream the video with one-tenth the wait

time. The third case attempts to aggregate two 25 KB/s links into a logical 50 KB/s stream.

This lowered wait time by a factor of four over the single AP, 25 KB/s case, though the

buffering time was still three times that of using one AP at 50 KB/s. Using one 25 KB/s

AP and one 50 KB/s AP nearly eliminates all wait time. Finally, streaming over two APs,

each offering 50 KB/s bandwidth, avoids wait time completely for 95% of the test runs.

BitTorrent

BitTorrent is a popular peer-to-peer file transfer protocol. A given file is broken into

equal-sized chunks, and clients fetch a file by downloading a unique subset of chunks

from different peers that are seeding the same file. This portion of the evaluation uses a

modified KTorrent 2.42, a popular open-source BitTorrent client, to evaluate the usefulness

of striping a torrent download across multiple APs.

This case closely resembles the striping results in Section 4.6.2. Because KTorrent

opens one socket per peer and uses wrapper libraries to hide the socket interface, data is

striped by assigning peers to each AP evenly. As stated in Section 4.3.1, obviating the

need for developers to bind flows to APs explicitly is future work. The torrent was a 10

MB file seeded on a 2.8 GHz Pentium 4 and a 550 MHz Pentium III Xeon, both running

Debian “lenny”3 with Linux kernel version 2.6.22. The client used on both seed machines

2http://www.ktorrent.org/
3http://www.debian.org/releases/lenny/

85

 0

 50

 100

 150

 200

 250

 50 100 150 200 250 300 350 400 450 500

D
at

a
tr

an
sf

er
 t

im
e

(s
)

Bandwidth per AP (KB/s)

1 AP
2 APs

For both cases, blocks were downloaded from both seed servers. 10 MB data file.

Figure 4.6: BitTorrent, torrent download time

was the official BitTorrent client version 3.4.2, packaged with Debian4. The Pentium 4

seed also ran the tracker for the torrent.

The baseline case used KTorrent to download the 10 MB torrent over a single AP. The

second case used the modified KTorrent client to stripe the data at peer granularity, as

described above, and used Juggler to associate with two APs simultaneously at 100 ms

switching granularity with 50% duty cycle each.

Figure 4.6 shows the results. As before, when bandwidth between the client and remote

peer is poor, Juggler downloads the file over 1.75 times faster than when using a single

access point. However, BitTorrent performance degrades faster than the simple striping

client’s performance as the available bandwidth increases. While performing the evalua-

tion, one notices that the application-level BitTorrent protocol takes longer than standard

TCP to accelerate to using the full available bandwidth. I attribute the performance gap

between these results and the results in Section 4.6.2 to this protocol overhead.

4.6.3 Mesh and Ad Hoc Connectivity

The primary motivation of the original VirtualWiFi work was to let clients be simul-

taneously connected to an infrastructure AP and to peers in ad hoc mode [21]. Such a

4http://www.bittorrent.com/

86

 0

 100

 200

 300

 400

 500

 0 50 100 150 200 250 300 350 400 450 500

T
h

ro
u

g
h

p
u

t
(K

B
/s

)

Bandwidth per AP (KB/s)

baseline (100%)
infrastructure (90%)

adhoc (10%)

“Baseline” is the maximum TCP throughput from the test server for varied values of
effective link bandwidth, when Juggler was not active. I then used Juggler to connect
simultaneously to an infrastructure AP (with 90% of the radio) and a nearby device in ad
hoc mode (with 10% of the radio). The results show that Juggler can maintain a usable
background mesh connection without significantly degrading the quality of the “primary”
infrastructure link to the Internet.

Figure 4.7: Mesh connectivity, TCP throughput

side channel is clearly useful for communicating with devices in the user’s personal area

network (PAN) [6], participating in mesh networks [28], or exploiting physical proximity

for reasons of security [10].

VirtualWiFi has been used to create an ad hoc side channel while preserving fore-

ground infrastructure connectivity. WiFiProfiler [23] allocates 800 ms to foreground traf-

fic and 500 ms to peer traffic (61.5% to 38.5%). Their results show the penalty on the

primary link is modest but non-trivial. Also, only one value of network bandwidth was

evaluated—approximately 70 KB/s from Figure 3 of the paper.

Juggler’s switching time optimizations allow for a much finer-grained trade off be-

tween foreground and background traffic. As for the evaluation of soft handoff, I allocate

90% of the radio’s duty cycle to the “primary” virtual network—an infrastructure AP rep-

resenting the device’s connection to the Internet. With the remaining 10% duty cycle,

Juggler connected to another test laptop in ad hoc mode on a non-overlapping channel

to that of the infrastructure AP. For the experiment, the WiFi radio rotated between the

infrastructure AP for 450 ms and the ad hoc peer for 50 ms.

87

Both laptops had 802.11g cards and communicated on a well-known SSID, with static

IP address assignment. Due to interference and link conditions, however, in real situations

two ad hoc peers may not be able to communicate at the full 54 Mbps bitrate. I therefore

configured the peer laptop as an IP forwarding gateway, connected via its wired Ethernet

link to the second NIST Net gateway, which was connected in turn to the remote server.

This lets one throttle bandwidth between the ad hoc peers in the same fashion as for in-

frastructure APs throughout our evaluation, in order to give a more realistic picture of data

throughput.

I ran two instances of a simple TCP server on the remote server. The first instance

handled connections from the test laptop via the infrastructure AP, passing through the first

NIST Net delay router. The second instance handled connections from the test laptop to

the peer laptop in ad hoc mode, passing through the second NIST Net router. A TCP client

on the test laptop used two threads to download data as fast as possible over both links. I

then ran a baseline case, where the test laptop was only connected via the infrastructure

AP with 100% of the radio duty cycle.

Figure 4.7 shows negligible throughput difference between using the entire radio ca-

pacity and reserving 10% for a side channel, even for high values of AP bandwidth. As

expected, the throughput of the 10% ad hoc channel is modest—roughly 40 KB/s for a

TCP flow when total AP bandwidth is 500 KB/s. This is due to problems with TCP time-

outs because the radio is tuned away from the ad hoc channel for such long periods.

Note that I have throttled the ad hoc bandwidth in order to present a pessimistic es-

timate of the bandwidth available via that channel. Nonetheless, this side-channel is us-

able for low-priority background communication between local peers, while foreground

throughput is reduced by at most a few percent.

4.7 Chapter Summary

Mobile devices with multiple network interfaces enable many capabilities of interest

and value to users. Such benefits, however, are negated by added cost in terms of physical

form factor, money, and energy consumption. Multiplexing one wireless radio across

multiple virtual networks has been proposed as a solution, but there are several drawbacks

88

to existing work in this area. Switching times may still be too high for certain potential

applications, and application-level interfaces too cumbersome for software developers to

realize full benefit.

This paper presented Juggler, a virtual WiFi link layer I have developed for the Linux

operating system. By leveraging network cards that perform the MAC layer in software,

rather than in device firmware, Juggler switches between wireless networks in just over

three milliseconds, or less than 400 microseconds if networks share the same wireless

channel. Rather than force applications to choose between a fluctuating set of wireless

networks, Juggler presents one unchanging network interface to upper layers and either

automatically assigns data flows to one of the many active virtual networks, or lets appli-

cations exert explicit control.

The primary contribution of this work was an evaluation of the prototype implemen-

tation’s performance in several realistic usage scenarios. I show that mobile clients can

enjoy nearly instantaneous 802.11 handoff by reserving 10% of the radio duty cycle for

background AP discovery, while minimally impacting foreground data throughput. Jug-

gler also enhances data throughput in situations where wireless bandwidth is superior to

that of the wired, back-end connection of an access point. I show how striping data across

virtual networks is useful in such situations. Finally, I show that Juggler can maintain

a low-bandwidth side-channel, suitable for intra-PAN or point-to-point communication,

without adversely impacting foreground connectivity to the Internet.

CHAPTER 5

RELATED WORK

In this chapter, I discuss prior art from the literature that is relevant to my work de-

scribed thus far in this dissertation. The three sections below address the related work

pertaining to Virgil, BreadCrumbs, and Juggler, respectively.

5.1 Discovering Network Connectivity

Several previous “wardriving” studies collected 802.11 AP beacon information [2, 25],

which contributed to the many Internet databases of wardriving maps [38, 39, 74]. Users

must manually scour these maps to find access points, however, while Virgil is fully auto-

matic. None of these systems associate with APs to run performance tests as Virgil does.

As my results showed, the information gleaned from these tests allows Virgil to outperform

selection schemes driven solely by the signal-strength data in such datasets. Furthermore,

these static maps become unreliable and outdated over time [17], while Virgil continuously

rediscovers and probes the user’s environment.

SyncScan [63] modifies access points as well as clients, forcing APs to synchronize

their beacon frame broadcast schedules. Since clients know in advance what channels

will be broadcasting at which times, they can quickly collect all beacons and return to

their original channel before any user-perceivable service disruption is noticeable. Shin

et al. [69] similarly optimize the scan process, since AP discovery has been shown to

dominate the 802.11 handoff process. Neither technique associates with the scanned APs.

Therefore, such techniques only speed up the selection process, but neither makes the

choice any more accurate than existing strongest-signal-strength algorithms.

89

90

Lee and Miller [48] propose adding information to the access point beacon signal, to

help guide clients’ AP selection. While their focus was on facilitating roaming between

commercial wireless access networks, the concept could be generalized. One could envi-

sion access points broadcasting their current load, current estimated latency to reference

servers in the Internet, etc. I argue it is preferable for clients to discover this information

for themselves. As I showed, testing one AP takes at most a matter of seconds, a reason-

able overhead. Furthermore, when clients are roaming in public, they have no reason to

trust the stranger who administers an access point. In fact, it is likely in the AP administra-

tor’s self-interest to falsely advertise his AP as low-quality, to prevent anonymous traffic

from overloading it.

Judd and Steenkiste [40] recognized that basing AP selection policy solely on signal

strength results in uneven loading of multiple access points. They suggested AP load as

a beneficial metric, since their work was more focuses on balancing load between access

points than directly focusing on client performance as the primary goal.

It has become accepted that the push toward ubiquitous computing makes automatic

service discovery in new environments more important than ever [67]. Existing work,

however, has focused on application-level services [26, 31], but is silent on how the client

chooses an appropriate network connection in the first place. Virgil seeks to fill this gap.

Several systems seek to allow clients of one wireless service provider to access foreign

wireless hotspots when roaming [14, 29, 52, 66]. Virgil is complementary, since users

must find and associate to an access point before negotiating such roaming agreements.

The service discovery Virgil provides is similarly critical for grassroots wireless collective

initiatives [11, 57, 68].

5.2 Mobility Modelling and Path Prediction

Rahmati and Zhong [62] investigated the problem of choosing between WiFi and cel-

lular data networks, given that a large number of mobile devices now feature both radios

(e.g. the Apple iPhone). Rather than build and maintain a mobility model as BreadCrumbs

does, they use the set of cellular tower IDs currently seen and some time-of-day heuristics

to estimate the expected quality of WiFi connectivity at the current location. Their system

91

does not predict future conditions, as BreadCrumbs does. Rather, it decides whether at a

given time and place, it is more advantageous to power on the WiFi interface or to use the

lower-bandwidth, but ubiquitious, cellular connection. Also, identifying location solely

by cell tower signals is necessarily more coarse-grained than our approach that leverages

WiFi beacons or GPS. Cellular signals reach at least several kilometers, and tens of kilo-

meters under good conditions. WiFi signals have a far shorter range, typically several

hundred meters at best.

MobiSteer [54] focuses on improving wireless network connectivity in one specific

usage setting—while in motion in a motor vehicle. Their system uses a directional an-

tenna to maximize the duration and quality of connectivity between a moving vehicle and

stationary access points in the community. This goal is complementary to that of Bread-

Crumbs, because MobiSteer performs well in situations where BreadCrumbs does not,

and vice versa. While portions of the evaluation traces, collected in in the course of my

evaluation of BreadCrumbs, track the user riding on a city bus, during this period the user

only has reliable connectivity while stopped at intersections. As explored in detail by By-

chkovsky et al [16], this reduced performance was due to the brief time the client has to

associate with the AP, obtain a DHCP address, and do useful work. On the other hand,

BreadCrumbs does not require any specialized hardware and works with whatever users

already carry in their pocket. MobiSteer’s cached mode operation is also reminiscent of

the way BreadCrumbs and Virgil optimize future resource discovery by caching historical

access point quality information.

Song et al. [71] studied the efficacy of applying different mobility prediction meth-

ods to the problem of improving bandwidth provisioning and handoff for VoIP telephony.

Much like my work, they use real client traces to evaluate the success of a concrete ap-

plication that is prediction-aware. They assume the existence of a centralized authority,

however, that collects all mobility information, makes predictions, and disseminates in-

structions to the various wireless access points. I am focused on applications that are still

useful when the device itself keeps its mobility history, and this information need not be

disclosed to any other party.

92

Ghosh et al. [32] predict the probability that users visit popular locations, known as

hubs. Their focus is on extrapolating sociological orbits from the client mobility data

by identifying the frequency with which users encounter one another at these hubs. The

authors do not evaluate how accurately their Bayesian techniques predicted explicit client

paths (rather than just the hubs they visit). I therefore was unable to compare the accuracy

of their technique with that of BreadCrumbs’ second-order Markov model.

Yoon et al. [76] concentrated, as did Kim et al [45], on deriving realistic mobility

models from actual user mobility traces. The idea is to take many different client traces

and build a probabilistic model that can be used to generate arbitrary client tracks. These

traces, while still artificial, more closely model the real movements of users than do syn-

thetic models like Random Waypoint [75]. In this dissertation, I focus on the situation

where devices maintain their actual mobility history themselves, and predict their future

behavior “on-the-fly” rather than base predictions on mobility models derived from multi-

ple users’ behavior.

Marmasse and Schmandt [51] argue, as I do, in favor of a user-centric mobility model.

Their comMotion system is concerned chiefly with tracking users’ movement through var-

ious semantically meaningful locations, such as “home” or “work”. BreadCrumbs, on the

other hand, focuses on lower-level waypoints—namely, GPS grid locations. The semantic

concept of user-defined locations could easily be layered atop such low-level information,

however.

Haggle [37] is a framework for disseminating data between mobile users based on the

fleeting occasions when they come into physical contact with each other. In these situa-

tions infrastructure such as WiFi networks need not be used, because users are within range

of low-power, point-to-point link technologies like Bluetooth or ZigBee. Their system is

clearly dependent on user-centric mobility information, but seeks to predict when pairs of

users will come into contact with each other. My work, on the other hand, is focused more

on leveraging information about wireless access points the user will soon encounter.

Most applications of location prediction have been in mobile phone networks. Typ-

ically, a central network operator seeks to know the sequence of network towers with

which a handset will associate. Given this information, the network operator can reserve

93

resources, such as bandwidth, at the upcoming nodes, so handoff proceeds as smoothly

as possible. Bhattacharya and Das [13] use a variant of the LZ predictor described above

to predict the next cell users will associate with. Yu and Leung [77] extend this idea to

predict not only where a mobile device will hand off but also when this will occur. Liang

and Haas [49] use a Gauss-Markov model in a similar way. Others use Robust Extended

Kalman Filtering (REKF) [58], integrate individual path information with system-wide ag-

gregate data [3], or estimate future locations through trajectory analysis [4]. Liu et al [50]

use a similar hybrid approach for mobility prediction in wireless ATM networks, rather

than for mobile telephony. They combine system-wide information with local mobility

history and path trajectories to reduce system resource consumption while maintaining

user QoS.

All of these location predictors are enabled by accurate estimates of a mobile device’s

location. In some cases, all that is needed is information on which access point or mobile

phone tower the device is associated with. For predictors and applications requiring more

fine grained location information, there are a wide variety of solutions. Place Lab leverages

public war-driving databases of WiFi AP GPS coordinates to triangulate one’s location

based on the APs seen at a given location and their signal strengths [47]. The same idea has

recently been extended to use GSM phone towers rather than WiFi APs [24]. Fox et al [30]

showed the benefit of Bayesian filtering to coalesce results from multiple location sensors

and smooth transient uncertainty in location estimates. Other work focuses on indoor

localization at very small scales, either by deploying custom hardware [70] or mapping

existing WiFi beacon sources [34].

5.3 Utilizing Multiple Networks

5.3.1 Virtual link layers, multiple interfaces

Virtual WiFi— [21] virtualizes a device’s wireless interface, fooling applications into

believing the device is connected simultaneously to different APs on different channels.

This is a step in the right direction, because devices can now exploit all available connec-

tivity in their vicinity. Unfortunately, the complexity of assigning data flows to interfaces

94

is still present. All available APs are presented to higher layers of the network stack as if

the device had a wireless radio for each AP that is present. Applications are still responsi-

ble for evaluating the quality of each connection on their own. With Juggler, unmodified

applications and uninterested users are only aware of a single unchanging network inter-

face. Unlike Virtual WiFi, for the default case of unmodified applications the kernel is

responsible for assigning data flows to a certain virtual interface. However, as described

in Chapter 4 above, applications and users can override this mechanism to bind data flows

explicitly to a certain access point or ad hoc group when desirable.

FatVAP [41], developed concurrently with Juggler, achieves similar performance but

is focused primarily on the bundling of multiple 802.11 connections into one logical pipe.

While Juggler also supports this sort of data striping, I have shown above how the ad-

justable radio duty cycle feature enables a richer set of potential applications than this.

Bahl et al. [8] examined scenarios where multiple physical network interfaces are use-

ful to mobile devices, such as handoff and link aggregation. This discussion inspired

several of our usage scenarios that address similar issues while using only one radio.

Contact Networking [20] hides the differences between local and remote communica-

tion from users. All communication appears to be local—like a direct Bluetooth connec-

tion between two devices—even if infrastructure such as the Internet is actually involved.

As does my work, the authors recognize that mobile devices typically have several, het-

erogeneous wireless radios at their disposal. Contact Networking is also conscious of the

properties of different link layers. Their primary focus, however, is on neighbor discovery,

name resolution, and (ultimately) the preservation of application-level sessions in the face

of user mobility. My work does find common ground with the idea that all network con-

nectivity options are not equivalent, and ideally the operating system should dynamically

assign data flows to the most appropriate link.

Zhao et al. [78] attack similar problems as Contact Networking. Their work lies firmly

within the framework of Mobile IP [59], because the user’s Home Agent is required to

arbitrate the routing of various data flows. Applications must explicitly bind a data flow to

a specific interface through their SO_BINDTODEVICE socket option. I envision a decentral-

ized solution, where the operating system automatically assigns flows to interfaces.

95

5.3.2 Network discovery and handoff

SyncScan [63] coordinates AP beacon transmission in a global fashion, based on AP

channel number. Because clients know precisely when the APs on a certain channel will

broadcast their beacon, AP discovery becomes a quick process of hopping briefly through

the channel space rather than listening passively on a channel for hundreds of milliseconds.

SyncScan requires changes to both wireless clients and AP firmware, however, hindering

rapid adoption. Juggler’s strategy for soft handoff, described in Section 4.6.1 of Chapter 4

above, requires no such changes to access points.

Shin et al. reduce 802.11 handoff latency by maintaining neighbor graphs—sequences

of AP handoffs [69]. Clients build graphs by direct observation and through sharing with

cooperative peers. When a client’s current AP becomes unusable, instead of scanning the

entire channel space the client only searches those channels on which a successor AP to

the current AP has been seen in the neighbor graph. Rather than incur the overhead to

track such history, Juggler scans for APs, associates, and obtains a DHCP configuration

before the current AP has even become unusable.

In SMesh [5], all wireless clients and stationary access points are members of one mesh

network. Handoff is efficient because access points collectively decide when to transfer

responsibility for a given device. Clients are unmodified, but SMesh requires custom ac-

cess point software and a homogeneous deployment, managed by a single entity. This is at

odds with Juggler’s target environment—heterogeneous, unmanaged public connectivity.

5.3.3 Data striping and aggregation

MAR is a standalone hardware device that aggregates heterogeneous wireless links

into one logical, high-bandwidth pipe [64]. Its focus is on combining the capacity of many

physical radios, while Juggler connects to multiple networks through only one radio.

Horde [61] is similar to MAR, but is a middleware layer on the mobile client itself

rather than a separate device. Horde also lets applications dictate quality of service (QoS)

requirements for their flows. The authors subsequently deployed a real-time video stream-

ing application that aggregates many low-bandwidth links to provide high QoS while in

motion, using a dynamic set of mobile phone data networks [60].

96

PRISM [44] is a proxy-based inverse multiplexer that allows cooperative mobile hosts

to aggregate and share their wireless infrastructure bandwidth. The authors focus on sup-

porting TCP traffic. PRISM stripes packets of one TCP flow across disjoint links. Because

this may result in out-of-order delivery, their system reorders ACKs to preserve the ex-

pected TCP semantics at the client end. PRISM requires an additional congestion control

mechanism to handle TCP windows sizes properly. Their results are intriguing for the

future development of Juggler, because some of our throughput inefficiency is a result of

the sorts of TCP side-effects noted in their work.

Hacker et al. studied the effect of parallel TCP flows on total throughput and flow fair-

ness [33]. Experimental results showed that during periods of congestion, the distribution

of total bandwidth among all competing parallel flows can be severely unbalanced.

5.3.4 Mesh networks and side channels

VirtualWiFi has been applied to help diagnose faults in wireless LANs. This often is

difficult because clients need help or advice the most when they find themselves discon-

nected from the infrastructure network. Both Client Conduit [1] and WiFiProfiler [23]

share the common strategy of using VirtualWiFi to let clients connect simultaneously to

nearby nodes and to an infrastructure AP. Nodes that have infrastructure connectivity then

help diagnose the problems suffered by their peers who are disconnected from the network

but can still contact their neighbors in ad hoc mode. The mesh connectivity scenario in

Section 4.6.3 provides a similar channel via Juggler, but at a more responsive switching

resolution while imposing a minimal penalty on the infrastructure connection.

Prior work has leveraged the properties of point-to-point links, such as Bluetooth

or WiFi in ad hoc mode, to aid in the establishment of security relationships between

users [10, 18]. For example, exchanging public keys over the Internet puts users at risk

for a man-in-the-middle attack, while communicating directly forces attackers to be phys-

ically present. Juggler allows users to establish these sorts of temporary, low-bandwidth

side channels without adversely impacting their primary infrastructure connection.

97

5.3.5 Robustness through diversity

Multi-Radio Diversity (MRD) uses redundant wireless channels to reduce packet losses

and improve throughput [53]. Devices receive on different channels simultaneously over

multiple network interfaces, and transmit upstream in parallel to multiple, coordinated

access points to ensure faithful reception. MRD requires tight coordination among access

points, an assumption that Juggler does not make. It is also unclear how closely Juggler

could approximately the redundant downstream channel of MRD, because they leverage

the fact that many radios are receiving the same packets simultaneously—on different

frequencies—in order to detect and correct bit errors.

Vergetis et al. performed an extensive study of how packet-level diversity could be

beneficial in 802.11 data transmission [73]. They evaluated the effectiveness of encoding

data with an erasure code and transmitting over multiple paths as a form of forward error

correction. Their results found that multiple physical interfaces are not mandatory for

the scheme to be beneficial, provided that switching delays could be reduced below one

millisecond. An interesting extension of Juggler would be to evaluate how well such

an error-correcting code scheme could be deployed atop the current implementation of

Juggler, with its somewhat higher 3 ms switching overhead.

CHAPTER 6

CONCLUSIONS

Wireless network availability and quality must approach that of wired network connec-

tions if mobile computing is to be completely seamless to users. This dissertation argues

that this vision is not yet reality. Prior work has attacked the problem piecemeal, but often

places heavy burdens on users (scouring wardriving databases) or application developers

(manually matching data flows with one of many network connections).

This dissertation advances the argument that mobile systems must move beyond op-

timzing for sets of local conditions, at discrete geographic locations, to considering how

the connectivity presented to a device changes over time. Comprehending this deriva-

tive of connectivity must therefore be a first-order concern of systems software for mobile

devices.

The results show that through low-level software and modifications to the operating it-

self, the wireless networking experience of mobile devices can be greatly improved, while

imposing little or no burden on users and application developers. Until the promise of

a ubiquitious, high-quality wireless data network is realized, the techniques outlined in

this dissertation will help stitch the current norm of islands of connectivity into a more

cohesive whole.

This remainder of this chapter states the specific contributions this dissertation makes

in the field of computer science, and reflects on future work suggested by the current state

of the implementation and investigation.

98

99

6.1 Contributions

The main contribution of this dissertation is a deeper understanding of how much the

quality and availability of network connectivity for mobile devices can be improved over

this use of current techniques, without overburdening users or application developers, and

without requiring centralized network infrastructure. This solution has several comple-

mentary aspects.

The dissertation began by studying actual WiFi AP deployments in three cities in the

United States, to determine the quality, quantity, and distribution of publicly-accessible

wireless connectivity. The results show that connectivity is sufficiently pervasive that mo-

bile users typically can be connected to the Internet a high percentage of the time. How-

ever, the most common AP selection algorithm—choosing by strongest signal strength—

misses a large fraction of usable APs. This led to the design of an AP selection daemon,

known as Virgil, that evaluates the application level qualities (e.g. bandwidth, latency) of

each AP before settling on a decision. This method results in a 22-100% increase in AP

discovery success, depending on the neighborhood in question. Virgil is the first instance

in the literature of an access network selection system that actively connects and probes

application-level quality before settling on a decision.

This technique of probing application-level quality of access points was then aug-

mented with a user-centric mobility model to generate connectivity forecasts. These fore-

casts are a prediction of the quality of the upcoming wireless connectivity a mobile device

will have. A new system, BreadCrumbs, generates connectivity forecasts first by building

and maintaining a mobility model tracking the motion of the user’s device. This model is

implemented as a second-order Markov chain, with GPS coordinates as the building blocks

of the state space. Atop this mobility model, BreadCrumbs layers the AP test results of all

access points encountered while the model was in a given state. The efficacy and useful-

ness of connectivity forecasts was then evaluated by devising three applications of benefit

to users of mobile devices. The evaluation compared the success of prediction-ignorant

and prediction aware algorithms. This showed that even with modest training time and

minimal application modification the connectivity forecasts that BreadCrumbs provide can

100

yield significant benefit to applications in terms of energy savings or application-specific

efficiencies.

The final contribution of this dissertation is a virtual link layer, Juggler, which allows

a mobile device to connect simultaneously to many wireless access networks through just

one physical WiFi radio. The creation of Juggler was motivated by the observation that

mobile devices often encounter multiple usable WiFi APs at once, and choosing only one

results in forgoing the full potential for network access that that location. Given the varied

quality of such wireless links, one can ill afford such under-exploitation if a consistent,

high-quality user experience is to be maintained. We present the design and implementa-

tion of a Juggler prototype that is integrated with the Linux kernel, but the primary contri-

bution of that portion of the dissertation is an extensive evaluation of how the capabilities

provided by Juggler can be used by different applications. Juggler enables nearly instan-

taneous WiFi handoff, striping of data flows across multiple low-quality links in parallel,

and maintaining simultaneous foreground Internet connectivity and a low-bandwidth side

channel to mesh networks, the user’s PAN, or other ad-hoc groups.

6.2 Impact of Future Device and Connectivity Technologies

The work presented in this dissertation focuses primarily on the usage scenario where

devices are connected to the Internet via WiFi access points of varying quality, and are

disconnected from the network when no such AP is present. The reader may wonder how

relevant this work will remain in the near future, when third- or fourth- generation cellular

networks provide nearly ubiquitous coverage.

The techniques described above will remain useful in the future because of the inher-

ent tension in wireless networking between range and bandwidth. If all other conditions

(e.g. interference) are equal, then a short-range technology such as WiFi will often be

able to offer superior bandwidth to long-range, cellular technologies. Another important

consideration is energy usage, because it takes more power to communicate with a distant

cellular tower at the same bitrate as with a nearby WiFi AP.

In this ubiquitous 4G future, then, mobile devices will want to use WiFi APs when

available to maximize throughput and minimize power consumption, and resort to cellular

101

data connections when no such AP is available. Clearly the techniques proposed in this

dissertation are equally as useful for negotiating these sorts of tradeoffs as they are for the

navigating current state of wireless networking.

Along with link technologies, devices themselves will continue to evolve and improve.

While this work focused primarily on mobile devices with a WiFi radio, it can be ex-

tended to any link protocol or combination of possible link technologies. Unlike prior

work that relies on specific attributes of the 802.l1 link protocol to predict quality, the tech-

niques described here are fully generalizable because they are link-layer agnostic and con-

sider only the application- and user-level experience. Any current (e.g. ZigBee, WiMax,

GPRS/EDGE) or future wireless protocol could be supported with minimal effort.

6.3 Future Work

One consequence of Juggler’s design is that multiple routes to the Internet, of heteroge-

neous quality, exist when a device is associated with several APs. This begs the following

question: how can applications easily exploit this situation, without imposing a burden on

programmers or users? It would be interesting to explore how well the operating system

can infer application intent and assign data flows to the most appropriate access point. For

example, consider a remote terminal client such as ssh. In general, ssh does not need a

high-bandwidth connection to the remote server but latency is critical or the user experi-

ence will suffer. Applications could indicate their requirements through hints to Juggler,

but it would be even better if the system could learn the needs of different applications

over time, by observing the characteristics of the data flows they generate.

There is also potential for applying collaboration and social networking to connectiv-

ity forecasting systems such as BreadCrumbs. An army of users running BreadCrumbs on

their phone or PDA would quickly map the quality and location of access points in even

a large city. Simply exchanging AP test results with strangers, however, raises important

privacy concerns that require careful investigation. It would be useful to deploy Bread-

Crumbs on a larger scale on the COPSE (Concurrent OPportunistic Sensor Environment)

mobile device testbed1. COPSE is designed to be a common laboratory environment for
1http://copse.cs.duke.edu/

102

deploying applications on real handheld devices—what PlanetLab is for wide-area, dis-

tributed network applications. Deploying BreadCrumbs on hundreds of mobile devices,

carried daily by actual users, and gathering actual mobility traces and models generated

by many different users will resolve certain unanswered questions, such as whether the

mobility models of strangers are sufficiently similar that sharing them might be useful.

BIBLIOGRAPHY

103

104

BIBLIOGRAPHY

[1] Atul Adya, Paramvir Bahl, Ranveer Chandra, and Lili Qiu. Architecture and tech-
niques for diagnosing faults in IEEE 802.11 infrastructure networks. In Proceedings
of the Tenth International Conference on Mobile Computing and Networking (Mobi-
Com), Philadelphia, Pennsylvania, USA, September 2004. 63, 66, 96

[2] Aditya Akella, Glenn Judd, Srinivasan Seshan, and Peter Steenkiste. Self-
management in chaotic wireless deployments. In Proceedings of the 11th Interna-
tional Conference on Mobile Computing and Networking (MobiCom), pages 185–
199, Köln, Germany, August 2005. 89

[3] Ian F. Akyildiz and Wenye Wang. The predictive user mobility profile frame-
work for wireless multimedia networks. IEEE/ACM Transactions on Networking,
12(6):1021–1035, 2004. 3, 40, 93

[4] A. Aljadhai and T.F. Znati. Predictive mobility support for QoS provisioning in
mobile wireless environments. IEEE Journal on Selected Areas in Communications,
19(10):1915–1930, October 2001. 3, 40, 93

[5] Yair Amir, Claudiu Danilov, Michael Hilsdale, Raluca Musaloiu-Elefteri, and Nilo
Rivera. Fast handoff for seamless wireless mesh networks. In Proceedings of the
Fourth International Conference on Mobile Systems, Applications and Services (Mo-
biSys), pages 83–95, Uppsala, Sweden, June 2006. 95

[6] Manish Anand and Jason Flinn. PAN-on-demand: Leveraging multiple radios to
build self-organizing energy-efficient PANs. In Proceedings of the Fifth Annual In-
ternational Conference on Mobile and Ubiquitous Systems (MobiQuitous), Dublin,
Ireland, July 2008. 86

[7] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-tuning wireless net-
work power management. In Proceedings of the Ninth International Conference on
Mobile Computing and Networking (MobiCom), pages 176–189, San Diego, Califor-
nia, USA, September 2003. 59

[8] Paramvir Bahl, Atul Adya, Jitendra Padhye, and Alec Walman. Reconsidering wire-
less systems with multiple radios. ACM SIGCOMM Computer Communication Re-
view, 34(5):39–46, October 2004. 62, 94

105

[9] Paramvir Bahl, Ranveer Chandra, and John Dunagan. SSCH: Slotted Seeded Chan-
nel Hopping for Capacity Improvement in IEEE 802.11 Ad-Hoc Wireless Networks.
In Proceedings of the Tenth International Conference on Mobile Computing and Net-
working (MobiCom), Philadelphia, Pennsylvania, USA, September 2004. 63, 73

[10] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authen-
tication in ad-hoc wireless networks. In Proceedings of the Ninth Annual Network
and Distributed System Security Symposium (NDSS), San Diego, California, USA,
February 2002. 86, 96

[11] Bay area wireless users group. http://bawug.org/. 4, 11, 90

[12] BBC News. ’Evil Twin’ Fear for Wireless Net, 20 January 2005. 11

[13] Amiya Bhattacharya and Sajal K. Das. Lezi-update: an information-theoretic ap-
proach to track mobile users in pcs networks. In MobiCom ’99: Proceedings of the
5th annual ACM/IEEE international conference on Mobile computing and network-
ing, pages 1–12, New York, NY, USA, 1999. ACM Press. 3, 40, 93

[14] Mauro Brunato and Danilo Severina. WilmaGate: A new open access gateway for
hotspot management. In Proceedings of the Third ACM International Workshop on
Wireless Mobile Applications and Services on WLAN Hotspots (WMASH), pages 56–
64, Köln, Germany, September 2005. 90

[15] United States Census Bureau. 2000 census of population and housing, summary
population and housing characteristics, Washington, DC, USA, 2002. 12, 13, 26

[16] V. Bychkovsky, B. Hull, A.K. Miu, H. Balakrishnan, and S. Madden. A measurement
study of vehicular internet access using in situ Wi-Fi networks. In Proceedings of
the 12th Annual International Conference on Mobile Computing and Networking
(MobiCom), 2006. 91

[17] Simon Byers and Dave Kormann. 802.11b access point mapping. Communications
of the ACM, 46(5):41–46, May 2003. 89

[18] Srdjan Capkun, Jean-Pierre Hubaux, and Levente Buttyan. Mobility helps security
in ad-hoc networks. In Proceedings of the Fourth ACM International Symposium
on Mobile Ad-hoc Networking and Computing (MobiHoc), pages 46–56, Annapolis,
Maryland, USA, June 2003. 11, 96

[19] Mark Carson and Darrin Santay. NIST Net—A Linux–based Network Emulation
Tool. ACM SIGCOMM Computer and Communication Review, June 2003. 74

[20] Casey Carter, Robin Kravets, and Jean Tourrilhes. Contact networking: A localized
mobility system. In Proceedings of the First International Conference on Mobile
Systems, Applications, and Services (MobiSys), pages 145–158, San Francisco, Cal-
ifornia, USA, May 2003. 94

106

[21] R. Chandra, P. Bahl, and P. Bahl. MultiNet: Connecting to multiple IEEE 802.11
networks using a single wireless card. In Proceedings of the 23rd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM), pages
882–893, Hong Kong, China, March 2004. 63, 65, 66, 73, 85, 93

[22] Ranveer Chandra, Jitendra Padhye, Lenin Ravindranath, and Alec Wolman. Beacon-
stuffing: Wi-Fi without associations. In Proceedings of the Eighth IEEE Workshop
on Mobile Computing Systems and Applications (HotMobile), 2007. 77

[23] Ranveer Chandra, Venkata N. Padmanabhan, and Ming Zhang. WifiProfiler: Coop-
erative Diagnosis in Wireless LANs. In Proceedings of the Fourth International Con-
ference on Mobile Systems, Applications, and Services (MobiSys), Uppsala, Sweden,
June 2006. 63, 73, 86, 96

[24] Mike Y. Chen, Tim Sohn, Dmitri Chmelev, Dirk Haehnel, Jeffrey Hightower, Jeff
Hughes, Anthony LaMarca, Fred Potter, Ian Smith, and Alex Varshavsky. Practical
metropolitan-scale positioning for GSM phones. In Proceedings of the Eighth Inter-
national Conference on Ubiquitous Computing (UbiComp), pages 225–242, Irvine,
California, USA, September 2006. 93

[25] Y. Cheng, Y. Chawathe, A. LaMarca, and J. Krumm. Accuracy characterization
for metropolitan-scale Wi-Fi localization. In Proceedings of the Third International
Conference on Mobile Systems, Applications and Services (MobiSys), pages 233–
245, Seattle, Washington, USA, June 2005. 42, 89

[26] S. Czerwinski, B. Zhao, T. Hodes, A. Joseph, and R. Katz. An architecture for a se-
cure service discovery service. In Proceedings of the Fifth International Conference
on Mobile Computing and Networking (MobiCom), pages 24–35, Seattle, Washing-
ton, USA, August 1999. 90

[27] M. Dischinger, A. Haeberlen, K.P. Gummadi, and S. Saroui. Characterizing residen-
tial broadband networks. In Proceedings of IMC, October 2007. 38

[28] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio, multi-hop
wireless mesh networks. In Proceedings of the Tenth International Conference on
Mobile Computing and Networking (MobiCom), pages 114–128, Philadelphia, Penn-
sylvania, USA, September 2004. 86

[29] Elias C. Efstathiou and George C. Polyzos. A peer-to-peer approach to wireless
LAN roaming. In Proceedings of the First ACM International Workshop on Wireless
Mobile Applications and Services on WLAN Hotspots (WMASH), pages 10–18, San
Diego, California, USA, September 2003. 90

[30] Dieter Fox, Jeffrey Hightower, Lin Liaoand Dirk Schulz, and Gaetano Borriello.
Bayesian filtering for location estimation. IEEE Pervasive Computing, 2(3):24–33,
July–September 2003. 93

107

[31] Adrian Friday, Nigel Davies, Nat Wallbank, Elaine Catterall, and Stephen Pink. Sup-
porting service discovery, querying and interaction in ubiquitous computing environ-
ments. Wireless Networks, 10(6):631–641, November 2004. 90

[32] Joy Ghosh, Matthew J. Beal, Hung Q. Ngo, and Chunming Qiao. On profiling mo-
bility and predicting locations of campus-wide wireless network users. In REAL-
MAN ’06: Proceedings of the Second International ACM/SIGMOBILE Workshop on
Multi-hop Ad Hoc Networks (MobiHoc), pages 55–62, Florence, Italy, May 2006.
42, 92

[33] Thomas J. Hacker, Brian D. Noble, and Brian Athey. Improving throughput and
maintaining fairness using parallel TCP. In Proceedings of INFOCOM, Hong Kong,
China, March 2004. 96

[34] Andreas Haeberlen, Eliot Flannery, Andrew M. Ladd, Algis Rudys, Dan S. Wallach,
and Lydia E. Kavraki. Practical robust localization over large-scale 802.11 wireless
networks. In Proceedings of the 10th annual international conference on Mobile
computing and networking (MobiCom), pages 70–84, Philadelphia, Pennsylvania,
USA, 2004. 93

[35] Familiar Linux. http://www.handhelds.org/. 13, 48

[36] Tristan Henderson, David Kotz, and Ilya Abyzov. The changing usage of a mature
campus-wide wireless network. In Proceedings of the Tenth International Confer-
ence on Mobile Computing and Networking (MobiCom), pages 187–201, Philadel-
phia, Pennsylvania, USA, September 2004. 21

[37] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and
Christophe Diot. Pocket switched networks and human mobility in conference en-
vironments. In Proceedings of the ACM SIGCOMM Workshop on Delay-tolerant
Networking, pages 244–251, Philadelphia, Pennsylvania, August 2005. 92

[38] Intel Research Seattle. Place Lab: A privacy-observant location system.
http://placelab.org/. 89

[39] Wi-fi hotspot locator. http://jiwire.com/. 7, 89

[40] Glenn Judd and Peter Steenkiste. Fixing 802.11 access point selection. ACM SIG-
COMM Computer Communications Review, 32(3):31, July 2002. 90

[41] Srikanth Kandula, Kate Ching-Ju Lin, Tural Badirkhanli, and Dina Katabi. Fat-
VAP: Aggregating AP backhaul capacity to maximize throughput. In Proceedings
of the Fifth USENIX Symposium on Networked Systems Design and Implementation
(NSDI), San Francisco, California, April 2008. 63, 94

[42] Jeremy A. Kaplan. Real world testing: The best ISPs in America. PC Magazine,
May 2007. 77

108

[43] Orin S. Kerr. Cybercrime’s scope: Interpreting “access” and “authorization” in com-
puter misuse statutes. New York University Law Review, 78(5):1596–1668, Novem-
ber 2003. 11

[44] Kyu-Han Kim and Kang G. Shin. Improving TCP performance over wireless net-
works with collaborative multi-homed mobile hosts. In Proceedings of the Third
International Conference on Mobile Systems, Applications and Services (MobiSys),
pages 107–120, Seattle, Washington, USA, June 2005. 96

[45] Minkyong Kim, David Kotz, and Songkuk Kim. Extracting a mobility model from
real user traces. In Proceedings of the 25th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), Barcelona, Spain, April
2006. 40, 92

[46] David Kotz, Tristan Henderson, and Ilya Abyzov. CRAWDAD trace set dart-
mouth/campus/movement (v. 2005-03-08), March 2005. 41

[47] Anthony LaMarca, Yatin Chawathe, Sunny Consolvo, Jeffrey Hightower, Ian Smith,
James Scott, Tim Sohn, James Howard, Jeff Hughes, Fred Potter, Jason Tabert,
Pauline Powledge, Gaetano Borriello, and Bill Schilit. Place Lab: Device posi-
tioning using radio beacons in the wild. In Procedings of the Third International
Conference on Pervasive Computing, pages 116–133, Munich, Germany, May 2005.
39, 93

[48] Yui-Wah Lee and Scott Miller. Network selection and discovery of service infor-
mation in public WLAN hotspots. In Proceedings of the Second ACM Interna-
tional Workshop on Wireless Mobile Applications and Services on WLAN Hotspots
(WMASH), pages 81–92, Philadelphia, Pennsylvania, USA, October 2004. 90

[49] Ben Liang and Zygmunt J. Haas. Predictive distance-based mobility management for
multidimensional PCS networks. IEEE/ACM Transactions on Networking (TON),
11(5):718–732, October 2003. 3, 40, 93

[50] T. Liu, P. Bahl, and I. Chlamtac. Mobility modelling, location tracking, and tra-
jectory prediction in wireless atm networks. IEEE Journal on Selected Areas in
Communications, 16(6):922–936, August 1998. 93

[51] Natalia Marmasse and Chris Schmandt. A user-centered location model. Personal
and Ubiquitous Computing, 6(5–6):318–321, December 2002. 92

[52] Yasuhiko Matsunaga, Ana Sanz Merino, Takashi Suzuki, and Randy Katz. Secure
authentication system for public WLAN roaming. In Proceedings of the First ACM
International Workshop on Wireless Mobile Applications and Services on WLAN
Hotspots (WMASH), pages 113–121, San Diego, California, USA, 2003. 11, 90

[53] Allen Miu, Hari Balakrishnan, and Can Emre Koksal. Improving loss resilience
with multi-radio diversity in wireless networks. In Proceedings of the 11th Annual
International Conference on Mobile Computing and Networking (MobiCom), pages
16–30, Cologne, Germany, 2005. 62, 97

109

[54] Vishnu Navda, Anand Prabhu Subramanian, Kannan Dhanasekaran, Andreas Timm-
Giel, and Samir R. Das. MobiSteer: Using steerable beam directional antenna for
vehicular network access. In Proceedings of the Fifth International Conference on
Mobile Systems, Applications, and Services (MobiSys), San Juan, Puerto Rico, June
2007. 91

[55] Anthony J. Nicholson, Junghee Han, David Watson, and Brian D. Noble. Exploit-
ing Mobility for Key Establishment. In Proceedings of the 7th IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA), Blaine, Washington, USA,
April 2006. 11

[56] Anthony J. Nicholson, Ian E. Smith, Jeff Hughes, and Brian D. Noble. LoKey:
Leveraging the SMS Network in End-to-end, Decentralized Trust Establishment.
In Proceedings of the Fourth International Conference on Pervasive Computing,
Dublin, Ireland, May 2006. 11

[57] NYCWireless. http://nycwireless.net/. 4, 11, 90

[58] Pubudu N. Pathirana, Andrey V. Savkin, and Sanjay Jha. Mobility modelling and tra-
jectory prediction for cellular networks with mobile base stations. In MobiHoc ’03:
Proceedings of the 4th ACM international symposium on Mobile ad hoc networking
& computing, pages 213–221, New York, NY, USA, 2003. ACM Press. 3, 40, 93

[59] C.E. Perkins. Mobile networking through Mobile IP. IEEE Internet Computing,
2(1):58–69, January–February 1998. 94

[60] Asfandyar Qureshi, Jennifer Carlisle, and John Guttag. Tavarua: Video streaming
with WWAN striping. In Proceedings of ACM Multimedia (MM), pages 327–336,
Santa Barbara, California, USA, October 2006. 62, 80, 95

[61] Asfandyar Qureshi and John Guttag. Horde: Separating network striping policy
from mechanism. In Proceedings of the Third International Conference on Mobile
Systems, Applications and Services (MobiSys), pages 121–134, Seattle, Washington,
USA, June 2005. 80, 95

[62] Ahmad Rahmati and Lin Zhong. Context-for-wireless: Context-sensitive energy-
efficient wireless data transfer. In Proceedings of the Fifth International Conference
on Mobile Systems, Applications and Systems (MobiSys ’07), pages 165–178, San
Juan, Puerto Rico, June 2007. 90

[63] I. Ramani and S. Savage. SyncScan: Practical fast handoff for 802.11 infrastructure
networks. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 675–684, Miami, Florida, USA,
March 2005. 29, 77, 89, 95

[64] Pablo Rodriguez, Rajiv Chakravorty, Julian Chesterfield, Ian Pratt, and Suman
Banerjee. MAR: A commuter router infrastructure for the mobile Internet. In Pro-
ceedings of the Second International Conference on Mobile Systems, Applications

110

and Services (MobiSys), pages 217–230, Boston, Massachusetts, USA, June 2004.
80, 95

[65] Naouel B. Salem, Jean-Pierre Hubaux, and Markus Jakobsson. Reputation-based
Wi-Fi Deployment Protocols and Security Analysis. In Proceedings of the Sec-
ond ACM International Workshop on Wireless Mobile Applications and Services on
WLAN Hotspots, October 2004. 11

[66] Naouel B. Salem, Jean-Pierre Hubaux, and Markus Jakobsson. Reputation-based
Wi-Fi Deployment Protocols and Security Analysis. In Proceedings of the Sec-
ond ACM International Workshop on Wireless Mobile Applications and Services on
WLAN Hotspots (WMASH), pages 29–40, Philadelphia, Pennsylvania, USA, October
2004. 90

[67] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal
Communications, 8(4):10–17, August 2001. 90

[68] SeattleWireless. http://seattlewireless.net/. 4, 11, 90

[69] Minho Shin, Arunesh Mishra, and William A. Arbaugh. Improving the latency of
802.11 hand-offs using neighbor graphs. In Proceedings of the Second International
Conference on Mobile Systems, Applications and Services (MobiSys), pages 70–83,
Boston, Massachusetts, USA, June 2004. 89, 95

[70] Adam Smith, Hari Balakrishnan, Michel Goraczko, and Nissanka Priyantha. Track-
ing moving devices with the cricket location system. In MobiSys ’04: Proceedings
of the 2nd international conference on Mobile systems, applications, and services,
pages 190–202, New York, NY, USA, 2004. ACM Press. 93

[71] Libo Song, Udayan Deshpande, Ulas C. Kozat, David Kotz, and Ravi Jain. Pre-
dictability of WLAN mobility and its effects on bandwidth provisioning. In Pro-
ceedings of the 25th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM), Barcelona, Spain, April 2006. 40, 91

[72] Libo Song, David Kotz, Ravi Jain, and Xiaoning He. Evaluating location predictors
with extensive Wi-Fi mobility data. In Proceedings of the 23rd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM), pages
1414–1424, March 2004. 3, 40

[73] Evangelos Vegetis, Eric Pierce, Marc Blanco, and Roch Guerin. Packet-level
diversity–from theory to practice: An 802.11-based experimental investigation. In
Proceedings of the 12th Annual International Conference on Mobile Computing and
Networking (MobiCom), pages 62–73, Los Angeles, California, USA, September
2006. 97

[74] WIGLE: Wireless geographic logging engine. http://wigle.net/. 7, 89

111

[75] Jungkeun Yoon, Mingyan Liu, and Brian Noble. Random waypoint considered
harmful. In Proceedings of the 22nd Annual Joint Conference of the IEEE Com-
puter and Communications Societies (INFOCOM), pages 1312–1321, March 2003.
40, 92

[76] Jungkeun Yoon, Brian D. Noble, Mingyan Liu, and Minkyong Kim. Building re-
alistic mobility models from coarse-grained traces. In Proceedings of the Fourth
International Conference on Mobile Systems, Applications, and Services (MobiSys),
pages 177–190, Uppsala, Sweden, June 2006. 40, 92

[77] Fei Yu and Victor C.M. Leung. Mobility-based predictive call admission control
and bandwidth reservation in wireless cellular networks. In Proceedings of the
20th Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 518–526, Anchorage, Alaska, USA, April 2001. 3, 40, 93

[78] Xinhua Zhao, Claude Castelluccia, and Mary Baker. Flexible network support for
mobility. In Proceedings of the Fourth International Conference on Mobile Com-
puting and Networking (MobiCom), pages 145–156, Dallas, Texas, USA, 1998. 66,
94

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Thesis Statement
	Challenges
	Overview of the Dissertation

	DISCOVERING NETWORK CONNECTIVITY
	Contributions
	Definitions
	Legal and Security Issues
	Field Study
	Methodology
	Access Point Statistics
	Missed Connectivity Opportunities
	All APs Are Not Created Equal

	Virgil
	Probing an AP
	Leveraging History
	Choosing the ``best'' AP
	User Feedback

	Prototype
	Active Scanning
	Tracking open connections

	Evaluation
	Connection Time and Quality
	History
	Client Overhead
	Reference Server Overhead

	Chapter Summary

	FORECASTING NETWORK CONDITIONS
	Contributions
	Background
	Determining AP Quality
	Estimating Client Location

	Connectivity Forecasting
	Predicting Future Mobility
	Forecasting Future Conditions
	Example

	Implementation
	Scanning Thread
	Application Interface

	Sample Applications
	Methodology
	Forecast Accuracy
	Sample Applications
	Map Viewer
	Streaming Media
	Opportunistic Writeback

	Overhead

	Chapter Summary

	EXPLOITING AMBIENT CONNECTIVITY
	Contributions
	Background
	Juggler
	Assigning Flows to Networks
	Sending and Receiving Packets
	Switching Between Virtual Networks
	User-level Daemon
	Implementation Details

	Experimental Setup
	Microbenchmarks
	Application Scenarios
	Soft Handoff
	Data Striping and Bandwidth Aggregation
	Throughput Improvement
	Streaming Video
	BitTorrent

	Mesh and Ad Hoc Connectivity

	Chapter Summary

	RELATED WORK
	Discovering Network Connectivity
	Mobility Modelling and Path Prediction
	Utilizing Multiple Networks
	Virtual link layers, multiple interfaces
	Network discovery and handoff
	Data striping and aggregation
	Mesh networks and side channels
	Robustness through diversity

	CONCLUSIONS
	Contributions
	Impact of Future Device and Connectivity Technologies
	Future Work

	BIBLIOGRAPHY

