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Abstract 

 

A method for predicting the large amplitude motions of multihull vessels in a 

computationally efficient and robust manner has been developed and demonstrated.  The 

present theory utilizes frequency domain hydrodynamic coefficients that include hull 

interactions in the radiation problem and a body-exact solution of the time-varying 

hydrostatic and Froude-Krylov forces in the time-domain.  The theory and computational 

tool have been developed with a stated objective of supporting multihull design 

optimization, which requires extremely fast and stable computations that can accurately 

assess the seakeeping measure of merit in a relative sense.  Higher fidelity tools can be 

used subsequent to a converged design to obtain a more accurate assessment of 

seakeeping performance. 

The contribution of this work to the general body of knowledge is in the 

development of a theory that captures hull interaction effects at lower ship speeds, where 

interaction effects are likely, while retaining the numerical efficiency of strip theory.  A 

far-field approximation is invoked, whereby the radiated waves from one demi-hull 

appear as incident waves to another demi-hull.  Comparisons of the present theory to 

model test data and 3D computations have shown fairly good agreement for some ship 

designs and, while capturing correct trends, relatively poor agreement for other ship 

designs.  Agreement is generally better for multihulls that are long and slender with 

demi-hull separation greater than two times the demi-hull beam. 
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Chapter 1 

1 Introduction 

1.1 Background 

High-speed ships have always been of interest to the commercial and naval 

communities, but have recently been the source of renewed focus by the high-speed ferry 

industry and the militaries of the world.  The US Navy is currently challenging concept 

designers to develop high-speed sealift ships, troop transports, and “street fighters”.  One 

common theme in requirements for these high speed ships is access to shallow water 

ports.  Increasingly, the designer’s solution to meeting these requirements is a multi-

hulled vessel.  An example of a modern catamaran design is the US Navy’s Sea Fighter, 

shown in Figure 1.1. 

The longer and slender hulls of a catamaran or trimaran are designed to give very 

low wave resistance in calm water, with the multihull arrangement providing a stable 

platform with shallow draft and increased mission space.  However, little thought is given 

to the ship’s performance in waves, particularly at the concept-level design stage, which 

can lead to unexpected severe motions later.  One reason is that there are very few tools 

available to the early-stage designer to assess seakeeping performance of multihulls.   

Perhaps the largest difficulty in developing a seakeeping prediction tool for high-

speed multi-hulls is that there is such a wide array of pertinent hydrodynamic aspects.  

Faltinsen et al. (2003) highlight the various issues associated with modeling multi-hull 

seakeeping and loads: 

• At low speeds, where strip theory is accurate, there will be interactions between 

the hulls’ radiated waves that may need to be taken into account. 
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• At high speeds, where strip theory is not accurate, radiated waves from one hull 

will not reach the other hull, but the interactions between the steady and 

unsteady potentials may be important. 

• Slamming, particularly on the wet-deck (the underside of cross-structure), can 

be frequent and result in very large impact pressures. 

 

Figure 1.1  US Navy’s Littoral Surface Craft-Experimental “Sea Fighter” (FSF-1)1 

As noted by Journée (1992), traditional prediction tools have served the design 

community well for years generally by simplifying the complete problem into a series of 

tractable 2D problems allowable through hull slenderness assumptions.  However, in the 

case of a multi-hulled vessel, the presence of one or more additional hulls complicates the 

problem.  In the limit of zero forward speed and infinitely long demi-hulls, 2D 

simplifications may be adequate.  In practice though, forward speed and finite length 

hulls mean that the multihull seakeeping problem is truly a 3D problem.  Perhaps the 

                                                 

1 Photo from www.navy.mil 
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most prominent “3D” feature of the multihull seakeeping problem is the fact that the 

radiated waves from one demi-hull will interact with the other demi-hull(s) downstream.  

It follows then that the tools most capable of properly accounting for the physics of a 

multihull with forward speed are 3D codes, but these are not as useful at the preliminary 

design stage because of their relatively costly computation time and the necessary 

expertise to use the tool. 

Having recognized the need to give concept-level designers new tools for 

designing multihulls, the Office of Naval Research (ONR) has supported the 

development of a multihull design optimization program, including the tools for assessing 

resistance and seakeeping performance.  Because the optimization tool will automatically 

generate and analyze hundreds or thousands of hull forms, it is imperative that the 

analysis tools are computationally efficient.  Yet at the same time, in order to incorporate 

meaningful optimization logic, the tools must be accurate up to the operational 

requirement levels.  Because the operational requirements may set seakeeping 

performance criteria up to Sea State 5 or higher, it becomes necessary to use a nonlinear 

seakeeping assessment tool capable of predicting large amplitude motion.   

The object of the research presented in this dissertation is to develop the nonlinear 

seakeeping analysis tool to be incorporated into the ONR design optimization program.  

The prime requirement is that it must be very efficient and very robust, given the fact that 

the program will be executed blindly hundreds or thousands of times, yet rationally 

account for the hull interaction physics.   

1.2 Prior Work 

The problem of predicting the seakeeping performance of multi-hulled ships is 

not new.  As general seakeeping theory has expanded over recent decades, so too have 

efforts to apply the techniques to multihulls.  While there are many approaches that can 

be taken for solving the hydrodynamic forces of a ship undergoing motion in waves (see 

Beck and Reed (2001) for a comprehensive taxonomy of methods), the majority employ 

the assumptions of inviscid, irrotational, and incompressible flow.  This leads to the use 

of a velocity potential in formulating the boundary value problem (BVP).  This trend has 

held true for predicting the motions of multihulls. 
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1.2.1 Early Attempts 

As recognized by Journée (1992), 2D strip theory, as developed by Salvesen et al. 

(1970), fits a practical need for assessing ship motions at the early design stage.  

Traditional strip theory reduces the 3D nonlinear problem into a series of linear 2D 

problems solved at transverse cuts of the hull.  The assumption is that for a long and 

slender hull, the changes in the x direction will be of higher order.  The first attempts at 

solving the multihull seakeeping problem, however, resorted to strip theory not because it 

was more efficient, but rather because it was the only practical theory available.   

One early attempt at predicting motions of a catamaran was by Wahab and 

Hubble (1972).  They used strip theory and neglected interactions between the hulls to 

calculate heave and pitch in head seas and roll in beam seas, treating roll as the alternate 

heaving of two hulls.  They concluded that neglecting interaction effects gives reasonable 

results for roll in beam seas, but heave and pitch predictions were poor for predictions up 

to Fn=0.38.  Additionally, they note that catamaran motions can be much different than 

monohulls. Jones (1972) also attempted to use strip theory for catamaran motions, but 

this time included both hulls in the boundary value problem.  He identified the problem 

of critical frequencies where there is a standing wave trapped between the hulls.  Jones 

also notes that there is decreasing accuracy with increasing speed.   

As the popularity of the SWATH concept took hold with the US Navy, more 

effort was contributed to the multihull prediction problem.  Lee (1976) attempted to use a 

six degree-of-freedom (6-DOF) linear strip theory for multiple headings.  Similar to 

Jones (1972), Lee included both hulls in the boundary value problem.  He also noted the 

singular solution corresponding to the trapped wave as well as the importance of viscous 

damping and modeling the stabilizing fins for a SWATH hull form. 

Later, Lee (1978) attempted to model the hull interactions by solving the single 

demi-hull boundary value problem and adding the solution of the phase-shifted opposite 

hull wave at the far field (y ∞).  In terms of the far field wave amplitude, he determined 

Bij and then obtains Aij by the “Kramers-Kronig” relations.  Lee concluded that this 

method gives satisfactory results within the frequency range of interest, but that it does 

not capture the “abrupt discontinuities” of the hydrodynamic coefficients. 
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Sun (1982) describes a different far field approach for modeling the interactions 

between hulls of a catamaran.  He proposes a linear frequency-domain strip theory to 

predict arbitrary heading, constant speed catamaran motions, noting that the method can 

be extended to multiple hulls.  Interaction effects are included by assuming demi-hulls 

are in each other’s far-field and the radiation potential exists as a progressive wave in the 

far-field.  The progressive wave potential travels perpendicular to the demi-hull center-

plane and appears as a deepwater incident wave to the opposite hull downstream.  The 

progressive wave potential is given in terms of a section’s velocity, an amplitude 

coefficient, and phase (a single phase for vertical and lateral motions, respectively).  Sun 

writes that this wave will reflect off the hull with the same magnitude but opposite 

direction.  Through an iterative process, interaction coefficients are obtained.  While the 

overall concept described by Sun sounds promising, the theory does not appear to address 

forward speed effects properly in some potentials.  No comparisons to model data are 

provided. 

Breit and Sclavounos (1986) wrote of another approximation for the wave 

interaction between parallel slender bodies.  In this theory, they solve the zero forward 

speed problem for a single body via strip theory, assuming the separation distance is on 

the order of the demi-hull length.  The interaction occurs from a solution of the infinite 

series of reflection and transmission of waves between the bodies.  They also cite work 

from Simon (1982) who treats the force on a section solely due to its own radiation 

potential, an incident wave from the opposite body’s motion, and the diffraction from that 

incident wave.  Breit and Sclavounos claim that this method is not adequate for 3D 

dissipation of the wave energy. 

Watanabe (1992) presented his own method of modeling the interactions between 

hulls.  In this method, he uses thin ship theory to develop symmetric and anti-symmetric 

potentials for each demi-hull, where the symmetric is due to single body motion and anti-

symmetric is due to “distortion of flow and radiating waves by one of” the demi-hulls 

that “induces on the other demi-hull anti-symmetric flow about its centerplane.”  
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1.2.2 Recent Research 

While the early designers and Navy experts did not have much choice other than 

to use strip theory for the prediction of multihull motions, 2D calculations continue to be 

developed for this use, simply because they are so much more efficient than the 3D 

codes.  Additionally, because the typical multihull demi-hull is extremely long and 

slender it would be perfectly suited for strip theory if interactions were neglected and it 

was applied at low forward speed.  In fact, Zhao and Aarsnes (1995) claim that, while 2D 

strip theories are not appropriate for use at high Froude number (> ~0.5), linear 3D 

methods have not done much better.  Min et al. (1993) come to the same conclusion 

regarding strip theory and a linear 3D panel method at Fn=0.8. 

Of course, much progress has been made in the development of 3D codes for use 

with multihull problems.  Kring and Sclavounos (1991) presented their results for a 3D 

linear Rankine Panel method applied to a Wigley catamaran, noting the improvement 

when the basis flow was based upon a double-body linearization.  They also note the 

importance of applying a Morino-Kutta condition for a wake model at the stern, because 

of interaction effects.  More recently, Bailey et al. (1999) presented their work on a 3D 

linear potential flow method for head seas.  In this method, they try to account for 

arbitrary forward speed by using a translating, pulsating source distribution on the wetted 

surface.  Bailey et al. claim that a 3D code is needed for multihulls and, like Faltinsen et 

al. (2003), cite the need to consider the interaction between steady and unsteady waves. 

The largest effort in recent research has been devoted to solving the high-speed 

aspect of the multihull seakeeping problem.  In order to solve this problem, researchers 

have acknowledged that the inherent three-dimensionality of the problem must be taken 

into account.  In order to accomplish this, yet still maintain a certain degree of 

computational efficiency, the 2½-D (or 2D+t) approach has been adopted as the most 

popular choice.   

The fundamental idea of the 2½-D method is to solve a series of 2D problems, but 

use the 3D free surface boundary conditions.  The solution is started at the bow and 

stepped toward the stern section-by-section.  The assumption that the solution can be 

stepped downstream requires that waves do not travel forward.  For this to be true, the 
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Froude number must have a lower limit, typically taken to be about 0.4.  Another 

consequence of the 2½ approach is that only the diverging waves are captured, but this is 

reasonable for high speed, where the diverging waves are dominant. 

Faltinsen and Zhao (1991) applied this method to solving the high-speed ship 

motion problem for a monohull, but assumed a strong link between the steady and 

unsteady potentials.  The method of Faltinsen and Zhao is a linear frequency-domain 

method that attempts to capture the influence of the steady potential on the unsteady 

potential by expanding the free-surface boundary conditions about the steady wave 

surface.   

Zhao and Faltinsen (1992) later extended their method to a linear time domain, 

which was followed by the extension to nonlinear time domain by Zhao and Aarsnes 

(1995) (explained more completely by Zhao, 1997).  Zhao and Aarsnes solve the 

nonlinear motions of a catamaran by employing the time domain 2½-D method, with the 

linearized free surface boundary conditions applied on the total wave surface (steady + 

incident waves) and using the instantaneous wetted surface to calculate the hydrostatic 

and Froude-Krylov forces.  However, they do not include hydrodynamic interaction 

between the hulls.  Zhao (2003) later used this method as the basis for calculating relative 

motions to be used in solving the impact problem as a post-processor. 

Ohkusu and Wen (1993) and Hermundstat et al. (1999) are two more examples of 

the application of the 2½-D method to solving the high speed catamaran problem.  While 

Hermundstat et al. decouple the steady potential from the unsteady potential (they use 

Neumann-Kelvin linearization), they claim that they account for hull interactions by 

“utilizing the vessel’s port-starboard symmetry.”  They do this by splitting the incident 

wave potential into an odd and an even part to get a so-called symmetric and anti-

symmetric diffraction potential.  While allowing only weak interaction with the steady 

potential, they recognize its importance at high speed.  They conclude though that their 

method for hull interaction does not lead to significant improvement for correlation with 

model data.   

The important question that needs to be answered is for how low of a Froude 

number is the 2½-D method valid.  Tønnessen et al. (1993) attempt to answer this 
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question by comparing the results of a 2½-D code to a 3D panel code.  For a monohull, 

they show that the 2½-D code gives similar solutions to the 3D code at Fn=0.3.  They 

also examine the demi-hull separation of a catamaran to see when interaction effects are 

important.  Their conclusion is when the separation is less than approximately 0.2L. 

Holloway (1998), Holloway et al. (2003), and Davis and Holloway (2003) also 

employ a high-speed strip theory, but unlike other 2½-D methods, develop a time-domain 

solution on strips fixed in space with a different (downstream) strip of the hull 

intersecting the plane at each time step.  Their method is able to capture hull interactions, 

the effect of which they not surprisingly conclude to be somewhat weak at higher speeds. 

With all the attention being paid to high-speed-specific codes, Kashiwagi (1993) 

presents a linear frequency-domain method using Newman’s unified slender-ship theory 

and an interaction model using a far field approach.  He compares predictions against 

model data (Lewis form demi-hulls) at Fn=0.15 and 0.3, concluding that the theory 

agrees well with the experiments, except for pitch at higher Froude number and low 

frequencies.  Ronæss (2002) recently extended this approach to independent bodies with 

similar success. 

For the purposes of exercising ordinary 2D strip theory on a trimaran hullform, 

Doctors and Scrace (2004) compared predictions of roll in oblique seas using no 

interactions (independent demi-hull solutions, see Figure 1.2) and strip theory with a full 

transverse cut of the hull (see Figure 1.3).  They conclude that the no-interactions case 

more closely matches model test data in general, suggesting that interaction effects are 

small.  However, the particular trimaran design that was examined had outer hulls with 

fairly small displacement in comparison to the primary hull. 

 

 

Figure 1.2  Representation of trimaran case with demi-hulls treated independently 

 

+ + 
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Figure 1.3  Representation of trimaran case using full transverse cut 

 

1.2.3 Conclusions Based on Prior Work 

The past several decades of research on the prediction of multihull vessel motion 

have revealed many of the relevant physics and approaches to capturing them.   

Given modern computer capabilities and the development of 3D seakeeping 

codes, using a high fidelity 3D panel code would seem to be the preferred choice for 

predicting multihull seakeeping performance.  One primary advantage is the fact that hull 

interactions are automatically included.  However, computations are orders of magnitude 

slower than traditional strip theories and a high level of expertise is required to run these 

codes in order to ensure numerical stability and physical correctness of the solution.  

These disadvantages preclude their use at this point in time as an early-stage design 

optimization tool. 

The early research that focused on the use of strip theory revealed that the 

solution of a 2D transverse cut is not appropriate, because it leads to “wave trapping” and 

can result in the so-called “piston mode resonance” (see Faltinsen, 2005).  The interaction 

of the demi-hulls is consequently forced into being 2D, when in reality, 3D dissipation is 

required.  This is especially true when the vessel has forward speed, because the radiated 

waves are swept downstream (in a ship-fixed frame of reference).  Some researchers have 

concluded that it is better to evaluate the demi-hulls individually, thereby assuming that 

there is no interaction.  This would be correct for the cases when the radiated waves are 

swept completely downstream.  Given the long and slender demi-hulls of most multihull 

designs, 2D strip theory would then appear to be a rational choice.  However, depending 
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on ship speed, hull spacing, and frequency of encounter, there is likely to be some 

interaction with the other demi-hull(s).  Furthermore, ordinary strip theory is not valid for 

high forward speed, with the upper limit considered to be Fn=0.3-0.4. 

Much of the recent research appears to be focused on solving the high-speed 

aspect of the multihull seakeeping problem.  With the development of the 2½-D methods, 

researchers have shown relatively good success in predicting the motion of both 

monohulls and multihulls at high forward speed.  They have concluded that the 

interaction of the steady potential and the unsteady potential is important.  The 2½-D 

methods also take advantage of the fact that the hull interactions, at least in the case of 

radiated waves, are likely to be small or non-existent at high speed.  The disadvantage, 

however, is that these methods can only be used at high ship speeds (the lower limit 

typically taken to be Fn=0.3-0.4). 

Perhaps the best alternative of past multihull research is Kashiwagi’s development 

of a slender body unified theory for multihulls.  His successful use of a far-field 

approximation allows the rational solution of hull interaction effects that is valid for low 

ship speed.  With respect to its application to multihull design optimization, it has the 

disadvantage of being more computationally intense than strip theory, but certainly less 

so than 3D codes. 

1.3 Present Approach 

The motivation for the present theory is producing a very fast method that can be 

utilized in a hull-form optimization scheme for multihulls, where the seakeeping measure 

of merit may include a time-domain assessment of motions in large waves.  To satisfy 

these requirements, the present approach is based on a frequency-domain strip theory 

with quasi-3D radiation interaction forces that is extended to a nonlinear time-domain 

solution for predicting motions in large waves. 

Given the conclusion that hull interaction effects are important, at least up 

through moderate forward speed, it is essential that the present theory capture this physics 

in a rational manner.  However, in order to attain the computational efficiency required, a 

2D strip theory with interactions will be developed for the frequency-domain solution in 
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a manner similar to Sun rather than following the unified slender body theory for 

multihulls developed by Kashiwagi.   

The present theory assumes that the demi-hulls exist in each other’s far-field and 

subsequently solves the 2D (zero-speed) frequency-domain problem on the independent 

demi-hulls.  For the radiation problem, this avoids the problem of piston mode resonance, 

but by itself would not capture any hull interactions.  Therefore, following the solution of 

the source strengths, the far-field Green function is used to determine the far-field 

radiation potential for the corresponding mode of motion.  This far-field radiation 

potential takes the form of a progressive wave, with amplitude and phase captured 

automatically by the far-field Green function.  Radiation interaction forces are then 

determined by treating the far-field radiation potential as a wave that is incident upon the 

other demi-hull at a point downstream.  No reflections of this radiated wave will be 

modeled though, following the assumption that only long wavelengths are likely to 

reflect and “re-impact” on the originating hull before being swept downstream.  The 

longer the radiated wavelength, the less likely there will be an appreciable reflection. 

A key feature of this method is that the 2D radiation potential calculations, which 

are independent of incident wave and ship speed, can be pre-calculated over a range of 

basis frequencies and stored.  For any number of speed, wavelength, and wave heading 

combinations, the demi-hull radiation potentials on each 2D panel and the far-field 

radiation potential of each section is simply interpolated.  The determination of the far-

field radiated potential on a panel of a section downstream (necessary for determining a 

force) is accomplished analytically given the progressive wave form of the potential.  

Such a formulation means that the motions can be calculated almost instantaneously. 

Once the frequency-domain hydrodynamic coefficients have been calculated, a 

time-domain simulation can be executed.  Because geometric nonlinearities can be 

significant on multi-hulled vessels, particularly when considering the wet-deck, it is 

necessary to capture the dominant forces due to the changing wetted geometry when the 

ship is undergoing large amplitude motion.  In the present approach, a “blended method” 

is used, whereby the hydrostatic and Froude-Krylov pressures are calculated on the 

instantaneous wetted portion of the ship. 
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The theory developed in the present approach has been implemented in a code 

named “NSHIPMO_multihull”.  Comparisons are made with catamaran and trimaran 

model data for validation purposes. 
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Chapter 2 

2 Multihull Frequency-Domain Ship Motion Problem 

 

The foundation of the present multihull seakeeping prediction tool is the linear 

frequency-domain solution.  The linear frequency domain solution can provide an overall 

characterization of the ship’s motions across all speeds, headings, and sea states, as well 

provide the hydrodynamic coefficients to be used in the nonlinear (blended-method) 

time-domain simulation.  With the stated objective of the present work being 

computationally efficient predictions, emphasis has been placed on developing theory 

that satisfies the objective of speed while attempting to capture the relevant physics of 

multi-hulled bodies. 

2.1 Problem Statement 

The solution of the dynamics of the multihull vessel requires the solution of the 

fluid forces acting upon it.  These forces are considered to be hydrostatic and 

hydrodynamic.   

Potential flow is used in developing the hydrodynamic forces, where the 

hydrodynamic forces can be separated as those due to steady flow and those due to time-

varying flow.  The time-varying flow consists of the radiation and ambient wave 

excitation potentials.   

The fundamental assumption of the present multihull seakeeping theory is that 

interaction effects only occur in the 3D radiation problem.  This assumption is made by 

assuming the demi-hulls are in each other’s far field.  The mechanism for interaction is 

the generated far-field radiated waves from each demi-hull appearing as an incident wave 

on the other demi-hull(s).   
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The radiation portion of the multihull seakeeping problem is assumed to be linear.  

Strip theory is utilized as the foundation of the present frequency-domain solution 

following Salvesen, Tuck and Faltinsen (1970).  The steady potential is assumed to be 

zero, acknowledging this will not be adequate for high-speed, as shown by the 2½-D 

methods.  By this assumption, the wetted geometry is defined by the mean calm waterline 

at zero speed. 

2.1.1 Far-Field Assumption 

In adopting a strip theory approach, the hydrodynamic forces are determined 

independently for each section of each demi-hull with hull interaction forces included for 

the radiation problem by formally assuming that the demi-hulls are in each other’s far-

field.  That is to say that the solution of the radiation potential on a given “strip” is not 

influenced by the presence of another demi-hull and that the interaction force can be 

treated additively.  To satisfy this condition, all spatially decaying components of the 

radiated wave (i.e. the stationary wave) must go to zero in the distance separating the 

demi-hulls.  The only interaction effect will therefore come from the remaining 

progressive wave. 

Strip theory assumes that the beam and draft of a hull is much less than the length.  

Similarly, the separation distance between hulls must be much greater than the beam in 

order for the far-field assumption to hold.  It is noted then that the separation distance 

between hulls must be O(L).   

When there is forward speed, a progressive wave radiated from one demi-hull 

cannot reflect back upstream and be incident upon the original radiating demi-hull, so the 

far-field assumption would appear to be very good.  For there not to be any influence 

though, it must be shown that the frequency-independent portion of the radiation 

potential, which is satisfied instantaneously, dies out significantly over the separation 

distance of the demi-hulls.  

In the special case of zero-speed, there exists the possibility that the radiated wave 

would have a measurable reflection off of the opposite demi-hull and be incident upon 

the original radiating section.  While it would appear that this violates the condition that 
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the presence of the other demi-hull not influence the solution of the radiation potential, 

the reflected wave can be considered an additive potential of a progressive wave form, 

provided the amplitude and phase were determinable.  In the present theory, reflections 

are not considered (though the force due to the first reflection is), because the solution of 

the diffraction potential on the opposite demi-hull would be required, which would add 

considerable computational expense.  However, it is noted that this is an area for future 

improvement of the theory.  The “no reflections” assumption is poorest in the zero-speed 

case though and should become less noticeable with increasing forward ship speed.  That 

is because only the lowest frequency radiated waves are likely to travel quickly enough to 

be able to reflect off of the opposite demi-hull and re-impact the original radiating hull, 

yet the lowest frequency waves (longest wavelengths) should have the lowest coefficient 

of reflection. 

2.1.2 Other Assumptions 

Consistent with linear theory, it is assumed that the amplitudes of motion are 

small and that the individual potentials can be superimposed in order to find the total 

potential.  Additionally, all strip theory assumptions hold on the solution of a demi-hull.  

This primarily means that derivatives in the x-direction are much smaller than the 

derivatives in the y- and z-directions and that the x-component of the unit normal, n1, is 

much smaller than the y- and z-components of the unit normal, n2 and n3.   

In order to provide faster computations and to simplify the program, the 

implemented code assumes port-starboard symmetry of the ship, though no such 

restriction is set on the geometry of individual demi-hulls, unless the demi-hull is the 

center-hull of a trimaran.  Furthermore, the theory has only been implemented for 

catamarans and trimarans. 

2.1.3 Total Hydrodynamic Potential 

Following the principal of linear superposition, the total velocity potential, Φ, is 

decomposed into a steady potential, φs, and a time-varying potential, φT, that oscillates 

with ti ee ω time dependence.  
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where ζk is the amplitude of body motion in k-th mode.  The six incident far-field 

radiated wave potentials and six diffracted far-field radiated wave potentials correspond 

to each of the six demi-hull radiated wave potentials.  The ambient incident wave 

potential, φ0, is known a priori and is, in the inertial frame, given by equation 2.3. 
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where a is the wave amplitude, ωo is the wave circular frequency (as opposed to 

encounter frequency), k is the wavenumber, and β is the wave heading angle. 

2.1.4 Demi-Hull Radiation Boundary Value Problem 

The boundary value problem solved on the independent demi-hull follows the 

strip theory developed by Salvesen, Tuck, and Faltinsen (1970).  Because the solution of 

the radiation potentials on the radiating demi-hulls is necessary for the determination of 

the interaction potentials, the implemented strip theory is reviewed here.   

The demi-hull radiation boundary value problem is developed in an inertial frame 

that moves with constant velocity, Uo, equal to the ship mean velocity.  The inertial 

reference frame, given by the right-handed axes (x, y, z), has its origin at the intersection 

of the mean free surface, ship centerplane, and midship plane.  The positive x-axis 

extends out the ship bow.  The positive y-axis extends out the port side of the ship.  The 

positive z-axis extends up from the mean free surface. 
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The volumetric domain travelling in the inertial frame is bounded by the sea 

bottom, vertical control surfaces at infinity, the free surface and the wetted ship body.  

The statement of conservation of mass leads to the continuity equation, 

   0=⋅∇ V        (2.4) 

which, when put in terms of the total velocity potential, Φ, leads to the Laplace equation: 

   02 =Φ∇        (2.5) 

The Laplace equation holds true throughout the fluid domain.   

The general (3D) boundary value problem contains boundary conditions on the 

body, the free-surface, the sea floor (in the case of finite depth), and at infinity in the 

(x,y) direction.  The fully nonlinear and 3D boundary value problem has been simplified 

to a series of linearized boundary value problems solved on strips (transverse cuts) of the 

independent demi-hulls.  To differentiate between the solution to the three-dimensional 

radiation potentials and the two-dimensional radiation potential, the variable ψk is 

introduced and defined by equation 2.6. 

  ( ) ( )xzyzyx kk ;,,, ψφ ≈       (2.6) 

2.1.4.1 Boundary Conditions 

The 2D boundary value problem that must be solved is illustrated in Figure 2.1.  

The boundary value problem is solved for the oscillatory motion of a single demi-hull, 

without any influence from or need to satisfy boundary conditions on any other demi-hull 

(represented by the dashed lines).  The only boundary conditions that exist are the 

radiation condition, the free surface boundary conditions, the bottom boundary condition, 

and the body boundary condition. 
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Figure 2.1  2D boundary value problem domain and boundary conditions 

The radiation condition simply states that the radiated waves must exit the domain.  

There are two free surface boundary conditions:  the kinematic and dynamic.  Derived 

from the definition of a free-surface, the condition is set that there is no flow through the 

free-surface, η(x,y,t).  In other words, a particle on the free surface stays on the free 

surface.  This condition is known as the kinematic free surface boundary condition 

(KFSBC), which when linearized and applied at the mean free surface gives: 
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The dynamic free-surface boundary condition (DFSBC) states that the pressure at the 

free-surface is atmospheric, which when linearized and applied at the mean free surface 

leads to: 
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There is no flow through the bottom boundary, leading to the finite-depth bottom 

boundary condition (BBC): 
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where h is the depth.  Alternatively, in the case of infinite depth, the disturbance velocity 

must go to zero as z goes to minus infinity: 

  0=∇ kψ  as z  -∞      (2.10) 

The final condition states that there is no flow through the ship’s hulls, giving the 

body boundary condition (Body BC).  While the other boundary conditions are 

independent of ship speed, due to the linearization and assumption of φs=0, the body 

boundary condition does include ship speed.  The pitch and yaw modes of motion lead to 

an “angle of attack” effect that can not be neglected.  In terms of the general radiation 

potential, φk, the Timman-Newman body boundary condition can be derived as (see 

Timman and Newman, 1962): 
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where α is the displacement vector on the body, ( )321 ,, nnnn =
r  is the unit normal into 

the body, and W  is the total steady velocity.  In this case, because φs=0,  

   iUW o
ˆ−≈        (2.12) 

Alternatively stated, equation 2.11 is written as the well known body boundary condition: 

  koke
k mUni

n
+=

∂
∂ ωφ

  on So    (2.13) 

where nk = ( )2323 ,,ˆ xnxnznynnr −−=×
r  for k=4, 5, 6 (having assumed n1 « n2, n3) 

and the “m-terms” are defined as: 

  ( ) W
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o

rrr 1
⋅∇⋅−=   for k=1, 2, 3    (2.14) 

and   ( ) ( )Wr
U

nm
o

rrrr
×⋅∇⋅−=

1  for k=4, 5, 6    (2.15) 

Following equation 2.12, the m-terms are simply: 

  ( )23 ,,0,0,0,0 nnmk −=        (2.16) 
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At this point, it is convenient to separate the general radiation potential into speed-

independent and speed-proportional parts in the manner of equation 2.17. 

  U
k

e

o
kk i

U φ
ω

φφ += 0         (2.17) 

Taking the partial derivative of equation 2.17 with respect to the body normal leads to: 
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      (2.18) 

Matching terms with equation 2.13, the body boundary condition can now be stated 

separately in terms of 0
kφ  and U

kφ : 
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        (2.20) 

The m-terms, as given in equation 2.16, can be substituted into equations 2.20 and 2.18 to 

show that the forward-speed potentials for surge, sway, heave, and roll are equal to zero, 

while forward-speed potentials for pitch and yaw are equal to 0
3φ  and - 0

2φ , respectively.  

In terms of the zero-speed potentials only, equation 2.17 can be simplified to: 

  0
kk φφ =     k=1, 2, 3, 4    (2.21) 
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Furthermore, taking advantage of the strip theory assumption that the n1 normal vector is 

much smaller than n2 and n3, the n5 and n6 normal vectors reduce to –xn3 and xn2, 

respectively.  From equation 2.19, it is found that  

  
0
3

0
5 φφ x−=         (2.22) 
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and  
0
2

0
6 φφ x=     

The general radiation potential, φk, can now be determined from the solution of the 2D 

radiation boundary value problem in terms of ψk (k=1, 2, 3, 4).  The zero-speed and 

forward-speed components of φk in terms of ψk are summarized in Table 2.1. 

Table 2.1  Zero and forward speed radiation potentials in terms of 2D potential 

k φ0
k φU

k 

1 ψ1 0 

2 ψ2 0 

3 ψ3 0 

4 ψ4 0 

5 −x ψ3 ψ3 

6 +x ψ2 - ψ2 

2.1.5 Hydrodynamic Force Calculation 

The potential flow hydrodynamic force is determined from integration of the 

dynamic pressure, pd, over the mean wetted body.  The dynamic pressure is determined 

from the Bernoulli equation, which appears without simplification and in terms of the 

total hydrodynamic potential (see equation 2.1) as: 

 ( ) ⎟
⎠
⎞

⎜
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⎛ −Φ∇+

∂
Φ∂

−= 22

2
1

2
1

od U
t

p ρ       (2.23) 

Having assumed that φs is 0, and utilizing the vector form, W
r

, of the steady fluid 

velocity from equation 2.12, 

 ( )ti
T

eeW ωφ∇+=Φ∇
r

       (2.24) 

and  ( ) ( ) ( )( )222 2 ti
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Dropping higher order terms, the hydrodynamic pressure from Bernoulli reduces to: 
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Substituting equation 2.12 yields: 
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Therefore, the total (3D) hydrodynamic force in the jth direction is: 
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The linear superposition assumption allows the force contribution from each of 

the various components of the time-varying potential to be calculated separately and 

summed.  Furthermore, the strip theory assumption allows for the longitudinal integration 

of the strip-wise sectional force to obtain the total ship force. 

2.1.6 Numerical Solution of 2D Boundary Value Problem 

The numerical solution of the 2D demi-hull radiation problem follows the method 

developed by Frank (1967), which is commonly referred to as a close-fit method.  A 

section is discretized into 2D “panels” that have a constant source density applied across 

the length of the panel.  The body boundary condition is satisfied at the midpoint of each 

panel and the 2D Green function developed by Wehausen and Laitone (1960) for a 

pulsating source below the free surface is used to satisfy the free surface boundary 

conditions.  The simultaneous solution of the complex source strengths leads to the 

solution of the complex potential. 

As a demonstration of the present interaction theory, only the infinite depth 

solution (as developed by Frank) has been examined.  It should be noted that there is no 

reason why the present theory cannot be applied to the finite depth case, because the 

solution of the demi-hull radiation problem is independent of the interaction theory.  

However, it should be noted that the validity of the far-field assumption must be 

evaluated with respect to the rate of spatial decay inherent to the finite depth problem. 

Frank defines the 2D radiation problem in complex coordinates where 
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z’ = x’+ iy’ is a field point and ζ = ξ+ iη is a source point.  Unlike the present problem 

statement, Frank defines the unit normal on the body as pointing into the fluid and 

defines an ti ee ω−  time dependence.  Figure 2.2 shows a sample catamaran demi-hull 

section in Frank’s coordinate system.  As had been done in the SHIPMO.BM computer 

program (see Beck and Troesch, 1989), in which the present theory has been 

implemented, Frank’s notation and time-dependence will be retained for clarity.  The 

significance of having a -ωet time-dependence versus a +ωet time-dependence is that the 

conjugate of the complex influence coefficients must be taken in order to ensure proper 

phase consistency.  

The infinite-depth Green function from which Frank’s work is based is: 
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..2lnln
2
1,  (2.28) 

where ζ  is the complex conjugate of ζ and represents the source’s image about the free 

surface. 

It should be noted that the source points would not be imaged about the x’=0 

plane (in Frank’s coordinates) when solving for the source strengths, because the 

influence of the opposite demi-hull is not considered in the solution due to the far-field 

assumption. 

 
Figure 2.2  Sample paneled 2D section in Frank’s coordinate system showing inward 

(into fluid) pointing unit normals 

y’ 

x’ 



 24

The Green function given in equation 2.28 can provide insight into the form of the 

radiated wave and subsequently the validity of the far-field assumption.  The first two 

complex log terms are independent of wave frequency and therefore would immediately 

show an influence on the opposite demi-hull.  This “wave-free” portion is the difference 

of the complex log of the distance between the field point and the source and the complex 

log of the distance between the field point and the source’s image about the free surface.  

For the far-field assumption to be valid, the difference of the complex logs must vanish at 

the separation distance of the demi-hulls.  A sample plot of the spatial decay is presented 

in Figure 2.3 for the case of a source point just below the free surface.  For this case, a 

panel length is taken to be O(1), the demi-hull beam O(10), and the demi-hull length 

O(100).  The magnitude of the difference between the complex logs has been normalized 

by the magnitude of the wave-free term at a distance of 1.  In this case, the influence at a 

distance of the demi-hull beam is about 10% of the influence at a point one panel length 

away.  At a distance equal to the demi-hull length, the influence is about 1%.  Therefore, 

the assumption that a demi-hull separation distance must be on the order of the ship 

length in order for the far-field condition to hold seems to be valid for the wave-free 

influence.  In fact, a separation distance on the order of the demi-hull beam could prove 

to be sufficient. 
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Figure 2.3  Normalized example of wave-free term spatial decay 
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The third term in the Green function is a principal value integral that has a non-

obvious effect by inspection.  The evaluation of the integral can be solved numerically 

when it is re-written as shown in equation 2.29, where E1 is the complex exponential 

integral given in equation 2.30. 

 
( ) ( ) ( )( )[ ]ζνπ

ν
ζν

ζ

−−−=
−

−−
∞ −−

∫ ziEiedk
k

eVP zi
zik

1
0

..     (2.29) 

 ( )( )
( )
∫
∞

−−

−

=−−
ζν

ζν
zi

t

dt
t

eVPziE ..1       (2.30) 

The ( )ζν −− zie term on the right-hand-side of equation 2.29 represents the equation for a 

progressive wave.  It is multiplied by iπ, a constant, and the complex exponential integral 

(E1).  The first term will not decay and therefore will exist in the far-field.  The complex 

exponential integral, however, will decay spatially with increasing separation distance.  

Unlike the complex log terms in the Green function, the complex exponential term is 

dependent on wavenumber.  To demonstrate the rate of decay, the E1 function has been 

plotted in Figure 2.4 for three wavelengths as a function of the separation distance from a 

source just below the free surface.  As has been done in Figure 2.3, the values of the 

functions have been normalized by their value at a separation distance equal to a panel 

length.  The solid line represents the E1 decay for a wavelength on the order of a panel 

length.  Its decay rate is nearly identical to the wave-free term’s decay rate, which is 

plotted for reference.  The short-dashed line represents E1 spatial decay for a radiated 

wavelength on the order of the demi-hull beam.  Like the wave-free term, it too 

experiences significant decay at a separation distance on the order of the beam.  The E1 

decay for a wavelength on the order of the ship length, as shown by the long-dashed line, 

is not nearly as rapid.  On the order of a beam separation distance, the function remains at 

more than 30% of its magnitude at a distance equal to a panel length.  Furthermore, when 

plotted without normalization, as seen in Figure 2.5, it is clear that the magnitude of the 

term is much larger for longer radiated wavelengths.  Still, the requirement of a 

separation distance on the order of the ship length in order for the far-field assumption to 

hold appears to be sufficient.  A separation distance any less than the ship length, 

however, may prove to violate the far-field assumption. 
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The final term in the Green function is a pure progressive wave, so there will be 

no spatial decay and, therefore, this wave will appear in the far field. 
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Figure 2.4  Normalized examples of complex exponential integral spatial decay 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 10 100
|z-zeta_bar|

Fu
nc

tio
n 

M
ag

ni
tu

de

E1 - wavelength O(panel)
E1 - wavelength O(beam)
E1 - wavelength O(ship length)
ln(z-zeta) - ln(z-zeta_bar)

O (panel length) O (beam) O (ship length)
 

Figure 2.5  Complex exponential integral spatial decay, non-normalized 
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2.2 Radiation Interaction Force 

The radiation interaction force is obtained by determining the incident wave 

forces on a demi-hull section, where the incident wave is the far-field radiated wave from 

a section on another demi-hull.  Because the far-field radiated wave is a progressive wave 

and because the “receiving” section has had no influence on the creation of the incident 

radiated wave, the force is equivalent to a Froude-Krylov force and a diffraction force 

that would be experienced from an incident ambient wave.  That is, there is a force due to 

the undisturbed incident radiated wave potential and a force due to the diffracted radiated 

wave potential.  In the case of the radiation interaction forces, though, there is a unique 

radiated wave for each of the six modes of motion.  For this reason, it is necessary to 

define twelve radiation interaction potentials (six incident and six diffraction) in the 

problem statement, as shown in equation 2.2. 

2.2.1 Interaction Section 

The interaction potentials at a given demi-hull section of interest are a function of 

the radiating section.  For that reason, the first step in determining the radiation 

interaction force is to determine the point on the ship that is radiating a wave upon the 

section.   

It is known that the radiating section will be upstream from the receiving section, 

or directly opposite the receiving section in the limit of zero ship speed.  This is because 

the assumption is made that the radiated waves travel directly out the transverse axis of a 

2D section.  The radiated wave can be considered a packet of energy that takes time to 

reach the other demi-hull, traveling at the wave group velocity, Vg, where 

  
e

g
gV

ω
⋅=

2
1   in deep water      (2.31) 

It is important to note that the radiated wave has frequency equal to the ambient wave 

encounter frequency and therefore the radiated wavelength, λ, (and its wavenumber, k) is 

not the same as the ambient incident wavelength.  The relationship between ωe and the 

ambient incident wave frequency, ωo, is given in equation 2.32. 
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The relationship between ωe and the radiated wavelength is given by the linear 

deep water dispersion relation given in equation 2.33. 

  
λ
πω 22 ⋅== ggke        (2.33) 

Even though a wave crest travels with the phase speed and the waves are incident 

upon the receiving section at the encounter frequency, the “wave front” travels at the 

group velocity; a point made by Sun (1982), Ronæss (2002), and Faltinsen (2005).  If the 

ship has forward speed, then the receiving demi-hull will have moved forward in the time 

it takes for the radiated wave to arrive.  In a ship-fixed reference frame, the radiated wave 

essentially takes on a vector defined by its velocities in the longitudinal (-Uo) and 

transverse (Vg) directions.  This vector has been demonstrated in Figure 2.6, which shows 

the free surface elevation contours, as predicted by the LAMP 3D panel code (see Lin, et 

al., 1999), of a catamaran at forward speed oscillating in pure heave.  The bottom contour 

plot shows the radiated waves for oscillation at a frequency twice that in the top contour 

plot.  The (-Uo, Vg) vector has been drawn on both contour plots to illustrate the validity 

of this assertion.   

From equation 2.32, it is seen that a higher encounter frequency will radiate 

waves with a smaller group velocity, which means the waves from a radiating section 

will impact the opposite demi-hull at a point farther downstream than if the encounter 

frequency were higher.  If the ship is moving fast enough or the radiated wave is slow 

enough, the radiated wave may not impact any point on the opposite demi-hull at all.  Of 

the two cases depicted in Figure 2.6, only the low-frequency case appears to have the 

radiated wave impacting a portion of the opposite demi-hull.  The high-frequency case 

radiates waves that travel slower, so given the forward speed of the ship and the group 

velocity of the waves, even the forward-most edge of the radiated waves (represented by 

the drawn vectors) on the inboard side of the demi-hulls will not reach the opposite demi-

hull within the time it takes the ship to travel a distance equal to the ship length, L.  In the 

present theory, such a case would have zero interaction force. 
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Figure 2.6  Free surface contours for low (top) and high (bottom) frequency heave 

oscillations with forward speed 

Uo 

Vg 

Uo 
Vg 
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To determine the x-coordinate, x*, of the radiating demi-hull where the radiating 

section lies, it is necessary to define a representative transverse distance between the 

radiating section and the receiving section.  This separation distance over which the 

radiated wave will travel is needed to determine how far longitudinally the ship will 

travel in the same amount of time for the radiated wave to cover the transverse distance.  

The longitudinal distance, Dsweep or sweep-down distance, defines which section on the 

opposite demi-hull is interacting with the section of interest.  Because all points on the 

radiating section have an influence on the far-field radiated wave, the representative y-

coordinate of the radiating section is taken to be its transverse center of buoyancy (TCB).  

Likewise, the representative y-coordinate of the receiving section is also taken to be its 

TCB.  While there is no restriction that sectional TCB remains a constant, strip theory 

assumptions restrict any change in TCB as a function of x to be small.  However, because 

TCB can change, the solution of Dsweep then becomes dependent on speed, encounter 

frequency, and TCB(x).  The equation for Dsweep can then be defined as: 

 ri
g

ship
sweep TCBTCB

V
U

D −⋅=        (2.34) 

where TCBi is the TCB of the receiving section’s TCB, which is known, and TCBr is the 

radiating section’s TCB, which is unknown.  Dsweep is always positive, because the ship 

speed is greater than or equal to zero.  The solution of x* is then given as: 

  x* = xi + Dsweep       (2.35) 

where xi is the x-coordinate of the receiving station of interest. 

Figure 2.7 illustrates the radiated wave vectors in an example catamaran case.  

The demi-hulls of the catamaran are represented by their traces of sectional TCB.  While 

the radiated wave vectors are parallel, Dsweep is not necessarily constant, due to variable 

TCB.  It is also noted that the radiating source points are likely not to coincide with a 

defined section cut, which means TCBr(x) must be inferred.  In the present theory, 

because change in TCB is assumed to be small, it is deemed sufficient to assume a linear 

variation of TCB between known values at defined sections.   
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Figure 2.7  Representation of radiated wave vectors relating source points to 

receiving points 

The solution of the radiating section location, x*, is obtained by solving the 

reverse problem of finding Dsweep for the radiated waves from a defined section.  That is, 

using the known transverse distance TCBi of the receiving section of interest, the sweep-

down distance of candidate radiating sections can be calculated using their known TCBr.  

As shown in Figure 2.8, the value of x* can be bracketed once successive candidate 

sections are shown to produce radiated waves that impact the opposite demi-hull at points 

forward and aft of the receiving section of interest.  A linearly varying expression for 

TCBr(x) can be generated over this interval and x* subsequently determined algebraically 

using the expression for TCBr and equations 2.34 and 2.35. 

 
Figure 2.8  Radiated wave impact locations from defined sections 
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2.2.1.1 Trimaran Special Case 

The determination of the radiating source location for a catamaran is fairly 

straight forward.  Having assumed no reflections, a given demi-hull can only interact 

with the opposite, identical demi-hull.  In the case of a trimaran, it is necessary to define 

the possible scenarios and the assumptions used in determining the interacting sections. 

A trimaran’s main-hull will radiate waves outward that can only interact with the 

outer-, or sub-hulls.  This is illustrated in Figure 2.9.  However, the sub-hulls’ radiated 

waves can impact either the main-hull or the opposite sub-hull.  In the present theory, the 

assumption is made that there is only one possible solution.  That is, if the radiated wave 

vector from a sub-hull crosses the centerline at a point where the main-hull has wetted 

sectional area, then the radiated wave will impact only that section and not continue on 

with the possibility of impacting the opposite sub-hull.  The possible impact scenarios for 

waves radiated from the sub-hulls is given in Figure 2.10. 

 

Figure 2.9  Possible impact scenarios for trimaran main-hull’s radiated waves 

 

 
Figure 2.10  Possible impact scenarios for trimaran sub-hulls’ radiated waves 
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2.2.2 Solution of Interaction Potentials and Forces 

The solution of the interaction potentials and forces depends on the solution of the 

far-field radiated waves produced by each demi-hull due to oscillation in all 6 degrees of 

freedom in calm water.  Therefore, the properties of the radiated wave and then the 

radiation interaction force can be solved only once the demi-hull radiation potential has 

been determined at each section of all demi-hulls and the radiating source section 

locations have been identified as described in the previous section.  Solution of the 

incident far-field radiation potential at each panel of the receiving section leads to both 

the incident far-field interaction force and the diffraction force due to the incident 

radiated wave. 

2.2.2.1 Incident Far-Field Radiated Wave Potentials and Forces 

There are three options in determining the incident far-field radiated wave 

potentials on the receiving section’s panels due to each mode of motion of the radiating 

section: 

1. Damping coefficients of radiating source section 

2. Direct integration of far-field Green function at receiving section’s panels 

3. Analytical determination based on direct integration of far-field Green 

function at reference point – Present approach 

The first method, using damping coefficients of the radiating source section, 

recognizes that the amplitude of the far-field radiated wave can be related to the damping 

coefficient of an oscillating body (see Newman, 1977, or Faltinsen, 1990) through an 

energy flux analysis.  The relationship is found to be 

  2

3

g
ba kkk ρ

ω
=        (2.36) 

where ak is the amplitude of the radiated wave and bkk is the damping coefficient for the 

k-th mode of motion.  Noting that the radiating source section at x* does not necessarily 

coincide with a defined section for which the radiation potentials have been solved, such 

a method would be attractive because the amplitude of the far-field wave could be 

determined by interpolating the sectional damping coefficients.  However, this approach 

was ultimately deemed unsuitable because it does not capture phase information.   
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The second method directly integrates the influence of the radiating section’s 

panels’ source strengths at each of the panels on the receiving section.  The influence is 

determined by the far-field Green function, GFF, which is found by retaining only the 

progressive wave terms of the Green function given in equation 2.28.  This solution is 

expressed continuously and for the discretized problem by: 
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where I
kl

~
,ψ  is the 2D incident far-field radiated wave potential at panel l due to motion in 

the k-th mode, Qm,k is the source strength density on panel m of the radiating section due 

to motion in the k-th mode and GFF
l,m gives the influence of panel m on panel l of the 

receiving section.  Evaluating 2.38 essentially means that radiating sections are paired 

with receiving sections as shown in Figure 2.11, Figure 2.12, and Figure 2.13.  In these 

figures, the receiving section’s positive-y side is shown, because the potentials and forces 

only need to be obtained on this side due to port-starboard symmetry.  It should be noted, 

however, that the radiating sections on the negative-y must multiply by -1 the source 

strengths, Qm,k, for lateral plane modes, because they will have been developed in the 

demi-hull radiation problem for the positive-y demi-hull.   

The simple examples presented in these figures show only a few panels per 

radiating section.  To obtain a converged solution, many more panels are likely to be 

required.  Following equation 2.38, it can be seen that a detriment of this approach is that 

the solution of the far-field incident radiated wave potential, I
kl

~
,ψ , on each panel requires 

as many multiplications as there are panels on the radiating section, which in a typical 

application is on the order of 15-20.  This can lead to a more computationally expensive 

operation than desired.  Additionally, because the panelized definition of the section 

geometry and the source strengths are available only at the defined sections cuts, this 

calculation would have to be done twice – once for the section forward of x* and once for 

the section aft of x* – and the answer interpolated from the two solutions. 
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Figure 2.11  Example arrangement of radiating and receiving section panels 
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Figure 2.12  Example arrangement for trimaran sub-hulls radiating waves onto the 

main-hull 
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Figure 2.13  Example arrangement for trimaran main-hull radiating waves onto the 

outer-hull 
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The third approach, which has been applied for the present theory, takes 

advantage of the known form of a progressive wave potential to analytically define the 

far-field potential at all points in the y-z plane of the receiving section.  Similar to the 

second approach, the far-field Green function is used to integrate the effect of all panels 

on the radiating section.  Rather than evaluate this influence at each panel on the 

receiving section, a reference point is chosen for a single evaluation.   

In order to present the full details behind this approach, it is first helpful to 

develop the form of the incident far-field radiation potential for all modes of motion, k.  

Because the source strengths, Qm,k, in equation 2.38 satisfy the demi-hull radiation 

boundary conditions on the radiating section, the far-field potentials generated using the 

source strengths will take the form of the demi-hull radiation potentials as given in Table 

2.1.  That is, the far-field incident radiation potentials can be described in terms of the 2D 

zero-speed potentials and the radiating section’s x-coordinate, x*, in the following 

manner:  
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The key difference in the far field potentials from the radiation potentials is that 

the pitch and yaw modes use x* as a multiplier, not the x-value of the section where the 

potential is being evaluated.  This is because the far-field radiated waves incident upon 

the receiving section have been generated by the motion of the radiating section.  In the 

case of angular motion, the further from the ship’s origin, the larger the amplitude of the 

motion and subsequent radiated waves will be.  The resulting radiated wave pattern is 

demonstrated by Figure 2.14, which compares the free surface contours of a catamaran 
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oscillating in pitch with forward speed and the same condition for the catamaran 

oscillating in heave.   

 

 

 

Figure 2.14  Free Surface contours for catamaran oscillating in pitch (top) and 

heave (bottom) at identical frequency and forward speed 
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The solution of the 2D incident wave interaction potential then follows from 

equation 2.38 using the source strengths that were determined in the demi-hull radiation 

potential solution.  The far-field Green function, GFF, is obtained by retaining the terms in 

the Green function shown in equation 2.28 that do not decay spatially, as described in 

section 2.1.6.  Following Frank’s notation, GFF
l,m can be given as: 

  ml
FF
ml

FF
ml iJIG ,,, +=        (2.40) 

The conjugate has been taken of the Green function to align the influence coefficients in 

equation 2.40 with the e+iωt time dependence.  As noted in section 2.1.6, Jl,m is entirely a 

progressive wave term that does not decay, so there is no difference between Jl,m in 

equation 2.40 and the imaginary term in equation 2.28.  The real term in equation 2.40, 

Il,m, is derived from the portion of the principal value integral term in equation 2.28.  

When stated as given in equation 2.29, the progressive wave portion of the principal 

value term is readily apparent.  However, care must be taken that the proper sign is 

carried on the wave terms to ensure that the radiation condition (outgoing waves) is 

satisfied. 

The complete IFF
l,m and Jl,m terms are given for the discretized problem as: 
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Because the numerical solution utilizes the symmetry of the ship, the demi-hull radiation 

source strengths have been solved on only the positive-y portion of the ship (i.e., the port 

catamaran demi-hull, the port side of a trimaran’s main-hull or the port trimaran sub-

hull).  The “imaged” panels of the radiating section provide the influence of the starboard 

side of the ship and are included in equations 2.41 and 2.42 by the second quantities in 
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each equation (led by the +/- sign).  The + sign is taken for lateral modes of motion 

(k=2,4), while the - sign is used for the vertical modes of motion (k=1,3).  This is due to 

the direction of the panels being reversed on the imaged side and the fact that the source 

strengths for lateral modes are 180 degrees out of phase with the positive-y panels on 

which the source strengths are known. 

With the aim being to develop the far-field incident radiated wave potentials on 

the positive-y side of the ship where all other hydrodynamic forces are being determined, 

the radiating sections will be generating waves from the starboard (negative-y) demi-hull 

or sub-hull.  As such, it is the influence of the imaged panels that is needed.  In the case 

of a trimaran’s main-hull as the radiating section, the influence of the positive-y panels 

must also be included.  However, even when the trimaran main-hull is the receiving 

section, the influence of the starboard sub-hull only is included so that the wave potential 

is well-defined.  The force is eventually multiplied by 2 due to the symmetry of the 

problem. 

The far-field Green function retains only progressive wave terms, which means 

that the far-field potentials obtained by equation 2.38 will take the form of a progressive 

wave.  Having limited the radiating sections to those generating waves out the positive-y 

axis, the far-field incident radiation potential can be expressed as: 

  ( ) ( ) ikykzI
k

I
k eexxxzy −= **,;, ~~ ψψ     (2.43) 

where I
k
~ψ is a complex constant for k=1,2,3,4.  By evaluating the influence of a radiating 

section’s panels at a single reference point, such as (0,0), I
k
~ψ  can be determined.  

Expressing the potential in this manner then allows the potential to be determined at an 

arbitrary point without having to resort to integrating the panels’ influence at that point.  

Additionally, I
k
~ψ  can be pre-calculated and stored with the radiating section, because it 

is independent of the receiving section.  If the radiation problem is pre-computed for a set 

of basis encounter frequencies, intermediate values can be obtained simply by 

interpolation, which allows for rapid generation of hydrodynamic coefficients for 

arbitrary speed-heading and ambient incident wave combinations.  Perhaps more 

importantly, this value can be interpolated for the exact radiating source section at x* 
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from the defined sections forward and aft of x*.  Once the interpolated value of I
k
~ψ  has 

been obtained for the x* relevant to the receiving section of interest, the values of I
k
~ψ at 

the midpoints of each of the section’s panels can be calculated from equation 2.43. 

With the potentials determined at the panel midpoints on the receiving section, the 

forces due to the incident far-field radiated wave potentials can be found via equations 

2.44 and 2.45.   
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Though the partial derivatives with respect to x are considered small in strip theory, they 

can be approximated by using Tuck’s theorem, which is given from the demi-hull 

radiation problem as: 
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where 
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−=∇⋅ 0  and mj=(0, 0, 0, 0, n3, -n2) in the present problem.  Substituting 
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~I for φk, the incident interaction force can be written as: 
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Combining equations 2.39 and 2.47, the total (3D) ship forces become: 
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In the present approach, sectional incident radiated wave force are defined as: 
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which leads to a total ship force in the j direction due to motion in the k-th mode of: 
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2.2.2.2 Diffracted Far-Field Radiated Wave Forces 

The second half of the radiation interaction problem is determining the forces due 

to the diffraction of the incident radiated wave.  Rather than solving for the diffracted far-

field radiated wave potential, D
k
~φ , which would be computationally expensive, the 

Haskind relation will be used to develop a sectional force. 
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To develop the total ship forces due to the diffraction of the incident radiated 

wave, the force via pressure integration is given by the following equations for force in 

the j-th direction due to motion in the k-th mode: 
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Using Tuck’s theorem, as given in equation 2.46, the integrated force can be rewritten as: 
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From the demi-hull radiation problem, the quantity ( )jej mUin 0−ω  is recognized as the 

body boundary condition from equation 2.13, which is repeated here (for motion in mode 

k) as:  
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it follows from equation 2.54 that 
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Using Green’s theorem to change what 
n∂
∂  acts on, equation 2.55 becomes: 
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The body boundary condition for the diffracted radiated wave potential is: 
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This equation allows the force equation to be given in terms of only the radiation 

potentials at the receiving section and the incident far-field radiated wave potentials, as 

given by: 
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It is noted that both n1 and 
x

I
k

∂
∂ ~φ are small quantities according to the present strip theory, 

except for when k=5 and 6, so their product will be neglected when k=1, 2, 3, and 4.  If 

Dsweep is assumed to be approximately constant (i.e., TCB(x) is constant + ε*x), then 

x

I
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∂
∂ ~φ for k=5 and 6 follows from 2.39 and 2.43 to be: 
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Equation 2.43 also yields: 

  I
k

I
k ik
y

~
~

ψ
φ

⋅−=
∂

∂
      k=1,2,3,4,5,6     (2.60) 

  I
k

I
k k
z

~
~

ψφ
⋅=

∂
∂   k=1,2,3,4,5,6     (2.61) 

Therefore, 
n

I
k

∂
∂ ~φ

 can be summarized as: 

 ( ) I
k

I
k knikn
n

~
32

~

ψφ
+−=

∂
∂        k=1,2,3,4  (2.62) 

( ) I

e

o
I

i
U

xkniknn
n

~
3321

~
5 * ψ

ω
φ

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−⋅+−+−=

∂
∂      k=5 



 44

( ) I

e

o
I

i
U

xkniknn
n

~
2321

~
6 * ψ

ω
φ

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅+−+=

∂
∂   k=6 

Substitution of equation 2.62 into 2.58 leads to: 
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From the demi-hull radiation problem, Table 2.1 provides the values for φ0
j and 

φU
j in terms of the zero speed sectional radiation potentials, ψj.  Following the assumption 

that the total ship force is approximately equal to the lengthwise integration of the 

sectional forces, the sectional forces reduce to: 
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The total ship forces due to the diffraction of the incident radiated wave can then 

be obtained by integrating the sectional forces over the length of the ship, as given by: 
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2.3 “3D” Added Mass and Damping Coefficients with Forward Speed 

The total 3D added mass and damping coefficients can be determined once the 

radiation forces and the radiation interaction forces have been calculated.  The 

conventional Salvesen, Tuck and Faltinsen (Salvesen et al., 1970) forward speed 

corrections are applied to the independent demi-hull radiation added mass and damping 

coefficients to obtain Ajk and Bjk.  The integrated added mass and damping coefficients 

from the interaction forces are obtained via equations 2.66 and 2.67.   
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The independent demi-hull and interaction added mass and damping coefficients 

are subsequently combined as given by equations 2.68 and 2.69 to create the final 3D 

coefficients to be used in the equations of motion.   

 ~
,,, kjkjkj AAA +=         (2.68) 

 ~
,,, kjkjkj BBB +=         (2.69) 

2.4 Other Forces and Equations of Motion 

To complete the frequency-domain solution of the multihull ship motion problem, 

the wave excitation hydrodynamic forces, fluid hydrostatic forces, and viscous forces 

must be determined. 

2.4.1 Ambient Wave Exciting Forces 

The ambient wave excitation forces are the forces due to φ0 (Froude-Krylov 

forces) and φ7 (diffraction forces).  By definition, there are no interaction effects in the 

Froude-Krylov force.  It is assumed that the interaction effects for the incident wave 

diffraction forces are also near zero and can be neglected.  Consequently, the wave 

excitation forces can be calculated on the individual independent demi-hulls following 

traditional linear strip theory methods. 
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2.4.1.1 Froude-Krylov Forces 

Applying the incident wave potential given in equation 2.3 to equation 2.27, the 

sectional and total ship Froude-Krylov forces are: 
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jj dleengaxf βρ sin

0   j=1,2,3,4    (2.70) 
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2.4.1.2 Diffraction Forces 

As was done for the diffraction force due to the incident far-field radiated wave, 

the diffraction force due to the ambient incident wave is found by using the Haskind 

relation.  The sectional and total ship forces are derived similar to F~D
jk, except the 

incident wave potential is given by equation 2.3.  The sectional diffraction force, hj(x), 

and the total ship diffraction forces are: 

 ( ) ( )( )∫ −+−=
xc

j
ikykz

j dleenninkxh ψββρ βsin
213 sincos  j=1,2,3,4 (2.71) 

( )∫ −=
L

j
ikx

j dxxheF βcos
7,      j=1,2,3,4  

( )∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= −

L e

oikx dxxh
i
U

xeF 3
cos

7,5 ω
β     j=5  

( )∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

L e

oikx dxxh
i
U

xeF 2
cos

7,6 ω
β     j=6  

2.4.2 Hydrostatic Forces 

Consistent with linear theory, the hydrostatic forces are linear, which means they 

can be expressed as stiffness coefficients developed from waterplane properties.  Because 

the mean wetted portion of the ship is considered to be invariant with ship speed, the 

stiffness coefficients, Cjk, are also invariant with speed.   
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2.4.3 Viscous forces 

In the present approach, there has been no attempt to develop a viscous force 

model specific to multihull ships.  An assumption is made that viscous roll damping 

models, such as the model employed in this method, are still appropriate for multihulls.  

Furthermore, it is noted that the increased wavemaking damping in roll due to the nearly 

vertical motion of outboard demi-hulls will be automatically captured by the radiation 

force model. 

2.4.4 Equations of Motion 

Once the exciting forces and the hydrostatic and hydrodynamic coefficients have 

been determined, the equation of motion can be solved.  In the present approach, the 

origin is taken at midship, so the mass matrix becomes 
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and the equation of motion is given by: 

 {-ωe
2[M+A] + iωe[B] + [C] } {ζ} = {F}    (2.72) 

Noting that the ship is symmetric about the centerplane, the vertical and lateral plane 

forces and motions will remain de-coupled.  Therefore, equation 2.72 will be solved 

independently for the vertical and lateral plane motions to obtain the complex motions, ζ. 

 

 



 48

 

 

 

Chapter 3 

3 Nonlinear Time-Domain Solution 

 

When a ship is operating in large amplitude waves, the hydrodynamic forces and 

subsequent motions of the ship can no longer be considered to be in the linear regime.  

Therefore, in order to provide more accurate predictions of a multihull’s motion in large 

waves, the significant nonlinear forces must be captured.  Because the problem is not 

linear, the motions must be calculated in the time domain. 

3.1 General Formulation 

Beck and Reed (2001) note that a common approach for solving the nonlinear 

time-domain problem is to employ a “blended method” that attempts to capture the most 

significant nonlinear forces.  A blended method treats the large nonlinear forces more 

exactly while the other forces remain linear.  The principal nonlinearity in the 

hydrodynamic forces derives from the time-varying wetted geometry, which affects the 

evaluation of all hydrodynamic forces.  However, it has been argued (see, for example, de 

Kat, 1994) that the most important nonlinear forces to capture are the hydrostatic and 

Froude-Krylov forces on the time-varying wetted geometry.  This approach of “body-

exact” hydrostatic and Froude-Krylov forces is taken in the present theory, with all other 

fluid forces considered linear. 

The problem to be solved is the large amplitude seakeeping problem, as opposed 

to the maneuvering-in-waves problem, which means that large lateral motion (such as 

lateral drift or heading change) and change of speed are not considered.  Such an analysis 

would require a maneuvering model and propulsion model, as well as an effective 

heading control system.  However, to provide generality, the environment is defined in 
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the world axis system, which can be linked to the inertial axis system used in the 

frequency-domain solution by: 

 X = x + Uot         (3.1) 

Y = y 

Z = z 

3.2 Wave Environment 

The wave environment is considered linear and can be described by the incident 

wave velocity potential for regular seas or the superposition of the incident wave velocity 

potentials for each frequency component of the wave spectrum in an irregular sea.   

The total wave elevation, ηtotal, at a point in the world coordinate system is then 

given by: 
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where An is the amplitude and εn is the phase of the n-th wave component.  In this 

coordinate system, the circular frequency of the wave component is used, not the 

encounter frequency.   

The wave pressure equation utilizes Wheeler stretching (Wheeler, 1969) when 

determining the pressure at a given point.  This “pressure stretching” method attempts to 

provide a more accurate representation of the dynamic pressure near the free-surface by 

ensuring that the total fluid pressure is 0.0 on the undisturbed free-surface.  The 

hydrostatic pressure, pHS, and dynamic, or Froude-Krylov, pressure, pFK, are: 

 gZp HS ρ−=          (3.3) 
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3.3 Forces 

In the present blended method theory, the hydrostatic and Froude-Krylov forces 

are nonlinear while all other hydrodynamic forces are considered to be linear.  The linear 

forces have been calculated in the frequency domain as described in the previous chapter. 
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3.3.1 Radiation Force 

In the time-domain, there exists a memory effect in the radiation force due to the 

waves the ship has produced in the past.  For a multihull ship, the memory effect at a 

given section is not only due to the waves that the section produced, but also the waves 

that were produced by a section upstream.  For this reason, attempting to capture the 

nonlinear aspect of emerging multihull sections would be extremely difficult, given the 

interactions.  For a monohull ship, if memory effects were to be ignored (i.e. use a single 

frequency’s coefficients), the nonlinear body-exact radiation force could be approximated 

by integrating 3D added mass and damping coefficients from scaled sectional 

coefficients, where the scaling is based on the change in draft of a section.  One may 

argue that the equivalent approach for multihulls with interaction would be to scale a 

section’s demi-hull added mass and damping coefficients by its draft at time, t, then add 

scaled sectional interaction added mass and damping coefficients based on the draft of 

the source section at time = t-(x*-x)/U.  Such an approach could be investigated in the 

future, but has not been considered in the present theory. 

The radiation forces are considered linear in the present blended method 

approach.  To properly account for the memory effect in the linear radiation force in the 

time domain, the use of a convolution integral would be required.  The expression for the 

radiation force in the j-th direction would then be given as: 
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where the kernel function, Kjk is… 
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and the ship’s velocities, kx& , and accelerations, kx&& , are relative to the inertial 

(seakeeping) frame. 

In practice, the memory effects need only be considered for a finite length of time 

in the past, beyond which the influence of a wave that has travelled away from the hull 

will be negligible.  It should be noted that a sufficient window length for a monohull may 

not be sufficient for a multihull, due to the interaction effects.  For a multihull, the 
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window must be long enough such that it covers the time for the highest frequency 

radiated waves (that produce a measurable interaction force) to reach the receiving demi-

hull.   

In the present approach, because the code serves for demonstration purposes, a 

limiting assumption has been made to simplify the implementation of the radiation force.  

This assumption states that Ajk(ω) = Ajk(∞) = Ajk and, likewise, Bjk(ω) = Bjk(∞) = Bjk.  

The ramification of this assumption is that the kernel function, Kjk(t), becomes zero and 

there are no memory effects to be calculated.  By assuming that the added mass and 

damping coefficients are frequency-independent, the forces are valid only in the case of 

single-harmonic ship response, provided that the selected frequency for the coefficients 

matches the frequency of the ship motion.  For the demonstration code, such an 

assumption is reasonable for regular waves, and perhaps in the case of a narrow-banded 

irregular wave spectrum, when the regular wave or spectrum peak encounter frequencies 

are used in selecting the added mass and damping coefficients.   

3.3.2 Diffraction Force 

The diffraction force in the present time-domain theory is assumed to be linear.  

As with the radiation force, the diffraction force could be obtained through the use of a 

convolution integral.  However, using the assumption that there are no significant 

memory effects in the diffraction problem, the total diffraction force is obtained as a 

linear superposition of the force due to each frequency component of the defined ambient 

wave environment.  An assumption of nominally constant speed and heading is made, 

thereby allowing a constant ωe to be defined for a given frequency component.  The time-

domain diffraction force in the j-th direction is then obtained by: 
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where ( )enjF ,
7 ω  is the frequency-domain diffraction force coefficient (force per unit wave 

amplitude) for the total ship. 
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3.3.3 Hydrostatic and Froude-Krylov Force 

The combined hydrostatic and Froude-Krylov force is assumed to provide the 

most significant nonlinear contribution to the multihull large amplitude ship motion 

problem.  In the present time-domain theory, the hydrostatic and Froude-Krylov 

pressures are evaluated on the exact wetted surface geometry, as determined by the 

intersection of the undisturbed incident wave and the instantaneous position of the ship.  

Given the breadth of typical multihull designs, even a small roll angle can lead to large 

displacement of the outer-hulls, resulting in potentially large changes to the wetted 

surface geometry.  Figure 3.1 shows a cross-section from an example trimaran design at 

even keel with a large amplitude wave overlaid.  Figure 3.2 demonstrates how, in the 

same wave-field as Figure 3.1, even small body motion can lead to significant changes in 

wetted geometry.  In this case, just 7 degrees of roll and small heave has a noticeable 

effect. 

 
Figure 3.1  Example trimaran cross-section (even-keel) in large waves 

 
Figure 3.2  Example trimaran cross-section (with motion) in large waves 



 53

The body-exact hydrostatic and Froude-Krylov force is obtained on a sectional 

basis by integrating the pressures as given by equations 3.3 and 3.4 over the time-varying 

wetted geometry and then integrated over the length of the ship to find the total ship 

force. 
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In the solution of the sectional forces, the wave elevation is evaluated per 

equation 3.2 at the (X,Y) position of each vertex of a two dimensional panel on a given 

section and compared to the Z position of each vertex to determine if the panel is wetted.  

At each time step, it is necessary to determine the position of each 2D panel in world 

coordinates so that the free surface elevation can be evaluated and compared to the 

panel’s Z-value at that (X,Y) location.  To do so, the following transformation is used: 
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and φ, θ, and ψ are the Euler angles for roll, pitch, and yaw, respectively and η1, η2, and 

η3 are the surge, sway, and heave displacements. 

3.4 Equations of Motion 

Although the total hydrodynamic forces in the time-domain theory are nonlinear, 

the implemented equations of motion are linear.  While the focus of this work is on 

seakeeping, where pitch and yaw can be considered small angles, roll could potentially be 
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large.  A further improvement would be to extend the time-domain solution to use the 

fully nonlinear Euler equations of motion. 

In the present implementation, the equations of motion remain separated between 

vertical and lateral plane motions.  That is, the vertical and lateral planes are still 

considered to be de-coupled.  Such an approximation is not reasonable in general, but 

sufficient for demonstration purposes and for examining pure head or following seas.  

The 3x3 matrix equation to be solved separately for the vertical and lateral plane 

accelerations is simply: 

 [ ]{ } total
jkjk FM =η&&         (3.9) 

where Fj
total = Fj

R + Fj
D + Fj

HSFK + Gj 

and   0=jG     j=1,2,6 

 gMG j ⋅−=    j=3 

 4sinη⋅⋅⋅−= gj zgMG  j=4 

 ( )5sinηggj zxgMG +⋅=  j=5 

Following the solution of the accelerations, the accelerations and velocities are integrated 

in time for the velocity and position, respectively, at the next time step using a fourth-

order Runge-Kutta integration scheme.   
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Chapter 4 

4 Verification and Validation 

 

The presently developed theory and its implementation in a code, referred to as 

NSHIPMO_multihull, has undergone verification and validation to assess its capabilities.  

Verification ensures that the theory has been implemented correctly in the computer 

code.  Validation ascertains the ability of the theory to correctly model the real-world 

physics.  Verification was performed first to ensure that any validation conclusions could 

be attributed to the theory, rather than improper implementation of the theory. 

4.1 Verification 

The computer code was developed through substantial modification of the 

SHIPMO code.  The definition of section geometry was changed to be done by 2D panels 

versus successive points, to ensure that gaps (due to a bulb or main-hull to sub-hull 

separation on a trimaran) are properly modeled.  The first part of the verification process 

examined simple monohull and “2D image” catamaran (full transverse cut of ship) cases 

to ensure that the new code matched the old code’s results.  Verification then focused on 

ensuring that the radiation interaction forces were properly implemented. 

4.1.1 Geometry Parsing 

The change in geometry definition led to a need to verify that the program 

correctly interprets and processes the input for the demi-hull(s).  The sectional geometry 

definition is shown in Figure 4.1, where panels 1 through 7 are defined by their endpoints 

(A_nodeY, A_nodeZ) and (B_nodeY, B_nodeZ).  The waterline slicing subroutine 

determines which panels are wetted in the linear sense (below the calm waterline) and 

cuts the panels intersecting the free surface.  If desired, the program also creates lid 
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panels to be used in the 2D frequency-domain radiation calculation to help suppress 

irregular frequencies.  Wet-deck and main-deck panels can also be created for use in the 

body-exact hydrostatic and Froude-Krylov calculation in the time-domain simulation. 

 

Figure 4.1  Geometry input example for a trimaran section 

 

Figure 4.2 shows the processed geometry of an example trimaran section.  The 

raw input panels are shown in green, along with the usual outward-pointing (out of the 

fluid) unit normals placed at the midpoint of the panels.  The mean-wetted panels are 

shown in blue, along with the inward-pointing (into fluid) normals used in setting the 

body boundary condition in the Frank subroutine.  The automatically created lid panels 

are shown in red and the automatically generated wet-deck and main deck panels are 

shown in black.   
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Figure 4.2  Parsed geometry of example trimaran section 

 

4.1.2 Independent Demi-Hull Radiation Forces 

The next verification task examined the 2D boundary value problem solution and 

its capability to calculate the radiation potentials on an independent demi-hull (no 

assumption is made of demi-hull port-starboard symmetry).  The first step compared the 

present program’s calculations to the original SHIPMO.  That is, the cases examined 

were monohull calculations as well as catamaran calculations that use the full 2D 

transverse cut (i.e. uses the centerplane image of the demi-hull) in the calculation of the 

radiation.  To verify that the independent demi-hull calculations (centerplane image of 

catamaran demi-hull not included in calculation) are done correctly in the present code, a 

catamaran with demi-hulls identical to the monohull is compared to the monohull 

calculation.  Illustrations of the difference between the full transverse cut calculation and 

independent demi-hull calculation are given in Figure 4.3 and Figure 4.4 for a catamaran 

and trimaran, respectively. 
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a)  

b)  

Figure 4.3  Illustration of catamaran boundary value problem for cases a) Full 

transverse cut, and b) Independent demi-hulls  

 

a)  

b)  

Figure 4.4  Illustration of trimaran boundary value problem for cases a) Full 

transverse cut, and b) Independent demi-hulls 
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4.1.2.1 Original SHIPMO vs. Present Code 

The calculation of the radiation potentials has been verified by comparing the 2D 

added mass and damping coefficients of a monohull section and a catamaran demi-hull 

section.  The present code provides the option for including the images about the 

centerplane (in the case of a catamaran or trimaran sub-hull), which for this verification 

task, was set to include the images (original SHIPMO automatically includes the images).   

The geometry for the monohull section is shown in Figure 4.5.  The sectional 

added mass and damping coefficients were found to match the original SHIPMO exactly.  

Two examples are provided in Figure 4.6 and Figure 4.7.  Similarly, the full-2D-cut 

radiation potential calculation was verified for the catamaran section, shown in Figure 

4.8.  Examples of the comparison of the present code’s results to the original SHIPMO 

for the full-2D-cut catamaran are given in Figure 4.9 and Figure 4.10. 

 

 

 

Figure 4.5  Monohull 2D sections for verification runs (isometric and body-plan 

views) 
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Cylinder Monohull section

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12

k*T

a 3
3/(

ρ*
π/

2*
B

2 )

SHIPMO
multihull SHIPMO

 

Figure 4.6  Monohull section heave added mass (a33) comparison for original 

SHIPMO and present code 
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Figure 4.7  Monohull section heave damping (b33) comparison for original SHIPMO 

and present code 
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Figure 4.8  Catamaran 2D sections for verification runs (isometric and body-plan 

views) 
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Figure 4.9  Catamaran section heave added mass (a33) comparison for original 

SHIPMO and present code 
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Cylinder Catamaran section

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 2 4 6 8 10 12

k*T

b 3
3*

ω
e2 /( ρ

g2 )

SHIPMO
multihull SHIPMO

 

Figure 4.10  Catamaran section heave damping (b33) comparison for original 

SHIPMO and present code 

 

4.1.2.2 Independent Demi-Hull Comparison 

Having shown that the calculation is being performed correctly in the case where 

the full transverse cut is included, it was then necessary to confirm that the independent 

demi-hull calculation (i.e. no centerplane images included) is being done correctly.  This 

was done by comparing the added mass and damping coefficients, non-dimensionalized 

by sectional area, of the catamaran demi-hulls to the monohull.  Example plots are 

presented in Figure 4.11 to Figure 4.16.  For comparison purposes, the “imaged” demi-

hull calculation is included. 

For sway (k=2) and heave (k=3) modes of motion, the non-dimensionalized 

coefficients for the independent demi-hull calculation should match the monohull 

calculation exactly.  This has been confirmed in the plots.  For roll, the unit normal 

provides that the motion is almost entirely vertical, though not completely.  For that 

reason, the independent demi-hull results do not collapse to the monohull results. 
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The inclusion of the full-2D-cut (imaged) solution in the plots demonstrates two 

of the theoretical ramifications for choosing to model the demi-hulls as independent.  

First, as shown in Figure 4.13, the low-frequency limit of a44 is singular.  This is due to 

the strength of n3 in the n4 unit normal and the lack of a compensating panel with the 

opposite n4 normal on the negative-y side.  Second, as demonstrated in the plots of 

sectional damping, the independent demi-hull allows all of its radiated waves to reach the 

far-field.  This leads to generally higher damping coefficients than the calculation that 

includes images, which traps a certain amount of energy between the hulls that cannot 

escape to the far-field. 
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Figure 4.11  Non-dimensional a22 for monohull and catamaran imaged and 

independent demi-hulls 
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Figure 4.12  Non-dimensional a33 for monohull and catamaran imaged and 

independent demi-hulls 
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Figure 4.13  Non-dimensional a44 for catamaran imaged and independent demi-hulls 

compared to monohull a33 
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Figure 4.14  Non-dimensional b22 for monohull and catamaran imaged and 

independent demi-hulls 
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Figure 4.15  Non-dimensional b33 for monohull and catamaran imaged and 

independent demi-hulls 
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Figure 4.16  Non-dimensional b44 for catamaran imaged and independent demi-hulls 

compared to monohull b33 

4.1.3 Radiated Wave Phasing 

Critical to the calculation of the interaction forces is the proper calculation of the 

radiated wave phase.  This is due to the radiated wavelengths generally being longer than 

the beam of the demi-hull.  An incorrect determination of wave phase leads to an 

incorrect determination of interaction force.   

In the present theory, the wave phase is automatically captured by the use of the 

far-field Green function.  The incident far-field radiated wave potential, as described in 

section 2.2.2.1, provides the definition of the radiated wave elevation.  To verify that the 

phase of the potential has been determined correctly, the radiated wave elevation in space 

was compared to the radiated wave as generated by the 3D panel code, LAMP.  The 

radiated wave pattern predicted by LAMP of a demi-hull oscillating in heave at zero-

forward speed is shown in Figure 4.17.  A midship slice of the 3D wave pattern is 

compared in Figure 4.18 to the 2D wave pattern given by the far-field incident radiated 



 67

wave potential in the present theory.  This figure confirms that the phase has been 

properly captured. 

 

 

Figure 4.17  3D radiated wave from demi-hull, using LAMP 
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Figure 4.18  Midship slice of radiated wave from LAMP and present theory 
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4.1.4 Interaction forces 

The final step in the verification process is to verify that the interaction forces are 

correctly calculated.  After verifying (through active monitoring of variables in debug 

mode) that x* is correctly determined for a given ship speed and encounter frequency, the 

incident radiated wave force, F~I, and diffracted radiated wave force, F~D, were checked.  

This was done by comparing the respective forces to ambient wave Froude-Krylov and 

diffraction forces on a demi-hull (by using a monohull equivalent), where the ambient 

wave has the same amplitude and frequency as the radiated wave.  In this exercise, the 

amplitude of the ambient wave is determined from the far-field incident radiation 

potential for the example mode of motion.  Figure 4.19 shows that the forces, presented 

in the complex plane, match as expected. 

 

-20000

0

20000

40000

60000

80000

100000

-100000 -50000 0 50000 100000 150000

Real(F)

Im
ag

(F
)

Froude-Krylov force
Diffraction force
F~I
F~D

 

Figure 4.19  Comparison of interaction forces to Froude-Krylov and diffraction 

forces for wave of same amplitude, frequency, and phase 
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4.2 Frequency-Domain Validation 

To validate the multihull frequency-domain interaction theory, comparisons were 

made to model test data and higher fidelity computational tools for:  

• added mass and damping coefficients as a function of frequency and ship 

speed 

• motion transfer functions 

• wave excitation, where available 

Table 4.1 presents a list of the hull forms used in the frequency-domain validation 

tasking.  With the exception of the Cylinder Catamaran, validation data is provided by 

scale-model experiments.  The Cylinder Catamaran is a fictional design that has been run 

in the LAMP program for comparison.  The data sets comprise a mix of L/B ratios and 

separation distances, with perhaps only the Cylinder Catamaran and Delft Catamaran 

appearing well-suited for the application of the present theory.  Given real-world design 

variations of multihulls, testing over a range of parameters helps determine the practical 

utility of the present theory. 

 

Table 4.1  Characteristics of Validation Cases 

Ship 
Demi-hull 

L/B 

(TCB-to-TCB 

Separation)/B 

(Inboard Waterline 

Separation)/B 

Cylinder Catamaran 7 3 2 

Delft Catamaran 12.5 2.9 1.9 

Kashiwagi Catamaran 6 2 1 

1.5 (main-hull to 

sub-hull) 

0.5  

(main-hull to sub-hull) 
HSSL Trimaran 16.8 

3 (sub-hull to 

sub-hull) 

2  

(sub-hull to sub-hull) 
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Throughout the validation cases, the present theory is presented in plots as a blue 

solid line.  Traditional strip theory results have also been included for comparison, with a 

red dotted line representing the calculation with the full 2D cut of the ship (includes 

centerplane images) and a green dashed line showing the independent demi-hull 

calculation (no interaction in any form).  Model data points are given as dark blue circles. 

4.2.1 Cylinder Catamaran 

The Cylinder catamaran is a design created specifically for verification and 

validation of the present theory.  The demi-hull consists of semi-circle sections that are of 

constant area for 6/7 of the length of the demi-hull.  Isometric and body views of the 

design are given below. 

 

Figure 4.20  Cylinder Catamaran isometric view of sections 

 
Figure 4.21  Cylinder Catamaran parallel midbody section panels 
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In the absence of model data, frequency-domain comparisons have been made 

against LAMP for added mass and damping coefficients and motion transfer functions.  

LAMP is a time-domain 3D panel code that can be run in a body-linear mode (LAMP-1) 

or body-exact mode (for more details, see Lin et al., 1999).  The added mass and damping 

coefficients were obtained from the impulse response function capability in LAMP, 

whereas the transfer function points were obtained by a harmonic analysis of time-

domain simulations using LAMP-1 and the linear pressure option. 

4.2.1.1 Added Mass and Damping Coefficients 

The Cylinder Catamaran geometry provides an opportunity to validate the notion 

that the interaction forces dissipate with increasing forward speed as the radiated waves 

are swept downstream.  Figure 4.22 through Figure 4.24 show A33 versus encounter 

frequency for increasing ship speed.  At Fn=0.0, the full-2D-cut strip theory matches the 

LAMP solution very closely, while the present theory follows the trend less precisely.  

For example, there is a small bump in the zero-speed A33 curve at a non-dimensional 

frequency of approximately 4.7 that is not predicted by the present theory. At this 

frequency, the radiated wave length is twice the demi-hull beam, which, per Table 4.1, is 

also the separation distance at the waterline.  It is likely then that this small bump is due 

to a reflection, which is not modeled by the present theory.  As forward speed increases, 

the present theory tends toward the LAMP solution fairly well, with both approaching the 

independent demi-hull solution.  This appears to validate the foundation of the present 

theory.  The small bump that had existed at zero speed disappears for the LAMP 

prediction, while it remains for the full-2D-cut strip theory as a consequence of having no 

speed dependence. 

Figure 4.25 through Figure 4.28 show example coefficients due to pitch motion.  

In the first two plots, the present theory follows the LAMP trend fairly well, but with a 

noticeable offset in B35 example.  Figure 4.27 and Figure 4.28 are examples of where the 

present theory does not match very well.  Appendix A provides the entire set of added 

mass and damping coefficient comparisons.  There are many examples of both good 

correlation and poor correlation for the present theory.   
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Figure 4.22  Cylinder Catamaran A33 at Fn=0.0 

 

 

Figure 4.23  Cylinder Catamaran A33 at Fn=0.2 
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Figure 4.24  Cylinder Catamaran A33 at Fn=0.4 

 

 

Figure 4.25  Cylinder Catamaran A35 at Fn=0.4 
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Figure 4.26  Cylinder Catamaran B35 at Fn=0.4 

 

 

Figure 4.27  Cylinder Catamaran A55 at Fn=0.2 
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Figure 4.28  Cylinder Catamaran B55 at Fn=0.2 

 

4.2.1.2 Motion Transfer Functions 

Motion transfer functions were developed with the Cylinder Catamaran operating 

over a range of speeds in head seas.  LAMP-1, which is body-linear in its boundary value 

problem solution, was run in the time-domain in regular waves.  A harmonic analysis was 

performed on the motion time histories to find the amplitude of the first harmonic.   

For zero speed, the present interaction theory leads to a significant over-prediction 

of the pitch response at L/λ=2, as seen in Figure 4.29, as well as an under-prediction in 

pitch for a wide range of wavelengths.  The significant over-prediction near L/λ=2 can be 

traced to the near-zero damping coefficient for B33 at the corresponding non-dimensional 

encounter frequency of approximately 3.5, as seen in Figure 4.30, occurring near the 

pitch natural frequency.  The zero-valued damping coefficient in this case is due to the 

interaction force contribution being equal in magnitude but opposite in sign to the 

independent demi-hull damping coefficient.  This can occur when the phasing of the 
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interaction force is such that it is completely imaginary.  The proof that the magnitude of 

the zero-speed interaction force is equal to the imaginary part of the independent 

radiation potential is given in Appendix E. 

 

 
Figure 4.29  Cylinder Catamaran heave and pitch transfer functions at Fn=0.0 in 

head seas 
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Figure 4.30  B33 damping coefficient at Fn=0.0 for Cylinder Catamaran 

 

The other modes of motion are reasonably predicted in the cases with forward 

speed, with the interaction theory providing a benefit in some conditions.  In other 

conditions, such as shown in Figure 4.31, the interaction theory seems to capture the 

correct trend in the motion response, but the overall effect appears to be too strong.  The 

complete set of motion transfer function comparisons is given in Appendix A. 
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Figure 4.31  Cylinder Catamaran heave and pitch transfer functions at Fn=0.3 in 

head seas 

4.2.2 Delft Catamaran 

The Delft Catamaran validation case is a catamaran of conventional design that 

was model-tested at Delft University of Technology and MARIN (see van’t Veer, 

1998a,b).  The overall test program included forced oscillations in calm water at Fn=0.3, 

wave excitation measurements for head seas at Fn=0.3, and regular wave motion transfer 
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functions at speeds of Fn=0.3 to Fn=0.75.  The regular wave motion tests were primarily 

focused on head seas, with the tests conducted at MARIN providing motions for wave 

headings of β=195° and β=225°.  Figure 4.32 and Figure 4.33 show the sections and 

relative spacing of the Delft Catamaran demi-hulls. 

 

Figure 4.32  Isometric view of Delft Catamaran sections 

 

Figure 4.33  Body plan view of Delft Catamaran sections 

4.2.2.1 Added Mass and Damping Coefficients 

Added mass and damping coefficients were developed from forced heave and 

pitch oscillation tests in calm water at a speed of Fn=0.3.  The full set of comparisons to 

the model data are presented in Appendix B.  In general, the model data trends were 
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generally captured well by the present interaction theory, whereas the full-2D-cut strip 

theory and the independent demi-hull strip theory appear to miss the trends.  Two 

example comparisons are shown in Figure 4.34 and Figure 4.35. 

 

 
Figure 4.34  Delft Catamaran A33 at Fn=0.3 

 
Figure 4.35  Delft Catamaran B35 at Fn=0.3 
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4.2.2.2 Wave Excitation 

Ambient wave excitation data was obtained for head waves at Fn=0.3.  The 

present theory does not include interactions, and therefore, excitation force predictions 

are identical to the independent demi-hull strip theory prediction.  Because the radiation 

potentials are used in the solution of the diffraction force, the full-2D-cut strip theory 

retains in the excitation force the strong two-dimensional standing wave effects at certain 

frequencies.  From the data presented in Figure 4.36 and Figure 4.37, there is no 

indication that such an effect is present in head seas.  Given the fairly close agreement of 

model data and predictions using the independent demi-hulls, the assumption of no 

interaction effects seems reasonable, at least for head seas. 

 

Figure 4.36  Wave excitation heave force for Delft Catamaran at Fn=0.3 in head 

seas 
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Figure 4.37  Wave excitation pitch moment for Delft Catamaran at Fn=0.3 in head 

seas 

4.2.2.3 Motion Transfer Functions 

Motion transfer function comparisons are given in Figure 4.38 through Figure 

4.41.  Additional oblique sea heading transfer functions are provided in Appendix B.  At 

the lowest Froude number tested, Fn=0.3, the interaction theory performed well in 

capturing the motion trends in head seas.  As forward speed increased beyond the 

assumed range of applicability for strip theory, results were slightly poorer.  At these 

speeds (in this data set, Fn ≥ 0.6), the radiated waves have been swept downstream before 

they can interact with the opposite demi-hull, so there is no difference between the 

present theory and the independent demi-hull strip theory. 
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In oblique wave headings, lateral plane motions are not as well predicted as heave 

and pitch.  In roll, as seen in Figure 4.41, response exists at frequencies higher than for 

which the model responds.  The full-2D-cut strip theory captures this suppression of 

motion, which may indicate that the diffraction force at oblique headings contains 

interaction effects for which the full-2D-cut radiation solution provides a good 

approximation.  Measurements of oblique heading wave excitation would be beneficial in 

understanding this result. 

 

 

Figure 4.38  Heave transfer function amplitude and phase for Delft Catamaran at 

Fn=0.3 in head seas 
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Figure 4.39  Pitch transfer function amplitude and phase for Delft Catamaran at 

Fn=0.3 in head seas 

 
Figure 4.40  Pitch transfer function amplitude for Delft Catamaran at Fn=0.6 in 

head seas 
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Figure 4.41  Roll transfer function amplitude for Delft Catamaran at Fn=0.3, 

β=225° 

 

4.2.3 Kashiwagi Lewis-Form Catamaran 

Kashiwagi (1993) presents experiments on a 1.5-m Lewis-form catamaran that is 

fore-aft symmetric.  Isometric and body views of the sections are given in Figure 4.42 

and Figure 4.43.  The sections are generally fuller than a typical multihull design and, 

with L/B=6, the hulls are not as slender as many demi-hulls.  Furthermore, while 

separation between the transverse centers of buoyancy of the demi-hulls is reasonable 

(=2*B), the separation distance between the hulls at the waterline is equal to the waterline 

beam of the demi-hulls.  Given the far-field assumptions made in the derivation of the 

present theory and strip theory in general, this data set would appear to push the limits of 

applicability. 

Model data is available for oscillations in calm water, wave excitation in head 

seas, and motion transfer functions in head seas.  The data are available at two forward 

speeds: Fn=0.15 and Fn=0.30. 
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Figure 4.42  Isometric view of Kashiwagi Lewis-Form Catamaran sections 

 

Figure 4.43  Body-plan view of Kashiwagi Lewis-Form Catamaran sections 

 

4.2.3.1 Added Mass and Damping Coefficients 

Forced heave and pitch oscillation experiments in calm water provide added mass 

and damping coefficients for Fn=0.15 and Fn=0.30.  In general, predictions failed to 

properly capture the correct behavior of the coefficients.  The full set of comparisons is 

available in Appendix C.  Example comparisons are given in Figure 4.44 through Figure 

4.47.   

To test the effect of having neglected the wave-free terms due to the opposite 

demi-hull in the radiation solution of the independent demi-hull, an alternate 

implementation of the present theory including this influence was produced.  Results 
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were only marginally affected, as shown in Figure 4.48.  More likely, three-

dimensionality and a need for modeling reflections could be required. 

 

 

Figure 4.44  Kashiwagi Lewis-Form Catamaran A33 at Fn=0.3 

 

 

Figure 4.45  Kashiwagi Lewis-Form Catamaran B33 at Fn=0.3 
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Figure 4.46  Kashiwagi Lewis-Form Catamaran A55 at Fn=0.15 

 

 

Figure 4.47  Kashiwagi Lewis-Form Catamaran B55 at Fn=0.15 
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Figure 4.48  Kashiwagi Catamaran A33 with alternative independent demi-hull 

solution 

 

4.2.3.2 Wave Excitation 

Wave excitation comparisons for head seas waves at Fn=0.15 and Fn=0.3 are 

given in Figure 4.49 through Figure 4.52.  Differences between model data and 

predictions are not significant, though the deviation of the full-2D-cut strip theory toward 

the model data heave force may signify that there is internal wave reflection occurring.  

Even though the data are for head seas, the three-dimensionality of the hull form could 

lead to such a phenomenon. 
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Figure 4.49  Head seas wave excitation heave force for Kashiwagi Cat. at Fn=0.15 

 

Figure 4.50  Head seas wave excitation pitch moment for Kashiwagi Cat. at Fn=0.15 
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Figure 4.51  Head seas wave excitation heave force for Kashiwagi Cat. at Fn=0.3 

 

Figure 4.52  Head seas wave excitation pitch moment for Kashiwagi Cat. at Fn=0.3 
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4.2.3.3 Motion Transfer Functions 

Heave and pitch motion transfer functions are compared for head seas runs at 

Fn=0.15 and 0.3, as shown in Figure 4.53 through Figure 4.56.  Given the poor 

comparisons with the added mass and damping coefficients, it is perhaps surprising that 

the present theory correlates as well as it does.  As in the Cylinder Catamaran test case, 

the motion trends seem to be well captured, though the interaction effects appear to be 

too strong in some cases.  For example, at Fn=0.3, the suppressed heave peak is properly 

captured by the present interaction theory, but the pitch motions magnify the trend seen 

in the pitch model data.  

 

Figure 4.53  Heave transfer function amplitude and phase for Kashiwagi 

Catamaran at Fn=0.15 in head seas 
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For additional comparison, the results from Kashiwagi (1993) are included in the 

figures.  The theory employed for Kashiwagi’s calculations uses Newman’s unified 

slender-ship theory with a far-field interaction model.  In general, the present theory 

compares favorably to Kashiwagi’s calculations, and in some cases matches the data 

more closely.   

To provide insight to the results, the undamped coupled natural frequencies were 

calculated using the added mass values predicted by the present theory.  These are 

presented in each of the figures.  In the case of imaginary eigenvalues, which occurred 

for the Fn=0.15 results where the total mass (M+A) and inertia (I+A) are negative, the 

uncoupled natural frequencies are presented as calculated following equation 4.1. 

 

Figure 4.54  Pitch transfer function for Kashiwagi Cat. at Fn=0.15 in head seas 
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As can be seen in the Fn=0.3 pitch transfer function plot in Figure 4.56, the present 

theory is predicting the pitch natural frequency, with accompanying large response, at a 

frequency where no other presented theory demonstrates significant pitch response.  

Interestingly, the model does show a noticeably increased response near this frequency, 

though not as significant as predicted by the present theory. 

 

 

Figure 4.55  Heave transfer function for Kashiwagi Cat. at Fn=0.3 in head seas 
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Figure 4.56  Pitch transfer function for Kashiwagi Cat. at Fn=0.3 in head seas 

 

4.2.4 HSSL Trimaran 

The HSSL (High Speed Sea-Lift) Trimaran was designed as part of an ONR 

project investigating novel designs for high-speed transport and the computational tools 

to support their development.  Seakeeping model tests were performed at MARIN on one 

of the designs, referred to here as the HSSL trimaran.  As opposed to many trimaran 

designs that primarily use the sub-hulls for reserve hydrostatic stability, the sub-hulls on 

the HSSL trimaran are comparable in length and displacement to the main hull.  The 

design features three demi-hulls of the same length, with the main hull extending 

considerably forward of the sub-hulls.  An isometric view of the HSSL trimaran sections 



 96

is given in Figure 4.57.  As can be seen from the body plan view in Figure 4.58, the 

spacing of the hulls is fairly close for the region of main hull and sub-hull overlap.   

 

Figure 4.57  Isometric view of HSSL Trimaran sections 

 

Figure 4.58  Body plan view of HSSL Trimaran sections 

 

Motion transfer functions comparisons are made for Fn=0.44 (based on overall 

length) at headings of 180°, 150°, and 90°.  A full set of comparisons is available in 

Appendix D.  Example comparisons are given in Figure 4.59 through Figure 4.62.  As in 

the case of the Lewis-form catamaran comparisons, the quality of the predictions by the 

present theory is mixed.   



 97

 

Figure 4.59  Heave transfer function for HSSL Trimaran at Fn=0.44 in head seas 

 

Figure 4.60  Pitch transfer function for HSSL Trimaran at Fn=0.44 in head seas 
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Figure 4.61  Heave transfer function for HSSL Trimaran at Fn=0.44 in beam seas 

 
Figure 4.62  Roll transfer function for HSSL Trimaran at Fn=0.44 in beam seas 
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4.3 Nonlinear Time-Domain Validation 

In order to examine the validity of the nonlinear time-domain theory, the LAMP 

program was used to produce motion time history data using its body-exact hydrostatic 

and Froude-Krylov force formulation.  This version of LAMP is referred to as LAMP-2 

and can be considered the 3D panel method equivalent of the blended-method theory 

implemented in the present code.   

The Delft Catamaran was chosen as the test case hull form.  A screen capture of a 

sample large amplitude wave run with this hull is shown in Figure 4.63.  The shallow aft 

sections and proximity of the wet-deck to the free surface allow for rapidly changing 

wetted area.  

 

 

 
Figure 4.63  Screen captures of Delft Catamaran from time-domain simulation 
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The validation test cases use a wave condition that was selected based on where 

interactions are deemed to matter: Fn=0.3, L/λ=0.7, head seas.  As seen in Figure 4.38, 

the heave transfer function is significantly reduced from the independent demi-hull 

solution.   

To demonstrate the introduction of nonlinear forces, the present theory was run in 

cases of increasing wave amplitude, a.  The wave amplitude ranged from 10% of the 

draft, T, to 100% of the draft.  A time history of the heave divided by wave amplitude is 

given in Figure 4.64, showing a significant change to the heave response.  The 

corresponding plot for pitch is given in Figure 4.65.   

The present theory is then compared to the LAMP and the independent demi-hull 

strip theory predictions for small and large amplitude waves.  Figure 4.66 and Figure 4.67 

show the heave time histories for small and large amplitude waves, respectively.  At 

small amplitude, both the present theory and LAMP appear to collapse to the linear 

solution.  At large amplitude, the nonlinear forces have driven the heave response to a 

proportional value larger than the linear solution, an effect that has been captured by 

LAMP and the present theory alike.  In pitch, the effect is similarly captured, as seen in 

Figure 4.68 and Figure 4.69, though proportional pitch motion decreases with larger 

amplitude waves.  The phase shift in the pitch response predicted by the present theory 

(see Figure 4.65) is similarly predicted by LAMP. 

While the ability to predict similar results with the present theory to results 

predicted by a much higher fidelity and computationally expensive code, it does not 

constitute a pure validation of the theory.  As such, large amplitude motion model data 

should be sought for future validation work. 

 



 101

Delft Catamaran 
Fn=0.3  Head Seas  L/λ=0.7

Heave

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

t/Te

η 3
/a

Present Theory (a/T=0.1)

Present Theory (a/T=0.5)

Present Theory (a/T=1.0)

 

Figure 4.64  Time history of non-dimensional heave for 3 wave amplitudes 
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Figure 4.65  Time history of non-dimensional pitch for 3 wave amplitudes 
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Figure 4.66  Time histories of non-dimensional heave at small wave amplitude 
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Figure 4.67  Time histories of non-dimensional heave at large wave amplitude 
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Figure 4.68  Time histories of non-dimensional pitch at small wave amplitude 
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Figure 4.69  Time histories of non-dimensional pitch at large wave amplitude 
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4.4 Computational Speed 

One of the primary aims of the present theory was to develop a theory that would 

be extremely computationally efficient.  Therefore, assessment of the present theory’s 

computation speed should be considered a part of the theory’s validation. 

The aspect of the present theory that provides an advantage in computational 

effort over other theories is that the hydrodynamic forces can be developed solely from 

2D potentials that are independent of ship speed and relative wave heading.  That is, the 

2D independent demi-hull radiation potentials at a given frequency of encounter are used 

in the determination of 3D total radiation (including interaction forces) and diffraction 

forces.  The 2D radiation potentials on each section can be computed and stored for a set 

of “basis” encounter frequencies that cover an appropriate range with an appropriate 

resolution.  For a “run” in the frequency domain at a particular ship speed, relative wave 

heading, and wave frequency, the radiation potentials on each 2D panel at the resulting 

encounter frequency can be interpolated from the stored potentials at the basis 

frequencies.  This avoids significant computational expense if the number of frequency-

domain runs exceeds the number of basis frequencies.  Given that experience has shown 

25 basis frequencies to be adequate, providing seakeeping predictions at multiple ship 

speeds and wave headings will almost certainly benefit from this approach. 

One measure of validation of the present theory’s computational efficiency is to 

compare the expense to calculate a single frequency domain run to ordinary strip theory.  

As a test case, the Delft Catamaran geometry was used, consisting of 41 sections and 20-

24 2D panels per demi-hull section.  Running on a laptop with a 1.2GHz Intel Core™2 

Duo processor (using a single core), the independent demi-hull basis radiation potentials 

are computed in approximately 3 seconds and the frequency domain “runs” require: 

• ~0.003s per speed-heading-frequency for regular strip theory 

• ~0.005s per speed-heading-frequency for present theory 

This time comparison is made for the Fn=0.0 condition, where every section will have an 

interaction force in the present theory.  With increasing forward speed, the present 

theory’s computation time will reduce due to the reduced number of interacting sections.  

The difference in memory requirements between regular strip theory and the present 
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theory is very small, with both methods using approximately 14MB of memory in the 

NSHIPMO_multihull program. 

For additional comparison, a 3D forward speed panel code requires anywhere 

from 1-30 minutes per frequency-domain run.  Also, while generally not applicable for 

Froude numbers less than 0.4, the 2½-D strip theory with multihull interactions as 

described by Hermundstad et al. (1999) runs at about 10-20 seconds per frequency-

domain run.  From this perspective, the increase in computational cost for the present 

theory over regular strip theory is negligible.   

For the nonlinear time-domain (blended method) calculations, the computation 

time of the present theory is compared to the LAMP-2 calculations presented in Figure 

4.66 through Figure 4.69.  Making a direct comparison of the present theory to a 3D 

time-domain panel code is not necessarily an objective measurement, because, for the 3D 

panel code, the panel density on the ship body and free surface can be optimized for 

computational stability and accuracy.  For the comparisons made here, the panel density 

and domain extent followed past experience with LAMP, and, therefore, may not have 

been fully optimized.  Nevertheless, a comparison of computation times demonstrates a 

rough order of magnitude measure of relative computational efficiency.  For the Delft 

Catamaran time-domain runs presented in the figures cited above, the present theory 

required about 3 seconds of “start-up” time to calculate the frequency-domain 

hydrodynamic coefficients and 0.017 seconds per time step.  In comparison, the LAMP-2 

run required about 2 minutes of “start-up” time to solve for the source strengths on each 

panel and 0.66 seconds per time step during the simulation.   
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  Chapter 5 

5 Conclusion 

 

5.1 Overview 

A computationally efficient theory has been developed to quickly characterize the 

motions of a multihull with hull interactions, both in the frequency-domain and the time-

domain.  The nonlinear time-domain capability provides an accessible simulation 

capability that captures the significant nonlinearities due to body-exact Froude-Krylov 

and hydrostatic forces, while including a higher fidelity radiation force. 

The developed interaction theory is not universally valid, though it appears to 

capture the correct trends in many cases.  Of the validation cases tested, the hull form 

with the most slender proportions and one of the largest demi-hull separations showed the 

best correlation.  Other validation cases that pushed the limits of the theory’s assumptions 

with respect to slenderness, far-field separation, and other 3D effects tended to have 

poorer correlation.  While it is clear that a multihull at zero to moderately high speed 

must contend with hull interactions, attempting to capture the interaction forces in the 

predictions can lead to large errors in motions if the developed forces are too strong.  In 

many cases, the independent demi-hull strip theory performed the best among the strip 

theory approaches, because it was approximately correct.   

5.2 Physical Insights 

The extensive comparisons to model data and the work involved in developing the 

present theory and code have led to some physical insights to the multihull seakeeping 

problem.   
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Capturing the “sweep-down” effect of the radiated waves is essential.  At high 

speeds, if the full-2D-cut strip theory were to be used, the motion responses are over-

predicted.  The Cylinder Catamaran validation case has provided data to support the 

argument that the radiation problem converges to the independent demi-hull solution as 

forward speed increases. 

The radiated wave “sweep down” mechanism means that multihull interactions 

are sensitive in pitch with forward speed.  Pitch motion creates the largest waves at bow 

(and stern, but those are swept away from hull), which can hit the stern of the ship, where 

the moment arm is greatest.   

At zero-speed, using the traditional strip theory with a full 2D cut may be the best 

option.  In this case, the waves are not swept downstream and can get trapped between 

the hulls.  The validation cases seem to support such a modeling decision.  This leads to 

the hypothesis that the inclusion of reflections in the present theory may improve results.  

Future developments in this area would need to address the difficulty of solving for the 

diffraction potential. 

The nonlinear time-domain validation case showed that capturing hull interactions 

in the linear radiation solution is important.  That is, the magnitude difference between 

the present theory and the independent demi-hull strip theory was not diminished at large 

amplitude motion.  While the nonlinear change to the hydrostatic and Froude-Krylov 

force can be significant, it may not be enough to over-power any difference in the 

radiation forces. 

5.3 Future Efforts 

There are several possible future improvements to the frequency-domain solution.  

If available through an alternate analysis, the steady potential could be utilized to enable 

a more exact “mean wetted surface” to be used in the calculations, as well as to adjust the 

hulls for sinkage and trim.  It would also facilitate the implementation of a 2 ½-D method 

for high-speed predictions. 

Another possible improvement to the theory is the inclusion of interaction effects 

in the wave excitation forces.  At oblique headings, this may prove to be necessary.  If a 
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reflection capability were developed for the radiation problem, it could be applied in the 

diffraction interaction problem as well. 

In the time-domain solution, nonlinear radiation forces could be implemented in 

the simplified manner outlined in 3.3.1.  Extending the proposed method to include 

memory effects would be very difficult, due to the changing dependence of the source 

radiating section on frequency of encounter.   
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Appendix A 

 

A  Cylinder Catamaran Validation Figures 

 

Appendix A contains the full set of hydrodynamic coefficient and motion transfer 

function comparisons for the Cylinder Catamaran.  The added mass and damping plots 

are given in Figure A 1 through Figure A 12.  The motion transfer functions are shown in 

Figure A 13 through Figure A 20. 
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Figure A 1  Cylinder Catamaran – A33 and B33 at Fn=0.0 
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Figure A 2  Cylinder Catamaran – A33 and B33 at Fn=0.2 



 113

 

 
Figure A 3  Cylinder Catamaran – A33 and B33 at Fn=0.4 
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Figure A 4  Cylinder Catamaran – A53 and B53 at Fn=0.0 
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Figure A 5  Cylinder Catamaran – A53 and B53 at Fn=0.2 
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Figure A 6  Cylinder Catamaran – A53 and B53 at Fn=0.4 
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Figure A 7  Cylinder Catamaran – A35 and B35 at Fn=0.0 
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Figure A 8  Cylinder Catamaran – A35 and B35 at Fn=0.2 
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Figure A 9  Cylinder Catamaran – A35 and B35 at Fn=0.4 
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Figure A 10  Cylinder Catamaran – A55 and B55 at Fn=0.0 
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Figure A 11  Cylinder Catamaran – A55 and B55 at Fn=0.2 
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Figure A 12  Cylinder Catamaran – A55 and B55 at Fn=0.4 
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Figure A 13  Cylinder Catamaran heave transfer function at Fn=0.0 in head seas 

 

 
Figure A 14  Cylinder Catamaran pitch transfer function at Fn=0.0 in head seas 
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Figure A 15  Cylinder Catamaran heave transfer function at Fn=0.15 in head seas 

 

 

 
Figure A 16  Cylinder Catamaran pitch transfer function at Fn=0.15 in head seas 
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Figure A 17  Cylinder Catamaran heave transfer function at Fn=0.3 in head seas 

 

 

 
Figure A 18  Cylinder Catamaran pitch transfer function at Fn=0.3 in head seas 
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Figure A 19  Cylinder Catamaran heave transfer function at Fn=0.45 in head seas 

 

 

 
Figure A 20  Cylinder Catamaran pitch transfer function at Fn=0.45 in head seas 
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Appendix B 

 

B  Delft Catamaran Validation Figures 

 

Appendix B contains the full set of hydrodynamic coefficient and motion transfer 

function comparisons for the Delft Catamaran.  The added mass and damping plots are 

given in Figure B 1 through Figure B 4.  The motion transfer functions are given in 

Figure B 5 through Figure B 18. 
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Figure B 1  Delft Catamaran A33 and B33 at Fn=0.3 
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Figure B 2  Delft Catamaran A53 and B53 at Fn=0.3 
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Figure B 3  Delft Catamaran A35 and B35 at Fn=0.3 
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Figure B 4  Delft Catamaran A55 and B55 at Fn=0.3 
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Figure B 5  Delft Catamaran heave transfer function at Fn=0.3 in head seas 

 

 

 



 133

 

 

 

 

 

Figure B 6  Delft Catamaran pitch transfer function at Fn=0.3 in head seas 
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Figure B 7  Delft Catamaran heave transfer function at Fn=0.45 in head seas 
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Figure B 8  Delft Catamaran pitch transfer function at Fn=0.45 in head seas 
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Figure B 9  Delft Catamaran sway transfer function at Fn=0.3, β=195° 

 

 

Figure B 10  Delft Catamaran heave transfer function at Fn=0.3, β=195° 
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Figure B 11  Delft Catamaran roll transfer function at Fn=0.3, β=195° 

 

 

Figure B 12  Delft Catamaran pitch transfer function at Fn=0.3, β=195° 
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Figure B 13  Delft Catamaran yaw transfer function at Fn=0.3, β=195° 

 

 

 

 

Figure B 14  Delft Catamaran sway transfer function at Fn=0.3, β=225° 
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Figure B 15  Delft Catamaran heave transfer function at Fn=0.3, β=225° 

 

 

Figure B 16  Delft Catamaran roll transfer function at Fn=0.3, β=225° 
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Figure B 17  Delft Catamaran pitch transfer function at Fn=0.3, β=225° 

 

 

Figure B 18  Delft Catamaran yaw transfer function at Fn=0.3, β=225° 
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Appendix C 

 

C  Kashiwagi Catamaran Hydrodynamic Coefficients 

 

Appendix C contains the full set of hydrodynamic coefficient comparisons for the 

Kashiwagi Catamaran.  The added mass and damping plots are given in Figure C 1 

through Figure C 8.   
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Figure C 1  Kashiwagi Catamaran – A33 and B33 at Fn=0.15 
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Figure C 2  Kashiwagi Catamaran – A33 and B33 at Fn=0.3 
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Figure C 3  Kashiwagi Catamaran – A53 and B53 at Fn=0.15 
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Figure C 4  Kashiwagi Catamaran – A53 and B53 at Fn=0.3 
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Figure C 5  Kashiwagi Catamaran – A35 and B35 at Fn=0.15 
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Figure C 6  Kashiwagi Catamaran – A35 and B35 at Fn=0.3 
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Figure C 7  Kashiwagi Catamaran – A55 and B55 at Fn=0.15 
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Figure C 8  Kashiwagi Catamaran – A55 and B55 at Fn=0.3 
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Appendix D 

 

D  HSSL Trimaran Motion Transfer Functions 

 

Appendix D contains the full set of motion transfer function comparisons for the 

HSSL Trimaran.  The transfer function plots are given in Figure D 1 through Figure D 

12.   
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Figure D 1  HSSL Trimaran heave transfer function at Fn=0.44 in head seas 
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Figure D 2  HSSL Trimaran pitch transfer function at Fn=0.44 in head seas 
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Figure D 3  HSSL Trimaran sway transfer function at Fn=0.44, β=150° 
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Figure D 4  HSSL Trimaran heave transfer function at Fn=0.44, β=150° 
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Figure D 5  HSSL Trimaran roll transfer function at Fn=0.44, β=150° 
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Figure D 6  HSSL Trimaran pitch transfer function at Fn=0.44, β=150° 
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Figure D 7  HSSL Trimaran yaw transfer function at Fn=0.44, β=150° 
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Figure D 8  HSSL Trimaran sway transfer function at Fn=0.44, β=90° 
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Figure D 9  HSSL Trimaran heave transfer function at Fn=0.44, β=90° 
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Figure D 10  HSSL Trimaran roll transfer function at Fn=0.44, β=90° 
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Figure D 11  HSSL Trimaran pitch transfer function at Fn=0.44, β=90° 
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Figure D 12  HSSL Trimaran yaw transfer function at Fn=0.44, β=90° 

 



 163

 

 

 

Appendix E 

 

E  Magnitude of 2D Interaction Force at Zero Speed 

 

To show that it is possible for the total damping coefficient in mode, ii, to go to 

zero (at zero ship speed) with the present interaction theory, it must be shown that bii
~ 

(the sectional interaction force damping coefficient) can equal minus bii (the sectional 

independent demi-hull damping coefficient).  In other words, the amplitude of the 

interaction force is equal to the imaginary part of the independent demi-hull radiation 

force.   

The interaction force, which is the wave excitation force due to the far-field 

radiated wave, is a complex phaser whose phase depends on the hull separation and 

frequency.  When the interaction force is stated in terms of 2D added mass and damping 

coefficients, the interaction damping coefficient is equal to 

bii
~ = -Im(Fii

~) / ωe         (E1) 

If the phase is such that the entire interaction force is imaginary,  

|bii
~| = |Fii

~| / ωe        (E2) 

Newman (1977) shows that the magnitude of the total 2D excitation force, Xi, for 

unit wave amplitude on a symmetric body is related to the section’s own damping 

coefficient, bii, by 

g

i
ii gV

X
b

ρ2

2

=          (E3) 
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In the case of the radiation interaction force, the incident wave is the radiated 

wave which has frequency equal to the encounter frequency.  Using the deep-water group 

velocity, Vg=(1/2)*g/ωe, equation E3 is restated as: 

e

ii
i

bg
X

ω
ρ 2

=         (E4) 

The amplitude of the far-field radiated wave is known from the damping 

coefficient of the radiating section, which in the case of a zero-speed catamaran, is the 

same section shape.  This amplitude is 

2

3
~

g
b

a eii

ρ
ω

=         (E5) 

Therefore, the magnitude of the exciting force due to a wave of amplitude, a~, is 

equal to a~ * Xi, which leads to 

2

32
~

g
bbgXa eii

e

ii
i ρ

ω
ω

ρ
⋅=⋅       (E6) 

eiieiii bbXa ωω ==⋅ 22~
 

The damping coefficient due to the interaction force is then found from equation 

E2 as 

ii
e

i
ii b

Xa
b =

⋅
=

ω

~
~

        (E7) 

By this argument, using equation E1, it is shown that the interaction damping 

coefficient can be equal and opposite to the demi-hull damping coefficient, leading to a 

total sectional damping coefficient equal to zero.  
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