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CHAPTER I

Introduction

1.1 Motivation

As predicted by Moore's law, the number of transistors integrated into an ultra-

large scale integrated (ULSI) circuit continues to grow exponentially. The current

complementary metal-oxide-semiconductor (CMOS) process technology doubles the

transistor count about every two years, by progressively scaling MOS devices in gate

oxide thickness, channel length, doping level, etc. Meanwhile, the dimensions of the

on-chip interconnects shrink and the number of metalization levels increases. The

amount of heat dissipation in devices and interconnects causes thermal management

and chip cooling issues. A state-of-the-art microprocessor chip, designed with sub-

100-nanometer CMOS process technology, often integrates hundreds of millions of

transistors. Precisely modeling circuit power dissipation and temperature gradients

within the chip becomes necessary to ensure circuit performance and reliability be-

cause the circuit operates at the level of several gigahertz (GHz) frequency.

The enormous number of on-chip transistors switch in a pseudo-random fashion.

Traditionally, the transistor-switching-induced circuit dynamic power consumption,

denoted by Pdyn, dominated the total power dissipation of the chip. Circuit dynamic

1
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power consumption has often been estimated by

Pdyn = afCtotalV
2
DD

where a denotes the switching factor, f denotes the circuit operating frequency,

Ctotal denotes the total capacitance, and VDD denotes the circuit operating voltage.

Nowadays, circuit leakage power becomes prominent because miniaturizing the chip

dimensions increases the gate tunneling and sub-threshold currents. Leakage power

is predicted to be a large portion of the total power consumption of the chip in

the upcoming years. Notably, circuit temperature super-linearly a�ects MOSFET

sub-threshold leakage current, as depicted by

Ileakage ∝ T 2e
q(Vgs−vt)

nkT

(
1 − e−

qVds
kT

)
where T denotes the circuit temperature, vt denotes the transistor threshold voltage,

q denotes the electron charge, and k denotes the Boltzmann's constant [79]. For a

low-power circuit that mainly operates in the sub-threshold region [41, 68, 16, 74],

accurately analyzing the circuit temperature can be critical in calculating the leakage

current. Today, a typical microprocessor chip dissipates more than 100 Watts peak-

power in a 350-500 mm2 die. Extremely high power density and high temperature

increase the cooling cost for the chip and decrease circuit performance because the

circuit operating frequency needs to be temporarily slowed down to reduce heat

dissipation in the chip.

Circuit temperature also contributes to many types of subtle timing failures in the

circuit. According to the alpha-power law MOSFET model [57], gate delay Gdelay

relates to the MOSFET drain-source current Ids by

Gdelay ∝ CVDD

Ids

∝ CVDD

µ (VDD − vt)
α
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where α is the MOSFET velocity-saturation factor. The threshold voltage vt and

the carrier mobility µ relate to the circuit temperature by

vt (T ) ∝ vt (T0) − κ (T − T0)

µ (T ) ∝ µ (T0) (T/T0)
−m

where T0 is the room temperature, κ is the threshold voltage temperature coe�-

cient, and m is the mobility temperature exponent [39]. Both the carrier mobility

and threshold voltage reduce at a higher circuit temperature. Thus the gate delay

decreases if the gate supply voltage is larger than the zero-temperature coe�cient

(ZTC) point (e.g., 1.2 V) and increases if the gate supply voltage is below the ZTC

point [39].

Besides in�uencing the gate timing, temperature distribution inside a chip also

prominently a�ects the delay in propagating signals through the on-chip intercon-

nects. Using low dielectric constant (low-k) materials in interconnects has consid-

erably reduced the capacitive coupling between adjacent interconnects. However,

using low-k materials simultaneously increases the thermal impedance from the in-

terconnect wires to the chip heat sink, thereby causing more heat to accumulate at

the interconnect wires and aggravating the interconnect self-Joule heating issue [7].

Rising interconnect temperature increases interconnect delay because interconnect

resistivity becomes larger [19]. Thermal e�ects on the gate and interconnect timing

make it very di�cult to precisely tune the clock distribution network across the chip.

In designing microprocessor circuits, temperature gradients within the chip in lieu

of a set of worst- or best-case chip temperatures must be considered to control the

clock skews and to avoid synchronization failures at the data-storage circuit elements

[17, 71, 72].
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On the other hand, increasing circuit power density and elevating chip tempera-

ture reduce the mean time to fail (MTTF) of a metal wire because the transport of

metal ions signi�cantly accelerates, as described by Black's equation:

MTTF (T ) = AJ−2eϕ/kT

where J is the current density in the metal wire, and ϕ and A are technology-

dependent parameters [13, 8, 18]. To meet the stringent reliability requirements

concurrently with the demand for high performance, thermal-aware or thermally

optimized chip design has now become a trend. Therefore, to analyze and optimize

full-chip temperature distribution, an integrated circuit (IC) design automation tool

should be able to handle millions of transistors and interconnects [35] and run in a

repetitive fashion with short turnaround time.

1.2 Approaches for Thermal Analysis and Optimization

1.2.1 Grid-Based Approaches

The �nite-di�erence (FD) method has traditionally been used in IC thermal anal-

ysis and optimization. To solve the steady-state or time-dependent heat conduction

equation, the FD method discretizes the Laplacian operator with the second order

central �nite-di�erence scheme [22, 65]. The discretization forms an RC network

that consists of a matrix of hexagonal junctions, with resistors to model the heat

conductivities, capacitors to model the thermal di�usivities, and current sources to

model the power densities. Fig.1.1 illustrates a hexagonal junction for discretizing

the heat conduction equation, where ∆L denotes the grid size. To simulate the ob-

tained RC network, one acceleration approach is to apply the Krylov-subspace-based

model order reduction technique [49, 27].

To solve the time-dependent heat conduction equation, the alternating direction
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Figure 1.1: Hexagonal junction for discretizing heat conduction equation

implicit (ADI) method exploits the smooth temperature variation in the temporal

domain [76]. To discretize the Laplacian operator, the ADI method adopts the three-

step Douglas-Gunn scheme, with a one-dimensional (1-D) FD scheme applied at each

step. The FD method instead uses a 3-D FD scheme. The ADI method produces a

tridiagonal system that can be solved by the Thomas algorithm in linear time [64].

Compared to the FD method, at every time step, the ADI method actually solves the

same thermal network in three stages by the implicit backward-Euler FD scheme. At

each solution stage, the voltage gradients along two of the coordinates are computed

explicitly from the node voltages at the previous solution stages, while the voltage

gradients along the remaining coordinate become unknowns to be solved from the

system of equations.

The �nite-element (FE) method has also been used in IC thermal analysis and op-

timization. The FE method uses a set of shaping functions, called basis functions, to

interpolate the interior temperatures from the temperatures at the neighboring nodes

[32]. Then the method represents the Laplacian of the interior temperatures by the

Laplacian of the shaping functions. Finally, the method solves the node temperatures

from the resultant system of equations. The aforementioned FD and FE methods are

grid-based methods, which are advantageous in modeling detailed chip geometries
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such as inter-layer vias, bonding wires, buses, etc. However, grid-based methods need

to dispense signi�cant amounts of nodes to large-volume structures such as the bulk,

substrate, and heat sink for the given chip [22, 65, 27, 76, 32]. The large problem

size causes grid-based methods to have long run-time and limits their applications in

ULSI physical design �ow, especially when thermal simulation needs to be conducted

for a large number of iterations [21]. Grid-based methods also have numerical sta-

bility issues [76]. When the grid-based methods are integrated with other numerical

algorithms, numerical stability analysis becomes complicated because it is insu�-

cient to analyze the stability of each numerical algorithm separately, as individually

stable components may not ensure the entire system is constructed stably. In this

case, the classical Von Neumann Analysis may be somewhat inadequate, and stricter

stability criteria such as the passivity of the applied numerical algorithms may be

used [11, 66, 70].

1.2.2 Green's Function-Based Approaches

Spectral methods based on the Fourier transform technique have been used in

IC thermal analysis and optimization [43, 5, 29]. The spectral methods assume

that the heat sources considered are in a 2-D rectangular region, so the power-

density spectrum can be computed by the fast Fourier transform (FFT). To apply

the spectral methods, heat sources must be on the top surface of the chip, and heat

transfer is forbidden there. A chip with the wire-bonding packaging normally satis�es

these requirements; however, a chip with the popular �ip-chip packaging does not,

because heat dissipates via both the bottom and top sides of the chip: the side

with the cooling devices (heat sink, fan, etc.) and the side with the solder balls. The

spectral methods are suitable for computing the temperature distribution incurred by

a planar heat source distribution; however, they cannot calculate the temperature
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distribution incurred by heat sources of arbitrary shapes. Thermal analysis and

optimization methods based on the multilayer heat conduction Green's function, and

more �exible than the spectral methods, are introduced in this dissertation. The heat

conduction Green's function gives the temperature distribution incurred by a Dirac

delta heat source. Therefore, it can be used to solve the temperature distribution due

to arbitrarily shaped heat sources by spatially convoluting with the power density

distribution of the heat sources. The heat conduction Green's function can also be

used to compute the thermal transfer impedance between any two locations in the

chip.

Compared to the grid-based methods, the thermal analysis and optimization

methods based on the heat conduction Green's function, named the Green's function-

based methods, are advantageous at the earlier stages of ULSI physical design �ow,

such as �oorplanning and cell placement [21, 67, 78]. The Green's function-based

methods do not discretize the chip regions of no heat sources and of no monitored

temperatures. Therefore, the Green's function-based methods improve the thermal

simulation speed by a few orders of magnitude by not modeling otherwise costly chip

regions such as the bulk. Based on a single-layer thermal (SLT) model, the heat con-

duction Green's function under various boundary conditions has been investigated

and applied in the thermal analysis and optimization of ULSI chips [38, 21, 78].

However, considering only one type of heat conduction material in the simulated

environment, the SLT model, is overly simplistic and inaccurate because the heat

conduction path in a realistic chip involves multilayer heterogeneous heat conduction

materials. Particularly, the SLT model is inadequate to analyze the cutting-edge 3-D

ICs that vertically integrate multiple active layers [9].

The heat conduction Green's function is derived from the Poisson's equation that
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is widely studied in the context of extracting parasitic elements within an IC. How-

ever, the heat conduction Green's function di�ers from the Green's function for par-

asitic extraction in several aspects. In parasitic extraction, charge sources are pre-

sumed to be on the surfaces of the conducting geometries; therefore, a charge-sheet

model is frequently used in parasitic extraction, such as in the FE and boundary-

element (BE) methods [47, 24, 51]. In thermal analysis, heat sources instead span the

3-D volume space of the chip. Furthermore, the horizontal dimensions of the chip are

usually approximated as in�nite in parasitic extraction. By the approximations, ei-

ther the free-space Green's function is directly used or the radial symmetric property

is exploited to simplify the free-space Green's function with the Hankel transform

[47, 80]. To analyze the temperature distribution of the chip, the real horizontal

dimensions of the chip must be taken into consideration. Therefore, boundary con-

ditions must be properly imposed on the four sidewalls of the chip to model heat

insulation or heat transfer between the sidewalls and the ambient environment [78].

For the purpose of substrate coupling analysis, the Green's function for the Pois-

son's equation has been derived for heterogeneous dielectric materials; however, zero

potential and zero potential gradient are assumed for the top and bottom surfaces

of the chip. Furthermore, numerical stability problem may occur in calculating the

Green's function [48, 77]. In thermal analysis, general heat-convection boundary

conditions must be imposed on the top and bottom surfaces of the chip.

1.3 Thesis Organization

This dissertation includes mainly three chapters. Chapter II is concentrated on the

derivation of fully analytical temperature solutions to the steady-state heat conduc-

tion equation, particularly the derivation of the multilayer heat conduction Green's
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function. Chapter III is focused on the computation of the temperature solutions by

O (n lg n) algorithms and mainly introduces the fast thermal analysis method called

LOTAGre. Chapter V is focused on the optimization of the chip temperature distri-

bution in the cell placement stage and introduces the optimal power budget model

to augment the Capo placement tool with thermal optimization capability. In addi-

tion to the three major chapters, this dissertation brie�y introduces the modeling of

interconnect temperature distribution in chapter IV.

1.3.1 Derivation of Homogeneous and Inhomogeneous Temperature Solutions

Chapter II derives fully analytical temperature solutions to the steady-state heat

conduction equation. In the derivation, the temperature distribution of the chip

is separated into two parts: the homogeneous temperature distribution attributed

to the ambient temperatures only, and the inhomogeneous temperature distribution

attributed to the heat sources inside the chip only. To solve the inhomogeneous

temperature distribution, the chapter applies the multilayer heat conduction Green's

function. Various boundary conditions are considered based on a general multilayer

chip structure that consists of heterogeneous heat conduction materials. The chapter

also derives a fully analytical solution to the homogeneous temperature distribution,

which was traditionally neglected because the chip was assumed to be surrounded

by a uniform ambient temperature [21, 78]. The assumption is inaccurate because

temperature gradients at di�erent boundaries of the chip are dissimilar and heat

�ow from di�erent surfaces of the chip to the outer environment is unbalanced.

In addition, the chapter introduces the s-domain Green's function for the time-

dependent heat conduction equation. By the s-domain heat conduction Green's

function, the thermal transfer impedance between any two interested regions of the

chip can be computed so that compact thermal models can be established for the
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chip.

1.3.2 Computation of Homogeneous and Inhomogeneous Solutions

Chapter III presents fast algorithms for computing the homogeneous and inho-

mogeneous temperature solutions. This chapter introduces an O (n lg n) chip-level

thermal analysis method based on the multilayer heat conduction Green's function,

which is named LOTAGre. Here, n indicates that there are n heat source blocks

and that the temperatures of n blocks need to be evaluated. Traditional Green's

function-based methods compute the temperature distribution of the chip by the

following process: �rst, the methods model heat sources as discrete blocks; next,

the methods compute the temperatures of the observed regions by the sum of the

products of the heat source power densities and the Green's function values [21, 78].

The computing process can be abstracted as a matrix-vector product operation on

an n × n matrix and an n-dimensional vector. Therefore, the traditional Green's

function-based methods need O (n2) computations to obtain the required temper-

atures. Such quadratic increase of the computational time becomes intolerable,

especially when the methods are to be used in an inner loop for many iterations.

Several techniques have been proposed to reduce the time complexity of the Green's

function-based methods for parasitic exaction. In [47], FastCap used a multipole

accelerated technique to compute the dense matrix-vector product in O (n) time.

In [51], an O (n lg n) precorrected-FFT technique was proposed, which was instead

faster in many cases than the O (n) multipole accelerated technique. To speed up

the dense matrix-vector production operation, both the techniques exploit the multi-

pole expansion of the free-space Green's function based on the spherical harmonics.

In comparison, LOTAGre introduced in the chapter is an O (n lg n) method and

meantime uses the multilayer heat conduction Green's function. Because of the ap-
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plication of the eigen-expansion technique and the use of orthogonal trigonometric

functions, LOTAGre employs the discrete cosine transform (DCT) and the inverse

discrete cosine transform (IDCT) to accelerate thermal simulation for ULSI chips.

The �nal portion of the chapter presents experimental results to demonstrate the

accuracy, speed, and scalability of LOTAGre.

1.3.3 Thermal Optimization in Cell Placement

Chapter V is focused on the optimization of the temperature distribution of the

chip in the cell placement stage. In the ULSI chip physical design �ow, the cell

placement stage determines the module locations and signi�cantly impacts the tem-

perature distribution of the chip. The cell placement stage was traditionally intended

to minimize the total interconnect length. However, the temperature distribution of

the chip recently became very important, and in the literature, several thermal op-

timization methods were proposed for cell placement. Thermal simulation is an

obstacle to thermal optimization at the cell placement stage. To optimize the tem-

perature distribution of a chip, a large number of thermal simulations must be run

across the entire parameter space. With LOTAGre to accelerate thermal simulation,

thermal optimization becomes much faster at the cell placement stage. Importantly,

this chapter introduces an optimal power budget model with the use of LOTAGre.

Stipulated by several design constraints, the optimal power budget model determines

the optimal allocation of heat sources to di�erent regions of the chip to reduce the

number of hot-spots inside the chip. The chapter describes the procedure to integrate

the optimal power budget model into the Capo placement tool to perform thermal

optimization.

In addition to the aforementioned three major chapters, chapter IV brie�y ad-

dresses the interconnect thermal issue. Interconnect temperature impacts an inter-
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connect wire primarily in two aspects. One is interconnect timing, as the variation of

the interconnect temperature causes the variation of the interconnect resistivity and

concurrently the variation of delay in propagating signals through the interconnect

wire. The other is interconnect electromigration, as the MTTF of an interconnect

wire decreases exponentially with the increase of its temperature [13]. Therefore, it

is necessary to accurately determine the temperature distribution of an interconnect

wire. This chapter presents an interconnect temperature distribution model and an

e�cient O (n) approach to calculate the temperature distribution of an interconnect

wire.

Finally, chapter VI provides the concluding remarks and summarizes the major

results and contributions of this dissertation. Possible future research directions to

address the chip-level thermal issues are also suggested in the chapter.



CHAPTER II

Derivation of Homogeneous and Inhomogeneous Temperature

Solutions

2.1 Steady-State Heat Conduction Problem

2.1.1 Steady-State Heat Conduction Equation

Inside a chip, temperature and power density are two interrelated physical quan-

tities. The intensify of the power densities of the devices raises their temperatures,

and rising temperatures also strengthen the power densities of the devices because

of the increase of sub-threshold currents. In IC thermal analysis, there are two main

methodologies for addressing the coupling between temperature and power density.

One method solves the time-dependent heat conduction equation at discrete-time

steps: at each time step, the method imposes the known power densities and solves

the time-dependent heat conduction equation for the temperatures within the chip;

then this method uses the obtained temperatures to estimate the power densities

at the next time step by either transient circuit simulation or from circuit power

models [27, 76]. The other method decomposes IC thermal analysis into two steps.

First, this method applies circuit power models to estimate the power densities of the

devices based on their initial temperatures. Next, it imposes the estimated power

densities and solves the steady-state heat conduction equation to update the tem-

peratures of the devices. It then repeats the previous two steps until convergence

13



14

(a)

a
−T  (x,y)

T  (x,y) a
−

T  (x,y) a
−

a
−T  (x,y)

h−

h−

h−

h−

(b)

T  (x,y) a
−

a
−T  (x,y)

h−

zp

zq−1

zn

z1
0z

zp−1

zq

zn−1

k1

pk

kq

kn

h−
}

}

Example B:

Thermal
attach

Bump

Chip

Heat sink

Heat sink
Chip

Example A:

0 Xx

Y
y

0

(x,y,z)

(x’,y’,z’)

Figure 2.1:
Illustration of multilayer thermal model: (a) two chip examples and (b) multilayer
thermal model.

[22, 21]. Because the power densities of the devices highly depend on the transistor

switching patterns, the latter method is much more e�cient in ULSI chip design [21].

Hence, this dissertation work is based primarily on the steady-state heat conduction

equation.

In thermal analysis, a chip can be abstracted as a multilayer thermal (MLT)

model, as shown in Fig.2.1(b). On the left, Fig.2.1(a) shows two chip examples:

example A, which has wire-bonding packaging, and example B, which has �ip-chip

packaging [26, 50]. The MLT model is capable of modeling chips with either pack-

aging. Traditional Green's function-based methods used only the SLT model, i.e.,

an MLT model with only one layer. Geometrically, the SLT model includes only the

active region of the chip and needs to approximate the other regions of the chip as

well as the packaging materials by the heat transfer rates on the top and bottom

surfaces of the chip [22]. In contrast, the MLT model can include the geometry of

the entire chip as well as the packaging. Hence, this dissertation uses the MLT model

shown in Fig.2.1(b).

The temperature distribution of a chip can be solved from the 3-D steady-state
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heat conduction equation, which in the Cartesian coordinate system is given by

(2.1) ∇ · [k (z)∇T (x, y, z)] = −f (x, y, z)

where T denotes temperature (in kelvin or K); the small letter k denotes material

thermal conductivity (in W/m K); and f denotes power density (in W/m3). Given

a multilayer chip, the thermal conductivity k is modeled by a piecewise constant

function, with k in each layer being a constant value. As shown in Fig.2.1(b), k is

only z-axis dependent, with k (z) = km for zm−1 < z < zm and 1 ≤ m ≤ n.

Traditional Green's function-based methods speci�ed the top ambient tempera-

ture T̄ a (x, y) and the bottom ambient temperature T
	

a (x, y) to take the same con-

stant value. In reality, T̄ a and T
	

a may di�er considerably and have large spatial

variations in the x − y plane, because of the temperature gradients inside the chip

and the imbalance of heat �ow from the di�erent surfaces of the chip to the outer

environment. To be accurate, in this dissertation T̄ a and T
	

a is represented as 2-D

functions. Furthermore, the ambient environment surrounding the four sidewalls of

the chip is assumed to have the same temperature. This sidewall ambient tempera-

ture is chosen as the reference, i.e., T in (2.1), T̄ a and T
	

a are temperature di�erences

from the sidewall ambient temperature.

2.1.2 Heat Conduction Boundary Conditions

Three sets of boundary conditions (BCs) are speci�ed for the heat conduction

equation (2.1): BCs for the four sidewalls of the chip, named sidewall BCs; BCs for

the horizontal inner interfaces between adjacent layers, named inter-layer BCs; and

BCs for the top and bottom surfaces of the chip, named top-bottom BCs. Details

are given below.
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Sidewall BCs

If the four sidewalls of the chip, i.e., x = 0, X and y = 0, Y , are insulated from

the ambient environment, the Neumann's sidewall BCs are speci�ed:

∂T (x, y, z)

∂x

∣∣∣∣
x=0,X

= 0

∂T (x, y, z)

∂y

∣∣∣∣
y=0,Y

= 0.(2.2)

If the four sidewalls of the chip remain at a speci�c sidewall ambient temperature,

the Dirichlet's sidewall BCs are speci�ed:

T (x, y, z)|x=0,X = 0

T (x, y, z)|y=0,Y = 0(2.3)

where both the right-hand sides are zero because the sidewall ambient temperature

is chosen as the reference.

Here capital letters X and Y denote the dimensions of the chip along the x and

y axes, respectively. The chip vertical dimension is speci�ed by the interval [z0, zn].

First, the Neumann's sidewall BCs (2.2) are imposed to solve the steady-state heat

conduction equation.

Inter-layer BCs

At any horizontal inner interface zm, for 0 < m < n, inter-layer BCs are speci�ed

to ensure the continuity of temperature, described by (2.4a), and the continuity of

per unit-area heat �ux through the interface, described by (2.4b):

T (x, y, zm+) = T (x, y, zm−)(2.4a)

km+1
∂T (x, y, z)

∂z

∣∣∣∣
z=zm+

= km
∂T (x, y, z)

∂z

∣∣∣∣
z=zm−

.(2.4b)
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Top-bottom BCs

On the top and bottom surfaces of the chip, the phenomenon of heat transfer with

the ambient environment is described by the heat convection BCs:

k1
∂T (x, y, z)

∂z

∣∣∣∣
z=z0

− h
	
T (x, y, z0) = −h

	
T
	

a (x, y)(2.5a)

−kn
∂T (x, y, z)

∂z

∣∣∣∣
z=zn

− h̄T (x, y, zn) = −h̄T̄ a (x, y) .(2.5b)

Here, h
	
(or h̄) is the heat transfer rate between the bottom (or top) surface z0 (or

zn) of the chip and the ambient environment, with units W/(m2 K).

Given a power density distribution f (x, y, z), the temperature distribution of the

chip, T (x, y, z), can be solved from (2.1), under the three sets of heat conduction

BCs. Grid-based methods often discretize the Laplacian operator by the second-order

central FD scheme to form a resistive network [65]. Even if sophisticated linear solvers

are used to solve the resultant system of equations, the large problem size makes the

solution process very expensive. Allocating large amounts of grids to those regions

that are of little interest renders the grid-based methods ine�cient in performing

chip-level thermal analysis. In contrast, Green's function-based methods avoid such

costly modeling and improve thermal simulation time by orders of magnitude [21, 67,

78]. This dissertation introduces a multilayer heat conduction Green's function-based

fast thermal analysis method named LOTAGre [73, 75].

2.2 Homogeneous and Inhomogeneous Temperature Solutions

Because the top-bottom BCs in (2.5) are inhomogeneous, the temperature distri-

bution of the chip is separated into two parts: one is a homogeneous solution, de-

noted by T h, which satis�es the Laplace's equation and inhomogeneous top-bottom

BCs; and the other is an inhomogeneous solution, denoted by T i, which satis�es the
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Poisson's equation and homogeneous top-bottom BCs. Therefore, at a given chip

location (x, y, z), the temperature is represented by the superposition of the homo-

geneous temperature T h (x, y, z) and the inhomogeneous temperature T i (x, y, z):

T (x, y, z) = T h (x, y, z) + T i (x, y, z) .

2.2.1 Homogeneous Temperature Solution

The homogeneous solution T h satis�es the homogeneous heat conduction equa-

tion, which is obtained by setting the right-hand side of (2.1) to zero. Meanwhile, T h

satis�es the three sets of heat conduction BCs given in Section 2.1.2. In summary,

the complete equations that govern T h are described by

∇ ·
[
k (z)∇T h (x, y, z)

]
= 0(2.6a)

k1
∂T h

∂z
− h
	
T h

∣∣∣∣
z=z0

= −h
	
T
	

a (x, y)(2.6b)

−kn
∂T h

∂z
− h̄T h

∣∣∣∣
z=zn

= −h̄T̄ a (x, y)(2.6c)

T h
∣∣
z=zm+

= T h
∣∣
z=zm−

(2.6d)

km+1
∂T h

∂z

∣∣∣∣
z=zm+

= km
∂T h

∂z

∣∣∣∣
z=zm−

(2.6e)

∂T h

∂x

∣∣∣∣
x=0,X

= 0,
∂T h

∂y

∣∣∣∣
y=0,Y

= 0.(2.6f)

2.2.2 Inhomogeneous Temperature Solution

The inhomogeneous solution T i satis�es the heat conduction equation (2.1) and

all three sets of heat conduction BCs, except that the top-bottom BCs (2.5) are

replaced by homogeneous top-bottom BCs. In other words, the right-hand sides of

(2.5) are set to zero. The complete equations that govern T i, except the sidewall and
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inter-layer BCs, are given by

∇ ·
[
k (z)∇T i (x, y, z)

]
= −f (x, y, z)(2.7a)

k1
∂T i (x, y, z)

∂z

∣∣∣∣
z=z0

− h
	
T i (x, y, z0) = 0(2.7b)

−kn
∂T i (x, y, z)

∂z

∣∣∣∣
z=zn

− h̄T i (x, y, zn) = 0.(2.7c)

The inhomogeneous solution T i can be obtained by using the Green's function of

(2.7), i.e., the heat conduction Green's function, denoted by G(x, y, z|x′, y′, z′) here.

G corresponds to the temperature distribution of the chip when the power density

distribution f (x, y, z) is a Dirac delta function δ(x − x′, y − y′, z − z′), i.e., a unit-

strength heat source at the location (x′, y′, z′) of the chip. The complete equations

that govern G, except the sidewall BCs, are given by

∇ · [k (z)∇G (x, y, z|x′, y′, z′)] = −δ (x− x′, y − y′, z − z′)(2.8a)

G|z=zm+
= G|z=zm−

(2.8b)

km+1
∂G

∂z

∣∣∣∣
z=zm+

= km
∂G

∂z

∣∣∣∣
z=zm−

(2.8c)

k1
∂G

∂z
− h
	
G

∣∣∣∣
z=z0

= 0(2.8d)

−kn
∂G

∂z
− h̄G

∣∣∣∣
z=zn

= 0.(2.8e)

Then the inhomogeneous solution T i (x, y, z) can be represented by the spatial

convolution of the power density distribution f with G:

(2.9) T i (x, y, z) =

∫
V
G (x, y, z|x′, y′, z′) f (x′, y′, z′) dx′dy′dz′

where V denotes the entire volume space of the simulated chip.

Assuming the homogeneous solution T h being zero, traditional Green's function-

based methods mainly considered the inhomogeneous solution T i [21, 78]. In this
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dissertation, the homogeneous solution T h is considered and general 2-D functions

are used to model the ambient temperatures at the top and bottom surfaces of the

simulated chip. Since the homogeneous solution T h and the inhomogeneous solution

T i are independent and the former does not depend on the power density distribution

f , T h should be computed only once for a given ambient condition.

The Green's function for the Poisson's equation has been discussed in the liter-

ature. In [28], the Green's function for the 2-D Poisson's equation was considered

under various types of BCs and geometrical con�gurations. In [80], the Green's func-

tion for the 3-D Poisson's equation was derived for parasitic extraction, under the

assumption that the chip horizontal dimensions were in�nite. For substrate mod-

eling, in [48] the Green's function was derived with the Neumann's sidewall BCs

imposed and with the potential or potential gradient at the top and bottom surfaces

of the chip set to zero; and in [77] the numerical stability issue was further discussed.

In thermal analysis, however, general heat convection BCs need to be imposed on the

top and bottom surfaces of the chip. Considering one homogeneous heat conduction

material, [21] derived the Green's function by assuming a heat insulation BC on the

chip top surface, and [78] derived the Green's function under the Neumann's sidewall

BCs. To consider heterogeneous materials, the MLT model and the multilayer heat

conduction Green's function should be used.

In the following, fully analytical formulas are derived for the homogeneous solution

T h, the inhomogeneous solution T i, and the multilayer heat conduction Green's

function, including the s-domain version.
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2.3 Derivation of Homogeneous Temperature Solution

To obtain the homogeneous solution T h from (2.6), the eigen-expansion technique

is used [14]. Consider the Neumann's sidewall BCs (2.6f), which approximate that

there is no heat transfer between the simulated chip and the surrounding environment

via the four sidewalls of the chip because the thickness of the chip is much smaller

than the horizontal dimensions of the chip. Consequently, orthogonal cosine functions

are chosen as eigenfunctions.

The domain of the homogeneous solution T h (x, y, z) was initially limited to the

entire chip volume space V . To obtain an eigen-expansion of T h (x, y, z), the domain

of T h (x, y, z) is expanded from space V to the entire 3-D space, and T h (x, y, z) is

expanded to a periodic even function of x of period 2X as well as a periodic even

function of y of period 2Y . Similarly, this even periodic expansion is applied to the

top and bottom ambient temperature functions T̄ a (x, y) and T
	

a (x, y). The three

eigen-expansions are given by

T h (x, y, z) =
∞∑
i=0

∞∑
j=0

ϕij (x, y) thij (z)(2.10a)

T̄ a (x, y) =
∞∑
i=0

∞∑
j=0

ϕij (x, y) t̄aij(2.10b)

T
	

a (x, y) =
∞∑
i=0

∞∑
j=0

ϕij (x, y) t
	

a
ij.(2.10c)

Here thij, t̄
a
ij and t

	
a
ij are eigen-expansion coe�cients, and ϕij (x, y) is the eigen-

function: ϕij (x, y) = cos
(

iπx
X

)
cos
(

jπy
Y

)
. Eigen-expansions in (2.10a) ensure that T h

satis�es the Neumann's sidewall BCs (2.6f).

Insert (2.10) into (2.6) and eliminate the ϕij (x, y) terms in those equations. The
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Figure 2.2:
Equivalent circuit for deriving eigen-expansion coe�cient thij : (a) MLT model for 3-D
governing equation (2.6), with top and bottom ambient temperature functions imposed
and power density distribution set to zero; and (b) an equivalent circuit that describes
1-D governing equation (2.11).

complete equations that govern the eigen-expansion coe�cient thij are obtained:

d2thij (z)

dz2
− γ2

ijt
h
ij (z) = 0(2.11a)

thij (zm+) = thij (zm−)(2.11b)

km+1

dthij (z)

dz

∣∣∣∣∣
z=zm+

= km

dthij (z)

dz

∣∣∣∣∣
z=zm−

(2.11c)

k1

dthij (z)

dz

∣∣∣∣∣
z=z0

− h
	
thij (z0) = −h

	
t
	

a
ij(2.11d)

−kn

dthij (z)

dz

∣∣∣∣∣
z=zn

− h̄thij (zn) = −h̄t̄aij(2.11e)

where γij =
√

i2π2

X2 + j2π2

Y 2 . Accordingly, the homogeneous solution T h can be com-

puted in the following way: given the 2-D top and bottom ambient temperature

functions T̄ a (x, y) and T
	

a (x, y), �rst calculate their eigen-expansion coe�cients t̄aij

and t
	

a
ij based on formulas (2.10b) and (2.10c); then solve the eigen-expansion coe�-

cient thij (z) from (2.11). Finally, calculate T h (x, y, z) based on (2.10a).

The eigen-expansion coe�cient thij is derived in the following.
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2.3.1 Eigen-expansion Coe�cient thij (i = j = 0)

When i = j = 0, γij becomes 0, then the governing equations in (2.11) can

be shown to be equivalent to the circuit equations for an n-section non-uniform

line conductor of per unit-length (PUL) conductance k (z). Each section of the

line conductor corresponds to one layer in the MLT model in Fig.2.2(a) and has a

length that equals the thickness of that layer. The two ends of the line conductor

are terminated by two resistors of resistances R̄ = 1/h̄ and R
	

= 1/h
	
, and the two

resistors are driven by two voltage sources of magnitudes V̄s = t̄aij and V
	

s = t
	

a
ij.

The equivalent line conductor circuit is shown in Fig.2.2(b). According to the shown

equivalent circuit, the eigen-expansion coe�cient thij (z) corresponds to the voltage

at the location z on the line (assume that location z is in the q-th section of the

line conductor); (2.11a) corresponds to the Kirchho�'s current law at that location;

(2.11b) and (2.11c) are equivalent to the current and voltage continuity conditions

at the interface between the m-th and the (m+ 1)-th line sections. The last two

equations in (2.11) correspond to the circuit equations that govern the two ends of

the line conductor.

Therefore, by solving the voltage at the location z, the eigen-expansion coe�cient

th00 (z) is obtained:

(2.12) th00 (z) = t̄a00H̄
a
00 (z) + t

	

a
00H
	

a
00 (z)

where

H̄a
00 (z) =

Z
	

q + Zq (z − zq−1)

Z
	

q + Zqlq + Z̄q

(2.13a)

H
	

a
00 (z) =

Z̄q + Zq (zq − z)

Z
	

q + Zqlq + Z̄q

.(2.13b)

The symbols used previously are explained hereafter. In this dissertation, when

a non-uniform line (either a line conductor or a transmission line) is used in an



24

equivalent circuit, for the m-th line section, Z
	

m denotes the input impedance seen

from the bottom boundary of that section toward the bottom side of the equivalent

circuit; Z̄m denotes the input impedance seen from the top boundary of that section

toward the top side of the circuit; Zm denotes the characteristic impedance of that

section, with Zm = 1/km; and lm is the length of that section. There are two special

cases: Z̄0 denotes the input impedance seen from location z = z0 to the top side

of the circuit, and Z
	

n+1 denotes the input impedance seen from location z = zn to

the bottom side of the circuit. For the equivalent line conductor circuit shown in

Fig.2.2(b), Z̄q = R̄ +
∑n

m=q+1 Zm and Z
	

q = R
	

+
∑q−1

m=1 Zm.

2.3.2 Eigen-expansion Coe�cient thij (i + j > 0)

When i + j > 0, a similar circuit equivalence that will facilitate solving thij from

(2.11) can be established by comparing (2.11a) to the transmission line equations

dV (z)

dz
= − (R + sL) I (z)

dI (z)

dz
= − (G+ sC)V (z)

or in an alternative form d2V (z)
dz2 − γ2V (z) = 0. The governing equations of thij in

(2.11) can be shown to be equivalent to the circuit equations for an n-section non-

uniform transmission line (TL) of propagation constant γ =
√

(R + sL) (G+ sC)

and characteristic impedance Z =
√

R+sL
G+sC

. In the equivalent TL circuit, each line

section corresponds to one layer in the MLT model and has a length that equals

the thickness of that layer. The PUL parameters of the m-th TL section, R, L, C,

and G satisfy
√
RG = γij,

√
R/G = Zm = 1/km, and L = C = 0. The two ends

of the TL are terminated by two resistors of resistances R̄ = γ/h̄ and R
	

= γ/h
	
,

which are driven by the same voltage sources as those in the line conductor circuit.

Consequently, the same circuit diagram as that for the line conductor circuit is used
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to illustrate the equivalent TL circuit, as shown by Fig.2.2(b) again. Note that the

two terminating resistors choose the resistance values enclosed in the parentheses.

According to Fig.2.2(b), the eigen-expansion coe�cient thij (z) corresponds to the

voltage at the location z in the q-th TL section. Therefore, by solving the voltage at

that location, thij (z) is obtained:

(2.14) thij (z) = t̄aijH̄
a
ij (z) + t

	

a
ijH
	

a
ij (z)

where

H̄a
ij (z) =

Z
	

n+1

ξ
(
Z
	

n+1 + R̄
) Z	 q cosh γl

	
q + Zq sinh γl

	
q

Z
	

q cosh γlq + Zq sinh γlq

H
	

a
ij (z) =

Z̄0

ξ
(
R
	

+ Z̄0

) Z̄q cosh γl̄q + Zq sinh γl̄q
Z̄q cosh γlq + Zq cosh γlq

.

Here l̄q = zq − z, l
	

q = z − zq−1, and

ξ =
n∏

m=q+1

(
cosh γlm +

Zm

Z
	

m

sinh γlm

)

ξ =

q−1∏
m=1

(
cosh γlm +

Zm

Z̄m

sinh γlm

)
.

Those input impedances Z
	
's and Z̄'s have recurrence formulas: for one TL section

in a non-uniform TL, the input impedance at its one boundary, denoted by Zin, has

a recurrence formula:

(2.16) Zin = ZC
ZL+ ZC tanh γL

ZC + ZL tanh γL

where ZL is the load impedance at the other boundary, ZC is the characteristic

impedance of this TL section, and L is the length of the section.

In the previous procedure, the homogeneous solution T h has been derived un-

der the Neumann's sidewall BCs (2.2). When the Dirichlet's sidewall BCs (2.3)
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are imposed, the same procedure as the previous can be followed to derive the cor-

responding homogeneous solution after the eigenfunction is changed to ϕij(x, y) =

sin
(

iπx
X

)
sin
(

jπy
Y

)
.

2.4 Derivation of Inhomogeneous Temperature Solution

To obtain the inhomogeneous solution T i, the heat conduction Green's function

G should be solved from its governing equations (2.8) under the BCs imposed. In

the following, G is derived by using the same procedure as that which derives the

homogeneous solution T h, i.e., employing the eigen-expansion technique and the

transmission line theory. First, impose the Neumann's sidewall BCs (2.2); therefore,

G satis�es the following sidewall BCs:

∂G (x, y, z|x′, y′, z′)
∂x

∣∣∣∣
x=0,X

= 0(2.17a)

∂G (x, y, z|x′, y′, z′)
∂y

∣∣∣∣
y=0,Y

= 0.(2.17b)

Similarly, the even periodic expansion is applied to the heat conduction Green's

function. The following eigen-expansion of G results:

(2.18) G (x, y, z|x′, y′, z′) =
∞∑
i=0

∞∑
j=0

ϕij (x, y)Gij (z|x′, y′, z′)

where the eigenfunction remains being ϕij (x, y) = cos
(

iπx
X

)
cos
(

jπy
Y

)
. The above

eigen-expansion ensures that G satis�es the Neumann's sidewall BCs in (2.17).

Insert (2.18) into (2.8), multiply the two sides of (2.8a) by ϕij (x, y), and integrate

over the x and y dimensions of the chip. Then (2.19a) results, due to the orthogo-

nality of eigenfunctions [14]. Simplifying the remaining equations in (2.8) leads to
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Figure 2.3:
Equivalent circuit for deriving eigen-expansion coe�cient Gij : (a) MLT model for 3-D
governing equation (2.8), with Dirac delta heat source imposed at location (x′, y′, z′)
and ambient temperatures set to zero; and (b) an equivalent circuit that describes 1-
D governing equation (2.19), (small letter z denotes a location, while capital letter Z
denotes TL characteristic impedance).

the complete equations that govern the eigen-expansion coe�cient Gij:

d2Gij (z|x′, y′, z′)
dz2

− γ2
ijGij (z|x′, y′, z′) = −cijϕij (x′, y′) δ (z − z′)

k (z)
(2.19a)

Gij (zm+|x′, y′, z′) = Gij (zm−|x′, y′, z′)(2.19b)

km+1
dGij (z|x′, y′, z′)

dz

∣∣∣∣
z=zm+

= km
dGij (z|x′, y′, z′)

dz

∣∣∣∣
z=zm−

(2.19c)

k1
dGij (z|x′, y′, z′)

dz

∣∣∣∣
z=z0

− h
	
Gij (z0|x′, y′, z′) = 0(2.19d)

−kn
dGij (z|x′, y′, z′)

dz

∣∣∣∣
z=zn

− h̄Gij (zn|x′, y′, z′) = 0.(2.19e)

Here γij remains being γij =
√

i2π2

X2 + j2π2

Y 2 , and cij = 22−δi0−δj0/XY , where δi0 and

δj0 are Kronecker deltas. Once the eigen-expansion coe�cient Gij is solved from

(2.19), G can be obtained from (2.18). Since Gij's governing equations (2.19) have

some similarities to (2.11), the transmission line theory is employed again to derive

Gij.
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2.4.1 Eigen-expansion Coe�cient Gij (i = j = 0)

Let i = j = 0, and γij becomes 0. Then the governing equations (2.19) can be

shown to be equivalent to the circuit equations for an n-section non-uniform line

conductor of PUL conductance k(z). The two ends of the line are terminated by two

resistors of resistances R
	

= 1/h
	
and R̄ = 1/h̄. Fig.2.3(b) shows this line conductor.

In comparison, this line conductor di�ers in two aspects from the equivalent circuit in

Fig.2.2(b) for deriving T h: there is a current source input Is of intensity c00ϕ00(x
′, y′)

at the source location z′ in the p-th section of this line conductor, and there are no

voltage sources at the two ends of this line conductor.

According to Fig.2.3(b) and (2.19), the eigen-expansion coe�cient G00 (z|x′, y′, z′)

corresponds to the voltage at the target location z in the q-th section of this line

conductor. Therefore, by solving the voltage at that location, G00 is obtained:

(2.20) G00(z|x′, y′, z′) = c00ϕ00(x
′, y′)H00(z|z′)

where H00 is the transfer impedance from the source location z′ to the target location

z, given by

(2.21) H00(z|z′) =

[
Z
	

p + Zp(z
′ − zp−1)

] [
Z̄q + Zq(zq − z)

]
Z
	

p + Zplp + Z̄q

.

Here the same symbols are used as in the previous equations.

2.4.2 Eigen-expansion Coe�cient Gij (i + j > 0)

When i + j > 0, an equivalent TL circuit can be constructed to derive Gij.

Compare (2.19a) to the transmission line equations:

dV (z)

dz
= −(R + sL)I (z)

dI (z)

dz
= −(G+ sC)V (z) + Isδ(z − z′)
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or in the form of

(2.22)
d2V (z)

dz2
− γ2V (z) = −γZIsδ(z − z′).

It is evident that Gij (z|x′, y′, z′) corresponds to the voltage at the location z in

an n-section non-uniform TL of propagation constant γ = γij and characteristic

impedance Z = 1/k(z) when a current source input of intensity Is =
cij

γij
ϕij(x

′, y′)

is imposed at the location z′. The PUL parameters of the m-th line section satisfy

√
RG = γij,

√
R/G = Zm = 1/km, L = 0, and C = 0. The equivalent TL circuit

is shown by Fig.2.3(b) again. Note that the two terminating resistors choose the

resistance values enclosed in the parentheses, i.e., R̄ = γ/h̄ and R
	

= γ/h
	
.

Since Gij (z|x′, y′, z′) corresponds to the voltage at the location z of the TL under

a current source input Is, Gij (z|x′, y′, z′) is derived with the help of the transfer

impedance between the source location z′ in the p-th line section and the target

location z in the q-th line section. The obtained Gij, for i+ j > 0, is given by

(2.23) Gij(z|x′, y′, z′) = cijϕij(x
′, y′)Hij(z|z′)

where Hij is the normalized transfer impedance from the location z′ to the location

z by the propagation constant γ, with γ = γij =
√

i2π2

X2 + j2π2

Y 2 . The normalized

transfer impedance Hij is given by

(2.24) Hij(z|z′) =
ξ
(
Z
	

p cosh γl
	

+ Zp sinh γl
	

) (
Z̄q cosh γl̄ + Zq sinh γl̄

)
Zp(Z

	
p + Z̄p) cosh γlp + (Z2

p + Z
	

pZ̄p) sinh γlp

where l
	

= z′ − zp−1, l̄ = zq − z, and ξ is given by

(2.25) ξ =
Zp

∏q−1
m=p Z̄m

γ
∏q

m=p+1(Z̄m cosh γlm + Zm sinh γlm)
.

To demonstrate the multilayer heat conduction Green's function derived here, the

multilayer structure considered by Albers is taken as an example [5].



30

2.4.3 Surface Temperature Solution for Multilayer Structure

In [5], Albers gave a recursion relation for the steady-state surface temperature of

a multilayer structure and showed that the recursion analytically agreed with Kokkas'

solution for up to 3 layers [43]. Based on the previous multilayer Green's function,

this section gives a surface temperature solution that agrees with Albers' recursion

relation for an arbitrary number of layers. The procedure is described below.

The multilayer structure used by Albers becomes a special case of the MLT model

in Fig.2.1(b) after let h̄ = 0, h
	

= ∞, T̄ a (x, y) = T
	

a (x, y) = 0, and f (x, y, z) =

P0u (x, y) δ (z − zn) . Therefore, according to (2.9), (2.18), (2.20), and (2.23), the

surface temperature is represented by

(2.26) T (x, y, zn) = P0

∞∑
i=0

∞∑
j=0

cijU (i, j)ϕij (x, y)Hij (zn|zn)

where U (i, j) =
∫ X

0

∫ Y

0
u (x′, y′)ϕij (x′, y′) dx′dy′.

Insert Z̄n = ∞ into (2.21). H00 (zn|zn) is obtained:

(2.27) H00 (zn|zn) = Z
	

n + Znln =
n∑

m=1

lm
km

.

Insert l
	

= ln and Z̄n = ∞ into (2.24) and apply (2.16). Hij (zn|zn), for i + j > 0, is

obtained:

(2.28) Hij (zn|zn) =
1

γ
Z
	

n+1 =
1

γ
Zn

Z
	

n + Zn tanh γln
Zn + Z

	
n tanh γln

.

Note that since h
	

= ∞, Z
	

2 = Z1 tanh γl1. Clearly, after a simple transformation

τm = Z
	

m+1km, (2.26), (2.27) and (2.28), obtained by employing the multilayer heat

conduction Green's function derived here, are the same as the analytical formulas

derived by Albers [5]. For the numerical computation of the surface temperature,

Kokkas presented extensive numerical results in [43] and discussed the convergence

issue of the series expansion (2.26).
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By integrating the eigen-expansion technique and the transmission line theory, this

section derives the multilayer heat conduction Green's function, with the Neumann's

sidewall BCs (2.2) imposed. With the multilayer heat conduction Green's function,

the steady-state temperature distribution for a given arbitrary power density distri-

bution can be computed. For example, this section derives a surface temperature

solution that agrees with Albers' recursion relation for a multilayer structure. The

same methodology can still be followed to derive the multilayer heat conduction

Green's function under the other types of sidewall BCs. For example, consider using

the Dirichlet's sidewall BCs (2.3), i.e., assume that the sidewall temperatures remain

a constant value. After the eigenfunction is changed to ϕij(x, y) = sin
(

iπx
X

)
sin
(

jπy
Y

)
,

the same form of equations as those in (2.19) result for Gij. Therefore, the heat

conduction Green's function under the Dirichlet's sidewall BCs can be derived in the

same way as that described previously. [63] has presented a comprehensive library

of eigenfunctions, which can be employed to derive the Green's function under other

types of sidewall BCs.

In calculating the Green's function derived here, the relationship between the

eigen-expansion coe�cients and circuit transfer functions leads to the following ob-

servation: when the heat transfer rate h
	

or h̄ is zero or close to zero, the load

impedances at the end sides of the equivalent circuits become in�nite or too large

to be represented in a �oating-point number system; therefore, instead of using

impedance formulations, using admittance functions in calculation can avoid numer-

ical over�ows. The following asymptotic estimation about Hij can also be made by

expanding the hyperbolic functions in the explicit formulas (2.24) and (2.25): as γ

increases, Z̄'s and Z
	
's are close to some constant values according to (2.16); therefore,

when z ̸= z′, the trend of Hij is dominated by the exponential decrease at a rate of
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eγ(l
	
+l̄−

∑q
m=p lm), and when z = z′, the decrease of Hij is due to the

1
γ
term in (2.25).

In the special case that z = z′ = zn, Hij has a concise form (2.28), by which Hij can

be e�ciently computed.

Proceeding as previously, the following section derives the multilayer heat con-

duction Green's function for the time-dependent heat conduction equation.

2.4.4 s-domain Multilayer Heat Conduction Green's Function

The time-dependent heat conduction equation for the MLT model in Fig.2.1(b)

is described by

(2.29) ∇ · [k (z)∇T (x, y, z, t)] − ρ (z) c (z)
∂T (x, y, z, t)

∂t
= −f (x, y, z, t)

where ρ is the density of the material and c is the speci�c heat. The multilayer

heat conduction Green's function for (2.29), denoted by G(x, y, z, t|x′, y′, z′), is the

temperature solution to (2.29) under zero initial temperature distribution and zero

ambient temperatures when a Dirac delta source is imposed as the power density

distribution, i.e., f (x, y, z, t) = δ (x− x′, y − y′, z − z′, t) .

Consequently, in the s-domain the Laplace transform of G (x, y, z, t|x′, y′, z′), i.e.,

the s-domain heat conduction Green's function G (x, y, z, s|x′, y′, z′), satis�es

(2.30) ∇2G − s

d (z)
G =

δ (x− x′, y − y′, z − z′)

k (z)

where d is the material thermal di�usivity, with d (z) = k (z) /ρ (z) c (z). Insert the

eigen-expansion of G,

(2.31) G (x, y, z, s|x′, y′, z′) =
∞∑
i=0

∞∑
j=0

ϕij (x, y)Gij (z, s|x′, y′, z′) ,

into (2.30). After let γij =
√

i2π2

X2 + j2π2

Y 2 + s
d(z)

, the same set of governing equations

as those in (2.19) result for Gij. Therefore, the equivalent circuit in Fig.2.3(b) is

employed again to derive the eigen-expansion coe�cient Gij.
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Note that since γij is now z-axis dependent, circuit parameters in Fig.2.3(b) should

be altered in the following way. For the m-th line section, its propagation con-

stant and characteristic impedance are speci�ed as γ(m) =
√

i2π2

X2 + j2π2

Y 2 + s
dm

and

Zm = 1
kmγ(m) , respectively. Here dm is the thermal di�usivity of the material in the

m-th layer. The intensity of the current source input and the resistances of the two

terminating resistors are speci�ed by Is = cijϕij (x′, y′), R̄ = 1/h̄, and R
	

= 1/h
	
,

respectively.

The formulas for Gij obtained here are similar to (2.23) and (2.24):

Gij (z, s|x′, y′, z′) = cijϕij (x′, y′)Hij (z, s|z′)

Hij (z, s|z′) =
η
(
Z
	

p cosh γ(p)l
	

+ Zp sinh γ(p)l
	

)
(Z
	

p + Z̄p) cosh γ(p)lp + (Zp + Z
	

pZ̄p/Zp) sinh γ(p)lp

η =

(
Z̄q cosh γ(q)l̄ + Zq sinh γ(q)l̄

)∏q−1
m=p Z̄m∏q

m=p+1(Z̄m cosh γ(m)lm + Zm sinh γ(m)lm)
.(2.32)

When γ(m) goes to zero, (2.32) can be reformulated by employing the following

formula:

lim
γ(m)→0

Zm sinh γ(m)l =
l

km

.

Apparently, changing the eigenfunction ϕij will lead to the s-domain multilayer

Green's function under other types of BCs.

Application of s-domain Multilayer Heat Conduction Green's Function in Computing
Thermal Transfer Impedance

With the s-domain multilayer heat conduction Green's function, the thermal

transfer impedance from an arbitrary-shape input volume iv to an arbitrary-shape

output volume ov, denoted by R
(iv,ov)
th (s) here, can be given by

(2.33) R
(iv,ov)
th (s) =

∫
ov

∫
iv
G (x, y, z, s|x′, y′, z′) dx′dy′dz′dxdydz∫

ov
dxdydz

∫
iv
dx′dy′dz′

.

For the thermal transfer impedance at the top surface of a multilayer structure,

Kokkas gave the solution for up to three layers [43], and the general solution for an
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arbitrary number of layers was given implicitly in [29] by a system of linear equations

and explicitly in [10] by the product of 2× 2 transfer matrices. Based on (2.33), the

thermal transfer impedance at the surface is obtained below in a concise form.

The multilayer structure used in the literature is a special case of the MLT model

in Fig.2.1(b) by letting h̄ = 0 and h
	

= ∞. Therefore at the top surface of the

MLT model in Fig.2.1(b), the thermal transfer impedance to any point pt of location

(x, y, zn) from an arbitrary-shape heat source region hs of area A can be obtained

by inserting (2.31) and (2.32) into (2.33):

(2.34) R
(hs,pt)
th (s) =

1

A

∞∑
i=0

∞∑
j=0

Iijcijϕij (x, y)Hij (zn, s|zn)

where Iij =
∫

hs
ϕij (x′, y′) dx′dy′.

Insert l
	

= ln, l̄ = 0 and Z̄n = ∞ into (2.32) and apply (2.16). The following

formula results:

(2.35) Hij (zn, s|zn) = Z
	

n+1 = Zn
Z
	

n + Zn tanh γ(n)ln
Zn + Z

	
n tanh γ(n)ln

.

Because h
	

= ∞, R
	

= 0 and Z
	

2 = Z1 tanh γ(1)l1. By employing (2.34) and (2.35), the

thermal transfer impedance at the surface can be e�ciently computed. The complex

locus results computed by (2.34) and (2.35) for a structure examined in the literature

(Fig.8 in [10]; Fig.5 and 6 in [62]; Fig.17 in [61]) are plotted in Fig.2.4, which shows

good agreement with the results in [10, 62] and [61].

To establish compact thermal models, the required thermal-transfer impedance

matrices can also be generated by using the s-domain multilayer heat conduction

Green's function, as formulated in (2.33) [10, 46, 29]. Identical to the 2 × 2 transfer

matrix approach in [10], the presented method by (2.33) leads to fully analytical

double Fourier series such as (2.34). With the explicit formulas for the coe�cient

Hij, the e�ciency of establishing compact thermal models can be improved. For
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Figure 2.4:
Complex locus of thermal impedance for the structure examined in [10, 62] and [61],
computed by (2.34) and (2.35).

example, to compute the surface thermal transfer impedance, a system of equations

should be solved in an implicit method, and several times more complex number

calculations are required by a transfer matrix method than by (2.35).

This chapter derives the multilayer heat conduction Green's function with the

inclusion of the s-domain version and demonstrates the Green's function usage by

the known examples in the literature. The rest of this dissertation primarily focuses

on the steady-state thermal issue and will apply the heat conduction Green's function

G (x, y, z|x′, y′, z′) derived in this chapter.



CHAPTER III

Computation of Homogeneous and Inhomogeneous

Temperature Solutions

The previous chapter presents analytical formulas for both the homogeneous so-

lution T h and the inhomogeneous solution T i. This chapter considers the fast com-

putation of the two solutions. Traditional Green's function-based methods consider

only the inhomogeneous solution and use a matrix-vector product to compute T i:

multiply the power density function, given as a vector, by a matrix of Green's func-

tion values. For n heat source blocks and n temperature observation regions, these

methods require O (n2) computations to obtain the inhomogeneous temperatures.

To speed up the thermal analysis of ULSI chips, this chapter introduces algorithms

of O (n lg n) complexity to compute both the homogeneous solution and the inho-

mogeneous solution.

3.1 Computation of Homogeneous Temperature Solution

Section 2.3 gives fully analytical formulas for the homogeneous solution T h. Based

on those formulas, this section introduces anO (n lg n) algorithm to compute T h. The

introduced algorithm decomposes a target region in a layer (e.g., layer q) of vertical

dimension spanning [zq1, zq2] into A × B uniform cells, as illustrated by Fig.3.1(a)

and (b). Inside a given layer, the cell that is the (a + 1)-th in the x direction and

36
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Figure 3.1:
Illustration of discrete models for homogeneous temperatures, inhomogeneous tem-
peratures, ambient temperatures, and heat sources: (a) 3-D heat source region with
z ∈ [zp1, zp2], target region with z ∈ [zq1, zq2], and domain of 2-D top ambient tem-
perature function T̄ a (x, y); (b) discrete homogeneous and inhomogeneous temperature
models for target layer q; (c) discrete ambient temperature model for T̄ a (x, y); and (d)
discrete heat source model for heat source layer p.

the (b + 1)-th in the y direction is named cell (a, b), where 0 ≤ a ≤ A − 1 and

0 ≤ b ≤ B − 1. Each cell in a target region is of dimensions X
A
× Y

B
× (zq2 − zq1)

and has a uniform homogeneous temperature. For a given cell (a, b) in layer q,

its average homogeneous temperature is denoted by T h
ab, as shown in Fig.3.1(b).

Similarly, the algorithm partitions the domains of the top and bottom 2-D ambient

temperature functions T̄ a (x, y) and T
	

a (x, y) into A×B uniform cells, as illustrated

by Fig.3.1(a) and (c). Each cell discretizing the domains of the top and bottom

ambient temperature functions is of dimensions X
A
× Y

B
and has a uniform ambient

temperature, as shown in Fig.3.1(c). For a given cell (a, b) that discretizes the domain

of an ambient temperature function, its ambient temperature is denoted by T̄ a
ab or

T
	

a
ab, depending on which ambient temperature function the cell represents.
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3.1.1 Eigen-expansion Coe�cient t̄aij and t
	

a
ij

The eigen-expansion coe�cient t̄aij in the eigen-expansion (2.10b) is de�ned by an

integral:

t̄aij =
22−δi0−δj0

XY

∫ X

0

∫ Y

0

T̄ a (x, y)ϕij (x, y) dxdy.

Apply the introduced discretization scheme and carry out the above integral. t̄aij is

reformulated to

t̄aij =
22−δi0−δj0

XY

A−1∑
a=0

B−1∑
b=0

T̄ a
ab

∫ (a+1)X/A

aX/A

∫ (b+1)Y/B

bY/B

ϕij (x, y) dxdy

=
22−δi0−δj0

ijπ2
sin

(
iπ

2A

)
sin

(
jπ

2B

)
t̄nij(3.1)

where t̄nij is given by

(3.2) t̄nij =
A−1∑
a=0

B−1∑
b=0

4T̄ a
ab cos

iπ (2a+ 1)

2A
cos

jπ (2b+ 1)

2B
.

In formulating t̄aij to (3.1), the following trigonometric identity has been used:∫ (a+1)X/A

aX/A

∫ (b+1)Y/B

bY/B

ϕij (x′, y′) dx′dy′ =
XY

ijπ2
×[

sin

(
iπ (2a+ 1)

2A
+
iπ

2A

)
− sin

(
iπ (2a+ 1)

2A
− iπ

2A

)]
×[

sin

(
jπ (2b+ 1)

2B
+
jπ

2B

)
− sin

(
jπ (2b+ 1)

B
− jπ

2B

)]
=

4XY

ijπ2
sin

iπ

2A
sin

jπ

2B
cos

iπ (2a+ 1)

2A
cos

jπ (2b+ 1)

2B
.(3.3)

Similarly, from (2.10b), the eigen-expansion coe�cient t
	

a
ij is reformulated to

t
	

a
ij =

22−δi0−δj0

ijπ2
sin

(
iπ

2A

)
sin

(
jπ

2B

)
t
	

n
ij(3.4)

where

(3.5) t
	

n
ij =

A−1∑
a=0

B−1∑
b=0

4T
	

a
ab cos

iπ (2a+ 1)

2A
cos

jπ (2b+ 1)

2B
.
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Formulas (3.2) and (3.5) correspond to the 2-D DCTs of the top and bottom

ambient temperatures T̄ a
ab and T

	

a
ab. Therefore, all t̄

n
ij and t

	
n
ij, for 0 ≤ i ≤ A− 1 and

0 ≤ j ≤ B − 1, can be computed in O (AB lg (AB)).

3.1.2 Computation of Homogeneous Solution by O (n lg n) Algorithm

For a given cell (a, b) in the target region, its average homogeneous temperature

T h
ab can be obtained by the integral of T h (x, y, z) in (2.10a) over cell (a, b):

T h
ab =

AB

XY (zq2 − zq1)
×

∞∑
i=0

∞∑
j=0

∫ (a+1)X/A

aX/A

∫ (b+1)Y/B

bY/B

∫ zq2

zq1

ϕij (x, y) thij (z) dxdydz

=
∞∑
i=0

∞∑
j=0

2d−2THij cos
iπ (2a+ 1)

2A
cos

iπ (2b+ 1)

2B
.(3.6)

Here

THij =
24−dAB sin

(
iπ
2A

)
sin
(

jπ
2B

)
ijπ2 (zq2 − zq1)

∫ zq2

zq1

thij (z) dz

=
16AB sin2 iπ

2A
sin2 jπ

2B

i2j2π4 (zq2 − zq1)

[
t̄nijIH

a

ij + t
	

n
ijIH

a
ij

]
(3.7)

where IH
a

ij and IH
a
ij are the integrals of H̄

a
ij and H

	

a
ij over the interval [zq1, zq2], i.e.,

(3.8) IH
a

ij =

∫ zq2

zq1

H̄a
ij (z) dz and IHa

ij =

∫ zq2

zq1

H
	

a
ij (z) dz.

Then truncate the series representation of T h
ab in (3.6) into the following form:

(3.9) T h
ab ≈

A−1∑
i=0

B−1∑
j=0

2d−2THij cos
iπ (2a+ 1)

2A
cos

iπ (2b+ 1)

2B

which corresponds to the 2-D IDCT of THij. Therefore all T
h
ab, for 0 ≤ a ≤ A−1 and

0 ≤ b ≤ B−1, can be computed in O (AB lg (AB)). Based on the previous formulas,

this section introduces an O (n lg n) algorithm, named Compute-T h, to compute the

homogeneous solution: �rst compute the 2-D DCTs of the discrete top and bottom
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Begin Compute-Th

1. Compute the 2-D DCTs of the given top and bottom ambient temperatures T̄ a
ab and T

	
a
ab by

(3.2) and (3.5). Then obtain t̄nij and t
	

n
ij .

2. Compute all THij , for 0 ≤ i ≤ A − 1 and 0 ≤ j ≤ B − 1, by (3.7), (3.10) and (3.11).

3. Compute the 2-D IDCT of THij by (3.9). Then obtain Th
ab.

End Compute-Th

Figure 3.2: Compute-Th: O (n lg n) algorithm for computing homogeneous solution Th.

ambient temperatures T̄ a
ab and T

	

a
ab by (3.2) and (3.5) to obtain t̄nij and t

	
n
ij, ; then

compute all THij by (3.7) for 0 ≤ i ≤ A− 1 and 0 ≤ j ≤ B− 1; �nally, compute the

2-D IDCT of THij by (3.9) to obtain T h
ab. Fig.3.2 shows the algorithm Compute-T h.

Note that the truncation of the in�nite series (3.6) up to orders A and B allows

the use of the 2-D IDCT to achieve an O (AB lg (AB)) algorithm. The accuracy of

this truncation approximation can be improved by folding back spectral components

of orders higher than A and B into spectral components of orders lower than A and

B, i.e., adding DCT coe�cients THij with i ≥ A and j ≥ B to the correspond-

ing DCT coe�cients THij with i < A and j < B, because of the periodicity of

cos iπ(2a+1)
2A

cos jπ(2b+1)
2B

. The later experimental results will demonstrate that the sim-

ple truncation given by (3.9) already provides su�cient accuracy, notwithstanding

without folding back any high-order spectral components.

3.1.3 DCT Coe�cients

From (2.13) and (2.15), IH
a

ij and IH
a
ij in (3.8) are obtained.

For i+ j = 0,

IH
a

00 =
Z
	

qlqv + Zqlqvl
	

q12c

Z
	

q + Zqlq + Z̄q

(3.10a)

IHa
00 =

Z̄qlqv + Zqlqv l̄q12c

Z
	

q + Zqlq + Z̄q

(3.10b)

where l
	

q12c = zq2+zq1

2
− zq−1 and l̄q12c = zq − zq2+zq1

2
.
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For i+ j > 0,

IH
a

ij =
Z
	

q + Zq

2γξ
(
1 + R̄/Z

	
n+1

) eγl
	

q2 − eγl
	

q1 + D
	

q
ij

(
e−γl

	
q1 − e−γl

	
q2
)

Z
	

q cosh γlq + Zq sinh γlq
(3.11a)

IHa
ij =

Z̄q + Zq

2γξ
(
1 + R

	
/Z̄0

) eγl̄q1 − eγl̄q2 + D̄q
ij

(
e−γl̄q2 − e−γl̄q1

)
Z̄q cosh γlq + Zq sinh γlq

(3.11b)

where

l
	

q1,2 = zq1,2 − zq−1

D̄q
ij =

Z̄q − Zq

Z̄q + Zq

D
	

q
ij =

Z
	

q − Zq

Z
	

q + Zq

.

In fact, D̄q
ij is the re�ection coe�cient of the q-th TL section, seen from its top

boundary toward the top side of the circuit, and D
	

q
ij is the re�ection coe�cient of

the q-th TL section, seen from its bottom boundary toward the bottom side of the

equivalent TL circuit. D̄q
ij and D

	

p
ij are functions of a single parameter γ, where

γ =
√

i2π2

X2 + j2π2

Y 2 . Therefore, for a given process technology, regardless of A and

B, these coe�cients can be characterized into 1-D look-up tables indexed by the

parameter γ. Then in the pre-characterization of IH
a

ij and IH
a
ij for given values of

A and B, the required values of D̄q
ij and D

	

p
ij can be obtained from the 1-D look-up

tables.

3.2 Computation of Inhomogeneous Temperature Solution

First introduce a heat source model to describe the power density distribution f .

In the heat source model, uniform cells are employed to discretize the heat source

regions and the target regions. Heat sources in one layer, e.g., the p-th layer, are

partitioned into A× B uniform cells, each being of dimensions X
A
× Y

B
× (zp2 − zp1)

and having a uniform power density, as shown in Fig.3.1(a) and (d). To simplify
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notations, the numbers of cells in the x and y directions are still denoted by A and B,

respectively, although the number of cells employed in calculating the inhomogeneous

solution can be di�erent from that in calculating the homogeneous solution. For a

given cell (a, b), its power density is denoted by fab, its average inhomogeneous

temperature is denoted by T i
ab, and its overall temperature is denoted by Tab: Tab =

T i
ab + T h

ab.

According to (2.9), when there are multiple layers of heat sources, the inhomoge-

neous solution T i at a given target layer, e.g., layer q, can be obtained by superpos-

ing each inhomogeneous solution at layer q caused by a single layer of heat sources.

Therefore, it is adequate to provide an algorithm that evaluates the inhomogeneous

solution T i at layer q, caused by the heat sources at only one layer, e.g., layer p.

Layer q is illustrated in Fig.3.1(a) and (b). To obtain the inhomogeneous solution at

layer q caused by heat sources in layer p, traditional Green's function-based methods

need O (A2B2) computations because of the dense matrix-vector product. Based on

the multilayer heat conduction Green's function, this section introduces a fast yet

accurate algorithm to compute the inhomogeneous solution in O (AB lg (AB)).

3.2.1 Inhomogeneous Temperature for One Layer of Heat Sources

Consider heat source layer p, whose thickness is zp2−zp1, as illustrated in Fig.3.1(d).

Insert eigen-expansion (2.18) into (2.9) and carry out the integral by convoluting the

multilayer heat conduction Green's function with the power density distribution at

layer p. Then the inhomogeneous temperature at an arbitrary location (x, y, z),
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T i(x, y, z), is obtained:

T i(x, y, z) =
∞∑
i=0

∞∑
j=0

cijϕij(x, y)×∫ X

0

∫ Y

0

∫ zp2

zp1

ϕij(x
′, y′)Hij(z|z′)f(x′, y′, z′)dx′dy′dz′

=
∞∑
i=0

∞∑
j=0

22−δi0−δj0 sin iπ
2A

sin jπ
2B

ijπ2
Fijϕij(x, y)

∫ zp2

zp1

Hij(z|z′)dz′(3.12)

where

Fij =

∫ X

0

∫ Y

0

ijπ2

XY
csc

iπ

2A
csc

jπ

2B
ϕij(x

′, y′)f(x′, y′, z′)dx′dy′

=
ijπ2

XY
csc

iπ

2A
csc

jπ

2B
×

A−1∑
a=0

B−1∑
b=0

fab

∫ (a+1)X/A

aX/A

∫ (b+1)Y/B

bY/B

ϕij (x′, y′) dx′dy′

=
A−1∑
a=0

B−1∑
b=0

4fab cos
iπ(2a+ 1)

2A
cos

jπ(2b+ 1)

2B
.(3.13)

The Fij formulated above is exactly the 2-D DCT of fab. Therefore, all Fij, for

0 ≤ i ≤ A − 1 and 0 ≤ j ≤ B − 1, can be computed in O (AB lg(AB)). For i, j

outside that range, the value of Fij can be obtained by exploiting the periodicity

of Fij: F(2A−i)j = −Fij and Fi(2B−j) = −Fij. Note that in (3.13), the trigonometric

identify in (3.3) has been used.

3.2.2 Computation of Inhomogeneous Solution by O (n lg n) Algorithm

Consider the target layer q, whose thickness is zq2−zq1, as illustrated in Fig.3.1(b).

For a given cell (a, b) in layer q, its average inhomogeneous temperature T i
ab is ob-

tained by the integral of the inhomogeneous temperature T i(x, y, z) in (3.12) over
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cell (a, b):

T i
ab =

∞∑
i=0

∞∑
j=0

Fij

22−δi0−δj0AB sin iπ
2A

sin jπ
2B

ijXY π2(zq2 − zq1)

∫ zq2

zq1

∫ zp2

zp1

Hij(z|z′)dz′dz

×
∫ (a+1)X/A

aX/A

∫ (b+1)Y/B

bY/B

ϕij(x, y)dxdy

=
∞∑
i=0

∞∑
j=0

2−δi0−δj0FijIHij cos
iπ(2a+ 1)

2A
cos

jπ(2b+ 1)

2B
(3.14)

where IHij is given by

(3.15) IHij =
16AB sin2 iπ

2A
sin2 jπ

2B

i2j2π4(zq2 − zq1)

∫ zq2

zq1

∫ zp2

zp1

Hij(z|z′)dz′dz.

Note that in simplifying (3.14), the trigonometric identify in (3.3) has been used.

Then truncate the series representation of T i
ab in (3.14) into the following form:

(3.16) T i
ab ≈

A−1∑
i=0

B−1∑
j=0

2−δi0−δj0FijIHij cos
iπ(2a+ 1)

2A
cos

jπ(2b+ 1)

2B
.

The above truncated series representation of T i
ab is exactly the 2-D IDCT of FijIHij.

As a result, the algorithm named Compute-T i to evaluate the inhomogeneous solu-

tion at layer q, caused by heat sources at layer p, consists of one 2-D DCT procedure

to compute Fij based on (3.13) and another 2-D IDCT procedure to compute T i
ab

based on (3.16). The time complexity of the algorithm is O (AB lg (AB)). The

complete thermal analysis method named LOTAGre, which integrates algorithms

Compute-T i and Compute-T h, is shown in Fig.3.3. Note that folding back high-

order spectral components FijIHij can also improve the accuracy of the truncation

approximation (3.16).

Both Compute-T i and Compute-T h use the 2-D DCT and 2-D IDCT procedures

to achieve O (n lg n) run-time. However, the involved DCT and IDCT coe�cients

have di�erent physical meanings. In Compute-T i, coe�cient IHij is related to the

transfer impedance of the equivalent circuits. In Compute-T h, coe�cients IH ij and

IH ij are related to the voltage transfer functions of the equivalent circuits.
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Begin Compute-T i

1. Compute all IHij , for 0 ≤ i < A and 0 ≤ i < B, by (3.15), (3.17) and (3.18).

2. Given one layer of heat sources, whose power densities are de�ned by a 2-D array made of
fab, for 0 ≤ a < A and 0 ≤ b < B, compute the 2-D DCT of fab by (3.13) to obtain Fij .

3. Form an array made of FijIHij , for 0 ≤ i < A and 0 ≤ i < B, and then compute the 2-D
IDCT of that array by (3.16) to obtain T i

ab.

End Compute-T i

Begin LOTAGre

1. Apply algorithm Compute-T i to compute T i
ab.

2. Apply algorithm Compute-Th to compute Th
ab.

3. Sum up T i
ab and Th

ab to obtain temperature Tab.

End LOTAGre

Figure 3.3:
LOTAGre: O (n lg n) multilayer heat conduction Green's function-based thermal anal-
ysis method.

3.2.3 Pre-characterization of IHij

To simulate a chip, all IHij's should be pre-characterized only once. Then, for

any given power density distribution in the form of fab, multiplying its 2-D DCT

Fij by the pre-calculated value of IHij and applying the 2-D IDCT of FijIHij will

obtain the corresponding inhomogeneous temperature T i
ab. The following details the

procedure to pre-characterize IHij.

Let Ĥij denote the integral term in (3.15), i.e. Ĥij =
∫ zq2

zq1

∫ zp2

zp1
Hij(z|z′)dz′dz. To

compute Ĥij, it should be noted that in the representations of Hij given in (2.21)

and (2.24), it is assumed that either the source layer p is lower than the target layer

q, or both p = q and z′ < z, to simplify the presentation. Beyond the assumption,

Hij can be obtained by the reciprocity of transfer functions: if p = q and z′ > z, Hij

can be obtained by exchanging z and z′ in (2.21) and (2.24); otherwise, if p > q, Hij

can be obtained by exchanging the subscripts p and q, as well as z and z′, in (2.21)

and (2.24). Therefore, three cases are considered in computing Ĥij.
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The case that layer p and layer q are the same (p = q)

From (2.21) and (2.24), Ĥij is obtained:

(3.17) Ĥij =



αl2pv

[(
Z
	

p

Zp

+
2zp1 + zp2

3
− zp−1

)
×
(
Z̄q

Zq

+ zq −
2zq2 + zq1

3

)
−
l2qv

36

] i = j = 0

[
D
	

p
ij

(
e−γl2c−e−γl1c

)2
+ D̄q

ij

(
eγl1c−eγl2c

)2
+2D

	

p
ijD̄

q
ije

−γlq
(
eγlqv − γlqv − 1

)
+ 2eγlp

(
e−γlpv + γlpv − 1

)]
Eij.

i+ j > 0

Here lpv = zp2 − zp1, lqv = zq2 − zq1, l1c = zp1 − zp+zp−1

2
, and l2c = zp2 − zp+zp−1

2
.

The case that p < q

From (2.21) and (2.24), Ĥij is obtained:

(3.18) Ĥij =



αlpvlqv

(
Z
	

p

Zp

+
zp1 + zp2

2
− zp−1

)
×(

Z̄q

Zq

+ zq −
zq1 + zq2

2

) i = j = 0

Eij

[
D
	

p
ij

(
e−γl

	
p1 − e−γl

	
p2
)

+ eγl
	

p2 − eγl
	

p1
]
×[

D̄q
ij

(
e−γl̄q2 − e−γl̄q1

)
+ eγl̄q1 − eγl̄q2

]
.

i+ j > 0

Here l
	

p1,2 = zp1,2 − zp−1 and l̄q1,2 = zq − zq1,2.

The case that p > q

The expression of Ĥij is similar to (3.18). In this case, Ĥij can be obtained

by exchanging the subscripts p and q in (3.18) and also the subscripts p and q in

coe�cients α, D
	

p
ij, D̄

q
ij and Eij.
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The previous coe�cients are given by

α =
ZpZq

Z
	

p + Zplp + Z̄q

D
	

p
ij =

Z
	

p − Zp

Z
	

p + Zp

Eij =
ξ

4γ2

(
Z
	

p + Zp

) (
Z̄q + Zq

)
Zp

(
Z
	

p + Z̄p

)
cosh γlp +

(
Z2

p + Z
	

pZ̄p

)
sinh γlp

.

According to the equivalent TL circuit shown in Fig.2.1(d), D
	

p
ij is the re�ection

coe�cient of the p-th TL section, seen from its bottom boundary toward the bottom

side of the circuit.

The coe�cients D
	

p
ij and Eij also depend upon a single parameter γ, where γ =√

i2π2

X2 + j2π2

Y 2 . Therefore, 1-D lookup tables can also be constructed for these coe�-

cients to speed up the pre-characterization of IHij. With the required values of D
	

p
ij

and Eij, IHij can be computed from (3.15), (3.17), and (3.18).

3.3 Experimental Results

3.3.1 Accuracy and Speed of LOTAGre

The O (n lg n) multilayer heat conduction Green's function-based thermal analysis

method is named LOTAGre. The method was veri�ed by comparisons with a sophis-

ticated computational �uid dynamics tool, called FLUENT. As introduced in chapter

II, the MLT model in Fig.2.1(b) used in LOTAGre can consider di�erent types of

chip packaging scenarios, e.g., wire-bonding packaging and �ip-chip packaging. The

following uses a die with �ip-chip packaging as an example.

Fig.3.4 shows a chip example which has a structure similar to the PowerPC1 chip

[50, 76]. The �gure shows two heat conduction paths in the chip. One heat conduc-

tion path transfers the heat generated in the active region of the chip through the

silicon bulk, the thermal adhesive, and the heat sink to the top ambient environment.
1PowerPC is a trademark of IBM Corp., used under license by Motorola Inc.
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The other heat conduction path transfers the heat through the bump, the under-�ll

materials, and the substrate to the bottom ambient environment. Fig.3.4(b) shows

a three-layer MLT model for the example chip. In the three-layer MLT model, the

bottom two layers incorporate the entire chip and the thermal adhesive, and the top

layer models one portion of the heat sink. The thermal e�ects of the other regions

excluded in the MLT model are addressed by the top heat transfer rate h̄, the bot-

tom heat transfer rate h
	
, and the top and bottom ambient temperature functions

T̄ a (x, y) and T
	

a (x, y). The two heat transfer rates h̄ and h
	
can be determined by

either empirical formulas or experimental data �tting [50, 22]. In the experiments,

h̄ was set to 8675 W/(m2 K), and h
	
was set to 1387 W/(m2 K). The chip horizontal

dimensions were 2 × 2 mm2. Fig.3.4(b) also shows the thickness and thermal con-

ductivity of each layer. Inside the chip layer of the MLT model, there was a 5 µm

thick heat source region, where six rectangular heat sources were placed. Fig.3.4(c)

shows the six heat sources, and the power of each heat source is given near the heat

source box.

The temperature distribution of the example chip was analyzed by LOTAGre

and FLUENT. In LOTAGre, A and B were set to 40. However, it is recommended

that A and B be the powers of 2, to facilitate the DCT and IDCT algorithms.

At �rst, the homogeneous temperature distribution was analyzed. The 2-D top

ambient temperature function T̄ a (x, y) was assumed to take a constant value. The

2-D bottom ambient temperature function T
	

a (x, y) was speci�ed as in Fig.3.4(d).

As shown by Fig.3.4(c) and (d), the speci�ed bottom ambient temperature function

was very similar to the speci�ed power density function, except that the ambient

temperatures replaced the powers in Fig.3.4(c).

The results for the homogeneous temperature distribution are shown in Fig.3.5(a)
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and (b), where the left graphs give the homogeneous temperature distributions ob-

tained from LOTAGre, and the right graphs show the relative di�erences of the

calculated temperatures from FLUENT. Fig.3.5(a) and (b) demonstrate that the

homogeneous temperature deviations between the two methods were within 0.04%

in the heat source region and within 0.001% on the top surface of the MLT model. In

terms of CPU usages, LOTAGre took 1.193 s to pre-characterize all IH ij and IH ij

and then took only 47 ms to calculate the homogeneous temperature distribution,

while FLUENT took 269 s to obtain the solution. A SUN Blade 1500 machine was

used in running the experiments.

Fig.3.6(a) and (b) show the results for the inhomogeneous temperature distribu-

tion. The left graphs give the inhomogeneous temperature distributions obtained

by LOTAGre, and the right graphs show the relative temperature di�erences from

FLUENT. Fig.3.6(a) and (b) again demonstrate the accuracy of LOTAGre: the in-

homogeneous temperature deviations between the two methods were within 1.18% in

the heat source region and within 0.529% on the top surface of the MLT model. The

pre-characterization of IHij took 1.283 s. The evaluation of the inhomogeneous tem-

perature distribution after the pre-characterization only took 44 ms, while FLUENT

took 205 s to obtain the solution.

Di�erent sets of parameters h
	
, k2 and h̄, as shown in Table 3.1, were also exper-

imented for the MLT model shown in Fig.3.4(b), and the temperature distributions

on the top surface and in the heat source region of the MLT model were again solved

by LOTAGre and FLUENT, respectively. The results are shown in Table 3.2, where

letter H indicates the homogeneous temperature results, while letter I indicates

the inhomogeneous temperature results; Max. indicates the maximum temperature;

Pre. indicates the pre-characterization time taken by LOTAGre; Eva. indicates
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Figure 3.5:
Comparison between LOTAGre and FLUENT in computing the homogeneous temper-
ature distribution. In (a) and (b), left graphs show temperature distributions computed
by LOTAGre, and right graphs show relative temperature di�erences from FLUENT in
percentages.
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Comparison between LOTAGre and FLUENT in computing the inhomogeneous temper-
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by LOTAGre, and right graphs show relative temperature di�erences from FLUENT in
percentages.
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Table 3.1: Parameters of the examples used in comparing LOTAGre and FLUENT.
EX1 EX2 EX3 EX4 EX5 EX6 EX7 EX8 EX9 EX0

h
	
(W/m2K) 257 5212 9826 1387 2715 1462 512 1128 1682 21

k2 (W/m K) 12.2 32.4 16.2 5.1 382 1715 10.4 15.3 60.1 70.2
h̄ (W/m2K) 8675 5419 2371 9451 7213 8415 800.1 3410 13215 9898

Table 3.2:
Comparisons between LOTAGre and FLUENT for the example chip in Fig.3.4 under
wide parameter variations.

EXS H-Max. H-Pre. H-Eva. H-FLU. H-Dev. I-Max. I-Pre. I-Eva. I-FLU. I-Dev.

(oC) (s) (ms) (s) (oC) (s) (ms) (s)
EX1 2.058 1.238 52 290 0.02% 59.44 1.215 42 51 0.95%
EX2 2.968 1.203 45 83 0.59% 49.51 1.266 42 182 1.27%
EX3 3.587 1.17 57 134 0.74% 43.94 1.327 46 202 1.44%
EX4 2.269 1.14 47 166 0.05% 51.71 1.255 48 373 1.23%
EX5 2.542 1.211 48 93 0.26% 52.51 1.226 53 34 1.16%
EX6 2.295 1.187 47 291 0.04% 52.88 1.214 43 140 1.16%
EX7 2.74 1.197 50 941 0.38% 340.9 1.238 42 553 0.55%
EX8 2.482 1.154 51 238 0.85% 105.5 1.32 46 232 0.55%
EX9 2.233 1.171 48 145 0.07% 38.58 1.27 42 364 1.67%
EX0 2.004 1.195 48 223 0.01% 53.56 1.227 45 81 1.17%

the temperature evaluation time taken by LOTAGre; FLU. indicates the run-time

of FLUENT; and Dev. indicates the maximum of the relative temperature di�er-

ences from FLUENT. Table 3.2 shows that the homogeneous temperature di�erences

between LOTAGre and FLUENT were within 0.9%, and the inhomogeneous tem-

perature di�erences between the two methods were within 1.7%. The results in

the table have demonstrated the accuracy of LOTAGre, despite the large parameter

variations. They also demonstrate the superior speed advantage of LOTAGre, which

was around two orders of magnitude faster than FLUENT if the pre-characterization

time is taken into consideration. If LOTAGre is used in an inner loop and iterated

many times for di�erent power density distributions, the pre-characterization of co-

e�cients needs to be done only once. Therefore, LOTAGre can asymptotically be

thousands of times faster than FLUENT.

3.3.2 Scalability of LOTAGre

Theoretically, LOTAGre is of O (n lg n) complexity, while traditional Green's

function-based thermal analysis methods are of quadratic complexity [21, 78]. To
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demonstrate the scalability, LOTAGre was employed to analyze the example chip in

Fig.3.4, but the x− y dimensions were extended to 1.28× 1.28 cm2 to accommodate

more standard cells. A randomly generated heat source distribution fab was imposed

on the 5 µm thick heat source region of the chip, which is indicated in Fig.3.4(b).

Only the inhomogeneous temperature distribution was analyzed, since the homoge-

neous temperature distribution did not depend on the power density distribution

and could be computed only once for a given ambient condition. The power density

distribution and the calculated inhomogeneous temperature distribution in the heat

source region are shown in Fig.3.7(a) and (b).

The CPU usages taken by LOTAGre during pre-characterization are shown in

Table 3.3 (Pre-char.), for the number of cells A×B varying from 32× 32 to 1024×

1024. Note that the CPU usages during pre-characterization will be amortized in an

iterative thermal analysis �ow, since LOTAGre conducts the pre-characterization of

IHij only once. The table shows that the pre-characterization time is almost linearly

related to A×B, as all IHij for 0 ≤ i ≤ A− 1 and 0 ≤ j ≤ B− 1 were computed by

LOTAGre. As introduced in Section 3.2.3, the pre-characterization time would be

reduced further if 1-D look-up tables were established for coe�cients D
	

p
ij, D̄

q
ij and

Eij before running the experiments.

For comparisons, a matrix-vector product program was implemented to simulate

the traditional Green's function-based methods [21, 78]. Fig.3.7 shows the randomly

generated heat source distribution used in the experiments and the resultant inhomo-

geneous temperature distribution computed by LOTAGre. Table 3.3 compares the

CPU usages of LOTAGre and the traditional methods. According to the table, when

the number of cells A × B doubled, the temperature evaluation time by LOTAGre

(LOTAGre) increased a little more than two-fold, while the time by the traditional
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Figure 3.7:
Applied heat source distribution in testing the scalability of LOTAGre and the resultant
inhomogeneous temperature distribution computed by LOTAGre.

A B Pre-char. (s) LOTAGre (s) Trad. (s)
32 32 0.038 0.021 0.012
32 64 0.073 0.023 0.046
64 64 1.442 0.026 0.192
64 128 2.866 0.032 0.85
128 128 5.825 0.047 4.733
128 256 11.501 0.082 18.75
256 256 22.713 0.171 82.892
256 512 45.663 0.407 707.07
512 512 90.79 1.236 N/A
512 1024 181.428 3.282 N/A
1024 1024 362.350 7.537 N/A

Table 3.3:
Scalability of LOTAGre: comparison of CPU usages by LOTAGre and traditional
Green's function-based thermal analysis methods.

methods (Trad.) increased around four-fold. These run-time data closely matched

the theoretical complexities of LOTAGre and the traditional methods. LOTAGre

clearly had superior computing speed and was also scalable to large problem size.

For example, when A × B increased to 1024 × 1024, a chip of one million standard

cells was analyzed in less than 8 s by LOTAGre. In contrast, the traditional methods

became extremely slow even when the number of cells was no more than 256 × 512,

or one-eighths of one million.
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3.3.3 Single-layer Thermal Model Versus Multilayer Thermal Model

Novel 3-D ICs that vertically integrate multiple active layers can signi�cantly re-

duce interconnect lengths and improve transistor density [9]. However, the thermal

management is exacerbated by the low thermal conductivity of bonding layers [36].

For example, one active layer typically has a thermal conductivity of 150 W/(m K),

while the bonding material between two active layers has only a thermal conductivity

of 0.05 W/(m K). LOTAGre is able to accurately analyze the temperature distribu-

tion of 3-D ICs, as it uses the multilayer heat conduction Green's function and is

based on the MLT model. The heat conduction path in a 3-D IC or a traditional IC

consists of multilayer heterogeneous heat conduction materials. Traditional Green's

function-based thermal analysis methods treated the chip heat conduction path as a

one-layer structure, by using the SLT model complemented with e�ective heat trans-

fer rates to the ambient. Fig.3.8(a) demonstrates the SLT model (the rightmost

diagram). In the �gure, h̄e is the e�ective heat transfer rate from the top of the SLT

model to the ambient, determined by the approach in [22]; and ETT is named the

e�ective thermal thickness.

To determine the accuracy of the SLT model for the example chip shown in Fig.3.4,

the SLT model in the rightmost diagram in Fig.3.8(a) was used in LOTAGre to

analyze the temperature distribution of the heat source region. The temperatures

obtained by using this SLT model were compared with the temperatures obtained

from FLUENT simulation of the MLTmodel in Fig.3.4(b). The maximum percentage

errors of the calculated temperatures based on the SLT model, versus the e�ective

thermal thickness ETT , are plotted in Fig.3.8(b). The �gure shows that the accuracy

of the SLT model was very sensitive to the e�ective thermal thickness ETT . For

the simulated chip, when ETT = 250 µm, the maximum percentage error of the



57

h

−h

k1

k2

k3

l 1

l 2

l 3

−
he

k1

−
he

h−

−

Adhesive

Chip

Heat source region Heat source region
Chip

Heat sink

E
T

T

(a) Multilayer chip, and its single-layer thermal model (the rightmost diagram).

190 200 210 220 230 240 250
0

20

40

60

80

100

ETT (µm)

M
ax

. T
em

p.
 E

rr
or

 (
%

)

(b) Accuracy of single-layer thermal model versus ETT .

Figure 3.8: Single-layer thermal model, and its accuracy versus e�ective thermal thickness ETT .
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calculated temperatures using the SLT model was 2.41%; when ETT = 240 µm, the

maximum percentage error was 3.93%; however, when ETT = 210 µm, the maximum

percentage error was as large as 26.14%. However, to ensure the temperature errors

are within 2.4%, both the chip region and the thermal adhesive should be modeled,

which is beyond the capability of the SLT model. Since the active layers in 3-D

ICs will become thinner, the use of the SLT model in 3-D IC thermal analysis and

optimization will be very limited. In order to use the SLT model, the e�ective

thermal thickness ETT must be determined accurately, because the accuracy of the

SLT model is very sensitive to ETT . LOTAGre can be used to estimate ETT , as it

has a low time complexity.

3.4 Error Analysis of LOTAGre

LOTAGre utilizes the DCT and IDCT algorithms to achieve the O (n lg n) com-

plexity. Consider the inhomogeneous solution. In order to apply the IDCT algorithm,

however, the in�nite series (3.14) must be truncated to the �nite-summation form

(3.16). This section analyzes the truncation error of (3.16) and establishes connec-

tions between the sampling theory and the discrete heat-source model by the Fourier

analysis.

Given a function u (x, y), its Fourier transform U (α, β) and the inverse transform

are given by

U (α, β) = F [u (x, y)] =

∫ ∞

−∞

∫ ∞

−∞
u (x, y)ϕ (x, y, α, β) dxdy(3.19a)

u (x, y) = F−1 [U (α, β)] =

∫ ∞

−∞

∫ ∞

−∞
U (α, β)ϕ−1 (x, y, α, β) dαdβ(3.19b)

where ϕ (x, y, α, β) = exp [−ı̈2π (αx+ βy)].
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3.4.1 Upper Bound of Truncation Error in LOTAGre

The discrete heat-source model describes a power density function, i.e., f (x′, y′, z′),

which is de�ned in the region x′ ∈ [0, X], y′ ∈ [0, Y ] and z′ ∈ [zp1, zp2]. Let the even

expansion of f (x′, y′, z′) be denoted by f̂ (x′, y′, z′), which is de�ned in the expanded

region x′ ∈ [−X,X], y′ ∈ [−Y, Y ] and z′ ∈ [zp1, zp2]. From (3.19a), it can be shown

that the Fij de�ned in (3.13) relates to the Fourier transform of f̂ (x′, y′, z) at the

frequency point
(

i
2X
, j

2Y

)
by

Fij =
ijπ2

4XY
csc

iπ

2X
csc

jπ

2B
F
[
f̂ (x′, y′, z′)

]∣∣∣
α= i

2X
,β= j

2Y

.

Unless the power density function f (x′, y′, z′) is band-limited, (3.14) must contain

in�nite terms. Therefore, the truncation of the in�nite series (3.14) will incur nu-

merical errors in LOTAGre.

The truncation error of the series (3.16), being denoted as ϵtr, is given by

(3.20) ϵtr =
∞∑

i=A

∞∑
j=1

ϵtr(i,j) +
A−1∑
i=1

∞∑
j=B

ϵtr(i,j) +
1

2

∞∑
i=A

ϵtr(i,0) +
1

2

∞∑
j=B

ϵtr(0,j)

where

ϵtr(i,j) = FijIHij cos
iπ(2a+ 1)

2A
cos

jπ(2b+ 1)

2B
·

As mentioned in Chapter III, Fij is periodic; therefore, there must exist an upper

bound Fmax
ij such that |Fij| ≤ Fmax

ij , for i ≥ 0, j ≥ 0. Before determining the

truncation error ϵtr, �rst estimate a bound for Hij. The Hij in (2.24) is rewritten to

(3.21) Hij(z|z′) =
ξ
(
Z
	

p cosh γl
	

+ Zp sinh γl
	

) (
Z̄q cosh γl̄ + Zq sinh γl̄

)
Zp(Z

	
p + Z̄p) cosh γlp + (Z2

p + Z
	

pZ̄p) sinh γlp
.

Upper and Lower Bounds for Z
	

p and Z̄q

The input impedances Z
	

p and Z̄q in (3.21) can be bounded based on (2.16). Con-

sider that when x > 0, tanhx is an increasing function of x, and 0 < tanhx < 1.
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From (2.16), it is clear that for γ ≥ γmin > 0, the input impedance Zin satis�es

Zmin
in (ZL) ≤ Zin ≤ Zmax

in (ZL)

where

Zmax
in (ZL) = ZC

ZL+ ZC

ZC + ZL tanh γminL

Zmin
in (ZL) = ZC

ZL+ ZC tanh γminL

ZC + ZL
.

Further, it can be shown that when ZL ≥ 0, both Zmin
in (ZL) and Zmax

in (ZL) are

increasing functions of ZL.

Therefore, when γ ≥ γmin > 0, the upper and lower bounds of Z
	

p can be deter-

mined at the maximum and minimum of the loading impedance Z
	

p−1: Z
	

p satis�es

Z
	

min
p ≤ Z

	
p ≤ Z

	

max
p

where

(3.22) Z
	

max
p =



Zp−1

(
Zp−1 + Z

	

max
p−1

)
/
(
Zp−1 + Z

	

max
p−1 tanh γminlp−1

)
, p > 2

Z1 coth γminl1, p = 2

γ/h
	
, p = 1

and

(3.23) Z
	

min
p =



Zp−1

(
Z
	

min
p−1 + Zp−1 tanh γminlp−1

)
/
(
Z
	

min
p−1 + Zp−1

)
, p > 2

Z1

(
γmin

h
	

+ Z1 tanh γminl1

)
/
(

γmin

h
	

+ Z1

)
, p = 2

γ/h
	
, p = 1.

Similarly, when γ ≥ γmin > 0, the upper and lower bounds of Z̄q can be determined

at the maximum and minimum of the loading impedance Z̄q+1: Z̄q satis�es

Z̄min
q ≤ Z̄q ≤ Z̄max

q
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where

(3.24) Z̄max
q =



Zq+1

(
Zq+1 + Z̄max

q+1

)
/
(
Zq+1 + Z̄max

q+1 tanh γminlq+1

)
, q < n− 1

Zn coth γminln, q = n− 1

γ/h̄, q = n

and

(3.25) Z̄min
q =



Zq+1

(
Z̄min

q+1 + Zq+1 tanh γminlq+1

)
/
(
Z̄min

q+1 + Zq+1

)
, q < n− 1

Zn

(
γmin

h̄
+ Zn tanh γminln

)
/
(

γmin

h̄
+ Zn

)
, q = n− 1

γ/h̄, q = n.

Upper Bound for ξ

Given the upper or lower bounds for Z
	

p and Z̄q, an upper bound for the ξ in (2.25)

can be obtained.

Clearly, for γ ≥ γmin > 0,

1

2
eγlm ≤ cosh γlm ≤ 1 + e−2γminlm

2
eγlm

1 − e−2γminlm

2
eγlm ≤ sinh γlm ≤ 1

2
eγlm .(3.26)

Hence

ξ ≤ ξmax =
ξ̇

γ
exp

(
−γ

q∑
m=p+1

lm

)

where

(3.27) ξ̇ =
Zp

∏q−1
m=p Z̄

max
m∏q

m=p+1
1
2

[
Z̄min

m + Zm (1 − e−2γminlm)
] .
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Upper Bound for Hij

Given the upper and lower bounds for Z
	

p, Z̄q and ξ, it can be shown that the Hij

in (3.21) is bounded by

Hij (z|z′) ≤ Hmax
ij =

1

γ
Ḣij ξ̇ exp [γ (z′ − z)](3.28)

where

(3.29) Ḣij =
1

2

[
c
	

hZ
	

max
p + Zp

] [
c̄hZ̄

max
q + Zq

][
Zp

(
Z
	

min
p + Z̄min

p

)
+
(
Z2

p + Z
	

min
p Z̄min

p

)
(1 − e−2γminlp)

] .
Here c

	
h and c̄h are given by

c
	

h = 1 + e−2γmin(zp1−zp−1)

c̄h = 1 + e−2γmin(zq−zq2).

To simplify the upper bound Hmax
ij , di�erent combinations of p, q, z, z′ are considered

below.

• p = 1 and q < n

In this case, according to (3.24) and (3.25), Z̄max
q and Z̄min

q are constants, while Z
	

max
p

and Z
	

min
p are given in the form of γ/h

	
. It is clear that ξ̇, given in (3.27), is a constant.

Accordingly, the Ḣij in (3.29) satis�es

(3.30) Ḣij ≤
1

2

(
c
	

h + Zp

γmin
h
	

) (
c̄hZ̄

max
q + Zq

)
Zp + Z̄min

p (1 − e−2γminlp)
.

Consequently, by (3.28), Hij (z|z′) is bounded by a function in the form of αeγ(z′−z)/γ:

Hij (z|z′) ≤ αeγ(z′−z)/γ

where α is a coe�cient determined by (3.27) and (3.30).

Since the transfer function Hij (z|z′) is reciprocal, i.e., Hij (z|z′) = Hij (z′|z), the

above analysis is also applicable when p > 1 and q = n.
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• p = 1 and q = n

In this case, Z
	

max
p and Z

	

min
p are of the form γ/h

	
; Z̄max

q and Z̄min
q are of the form γ/h̄.

When p = q, ξ̇ is a constant. Because Z̄min
p = γ/h̄, the Ḣij in (3.29) satis�es

(3.31) Ḣ ≤ 1

2 (1 − e−2γminlp)

(
c
	

h +
Zp

γmin

h
	

)(
c̄h +

Zq

γmin

h̄

)
.

Hence, from (3.28), Hij (z|z′) is also bounded by a function in the form of αeγ(z′−z)/γ,

with α determined by (3.27) and (3.31).

When p < q, the ξ̇ and Ḣ in (3.27) and (3.29) need to be changed to

ξ̇ =
Zp

∏q−1
m=p Z̄

max
m∏q−1

m=p+1
1
2

[
Z̄min

m + Zm (1 − e−2γminlm)
]

Ḣ =

(
c
	

h + Zp

γmin
h
	

)(
c̄h + Zq

γmin
h̄
)

Zp + Z̄min
p (1 − e−2γminlp)

.(3.32)

Then from (3.28), Hij (z|z′) is bounded by a function in the form of αeγ(z′−z)/γ as

well, with α determined by (3.32).

• p > 1 and q < n

In this case, ξ̇ in (3.27) and Ḣ in (3.29) are constants. Then by (3.28), Hij (z|z′) is

also bounded by a function in the form of αeγ(z′−z)/γ, with α determined by (3.27)

and (3.29).

Upper Bound of Truncation Error

As previously demonstrated, Hij (z|z′) ≤ αeγ(z′−z)/γ, where α is a coe�cient

contingent on p, q, z, z′ and γmin. Then by (3.20), an upper bound for the truncation

error ϵtr can be given:

ϵtr ≤ ϵmax
tr =

αFmax
ij

zq2 − zq1

(ϵtra + ϵtrb + ϵtrc + ϵtrd) ,(3.33)
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with2

ϵtra =
16AB

π4

∞∑
i=A

∞∑
j=1

∫ zq2

zq1

∫ zp2

zp1

ψ221 (i, j, z′ − z) dz′dz

ϵtrb =
16AB

π4

A−1∑
i=1

∞∑
j=B

∫ zq2

zq1

∫ zp2

zp1

ψ221 (i, j, z′ − z) dz′dz

ϵtrc =
2AX

B

∞∑
i=A

∫ zq2

zq1

∫ zp2

zp1

eiπ(z′−z)/X sin2 iπ

2A
/ (iπ)3 dz′dz

ϵtrd =
2BY

A

∞∑
j=B

∫ zq2

zq1

∫ zp2

zp1

ejπ(z′−z)/Y sin2 jπ

2B
/ (jπ)3 dz′dz.

Here ψabc (i, j, x) = eγx sin2 iπ
2A

sin2 jπ
2B
/ iajbγc. As γ =

√
(iπ/X)2 + (jπ/Y )2, to

calculate α, let γmin = π · min (A/X,B/Y ).

Let Sdbl [a, b, c, x] denote the double summation of ψabc (i, j, x):

Sdbl [a, b, c, x] =
A−1∑
i=1

∞∑
j=B

ψabc (i, j, x) +
∞∑

i=A

∞∑
j=1

ψabc (i, j, x) .

Then ϵtra + ϵtrb, denoted by ϵtrab, is represented by

ϵtrab = ϵtra + ϵtrb

=
16AB

π4
{Sdbl [2, 2, 3, zp2 − zq1] − Sdbl [2, 2, 3, zp2 − zq2]

−Sdbl [2, 2, 3, zp1 − zq1] + Sdbl [2, 2, 3, zp1 − zq2]} .(3.34)

Let Ssgl [a, ρ, θ,K] denote the single summation below:

Ssgl [a, ρ, θ,K] =
∞∑

k=K

ekρ

ka
sin2

(
kθ

2

)
.

2Here assume that zp1 < zp2 < zq1 < zq2. When zp1 = zq1 and zp2 = zq2, ϵtra � ϵtrd need to be determined

from
∫ zq2

zq1

∫ zp2
zp1

Hij (z|z′) dz′dz ≤ 2α
γ3

[
γ (zq2 − zq1) + eγ(zq1−zq2) − 1

]
.
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Then ϵtrc is represented by

ϵtrc =
2AX3

Bπ5

{
Ssgl

[
5,
π

X
(zp2 − zp1) ,

π

A
,A
]

− Ssgl

[
5,
π

X
(zp2 − zq2) ,

π

A
,A
]

− Ssgl

[
5,
π

X
(zp1 − zq1) ,

π

A
,A
]

− Ssgl

[
5,
π

X
(zp1 − zq2) ,

π

A
,A
]}

,(3.35)

and ϵtrd is represented by

ϵtrd =
2BY 3

Aπ5

{
Ssgl

[
5,
π

Y
(zp2 − zp1) ,

π

B
,B
]

− Ssgl

[
5,
π

Y
(zp2 − zq2) ,

π

B
,B
]

− Ssgl

[
5,
π

Y
(zp1 − zq1) ,

π

B
,B
]

− Ssgl

[
5,
π

Y
(zp1 − zq2) ,

π

B
,B
]}

.(3.36)

With (3.34), (3.35), and (3.36), the upper bound of truncation error ϵmax
tr in (3.33)

can be computed.

3.4.2 Computation of Upper Bound of Truncation Error

Computation of Ssgl [a, ρ, θ, K]

To compute ϵmax
tr , �rst consider the single summation Ssgl [a, ρ, θ,K]. It is refor-

mulated to

(3.37) Ssgl [a, ρ, θ,K] =
W−1∑
k=K

ekρ

ka
sin2

(
kθ

2

)
+

∞∑
k=W

ekρ

ka
−

∞∑
k=W

ekρ

ka

1 + cos kθ

2

where W is an integral multiple of 2π/θ. In the above formula, the second right-

hand-side term can be reformulated to

(3.38)
∞∑

k=W

ekρ

ka
= Lia (eρ) −

W−1∑
k=1

ekρ

ka

where Lia (·) is the poly-logarithm function: Lia (x) =
∑∞

k=1 x
k/ka.
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Consider the last right-hand-side term in (3.37). Clearly, π is an integral multiple

of θ. Then let κ = π/θ, where κ is an integer. There is a lemma.

Lemma III.1. When ρ ≤ 0,

(3.39) 0 ≤
W+2κ−1∑

k=W

ekρ

ka

1 + cos kθ

2
−
∫ W+2κ

W

exρ

xa

1 + cosxθ

2
dx ≤ ekρ

ka

1 + cos kθ

2

∣∣∣∣W
W+2κ

.

Proof. Rewrite∫ W+2κ

W

exρ

xa

1 + cosxθ

2
dx =∫ W+κ

W

[(
exρ

xa
− e(x+κ)ρ

(x+ κ)a

)
1 + cosxθ

2
+

e(x+κ)ρ

(x+ κ)a

]
dx.

For x ∈ [W,W + κ], both exρ/xa−e(x+κ)ρ/ (x+ κ)a and (1 + cosxθ) /2, being non-

negative, are decreasing functions of x. Further, e(x+κ)ρ/ (x+ κ)a is also a decreasing

function of x. Hence, the right-hand-side integrand in the above formula must be a

decreasing function of x. Consequently,∫ W+2κ

W

exρ

xa

1 + cosxθ

2
dx ≤

W+k−1∑
k=W

[(
ekρ

ka
− e(k+κ)ρ

(k + κ)a

)
1 + cos kθ

2
+

e(k+κ)ρ

(k + κ)a

]

=
W+2k−1∑

k=W

ekρ

ka

1 + cos kθ

2

and∫ W+2κ

W

exρ

xa

1 + cosxθ

2
dx ≥

W+k∑
k=W+1

[(
ekρ

ka
− e(k+κ)ρ

(k + κ)a

)
1 + cos kθ

2
+

e(k+κ)ρ

(k + κ)a

]

=
W+2k∑

k=W+1

ekρ

ka

1 + cos kθ

2
.

Since (3.39) can be generalized to address any summation in the form of

W+2mκ+κ∑
k=W+2mκ

ekρ

ka

1 + cos kθ

2
,

where m is an integer, a lemma follows.
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L1

L2

R0

R1 R2

R3 R4

B

0
A

j

i

A
+

k+
1

B+k+1
B+k

A
+

k

Figure 3.9: Illustration of computation of Sdbl [a, b, c, x].

Lemma III.2. When ρ ≤ 0,

(3.40) 0 ≤
∞∑

k=W

ekρ

ka

1 + cos kθ

2
−
∫ ∞

W

exρ

xa

1 + cosxθ

2
dx ≤ eWρ

W a

1 + cosWθ

2
.

By (3.38) and (3.40), Ssgl [a, ρ, θ,K] can be approximated by

(3.41)

Ssgl [a, ρ, θ,K] ≈ Lia (eρ) −
K−1∑
k=1

ekρ

ka
−

W−1∑
k=K

ekρ

ka

1 + cos kθ

2
−
∫ ∞

W

exρ

xa

1 + cosxθ

2
dx

with an absolute error no more than

eWρ

W a

1 + cosWθ

2
.

In order to meet the error tolerance, a su�ciently large W can be chosen.
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Computation of Sdbl [a, b, c, x]

As shown in Fig.3.9, Sdbl [a, b, c, x] corresponds to the summation of ψabc (i, j, x)

for all i and j in the regions R1 −R4. Let Sdbl [a, b, c, x] be approximated by

(3.42) Sdbl [a, b, c, x] ≈
∑

i,j∈R1

ψabc (i, j, x) .

Then the approximation error, denoted as ϵdbl, is given by

ϵdbl =
∑

i,j∈R2∪R3∪R4

ψabc (i, j, x) .

To estimate ϵdbl, use the following inequality: for x < 0,

(3.43) eγx ≤ e(sii+sjj)x, with si =
π√
2

1

X
and sj =

π√
2

1

Y
,

which holds because

γ =

√(
iπ

X

)2

+

(
jπ

Y

)2

≥ π√
2

(
i

X
+
j

Y

)
.

By (3.43),

(3.44)
∑

i,j∈R2

ψabc (i, j, x) =
∞∑

i=A+k+1

B+k∑
j=1

ψabc (i, j, x) ≤ ϵmax
dbl(R2)

where

ϵmax
dbl(R2) =

∞∑
i=A+k+1

esiix sin2 iπ
2A

ia

B+k∑
j=1

e(sjj+si)x sin2 jπ
2B

jbγc
(A+k)j

= Ssgl

[
a, six,

π

A
,A+ k + 1

]∑
j∈L2

e(sjj+si)x sin2 jπ
2B

jbγc
(A+k)j

.

Here L2 is the set of js falling on the vertical line i = A+ k, j = 1, · · · , B + k.

By the same means,

(3.45)
∑

i,j∈R3

ψabc (i, j, x) =
∞∑

j=B+k+1

A+k∑
i=1

ψabc (i, j, x) ≤ ϵmax
dbl(R3),



69

where

ϵmax
dbl(R3) = Ssgl

[
b, sjx,

π

B
,B + k + 1

] A+k∑
i=1

e(sii+sj)x sin2 iπ
2A

iaγc
i(B+k)

,

and

(3.46)
∑

i,j∈R4

ψabc (i, j, x) =
∞∑

i=A+k+1

∞∑
j=B+k+1

ψ (i, j) ≤ ϵmax
dbl(R4),

where

ϵmax
dbl(R4) =

Ssgl

[
a, six,

π
A
, A+ k + 1

]
· Ssgl

[
b, sjx,

π
B
, B + k + 1

]
γc

(A+k+1)(B+k+1)

.

In summary,

(3.47) ϵdbl ≤ ϵmax
dbl = ϵmax

dbl(R2) + ϵmax
dbl(R3) + ϵmax

dbl(R2).

When k is su�ciently large, ϵmax
dbl will meet the given error tolerance. As a re-

sult, Sdbl [a, b, c, x] can be satisfactorily approximated by the double summation of

ψabc (i, j, x) for i and j in the region R1.

The above describes the approaches to compute Ssgl [a, ρ, θ,K] and Sdbl [a, b, c, x].

With these approaches, the numerical value for the upper bound of the truncation

error, ϵmax
tr , can be obtained from (3.33), (3.34), (3.35) and (3.36). Accordingly,

a numerical program was developed to calculate the upper bound of the truncation

error in LOTAGre. For the results in Table 3.2 for the example chip in Fig.3.4, Table

3.4 shows the upper bounds of the truncation errors for the temperatures computed

by LOTAGre for the heat-source region, and Table 3.5 shows the upper bounds of the

truncation errors for the temperatures computed by LOTAGre for the top surface of

the chip.

Since LOTAGre uses the �rst A×B terms in (3.14) to compute the temperature

distribution of the chip, the next 15A×B terms in (3.14) were also used to estimate
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Table 3.4:
Upper bounds of truncation errors for temperatures computed by LOTAGre in the heat-
source region of the example chip in Fig.3.4 under wide parameter variations.

h
	

k2 h̄ I
	
− Max ϵmax

tr ϵsum
tr

(W/m2 K) (W/m K) (W/m2 K) ◦C ◦C ◦C
257 12.2 8675 59.44 0.8568 0.6900
5212 32.4 5419 49.51 0.8516 0.6897
9826 16.2 2371 43.94 0.8562 0.6893
1387 5.1 9451 51.71 0.8594 0.6899
2715 382 7213 52.51 0.8304 0.6898
1462 1715 8415 52.88 0.8247 0.6899
512 10.4 800.1 340.9 0.8574 0.6900
1128 15.3 3410 105.5 0.8559 0.6899
1682 60.1 13215 38.58 0.8462 0.6899
21 70.2 9898 53.56 0.8446 0.6900

Table 3.5:
Upper bounds of truncation errors for temperatures computed by LOTAGre on the top
surface of the example chip in Fig.3.4 under wide parameter variations.

h
	

k2 h̄ Ī − Max ϵmax
tr ϵsum

tr

(W/m2 K) (W/m K) (W/m2 K) ◦C 10−16◦C 10−16◦C
257 12.2 8675 48.97 3.464 2.667
5212 32.4 5419 41.02 7.196 5.538
9826 16.2 2371 35.82 4.371 3.360
1387 5.1 9451 40.23 1.594 1.227
2715 382 7213 43.98 10.38 8.074
1462 1715 8415 44.16 4.032 3.162
512 10.4 800.1 331.6 3.024 2.329
1128 15.3 3410 95.98 4.173 3.214
1682 60.1 13215 29.49 10.01 7.709
21 70.2 9898 44.26 10.64 8.202
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the truncation error:

ϵsum
tr = Fmax

ij

(
4A−1∑
i=0

4B−1∑
j=0

2−δi0−δj0IHij −
A−1∑
i=0

B−1∑
j=0

2−δi0−δj0IHij

)
.

Table 3.4 and Table 3.5 give the corresponding values of ϵsum
tr . Compared to those

ϵmax
tr s, the shown ϵsum

tr s give some clue to the magnitudes of the truncation errors,

but unlike ϵmax
tr s, they cannot bound the truncation errors.

3.4.3 Accuracy of Discrete Heat-Source Model

Let the power density function f (x′, y′, z′) be uniform in the heat source region

[zp1, zp2]. Then f (x′, y′, z′) and its even expansion f̂ (x′, y′, z′) can be simply writ-

ten as f (x′, y′) and f̂ (x′, y′), respectively. From (2.9), the average inhomogeneous

temperature in the target region [zq1, zq2] at the location (x, y), T i (x, y), is obtained:

(3.48) T i (x, y) =
1

4XY

∞∑
i=0

∞∑
j=0

22−δi0−δj0F̂

(
i

2X
,
j

2Y

)
H̃ijϕij (x, y)

where

F̂ (α, β) = 4

∫ X

0

∫ Y

0

f (x′, y′)ϕ (x′, y′, α, β) dx′dy′

H̃ij (z) =

∫ zq2

zq1

∫ zp2

zp1

Hij (z|z′) dz′dz.

According to (3.19a), F̂
(

i
2X
, j

2Y

)
is actually the Fourier transform of f̂ (x′, y′) at

the frequency point
(

i
2X
, j

2Y

)
:

F̂

(
i

2X
,
j

2Y

)
= F

[
f̂ (x′, y′)

]∣∣∣
( i

2X
, j
2Y )

.

When f (x′, y′) is a power density function under the discrete heat-source model,

F̂
(

i
2X
, j

2Y

)
relates to Fij, given in (3.13), by

F̂

(
i

2X
,
j

2Y

)
=

4XY

ijπ2
sin

iπ

2A
sin

jπ

2B
Fij.
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According to (3.19b), the Fourier series (3.48) is actually the inverse Fourier trans-

form of F̂ (α, β) multiplied by an in�nite-delta sequence:

(3.49) T i (x, y) = F−1

[
F̂ (α, β) ×−→

1

4XY

∞∑
i=−∞

∞∑
j=−∞

H̃ij (z) δ

(
α− i

2X
, β − j

2Y

)]
.

In this dissertation, ×−→ denotes multiplication and ⊗−→ denotes convolution.

The discrete heat-source model shown in Fig.3.1 is an approximation to the actual

power density distribution of the chip. To preserve the total power of the chip,

the total power inside each cubic cell of the discrete heat-source model needs to

match that of the corresponding region in the chip. In the frequency domain, the

preservation of total power by the discrete heat-source model can be analyzed as

follows:

1. Convolute f̂ (x′, y′), the even expansion of the power density function, with a 2-

D window function of dimensions X
A
× Y

B
and strength AB

XY
. The window function

is denoted by WX
A
×Y

B
, AB
XY

(x′, y′) where

Wa×b,c (x′, y′) =


c, |x′| ≤ a

2
, |y′| ≤ b

2

0, otherwise.

(3.50)

2. Sample the result from Step 1 at the locations
(

aX
A

+ X
2A
, bY

B
+ Y

2B

)
by an in�nite-

delta sequence δ∗ (x′, y′), which is de�ned by

(3.51) δ∗ (x′, y′) =
∞∑

a=−∞

∞∑
b=−∞

δ

(
x′ −

(
a+

1

2

)
X

A
, y′ −

(
b+

1

2

)
Y

B

)
.

3. Convolute the result from Step 2 with WX
A
×Y

B
,1 (x′, y′).

The Fourier transform of the window function (3.50) is in the well-known form:

F [Wa×b,c (x′, y′)] = abc sinc (αa) sinc (βb)
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where sinc (x) = sin (πx) /πx. The Fourier transform of δ∗ (x′, y′), the in�nite-delta

sequence in (3.51), is given by

F [δ∗ (x′, y′)] = e−ı̈π(αX/A+βY/B)F

[
∞∑

a=−∞

∞∑
b=−∞

δ

(
x′ − aX

A
, y′ − bY

B

)]

= e−ı̈π(αX/A+βY/B)AB

XY

∞∑
i=−∞

∞∑
j=−∞

δ

(
α− iA

X
, β − jB

Y

)

=
AB

XY

∞∑
i=−∞

∞∑
j=−∞

(−1)i+j δ

(
α− iA

X
, β − jB

Y

)
.

Therefore, in the frequency domain, the power density distribution under the dis-

crete heat-source model, denoted by fhs (x′, y′), relates to f (x′, y′), the actual power

density distribution of the chip, by

F
[
f̂hs (x′, y′)

]
= F̂ (α, β) sinc

(
αX

A

)
sinc

(
βY

B

)
⊗−→
AB

XY

∞∑
i=−∞

∞∑
j=−∞

(−1)i+j δ

(
α− iA

X
, β − jB

Y

)
×−→
XY

AB
sinc

(
αX

A

)
sinc

(
βY

B

)
(3.52)

where f̂hs (x′, y′) is the even expansion of fhs (x′, y′).

According to (3.52), the inhomogeneous temperature distribution computed based

on the discrete heat-source model di�ers from the actual inhomogeneous temperature

distribution of the chip for the following reasons. First, under-sampling the actual

power density distribution can cause the temperature di�erences. When f̂ (x′, y′)

is band-limited with αmax and βmax being the respective maximum frequencies, to

ensure that the sampling is su�cient, A and B in the discrete heat-source model

should satisfy

(3.53) A ≥ 2αmaxX,B ≥ 2βmaxY.

If A and B are smaller than 2αmaxX and 2βmaxY , the high-frequency components of

f (x′, y′) can fold around half the sampling frequencies, leading to frequency aliasing.
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Figure 3.10:
Illustration of under-sampling (1-D version). F (α) is the Fourier transform of a func-
tion in 1-D space. The �gure shows the convolution of F (α) with the Fourier spectrum
of the 1-D version of the in�nite-delta sequence (3.51). (a) Under-sampling, and (b)
su�ciently sampling.

Fig.3.10 uses a 1-D example to illustrate the under-sampling issue. The other reason

is that the frequency spectrum F
[
f̂hs (x′, y′)

]
in the discrete heat-source model is

the actual frequency spectrum F
[
f̂ (x′, y′)

]
modulated by the sinc functions twice.

In summary, two types of errors exist in LOTAGre. One type of error is the sam-

pling error that occurs when the discrete heat-source model is used to approximate

the actual power density distribution of the chip. The sampling resolution of the

discrete heat-source model should satisfy (3.53), which is the same as that required

by the general sampling theory, albeit here the sampling method is quite di�erent.

The other type of error is the truncation error that occurs when LOTAGre truncates

the fully analytical series solutions to the temperature distribution of the chip into

�nite-summation forms. The previous theoretical analysis and experimental results

have demonstrated that the truncation error of LOTAGre is insigni�cant.



CHAPTER IV

Interconnect Thermal Modeling

4.1 Overview

Temperature impacts on-chip interconnect wires primarily in two ways. First,

temperature a�ects interconnect timing. With progressive technology scaling, de-

lays continue to increase in propagating signals through on-chip interconnect wires

because of the shrinking interconnect cross-sectional areas and the increasing inter-

connect lengths [60]. To reduce the signal propagation delay of a critical path, bu�ers

must be appropriately inserted into the related interconnect wires, with the consider-

ation of interconnect RC, RLC, or transmission line e�ects [6]. Because temperature

a�ects interconnect conductivity, the delays may be di�erent when propagating sig-

nals through a set of even identically shaped interconnect wires that are at regions

of di�erent temperatures. In order to avoid timing failures, the bu�er-insertion stage

must consider temperature gradients within the chip. Similarly, temperature gradi-

ents must also be considered to contain the clock skews when designing an on-chip

clock distribution network that exposes to a large portion of the chip. Precisely

matching the clock network geometry may not ensure the timely delivery of signals

to the clock sinks, because of the underlying temperature gradients [4].

Second, temperature a�ects interconnect electromigration. Voids or open circuits

75
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can occur in a metal wire because of the transport of the metal ions activated by

the electron winds resulting from the �owing current. This electromigration-induced

MTTF for a metal wire is generally depicted by the Black's equation:

MTTF (T ) = AJ−2eϕ/kT

where J is the current density, ϕ is the activation energy, and A is a technology-

dependent parameter [13]. Accordingly, the MTTF of a metal wire is a�ected by

both the temperature and the average current density. It reduces exponentially with

increasing temperature: for example, a temperature di�erence of 9.4◦C leads to 30

percent di�erence in the MTTF of a metal wire for an activation energy of 0.55

eV [58]. To improve the MTTF, the average current density must also meet the

design rules for the interconnect wire. In very deep sub-micron technology nodes,

miniaturizing interconnect cross-sectional dimensions reduces the heat dissipation

areas and increases the thermal impedances from interconnect wires to the heat sink

of the chip. Therefore, manifesting as the power dissipation, the root mean square

current density instead of the average current density determines the lifetime of an

interconnect wire [8].

To alleviate the timing and reliability issues, it is necessary to accurately compute

the temperature distribution within an interconnect wire. In [19] the FD method

was used to analyze the temperatures of power lines. When the power lines were

paralleled by the signal lines, as in Fig.4.1(a), simulation showed that thermal cou-

pling from the signal lines reduced the temperatures of the nearby power lines by

negligible amounts, less than 3% for the typical spacings in an IC. When the power

lines were orthogonal to the signal lines, as in Fig.4.1(b), for a �xed ratio of width

to separation, w2/s, the maximum temperature increased in the power lines with

the increase of s. For multilevel interconnect con�guration, simulation manifested
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Figure 4.1:
(a) Parallel and (b) orthogonal interconnect con�gurations (gray boxes are power lines
and blank boxes are signal lines).

that the nearby metal levels mainly a�ected the temperature distributions of power

lines. Guided by such simulation results from the FD and FE methods, the temper-

ature distribution of the entire on-chip interconnect network is usually analyzed by

�rstly partitioning the interconnect network into individual wire segments and then

determining the temperature distribution of each wire segment separately [19, 23].

Consequently, the Scha�t's model, which originally modeled only the interconnect

electromigration [58], becomes widely accepted in modeling the temperature distri-

bution of an interconnect wire. For example, the Scha�t's model has been used

to analyze the clock skews induced by the substrate temperature gradients [4]. To

improve the precision, 2-D thermal characterization can be used to determine the

parameters of the 1-D Scha�t's model as well as its variants, namely the Scha�t-type

models [12, 58, 33, 4].

The temperature distribution of an interconnect wire is a�ected by many factors,

including the chip packaging, ambient temperatures, and multiple heat conduction
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Figure 4.2:
1-D interconnect temperature distribution model: (a) 3-D interconnect con�guration;
(b) 2-D modeling of heat dissipation in interconnect cross-sectional area; (c) 1-D inter-
connect temperature distribution model in longitudinal direction (to be general, assume
two vias are at the two line ends).

paths in the chip. Based on the original Scha�t's model, this chapter introduces an

accurate 1-D interconnect temperature distribution model.

4.2 Interconnect Temperature Distribution Model

As shown in Fig.4.2, this section introduces a 1-D interconnect temperature dis-

tribution model. Similar to the original Scha�t's model, the introduced 1-D tem-

perature distribution model assumes that heat is either vertically dissipated through

the insulation materials around the interconnect or conducted along the interconnect

longitudinal direction [58]. The 1-D temperature distribution model can be estab-

lished in two steps for an interconnect wire embedded in a 3-D structure. First, the

2-D heat conduction equation is solved for the interconnect cross-sectional area to

estimate the thermal impedances between the interconnect wire and its surrounding

materials [see Fig.4.2 (b)]. With the estimated thermal impedances, a formula results

for the amount of heat lost at the wire location y vertically through the surrounding
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insulation materials, denoted by pv (y):

(4.1) pv (y) =
T (y)

R
− T̄ a (y)

R̄
− T
	

a (y)

R
	

where T̄ a (y) and T
	

a (y) are the top and bottom ambient temperatures of the chip

at the location y; R, R̄, and R
	

are the self thermal impedance of the interconnect,

and the thermal impedances from the interconnect to the top and bottom surfaces of

the chip, respectively. Compared to the pv (y) in (4.1), the vertical heat loss consid-

ered in the traditional Scha�t-type models relied upon only one of the two ambient

temperatures, for example, the substrate temperature [58, 4]. Consequently, the tra-

ditional models included only one heat conduction path (downward heat dissipation)

and also excluded the heat transfer rate between the bottom surface of the chip and

the ambient environment, i.e. h
	
.

Furthermore, the traditional Scha�t-type models neglected the e�ect of the tem-

perature gradients in the interconnect wire. Consider the three identical heat con-

duction plates in Fig.4.3. If the three plates have the same temperature distribution

at their boundaries, their interior temperature distributions must also be the same

because they satisfy the same 2-D Laplace's equation. Therefore, in this case, there

is no heat �ow among the three heat conduction plates when they are attached to-

gether. This is exactly an assumption under the traditional Scha�t-type models.

However, when the three plates have di�erent temperatures at their boundaries, e.g.,

Tl < Tr < Tm, they must have similar interior temperature gradients. That is, at

an interior location, the temperature of the left plate is the lowest and that of the

middle one is the highest. Therefore, when the three heat conduction plates are

attached together, heat �ows from the middle one to the left and right ones, and the

total vertical heat loss of the middle one increases. The above example demonstrates

that the interconnect temperature gradients can a�ect the amount of heat dissipated
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Figure 4.3: E�ect of temperature gradients on interconnect vertical heat dissipation.

vertically from the interconnect wire. Without considering such an e�ect, the tradi-

tional Scha�t-type models tended to overestimate the temperature gradients in the

interconnect wire. Therefore, a new vertical heat loss model, denoted by p+
v (y), is

introduced, which linearly approximates the e�ect of temperature gradients:

(4.2) p+
v (y) = pv (y) − β1

∂2T (y)

∂y2
+ β2

∂2T̄ a (y)

∂y2
+ β3

∂2T
	

a (y)

∂y2
.

The coe�cients β1, β2 and β3 are non-negative numbers to be determined experimen-

tally. Based on the formula (4.2), an interconnect temperature distribution model is

introduced below.

Let the interconnect width be w, thickness be t, length be L, thermal conductivity

be k, and power density at location y be p (y). Consider one incremental interconnect

segment of length ∆y, e.g., the box [y, y + ∆y] shown in Fig.4.2(c). The total heat

entering into the box from the left face is given by

ql = −wtkdT (y)

dy
,
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and that leaving the box from the right face is given by

qr = ql +
d

dy

[
−wtkdT (y)

dy

]
∆y.

The net heat generated in the box is given by

pgen =
[
p (y) − p+

v (y)
]
wt∆y.

The law of energy conservation implies that

qr − ql = pgen.

Therefore, the temperature distribution within the interconnect wire satis�es

(4.3) (k + β1)
d2T (y)

dy2
− T (y)

R
= −f (y)

where

(4.4) f (y) = p (y) − T̄ a (y)

R̄
− T
	

a (y)

R
	

− β2
∂2T̄ a (y)

∂y2
− β3

∂2T
	

a (y)

∂y2
.

The boundary conditions for (4.3) are speci�ed by

k
dT (y)

dy

∣∣∣∣
y=0

=
T (0) − T

	

a (0)

Rl

−kdT (y)

dy

∣∣∣∣
y=L

=
T (L) − T

	

a (L)

Rr

(4.5)

where Rl (Rr) is the thermal impedance from the left (right) end of the line to the

bottom ambient environment. Here assume that heat dissipates from the two ends

of the line to the top ambient environment in negligible amounts, compared to that

which dissipates through the low thermal-impedance vias to the bottom ambient

environment.

In contrast to the traditional Scha�t-type models, the introduced 1-D intercon-

nect temperature distribution model considers the ambient temperatures, the ther-

mal impedances of the vias, and the e�ect of temperature gradients. The following
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Figure 4.4: Equivalent TL circuit for solving interconnect temperature distribution from (4.3).

introduces an O (n) method to solve the interconnect temperature distribution from

(4.3).

4.3 Computation of Interconnect Temperature Distribution

To solve (4.3), this section again employs the transmission line theory to construct

an equivalent TL circuit, which is shown in Fig.4.4. In the shown circuit, the TL

propagation constant γ = 1√
(k+β1)R

, the TL characteristic impedance Zc =

√
(k+β1)R

k
,

and k
k+β1

f (y) is a distributive current source along the TL. The two ends of the TL

are driven by the two voltage sources T
	

a (0) and T
	

a (L) through the two resistors Rl

and Rr, respectively.

Based on Fig.4.4, the temperature at the location y, T (y), can be derived:

(4.6) T (y) = T a
l (y) +

k

k + β1

∫ L

0

f (y′)Z (y|y′) dy′ + T a
r (y)

where Z (y|y′) denotes the transfer impedance from the location y′ to the location y

at the TL [69], and

T a
l (y) =

Hl (L− y)T
	

a (0)

1 +Rl/Zl

T a
r (y) =

Hr (y) T̄ a (L)

1 +Rr/Zr

Z (y|y′) = Yγ

(
Rl cosh γy

	
+ Zc sinh γy

	

)
·

[Rr cosh γ (L− ȳ) + Zc sinh γ (L− ȳ)] .
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Here

H{l,r} (y) =
R{r,l} cosh γy + Zc sinh γy

R{r,l} cosh γL+ Zc sinh γL

Z{l,r} = Zc

R{r,l} + Zc tanh γL

Zc +R{r,l} tanh γL

Yγ = Zc/
[
Zc(Rl +Rr) cosh γL+ (Z2

c +RlRr) sinh γL
]

y
	

= min (y, y′)

ȳ = max (y, y′) .

In deriving (4.6), the superposition principle has been used.

In general, f (y) is given at discrete locations: f (y1) , . . . , f (yn+1), where 0 = y1 <

· · · < yn+1 = L. Further, f (y) can be approximated by a piecewise-linear function

or a smooth function consisting of n pieces. By using generic numerical integration

methods to evaluate (4.6), T (y) at each location yi, 0 ≤ i ≤ n+ 1, can be computed

in O (n) time; however, to calculate T (y) at all the locations y1, . . . , yn+1 requires

O (n2) computations. To improve the e�ciency, an O (n) algorithm is introduced to

compute T (y) at all the discrete locations.

From (4.6), T (yi) is rewritten into the form of

(4.7) T (yi) = T a
l (yi) + αl (yi) (L− yi)S

l
i + αr (yi)S

r
i + T a

r (yi)

where

α{l,r} (y) =
kYγ

k + β1

(
R{r,l} cosh γy + Zc sinh γy

)
Sl

i =
i∑

j=2

∫ yj

yj−1

f (y′) gl (y
′) dy′

Sr
i =

n+1∑
j=i+1

∫ yj

yj−1

f (y′) gr (L− y′) dy′

g{l,r} (y′) = R{l,r} cosh γy′ + Zc sinh γy′.
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Begin Compute-wire-temp

1. let Sl
1 = 0 and compute Sr

1 ;

2. For i = 1 to n + 1
Compute T a

l (yi), T a
r (yi), αl (L − yi) and αr (yi);

T (yi) = T a
l (yi) + T a

r (yi) + αl (L − yi) Sl
i + αr (yi)Sr

i ;
Sl

i+1 = Sl
i +

∫ yi+1

yi
f (y′) gl (y′) dy′;

Sr
i+1 = Sr

i −
∫ yi+1

yi
f (y′) gl (L − y′) dy′;

End For

End Compute-wire-temp

Figure 4.5:
Algorithm Compute-wire-temp for evaluating interconnect temperature T (y) at loca-
tions y1, . . . , yn+1.

f (y)gr(L− y)

Sr
i+1

Sr
i

y1 y2 y3 yi yi+1 yn−1 yn yn+1 y

Sl
i

Sl
i+1

f (y)gl(y)

+ar(yi+1)Sr
i+1 + Ta

r (yi+1)

T (yi+1) = T a
l (yi+1)+ al(L− yi+1)Sl

i+1

T (yi) = T a
l (yi)+ al(L− yi)Sl

i

+ar(yi)Sr
i + Ta

r (yi)

Figure 4.6: Illustration of formula (4.7) for T (yi).
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Fig.4.6 illustrates the terms T (yi), T (yi+1), S
l
i, S

r
i , S

l
i+1, and Sr

i+1. According

to the �gure, T (y) can be computed sequentially from the locations y1 to yn+1 by

recursively calculating Sl
i and Sr

i . Therefore, the temperatures at all the discrete

locations can be computed by an O (n) algorithm named Compute-wire-temp, which

is shown in Fig.4.5. The values of
∫ yj

yj−1
f (y′) gl (y

′) dy′ and
∫ yj

yj−1
f (y′) gr (L− y′) dy′

are usually given by analytical formulas, especially when f (y) is a piecewise-linear

function.

4.4 Experimental Results

4.4.1 Accuracy of Interconnect Temperature Distribution Model

The experiments used an interconnect array. The interconnect temperature dis-

tribution was obtained from both FLUENT 3-D simulation and the 1-D intercon-

nect temperature distribution model combined with FLUENT 2-D characterization.

Fig.4.7(a) shows the interconnect array, where each line is of length L = 100 µm,

width w = 1µm, thermal conductivity k = 144 W/(m K), resistivity ρ = 5.05 ×

10−6 Ω·cm, current density J = 2 MA/cm2, and power density p = 2.02 × 1013

W/m3. Two types of dielectric materials were used: SiO2, with a thermal conduc-

tivity of 1.2 W/(m K), and polymer, with a thermal conductivity of 0.3 W/(m K).

The parameters were chosen to be consistent with those in [19, 23]. Di�erent line

separations and inter-level dielectric (ILD) thickness were experimented.

FLUENT simulation was used to characterize the thermal properties of the cross-

sectional area of the interconnect array. In the array, the thermal conductance (1/R)

from the boundary of the cross-sectional area of a metal line to the substrate was

obtained by measuring the total heat �ux out of the substrate when a 1 ◦C tem-

perature was applied to the boundary, as shown in Fig.4.7(b). With the thermal

conductance, algorithm Compute-wire-temp was used to compute the temperature
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Figure 4.7: Interconnect array.

distribution of the central metal line.

Fig.4.8 compares algorithm Compute-wire-temp and FLUENT, with parameters

given by s = 0.3 µm and h = t = 0.8 µm (corresponding to the 0.1 µm technology

node). The thermal conductance obtained from 2-D characterization was 3.55×1012

W/(K m3) when the ILD was SiO2 and 8.875 × 1011 W/(K m3) when the ILD was

polymer. The maximum temperature of the line increased from 5.685 ◦C to 21.863

◦C when the ILD was changed from SiO2 to polymer. To observe the e�ect of the

ILD thickness, h was increased from 0.8 µm to 1.6 µm. Fig. 4.9 shows the results.

The thermal conductance obtained from 2-D characterization was 1.824×1012 W/(K

m3) when the ILD was SiO2 and 4.562×1011 W/(K m3) when the ILD was polymer.

The maximum temperature increased from 10.99 ◦C to 38.989 ◦C when the ILD was

changed from SiO2 to polymer. Table 4.1 further compares the results when the line

width w = 1 µm and separation s = 0.5 µm.

4.4.2 E�ect of Temperature Gradients

Next, di�erent β1 factors were tested to observe the e�ect of temperature gradi-

ents. Fig.4.10 shows the results for the case that s = 0.5µm, w = 1µm, h = 1.6µm
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Figure 4.8:
Comparison between 1-D interconnect temperature distribution model and FLUENT
3-D simulation: s = 0.3 µm and h = t = 0.8 µm.
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Figure 4.9:
Comparison between 1-D interconnect temperature distribution model and FLUENT
3-D simulation: s = 0.3 µm, h = 1.6 µm and t = 0.8 µm.

h (µm) 0.8 1.6
kild (W/m K) 0.3 1.2 0.3 1.2

1/R (×1011 W/K m3) 6.709 26.840 3.433 13.730
Max. Temp. (◦C) 28.126 7.510 48.672 14.486
Max. Error (◦C) 0.034 0.030 0.097 0.070

Table 4.1:
Comparison between 1-D interconnect temperature distribution model and FLUENT
3-D simulation: s = 0.5µm and w = 1 µm.



88

0 20 40 60 80 100
0

10

20

30

40

50

β
1
=0

y (µm)

T
 (

° C
)

Alg.
FLU.

(a) Compute-wire-temp versus FLUENT.

0 20 40 60 80 100
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

y (µm)

T
 (

° C
)

β
1
=0

β
1
=0.2

β
1
=0.4

β
1
=0.8

β
1
=1.4

(b) Errors for y from 2 to 98 µm for di�erent β1's.

Figure 4.10:
E�ect of temperature gradients: accuracy of 1-D interconnect temperature distribution
model versus β1. Parameters: s = 0.5µm, w = 1.0µm, h = 1.6µm and t = 0.8µm.

β1 0 0.2 0.4 0.8 1.4
Max. Error (◦C) 0.097 0.079 0.061 0.027 0.031

Table 4.2:
E�ect of temperature gradients: accuracy of 1-D interconnect temperature distribution
model versus β1.

and kild = 0.3 W/(m K), i.e., the case in the fourth column of Table 4.1. The

maximum absolute temperature errors are listed in Table 4.2.

Note that slightly increasing the value of β1 reduced by as large as 70% the

maximum absolute temperature error, which was however much smaller than the

actual temperature. The experimental results have demonstrated that the accuracy

of the introduced interconnect temperature distribution model can be comparable to

that of FLUENT, and that temperature gradients within an interconnect wire can

be overestimated if their own e�ect is neglected.

In summary, 3-D simulation by the FD and FE methods should be the most

accurate in analyzing the interconnect temperature distribution. However, to im-

prove computational time, 1-D interconnect temperature distribution models have

been proposed in the literature with the combination of 2-D thermal characteriza-

tion. Such models are reasonably accurate and lead to �gures of merit for planning
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on-chip interconnect wires, for example, designing global interconnects and rout-

ing clock trees. In this chapter, an accurate Scha�t-type interconnect temperature

distribution model is presented, which considers the ambient temperatures and the

e�ect of temperature gradients. Finally, an O (n) algorithm is introduced to solve

the interconnect temperature distribution from the presented model.



CHAPTER V

Thermal Optimization in Cell Placement

5.1 Overview

In the top-down IC physical design �ow, the cell placement stage is focused on

reducing the total length of the interconnect wires and the overall area of the chip,

as well as meeting the circuit timing requirements. The cell placement stage may

lead to high temperatures, large temperature gradients, and numerous hot spots

inside the chip if thermal optimization is not considered. High chip temperature

aggravates interconnect electromigration and thus compromises the reliability of the

chip. Meanwhile, large temperature gradients within the chip can cause logic faults

because of the induced spatial variation of the interconnect and gate timing across

the chip. In the literature, many cell placement algorithms have been proposed.

However, a large portion of them have neglected the thermal issue or inadequately

addressed it in lieu of the current chip thermal management criteria. To alleviate

the chip thermal issue, this chapter introduces an optimal power budget model and

discusses the integration of the model into the widely distributed Capo cell placement

tool. First, this chapter reviews several representative cell placement algorithms

that have the capability of thermal optimization: the matrix-synthesis approach, the

simulated-annealing-based approach, the force-directed approach, and the partition-

90
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driven approach.

5.1.1 Matrix-Synthesis Approach

A matrix-synthesis problem can be described as follows: Given mn real numbers

x0, x1, . . . , xnm−1, formulate a matrix Mm×n with these numbers such that the max-

imal sub-matrix sum of M , denoted by µt (M) , is minimized. Notations are given

below:

• St (M), the set of all t× t sub-matrices in M .

• σ (A), the sum of all elements in an arbitrary matrix A.

• µt (M) , de�ned by

µt (M) = max
A∈St(M)

σ (A) .

In [25], a cell placement problem is transformed into a matrix synthesis problem.

Assume that the cell placement problem requires m×n cells to be placed into m×n

slots in the chip. Let the cell powers be denoted by x0, x1, . . . , xnm−1. Apparently,

a solution to the matrix synthesis problem corresponds to a thermally optimized

placement of the cells. As the matrix-synthesis problem is NP-complete, in [25]

three approximation algorithms were given with proved bounds. The idea behind

the approximation algorithms is to assign high-power cells into remotely located

regions of the chip. The �rst approximation algorithm, called A1 in [25], is reviewed

below.

Let m = n = tq, and divide the chip into q× q blocks, with each block containing

t× t slots. Without loss of generality, the mn real numbers x0, x1, . . . , xnm−1, which

represent the cell powers, are in non-increasing order: x0 ≥ x1 ≥ · · · ≥ xnm−1. The

location of each slot is speci�ed by a tuple (i, j) with 0 ≤ i, j ≤ n− 1. Then for any
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Figure 5.1: Labeling mechanism in matrix-synthesis approach: m = n = 4 and t = 2.

slot at the location (i, j), a label Lk is assigned such that

i ≡ ⌊k/t⌋ (mod t)

j ≡ (k mod t) (mod t)

where 0 ≤ k ≤ t2 − 1. Fig.5.1 illustrates the labeling mechanism for t = 2.

Algorithm A1 divides the mn real numbers into t2 equisized groups in the nat-

ural order. For example, the �rst group named G0 contains the �rst q2 num-

bers x0, x1, . . . xq2−1, and the last group named Gt2−1 contains the last q2 numbers

xmn−q2 , xmn−q2+1, . . . xmn−1. Then the algorithm randomly assigns all the numbers

in the same group, e.g., Gk, to the slots that have the same label Lk only. Con-

sequently, the algorithm scatters the high-power cells across the chip rather than

aggregate them at nearby locations to form hot spots. Algorithm A1 was shown to

have the maximal sub-matrix sum, denoted by µt (A1), bounded by

µt (A1) ≤ 2µt (OPT )

where µt (OPT ) is the optimal solution. Therefore, the maximal sub-matrix sum

of the placement produced by algorithm A1 is no more than two times that of the
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optimal placement.

Besides thermal, the matrix synthesis approach can meanwhile optimize both the

total wire length and the overall chip area. Although aimed to distribute the cell

powers evenly, the matrix-synthesis approach may not lead to an optimized temper-

ature distribution because it does not consider the thermal boundary conditions for

the chip.

5.1.2 Simulated-Annealing-Based Approach

Simulated-Annealing Algorithm

The simulated-annealing algorithm solves a combinatorial optimization problem

by simulating the annealing process of �nding ground states of matter under the

control of a temperature schedule [42]. Mathematically, the simulated-annealing

algorithm performs the Metropolis-Hastings method with the use of the Boltzmann

distribution pB (ϵ):

pB (ϵ) =
g (ϵ) e−ϵ/KT

Z

where g (ϵ) denotes the degeneracy of energy ϵ, or the number of states for particles

with energy ϵ, and Z is the partition function or the normalization factor.

The Metropolis-Hastings method produces samples to meet a given probability

distribution p (ϵ) based on the Markov chain. Given a sampled value of ϵ at the time

step t, denoted by ϵ(t), the method decides the next sampled value of ϵ, denoted by

ϵ(t+1), by �rst proposing a new value ϵ′ and then examining the ratio α = p(ϵ′)
p(ϵt)

. If

α ≥ 1, the method sets ϵ(t+1) to be x′; Otherwise, it sets ϵ(t+1) to be x′ with only

probability α. In summary,

ϵ(t+1) =


ϵ
′

α ≥ 1 or α > random (0, 1)

ϵ(t) otherwise
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where random(0, 1) returns a uniformly distributed random number between 0 and

1. Iterating the process, the method produces sampled values of ϵ that converge

to the stationary distribution of the underlying Markov chain, p (ϵ). Therefore,

when the Metropolis-Hastings method iterates with the Boltzmann distribution, the

occurrence of small values of ϵ in the resulting stochastic process will dominate that

of the larger values of ϵ at an exponential rate.

The simulated-annealing algorithm performs the Metropolis-Hastings method un-

der a controlled temperature, the parameter T in pB (ϵ). Take a minimization prob-

lem, for example. The simulated-annealing algorithm allows the parameter values

to increase the cost function. However, the chance of allowing such parameter val-

ues becomes smaller with the decrease of the temperature. By the uphill-climbing

of the cost function, the algorithm escapes the local minimum, and by a controlled

temperature schedule, it avoids enumerating the entire parameter space in the pro-

cess of minimizing the cost function. The algorithm can reach the global optimum

with probability approaching 1 with the extending of the temperature schedule [53].

Fig.5.2 shows the pseudo-code, which comprises two loops. The inner loop runs the

Metropolis-Hastings method to reach the stationary distribution at the set tempera-

ture. With the temperature gradually reduced, the outer loop expedites the process

to �nd the global optimum.

Simulated-Annealing-Based Approach for Cell Placement

To apply the simulated-annealing algorithm in cell placement, the inner-loop con-

dition, the outer-loop condition, the next_temperature_scheduled function and

the generate_next_configuration function need to be speci�ed. The inner-loop

condition can force the algorithm to exit from the inner loop if many placements



95

T = initial_temperature_scheduled ();
t = 0;
X = initial_configuration ();
while algorithm stopping criterion not satisfied

while stopping criterion at T not satisfied

X = generate_next_configuration
(
X(t)

)
;

ϵ′ = cost_of_configuration (X);
if ϵ′ < ϵ(t) or exp

[
−
(
ϵ′ − ϵ(t)

)
/kT

]
> random (0, 1)

then

X(t+1) = X;

ϵ(t+1) = ϵ′;
if ϵ′ < bestSeenValue then

bestSeenValue = ϵ′;
bestConfiguration = X;

end if;

else

X(t+1) = X(t);

ϵ(t+1) = ϵ(t);
end if;

t = t + 1;
end while;

T = next_temperature_scheduled (T );
end while.

Figure 5.2: Pseudo code of simulated-annealing algorithm.

attempted have been rejected or the maximal number of iterations has been reached.

The outer-loop condition can terminate the algorithm if it has not improved the

placement at several consecutive temperatures. The next_temperature_scheduled

function is often in the form of

Tnew = α (Told)Told

where 0 < α < 1 [42, 59]. Accordingly, the new temperature scheduled, Tnew re-

duces exponentially. The generate_next_configuration function generates a new

placement based mainly on two mechanisms: one is to swap the locations of two

cells, and the other is to move one cell from its current location to a new location.

In the TimberWolf placement and routing package, an exchange class mechanism is

used to exchange only cells in the same class, and the movement of a cell is con�ned

to a rectangular window which shrinks with the decrease of the temperature [59].
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Because exchanging cells may cause overlaps, the placement cost includes also the

cost of cell overlaps in addition to the total half-perimeter wire length (HPWL) of

all the nets.

To optimize the temperature distribution of the chip, a cost similar to the cost

of cell overlaps can be added to the placement cost. The cell placement approach

in [65] speci�es a power budget for the chip. Then in the cell placement stage, if a

generated placement violates the power budget, the placement will be either rejected

or assigned a large placement cost. To specify the power budget, �rst the average

temperature of the chip is obtained from an empirical model:

Taverge = Tambient + Ptotal ·Rth

where Taverage, Tambient, Ptotal, and Rth are the average temperature, the ambient

temperature, the total power dissipation, and the equivalent thermal resistance of

the chip, respectively [65]. Then for each region of the chip, a temperature slack is

added to Taverage to form an envelop temperature for that region. With the thermal

transfer matrix, an envelop power for each region, called the power budget of the

region, can be computed from the envelop temperatures.

5.1.3 Forced-Directed Approach

The force-directed approach originated from an analogy to Hook's law on elastic

materials [52]. Let the cost of connection between two cells numbered i and j at

locations p⃗i = (xi, yi) and p⃗j = (xj, yj) be approximated by the squared Euclid

distance:

cij
[
(xi − xj)

2 + (yi − yj)
2]
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where cij is a weighting factor. To minimize the total connection cost, the optimal

location of cell i must satisfy

n∑
j=1

cij (xi − xj) = 0

n∑
j=1

cij (yi − yj) = 0(5.1)

where n is the number of cells directly connecting to cell i. The above optimal

conditions resemble Hook's law. Treat the connection between two cells as a spring

so that the longer the spring is stretched, the stronger the tension between the two

cells. Hence, in the optimal placement, each cell should receive a zero total force;

otherwise, a nonzero force will displace the cell to a di�erent location.

With only the attractive forces, the cells will be squeezed together. To reduce

the cell overlaps, a repulsive force is introduced between any two cells. Let D (x, y)

denote the density of the cells at the location (x, y):

D (x, y) =
∑

i

ai (x, y) − aavg

where ai (x, y) = 1 if cell i covers location (x, y); otherwise, ai (x, y) = 0. aavg

is the average density of the cells in the chip: aavg =
∑

i module_areai

chip_area
[30, 45]. If

D (x, y) > αavg, D (x, y) is positive and it behaves like a positive charge density. On

the other hand, if D (x, y) < αavg, D (x, y) is negative and it behaves like a negative

charge density. When a cell is placed at a location with a large density of cells, the

cell resembles a positive charge at a location of large positive charge density, and it

receives a large repulsive force. The repulsive force, denoted by f⃗r, is governed by

∇ · f⃗r = kD (x, y) .

With the free-space Green's function [30, 40], f⃗r is represented in the form of

f⃗r =

∫
S

D (x′, y′)
r⃗ − r⃗′

|r⃗ − r⃗′|2
dr′.
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generate_initial_placement ();
while placement is improving

calculate d⃗ due to fixed cells;

calculate f⃗r due to cell overlaps or other constraints;

update cell locations based on (5.2);

end while;

post-processing to legalize the placement.

Figure 5.3: Pseudo code for the forced-directed approach.

In matrix form, the placement cost is given by

1

2
p⃗TCp⃗+ d⃗T p⃗+ e⃗

where p⃗ is the vector of cell positions. Apparently, the �rst term is contributed by

the connections between two movable cells, the second term is contributed by the

connections between one movable cell and another �xed cell, and the last term is

contributed by the connections between two �xed cells. Combining the repulsive

force f⃗r, the optimal conditions in (5.1) are modi�ed to be

(5.2) Cp⃗ = αd⃗+ βf⃗r

where α and β are weighting factors to balance the attractive forces and the repulsive

forces. Fig.5.3 gives the pseudo code for the forced-directed approach.

To optimize the temperature distribution, the forced-directed approach in [32]

introduces thermal forces. At a given location, in addition to the attractive and

repulsive forces, a cell also receives a thermal force, denoted by f⃗therm, which is the

negative temperature gradient at the location. Then the optimal location of each

cell satis�es

Cp⃗ = αd⃗+ βf⃗r + γf⃗therm

where α, β, and γ are coe�cients to balance the attractive forces, the repulsive forces,

and the thermal forces.
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5.1.4 Partition-Driven Approach

Hyper-graph Partition

A hyper-graph is a special graph such that an edge in the graph may connect to

more than two vertices. The number of vertices connected to an edge is called the

degree of the edge. Partitioning a hyper-graph is to divide the vertices into di�erent

parts. Mathematically, a hyper-graph G = (V , E) is de�ned by the set of vertices,

V , and the set of edges, E . Each v ∈ V has a size named sv. Each edge ϵ ∈ E

is a set of vertices in V and has a cost named cϵ. The cost of edge ϵ can also be

denoted by cxy, where x, y ∈ ϵ. A partition Π of the graph is de�ned by a collection

of subsets Π ≡ {Π1, · · ·Πk} such that Πi ∩ Πj = ∅ for any i ̸= j and ∪k
i=1Πi = V .

Each subset corresponds to one part of the partition. The quality of partition Π is

measured by the cost of the cut-set CΠ. An edge is said to be in the cut-set CΠ if its

vertices are assigned to more than one part. The cut-set cost can be de�ned by the

number of edges or the weighted sum of the costs of the edges in CΠ. The objective

of hyper-graph partition is to assign all v ∈ V to di�erent parts such that the cost

of CΠ is minimized. Hyper-graph partition may be subject to additional constraints

such as balancing the number of vertices in each part.

One special hyper-graph partition problem is the bisection problem, in which a

hyper-graph of 2n vertices is to be optimally divided into two parts of equal size

such that the cut-set cost is minimized. Normally, a k-way hyper-graph partition

problem, in which the vertices are to be assigned to k parts, is transformed into

a series of bisection problems. The hyper-graph bisection problem is NP-complete.

Two well-known heuristic approaches for the bisection problem are reviewed below.



100

Kernighan-Lin Algorithm

The Kernighan-Lin algorithm is an exchange-based bisection algorithm [44, 56].

Consider a bi-partition of two parts A and B. For a vertex a ∈ A, the external cost

of a, denoted by Ea, is the total cost of edges that connect a to vertices in the other

part B:

Ea =
∑
x∈B

cax.

The internal cost of a, denoted by Ia, is the total cost of edges that connect a to

vertices in the same part A:

Ia =
∑
x∈A

cax.

Moving a from A to B reduces the cut-set cost by Da:

Da = Ea − Ia.

Similarly, moving a vertex b ∈ B from B to A reduces the cut-set cost by Db. Then

the gain from interchanging a and b, denoted by gab, is given by

gab = Da +Db − 2cab.

That is, interchanging a and b reduces the cut-set cost by gab.

At each step, the KL algorithm interchanges one pair of vertices that have the

maximum gain, locks them, and then updates the gains of the other pairs of vertices

a�ected. The algorithm repeats the previous step until all the vertices are locked.

Denote the two vertices interchanged in the i-th step by ai and bi, respectively, and

the gain by gi. Because gi may be negative, the algorithm makes permanent only the

�rst k interchanges such that
∑k

i=1 gi maximizes
∑n

i=1 gi. This constitutes a single

pass of the KL algorithm. After one pass, all the vertices are unlocked and the next



101

pass begins. The algorithm stops if the present pass has not improved the cut-set

cost.

Because in the i-th step, the KL algorithm needs to choose the pair with the

maximum gain from the (n− i)2 pairs, the time complexity of one pass is O (n3).

To reduce the run-time, sort Dax for every vertex ax in A and Dby for every vertex

by in B such that

Da1 ≥ Da2 ≥ · · ·Dan

and

Db1 ≥ Db2 ≥ · · ·Dbn.

Then examine Da's and Db's in the sorted order until a pair Dai and Dbj is encoun-

tered such that Dai +Dbj is less than the present maximal gain. Then all the pairs

after Dai and Dbj can be discarded because their gains must not exceed the present

maximal gain. Using the above sort procedure reduces the time complexity of the

KL algorithm to O (pn2 lg n), where p is the total number of passes.

Fiduccia-Mattheyses Algorithm

The Fiduccia-Mattheyses algorithm is a move-based bisection algorithm [31, 56].

Consider a bi-partition of two parts A and B. Given a vertex i, let F (i) be the From

part, i.e., the part currently containing vertex i, and let T (i) be the To part, i.e.,

the part whereto vertex i can be moved. Given an edge ϵ, let F (ϵ) be the number of

vertices in the From part that ϵ connects to, and let T (ϵ) be the number of vertices

in the To part that ϵ connects to. Then the gain from moving vertex i from F (i) to

T (i), denoted by g (i), is given by

g (i) =
∑

{ϵ∈E|i∈ϵ}

cϵδ1,F (ϵ) −
∑

{ϵ∈E|i∈ϵ}

cϵδ0,T (ϵ)
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where δi,j denotes the Kronecker delta such that

δx,y =


1, x = y

0, otherwise.

In other words, moving vertex i from its present part to the other part reduces the

cut-set cost by g (i).

To maintain the sizes of A and B, the FM algorithm imposes a balance criterion

(5.3) r ×
∑
v∈V

sv − max {sv, v ∈ V} ≤
∑
v∈A

sv ≤ r ×
∑
v∈V

sv + max {sv, v ∈ V}

where r is the balance ratio, e.g., 0.5 for a balanced bisection. De�ne the base vertex

as a vertex that has the maximal gain and is free to move without violating the

balance criterion. At each step, the FM algorithm moves the base vertex from its

From part to its To part, locks the vertex, and then updates the gains of the other

vertices a�ected. The algorithm repeats the previous step until no base vertices exist.

The procedure constitutes one pass of the FM algorithm. Denote the gain at the

i-th steps by gi. At the end of one pass, the FM algorithm makes permanent the

moves at the �rst k steps such that
∑k

i=1 gi is the maximal. Then the algorithm

unlocks all the vertices and begins the next pass if the latest pass has improved the

cut-set cost.

After moving one vertex, say v, the FM algorithm applies the procedure in Fig.5.4

to update the gains of the other free vertices e�ciently. Using a bucket data structure,

the FM algorithm runs approximately in linear time with respect to the number of

vertices.

5.1.5 Thermal Optimization in Partition-Driven Approach

The partition-driven approach recursively divides the chip into smaller bins until

the bins become small enough to be handled by an end-case placer [54, 37]. Given
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update_gains(v)
begin

F = F (v) , T = T (v);
for each edge ϵ on vertex v
begin

if F (ϵ) = 1 then

decrease the gains of the other free

vertices on ϵ by cϵ;

else if F (ϵ) = 2 then

increase the gain of the other free

vertex in F by cϵ;

end if;

if T (ϵ) = 1
decrease the gain of the only free

vertex in T by cϵ;

else if T (ϵ) = 0
increase the gains of the other free

vertices on ϵ by cϵ;

end if;

F (ϵ) = F (ϵ) − 1, T (ϵ) = T (ϵ) + 1;
end for;

end

Figure 5.4:
Procedure to update gains of free vertices in Fiduccia-Mattheyses algorithm after
moving base vertex v.

a bin and the set of cells contained, the partition-driven approach �rst determines

the location of the cut-line to divide the given bin into two halves, called the child

bins. Then the approach uses the FM algorithm to assign the cells to the two child

bins, with the cost of the connections across the two child bins minimized. Then

the approach repeats the previous procedure on each of the two child bins until the

produced bins become small enough so that the exact locations of the contained cells

can be determined trivially. The approach is shown in Fig.5.5.

The cut-line to divide a given bin runs either horizontally or vertically, depending

on the placement style and the shape of the given bin. To formulate the bisection

problem, in the hyper-graph, one vertex represents a free cell, the vertex size repre-

sents the area of the cell, and an edge represents a net. The edge cost is given by the

HPWL calculated when the vertices on the edge are assumed to be at the centers
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En-queue the top-level bin that contains the whole chip;

while the queue is not empty

de-queue a bin;

if the bin is small enough then

runs the end-case placer;

else

determine the cut-line location;

form a bisection problem;

run the FM algorithm to partition the bin

into two child bins;

en-queue the two child bins;

end if;

end while.

Figure 5.5: Partition-based approach

of the two child bins. The balance criterion in the FM algorithm avoids overlaps

between cells and also maintains the white-space ratio. Using the linear-time com-

plexity FM algorithm, the partition-driven approach can place multiple million cells

e�ciently, compared to the simulated-annealing-based approach.

The partition-driven approach in [20] considers thermal optimization. First, the

approach runs thermal simulation for a few random placements and determines the

temperature budget, denoted by Tbudget, for each region of the chip based on the

maximal and minimal temperatures in the random placements. Then the approach

modi�es the FM algorithm such that a base vertex must not only satisfy the area

balance criterion (5.3) but also ensure the resultant chip temperature distribution to

be within Tbudget.

5.2 Optimal Power Budget Model for Cell Placement

This section describes an optimal power budget model that determines the best

allocation of cell powers to di�erent regions of the chip so that the resultant tem-

perature distribution most closely approximates the target temperature distribution.

Based on the optimal power budget model, this section introduces a top-level ther-
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mal optimizer and a front-level thermal optimizer that use LOTAGre to solve the

optimal power budget for use in the partition-driven approach. Particularly, this

section presents the integration of the optimal power budget model with the Capo

placement tool, a sophisticated partition-driven placement tool, to perform chip-level

thermal optimization.

5.2.1 Optimal Power Budget Model

First, introduce the optimal power budget model. In the partition-driven ap-

proach, the recursive bin-splitting procedure forms a binary tree of bins called the

partition tree. In the tree, each bin is a geometrical union of its two child bins. Par-

ticularly, the bin at the root of the tree represents the entire chip layout. De�ne the

level of one bin as the distance of the bin from the root of the tree. Assume not con-

sidering the variations of cell powers in the routing stage. Then, under a �xed total

chip power, there exists an optimal allocation of powers (or optimal power budget)

for the bins of the same level so that the resultant temperature distribution of the

chip is optimal. Hence, if the partition algorithm closely complies with the optimal

power budget when splitting bins of the same level, the generated placement should

not contain a signi�cant number of hot-spots.

The optimal power budget model plans the total power of each bin of the same

level, with the given total powers of all the parent bins of one level above, to improve

the temperature distribution of the chip the most e�ectively. To establish the optimal

power budget model, the chip layout is meshed by the discrete heat-source model so

that each bin contains a set of mesh grids in a rectangular region. Next, the grids

in the same bin are organized into several clusters, with each cluster comprising one

or more grids. Several notations are given below: Denote the bins of the same level

by B1, B2, . . . Bn; for each bin Bi, denote the clusters contained by Ci1, Ci2, . . . Cik;
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for each cluster Cij, denote its area by aij and its total power by xij. Finally, denote

the total power of bin Bi by pi, where

(5.4) pi =
k∑

j=1

xij.

Then reformulate (5.4) into an implicit condition:

(5.5) xi1 = pi −
k∑

j=2

xi2.

Let all the xijs such that i > 1 form a vector x, named the power vector. Then the

chip temperature distribution can be given by

(5.6) RMx+ c

where R is the thermal transfer matrix for the chip, andM is a mapping matrix such

that if cluster Cij has a total power xij, the matrix-vector product Mx contributes a

negative power −xij to cluster Ci1. The mapping matrix is shown in (5.7), where the

�rst row and the �rst column of the matrix are labels for the clarity of presentation.
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M =



x12 · · · x1u · · · xn2 · · · xnv

C12 1/a12

...
...

...

C12 1/a12

. . .

C1u 1/a1u

...
...

...

C1u 1/a1u

. . .

Cn2 1/an2

...
...

Cn2 1/an2

...
. . .

...

Cnv 1/anv

...
...

Cnv 1/anv

C11 −1/a11 · · · −1/a11

...
...

. . .
...

C11 −1/a11 · · · −1/a11

...
. . .

Cn1 −1/an1 · · · −1/an1

...
...

. . .
...

Cn1 −1/an1 · · · −1/ab1

0 · · ·
. . . · · · 0



=


E

C

0

(5.7)
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In the mapping matrix (5.7), the rows with the same label (e.g., C1k) account for

the grids in the same cluster. Sub-matrix E contains the rows numbered from C12 to

Cnv. Sub-matrix C contains the rows numbered from C11 to Cn1. The zero matrix

indicates that the power vector x has no impact on the related grids. Therefore,

Mx produces a power map such that each cluster Cij has a total power xij and each

grid in the cluster has a power density xij/aij. For the �rst cluster Ci1 of each bin

Bi, the matrix-vector product Mx contributes a power density of − 1
ai1

∑k
j=2 xik to

each grid contained, and the power constraint (5.5) induces an additional �xed power

density pi/ai1 to the grid. Accordingly, the constant vector c denotes the temperature

distribution incurred by the �xed power densities at the �rst clusters of all the bins

and the �xed cells in the chip.

Let scalar τ denote the target average temperature for the chip and τe denote the

target temperature distribution for the chip, with e being the normalized temperature

distribution. Then the optimal power budget model is given in the least-square form:

(5.8) min
x

∥RMx+ c− τe∥2 .

The objective of the least-square form is to �nd the optimal power vector x such

that the resulting temperature distribution most closely approximates the target

temperature distribution τe. The least-square form (5.8) requires that the optimal

power vector, denoted by x∗, satisfy

(5.9) (RM)T RMx∗ = (RM)T (τe− c) .

If τ is also one parameter to be optimized, the optimal τ , denoted by τ ∗, which

minimizes (5.8), must satisfy

(5.10) τ ∗ =
eT

∥e∥2 (RMx∗ + c) .
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Figure 5.6: Calculating optimal power budget by summation of optimal powers of grids.

The optimal power budget for the bins of the same level can be determined from

the optimal power vector x∗ solved for the parent bins of one level above. As shown

in Fig.5.6, the optimal power vector x∗ determines the power of each grid in the

layout. Therefore, the summation of the powers of all the grids contained by a bin

gives the optimal power budget for the bin.

Because of its high e�ciency, LOTAGre is used to solve the optimal power vector

x∗ from (5.9) and (5.10). In LOTAGre, the thermal transfer matrix R is given by

(5.11) R = D−1GD

where D is the DCT matrix, D−1 is the IDCT matrix, and G is a diagonal matrix

of the Green's function values. The DCT matrix has the property that D−1 = DT ,

which can be veri�ed by the MATLAB formulas [1]: the DCT coe�cient, denoted

as Bpq, is given by

Bpq =
M−1∑
m=0

N−1∑
n=0

αpαqAmn cos
π (2m+ 1) p

2M
cos

π (2n+ 1) q

2N

and the IDCT coe�cient, denoted as Amn, is given by

Amn =
M−1∑
p=0

N−1∑
q=0

αpαqBpq cos
π (2m+ 1) p

2M
cos

π (2n+ 1) q

2N
.
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Then apply the thermal transfer matrix (5.11) to reformulate (5.9) and (5.10) to

MTD−1G2DMx∗ = (RM)T (τ ∗e− c)

τ ∗ =
eT

∥e∥2 (RMx∗ + c) .(5.12)

Generally, a constant temperature is the desired target temperature distribution for

the chip because it does not produce hot spots. Therefore, e is assumed to be a

vector of ones, and then the right-hand sides of (5.12) can be simpli�ed to

(RM)T c = MTD−1GDD−1GDp = MTD−1G2Dp

(RM)T e = MTD−1GDe = 0(5.13)

where p is the vector of �xed powers.

5.2.2 Top-Level Thermal Optimizer

The optimal power vector x∗ can be solved from (5.12) by an iterative linear solver.

At the top few levels of the partition tree, the numbers of the bins of the same level

are relatively small, and for these levels, a top-level thermal optimizer solves x∗ from

(5.12). The top-level thermal optimizer uses a clustering mechanism that requires

each cluster in a bin to contain only a single grid. The clustering mechanism leads

to the highest resolution because the power of each grid in the same bin can di�er

from those of the other grids. In contrast, if a cluster contains more than one grid,

all the grids in the cluster must have the same power, i.e., the average power of the

cluster. Moreover, the top-level thermal optimizer requires the bins of the same level

to form a partition of the entire chip layout. This requirement is often satis�ed for

about the top 10 levels of the partition tree. Using the high-resolution clustering

mechanism, the top-level thermal optimizer reduces the mapping matrix M to the
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following form:

M =



x12 · · · x1u · · · xn2 · · · xnv

C12 1

...
. . .

C1u 1

...
. . .

...

Cn2 1

...
. . .

Cnv 1

C11 −1 · · · −1

... · · ·

Cn1 −1 · · · −1



=

 I

C

(5.14)

where I is the identity matrix. Directly solving x∗ from (5.12) with an iterative

linear solver is computationally expensive because the optimal power vector x∗ may

contain close to one million or even millions of unknowns. Therefore, the top-level

thermal optimizer solves x∗ from (5.12) in an alternative way.

De�ne a vector y such that

(5.15) y =

 yu

yl

 = D−1G2DMx∗

where yl is an n× 1 vector, called the guess vector. From (5.12), (5.13) and (5.14),

MTy = yu + CTyl = − (RM)T c.

Hence, the vector yu can be represented in terms of the guess vector yl:

(5.16) yu = − (RM)T c− CTyl.
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From (5.15) and (5.14),

Mx∗ = D−1G−2Dy

and

(5.17)

 I

C

x∗ = D−1G−2Dy =

 zu

zl


where zl is a newly de�ned n× 1 vector.

From (5.17), an n× 1 residue vector r is de�ned such that

(5.18) r = Czu − zl

i.e., r is the residue for (5.17) incurred by the guess vector yl. The goal is to �nd

the right guess vector yl such that the residue r computed based on (5.15), (5.17)

and (5.18) is zero. Clearly, at this stage an iterative linear solver can be employed

to �nd the right guess vector yl and then derive the optimal power vector x∗.

The residue vector r is linearly related to the guess vector yl:

r = Ayl − b

where A is a matrix and b is a constant vector. Apparently, the vector b can be

obtained by negating the residue vector r for a zero guess vector yl: b = Ayl|yl=0−r =

−r. The matrix-vector product Ayl for a given guess vector yl can be obtained from

Ayl = r + b.

Note that the residue r can always be computed from (5.16), (5.17) and (5.18). With

the known vector b and the procedure to obtain the matrix-vector product Ayl, the

generalized minimal residue (GMRES) method is utilized to solve the implicit linear

equation

(5.19) Ayl = b.
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1. Assign a zero vector to yl and compute the residue r.
Then let the right hand side vector b of linear

equations (5.19) be

b = −r.

2. Apply the GMRES method to solve (5.19), where the

matrix-vector product Ayl for a given guess vector

yl is computed below:

2a. Compute

yu = −MT D−1G2Dp − CT yl

2b. Apply LOTAGre to compute the vector z:

z =
[

zu

zl

]
= D−1G−2Dy

2c. Compute the residue vector r by

r = Czu − zl

2d. Compute the matrix-vector product Ayl by

Ayl = r + b

3. The optimal power vector x∗ is substituted by the zu

vector at the last iteration of the GMRES method.

Figure 5.7: Top-level thermal optimizer for computing optimal power budget.

Once the GMRES method solves the guess vector yl from (5.19), the optimal power

vector x∗ can be substituted by the vector zu . The above steps to solve (5.12)

constitute the top-level thermal optimizer, which is shown in Fig.5.7. Note that the

number of unknowns to be solved by the GMRES method equals the number of bins,

i.e., n, which is in the order of hundreds to thousands.

5.2.3 Front-Level Thermal Optimizer

As the recursive bin-splitting procedure continues, the height of the partition tree

increases and the partition tree may become incomplete � some bins at the same

level of the partition tree have no child bins. The underlying reason is that some

bins are su�ciently small so that an end-case placer can directly handle the bins

without further splitting. Although the top-level thermal optimizer uses a clustering
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mechanism that provides the highest resolution, the optimizer requires the bins of

the same level to form a partition of the entire chip layout. When the partition tree

starts to become incomplete, the bins at the lowest level (also called the front level)

no longer form a partition of the layout. Therefore, this case is particularly handled

by a front-level thermal optimizer that directly solves the optimal power vector x∗

from (5.12). Like the top-level thermal optimizer, the front-level thermal optimizer

starts with a guess vector, which is actually x∗, and iteratively improves the accuracy

of x∗, however, by the conjugate gradient (CG) method.

Unlike the top-level thermal optimizer, which solves a linear system of size equal

to the number of bins, the front-level thermal optimizer solves a linear system of size

equal to the number of clusters. In order to improve the e�ciency of the CG method,

the front-level thermal optimizer reduces the number of clusters for the bins at the

lowest level. Unlike the top-lever thermal optimizer, the front-level thermal optimizer

deals with small bins that may contain only several grids. Furthermore, the cut-line

to divide a bin is normally very close to the center of the bin. Hence, the front-level

thermal optimizer constructs at most nine clusters for a bin by the intersection of at

most four straight lines, as illustrated in Fig.5.8. In the �gure, because the bin spans

an odd number of grids horizontally, it is divided by two vertical lines separated by

one grid. Similarly, because the bin spans an even number of grids vertically, it is

evenly divided by a single horizontal line. As a result, a total of six clusters are

constructed for the shown bin. By using this clustering mechanism, the front-level

thermal optimizer solves a linear system that has a number of unknowns at most

nine times the number of bins. Fig.5.9 shows the front-level thermal optimizer.
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Figure 5.8: Clustering mechanism in front-level thermal optimizer.

1. Construct the clusters for each bin;

2. Compute MT D−1G2Dp as the right hand side vector;

3. Solve (5.12) by the conjugate gradient method, with x∗

as the unknown vector. The matrix-vector product is

computed by

MT D−1G2DMx∗.

Figure 5.9: Front-level thermal optimizer for computing optimal power budget.

5.2.4 Computation in Top-Level and Front-Level Thermal Optimizers

The top-level thermal optimizer applies the GMRES method to solve the for-

mulated linear equations, while the front-level thermal optimizer applies the CG

method. Both the GMRES method and the CG method are well-known iterative

methods [34, 55]. To solve a linear system Ax = b, an iterative method starts from

an initial solution x(0) and then iteratively improves the solution until reaching an

acceptable accuracy. Denote the exact solution of the linear system by x∗, the error

at the i-th iteration by e(i), where e(i) = x(i) − x∗, and the residue by r(i), where

r(i) = Ae(i).
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Generalized Minimal Residue Method

The GMRES method seeks from the Krylov subspace Ki
(
A, r(0)

)
an approximate

solution x to x∗ that minimizes the residue norm [55]:

min
x

∥∥r(0) − Ax
∥∥

2
, x ∈ Ki

(
A, r(0)

)
where Ki

(
A, r(0)

)
≡ span

(
r(0), Ar(0), A2r(0), · · · , A(i−1)r(0)

)
. The method applies

the Arnoldi process to construct the basis of Ki
(
A, r(0)

)
, denoted by V (i):

AV (i) = V (i+1)H(i)

where H(i) is an (n+ 1) × n matrix. H(i) consists of an upper Hessenberg matrix

and an additional row vector which has only the last element being non-zero.

Let x = V y. Then the following identify holds:

(5.20)
∥∥r(0) − Ax

∥∥
2

=
∥∥e1||r(0)|| −H(i)y

∥∥
2
.

Hence, the x vector that minimizes the residue norm can be computed from the

related y vector. Since H(i) is almost triangular, the Givens rotation can be applied

to obtain the optimal y vector e�ciently to minimize
∥∥e1||r(0)|| −H(i)y

∥∥
2
.

To apply the GMRES method in the top-level thermal optimizer, the matrix-

vector product Aw, where w denotes any column vector of V (i), can be computed by

the procedure described in the previous section.

Conjugate Gradient Method

The CG method seeks an approximate solution x to x∗ along a set of A-orthogonal

directions d(0), d(1), · · · d(i), where

(
d(i)
)T
Ad(j) = 0, for i ̸= j.
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The CG method ensures that any direction d(i) is searched only once and never

searched again [34]. Hence, in the CG method, the residue at the i-th iteration is

orthogonal to all the previous search directions:

r(i)d(j) = 0, for j < i.

Using a procedure similar to the Gram-Schmidt process, the CG method constructs

the A-orthogonal search directions from the residue vectors r(0), r(1), · · · r(i). If the

initial error is represented in terms of the search directions by

e(0) =
i∑

j=0

δjd
(j)

the step size of the CG method, α(j), given by

α(j) =

(
d(j)
)T
Ae(j)

(d(j))
T
Ad(j)

= −δj

guarantees that the method eliminates one component of the initial error at each

iteration.

Compared to the GMRES method, the CG method is only applicable to a Hermi-

tian matrix. Because of the high e�ciency, the front-level thermal optimizer adopts

the CG method to solve the formed symmetric linear system.

Matrix Computation in Top-Level and Front-Level Thermal Optimizers

The previous sections brie�y describe the matrix computations in the top-level

and front-level thermal optimizers to solve the formulated linear equations. This

section presents the details.

First, consider the top-level thermal optimizer. To compute the MTD−1G2Dp

in Fig.5.7, LOTAGre is employed to compute D−1G2Dp, which is the temperature

distribution caused by a �xed power vector p under the matrix of Green's function
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1. Compute the 2-D DCT of the matrix of fixed powers p;
2. Multiply the result with G2;

3. Compute the 2-D IDCT of the result at step 2;
4. Let the temperature result at step 3 be denoted by T̃;
5. Compute MT T̃:

for each bin do

compute the average temperature of the first

cluster using T̃;
for each cluster other than the first cluster do

compute its average temperature using T̃;
compute the difference from the average

temperature of the first cluster; The result

is an entry of MT T̃;
end for;

end for.

Figure 5.10: Procedure to compute MT D−1G2Dp.

1. Compute the 2-D DCT of the matrix formed by y;
2. Multiply the result with G2 and ;

3. compute the 2-D IDCT of the result at step 2;

3. Let the result at step 3 be denoted by Z:

for each bin do

compute the summation of the elements in Z that

represent the clusters inside this bin;

Negate the result to form an entry of r;
end for.

Figure 5.11: Procedure to compute r = Czu − zl.

values G2. Designate T̃ the temperature distribution computed: T̃ = D−1G2Dp.

Then each element of the vector MT T̃ represents the average temperature di�erence

between the �rst cluster and one of the other clusters in the same bin. Fig.5.10 shows

the procedure to compute MTD−1G2Dp.

With the vector −MT T̃ computed, the vector yu = −MTD−1G2Dp − CTyl can

be computed as follows: each element in yl is assigned to the entry of −MT T̃ that

is for the �rst cluster of the related bin. Then each element of the vector yu can be

obtained by adding the entries in −MT T̃ that are for the related bin. To compute

r = Czu − zl, where z = D−1G2Dy, Fig.5.11 shows the procedure.

Fig.5.10 and Fig.5.11 show that the O (n lg n) DCT and IDCT procedures dom-
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1. Let Mx∗ be denoted by x′;

2. for each bin do

initialize all entries of x′ for this bin to 0.
for each cluster other than the first cluster do

assign the first entry of x∗ that represents

the cluster to the first entry of x′;

subtract the same value from the first entry

of x′ that represents the first cluster;

end for;

for each cluster do

compute the average value of x′ for this cluster;

assign the average value to every entry of x′

for this cluster;

end for;

end for.

Figure 5.12: Compute Mx∗.

inate the run-time of one GMRES iteration. Here n denotes the number of grids

for discretizing the layout. Note that although the GMRES method performs the

Arnoldi process and solves a triangular system at the last iteration, these steps are

inexpensive because the number of unknowns equals the number of bins, which is

orders of magnitude smaller than the number of grids. However, the total number of

GMRES iterations determines the overall time complexity of the top-level thermal

optimizer.

Consider the front-level thermal optimization. To compute the MTD−1G2DMx∗

in Fig.5.9, follow the steps shown in Fig.5.10. First Mx∗ is computed, and denote

the result by x′. Then follow the steps in Fig.5.10 to compute MTD−1G2Dx′. In

fact, Mx∗ represents a power density distribution as the guess vector x∗ is a vector

of powers. The detailed procedure is shown in Fig.5.12.

Compared to the top-level thermal optimizer, the front-level thermal optimizer

solves a larger linear system of size equal to the number of clusters. However, each

iteration of the CG method employed requires fewer vector multiplications. As a

result, the O (n lg n) DCT and IDCT procedures still dominate the run-time of the
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front-level thermal optimizer in each iteration.

5.3 Application of Thermal Optimization in Capo

The partition tree is implicitly constructed level by level in the partition-driven

approach. For the bins at the same level of the tree, the optimal power budget

represents a power density map and can be solved by the top-level or front-level

thermal optimizer. To optimize thermal during partitioning a bin, one method is

from the optimal power budget to determine a power threshold for each child bin.

Then the partition algorithm is modi�ed not to move a cell to a child bin if the move

causes the total power of the bin to exceed the power threshold. This is similar to

the approach in [20]. An alternative method is to add to the partition objective, i.e.,

the placement cost, a penalty cost that measures the amount of power of the child

bin that deviates from the optimal power budget. The latter method must trade

o� between the traditional placement cost, such as the HPWL, and the total power

deviation of the child bin from the optimal power budget.

Assume that the FM algorithm is used in partitioning. Imposing power thresholds

to optimize thermal is similar to the approach in [20]. When the FM algorithm

moves a cell to a target bin, the move must neither incur cell overlaps or cause the

total power of the target bin to exceed the power threshold. Furthermore, the cell

moved must have the maximum gain among all the cells that satisfy the previous

two conditions. On the other hand, to augment the placement cost for thermal

optimization, the traditional placement cost needs to be slightly changed. If thermal

optimization is not considered, the placement cost is actually the cut-set cost. When

thermal optimization is considered, the placement cost is changed to the product of

the cut-set cost and a penalty cost that accounts for the total power deviation of each
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child bin from its optimal power budget. Then in each pass of the FM algorithm,

after one cell is moved, the placement cost is recalculated, and the initial moves that

lead to the minimum placement cost in the pass are made permanent.

5.3.1 Optimal Power Budget in FM Based Algorithms

In partitioning bins, the Capo placement tool uses the FM algorithm and the

multilevel FM (MLFM) algorithm, which is an extension to the FM algorithm.

When a hyper-graph is to be partitioned by theMLFM algorithm, �rst tightly con-

nected nodes are grouped into clusters. Then a reduced hyper-graph is constructed

by representing the clusters as nodes and retaining the node connectivity in the orig-

inal graph. Next, perform the FM algorithm to partition the reduced hyper-graph,

and convert the partition result into an initial partition for the original graph. From

the initial partition, execute the FM algorithm again to obtain a �nal partition for

the original graph. Because the MLFM algorithm essentially employs the FM al-

gorithm for partitioning, there hardly exist any di�erences in augmenting the FM

algorithm and the MLFM algorithm for thermal optimization.

The procedure to modify the placement cost for thermal optimization is detailed

here. Given a placement, denote the cut-set cost by δ, the optimal power budget and

the total power of the �rst bin by P opt
1 and P1, respectively, and the optimal power

budget and the total power of the second bin by P opt
2 and P2, respectively. Let the

placement cost when thermal optimization is considered be denoted by δ′. Then δ′

is given by the product of δ and a penalty cost p (δ′′) that measures the total power

deviation of each bin from its optimal power budget:

δ′ = δ · p (δ′′)
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where

p (δ′′) =


(1 + δ′′ −min_power_deviation)α , δ′′ > min_power_deviation

β, otherwise

δ′′ =



1 − P2/P
opt
2 , P opt

1 ≤ 0

1 − P1/P
opt
1 , P opt

2 ≤ 0

max
(
abs(1 − P2/P

opt
2 ), abs

(
1 − P1/P

opt
1

))
, otherwise.

The above formula for δ′′ is explained below. The percentage of power deviation

from the optimal power budget (called the percentage of power deviation) for the �rst

bin and that for the second bin are given by abs
(
1 − P1/P

opt
1

)
and abs

(
1 − P2/P

opt
2

)
,

respectively. If the optimal power budget for the �rst bin is non-positive, then δ′′

chooses the percentage of the power deviation of the second bin as its value. Similarly,

if the optimal power budget for the second bin is non-positive, then δ′′ chooses the

percentage of the power deviation of the �rst bin as its value. Using this strategy

avoids negative values for δ′′ and e�ectively integrates into the placement cost the

total power deviation of each placement bin from its optimal power budget. If both

the optimal power budget values are positive, then δ′′ chooses the maximum of the

two percentages of power deviation as the value. The penalty cost p (δ′′) is de�ned

such that if δ′′ is large than min_power_deviation, p (δ′′) incurs a large penalty cost

(1 + δ′′ −min_power_deviation)α, compared to the penalty cost β otherwise.

5.3.2 Optimal Power Budget in Branch and Bound Algorithm

Besides the FM and MLFM algorithms, the Capo placement tool also includes

a branch and bound partition algorithm to handle the end-case cell placements [15].

To place n cells in two bins, the branch and bound algorithm performs a depth-�rst
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traverse of a binary tree with n levels. In the binary tree, each node represents a

cell, each branch under the node indicates a partition decision for the cell, and the

path from the root to the node indicates a partial placement of all the nodes on the

path. When visiting a node, the algorithm �rst estimates a lower bound for the cost

of the partial placement of all the parent nodes (namely the bounding step). If the

lower bound is larger than the cost of a complete placement previously generated

by the algorithm, the sub-tree under the visited node will not be traversed (namely

the pruning step). Otherwise, the algorithm diverges into two partition decisions for

the visited node (namely the branching step), when deciding to assign the node to

either the �rst bin or the second. The traverse process is recursive and continues

until all the branches in the binary tree have been either visited or pruned. Because

the search space can be extremely large, the traverse process may stop earlier if it

has visited a prede�ned number of nodes.

Given a partial placement of cells, a lower bound for the placement cost can be

straightforwardly given if thermal optimization is not considered. For instance, the

Capo tool uses the cut-set cost of the partial placement as the lower bound. The cut-

set cost must be a valid lower bound because the cut-set cost can only be increased,

and any complete placement after the partial placement will only introduce more nets

to the cut-set. Denote the lower bound when thermal optimization is not considered

by B:

B =
∑
ϵ∈CΠ

cϵ

i.e., the lower bound B is the summation of the cost of edges in the cut-set for the

partial partition Π. When thermal optimization is considered, a lower bound for the

cost of the partial placement can be given by the product of B and a lower bound

for the percentages of power deviation. After the partial placement of cells, the total
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power of the �rst bin becomes P1 and that of the second bin becomes P2. Denote

the lower bound when thermal optimization is considered by B′. Then B′ is given

by the product of B and the penalty cost p (B′′), where B′′ gives a lower bound for

the percentages of power deviation:

B′ = B · p (B′′)

where

B′′ =



(
P1 − P opt

1

)
/P opt

2 , P opt
1 ≤ 0(

P2 − P opt
2

)
/P opt

1 , P opt
2 ≤ 0

B′′′, otherwise

B′′′ =



max
(

P1−P opt
1

P opt
1

,
P1−P opt

1

P opt
2

)
, P1 > P opt

1

max
(

P2−P opt
2

P opt
1

,
P2−P opt

2

P opt
2

)
, P2 > P opt

2

min_power_deviation, otherwise.

The above formulas are explained below. When P opt
1 , the optimal power budget

for the �rst bin, is non-positive,
(
P1 − P opt

1

)
/P opt

2 must be a lower bound for the

percentages of power deviation because at least an amount of power P1 − P opt
1 will

never be allocated to the second bin. Similarly, if the optimal power budget for the

second bin, P opt
2 , is non-positive,

(
P2 − P opt

2

)
/P opt

1 must be a lower bound for the

percentages of power deviation. When both the optimal power budget values are

positive, if neither bin has over�lled the optimal power budget, the lower bound for

the percentages of power deviation cannot be estimated. The reason is that any

estimation within (0, 1) may be invalidated by constructing a partition such that the

optimal power budget for every bin is satis�ed. In this case, the prede�ned value

min_power_deviation is used as a lower bound. However, if either of the bin has
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over�lled the optimal power budget, the amount of power over�ll can be used to

derive a lower bound.

Assume that the �rst bin has over�lled the optimal power budget, i.e., P1 > P opt
1 .

Then the percentage of power deviation for the �rst bin is at least
(
P1 − P opt

1

)
/P opt

1 ,

i.e., the amount of power over�lling the �rst bin divided by the optimal power

budget. Furthermore, the percentage of power deviation for the second bin is at

least
(
P1 − P opt

1

)
/P opt

2 , i.e., the amount of power under-�lling the second bin di-

vided by the optimal power budget. Obviously, the maximum of the two values,

max
((
P1 − P opt

1

)
/P opt

1 ,
(
P1 − P opt

1

)
/P opt

2

)
, is a lower bound for the two percentages

of power deviation. Similarly, if the second bin has over�lled the optimal power

budget, max
((
P2 − P opt

2

)
/P opt

1 ,
(
P2 − P opt

2

)
/P opt

2

)
must be a valid lower bound.

5.4 Experimental Results

The optimal power budget model was incorporated into version 45 of the Capo

placement tool to optimize thermal. The top-level and front-level thermal optimiz-

ers adopt the implementation of the GMRES and CG methods from the iterative

methods library (IML++) [2]. The experiments were based on the IBM-PLACE

2.0 benchmark suites [3]. The die sizes of the benchmark circuits were �xed to

2cm × 2cm. The other thermal parameters were the same as those for the example

chip in Fig.3.4: the chip consisted of three layers, h̄ = 8675 W/(m2·K), h
	

= 1387

W/(m2·K), k1 = 98.4 W/m·K, k2 = 16.2 W/m·K, and k3 = 261.5 W/m·K. The pow-

ers of the cells in each benchmark circuit were generated using a uniform distribution,

with a maximal cell power and a total power set for the chip.

First, the parameters α, β and min_power_deviation were set to 2, 1e− 3, and

5%. These parameter values implied that in the partition procedure by the FM
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algorithm, if δ′′, which re�ected the percentages of power deviations for the two bins,

was no more than 5%, the penalty cost was only 1e − 3; however, if δ′′ was larger

than 5%, the penalty cost was (δ′′ −min_power_deviation+ 1)2, which was at least

1000 times the value 1e− 3. Therefore, a placement that had δ′′ larger than 5% was

highly unlikely to be selected as the �nal placement, compared to another placement

that had δ′′ no more than 5%. However, when the placements considered all had

δ′′ larger than 5%, the chance for a placement to be selected as the �nal placement

highly depended on the cut-set cost or the total HPWL.

Fig.5.13 shows the temperature distribution results for the IBM01 circuit. The

total power of the chip was 140 W and the maximal cell power was 0.05 W. The

�rst placement for the circuit was produced by Capo without thermal optimization.

Thermal simulation showed that the temperatures in the placement were within

[12.9131◦C, 42.2375◦C]. The total HPWL of the placement was 5.11015e7. Then the

second placement was produced for the circuit by Capo with thermal optimization.

The temperatures in the second placement were within [33.7226◦C, 38.5310◦C]. In

comparison, the temperature spread of the �rst placement was 551% larger than

that of the second placement. The total HPWL of the second placement increased

by 5.1% to 5.37073e7. The average temperatures of the two placements were both

36.0927◦C. However, the temperature standard deviation of the �rst placement was

7.13684◦C, which was 767% larger than that of the second placement, 0.8229◦C.

With thermal optimization, the run-time of Capo increased by 6.25% from 80 s to

85 s (the Capo tool was run on a Debian Linux machine con�gured with an Intel

Dual Core 2.4GHz CPU). Fig.5.14(a) shows the temperature histograms for the two

placements. Clearly, the temperature spread was signi�cantly reduced in the second

placement because of thermal optimization by Capo.
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(a) Temperature distribution of the �rst placement without thermal optimization.
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(b) Temperature distribution of the second placement with thermal optimization.

Figure 5.13:
Temperature distribution results for IBM01 circuit with and without thermal opti-
mization: α = 2,min_power_deviation = 5%.
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Table 5.1 summarizes the experimental results for the entire benchmark circuits.

In the table, δTrange = Tmax−Tmin

T opt
max−T opt

min

− 1, where T opt
max and T opt

min are the maximal and

minimal temperatures in the placement generated by Capo with thermal optimiza-

tion. δTrange measures the reduction of temperature spread in the placement with

thermal optimization. The rate of the HPWL increase is denoted by δW = W opt

W
− 1,

where W opt denotes the HPWL for the placement with thermal optimization. Table

5.2 shows the temperature statistics for the placements. In summary, for the place-

ments with thermal optimization, the average increase of the HPWL was 5.14%, the

average reduction of the temperature spread was 288%, and the average reduction of

the temperature standard deviation was 326%. The average increase of the run-time

because of thermal optimization was 17.53%, which was 10-20 times smaller than

the run-time results reported in [20]. Experiments demonstrated that using the op-

timal power budget model signi�cantly reduced the temperature spreads and evenly

distributed the temperatures in the chip. Results also showed that LOTAGre was

very fast for thermal optimization purposes, compared to the other thermal analysis

methods.

Then the α parameter was changed to α = 3, while the other parameter values

were retained. Table 5.3 and Table 5.4 show the results. As expected, because of the

increased penalty cost for the percentages of power deviations, the average reduction

of the temperature standard deviation increased from 326% to 412%. However,

unexpectedly, the average increase of the HPWL was slightly reduced from 5.14%

to 5.08%. The slight reduction may be explained by the randomness inherent in the

Capo placement tool.

Next, themin_power_deviation parameter was increased to 10%, while the other

parameters values were retained: α = 2, β = 0.001. Because the penalty cost for the
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Circuit Tmin Tmax δTrange W δW t δt
Tmax − Tmin (×1e8) (s)

IBM01 12.9131 42.2375 0.5110 80
33.7226 38.5310 510% 0.5371 5.10% 85 6.25%

IBM02 26.1408 38.6625 1.4499 179
32.5521 37.9126 134% 1.5106 4.19% 193 7.82%

IBM07 61.2283 95.2807 3.4109 428
79.1161 93.5680 136% 3.5590 4.34% 551 28.74%

IBM08 30.6825 70.1595 3.5244 465
56.8059 65.7273 343% 3.7082 5.22% 551 18.50%

IBM09 27.3360 51.0066 3.0331 458
43.7113 49.2200 330% 3.2144 5.98% 573 25.11%

IBM10 48.2706 86.2589 5.9315 756
73.3701 81.7177 355% 6.1607 3.86% 890 17.73%

IBM11 64.0321 96.9821 4.4554 687
79.5660 95.2184 111% 4.6820 5.09% 798 16.16%

IBM12 37.0579 102.7010 7.7678 869
83.4075 96.8102 390% 8.3363 7.32% 1042 19.91%

Average 288% 5.14% 17.53%

Table 5.1:
Thermal optimization results for IBM-PLACE 2.0 benchmark circuits: α = 2,
min_power_deviation = 5%.

Circuit Tavg T opt
avg σ σopt δσ

IBM01 36.0927 36.0927 7.1368 0.8229 767%
IBM02 36.0994 36.0998 1.8187 1.8187 95%
IBM07 87.7027 87.7042 6.5670 2.9188 125%
IBM08 61.9048 61.9049 5.5929 1.4061 298%
IBM09 47.1092 47.1092 3.6620 0.9563 283%
IBM10 77.3945 77.3973 7.2137 1.4613 394%
IBM11 90.2907 90.2902 7.1385 2.8893 147%
IBM12 90.2931 90.2917 12.8482 2.1340 502%

Average 326%

Table 5.2:
Temperature statistics for the placements with and without thermal optimization:α = 2,
min_power_deviation = 5%.
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(a) Temperature histograms for IBM01 circuit.
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(b) Temperature histograms for IBM02 circuit.

Figure 5.14:
Temperature histograms for IBM01 and IBM02 circuits with and without thermal
optimization: α = 2,min_power_deviation = 5%. Upper diagram for the place-
ment without thermal optimization and lower diagram for the placement with thermal
optimization.
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(a) Temperature histograms for IBM07 circuit.

20 30 40 50 60 70 80
0

2

4

6

8
x 10

4

G
rid

#

20 30 40 50 60 70 80
0

5

10

15
x 10

4

Temperature

G
rid

#

(b) Temperature histograms for IBM08 circuit.

Figure 5.15: Temperature histograms for IBM07 and IBM08 circuits with and without thermal
optimization: α = 2,min_power_deviation = 5%. Upper diagram for the place-
ment without thermal optimization and lower diagram for the placement with thermal
optimization.
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(a) Temperature histograms for IBM09 circuit.
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(b) Temperature histograms for IBM10 circuit.

Figure 5.16: Temperature histograms for IBM09 and IBM10 circuits with and without thermal
optimization: α = 2,min_power_deviation = 5%. Upper diagram for the place-
ment without thermal optimization and lower diagram for the placement with thermal
optimization.
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(a) Temperature histograms for IBM11 circuit.
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(b) Temperature histograms for IBM12 circuit.

Figure 5.17:
Temperature histograms for IBM11 and IBM12 circuits with and without thermal
optimization: α = 2,min_power_deviation = 5%. Upper diagram for the place-
ment without thermal optimization and lower diagram for the placement with thermal
optimization.
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Circuit Tmin Tmax δTrange W δW t δt
Tmax − Tmin (×1e8) (s)

IBM01 12.9131 42.2375 0.5110 80
33.2534 37.9748 521% 0.5386 5.40% 90 12.50%

IBM02 26.1408 38.6625 1.4499 179
32.5877 37.9544 133% 1.5132 4.36% 197 10.6%

IBM07 61.2283 95.2807 3.4109 428
80.5412 92.0629 196% 3.5641 4.49% 566 32.24%

IBM08 30.6825 70.1595 3.5244 465
57.9678 64.8735 472% 3.7634 6.78% 557 19.79%

IBM09 27.3360 51.0066 3.0331 458
43.2227 48.8663 319% 3.1881 5.11% 591 29.04%

IBM10 48.2706 86.2589 5.9315 756
73.0699 81.0288 377% 5.9923 1.02% 933 23.41%

IBM11 64.0321 96.9821 4.4554 687
83.3869 93.4120 229% 4.7894 7.50% 842 22.56%

IBM12 37.0579 102.7010 7.7678 869
83.403 95.4998 443% 8.2312 5.97% 1065 22.56%

Average 336% 5.08% 21.52%

Table 5.3:
Thermal optimization results for IBM-PLACE 2.0 benchmark circuits: α = 3,
min_power_deviation = 5%.

Circuit Tavg T opt
avg σ σopt δσ

IBM01 36.0927 36.0927 7.1368 0.6724 961%
IBM02 36.0994 36.1005 1.8187 0.9628 89%
IBM07 87.7027 87.7078 6.5670 2.0105 227%
IBM08 61.9048 61.9060 5.5929 1.0999 408%
IBM09 47.1092 47.1092 3.6620 0.9112 302%
IBM10 77.3945 77.3916 7.2137 1.4200 408%
IBM11 90.2907 90.2914 7.1385 1.3857 415%
IBM12 90.2931 90.2918 12.8482 2.1948 485%

Avg 412%

Table 5.4:
Temperature statistics for the placements with and without thermal optimization: α = 3,
min_power_deviation = 5%.
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Circuit Tmin Tmax δTrange W δW t δt
Tmax − Tmin (×1e8) (s)

IBM01 12.9131 42.2375 0.5110 80
30.1853 39.580 212% 0.5365 4.99% 89 11.25%

IBM02 26.1408 38.6625 1.4499 179
29.4837 38.7822 35% 1.4997 3.43% 194 8.38%

IBM07 61.2283 95.2807 3.4109 428
73.3678 94.5063 61% 3.5137 3.01% 500 16.82%

IBM08 30.6825 70.1595 3.5244 465
56.2841 65.3251 337% 3.7106 5.28% 528 13.55%

IBM09 27.3360 51.0066 3.0331 458
42.0756 50.6158 177% 3.2202 6.17% 541 18.12%

IBM10 48.2706 86.2589 5.9315 756
64.4119 84.5991 88% 6.1433 3.57% 865 14.42%

IBM11 64.0321 96.9821 4.4554 687
72.9936 96.6296 39% 4.6399 4.14% 780 13.54%

IBM12 37.0579 102.7010 7.7678 869
75.6084 98.6316 185% 8.4000 8.14% 1071 23.25%

Average 142% 4.84% 14.92%

Table 5.5:
Thermal optimization results for IBM-PLACE 2.0 benchmark circuits: α = 2,
min_power_deviation = 10%.

percentages of power deviations were reduced after the min_power_deviation pa-

rameter, it was predicted that the temperature distributions of the placements wors-

ened and the HPWLs improved. The results are shown in Table 5.7 and Table 5.8.

Consistent with the prediction, the average reduction of the temperature spread de-

creased from 288% to 142%, the average reduction of the temperature standard devi-

ation decreased from 326% to 114%, and the average increase of the HPWL decreased

from 5.14% to 4.84%, compared to the case that α = 2,min_power_deviation =

5%.

The parameter values were set to α = 3,min_power_deviation = 10% in the

�nal set of experiments. Table 5.7 and Table 5.8 show the results. Compared to

the case that α = 2,min_power_deviation = 10%, the average reduction of the

temperature standard deviation and the average increase of the HPWL increased as

expected. The slight decrease in the average reduction of the temperature spread

may still be explained by the randomness inherent in the Capo placement tool.
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Circuit Tavg T opt
avg σ σopt δσ

IBM01 36.0927 36.0927 7.1368 2.1921 226%
IBM02 36.0994 36.1022 1.8187 1.7201 6%
IBM07 87.7027 87.7057 6.5670 4.8125 36%
IBM08 61.9048 61.9054 5.5929 1.7888 213%
IBM09 47.1092 47.1092 3.6620 1.5838 131%
IBM10 77.3945 77.3929 7.2137 4.1254 75%
IBM11 90.2907 90.2904 7.1385 4.8059 49%
IBM12 90.2931 90.2908 12.8482 4.6153 178%

Average 114%

Table 5.6:
Temperature statistics for the placements with and without thermal optimization: α = 2,
min_power_deviation = 10%.

Circuit Tmin Tmax δTrange W δW t δt
Tmax − Tmin (×1e8) (s)

IBM01 12.9131 42.2375 0.5110 80
30.1267 40.9214 272% 0.5429 6.25% 91 13.75%

IBM02 26.1408 38.6625 1.4499 179
29.7709 38.8480 38% 1.5290 5.45% 191 6.70%

IBM07 61.2283 95.2807 3.4109 428
71.8602 93.9542 54% 3.5651 4.52% 542 26.64%

IBM08 30.6825 70.1595 3.5244 465
55.5729 65.6557 292% 3.7766 7.16% 545 17.20%

IBM09 27.3360 51.0066 3.0331 458
40.1923 51.2919 113% 3.1465 3.74% 589 28.60%

IBM10 48.2706 86.2589 5.9315 756
66.9832 84.2087 121% 6.0130 1.37% 873 15.48%

IBM11 64.0321 96.9821 4.4554 687
76.2216 95.9343 67% 4.7371 6.32% 781 13.68%

IBM12 37.0579 102.7010 7.7678 869
74.0894 99.7213 156% 8.4618 13.9% 1090 25.43%

Average 139% 6.09% 18.44%

Table 5.7:
Thermal optimization results for IBM-PLACE 2.0 benchmark circuits: α = 3,
min_power_deviation = 10%.

Circuit Tavg T opt
avg σ σopt δσ

IBM01 36.0927 36.0927 7.1368 2.1731 228%
IBM02 36.0994 36.1045 1.8187 1.5983 14%
IBM07 87.7027 87.7062 6.5670 4.9034 34%
IBM08 61.9048 61.9086 5.5929 1.7576 218%
IBM09 47.1092 47.1092 3.6620 1.5194 141%
IBM10 77.3945 77.3998 7.2137 3.6386 98%
IBM11 90.2907 90.2924 7.1385 4.3066 66%
IBM12 90.2931 90.2917 12.8482 5.1360 150%

Avg 119%

Table 5.8:
Temperature statistics for the placements with and without thermal optimization: α = 3,
min_power_deviation = 10%.
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In general, increasing the α parameter will reduce the temperature standard devia-

tion and increase the HPWL. Similarly, relaxing themin_power_deviation parame-

ter will increase the temperature standard deviation and reduce the HPWL. However,

exceptions can occur because of the randomness inherent in the Capo placement tool

or the correlation between the powers of the cells and the HPWL. For example, con-

sider two placements A and B, where the percentage of power deviation of A is 4%

and that of B is 3%. Let α = 2. If the min_power_deviation parameter is set to

5%, selecting either A or B as the �nal placement depends on which placement has

a larger HPWL. However, when the percentage of power deviation of A increases to

8%, it becomes unlikely to select A as the �nal placement. If the power deviation

of B also increases to over 5%, such as 7%, the chance of selecting A as the �nal

placement depends on if the HPWL of B is at least 1.97% (i.e.,
(

1+0.03
1+0.02

)2 − 1) larger

than that of A. One step further, let min_power_deviation increase to 6%. It is ex-

pected that the �nal placement will have a smaller HPWL and a larger temperature

standard deviation, compared to the case that α = 2,min_power_deviation = 5%.

However, calculations show a contradiction. When min_power_deviation is 6%,

the likelihood of selecting A as the �nal placement depends on if the HPWL of B is

at least 1.99% (i.e.,
(

1+0.02
1+0.01

)2 − 1) larger than that of A. Assume that the HPWL of

B is 1.98% larger than that of A. When min_power_deviation = 5%, A is selected

as the �nal placement. But when min_power_deviation is increased to 6%, B is

selected as the �nal placement. In other words, relaxing the min_power_deviation

parameter causes an increase of the HPWL and a decrease of the power deviation.

This type of counter-intuitive result, together with the randomness inherent in the

Capo placement tool, may complicate the experimental results. In summary, by

slightly trading o� the total HPWL, using the optimal power budget model in the
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Capo placement tool signi�cantly improved the temperature distribution of the chip.



CHAPTER VI

Conclusions and Future Works

The continual scaling of transistors and interconnects exacerbates the thermal

management problems for ULSI chips. Accurate estimation and e�ective optimiza-

tion of the temperature distribution of a ULSI chip become utterly important in

predicting and ensuring the performance and reliability of the chip before actual

fabrication. Motivated by the design challenges, this dissertation aims at a detailed

study of the chip-level thermal issues. In summary, the dissertation contributes

primarily in three areas: chip-level thermal analysis, interconnect thermal modeling,

and thermal optimization in cell placement. First, the dissertation introduces LOTA-

Gre, a high-e�ciency O (n lg n) multilayer Green's function based thermal analysis

method. Next, the dissertation presents a Scha�t-type interconnect temperature dis-

tribution model and an O (n) algorithm to compute the interconnect temperature

distribution from the model. Finally, the dissertation introduces an optimal power

budget model for thermal optimization in the cell placement stage and details the

integration of the model into the widely distributed Capo placement tool.

6.1 Contributions to Thermal Analysis

This dissertation introduces a chip-level thermal analysis method called LOTA-

Gre. Compared to grid-based methods such as the FE and FD methods, LOTAGre

139
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utilizes the multilayer heat conduction Green's function to avoid dispensing large

numbers of grids to chip regions with no heat sources and no monitored tempera-

tures. Using the DCT and IDCT algorithms, LOTAGre achieves O (n lg n) run-time

in thermal analysis. Comparisons have shown that LOTAGre can be orders of magni-

tude faster than a sophisticated computational �uid dynamics tool called FLUENT,

a typical grid-based tool, while providing the same accuracy. Using the multilayer

thermal model, LOTAGre is capable of handling chips consisting of multilayer hetero-

geneous heat conduction materials, with either wire-bonding packaging or �ip-chip

packaging.

This dissertation also discusses the ambient temperature e�ects on temperature

distribution within the chip. Traditional thermal analysis methods have assumed a

uniform ambient temperature surrounding the chip. The assumption may cause large

errors because the temperature gradients at di�erent boundaries of the chip are dis-

similar and the heat �ow from di�erent surfaces of the chip to the outer environment

is unbalanced. Using general 2-D functions to model the ambient temperatures at

the top and bottom surfaces of the chip, this dissertation separates the temperature

distribution of the chip into two parts: (a) homogeneous temperature distribution at-

tributed to ambient temperatures, and (b) inhomogeneous temperature distribution

attributed to the heat sources inside the chip. Both the temperature distributions

are computed by highly e�cient procedures of O (n lg n) complexity in LOTAGre.

In analyzing the inhomogeneous temperature distribution, this dissertation inte-

grates the eigen-expansion technique and the transmission line theory to derive fully

analytical formulas for the multilayer heat conduction Green's function, including the

s-domain version. With the multilayer heat conduction Green's function, the tem-

perature distribution caused by an arbitrarily shaped heat source can be computed,
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and most important, thermal transfer impedance between any two locations can be

given, and compact thermal models can be established for the critical components

in the chip.

This dissertation also analyzes the errors in LOTAGre. One type of error is caused

by truncation of the in�nite series. The dissertation provides a bounding technique to

determine an upper bound for the truncation error. Theoretical and numerical results

show that the truncation error in LOTAGre is insigni�cant. The other type of error

is caused by the sampling of power density distribution in the chip. The dissertation

applies the Fourier analysis technique to obtain a power density sampling criterion

similar to the Nyquist sampling criterion.

6.2 Contributions to Interconnect Thermal Modeling

The Scha�t's model was initially used to model interconnect electromigration.

Recently, the model was used to analyze the temperature distribution within an

interconnect. Based on the Scha�t's model, this dissertation introduces an intercon-

nect temperature distribution model which includes �exible parameters to accurately

model the thermal e�ects of packaging, ambient temperatures, and multiple heat

conduction paths in the chip.

In existing interconnect temperature distribution models, the law of energy con-

servation is used to set up the appropriate di�erential equations. However, existing

models have inadequately addressed the amount of heat dissipated vertically from

the interconnect to the heat sink of the chip, and have neglected the e�ect of the

temperature gradients within the interconnect. In establishing the interconnect tem-

perature distribution model, this dissertation considers the e�ect of the temperature

gradients to avoid overestimating the temperature variations within the interconnect.
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Despite the increased number of parameters in the presented model, this dissertation

gives an e�cient O (n) approach to solve the interconnect temperature distribution.

6.3 Contributions to Thermal Optimization

This dissertation introduces an optimal power budget model for thermal optimiza-

tion in the cell placement stage. The optimal power budget model determines the

optimal allocation of cell powers to di�erent regions of the chip so that the resultant

temperature distribution most closely approximates the target temperature distribu-

tion for the chip. To solve the optimal power budget from the formulated least-square

form, the dissertation employs the GMRES method and the CG method as well as

LOTAGre to construct highly e�cient top-level and front-level thermal optimizers.

The dissertation then presents the procedures to incorporate the optimal power

budget model into the partition-driven Capo placement tool for thermal optimiza-

tion. The Capo placement tool augmented can rely on the top-level and front-level

thermal optimizers to optimize the temperature distribution of the chip in the cell

placement stage. Experiments showed that the placements generated by Capo with

thermal optimization had signi�cantly narrower temperature spreads than the place-

ments without thermal optimization. Results also demonstrated that LOTAGre was

advantageous in thermal optimization because of its superior speed over the grid-

based methods.

6.4 Future Works

In chapter II, this dissertation derives the multilayer heat conduction Green's func-

tion, including the s-domain version. One possible future work is to apply the mul-

tilayer heat conduction Green's function to estimate the thermal transfer impedance

between two interested locations in the chip and establish compact thermal models
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for the thermally critical components in the chip. By studying the thermal transfer

properties of the on-chip components, insights may be gained into the temperature

distribution of the chip to provide better thermal management design.

In chapter IV, this dissertation introduces a new interconnect temperature dis-

tribution model. One future research work is to apply the new model to study a

large set of interconnect con�gurations and build �gures of merit on the temperature

distributions of the interconnect wires to aid the IC physical design processes, e.g.,

global routing, detail routing, and bu�er insertion, in alleviating the ULSI thermal

problems.

In chapter V, this dissertation reviews several cell placement approaches and

details the incorporation of the optimal power budget model into the partition-driven

Capo placement tool. Possible future research directions are: apply the model to

the simulated-annealing-based approach and the force-directed approach; compare

the thermal optimization results by these approaches; and apply the optimal power

budget model for thermal optimization to the earlier �oorplanning stage to further

improve the temperature distribution of ULSI chips.



BIBLIOGRAPHY

144



145

BIBLIOGRAPHY

[1] http://www.mathworks.com/access/helpdesk/help/.

[2] http://math.nist.gov/iml++/.

[3] http://er.cs.ucla.edu/benchmarks/ibm-place2/.

[4] A.H. Ajami, K. Banerjee, and M. Pedram. Modeling and analysis of nonuniform substrate
temperature e�ects on global ulsi interconnects. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., 24(6):849�861, June 2005.

[5] J. Albers. An exact recursion relation solution for the steady-state surface temperature of a
general multilayer structure. IEEE Trans. Compon., Packag., Manuf. Technol. A, 18(1):31�38,
Mar. 1995.

[6] H.B. Bakoglu. Circutis, Interconnects, and Packaging for VLSI. Addison-Wesley publishing
company, 1990.

[7] K. Banerjee, A. Amerasekera, G. Dixit, and Chenming Hu. The e�ect of interconnect scaling
and low-k dielectric on the thermal characteristics of the IC metal. In IEDM Tech. Dig., pages
65�68, Dec. 1996.

[8] K. Banerjee, A. Mehrotra, A. Sangiovanni-Vincentelli, and Chenming Hu. On thermal e�ects
in deep sub-micron VLSI interconnects. In Proc. ACM/IEEE Design Automation Conf., pages
885�891, June 1999.

[9] K. Banerjee, S.J. Souri, P. Kapur, and K.C. Saraswat. 3-D ICs: a novel chip design for im-
proving deep-submicrometer interconnect performance and systems-on-chip integration. Proc.
of IEEE, 89(5):602�633, May 2001.

[10] W. Batty, C.E. Christo�ersen, A.J. Panks, S. David, C.M. Snowden, and M.B. Steer. Elec-
trothermal CAD of power devices and circuits with fully physical time-dependent compact
thermal modeling of complex nonlinear 3-d systems. IEEE Trans. Compon. Packag. Technol.,
24(4):566�590, Dec. 2001.

[11] S. Bilbao and J.O.S.III Smith. Finite di�erence schemes and digital waveguide networks for
the wave equation: stability, passivity, and numerical dispersion. IEEE Trans. Acoust., Speech,
Signal Process., 11(3):255�266, May 2003.

[12] A.A. Bilotti. Static temperature distribution in IC chips with isothermal heat sources. IEEE
Trans. Electron Devices, 21(3):217�226, Mar. 1974.

[13] J.R. Black. Electromigration�a brief survey and some recent results. IEEE Trans. Electron
Devices, 16(4):338�347, Apr. 1969.

[14] J.W. Brown and R.V. Churchill. Fourier Series and Boundary Value Problems. McGraw-Hill,
5th edition, 1993.



146

[15] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Optimal partitioners and end-case placers for
standard-cell layout. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 19(11):1304�
1314, Nov. 2000.

[16] B.H. Calhoun, A. Wang, and A. Chandrakasan. Modeling and sizing for minimum energy
operation in subthreshold circuits. IEEE J. Solid-State Circuits, 40(9):1778�1786, Sept. 2005.

[17] Mario R. Casu, Mariagrazia Graziano, Guido Masera, Gianluca Piccinini, M. M. Prono, and
Maurizio Zamboni. Clock distribution network optimization under self-heating and timing
constraints. In PATMOS, pages 198�208, Sept. 2002.

[18] M.R. Casu, M. Graziano, G. Masera, G. Piccinini, and M. Zamboni. An electromigration and
thermal model of power wires for a priori high-level reliability prediction. IEEE Trans. VLSI
Syst., 12(4):349�358, April 2004.

[19] Danqing Chen, Erhong Li, E. Rosenbaum, and Sung-Mo Kang. Interconnect thermal modeling
for accurate simulation of circuit timing and reliability. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., 19(2):197�205, Feb. 2000.

[20] G. Chen and S. Sapatnekar. Partition-driven standard cell thermal placement. In Proc. Int.
Symp. Physical Design, pages 75�80, Apr. 2003.

[21] Yi-Kan Cheng and Sung-Mo Kang. A temperature-aware simulation environment for reliable
ULSI chip design. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 19(10):1211�
1220, Oct. 2000.

[22] Yi-Kan Cheng, P. Raha, Chin-Chi Teng, E. Rosenbaum, and Sung-Mo Kang. ILLIADS-T: an
electrothermal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI
chips. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 17(8):668�681, Aug. 1998.

[23] Ting-Yen Chiang, K. Banerjee, and K.C. Saraswat. Compact modeling and SPICE-based
simulation for electrothermal analysis of multilevel ULSI interconnects. In Proc. ACM/IEEE
Int. Conf. on Computer-Aided Design, pages 165�172, Nov. 2000.

[24] Tai-Yu Chou and Z.J. Cendes. Capacitance calculation of IC packages using the �nite element
method and planes of symmetry. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
13(9):1159�1166, Sept. 1994.

[25] C.C.N. Chu and D.F. Wong. A matrix synthesis approach to thermal placement. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 17(11):1166�1174, Nov. 1998.

[26] J. Clementi, J. McCreary, T.M. Niu, J. Palomaki, J. Varcoe, and G. Hill. Flip-chip encap-
sulation on ceramic substrates. In Proc. Electronic Components and Technology Conf., pages
175�181, June 1993.

[27] L. Codecasa, D. D'Amore, and P. Ma�ezzoni. An Arnoldi based thermal network reduction
method for electro-thermal analysis. IEEE Trans. Compon., Packag., Manuf. Technol. A,
26(1):186�192, Mar. 2003.

[28] R. Crampagne, M. Ahmadpanah, and J.-L. Guiraud. A simple method for determining the
Green's function for a large class of MIC lines having multilayered dielectric structures. IEEE
Trans. Microw. Theory Tech., 26(2):82�87, Feb. 1978.

[29] A. Csendes, V. Szekely, and M. Rencz. An e�cient thermal simulation tool for ICs, microsys-
tem elements and MCMs: the µS-THERMANAL. Microelectronics Journal, 29(4):241�255,
Apr. 1998.

[30] H. Eisenmann and F.M. Johannes. Generic global placement and �oorplanning. In Proc.
ACM/IEEE Design Automation Conf., pages 269�274, 1998.



147

[31] C.M. Fiduccia and R.M. Mattheyses. A linear-time heuristic for improving network partitions.
In Proc. ACM/IEEE Design Automation Conf., pages 175�181, Jun. 1982.

[32] B. Goplen and S. Sapatnekar. E�cient thermal placement of standard cells in 3d ICs using
a force directed approach. In Proc. ACM/IEEE Int. Conf. on Computer-Aided Design, pages
86�89, 2003.

[33] D. Harmon, J. Gill, and T. Sullivan. Thermal conductance of IC interconnects embedded in
dielectrics. In IEEE International Integrated Reliability Workshop �nal report, pages 1�9, Oct.
1998.

[34] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear
systems. Journal of Res. of Nat. Burean of Stand., 49(6):409�436, Dec. 1952.

[35] Wei Huang, M.R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and S. Velusamy. Com-
pact thermal modeling for temperature-aware design. In Proc. ACM/IEEE Design Automation
Conf., pages 878�883, June 2004.

[36] Sungjun Im and K. Banerjee. Full chip thermal analysis of planar (2-D) and vertically inte-
grated (3-D) high performance ICs. In IEDM Tech. Dig., pages 727�730, Dec. 2000.

[37] J.A.Roy and I.L.Markov. Seeing the forest and the trees: Steiner wirelength optimization in
placement. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(4):632�644, Apr.
2007.

[38] J.V.Beck, K. Cole, and A. Haji-Sheikh. Heat Conduction Using Green's Functions. Hemi-
sphere, 1992.

[39] K. Kanda, K. Nose, H. Kawaguchi, and T. Sakurai. Design impact of positive temperature de-
pendence on drain currentin sub-1-V CMOS VLSIs. IEEE J. Solid-State Circuits, 36(10):1559�
1564, Oct. 2001.

[40] A Kennings and K.P. Vorwerk. Force-directed methods for generic placement. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 25(10):2076�2087, Oct. 2006.

[41] C.H.-I. Kim, H. Soeleman, and K. Roy. Ultra-low-power DLMS adaptive �lter for hearing aid
applications. IEEE Trans. VLSI Syst., 11(6):1058�1067, Dec. 2003.

[42] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671�680, 1983.

[43] A.G. Kokkas. Thermal analysis of multiple-layer structures. IEEE Trans. Electron Devices,
21(11):674�681, Nov. 1974.

[44] S. Lin and B. W. Kernighan. An e�ective heuristic algorithm for the traveling-salesman prob-
lem. Operations Research, 21(2):498�516, 1973.

[45] Fan Mo, A. Tabbara, and R.K. Brayton. A force-directed macro-cell placer. In Proc.
ACM/IEEE Int. Conf. on Computer-Aided Design, pages 177�180, 2000.

[46] M.Rencz, V.SzÃ c⃝kely, A.Poppe, and B.Courtois. Inclusion of RC compact models of packages
into board level thermal simulation tools. In Proc. of the 18th IEEE Semiconductor Thermal
Measurement and Management Symposium, pages 71�76, 2002.

[47] K. Nabors and J. White. FastCap: a multipole accelerated 3-D capacitance extraction program.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 10(11):1447�1459, Nov. 1991.

[48] A.M. Niknejad, R. Gharpurey, and R.G. Meyer. Numerically stable Green function for mod-
eling and analysis of substrate coupling in integrated circuits. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., 17(4):305�315, Apr. 1998.



148

[49] A. Odabasioglu, M. Celik, and L.T. Pileggi. PRIMA: passive reduced-order intercon-
nect macromodeling algorithm. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
17(8):645�654, Aug. 1998.

[50] J. Parry, H. Rosten, and G.B. Kromann. The development of component-level thermal compact
models of a C4/CBGA interconnect technology: the Motorola PowerPC 603 and PowerPC 604
risc microprocessors. IEEE Trans. Compon., Packag., Manuf. Technol. A, 21(1):104�112, Mar.
1998.

[51] J.R. Phillips and J.K. White. A precorrected-FFT method for electrostatic analysis of compli-
cated 3-D structures. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 16(10):1059�
1072, Oct. 1997.

[52] N. Quinn and M. Breuer. A forced directed component placement procedure for printed circuit
boards. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(6):377�388, Jun. 1979.

[53] F. Romeo and Alberto L. Sangiovanni-Vincentelli. Probabilistic hill climbing algorithms: Prop-
erties and applications. Technical report, EECS Department, University of California, Berke-
ley, 1984.

[54] J.A. Roy, S.N. Adya, D.A. Papa, and I.L. Markov. Min-cut �oorplacement. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., 25(7):1313�1326, Jul. 2006.

[55] Y. Saad and M Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856�869, Jul. 1986.

[56] Sadiq M. Sait and Habib Youssef. VLSI Physical Design Automation: Theory and Practice.
World Scienti�c Pub Co. Inc., 1999.

[57] T. Sakurai and A.R. Newton. Alpha-power law MOSFET model and its applications to CMOS
inverter delay and other formulas. IEEE J. Solid-State Circuits, 25(2):584�594, Apr. 1990.

[58] H.A. Scha�t. Thermal analysis of electromigration test structures. IEEE Trans. Electron
Devices, 34(3):664�672, Mar. 1987.

[59] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf placement and routing packages.
IEEE J. Solid-State Circuits, 20(2):510�522, Apr. 1985.

[60] SIA. International Technology Roadmap for Semiconductors. Semiconductor Industry Associ-
ation, 2001.

[61] V. Szekely. Identi�cation of RC networks by deconvolution: chances and limits. IEEE Trans.
Circuits Syst. I, 45(3):244�258, Mar. 1998.

[62] V. Szekely. THERMODEL: a tool for compact dynamic thermal model generation. Micro-
electron. J., 29:257�267, 1998.

[63] Vladimir Szekely, Andras Poppe, Marta Rencz, Miklos Rosental, and Tamas Teszeri.
THERMAN: a thermal simulation tool for IC chips, microstructures and PW boards. Mi-
croelectron. J., 40:517�524, 2000.

[64] L.H. Thomas. Elliptic problems in linear di�erence equations over a network. In Watson Sci.
Comput. Lab. Rept., Columbia University, 1949.

[65] Ching-Han Tsai and Sung-Mo Kang. Cell-level placement for improving substrate thermal
distribution. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 19(2):253�266, Feb.
2000.

[66] Baohua Wang and Pinaki Mazumder. Subgridding method for speeding up FD-TLM circuit
simulation. In Proc. Int. Symp. Circuits and Systems, pages 20�23, Thailand, May 2003.



149

[67] Baohua Wang and Pinaki Mazumder. Fast thermal analysis for VLSI circuits via semi-
analytical Green's function in multi-layer materials. In Proc. Int. Symp. Circuits and Systems,
volume 2, pages 409�412, Canada, May 2004.

[68] Baohua Wang and Pinaki Mazumder. On optimality of adiabatic switching in MOS energy-
recovery circuit. In Proc. Int. Symp. Low Power Electronics and Design, pages 236�239, Aug.
2004.

[69] Baohua Wang and Pinaki Mazumder. EM wave coupling noise modeling based on Chebyshev
approximation and exact moment formulation. In Proc. Conf. on Design, Auto. and Test in
Europe, pages 976�981, Germany, Mar. 2005.

[70] Baohua Wang and Pinaki Mazumder. Integrating lumped networks into full wave TLM/FDTD
methods using passive discrete circuit models. In Proc. Int. Symp. Circuits and Systems, pages
1948�1951, Japan, May 2005.

[71] Baohua Wang and Pinaki Mazumder. Multivariate normal distribution based statistical timing
analysis using global projection and local expansion. In Proc. Int. Conf. on VLSI Design, pages
380�385, India, Jan. 2005.

[72] Baohua Wang and Pinaki Mazumder. Bounding supply noise induced path delay variation
using a relaxation approach. In Proc. Int. Conf. on VLSI Design, pages 349�354, India, Jan.
2006.

[73] Baohua Wang and Pinaki Mazumder. A logarithmic full-chip thermal analysis algorithm based
on multi-layer Green's function. In Proc. Conf. on Design, Auto. and Test in Europe, volume 1,
pages 39�44, Germay, Mar. 2006.

[74] BaohuaWang and Pinaki Mazumder. Optimization of circuit trajectories: an auxiliary network
approach. In Proc. Asia and South Paci�c Design Automation Conf., pages 416�421, Japan,
Jan. 2006.

[75] Baohua Wang and Pinaki Mazumder. Accelerated chip-level thermal analysis using multilayer
Green's function. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26(2):325�344,
Feb. 2007.

[76] Ting-Yuan Wang and C.C.P. Chen. Thermal-ADI - a linear-time chip-level dynamic thermal-
simulation algorithm based on alternating-direction-implicit (ADI) method. IEEE Trans. VLSI
Syst., 11(4):691�700, Aug. 2003.

[77] Chenggang Xu, T. Fiez, and K. Mayaram. On the numerical stability of Green's function for
substrate coupling in integrated circuits. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., 24(4):653�658, Apr. 2005.

[78] Yong Zhan and S.S. Sapatnekar. Fast computation of the temperature distribution in VLSI
chips using the discrete cosine transform and table look-up. In Proc. Asia and South Paci�c
Design Automation Conf., volume 1, pages 87�92, Jan. 2005.

[79] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleakage: A
temperature-aware model of subthreshold and gate leakage for architects. Technical report,
Univ. of Virginia, Dept. of CS, Mar. 2003.

[80] Jinsong Zhao, W.W.M. Dai, S. Kadur, and D.E. Long. E�cient three-dimensional extrac-
tion based on static and full-wave layered Green's functions. In Proc. ACM/IEEE Design
Automation Conf., pages 224�229, Jun. 1998.


