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CHAPTER I

Introduction

In clinical studies of time to event data, non-proportional hazards are very com-

mon. The Cox model is frequently used assuming that the treatment effect is either

constant over time or a specific function of time. However, it is difficult to deter-

mine whether the form chosen for the treatment effect is correct. Even if the correct

form is chosen, the cumulative treatment effect is often preferred over treatment ef-

fect on the hazard function in many applications. For example, clinicians are often

interested in comparing the 5-year survival between the treatment groups. In the

presence of non-proportional hazards, survival or cumulative hazard curves can be

compared using non-parametric estimators such as the Nelson-Aalen (Nelson, 1972;

Aalen, 1978) or Kaplan-Meier (Kaplan and Meier, 1958) estimator. These estimators

will lead to biased treatment comparisons in the presence of confounders, as is often

the case in observational studies.

Several methods have been proposed to estimate cumulative treatment effects.

Doksum and Song (1989) introduced a relative change function in terms of cumu-

lative hazards to compare two groups. Confidence bands were constructed under a

proportional hazards assumption. Parzen, Wei and Ying (1997) examined the dif-

ference between two survival functions and constructed confidence bands based on

1
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simulation techniques. McKeague and Zhao (2002) proposed the ratio of survival

functions as a treatment effect measure and constructed simultaneous confidence

bands using empirical likelihood. Kalbfleisch and Prentice (1981) estimated an av-

erage hazard ratio, averaged with respect to a weight function.

Each of the above listed methods are not suitable for observational data since

they do not accommodate the adjustment of potential confounders. In the context

of semiparametric models which adjust for covariates, Schemper (1992) examined

the estimation of the average hazard ratio for two populations through a weighted

Cox model. Xu and O’Quigley (2000) estimated the average regression effect under

a non-proportional hazards model with time-varying regression coefficients, with a

weighted score equation used to obtain a consistent estimator.

In this dissertation, we develop three novel methods to estimate cumulative treat-

ment effects. In Chapter 2, we utilize a stratified Cox model, but with treatment

groups serving as strata. The ratio of cumulative hazards between each treatment

and the reference group is estimated. Through the use of a treatment-stratified Cox

model, the functional form of the treatment effect does not need to be specified,

while adjustment for potential confounders is achieved through a model. With time-

constant adjustment covariates, the proposed measure can be reduced to a ratio

of baseline cumulative hazards, which can be estimated by the method of Breslow

(1972). When proportional hazards holds for the treatment effect, our measure con-

verges to the commonly used hazard ratio. Our proposed estimator is proved to

follow a Gaussian process, with a variance estimator in an explicit form derived

using the theory of empirical processes.

The method proposed in Chapter 2 assumes that the adjustment covariate ef-

fects follow proportional hazards. When proportional hazards does not hold, the
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functional forms of these effects need to be specified. In Chapter 3, we propose an

inverse probability of treatment weighting (IPTW) method to balance the distri-

bution of confounders among treatment groups. Three measures are developed to

quantify the cumulative treatment effects, contrasting treatment-specific cumulative

hazards, probability of death, and restricted mean lifetime. These measures were

estimated using non-parametric estimators derived from weighted Nelson-Aalen es-

timators (Nelson 1972, Aalen, 1978). The probability of treatment assignment given

the potential confounders is estimated through a generalized logit model. After

applying IPTW, pusedo populations are created among treatment categories. The

distribution of confounders for each of these populations is the same as the entire

population. The weighted measures contrast the scenario wherein the treatment is

applied to the entire population, to the scenario where the reference treatment is ap-

plied. The proposed estimators are proved to follow a Gaussian process with explicit

variance estimators derived using empirical process theory.

The IPTW method has been applied in many applications. Brumback, Hernan

& Robins (2000) estimated the causal effect of time-dependent exposure adjusting

for time-dependent confounders using marginal structural models. In their setting,

there exists a time-dependent covariate that is a risk factor for mortality and also

predicts subsequent exposure, and past exposure is predictive of this covariate. A

inverse weight was applied in order to obtain the true causal effect of exposure.

The inverse weight is time-dependent, depending on the treatment and confounder

history. Hernan, Brumback & Robins (2000) extended the above work to analyze

time to event data. A proportional hazard Cox model was assumed, adjusting for

the covariates at baseline. A time-dependent inverse weight was applied to obtain

the causal effect of treatment. Xie and Liu (2005) developed an IPTW Kaplan-Meier
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estimator, with a weighted log rank test proposed to examine the treatment effects.

Current methods in estimating the cumulative effect in the context of time to

event data usually focus on the survival or cumulative hazard function. However,

mean lifetime is more relevant in many areas of medicine, particularly for organ

failure patients. For example, in the U.S., a proposed liver allocation system would

rank the patients on the waiting list by difference in 5-year restricted mean lifetime.

Chen & Tsiatis (2001) compared the restricted mean lifetime between two treatment

groups with Cox proportional hazards models assumed for each treatment group.

The survival function for each group is estimated by explicitly averaging over all

subjects in the sample. We also propose a difference in restricted mean lifetime in

Chapter 3, but using weighted non-parametric estimators. Unlike the method by

Chen & Tsiatis (2001), we balance the distribution of confounders through IPTW

so that functional forms of the confounding effects do not need to be specified.

The methods proposed in Chapter 2 and Chapter 3 were illustrated through the

comparison of peritoneal dialysis and hemodialysis therapy for patients with end-

stage renal disease (ESRD). The cumulative treatment effect is examined using each

of the above proposed measures.

Censoring times are assumed to be independent of event times given treatment

in Chapter 3. When censoring time depends on risk factors for the event, event

and censoring times will be correlated through such factors. If these factors are

time-dependent and they are not only risk factors for the event but also affected by

treatment, standard methods adjusting for these time-dependent factors may pro-

duce biased treatment effects. However, if baseline values instead of time-dependent

factors are adjusted, dependent censoring may be an issue. Standard hazard regres-

sion methods, such as the Cox model, generally assume that event and censoring are
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independent given the adjustment covariates.

The inverse probability of censoring weighing (IPCW) method has been proposed

to handle the dependent censoring. This method was originally developed by Robins

and Rotnitzky (1992) and Robins (1993). A Cox proportional hazards model is

assumed for the event time. An inverse probability of censoring weight is applied

in the estimating equation for the effect parameters. This weight is the inverse of

the survival function for censoring. After applying the inverse censoring weight, the

estimators converge to the same measures as in the case of independent censoring.

Robins and Finkelstein (2000) applied IPCW to overcome dependent censoring in

an AIDS clinical trial. Matsuyama and Yamaguchi (2008) estimated the marginal

survival time in the presence of dependent competing risks, using IPCW to handle

the dependent censoring. Yoshida, Matsuyama and Ohashi (2007) estimated the

treatment effect using a Cox proportional hazards model, again applying IPCW.

In Chapter 4, we extend the methods proposed in Chapter 3 to accommodate

dependent censoring. We develop estimators which combine IPTW (to balance the

treatment groups with respect to baseline confounders) and IPCW (to handle the

dependent censoring induced by time-dependent variates not captured by IPTW).

Comparing our works to that of Yoshida, Matsuyama and Ohashi (2007), our meth-

ods do not need to assume proportional hazards for the adjustment covariates. Our

weighted estimators are proved to converge to Gaussian processes and closed-form

covariance function estimators are developed. Our methods proposed in Chapter 4

are applied to the comparison of wait-list survival between race groups (Caucasian

vs. African American) for patients with end-stage renal disease.



CHAPTER II

Estimating Cumulative Treatment Effects In The Presence

Of Non-proportional Hazards

ABSTRACT: Often in medical studies of time to an event, the treatment effect is

not constant over time. In the context of Cox regression modeling, the most frequent

solution is to apply a model that assumes the treatment effect is either piece-wise

constant or varies smoothly over time; i.e., the Cox non-proportional hazards model.

This approach has at least two major limitations. First, it is generally difficult to as-

sess whether the parametric form chosen for the treatment effect is correct. Second,

in the presence of non-proportional hazards, investigators are usually more interested

in the cumulative than the instantaneous treatment effect (e.g., determining if and

when the survival functions cross). Therefore, we propose an estimator for the aggre-

gate treatment effect in the presence of non-proportional hazards. Our estimator is

based on the treatment-specific baseline cumulative hazards estimated under a strat-

ified Cox model. No functional form for the non-proportionality need be assumed.

Asymptotic properties of the proposed estimators are derived, and the finite-sample

properties are assessed in simulation studies. Pointwise and simultaneous confidence

bands of the estimator can be computed. The proposed method is applied to data

from a national organ failure registry.

6
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KEY WORDS: Confidence bands; Cumulative hazards; Observational studies; Strat-

ification; Survival analysis; Time-dependent effect.

2.1 Introduction

In medical studies featuring survival time data, non-proportional hazards are very

common. In Cox (1972) regression modeling, the most frequent solution is to apply

a model that assumes that the treatment effect is either piecewise constant or varies

smoothly over time. However, it is generally difficult to assess whether the parametric

form chosen for the treatment effect is correct. Even if the correct form is chosen,

investigators are usually more interested in the cumulative than the instantaneous

treatment effect. This is particularly true in settings where the hazard ratio changes

direction over time, in which case researchers are often interested in if and when

the two survival curves cross. Therefore, we propose an estimator of the cumulative

treatment effect under non-proportional hazards. Under our proposed method, the

treatment effect is viewed as a process that unfolds over time and is measured by

the ratio of cumulative hazards; no functional form need be assumed for the non-

proportionality.

The analysis that motivated our research aims to compare survival of end-stage

renal disease patients on two dialysis methods: hemodialysis (HD) and peritoneal

dialysis (PD). Peritoneal dialysis is less expensive than HD, but newer and hence

less established; PD has long been suspected of providing reduced survival relative to

HD. The debate over PD versus HD is one of the most contentious issues in medicine

and, helping to fuel the debate, previous studies have produced conflicting results

(Bloembergen et al., 1995; Fenton et al., 1997). Fenton et al. (1997) compared PD

to HD using non-proportional hazards models assuming a piece-wise constant hazard
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ratio. The authors found that hazard ratios (PD versus HD) is significantly decreased

early in the follow-up period, but that the effect changed direction later on. Since the

cumulative effect was not evaluated, one cannot tell which therapy is better in terms

of survival based on their results. Applying our method to national registry data,

we compare PD and HD covariate-adjusted survival, without assuming proportional

hazards. We can estimate the time-dependent cumulative effect of PD relative to HD

on mortality without assuming any functional form for that effect. The treatment

effect is viewed as a process over time, which is reflected by our inference procedures.

Several methods have been proposed for the comparison of survival or cumulative

hazard functions in nonparametric settings. Dabrowska, Doksum and Song (1989)

introduced a relative change function involving the survival functions for two popula-

tions and constructed pointwise confidence intervals. Simultaneous confidence bands

for this function were constructed under a proportional hazards assumption. Parzen,

Wei and Ying (1997) constructed simulation-based confidence bands for the difference

of survival functions. McKeague and Zhao (2002) derived simultaneous confidence

bands for ratios of survival functions based on empirical likelihood. Kalbfleisch and

Prentice (1981) estimated an average hazard ratio using a weight function. Since

each of the above methods was designed for nonparametric settings, they would be

suitable for randomized clinical trials but would generally not apply to observational

data where covariate adjustment is required. In the context of covariate adjustment,

Schemper (1992) suggested the estimation of average hazard ratio of the two pop-

ulations through a weighted Cox model. Xu and O’Quigley (2000) estimated the

average regression effect through weighted score equation, under a non-proportional

hazard model with time-varying regression coefficients.

In this chapter, we propose an estimator based on the treatment-specific baseline
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cumulative hazards estimated under a stratified Cox model. The treatment effect

is viewed as a process that unfolds over time, and can be related directly to the

treatment-specific survival functions. Pointwise confidence intervals and simultane-

ous confidence bands of our estimator are constructed.

The remainder of this chapter is organized as follows. In the next section, the

proposed measure and its estimator are described. We develop the asymptotic prop-

erties of the proposed estimator in Section 2.3. Section 2.4 evaluates the applicability

of the derived asymptotic results to finite samples through simulation. In Section

2.5, we apply our proposed method to compare survival on hemodialysis and peri-

toneal dialysis using data from a national organ failure registry. We provide some

discussion of the proposed and related methods in Section 2.6.

2.2 Proposed methods

We first set up the notation used throughout the article. Let J+1 be the number of

treatment groups (numbered j = 0, 1, . . . , J), where the first group (j=0) represents

a reference category to which the remaining treatment groups are compared. The

total number of subjects is denoted by n. Let Ti be the survival time for subject i.

The survival time of a subject is potentially right censored, with censoring time given

by Ci. The observation time and observed event indicator are given by Xi = Ti ∧Ci

and ∆i = I(Ti ≤ Ci), respectively, where a ∧ b = min{a, b} and I(A) is an indicator

function taking the value 1 when condition A holds and 0 otherwise. The event

counting processes are defined as Ni(t) = ∆iI(Xi ≤ t). The risk indicators are

denoted by Yi(t) = I(Xi ≥ t). Let Gi denote the treatment group for subject i and

Gij = I(Gi = j). Correspondingly, we set Yij(t) = Yi(t)Gij and dNij(t) = dNi(t)Gij .

The observed data consist of n independent vectors, (Xi, ∆i, Gi,Zi), where Zi is a



10

vector of adjustment covariates.

We assume that Ti follows a stratified Cox model, with hazard function

λij(t) = λi(t|Gi = j) = λ0j(t) exp{βT
0 Zi},(2.1)

where λ0j(t) is an unspecified treatment-specific baseline hazard function, and β0 is

an unknown parameter vector. Under (2.1), proportionality of the hazard functions

is not assumed to hold across treatment groups, but is assumed with respect to the

adjustment covariates. Note that in the set-up we consider, the adjustment covariates

vector is treated as time-constant. We revisit the issue of time-dependent covariates

in Section 2.6.

The partial likelihood (Cox, 1975) estimator of β0 is denoted by β̂, and is given

by the solution to U(β) = 0 where 0 is a vector of zeros and

U(β) =

n∑

i=1

m∑

j=0

∫ τ

0

{
Zi − Zj(t, β)

}
dNij(t),

Zj(t, β) = S
(1)
j (t, β)/S

(0)
j (t, β),

with S
(d)
j (t, β) = n−1

∑n
i=1 Yij(t)Z

⊗d
i exp{βTZi} for d = 0, 1, 2, where a⊗0 = 1, a⊗1 =

a and a⊗2 = aaT for a vector a. The quantity τ satisfies P (Xi > τ) > 0 and would

ordinarily be set to the maximum observation time such that all observed events are

included in the analysis.

To compare each treatment group to the reference group, we propose the following

measure,

θj(t) =
Λ0j(t)

Λ00(t)
, for j = 1, · · · , J,(2.2)

where Λ0j(t) =
∫ t

0
λ0j(s)ds is the cumulative baseline hazard for treatment group j.

Under (2.1), θj(t) can be used as a measure of the aggregate treatment effect across

the (0, t] interval.
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Let Λij(t) =
∫ t

0
λij(s)ds. Note that, under model (2.1),

Λij(t|Zi = z)

Λi0(t|Zi = z)
= θj(t).

That is, contrasting patients who have the same covariate pattern but receive dif-

ferent treatments, the ratio of cumulative hazards and ratio of baseline cumulative

hazards are equal. Note also that the proposed cumulative hazard ratio reduces to

the hazard ratio if proportionality holds. That is, if proportionality holds across the

treatment groups, such that the model λij(t) = λ0(t) exp{ρj + βT
0 Zi} applies, then

Λij(t|Zi = z)

Λi0(t|Zi = z)
= exp{ρj}.

In this light, one could view the proposed ratio of cumulative hazards as a general-

ization of the familiar hazard ratio.

The proposed cumulative effect measure, θj(t), can be estimated by

θ̂j(t) =
Λ̂0j(t, β̂)

Λ̂00(t, β̂)
, for j = 1, · · · , J, t ∈ [tL, tU ],(2.3)

where tL is chosen sufficiently large to avoid the situation where Λ̂00(tL, β̂) = 0, while

tU is chosen to avoid well-known instability that exists in the tail of the observation

time distribution. The cumulative baseline hazards can be estimated through the

Breslow (1972) estimator, Λ̂0j(t, β̂), where

Λ̂0j(t, β̂) =
1

n

n∑

i=1

∫ t

0

dNij(s)

S
(0)
j (s, β̂)

.

In the next section, we derive the asymptotic properties of the proposed estimator.

2.3 Asymptotic properties

To derive the large-sample properties of θ̂j(t), we assume the following regularity

conditions for i = 1, · · · , n and j = 0, · · · , J .
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(a) (Xi, ∆i, Gi,Zi) are independent and identically distributed random vectors.

(b) Zik have bounded total variation; i.e., |Zik| < κ for all i = 1, · · · , n and k =

1, · · · , p, where κ is a constant and Zik is the kth component of Zi.

(c)
∫ τ

0
λ0(t)dt < ∞ where τ is a pre-specified time point.

(d) Continuity of the following functions:

s
(1)
j (t, β) =

∂

∂β
s
(0)
j (t, β), s

(2)
j (t, β) =

∂2

∂β∂βT
s
(0)
j (t, β),

where s
(d)
j (t, β) is the limiting value of S

(d)
j (t, β) for d = 0, 1, 2, with s

(1)
j (t, β) and

s
(2)
j (t, β) bounded and s

(0)
j (t, β) bounded away from 0 for t ∈ [0, τ ] and β in an open

set.

(e) Positive-definiteness of the matrix Ω(β) where

Ω(β) =
m∑

j=0

∫ τ

0

vj(t, β)s
(0)
j (t, β)λ0j(t)dt,(2.4)

vj(t, β) = s
(2)
j (t, β)/s

(0)
j (t, β) − zj(t, β)⊗2,

and zj(t, β) = s
(1)
j (t, β)/s

(0)
j (t, β) is the limiting value of Zj(t, β).

(f) P (Gij = 1) > 0.

The asymptotic behavior of our estimator is summarized by the following two

theorems.

THEOREM 1. Under conditions (a) to (f), θ̂j(t) converges to θj(t) almost surely

and uniformly for t ∈ [τL, τU ].

The consistency of θ̂j(t) follows from the uniform consistency of Λ̂0j(t, β̂), Λ̂00(t, β̂),

and β̂ as well as the Functional Delta Method (Pollard, 1990) and various results

from empirical processes theory (Bilias, Gu and Ying, 1997).

THEOREM 2. Under conditions (a) to (f), n1/2[θ̂j(t)−θj(t)] converges asymptoti-

cally to a zero-mean Gaussian process with covariance function σj(s, t) = E[ξij(s, β0)ξij(t, β0)],



13

where:

ξij(t, β) =
1

Λ00(t)
Φij(t, β) −

Λ0j(t)

Λ00(t)2
Φi0(t, β),(2.5)

Φij(t, β) = hj
T (t, β)Ω(β)−1Ψi(β) +

∫ t

0

s(0)(s, β)
−1

dMij(s, β),(2.6)

hj(t, β) = −

∫ t

0

zj(s, β)dΛ0j(s),(2.7)

Ψi(β) =
m∑

j=0

∫ τ

0

{Zi − zj(t, β)} dMij(t, β),(2.8)

dMij(t, β) = dNij(t) − Yij(t) exp{βTZi}dΛ0j(t).(2.9)

The covariance function can be consistently estimated by σ̂j(s, t, β̂) where:

σ̂j(s, t, β̂) =
1

n

n∑

i=1

ξ̂ij(s, β̂)ξ̂ij(t, β̂),(2.10)

with ξ̂ij(t, β̂) obtained by replacing all limiting values in ξij(t, β0) with their empirical

counterparts.

The asymptotic normality of n1/2[θ̂j(t) − θj(t)] can be proved by first writing

{θ̂j(t) − θj(t)} as

1

Λ00(t)

{
Λ̂0j(t, β̂) − Λ0j(t)

}
+ Λ̂0j(t, β̂)

{
1

Λ̂00(t, β̂)
−

1

Λ00(t)

}
.

The quantity {Λ̂00(t, β̂)
−1

− Λ00(t)
−1} can be written as a function of {Λ̂00(t, β̂) −

Λ00(t)} by using the Functional Delta Method. The proof involves decomposing

{Λ̂0j(t, β̂)−Λ0j(t)} into {Λ̂0j(t, β̂)− Λ̂0j(t, β0)}+ {Λ̂0j(t, β0)−Λ0j(t)}. The Central

Limit Theorem and various results from the theory of empirical processes are applied

in the proof, which is outlined in the Web Appendix A.

Some comments on model misspecification are in order. If model (2.1) is mis-

specified, Lin and Wei (1989) demonstrated that β̂ converges to a vector β∗ 6= β0.

Further, if the true model is λij(t) = λ0j(t) exp{βT
0 f(Zi)}, while the assumed model

is λij(t) = λ∗

0j(t) exp{βT g(Zi)}, where f(Zi) and g(Zi) are functions of covariates
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Zi, under a misspecified model, Λ̂0j(t) (Gerds and Schumacher, 2001) converges to

Λ∗

0j(t) 6= Λ0j(t). We examine this issue numerically in Section 2.4.

In certain situations, investigators will want to estimate θj(t) at a pre-specified

value, t = t0 (e.g., 1 year, 5 years, etc). In these cases, inference could be based on a

Wald-type test since n1/2[θ̂j(t0)−θj(t0)]σj(t0)
−1 will asymptotically follow a standard

normal distribution, with σ2
j (t) ≡ σj(t, t). However, in many practical applications,

it makes more sense to view θj(t) as a process over time, and this view should be

captured by the corresponding inference procedures. For instance, in our motivating

example, based on analyses reported in the literature, we anticipate that the effect

of PD (vs. HD) will depend on time and there is no single specific time point at

which we wish to conduct our inference. Lin, Fleming and Wei (1994) proposed a

method to construct simultaneous confidence bands for survival curve under the Cox

model. We extend this to our estimator. The idea is to approximate the normalized

distribution of Q̂(t) = n1/2[θ̂j(t)− θj(t)] for t ∈ [tL, tU ] by a zero-mean Gaussian pro-

cess Q̃(t) = n−1/2
∑n

i=1 ξ̂ij(t, β̂)Ri, where Ri is a standard normal random variable.

The distribution of Q̂(t) is generated through simulation by repeatedly generating

independent standard normal random samples Ri(i = 1, · · · , n). To avoid the result-

ing lower bound of the band being negative, we consider a log-transformed process,

n1/2
[
log{θ̂j(t)} − log{θj(t)}

]
, whose distribution can be approximated by Q̂(t)/θ̂j(t)

after applying the Functional Delta Method. In addition, a weight function, w(t),

is chosen to adjust the width of the band at different time points. By using weight

function, w(t) = θ̂j(t)/σ̂(t), suggested by Nair (1984) and the previously-described

simulation method, we may obtain an approximate 100(1− α)% empirical quantile,
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q̂α, satisfying

Pr

{
sup

t∈[tL,tU ]

∣∣∣∣∣n
−1/2w(t)θ̂j(t)

−1
n∑

i=1

ξ̂ij(t, β̂)Ri

∣∣∣∣∣ > q̂α

}
= α.

With the log-transformation, a 100(1 − α)% simultaneous confidence band for θj(t)

over [tL, tU ] is given by θ̂j(t)exp
{
±n−1/2q̂α/w(t)

}
.

2.4 Simulation study

The finite sample properties of the proposed estimator were evaluated through

a series of simulation studies. For convenience, we consider two treatment groups.

Death times were generated as

Ti =
{
− log(Ui)/

[
αj exp{βT

0 Zi}
]}1/γj

,

for i = 1, · · · , n and j = 0, 1, where Ui is a Uniform(0,1) random variable, β0 = 0.5,

and Zi is a bivariate vector with each element following a Bernoulli (0.5) distribution.

This set-up implies that Ti follows a Weibull model with hazard function

λij(t) = λi(t|Gi = j) = αjγjt
γj−1 exp{βT

0 Zi}.

Non-proportionality of the hazard functions for groups 0 and 1 is induced when

γ1 6= γ0. Various values of γj were used to make the hazard ratio constant, decrease,

and increase through time. Censoring times were generated from a Uniform(τ/2, τ)

distribution with τ = 5. Different values of αj were used to vary the percent of

censoring (denoted by C%). For each data configuration, the no-censoring setting

was also examined. We varied the sample size as n=50, 100, 200, 500, and each

data configuration was replicated 1,000 times. We compared the ratio of cumulative

hazard to its true value at the 75th percentile of the observation time distribution,

which we denote by t0.75. Results are shown in Table 2.1 and Table 2.2.
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The proposed estimator generally performs well in finite samples, n=100, 200,

500 (Table 2.1). Even in the presence of a very high proportion of censoring, the

empirical mean of θ̂1(t) is approximately unbiased for sample sizes of n=500 and

n=200, and almost all simulations with size of n=100. In general, the bias is reduced

as the number of subjects in each treatment group increases. The average asymptotic

standard error (ASE) is generally close to the empirical standard deviation (ESD),

while the empirical coverage probabilities (CP) are consistent with the nominal value

of 0.95.

For smaller sample sizes (e.g., n = 50), the bias of θ̂1 is relatively large and the

coverage probabilities are notably lower than the nominal value of 0.95 (Table 2.2).

However, if log θ̂1(t0.75) is considered, the bias reduces dramatically and the coverage

probability is quite good. Therefore, when the sample size is very small (e.g., n = 50),

inference should be based on log θ1(t).

We also looked at the performance of our estimator at various percentiles of the

observation time distribution. The scenario where the hazard ratio increases with

time and sample size n=500 are considered. We find that our estimator is approxi-

mately unbiased even at the 10th and 90th percentiles of the observation distribution

and that the coverage probabilities are close to the nominal value of 0.95 (Table 2.3).

We explored the performance of our estimator and its variance under models with

functional misspecification and incorrect covariate adjustment (results not shown).

We find that under a misspecified model, the proposed estimator is biased, although

the bias is relatively small; as well, the ASE is close to the ESD.
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2.5 Analysis of dialysis data

We applied our proposed methods to compare patient survival on hemodialysis

(HD) and peritoneal dialysis (PD). Hemodialysis served as the reference category

(j=0), while PD was labeled as j=1. Hence, the parameter of interest is θ1(t), which

contrasts the cumulative hazard for PD relative to HD. Data were obtained from

the Canadian Organ Replacement Register (CORR), a nation-wide and population-

based organ failure registry which is maintained by the Canadian Institute for Health

Information. The mortality hazard on dialysis was investigated for End Stage Renal

Disease (ESRD) patients who were either on HD or PD at the time of renal replace-

ment therapy initiation. The dialysis method is inherently time-dependent since

a patient may switch therapies. We carried out two separate analyses. The first

analysis, in the spirit of an intent-to-treat (ITT) analysis, classified patients based

on first method of dialysis; that is, the type of dialysis received at the initiation of

renal replacement therapy. The ITT analysis compares the risk of death between pa-

tients initially placed on PD (vs. HD) knowing that patients may switch therapies.

The second analysis censored the follow-up time at the first dialysis therapy switch

(CAFS). The CAFS analysis compares the risk of death for patients who stay on PD

to patients who remain on HD.

The study population included n=23,254 registered patients aged 18 and above

who initiated dialysis between 1990 and 1998. Patients began follow-up at the date

of dialysis initiation and were followed until the earliest of death, loss to follow-up,

kidney transplantation or the end of the observation period (December 31, 1998).

For the ITT analysis, approximately 38% of HD patients (n0=17,766) were observed

to die, while 36% of patients on PD (n1=5,488) died. For the CAFS analysis, the
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proportion observed to die for patients on HD was approximately 30% and 25% for

patients on PD. Approximately 17% of patients initially placed on HD and 27% of

patients initially placed on PD switched therapy at least once.

Cox regression was employed, stratified by dialysis modality, and adjusting for

age, gender, race, underlying renal diagnosis, region and various comorbid illnesses

(cerebrovascular accident, cardiovascular disease, chronic obstructive pulmonary dis-

ease (COPD), malignancy, peripheral vascular disease, other illnesses). Through

stratification, a distinct baseline mortality hazard is allowed for HD and PD, which

allows the effect of dialysis method to be non-proportional and assumes no specific

functional form for the non-proportionality. The resulting 95% pointwise and simul-

taneous confidence bands of θ1(t) in time interval [1, 90] months are given in Figure

2.1 for the ITT analysis and Figure 2.2 for the CAFS analysis. This time interval

is chosen to avoid imprecision at the beginning of follow-up due to too few deaths

occurring in the HD (reference) group, and instability at the tail of the observa-

tion time distribution. Based on the ITT analysis (treating dialysis method as fixed

at t=0), relative to HD, patients initially placed on PD had significantly increased

covariate-adjusted survival probability over the [1, 29] months interval with θ̂1(t)

ranging from a low of θ̂1(t) = 0.33 at t = 1 month, to a high of θ̂1(t) = 0.90 at t = 29

months. Survival was not significantly different for patients on PD relative to HD

during the (29, 80] months interval. Long-term survival was significantly reduced

for patients on PD after approximately 80 months with θ̂1(t) ≥ 1.17. For the CAFS

analysis (censored at first therapy switch), survival probability is higher for patients

on PD than HD for approximately the first 31 months, while the survival was not

significantly different after that point (Figure 2.2).

Comparing the ITT and CAFS analyses, as is evident from Figures 2.1-2.2, the
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ITT analysis is more precise since deaths following therapy switches are not censored.

In the short term, PD patients have significantly better survival under either analysis.

In the long run, PD survival is not significantly different from that of HD under

the CAFS analysis, but significantly lower under the ITT analysis. Supplementary

analysis revealed that both Λ̂0(t) and Λ̂1(t) were greater for the ITT than the CAFS

analysis (results not shown), implying that switching therapies (in either direction)

is associated with increased mortality hazard. Since PD patients were more likely

than HD patients to switch, it would make sense that PD would be viewed more

favorably under a CAFS (relative to ITT) approach.

2.6 Discussion

In the survival analysis of biomedical studies, non-proportional hazards are fre-

quently encountered. In this manuscript, we introduce a measure of the cumulative

treatment effects when the proportional hazards assumption does not hold across the

treatment groups. No functional form for the non-proportionality need be assumed

for our proposed estimator. In cases where hazards are in fact proportional, the pro-

posed measure reduces to the well-known hazard ratio. Simulation studies provide

evidence that the proposed estimator is approximately unbiased, while the estimated

standard errors are quite accurate. Applying our method to CORR dialysis data,

we found that long-term survival (after approximately 80 months) is significantly

reduced for patients initially placed on PD relative to HD (intent-to-treat analysis).

The difference in long-term survival is non-significant after approximately the first

31 months based on the analysis with censoring at first therapy switch.

Since dialysis modality was not randomized, our results must be interpreted with

caution. We did find that patients who were initially put on PD are healthier than
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those were put on HD in terms of comorbidity profile. This does imply that selection

bias due to unmeasured covariates may be an issue.

Various methods previously proposed to account for non-proportional hazards

in a Cox regression model have featured a time-varying regression coefficient, β(t)

(e.g., Sleeper and Harrington, 1990; Zucker and Karr, 1990; Murphy and Sen, 1991;

Sargent, 1997; Gustafson, 1998; Xu and O’Quigley, 2000; Martinussen, Scheike and

Skovgard, 2002; Scheike and Martinussen, 2004). A limitation of these and related

approaches is that the estimator represents an instantaneous metric and, in the

presence of non-proportional hazards, investigators are usually more interested in the

cumulative than the instantaneous effect. The quantity
∫ t

0
β(s)ds is often proposed to

estimate the cumulative effect. Despite its utility, a drawback of this approach is that

the integral cannot generally be connected back to the treatment-specific cumulative

hazard and hence survival functions. For example, in comparing treatment (Gi=1)

and placebo (Gi=0),
∫ t

0
β(s)ds = 0 generally will not imply S0(t) = S1(t) and usually

it would not be straightforward without further assumptions to determine b0 such

that
∫ t

0
β(s)ds = b0 implies equal survival. Our proposed approach does not consider

the estimation of the instantaneous treatment effect, but proposes a direct measure

for the cumulative effect. In terms of the survival function, equal survival at time t

among the treatments being compared is implied by θj(t) = 1. In the situation where

researchers are interested in whether and when two survival curves cross, our method

is preferable. In addition, an advantage of the method proposed in this manuscript

is that it is computationally straightforward.

We derived the variance for the proposed estimator using the modern theory

of empirical processes, instead of the Martingale Central Limit Theorem (Fleming

and Harrington, 1991). Although the asymptotic results are easier to derive using
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Martingale theory, the sandwich-type asymptotic variance derived through empiri-

cal processes should be more robust to model misspecification, such as missing co-

variate information, covariate measurement error and mis-modeling of adjustment

covariates. In addition, the proposed variance could be easily extended to recur-

rent event setting, wherein the event of interest can be experienced more than once

per subject. When proportionality does not hold across the treatment groups, we

could fit a stratified version of the proportional means model (Lin et al., 2000),

E[Nij(t)] ≡ µij(t) = µ0j(t) exp{βT
0 Zi}, for i = 1, · · · , n, where µ0j(t) is unspecified

baseline mean function for the jth treatment group. Among the methods available

for recurrent event data (e.g., see Cai and Schaubel, 2004), the marginal means ap-

proach of Lin et al. (2000) would be considered a suitable method for comparing

treatments. To compare treatment group j(> 0) to the reference group (j=0), one

could use the ratio of the mean numbers of events, θ∗j (t) = µ0j(t)/µ00(t) as a metric

for the cumulative treatment effect. The estimate for θ∗j (t) has same expression as

in the univariate survival case, but with Nij(t) representing the number of events

in (0, t] instead of a time-dependent observed death indicator. The asymptotic re-

sults would be essentially the same after adding the condition that Nij(t) < η < ∞.

The asymptotic variance of θ̂∗j (t) could be consistently estimated by that based on

Theorem 2 of the current report, upon replacing Λ0j(t) with µ0j(t).

In this chapter, our focus has been on the treatment effect. When the proportional

hazard assumption does not hold for an adjustment covariate, traditional methods

can be applied to remedy the non-proportionality; e.g., interactions with t.

Note that our proposed estimation procedure considers the case where the adjust-

ment covariate vector is assumed to be time-independent. This is not a limitation for

at least two important reasons. First, the assumption of time-independent adjust-
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ment covariates matches the reality in most cases, such as the application in Section

5. Second, in settings where Zi(t) 6= Zi, it would be preferable to use Zi = Zi(0)

(i.e., the baseline covariate value) anyway, due to interpretation issues. For ease of

illustration, suppose treatment is fixed at t = 0 but that the adjustment covariate,

Zi(t), varies over time; Zi(0), as opposed to Zi(t), is included as an adjustment co-

variate. Consider two cases: (i) Zi(t) is uncorrelated with treatment (ii) Zi(t) is

correlated with treatment. In case (i), θ̂1(t) would be estimating the same quantity

whether or not the adjustment covariate was coded as time-dependent, rendering the

use of Zi(t) (in place of Zi) unnecessary. In case (ii), θ̂1(t) could be substantially

biased towards 1 if the adjustment covariate was coded as time-dependent in the

model. If Zi(t) is correlated with treatment after adjusting for Zi(0), it is much

more likely that treatment is at least in part causing the variation in Zi(t), directly

or indirectly, than the other way around; i.e., considering the temporality. Take

the dialysis data in Section 5 as an example. We adjust for comorbid conditions,

which are coded at time t=0. In the CORR database, serial comorbidity data are

not available. But, even if they were, we would prefer to compare PD and HD only

adjusting for time 0 comorbidity. It is quite plausible that, in addition to affecting

the mortality hazard, dialysis method has other intermediate consequences relating

to (for example) hospitalizations and the incidence of comorbid conditions. Suppose

that PD (relative to HD) reduces mortality and decreases the incidence of cardiovas-

cular disease (CVD), and that CVD onset increases mortality risk. If we adjust for

time-dependent CVD, then we end up, essentially, comparing PD and HD patients of

similar prognosis, therefore underestimating the magnitude of the difference between

therapies with respect to mortality. In understanding this phenomenon, it helps to

think of time-dependent covariates as intermediate end-points. It is well known in
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survival analysis that adjusting for components of the causal pathway is inappropri-

ate; as is made clear in survival-related causal inference approaches; e.g., Robins and

Greenland (1994), Hernan, Brumback and Robins (2001), who proposed marginal

structural models for use when adjustment covariates are time-dependent. If time-

dependent comorbidity data were available, they could perhaps be incorporated by

a marginal structural-type extension of the methods proposed in this article.

If proportionality holds across the treatment groups, such that the model λij(t) =

λ0(t) exp{ρj + βT
0 Zi} applies, then our proposed measure θj(t) equals exp{ρj} for

t ∈ [tL, tU ]. To test for proportionality, we have H0 : θj(t) = exp{ρj} and H1 : θj(t) 6=

exp{ρj}. Similar to the proof of normality of n1/2
[
θ̂j(t) − θj(t)

]
, we can obtain that

n1/2 [exp(ρ̂j) − exp(ρj)] = n−1/2
∑n

i=1 Ψij + op(1), where Ψij is an mean 0 variate.

Therefore, n1/2
{

[θ̂j(t) − θj(t)] − [exp(ρ̂j) − exp(ρj)]
}

= n−1/2
∑n

i=1 [ξij(t, β) − Ψij ]

is asymptotically a Gaussian process with mean 0. The quantity n−1/2Ri [ξij(t, β) − Ψij]

would have the same distribution as n1/2[θ̂j(t) − exp(ρ̂j)] under H0, where Ri, i =

1, · · · , n, follows a standard normal distribution. Therefore, using techniques sim-

ilar to those used to derive the confidence band, we can obtain the distribution of

supt∈[tL,tU ] n
1/2

∣∣∣θ̂j(t) − exp(ρ̂j)
∣∣∣ under H0. A test for the constancy of the treatment

effect could then be based on this statistic.
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2.7 Tables and Figures

n γ0 γ1 α0 α1 C% θ1(t0.75) BIAS ASE ESD CP

500 1.4 1.2 0.4 0.35 0% 0.739 0.002 0.084 0.087 0.94
200 0.008 0.132 0.139 0.94
100 0.020 0.188 0.206 0.92
500 1.4 1.2 0.4 0.35 10% 0.741 0.006 0.084 0.084 0.95
200 0.014 0.134 0.132 0.96
100 0.030 0.191 0.199 0.94
500 1.4 1.2 0.1 0.07 0% 0.468 0.005 0.055 0.058 0.93
200 -0.001 0.085 0.088 0.93
100 0.011 0.121 0.125 0.93
500 1.4 1.2 0.1 0.07 54% 0.536 0.001 0.081 0.077 0.95
200 0.014 0.130 0.133 0.94
100 0.017 0.184 0.188 0.93

500 1 1.5 0.5 0.3 0% 0.926 0.004 0.104 0.109 0.94
200 0.012 0.165 0.170 0.93
100 0.029 0.235 0.238 0.94
500 1 1.5 0.5 0.3 10% 0.912 0.007 0.103 0.103 0.95
200 0.019 0.165 0.170 0.94
100 0.015 0.230 0.238 0.92
500 1 1.5 0.2 0.1 0% 1.123 0.014 0.128 0.131 0.95
200 0.023 0.203 0.214 0.94
100 0.042 0.289 0.308 0.94
500 1 1.5 0.2 0.1 40% 0.933 0.006 0.121 0.118 0.95
200 0.014 0.192 0.197 0.94
100 0.016 0.272 0.287 0.93

500 1.5 1.5 0.4 0.2 0% 0.500 0.003 0.058 0.058 0.95
200 0.004 0.091 0.093 0.95
100 0.018 0.131 0.138 0.94
500 1.5 1.5 0.4 0.2 10% 0.500 0.003 0.058 0.056 0.96
200 0.002 0.091 0.091 0.94
100 0.018 0.131 0.138 0.94
500 1.5 1.5 0.1 0.05 0% 0.500 0.002 0.058 0.057 0.95
200 0.010 0.092 0.092 0.94
100 0.016 0.130 0.134 0.93
500 1.5 1.5 0.1 0.05 52% 0.500 0.009 0.075 0.076 0.94
200 0.014 0.120 0.121 0.94
100 0.014 0.169 0.177 0.93

Table 2.1: Simulation results: Examination of bias and accuracy of estimated standard error
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γ0 γ1 α0 α1 C% θ1(t0.75) BIAS ASE ESD CP

1.4 1.2 0.4 0.35 0% 0.739 0.042 0.266 0.294 0.91
10% 0.741 0.034 0.265 0.292 0.92

1.4 1.2 0.1 0.07 0% 0.468 0.023 0.169 0.182 0.91
54% 0.536 0.048 0.269 0.300 0.90

1.0 1.5 0.5 0.3 0% 0.926 0.048 0.331 0.347 0.92
10% 0.912 0.068 0.334 0.381 0.91

θ̂1 1.0 1.5 0.2 0.1 0% 1.123 0.086 0.415 0.480 0.92
40% 0.933 0.083 0.403 0.461 0.90

1.5 1.5 0.4 0.2 0% 0.500 0.028 0.182 0.205 0.92
10% 0.500 0.031 0.183 0.202 0.92

1.5 1.5 0.1 0.05 0% 0.500 0.027 0.182 0.199 0.91
52% 0.500 0.038 0.244 0.271 0.90

γ0 γ1 α0 α1 C% log θ1(t0.75) BIAS ASE ESD CP

1.4 1.2 0.4 0.35 0% -0.303 -0.010 0.342 0.364 0.94
10% -0.300 -0.020 0.342 0.365 0.94

1.4 1.2 0.1 0.07 0% -0.759 -0.021 0.347 0.376 0.93
54% -0.624 -0.034 0.470 0.502 0.95

1.0 1.5 0.5 0.3 0% -0.077 -0.009 0.339 0.352 0.94
10% -0.092 0.001 0.341 0.381 0.93

log(θ̂1) 1.0 1.5 0.2 0.1 0% 0.117 0.003 0.342 0.373 0.92
40% -0.069 -0.008 0.398 0.436 0.94

1.5 1.5 0.4 0.2 0% -0.693 -0.018 0.348 0.387 0.93
10% -0.693 -0.009 0.347 0.379 0.93

1.5 1.5 0.1 0.05 0% -0.693 -0.016 0.347 0.377 0.92
52% -0.693 -0.042 0.461 0.488 0.94

Table 2.2: Simulation results: Examination of bias and accuracy of estimated standard error for
small sample size (n=50)
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γ0 γ1 α0 α1 C% t θ1(t) BIAS ASE ESD CP

1 1.5 0.5 0.3 0% t0.10 0.287 0.013 0.104 0.110 0.93
t0.25 0.449 0.003 0.089 0.091 0.94
t0.50 0.665 0.006 0.089 0.087 0.95
t0.75 0.926 0.004 0.104 0.109 0.94
t0.90 1.130 0.016 0.137 0.141 0.94

1 1.5 0.5 0.3 10% t0.10 0.306 0.005 0.100 0.102 0.94
t0.25 0.469 0.004 0.089 0.086 0.95
t0.50 0.671 0.004 0.089 0.091 0.94
t0.75 0.912 0.007 0.103 0.103 0.95
t0.90 1.060 0.003 0.126 0.133 0.94

1 1.5 0.2 0.1 0% t0.10 0.387 0.011 0.123 0.129 0.94
t0.25 0.610 0.011 0.110 0.119 0.94
t0.50 0.869 0.009 0.111 0.114 0.94
t0.75 1.123 0.014 0.128 0.131 0.95
t0.90 1.440 0.004 0.178 0.182 0.94

1 1.5 0.2 0.1 40% t0.10 0.397 0.005 0.120 0.123 0.92
t0.25 0.594 0.003 0.109 0.114 0.94
t0.50 0.819 0.005 0.110 0.106 0.95
t0.75 0.933 0.006 0.121 0.118 0.95
t0.90 1.040 0.020 0.153 0.156 0.94

Note: tq = q′th percentile of observation time distribution, C%=percent censored, ASE=average
asymptotic standard error, ESD=empirical standard deviation, CP=coverage probability.

Table 2.3: Simulation results: Examination of bias and accuracy of estimated standard error at
different time points (n=500)
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Figure 2.1: Analysis of dialysis data: Estimator and 95% pointwise confidence intervals and simul-
taneous confidence bands for the ratio of cumulative hazard functions (PD/HD), θ1(t),
for the ITT analysis.
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Figure 2.2: Analysis of dialysis data: Estimator and 95% pointwise confidence intervals and simul-
taneous confidence bands for the ratio of cumulative hazard functions (PD/HD), θ1(t),
for the CAFS analysis.
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2.8 Appendix

Proof of Theorem 1

One can write:

n1/2[θ̂j(t) − θj(t)] = n1/2

[
1

Λ00(t)

{
Λ̂0j(t, β̂) − Λ0j(t)

}
+ Λ̂0j(t, β̂)

{
1

Λ̂00(t, β̂)
−

1

Λ00(t)

}]
.

By a Taylor series expansion,

1

Λ̂00(t, β̂)
−

1

Λ00(t)
= −

1

Λ2
00(t)

{
Λ̂00(t, β̂) − Λ00(t)

}
+ o(n−1/2).

For j = 0, · · · , m, set φ̂j(t) = Λ̂0j(t, β̂) − Λ0j(t) = φ̂j1(t) + φ̂j2(t), where:

φ̂j1(t) = Λ̂0j(t, β̂) − Λ̂0j(t, β0)

φ̂j2(t) = Λ̂0j(t, β0) − Λ0j(t).

By the triangle inequality,

sup
t∈[0,τ ]

|φ̂j(t)| ≤ sup
t∈[0,τ ]

|φ̂j1(t)| + sup
t∈[0,τ ]

|φ̂j2(t)|.(2.11)

We can write

φ̂j1(t) = n−1
n∑

i=1

∫ t

0

{
S

(0)
j (s, β̂)−1 − S

(0)
j (s, β0)

−1
}

dNij(s).(2.12)

Through another Taylor expansion,

S
(0)
j (s, β̂)−1 − S

(0)
j (s, β0)

−1 = −
Zj(s, β0)

T

S
(0)
j (s, β0)

(β̂ − β0) + o(n−1/2).

Substituting this expression back into (2.12), one can obtain φ̂j1(t) = ĥj(t, β0)
T (β̂−

β0) + o(n−1/2), where:

ĥj(t, β) = −n−1
n∑

i=1

∫ t

0

Zj(s, β)

S
(0)
j (s, β)

dNij(s).
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Using the facts that Nij(s), S
(1)
j (s, β) are bounded, and S

(0)
j (s, β) is bounded away

from 0 as n → ∞, ĥj(t, β0) is bounded for sufficiently large n. This, combining with

the fact that β̂
a.s.
−→ β0 (Andersen and Gill, 1982) as n → ∞, gives

sup
t∈[0,τ ]

|φ̂j1(t)|
a.s.
−→ 0.(2.13)

The quantity φ̂j2(t) can be written as

φ̂j2(t) = n−1
n∑

i=1

∫ t

0

S
(0)
j (s, β0)

−1dMij(s, β0).(2.14)

Since S
(0)
j (s, β0) is bounded away from 0, and n−1

∑n
i=1 Mij(t, β0)

a.s.
−→ 0 as n → ∞

for t ∈ [0, τ ] by the Strong Law of Large Numbers (SLLN), we have

sup
t∈[0,τ ]

|φ̂j2(t)|
a.s.
−→ 0.(2.15)

Combining (2.11), (2.13) and (2.15), give the consistency of φ̂j(t) for j = 0, · · · , m

and t ∈ [0, τ ]. This, combining with the fact that Λ̂0j(t, β̂)
a.s.
→ Λ0j(t) (Anderson and

Gill, 1982) concludes the proof of the uniform consistency of θ̂j(t).

Proof of Theorem 2

We now consider the convergence of n1/2[θ̂j(t) − θj(t)]. One can write

n1/2φ̂j1(t) = n1/2ĥj(t, β0)
T (β̂ − β0) + op(1)

n1/2φ̂j2(t) = n−1/2
n∑

i=1

∫ t

0

S
(0)
j (s, β0)

−1dMij(s, β0).

Conditions (a) to (f) and the SLLN give ĥj(t, β0)
a.s.
−→ hj(t, β0) as n → ∞, where

hj(t, β0) is defined as in (2.7). The partial likelihood score equation can be written
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as

U(β) =

n∑

i=1

Ψ̂i(β),

Ψ̂i(β) =
m∑

j=0

∫ τ

0

{
Zi − Zj(t, β)

}
dMij(t, β).

Since Zj(t, β)
a.s.
−→ zj(t, β) as n → ∞, Ψ̂i(β) converges to Ψi(β) defined as in (2.8).

By a Taylor series expansion, one can write

U(β) = nΩ̂(β)(β̂ − β) + o(n−1/2),

Ω̂(β) = n−1

n∑

i=1

m∑

j=0

∫ τ

0

[S
(2)
j (s, β)/S

(0)
j (s, β) − Zj(s, β)⊗2]dNij(s).

As n → ∞, Ω̂(β) converges to Ω(β), a positive definite matrix defined as in (2.4).

These results yield

n1/2φ̂j1(t) = hj(t, β0)
TΩ(β0)

−1n−1/2

n∑

i=1

Ψi(β0) + op(1).(2.16)

With respect to φ̂j2(t), using the fact that S
(0)
j (s, β0)

−1 converges to s
(0)
j (s, β0)

−1

as n → ∞ and various results from empirical processes (Bilias, Gu and Ying, 1997;

Lin et al., 2000 ), it can be shown that as n → ∞,

n−1/2
n∑

i=1

∫ t

0

{
S

(0)
j (s, β0)

−1 − s
(0)
j (s, β0)

−1
}

dMij(s, β0)
a.s.
→ 0 for t ∈ [0, τ ].

Therefore, we have

n1/2φ̂j2(t) = n−1/2
n∑

i=1

∫ t

0

s
(0)
j (s, β0)

−1dMij(s, β0) + op(1).(2.17)

Combining (2.16) and (2.17), one can write n1/2φ̂j(t) = n−1/2
∑n

i=1 Φij(t, β0) + op(1)

for j = 0, · · · , m, with Φij(t, β0) defined as in (2.6). This, in conjunction with the

fact that Λ̂0j(t)
a.s.
→ Λ0j(t), gives

n1/2[θ̂j(t) − θj(t)] = n−1/2
n∑

i=1

ξij(t, β0),
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with ξij(t, β0) defined as in (2.5), which is a sum of n independent and identically

distributed random variables. By the Central Limit Theorem, n1/2[θ̂j(t) − θj(t)]

converges to a mean-zero normal distribution. To prove the weak convergence, we

show tightness of n1/2[θ̂j(t) − θj(t)], which can be demonstrated by the manage-

ability of ξij(t, β0) for i = 1, · · · , n. Since Φij(t, β0) and Φi0(t, β0) are differ-

ences of functions monotone in t, Φij(t, β0) and Φi0(t, β0) are manageable. Hence,

ξij(t, β0) = Λ00(t)
−1Φij(t, β0) − Λ00(t)

−2Λ0j(t)Φi0(t, β0) is manageable (Bilias et al.,

1997; Pollard, 1990).
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CHAPTER III

Weighted Estimation Of Treatment Effects In The Presence

Of Non-Proportional Hazards

ABSTRACT: In medical studies featuring survival time data, it is very common

that treatment-specific hazards are non-proportional. A frequently used method of

dealing with non-proportional hazards is to apply a Cox model that assumes that

the treatment effect is a specific function of time. However, it is often difficult to

choose the correct parametric form for the treatment effect. Even if the correct form

is chosen, investigators are usually more interested in the cumulative effect than

the instantaneous effect in the presence of non-proportional hazards. We propose

methods for estimating the cumulative treatment effect when proportional hazards

does not hold. Three measures are proposed: ratio of cumulative hazards, rela-

tive risk and difference in restricted mean lifetime. No functional form need be

assumed for the effects of treatment or the adjustment covariates. The proposed

measures are estimated through non-parametric procedures after using inverse prob-

ability of treatment weighting (IPTW) to balance the treatment-specific covariate

distributions. Asymptotic properties of the proposed estimators are derived, with

finite-sample properties assessed in simulation studies. The proposed methods are

applied to end stage renal disease (ESRD) data.

KEY WORDS: Cumulative hazard; Inverse weighting; Nonparametric estimator;

37
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Relative risk; Restricted mean lifetime; Survival analysis

3.1 Introduction

In survival analysis, the most frequently used method is the Cox proportional

hazards model (Cox 1972, 1975). When the proportional hazards assumption does

not hold, the effect of covariates is often assumed to follow a pre-specified function

of time. However, it is usually hard to assess whether the chosen functional form

is correct. Moreover, when proportional hazards does not hold, investigators are

usually more interested in the cumulative effect than the instantaneous effect. For

example, in the presence of a treatment effect which changes direction over time,

clinicians are often more interested in knowing when the survival probabilities (as

opposed to hazard functions) are same for the two treatment groups.

As an alternative to the Cox non-proportional hazards model, one could compare

survival or cumulative hazard curves using Nelson-Aalen (Nelson, 1972; Aalen, 1978)

or Kaplan-Meier (Kaplan and Meier, 1958) estimators. In fact, several methods have

been proposed to estimate cumulative treatment effects. Doksum and Song (1989)

constructed confidence intervals and simultaneous confidence bands for a relative

change function, expressed in terms of cumulative hazard functions. Parzen, Wei

and Ying (1997) compared two survival functions and constructed confidence bands

based on simulation techniques. McKeague and Zhao (2002) proposed the ratio of

survival functions and constructed simultaneous confidence bands using empirical

likelihood. The above listed methods are designed for nonparametric settings and

do not adjust for potential confounders. It is well known that these estimators

may lead to biased results when the treatments are not randomly assigned, as is

the case in observational studies. We propose methods to estimate the cumulative
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treatment effect by comparing the cumulative hazard, risk of death and restricted

mean lifetime between treatment groups. We apply inverse probability of treatment

weighting (IPTW) to adjust for potential confounders. If a subject has a higher

(lower) probability of being in a certain treatment group, then the subject is given

a lower (higher) weight.

This work is motivated by the continued desire to compare survival of end-stage

renal disease patients on two dialysis methods: hemodialysis (HD) and peritoneal

dialysis (PD). Peritoneal dialysis is less expensive, but newer and less established.

Previous studies comparing HD and PD mortality have produced conflicting results.

For example, using non-proportional hazards models assuming a piece-wise constant

hazard ratio, Fenton et al. (1997) found that hazard ratios (PD/HD) significantly

decreased early in the follow-up period, but that the effect changed direction later

on, while Bloembergen et al. (1995) reached very different conclusions based on U.S.

national data. Wei and Schaubel (2008) compared the cumulative hazard of death

for patients treated by PD to those treated by HD using a stratified Cox model. The

authors assumed that the effect of each adjustment covariate was constant over time.

Applying our methods to Canadian Organ Replacement Register (CORR) data, we

now seek to compare PD and HD without assuming proportional hazards for either

the treatment or the adjustment covariates. The average cumulative hazard, risk of

death, and restricted mean lifetime are compared between PD and HD.

Inverse probability of treatment weighting (IPTW; Hernan, Brumback & Robins,

2000; Robins, Hernan & Brumback, 2000) has been used to estimate the causal effect

of time-dependent exposure and adjust for time-dependent confounders. Hernan et

al. (2000) assumed proportional hazards for the exposure and adjustment covariate

effects. In the case that there exist time-dependent confounders which are affected by
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previous exposure and predict the subsequent exposure, the authors argued that the

standard Cox partial likelihood estimator is a unbiased estimate of the association

between the exposure and failure time, but is a biased estimate of the causal effect

if only baseline covariates are adjusted in the Cox model. To estimate the causal ef-

fect, an inverse weight involving each subject’s probability of receiving the exposure

actually received at time t given previous exposure and covariates history (includ-

ing the time-dependent confounders which are affected by exposure) was applied to

each subject. The model adjusted for time-constant but not the time-dependent

confounders. Our proposed methods differ from those of Hernan et al. (2000) in at

least three important ways. First, we estimate the marginal treatment effect, i.e., the

effect of assigning treatment to a patient from an intent-to-treat perspective. Second,

we do not assume proportionality with respect to the treatment or the adjustment

covariates. Third, we estimate the cumulative effect of treatment.

Current methods for estimating the cumulative effect in the context of censored

data usually focus on the survival or cumulative hazard function. However, mean

lifetime is often the more relevant quantity. For example, patients usually ask “How

long will I live?”, not “What is my 5-year survival probability?”. This is true in many

areas of medicine and is particularly true for organ failure patients. For example, in

the U.S., the liver allocation system is currently being restructured such that patients

will be ranked on the waiting list by difference in 5-year restricted mean lifetime. We

propose estimating the cumulative treatment effect through IPTW-based estimators

for the cumulative hazard, risk of death and restricted mean lifetime. Essentially,

treatment-specific pseudo populations with the same confounder distribution are

created by applying IPTW. Since the weighted treatment groups have the same

adjustment covariate distribution, confounding is eliminated and estimation then
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proceeds nonparametrically. Therefore, functional forms for neither the treatment

nor the adjustment covariate effects need to be specified.

The remainder of this Chapter is organized as follows. In the next section, we

describe our proposed methods. Asymptotic properties of the proposed estimators

are developed in Section 3.3. We evaluate the performance of our estimators for finite

samples in Section 3.4. In Section 3.5, we apply our proposed method to compare

survival on hemodialysis and peritoneal dialysis using data from a national organ

failure registry. We provide some discussion of the proposed methods in Section 3.6.

3.2 Proposed methods

Suppose that a total of n subjects are included in the study. Let Ti be the

event time and Ci be the censoring time for subject i. Let Xi = min{Ti, Ci} and

δi = I(Ti ≤ Ci) represent the observation time and event indicattor, respectively,

where I(A) is an indicator function taking the value 1 when condition A holds and

0 otherwise. The at-risk indicator is denoted by Yi(t) = I(Xi ≥ t) and the observed

death counting processes is defined as Ni(t) = δiI(Xi ≤ t). Let J+1 be the number of

treatment groups (numbered j = 0, 1, . . . , J), where the first group (j=0) represents

a reference category to which the remaining treatment groups are compared. Let

Gi denote the treatment group for subject i and set Gij = I(Gi = j). We let

Yij(t) = Yi(t)Gij and dNij(t) = dNi(t)Gij. The observed data consist of n vectors,

(Xi, δi, Gi,Z
T
i )T assumed to be independent and identically distributed, where Zi is

a p×1 vector of covariates. We assume that Ci and Ti are independent given Gi and

that there are no unmeasured confounders.

Our objective is compare the average survival that would result if treatment j was

applied to the entire population to that if treatment 0 was applied to the entire pop-



42

ulation. The survival probability at time t if all subjects were assigned to treatment

j is denoted by Sj(t) = EZi
[S(t|Gi = j,Zi)], where S(t|Gi = j,Zi) is the survival

probability given treatment j and the adjustment covariates. The expectation is with

respect to the marginal distribution of Zi, such that same averaging is done across

all J + 1 groups. Note that the quantity
∫ t

0
Sj(s)ds equals the average restricted

mean lifetime considered by Chen & Tsiatis (2001). The averaging we propose is

done through inverse weighting, while Chen & Tsiatis (2001) explicitly averaged the

fitted values from a treatment stratified proportional hazards model.

We assume that treatment assignment follows a generalized logit model,

log

{
pij(β0)

pi0(β0)

}
= βT

0 Xij,

where pij(β0) is the probability that subject i is assigned to treatment j and Xij =

[01×(j−1)(p+1), 1,Z
T
i , 01×(J−j)(p+1)]

T for j = 1, · · · , J , with 01×(j−1)(p+1) a 1 by (j −

1)(p + 1) matrix with elements 0. The estimate for β0, β̂ is obtained by maximum

likelihood with score function defined as

U(β) =

n∑

i=1

J∑

j=1

Xij [Gij − pij(β)] .(3.1)

Let Λj(t) = − log{Sj(t)} denote the cumulative hazard if treatment j was assigned

to the entire population. The probability that the event occurs by time t is denoted by

Fj(t) = 1−Sj(t) and the restricted mean lifetime through (0, t] is denoted by ej(t) =

∫ t

0
Sj(u)du. To compare treatment j to the reference treatment, three measures are

proposed:

(i) Ratio of cumulative hazards

φj(t) =
Λj(t)

Λ0(t)
(3.2)
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(ii) Relative risk

RRj(t) =
Fj(t)

F0(t)
(3.3)

(iii) Difference in restricted mean lifetime

∆j(t) = ej(t) − e0(t).(3.4)

The measure φj(t) relates to the hazard ratio usually used when proportional haz-

ards holds. The measure RRj(t) is a process version of relative risk, a quantity used

regularly in epidemiologic studies. The quantity ∆j(t) measures the area between

the treatment j and treatment 0 survival curves.

Measures (3.2), (3.3) and (3.4) can be estimated using the inverse probability of

treatment weighting (IPTW) method. Their corresponding estimators are

φ̂j(t, β̂) =
Λ̂j(t, β̂)

Λ̂0(t, β̂)
,

R̂Rj(t, β̂) =
F̂j(t, β̂)

F̂0(t, β̂)
,

∆̂j(t, β̂) = êj(t, β̂) − ê0(t, β̂),

where F̂j(t, β̂) = 1 − exp{−Λ̂j(t, β̂)}, êj(t, β̂) =
∫ t

0
exp{−Λ̂j(s, β̂)}ds, and

Λ̂j(t, β̂) =
1

n

n∑

i=1

∫ t

0

wij(β̂)

R
(0)
j (s, β̂)

dNij(s),

where R
(0)
j (s, β) = n−1

∑n
i=1 Yij(s)wij(β) and wij(β̂) = Gij/pij(β̂) is the estimator

for wij(β0) = Gij/pij(β0). The quantity Λ̂j(t, β̂) is a weighted version of the Nelson-

Aalen estimator. Measures (3.2) and (3.3) are considered in a time interval [tL, tU ],

and (3.4) is considered in a time interval (0, tU ], where tL is chosen to avoid instances

in which Λ̂0(t, β̂) = 0 and tU is chosen to avoid the instability in tail of the observation

time distribution.
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After applying IPTW, J+1 pseudo populations are created, where the distribution

of Zi is balanced among the treatment groups and is same as that of the entire

population. For example, (3.4) compares the restricted mean lifetime through (0, t],

if treatment j was assigned to the entire population to that if the reference treatment

was assigned to the entire population.

3.3 Asymptotic properties

To derive the large-sample properties of estimators proposed in preceding section,

we assume the following regularity conditions for i = 1, · · · , n and j = 0, · · · , J .

(a) Zik have bounded total variation; i.e., |Zik| < κ for k = 1, · · · , p, where κ is a

constant and Zik is the kth component of Zi.

(b) Λj(τ) < ∞ where τ is a pre-specified time point satisfying Pr(Yij(τ) = 1) > 0.

(c) Continuity of r
(0)
j (t, β), where r

(0)
j (t, β) is the limiting value of R

(0)
j (t, β) with

r
(0)
j (t, β) bounded away from 0 for t ∈ [0, τ ] for β in an open set.

(d) Positive-definiteness of the matrix Ω(β) where

Ω(β) = E

{
J∑

j=1

pij(β)Xij

[
XT

ij −

J∑

k=1

XT
ikpik(β)

]}
(3.5)

(e) Pr(Gij = 1) > 0.

Asymptotic properties of the estimators are summarized by the following three

theorems:

THEOREM 1. Under conditions (a) to (e), φ̂j(t, β̂) converges almost surely and

uniformly to φj(t), and n1/2[φ̂j(t, β̂) − φj(t)] converges asymptotically to a zero-

mean Gaussian process with covariance function σφ
j (s, t) = E[ξφ

ij(s, β0)ξ
φ
ij(t, β0)], for

j = 1, · · · , J and t ∈ [tL, tU ], where
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ξφ
ij(t, β) =

1

Λ0(t)
Φij(t, β) −

Λj(t)

Λ0(t)2
Φi0(t, β)

Φij(t, β) = hj(t)
TΩ−1(β)

J∑

j=1

Xij [Gij − pij(β)] +

∫ t

0

wij(β)

r
(0)
j (s, β)

dMij(s)

dMij(s) = dNij(s) − Yij(s)dΛj(s)

hj(t) = E




∫ t

0





aij(β)

r
(0)
j (s, β)

−
E[aij(β)Yij(s)]wij(β)

r
(0)
j (s, β)

2



 dNij(s)




aij(β) = (1 − Gi0)

[∑J
k=1 exp{βTXik}Xik

exp{βTXij}
−Xijp

−1
ij (β)

]
+ Gi0

J∑

j=1

exp{βTXij}Xij.

The consistency of φ̂j(t, β̂) is proved by the Strong Law of Large Numbers (SLLN)

and continuous mapping theorem as well as the consistency of β̂ and Λ̂j(t, β̂). The

estimator Λ̂j(t, β̂) is proved to be consistent by using the SLLN and the fact that β̂ is

consistent. The quantities n1/2[Λ̂j(t, β̂)−Λj(t)] and n1/2[Λ̂0(t, β̂)−Λ0(t)] can each be

written as sums of independent and identically distributed variates. The convergence

of n1/2[φ̂j(t, β̂) − φj(t)] involves writing the quantity as functions of n1/2[Λ̂j(t, β̂) −

Λj(t)] and n1/2[Λ̂0(t, β̂)−Λ0(t)], then applying the Central Limit theorem and results

from empirical process (Bilias, Gu and Ying, 1997; Pollard, 1990). The quantity in

ξφ
ij(t, β0) is consistently estimated by its empirical counterparts.

THEOREM 2. Under conditions (a) to (e), R̂Rj(t, β̂) converges almost surely and

uniformly to RRj(t), and n1/2[R̂Rj(t, β̂)−RRj(t)] converges asymptotically to a zero-

mean Gaussian process with covariance function σR
j (s, t) = E[ξR

ij(s, β0)ξ
R
ij(t, β0)], for

j = 1, · · · , J and t ∈ [tL, tU ], where

ξR
ij(t, β) =

Sj(t)

F0(t)
Φij(t, β) −

Fj(t)S0(t)

F0(t)2
Φi0(t, β),(3.6)

with Φij(t, β) defined as in Theorem 1.
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In the next theorem, we consider the asymptotic behavior of our restricted mean

lifetime difference estimator.

THEOREM 3. Under conditions (a) to (e), ∆̂j(t, β̂) converges almost surely and

uniformly to ∆j(t), and n1/2[∆̂j(t, β̂) − ∆j(t)], converges asymptotically to a zero-

mean Gaussian process with covariance function σ∆
j (s, t) = E[ξ∆

ij (s, β0)ξ
∆
ij (t, β0)], for

j = 1, · · · , J and t ∈ (0, τU ], where

ξ∆
ij (t, β) = −

∫ t

0

Sj(s)Φij(t, β)ds +

∫ t

0

S0(s)Φi0(t, β)ds.(3.7)

The proof for Theorem 2 and Theorem 3 proceeds much like that of Theorem 1.

3.4 Simulation study

We evaluated the finite sample properties of the proposed estimator through a

series of simulation studies. A covariate Zi1 was generated from a Uniform (0,1)

distribution and a covariate Zi2 was generated as a binary variable (0 or 1) with

Pr(Zi2 = 1) = 0.5. We set up two treatments, with the treatment indicator, Gi,

generated from a Bernoulli distribution with parameter pi1(β) = exp(β0 + β1Zi1 +

β2Zi2)/{1 + exp(β0 + β1Zi1 + β2Zi2)}. We chose β0 = 0.1, β1 = 0.2 and β2 = −0.2.

We generated the death times from a Weibull model with hazard function

λij(t) = λi(t|Gi = j, Zi1, Zi2) = αjγjt
γj−1 exp{η1Zi1 + η2Zi2} for j = 0, 1.

Censoring times were generated from a Uniform (2.5, 5) distribution. Various values

of γj were used to make the hazard ratio constant or vary through time. Censoring

percentages ranged from 18% to 36%. Values of η1 = ±0.5 and η2 = ±0.5 were

employed in the Cox model. We chose sample sizes n = 200 and n = 100. A total

of 1000 simulations were used for each setting. For the first two measures, φj(t) and
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RRj(t), we employed the log transformation, such that confidence intervals would

always be in a valid range. Each of the three estimators were evaluated at time

points t = 1, t = 2 and t = 3.

The proposed estimators generally perform well (Table 3.2 and Table 3.3). The

empirical mean of our estimators is approximately equal to the true value. The aver-

age asymptotic standard errors (ASE) are generally close to the empirical standard

deviations (ESD), while the coverage probabilities (CP) are close to the nominal

value of 0.95 (Table 3.4).

We also checked the impact of misspecification of the treatment assignment prob-

ability model on estimates of our measures. The treatment indicator, Gi, was gen-

erated from a Bernoulli distribution with

Pr(Gi = 1|Zi1, Zi2) =
exp(0.2 − 0.5 × Zi1 + Zi2 + Zi1 × Zi2)

1 + exp(0.2 − 0.5 × Zi1 + Zi2 + Zi1 × Zi2)
,

where Zi1 was generated from a Uniform (0,1) distribution and Zi2 was generated

from a Bernoulli (0.4) distribution. Death times, Ti, were generated from a Cox

model with hazard function

λij(t) = λ0j(t) exp{0.5 × Zi1 + 0.5 × Zi2},

where λ00(t) = 0.2 and λ01(t) = 0.25. We evaluated the performance of our estima-

tors when some covariate terms were omitted or misspecified in the logistic model.

When some covariates are not included in the logistic model, the estimates of our

measures are biased, depending on the degree of misspecification (Table 3.5). For

example, when Zi2 has a strong effect on treatment assignment, the estimates are

very biased when Zi2 is excluded from the fitted logistic model. Results for a model

containing only Zi1 were comparable to the intercept-only model.
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3.5 Analysis of dialysis data

We applied our proposed methods to compare the survival of end stage renal

disease (ESRD) patients by dialysis therapy. Data were obtained from the Cana-

dian Organ Replacement Register (CORR) which is a nation-wide and population-

based organ failure registry. Our analysis included patients who were either put on

hemodialysis (HD) or peritonital dialysis (PD) at the time of renal replacement ther-

apy initiation. We carried out an intent-to-treat analysis which classified patients

based on the type of dialysis received at the initiation of renal replacement therapy.

Hemodialysis served as the reference category (j=0).

This study included n=23,254 ESRD patients aged 18 and above who initiated

HD or PD between 1990 and 1998. Patients began follow-up at the date of dialy-

sis initiation and were followed until the earliest of death, loss to follow-up, kidney

transplantation or the end of the observation period (December 31, 1998). There

were 17,766 patients initially placed on HD, and approximately 38% of them died,

while 36% of patients on PD (5,488) were observed to die. Potential confounders

included in the data set are patient’s age, gender, race, underlying renal diagno-

sis, region and various comorbid illnesses (cerebrovascular accident, cardiovascular

disease, chronic obstructive pulmonary disease (COPD), malignancy, peripheral vas-

cular disease, other illnesses). The probability of initiating dialysis on PD (HD) was

calculated using a logistic model adjusting for the above covariates, with interaction

terms included when significant. Interaction terms are selected by a backward elim-

ination algorithm which started with a model that contained all main effects and all

pair-wise interaction terms, forcing the main effects to be included.

We computed our proposed estimators over the (0, 96] month interval. Figure 3.1
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shows that the cumulative hazard of death is significantly lower comparing PD to

HD during the first 32 months with point estimate ranges from 0.38 to 0.94, while

after month 45, the cumulative hazard of death is significantly higher for PD relative

to HD with the cumulative hazard ratio ranges from 1.06 to 1.22. The mortality risk

ratio comparing PD to HD ranges from 0.38 to 0.95 for the first 32 months, with

the risk of death is significantly lower for PD relative to HD (Figure 3.2). The risk

of death for PD is significantly higher after month 45 with the risk ratio ranging

from 1.04 to 1.08. The restricted mean lifetime (in months) for the first 84 months

is greater for PD compared to HD, although the difference is only significant in the

(0,66] months time interval (Figure 3.3). The maximum difference is 1.4 months,

statistically significant, although not likely of clinical importance.

3.6 Discussion

In this Chapter, we propose methods to estimate the cumulative treatment effect.

The proposed methods would be most useful in observational studies due to the

potential for bias in the absence of accounting for confounders. Our methods do

not require that the proportional hazards assumption hold for either the treatments

or the adjustment covariates. The proposed measures compare patient cumulative

hazard of death, risk of death and restricted mean lifetime if the treatment was

assigned to the entire population to that if the reference treatment was assigned

to the entire population. Simulation studies show that the proposed estimators are

approximately unbiased and that the estimated standard errors are quite accurate.

Our proposed methods do not require specifying the functional form of the effects

of treatment or adjustment covariates. However, unlike a typical Cox model, we

do need to model the treatment assignment probability and the consistency of our
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proposed estimators is based on the correct estimate for this probability. Although we

essentially trade one model for another, a binary (multinominal) outcome is typically

easier to model than a hazard function due to the absence of the time dimension.

Various methods in the existing literature are related to those we propose. For

example, a method proposed by Anstrom and Tsiatis (2001) can be used to compare

treatment-specific survival funcations at a fixed time point, but was not designed to

measure the treatment effect as a process over time. Xie and Liu (2005) developed

an inverse probability of treatment weighted Kaplan-Meier estimator to estimate

the survival function. This estimator reduced the bias of unweighted nonparametric

Kaplan-Meier estimator when confounders for treatment exist. A weighted log rank

statistic was proposed to test for the difference between the two survival curves. The

authors did not propose a measure to estimate the treatment effect along with time

while our proposed measures give a view of the time-dependent treatment effect.

Moreover, we compared restricted mean lifetime which interests many researchers.

Chen & Tsiatis (2001) compared the restricted mean lifetime between two treat-

ment groups. A Cox model was fitted for each treatment group such that the authors

assumed that the effects of adjustment covariates follow proportional hazards. The

survival function for each group was estimated by explicitly averaging over all sub-

jects in the sample. The treatment-specific survival function (and hence, restricted

mean lifetime) estimators we propose converge to the same values as the estimators

proposed by Chen & Tsiatis (2001) under their specified model. One advantage of

our estimators is that those of Chen & Tsiatis (2001) require explicitly averaging over

all observed covariate patterns which would be taxing computationally, particulary

for large data sets. Another advantage of our estimators is that we need not specify a

functional form for the effects of adjustment covariates. Conversely, Chen & Tsiatis
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(2001) do not need to assume that the censoring is conditionally independent of the

adjustment covariates.

In this chapter, we constructed confidence intervals of proposed measures. If

we want to look at the measures as a process over time, confidence bands can be

constructed as in Wei and Schaubel (2008). However, confidence intervals are often

preferred over confidence bands, since researchers are usually interested in the cumu-

lative effect at some specific time point or set of time points. For example, surgeons

want to know the restricted mean lifetime at 1, 3 and 5 years. In this case, point-wise

confidence intervals are more appropriate.

Applying our methods to the CORR dialysis data using an intent-to-treat anal-

ysis, we found that cumulative hazard and risk of death are significantly lower for

PD relative to HD for the first 32 months while the opposite was found after ap-

proximately 45 months from dialysis initiation. We found that the restricted mean

life is significant longer comparing PD to HD based on the first 66 months while the

difference is non-significant after that. We assumed that there is no selection bias

due to unmeasured covariates which may be an issue since the assignment of dialysis

may depend on patient characteristics for which no data are available to CORR. As

such, our results must be interpreted with some caution.

Our proposed methods assume that censoring does not depend on confounders for

treatment, although sub-analysis revealed that the censoring hazard does in fact de-

pend on certain adjustment covariates. However, φ̂1(t) (ratio of cumulative hazards)

was similar to what we found in Chapter 2 which does not require that censoring time

is independent of the covariates. This gives evidence that, even if the Ci and Zi in-

dependence assumption is violated, the results were not very biased. As a sensitivity

analysis to further address the dependent censoring issue, we applied an inverse cen-
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soring weight (Robins and Rotnitzky, 1992; Robins, 1993) and IPTW concurrently

to our estimators. The modified weight is given by

wij(t) =
Yij(t)

Pr(Gi = j|Zi)Pr(Ci > t|Gi = j,Zi)
.

The point estimates based on the modified estimators were quite similar to what

we reported in last section. We develop a generalization of this method in the next

chapter.
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3.7 Tables and Figures

Setting α0 α1 γ0 γ1 η1 η2

I 0.35 0.25 1 1 0.5 0.5

II 0.35 0.25 1 1 -0.5 0.5

III 0.35 0.25 1 1 0.5 -0.5

IV 0.2 0.35 1.2 1 0.5 0.5

V 0.2 0.35 1.2 1 -0.5 0.5

VI 0.2 0.35 1.2 1 0.5 -0.5

Table 3.1: Simulation study: Parameter settings
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t=1 t=2 t=3

Setting log φ1(t) BIAS log φ1(t) BIAS log φ1(t) BIAS

I -0.329 0.001 -0.323 0.004 -0.317 0.009
II -0.332 -0.005 -0.328 -0.011 -0.324 -0.007
III -0.332 -0.003 -0.328 -0.001 -0.324 0.003

log φ̂1(t) IV 0.549 0.007 0.404 0.001 0.320 -0.002
V 0.553 0.003 0.411 -0.007 0.327 -0.009
VI 0.553 0.023 0.411 0.010 0.327 0.003

Setting log RR1(t) BIAS log RR1(t) BIAS log RR1(t) BIAS

I -0.254 0.001 -0.190 0.001 -0.142 0.003
II -0.284 -0.005 -0.239 -0.008 -0.201 -0.005
III -0.284 -0.004 -0.239 -0.002 -0.201 0.002

log R̂R1(t) IV 0.434 0.008 0.243 0.002 0.143 -0.001
V 0.481 0.004 0.303 -0.005 0.203 -0.005
VI 0.481 0.021 0.303 0.009 0.203 0.003

Setting ∆1(t) BIAS ∆1(t) BIAS ∆1(t) BIAS

I 0.060 -0.001 0.173 -0.003 0.287 -0.005
II 0.041 -0.001 0.136 0.001 0.250 0.002
III 0.041 -0.001 0.136 -0.001 0.250 -0.002

∆̂1(t) IV -0.106 0.001 -0.263 0.001 -0.392 0.003
V -0.072 0.001 -0.201 0.005 -0.327 0.009
VI -0.072 -0.001 -0.201 -0.003 -0.327 -0.004

Table 3.2: Simulation results: Evaluation of bias (n=200)
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t=1 t=2 t=3

Setting log φ1(t) BIAS log φ1(t) BIAS log φ1(t) BIAS

I -0.329 -0.023 -0.323 0.001 -0.317 0.002
II -0.332 0.026 -0.328 0.004 -0.324 0.005
III -0.332 -0.007 -0.328 -0.001 -0.324 -0.008

log φ̂1(t) IV 0.549 0.021 0.404 0.005 0.320 0.014
V 0.553 0.024 0.411 0.008 0.327 -0.001
VI 0.553 0.020 0.411 0.003 0.327 0.006

Setting log RR1(t) BIAS log RR1(t) BIAS log RR1(t) BIAS

I -0.254 -0.020 -0.190 -0.001 -0.142 -0.001
II -0.284 0.022 -0.239 0.003 -0.201 0.003
III -0.284 -0.007 -0.239 -0.001 -0.201 -0.006

log R̂R1(t) IV 0.434 0.022 0.243 0.007 0.143 0.011
V 0.481 0.025 0.303 0.009 0.203 0.003
VI 0.481 0.021 0.303 0.005 0.203 0.006

Setting ∆1(t) BIAS ∆1(t) BIAS ∆1(t) BIAS

I 0.060 0.002 0.173 0.002 0.287 -0.002
II 0.041 -0.004 0.136 -0.009 0.250 -0.013
III 0.041 -0.001 0.136 -0.003 0.250 -0.005

∆̂1(t) IV -0.106 0.001 -0.263 0.001 -0.392 -0.001
V -0.072 0.001 -0.201 0.002 -0.327 0.004
VI -0.072 0.002 -0.201 0.004 -0.327 0.005

Table 3.3: Simulation results: Evaluation of bias (n=100)
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Setting log φ1(t) BIAS ASE ESD CP

I -0.323 0.004 0.182 0.187 0.94
II -0.328 -0.011 0.211 0.213 0.95
III -0.328 -0.001 0.211 0.211 0.96

log φ̂1(t) IV 0.405 0.001 0.186 0.191 0.94
V 0.411 -0.007 0.216 0.224 0.94
VI 0.411 0.010 0.217 0.219 0.95

Setting log RR1(t) BIAS ASE ESD CP

I -0.190 0.001 0.109 0.111 0.95
II -0.239 -0.008 0.155 0.157 0.95
III -0.239 -0.002 0.155 0.155 0.96

log R̂R1(t) IV 0.244 0.002 0.114 0.118 0.94
V 0.303 -0.005 0.162 0.168 0.94
VI 0.303 0.009 0.162 0.164 0.95

Setting ∆1(t) BIAS ASE ESD CP

I 0.173 -0.003 0.098 0.101 0.95
II 0.136 0.001 0.092 0.092 0.95
III 0.136 -0.001 0.093 0.094 0.95

∆̂1(t) IV -0.264 0.002 0.095 0.099 0.95
V -0.201 0.005 0.088 0.089 0.94
VI -0.201 -0.003 0.088 0.092 0.95

Table 3.4: Simulation results: Accuracy of standard error estimator (t=2, n=200)
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Covariates in logistic model log φ1(t) BIAS ASE ESD CP
Z1, Z2, Z1 × Z2 0.216 0.005 0.223 0.233 0.94

Z
†
1
, Z2, Z2 × Z

†
1

0.216 0.004 0.223 0.233 0.94
Z1, Z2 0.216 0.009 0.225 0.229 0.95
Z2 0.216 0.001 0.225 0.228 0.95
Z1 0.216 0.166 0.213 0.217 0.88
None 0.216 0.159 0.214 0.217 0.88

Covariates in logistic model log RR1(t) BIAS ASE ESD CP
Z1, Z2, Z1 × Z2 0.149 0.006 0.157 0.164 0.94

Z
†
1
, Z2, Z2 × Z

†
1

0.149 0.006 0.158 0.161 0.94
Z1, Z2 0.149 0.009 0.158 0.161 0.95
Z2 0.149 0.003 0.158 0.160 0.95
Z1 0.149 0.117 0.151 0.154 0.90
None 0.149 0.113 0.151 0.153 0.89

Covariates in logistic model ∆1(t) BIAS ASE ESD CP
Z1, Z2, Z1 × Z2 -0.099 0.001 0.106 0.111 0.93

Z
†
1
, Z2, Z2 × Z

†
1

-0.099 0.002 0.105 0.111 0.93
Z1, Z2 -0.099 -0.001 0.107 0.109 0.94
Z2 -0.099 0.003 0.107 0.109 0.94
Z1 -0.099 -0.072 0.097 0.101 0.86
None -0.099 -0.069 0.098 0.101 0.87

Z
†
1

= 1, if Z1 < 0.5; Z
†
1

= 0, if Z1 ≥ 0.5

Table 3.5: Simulation results: Effect of model misspecification (t=2, n=200)
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Figure 3.1: Analysis of dialysis data: Estimator and 95% pointwise confidence intervals for the ratio
of cumulative hazard functions (PD/HD), φ1(t).
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Figure 3.2: Analysis of dialysis data: Estimator and 95% pointwise confidence intervals for the risk
ratio (PD/HD), RR1(t).
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Figure 3.3: Analysis of dialysis data: Estimator and 95% pointwise confidence intervals for the
difference in restricted mean lifetime (PD-HD), ∆1(t).
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3.8 Appendix

Proof of Theorem 1

Consistency:

The strong consistency of φ̂j(t, β̂), j = 1, · · · , J , can be proved by first proving the

consistency of Λ̂j(t, β̂) for j = 0, · · · , J ,where

Λ̂j(t, β̂) =
1

n

n∑

i=1

∫ t

0

wij(β̂)

n−1
∑n

i=1 Yij(s)wij(β̂)
dNij(s).

Using the fact that wij(β̂)
a.s.
−→ wij(β0) as n → ∞, and the Strong Law of Large

Numbers (SLLN), one can obtain that n−1
∑n

i=1 Yij(s)ŵij(β̂) converges almost surely

to

E [Yij(s)wij(β0)]

= E {E [Yij(s)wij(β0)|Zi]}

= E
{
Pr−1(Gi = j|Zi)E [Yij(s)|Zi]

}

= E
[
Pr−1(Gi = j|Zi)Pr(Ti > s|Gi = j,Zi)Pr(Ci > s|Gi = j,Zi)Pr(Gi = j|Zi)

]

= Pr(Ci > s|Gi = j)E [Pr(Ti > s|Gi = j,Zi)]

= Pr(Ci > s|Gi = j)E [S(s|Gi = j,Zi)]

= Pr(Ci > s|Gi = j)Sj(s)

Using similar techniques, one can obtain that n−1
∑n

i=1 wij(β̂)dNij(s) converges

almost surely to Pr(Ci > s|Gi = j)dFj(s) as n → ∞. The above listed results give

Λ̂j(t, β̂)
a.s.
−→ Λj(t) for j = 0, · · · , J . Therefore, φ̂j(t, β̂) converges to φj(t) almost

surely as n → ∞ using the continuous mapping theorem.

Asymptotic normality:
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One can write:

n1/2
[
φ̂j(t, β̂) − φj(t)

]
=

1

Λ̂0(t, β̂)
n1/2[Λ̂j(t, β̂) − Λj(t)] + Λj(t)n

1/2

[
1

Λ̂0(t, β̂)
−

1

Λ0(t)

]

The quantity n1/2
[
Λ̂j(t, β̂) − Λj(t)

]
can be decomposed into α̂j1(t)+α̂j2(t), where

α̂j1(t) = n1/2
[
Λ̂j(t, β̂) − Λ̂j(t, β0)

]

α̂j2(t) = n1/2
[
Λ̂j(t, β0) − Λj(t)

]
.

The quantity α̂j1(t) is written as

α̂j1(t) = n−1/2

n∑

i=1

∫ t

0

wij(β̂)dNij(s)

R
(0)
j (s, β̂)

− n−1/2

n∑

i=1

∫ t

0

wij(β0)dNij(s)

R
(0)
j (s, β0)

= n−1/2

n∑

i=1

∫ t

0

[wij(β̂) − wij(β0)]dNij(s)

R
(0)
j (s, β̂)

+n−1/2

n∑

i=1

∫ t

0

wij(β0)

[
1

R
(0)
j (s, β̂)

−
1

R
(0)
j (s, β0)

]
dNij(s),

By Taylor Series expansions, α̂j1(t) can be written as

α̂j1(t) = ĥj(t)
T n1/2(β̂ − β0) + op(1),(3.8)

where

ĥj(t) =
1

n

n∑

i=1

∫ t

0

{
aij(β0)

R
(0)
j (s, β̂)

−
wi(β)[n−1

∑n
i=1 aij(β0)Yij(s)]

R
(0)
j (s, β0)

2

}
dNij(s)

and

aij(β) =
∂wij(β)

∂β

= (1 − Gi0)

[∑J
k=1 exp{βTXik}Xik

exp{βTXij}
− Xijp

−1
ij (β)

]
+ Gi0

J∑

j=1

exp{βTXij}Xij.

By the Strong Law of Large Numbers (SLLN), R
(0)
j (s, β̂) and R

(0)
j (s, β0) converge to

r
(0)
j (s, β0), and n−1

∑n
i=1 aij(β0)Yij(s) converges to E[aij(β0)Yij(s)]. Therefore, by
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the SLLN, ĥj(t) converges to hj(t) where

hj(t) = E




∫ t

0





aij(β)

r
(0)
j (s, β)

−
E[aij(β)Yij(s)]wij(β)

r
(0)
j (s, β)

2



 dNij(s)




By a Taylor expansion, one can obtain that

n−1/2U(β0) = Ω̂(β0)n
1/2(β̂ − β0) + op(1)

Ω̂(β) = n−1

n∑

i=1

J∑

j=1

Xijpij(β)

[
XT

ij −

J∑

k=1

XT
ikpik

]
.

By using the SLLN, Ω̂(β0) converges to Ω(β0) defined as in (3.5). Since U(β0) can

be written as in (3.1), we obtain that

n1/2(β̂ − β0) = Ω(β0)
−1n−1/2

n∑

i=1

J∑

j=1

Xij [Gij − pij(β0)] + op(1)(3.9)

Using results (3.8), (3.9) and the fact that ĥj(t)
a.s.
−→ hj(t), we obtain that

α̂j1(t) = n−1/2

n∑

i=1

hj(t)
T Ω(β0)

−1

J∑

j=1

Xij [Gij − pij(β0)] + op(1).(3.10)

The quantity α̂j2(t) can be written as

α̂j2(t) = n−1/2
n∑

i=1

∫ t

0

wij(β0)

R
(0)
j (s, β0)

dMij(s)

where dMij(s) = dNij(s)−Yij(s)dΛj(s). Using the fact that R
(0)
j (s, β0)

a.s
−→ r

(0)
j (s, β),

we obtain that

α̂j2(t) = n−1/2
n∑

i=1

∫ t

0

wij(β0)

r
(0)
j (s, β0)

dMij(s) + op(1)(3.11)

Based on (3.10) and (3.11), one can obtain that

n1/2
[
Λ̂j(t, β̂) − Λj(t)

]

= n−1/2
n∑

i=1

[
hj(t)

T Ω(β0)
−1

J∑

j=1

Xij [Gij − pij(β0)] +

∫ t

0

wij(β0)

r
(0)
j (s, β0)

dMij(s)

]
+ op(1)
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By a Taylor series expansion, we obtain that

n1/2

[
1

Λ̂0(t, β̂)
−

1

Λ0(t)

]
= −n1/2 1

Λ0(t)2

[
Λ̂0(t, β̂) − Λ0(t)

]
+ op(1).

Therefore, one can write

n1/2
[
φ̂j(t, β̂) − φj(t)

]
= n−1/2

n∑

i=1

[
1

Λ0(t)
Φij(t, β0) −

Λj(t)

Λ0(t)2
Φi0(t, β0)

]
+ op(1),

where

Φij(t, β0) = hj(t)
T Ω(β0)

−1
J∑

j=1

Xij [Gij − pij(β0)] +

∫ t

0

wij(β0)

r
(0)
j (s, β0)

dMij(s).

Since E[Φij(t, β0)] = 0 for j = 0, · · · , J , n1/2
[
φ̂j(t, β̂) − φj(t)

]
is a scaled sum

of n independent and identically distributed mean 0 random variates and there-

fore converges to a mean 0 Normal distribution, for fixed t. Furthermore, since
[
φ̂j(t, β̂) − φj(t)

]
is tight, n1/2

[
φ̂j(t, β̂) − φj(t)

]
converges to a zero mean Gaussian

process with covariance function E[ξφ
ij(s, β0)ξ

φ
ij(t, β0)] for a pair (s, t), where

ξφ
ij(t, β) =

1

Λ0(t)
Φij(t, β) −

Λj(t)

Λ0(t)2
Φi0(t, β)

Φij(t, β) = hj(t)
TΩ−1(β)

J∑

j=1

Xij(Gij − pij) +

∫ t

0

wij(β)

r
(0)
j (s, β)

dMij(s).

Proof of Theorem 2

Since Λ̂j(t, β̂) converges almost surely to Λj(t), by the continuous mapping theorem,

R̂Rj(t, β̂) converges almost surely to RRj(t). With respect to asymptotic normality,

one can write

n1/2[R̂Rj(t, β̂) − RRj(t)] = n1/2

{
Fj(t, β̂)

F̂0(t, β̂)
−

Fj(t)

F0(t)

}

= n1/2 1

F̂0(t, β̂)

[
Sj(t) − Ŝj(t, β̂)

]
+ n1/2

[
Fj(t)

F̂0(t, β̂)
−

Fj(t)

F0(t)

]
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By Functional Delta Method,

n1/2
[
Sj(t) − Ŝj(t, β̂)

]
= Sj(t)n

1/2
[
Λ̂j(t, β̂) − Λj(t)

]
+ op(1)

n1/2

[
1

F̂0(t, β̂)
−

1

F0(t)

]
=

−S0(t)

[F0(t)]2
n1/2

[
Λ̂0(t, β̂) − Λ0(t)

]
+ op(1).

Above listed results give

n1/2[R̂Rj(t, β̂) − RRj(t)]

=
Sj(t)

F0(t)
n1/2

[
Λ̂j(t, β̂) − Λj(t)

]
−

Fj(t)S0(t)

[F0(t)]2
n1/2

[
Λ̂0(t, β̂) − Λ0(t)

]
+ op(1),

which is a sum of mean 0 variates, using the fact that n1/2[Λ̂j(t, β̂) − Λj(t)] =

n−1/2
∑n

i=1 Φij(t, β0) + op(1) for j = 0, · · · , J , shown in the proof of Theorem 1.

Multivariate Central Limit Theorem and results from empirical process can be used,

as in the proof of Theorem 1, to demonstrate that n1/2
[
R̂Rj(t, β̂) − RRj(t)

]
con-

verges asymptotically to a mean 0 Gaussian process.

Proof of Theorem 3

Using the fact that Λ̂j(t, β̂) converges almost surely to Λj(t) and the continuous

mapping theorem, we obtain that ∆̂j(t, β̂) converges almost surely to ∆j(t). With

respect to the asymptotic normality, one can write

n1/2
[
∆̂j(t, β̂) − ∆j(t)

]

= n1/2

∫ t

0

[
Ŝj(s, β̂) − Ŝ0(s, β̂)

]
ds − n1/2

∫ t

0

[Sj(s) − S0(s)] ds

= n1/2

∫ t

0

[
Ŝj(s, β̂) − Sj(s)

]
ds − n1/2

∫ t

0

[
Ŝ0(s, β̂) − S0(s)

]
ds.

By Taylor expansions and similar techniques as in the proof of Theorem 1, one can
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write

n1/2
[
∆̂j(t, β̂) − ∆j(t)

]

= n1/2

∫ t

0

−Sj(s)
[
Λ̂j(s, β̂) − Λj(s)

]
+ S0(s)

[
Λ̂0(s, β̂) − Λ0(s)

]
ds + op(1)

= n−1/2
n∑

i=1

∫ t

0

−Sj(s)Φij(s) + S0(s)Φi0(s)ds + op(1),

which is a sum of n independent and identically distributed mean 0 random variables.

Similar to the proof of Theorem 1, one can obtain that n1/2[∆̂j(β̂, t)−∆j(t)] converges

to a mean 0 Gaussian process with covariance function E[ξ∆
ij (s, β0)ξ

∆
ij (t, β0)] defined

as in (3.7).
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CHAPTER IV

Estimating Cumulative Treatment Effects In The Presence

Of Non-Proportional Hazards And Dependent Censoring

ABSTRACT: In medical studies of time to event data, non-proportional hazards

and dependent censoring are very common issues when estimating the treatment

effect. A traditional method for dealing with time-dependent treatment effects is

to model the time-dependence parametrically. Limitations of this approach include

the difficulty to verify the correctness of the specified functional form and the fact

that, in the presence of a treatment effect that varies over time, investigators are

usually interested in the cumulative as opposed to instantaneous treatment effect.

In many applications, censoring time is not independent of event time. Therefore, we

propose methods for estimating the cumulative treatment effect in the presence of

non-proportional hazards and dependent censoring. As in Chapter 3, the three pro-

posed measures include the ratio of cumulative hazards, relative risk and difference in

restricted mean lifetime. For each measure, we propose a double-inverse-weighted es-

timator, constructed by first using inverse probability of treatment weighting (IPTW)

to balance the treatment-specific covariate distributions, then using inverse probabil-

ity of censoring weighting (IPCW) to handle the dependent censoring. The proposed

estimators are consistent and aymptotically normal. We study their finite-sample

properties through simulation. The proposed methods are used to compare kidney

70
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wait list mortality by race.

KEY WORDS: Cumulative hazard; Dependent censoring; Inverse weighting; Rela-

tive Risk; Restricted mean lifetime; Survival analysis; Treatment effect.

4.1 Introduction

In clinical and epidemiologic studies of survival data, it is very common that

the treatment effect is not constant over time. In the presence of non-proportional

hazards, the Cox (1972) model is often modified such that the treatment effect is

assumed to vary as a specified function of time. However, the functional form chosen

may not be correct. Moreover, researchers are usually more interested in the cu-

mulative treatment effect in settings where the treatment effect is time-dependent.

Without specifying the functional form of the treatment effect, one can compare

survival or cumulative hazard curves using the Nelson-Aalen (Nelson, 1972; Aalen,

1978) estimator or Kaplan-Meier (Kaplan and Meier, 1958) estimator. These esti-

mators may lead to biased results when confounders for treatment exist, as is often

the case in observational studies. When censoring time depends on factors predictive

of the event, the event and censoring time are correlated through these factors. If

these prognostic factors are time-dependent and if they are not only risk factors for

the event but also affected by treatment, standard methods of covariate adjustment

(such as Cox regression) may produce biased treatment effects. If baseline values in-

stead of time-dependent factors are adjusted, standard methods are still invalid since

the event and censoring times will be dependent through their mutual correlation

with the time-dependent factors.

The investigation which motivated our proposed research involves comparing wait-

list survival for patients with end-stage renal disease. The effect of race (Caucasian
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vs African American) on survival is of interest and may vary over time. A patient’s

hospitalization history is a predictor of wait-list mortality and also affects trans-

plantation probability, since patients with more hospitalizations are less likely to

receive a kidney transplant. Although a patient’s death may be observed following

kidney transplantation, receipt of a transplant does censor their wait-list mortality.

Therefore, the mortality and censoring will be correlated unless the model adjusts

for hospitalization history. However, one would not want to adjust for hospitaliza-

tion history, since doing so may result in the marginal effect of race being under or

over estimated. Therefore, we need to handle dependent censoring in this analysis.

In addition, there are some time constant covariates, such as age and diagnosis, for

which adjustment is necessary.

Current methods usually focus on the survival or cumulative hazard function when

estimating cumulative treatment effects in the presence of censored data. However,

mean lifetime is often relevant since patients usually want to know how long they

will live. Chen & Tsiatis (2001) compared restricted mean lifetime between two

treatment groups using treatment-specific Cox proportional hazard models. The

survival function for each group was estimated by averaging over all subjects in the

sample. Their proposed model requires that proportionality holds for the adjustment

covariates.

Without specifying the functional form for the effects of adjustment covariates,

inverse probability of treatment weighting (IPTW) can be applied to balance the dis-

tribution of confounders among the treatment groups. Hernan, Brumback & Robins

(2000, 2001) and Robins, Hernan & Brumback (2000) used marginal structural mod-

els to estimate the causal effect of a time-dependent exposure. Inverse weighting

was applied to adjust for time-dependent confounders that are affected by previous
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treatment. In the context of survival analysis, the authors assumed Cox propor-

tional hazard models; i.e., the effect of treatment is assumed to be constant. With

respect to the related nonparametric methods, Xie and Liu (2005) developed an ad-

justed Kaplan-Meier curve using inverse weighting to handle potential confounders,

assuming that the event time and censoring time are independent.

Inverse probability of censoring weighting (IPCW) has been applied in many ap-

plications to overcome dependent censoring. This method is originally proposed by

Robins and Rotnitzky (1992). A Cox proportional hazard model is assumed for

the event time, while an inverse probability of censoring weight is applied in the

estimating equation for the effect parameters. This weight is the inverse of the sur-

vival function for censoring, which is estimated by non-parametric or semiparametric

Kaplan-Meier estimators from a Cox model. Robins and Finkelstein (2000) applied

IPCW to handle dependent censoring in an AIDS clinical trial. The IPCW method

has been applied in various other settings (Matsuyama & Yamaguchi, 2008; Yoshida,

Matsuyama & Ohashi, 2007).

We propose three cumulative treatment effect measures: ratio of cumulative haz-

ards, relative risk, and difference in restricted mean lifetime. The proposed esti-

mators are computed by double inverse weighting, wherein inverse probability of

treatment weighting (IPTW; Hernan, Brumback & Robins, 2000, 2001; Robins, Her-

nan & Brumback, 2000) is used to balance the treatment-specific baseline adjustment

covariate distributions and IPCW (Robins and Rotnitzky 1992; Robins 1993) is con-

currently applied to handle the dependent censoring due to time-varying factors.

After applying the double inverse weight to the observed data, estimation of the cu-

mulative treatment effects proceeds nonparametrically, negating the need to specify

functional forms for the effect of either the treatment or the adjustment covariates.
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The remainder of this chapter is organized as follows. We describe our proposed

methods in the next section. In Section 4.3, we derive the asymptotic properties of

our proposed estimators. We evaluate the performance of our estimators for finite

samples in Section 4.4. In Section 4.5, we apply the methods to kidney wait list

data. Discussion is provided in Section 4.6.

4.2 Proposed methods

Suppose that n subjects are included in the data set. Let Di be the event time and

Ci be the censoring time for subject i. Let Xi = min{Di, Ci} and δi = I(Di ≤ Ci)

where I(A) is an indicator function taking the value 1 when condition A holds and 0

otherwise. The observed event counting processes is defined as ND
i (t) = δiI(Xi ≤ t)

and the observed censoring counting processes is defined as NC
i (t) = (1−δi)I(Xi ≤ t).

The risk indicator is denoted by Yi(t) = I(Xi ≥ t). Let j (j = 0, 1, . . . , J) be the

index for treatment group, with group j = 0 representing a reference category to

which the remaining treatment groups are compared. Let Gi denote the treatment

group for subject i and set Gij = I(Gi = j). Correspondingly, we set Yij(t) =

Yi(t)Gij, dND
ij (t) = dND

i (t)Gij and dNC
ij (t) = dNC

i (t)Gij . The observed data consist

of n independent and identically distributed vectors, (Xi, δi, Gi, Z̃
T
i (Xi))

T , where

Z̃i(t) = {Zi(s); s ∈ [0, t]} and Zi(t) is a p× 1 vector of covariates which may contain

some time-dependent elements. We let Zi(0) denote the covariate values at baseline.

In the case where Zi(t) not only affects the event time but also affects censoring,

event and censoring are dependent unless the effect of Zi(t) on the event is modeled

explicitly. However, we usually would prefer adjust for Zi(0), instead of Zi(t) when

Zi(t) is affected by treatment. It is of interest to compare the average survival

that would result if treatment j was assigned to the entire population to that if
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reference treatment was assigned to the entire population. The average survival

function if treatment j was assigned to is given by Sj(t) = E[S(t|Gi = j,Zi(0))].

The expectation is with respect to the marginal distribution of Zi(0), such that the

same averaging is done across all J + 1 treatment groups.

To compare the cumulative effect of treatment j to the reference treatment, three

measures are proposed. The first proposed measure is the ratio of cumulative hazards,

φj(t) =
Λj(t)

Λ0(t)
,(4.1)

where Λj(t) = − log{Sj(t)} is the cumulative hazard at time t. The measure φj(t)

is equal to the hazard ratio we usually use when proportional hazard holds. The

second proposed measure is the ratio of cumulative distribution function,

RRj(t) =
Fj(t)

F0(t)
,(4.2)

where Fj(t) = 1−Sj(t) is the probability of death by time t. The RRj(t) is a process

version of relative risk, a quantity which is frequently estimated in epidemiologic

studies. The third proposed measure is the difference in restricted mean lifetime,

∆j(t) = ej(t) − e0(t),(4.3)

where ej(t) =
∫ t

0
Sj(u)du is the area under the survival curve (restricted mean life-

time) through (0, t]. The ∆j(t) measure equals the area between the survival curves

that would result if treatment j versus treatment 0 was assigned to all subjects in

the population.

Let Xij = [01×(j−1)(p+1), 1,Z
T
i (0), 01×(J−j)(p+1)]

T where 01×(j−1)(p+1) is a 1 by (j −

1)(p + 1) matrix with elements 0, for j = 1, · · · , J . We assume that treatment

assignment follows a generalized logit model,

log

{
pij(β0)

pi0(β0)

}
= βT

0 Xij,
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where pij(β0) = Pr(Gi = j|Zi(0)). The model could be extended to include interac-

tion terms. The maximum likelihood estimator of β0, denoted by β̂, is the root of

UG(β) = 0, where

UG(β) =
n∑

i=1

J∑

j=1

Xij [Gij − pij(β)] .(4.4)

Since it is preferred to adjust for Zi(0) instead of Zi(t), the event and censoring

processes are dependent through their mutual association with Zi(t) for t > 0. We

apply an inverse probability of censoring weight to handle the dependent censoring.

We assume that Ci follows a Cox model with hazard function defined as:

λC
i (t) = λC

0 (t) exp{θT
0 ZC

i (t)},

where ZC
i (t) contains terms representing Gi and Zi(t). The inverse censoring weight

at time t is denoted by wC
i (t, θ0) = Yi(t) exp{ΛC

i (t)}, where ΛC
i (t) =

∫ t

0
λC

i (s)ds. The

quantity wC
i (t, θ0) is estimated by ŵC

i (t, θ̂) = Yi(t) exp{Λ̂C
i (t, θ̂)}, where

Λ̂C
i (t, θ) =

∫ t

0

Yi(s) exp{θTZC
i (s)}dΛ̂C

0 (s, θ),

Λ̂C
0 (t, θ) =

1

n

∫ t

0

dNC
i (s)

R
(0)
C (s, θ)

,

and R
(d)
C (t, θ) = n−1

∑n
i=1 Yi(t)Z

C
i (t)⊗d exp{θTZC

i (t)} for d = 0, 1, 2 with a⊗0 = 1,

a⊗1 = a and a⊗2 = aaT for a vector a. The quantity ΛC
0 (t, θ̂) is the Nelson-Aalen

estimator for ΛC
0 (t). The parameter θ0 is estimated through partial likelihood (Cox,

1975) by θ̂, the root of score equation UC(θ) = 0, where

UC(θ) =

n∑

i=1

∫ τ

0

{
ZC

i (t) − Z
C
(t, θ)

}
dNC

i (t),(4.5)

Z
C
(t, θ) =

R
(1)
C (t, θ)

R
(0)
C (t, θ)

.

Note that if proportional hazards does not hold for treatment effect, a stratified Cox

model can be applied to obtain treatment-specific survival functions for the censoring

distribution.
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The measure φj(t) is estimated by

φ̂j(t) =
Λ̂j(t, β̂, ŵC(t, θ̂))

Λ̂0(t, β̂, ŵC(t, θ̂))
,

where ŵC(t, θ) = {ŵC
i (s, θ), i = 1, · · · , n, s ∈ [0, t]} and

Λ̂j(t, β̂, ŵC(t, θ̂)) =
1

n

n∑

i=1

∫ t

0

ŵC
i (s, θ̂)wG

ij(β̂)

R
(0)
j (s, β̂, ŵC(s, θ̂))

dND
ij (s),

R
(0)
j (s, β̂, ŵC(s, θ̂)) =

1

n

n∑

i=1

Yij(s)ŵ
C
i (s, θ̂)wG

ij(β̂),

with wG
ij(β) = Gij/pij(β). The relative risk measure, RRj(t), is estimated by

R̂Rj(t) =
F̂j(t, β̂, ŵC(t, θ̂))

F̂0(t, β̂, ŵC(t, θ̂))
,

where F̂j(t, β, ŵC(t, θ)) = 1 − Ŝj(t, β, ŵC(t, θ)). The estimator for difference in re-

stricted mean lifetime, ∆j(t), is given by

∆̂j(t) = êj(t, β̂, ŵC(t, θ̂)) − ê0(t, β̂, ŵC(t, θ̂)),

where êj(t, β, ŵC(t, θ)) =
∫ t

0
Ŝj(s, β, ŵC(t, θ))ds.

The measures φj(t) and RRj(t) are considered on a time interval [tL, tU ], and

∆j(t) is considered in a time interval [0, tU ], where tL is chosen to avoid division by

0 and tU is chosen to avoid the well known instability in the tail of the observation

time distribution.

The IPTW weight, wG
ij(β0), is used for balancing the covariate distribution among

the treatment groups. After applying wG
ij(β0) to our estimators, J + 1 pseudo-

populations are created with treatment-specific Zi(0) distribution equals to that

of the entire population. For example, for the restricted mean lifetime ej(t) =

∫ t

0
E[S(s|Gi = j,Zi(0))]ds, the expectation is with respect to the marginal distri-

bution of Zi(0), such that same averaging is done across all J + 1 treatment groups.
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The IPCW weight, wC
i (t, θ0), is applied to handle the dependent censoring. After

applying the proposed double inverse weighting, the weighted versions of each of the

proposed measures converges to the same true values listed in Chapter 3.

4.3 Asymptotic properties

To derive the large-sample properties of estimators proposed in last section, we

assume the following regularity conditions for i = 1, · · · , n and j = 0, · · · , J .

(a) Λj(τ) < ∞ and ΛC
i (τ) < ∞, where τ is a pre-specified time point.

(b) Zik(t) are bounded for t ∈ [0, τ ]; i.e., |Zik(t)| < κ for k = 1, · · · , p, where κ is a

constant and Zik(t) is the kth component of Zi(t).

(c) Continuity of the following functions:

r
(1)
C (t, θ) =

∂

∂θ
r
(0)
C (t, θ), r

(2)
C (t, θ) =

∂2

∂θ∂θT
r
(0)
C (t, θ),

where r
(d)
C (t, θ) is the limiting value of R

(d)
C (t, θ) for d = 0, 1, 2, with r

(0)
C (t, θ) bounded

away from 0 for t ∈ [0, τ ] and θ in an open set.

(d) For (βT , θT )T in an open set, the quantity r
(0)
j (t, β, θ) is continuous and bounded

away from 0 in [0, τ ], where r
(0)
j (t, β, θ) is the limiting value of R

(0)
j (t, β, wC(t, θ)).

(e) Positive-definiteness of the matrices ΩG(β) and ΩC(θ), where

ΩG(β) = E

{
J∑

j=1

pij(β)Xij

[
XT

ij −

J∑

k=1

XT
ikpik(β)

]}
,(4.6)

ΩC(θ) =
m∑

j=0

∫ τ

0

v(t, θ)r
(0)
C (t, θ)λC

0 (t)dt,(4.7)

v(t, θ) = r
(2)
C (t, θ)/r

(0)
C (t, θ) − zC(t, θ)⊗2,

and zC(t, θ) = r
(1)
C (t, θ)/r

(0)
C (t, θ) is the limiting value of Z

C
(t, θ).

(f) Pr(Gij = 1) > 0.

We summarize the asymptotic properties of the proposed estimators in the fol-

lowing theorems.
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THEOREM 1. Under conditions (a) to (f), φ̂j(t) converges almost surely and uni-

formly to φj(t) for t ∈ [tL, tU ], and n1/2[φ̂j(t) − φj(t)] converges asymptotically to a

zero-mean Gaussian process with covariance function σφ
j (s, t) = E[ξφ

ij(s, β0, θ0)ξ
φ
ij(t, β0, θ0)],

where

ξφ
ij(t, β, θ) =

1

Λ0(t)
Φij(t, β, θ) −

Λj(t)

Λ0(t)2
Φi0(t, β, θ)

Φij(t, β, θ) = Φij1(t) + Φij2(t) + Φij3(t) + Φij4(t)

Φij1(t) = hj(t)
T Ω−1

G (β)
−1

J∑

j=1

Xij [Gij − pij(β)]

hj(t) =

∫ t

0

E[wC
i (s, θ)aij(β)dND

ij (s)]

r
(0)
j (s, β, θ)

aij(β) = I(Gi 6= 0)

[∑J
k=1 exp{βTXik}Xik

exp{βTXij}
− Xijp

−1
ij (β)

]
+ Gi0

J∑

k=1

exp{βTXik}Xik

Φij2(t) = gj(t)
T Ω−1

C (θ)

∫ τ

0

[ZC
i (t) − zC

i (t)]dMC
i (t)

dMC
i (t) = dNC

i (t) − Yi(t)dΛC
i (t)

gj(t) =

∫ t

0

E
[
bi(s, θ)wG

ij(β)dND
ij (s)

]

r
(0)
j (s, β, θ)

bi(s, θ) = wC
i (s, θ)

∫ s

0

Yi(u) exp{θT ZC
i (u)}

[
ZC

i (u) − zC(t)
]
dΛC

0 (u)

Φij3(t) =

∫ t

0

E

[
exp{θTZC

k (u)}

r
(0)
C (u, θ)

∫ t

u

wC
k (s, θ)wG

kj(β)

r
(0)
j (s, β, θ)

dND
kj(s)

]
dMC

i (u)

Φij4(t) =

∫ t

0

wC
i (s, θ)wG

ij(β)

r
(0)
j (s, β, θ)

dMD
ij (s)

dMD
ij (s) = dND

ij (s) − Yij(s)dΛj(s)

THEOREM 2. Under conditions (a) to (f), R̂Rj(t) converges almost surely

and uniformly to RRj(t) for t ∈ [tL, tU ], and n1/2[R̂Rj(t, θ̂) − RRj(t)] converges

asymptotically to a zero-mean Gaussian process with covariance function σR
j (s, t) =
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E[ξR
ij(s, β0, θ0)ξ

R
ij(t, β0, θ0)], where

ξR
ij(t, β, θ) =

Sj(t)

F0(t)
Φij(t, β, θ) −

Fj(t)S0(t)

F0(t)2
Φi0(t, β, θ),(4.8)

with Φij(t, β, θ) defined as in Theorem 1.

THEOREM 3. Under conditions (a)-(f), ∆̂j(t) converges almost surely and uni-

formly to ∆j(t) for t ∈ [0, tU ], and n1/2[∆̂j(t)−∆j(t)], converges asymptotically to a

zero-mean Gaussian process with covariance function σ∆
j (s, t) = E[ξ∆

ij (s, β0, θ0)ξ
∆
ij (t, β0, θ0)],

where

ξ∆
ij (t, β, θ) =

∫ t

0

{S0(s)Φi0(s, β, θ) − Sj(s)Φij(s, β, θ)} ds,(4.9)

with Φij(t, β, θ) defined as in Theorem 1.

The consistency of φ̂j(t), R̂Rj(t) and ∆̂j(t) is proved by the consistency of β̂, θ̂,

the continuous mapping theorem, and the Uniform Strong Law of Large Numbers

(SLLN). The proof of asymptotic normality involves decomposing
[
Λ̂j(t, β̂, ŵC(t, θ̂)) − Λj(t)

]

into α̂j1(t) + α̂j2(t) + α̂j3(t) + α̂j4(t), where

α̂j1(t) =
[
Λ̂j(t, β̂, ŵC(t, θ̂)) − Λ̂j(t, β0, ŵ

C(t, θ̂))
]

α̂j2(t) =
[
Λ̂j(t, β0, ŵ

C(t, θ̂)) − Λ̂j(t, β0, w
C(t, θ̂))

]

α̂j3(t) =
[
Λ̂j(t, β0, w

C(t, θ̂)) − Λ̂j(t, β0, w
C(t, θ0))

]

α̂j4(t) =
[
Λ̂j(t, β0, w

C(t, θ0)) − Λj(t)
]
.

The quantity n1/2
[
Λ̂j(t, β̂, ŵC(t, θ̂)) − Λj(t)

]
then can be written as sum of indepen-

dent and identically distributed mean 0 variates. Using the Functional Delta Method,

we can write each of n1/2[φ̂j(t) − φj(t)], n1/2[R̂Rj(t) − RRj(t)] and n1/2[∆̂j(t) −

∆j(t)] as functions of n1/2[Λ̂j(t, β̂, ŵC(t, θ̂)) − Λj(t)]. Therefore, n1/2[φ̂j(t) − φj(t)],
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n1/2[R̂Rj(t)−RRj(t)] and n1/2[∆̂j(t)−∆j(t)] can be written as sum of independent

and identically distributed mean 0 variates. The Multivariate Central Limit Theo-

rem and various results from the theory of empirical processes (Pollard, 1990; Bilias,

Gu &Ying, 1997) are applied in the proof. The covariance function can be consis-

tently estimated by replacing all limiting values with their empirical counterparts.

For large data set, variance computation can be computationally intense, in which

case the bootstrap is a useful alternative.

4.4 Simulation study

We evaluated the finite sample properties of the proposed estimators through a

series of simulation studies. Due to the computation of derived asymptotic variance,

we evaluated the bootstrap variances. For each of the n subjects, a covariate Zi1

was generated as a binary variable with values 0 or 1 and Pr(Zi1 = 1) = 0.5. The

treatment indicator, Gi, was generated from a Bernoulli distribution with parameter

pi1(β) = exp(β0 + β1Zi1)/ [1 + exp(β0 + β1Zi1)]. We chose β0 = log(1/3) and β1 =

log(9) such that Pr(Zi1 = 1|Gi = 1) = 0.75 and Pr(Zi1 = 1|Gi = 0) = 0.25.

When Gi = 1, we generated a variable Zi2 as piece-wise constant with probabilities

P (Zi2 = k) = P (Zi2 = k + 1) = 0.5 across time interval (k, k + 1], for k = 0, · · · , 4.

When Gi = 0, Zi2 was generated as a binary variable (0 or 1) with Pr(Zi2 = 1) = 0.5.

Event times were generated from a Cox model with hazard function

λi(t) = λ0(t) exp{η1Gi + η2Zi1 + η3Zi2(t)},

while censoring times were generated from a Cox model with hazard function

λC
i (t) = λC

0 (t) exp{θZi2(t)}.
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Various values of (η1, η2, η3), and θ were employed for the Cox models. For each

set of parameters, several percentages of censoring were investigated by varying the

baseline death and censoring hazards. Censoring times were truncated at t = 5.

Sample sizes of n = 500 and n = 200 were examined, and a total of 1000 simula-

tions were used for each simulation setting. For the first two measures, we employed

the log transform to ensure that the confidence interval bounds were in a valid range.

To assess the finite-sample performance of our proposed method, the bias of each

of the three estimators was evaluated at time points t = 1, t = 2 and t = 3. The

bootstrap standard errors were evaluated at t = 2 with sample size n = 200, and 100

bootstrap resamples per simulation.

For n = 200, our estimators appear to be approximately unbiased in general

(Table 4.1). The bias is reduced when sample size increases to n = 500 (Table 4.2).

The average bootstrap standard errors (ASE) are genearlly close to the empirical

standard deviations (ESD) for sample size n = 200 (Table 4.3) and, correspondingly,

the empirical coverage probabilities (CP) are fairly close to the nominal value of 0.95.

4.5 Data analysis

We applied the proposed methods to analyze wait-list survival for patients with

end-stage renal disease, where the effect of race (Caucasian vs. African American)

was of interest. Data were obtained from the Scientific Registry of Transplant Re-

cipients (SRTR) and collected by the Organ Procurement and Transplant Network

(OPTN). Hospitalization data were obtained from the Center for Medicare Sciences

(CMS). Only patients whose primary payer was Medicare were included in the anal-

ysis. The data included n=7110 Caucasian and African American patients who were

placed on kidney transplant waiting list in calender year 2000. Among the 2975
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African Americans, 27% died and 45% received a kidney transplant. Among the

4135 Caucasians, 27% died and 54% got transplanted. Patients were followed from

the time of placement on the kidney transplant waiting list to the earliest of death,

transplantation, loss to follow-up or end of study (Dec 31, 2005).

It has been reported that African Americans have lower kidney wait list mortality

rate than Caucasians. However, Caucasians also have a higher kidney transplant rate

than African Americans. Unlike liver, lung and heart transplantation, poor patient

health is a contra-indication for kidney transplantation. Although donor kidneys are

not specially directed towards healthier patients, it is generally felt that patients in

poorer health are less likely to receive a kidney transplant. It is quite possible that the

healthiest patients are transplanted off the wait list at a greater rate for Caucasians

than for African Americans. Therefore, we suspect that dependent censoring exists

of kidney wait list mortality via kidney transplantation. We use time-dependent

hospitalization history as a surrogate for patient health. Note that hospitalization

history is inappropriate as an adjustment covariate for patient wait list survival.

Patients with a greater number of previous hospitalizations have a greater mortality

hazard and hospital admissions can be viewed as intermediate end points along the

path from wait listing to death. Previous comparisons of wait list mortality by race

did not adjust for dependent censoring. Moreover, most previous comparisons of

Caucasians and African Americans assumed that effect of race is constant over time.

Logistic regression was used to model the probability that a patient is Caucasian

given age, gender, diagnosis (diabetes, hypertension, Glaucoma, polycystic kidney

disease and other), body mass index and chronic obstructive lung disease (yes or

no). A stratified Cox model (stratified by race) was fitted to estimate the inverse

probability censoring weight adjusting for the covariates listed above, as well as
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time-dependent number of hospitalizations. The transplant hazard is significantly

decreased by 8% for each additional hospitalization (Table 4.4). The IPTW weight

ranged from 1.04 to 21.39 and the IPCW weight ranged from 1.04 to 33.07.

Due to the size of the data set, standard errors of the estimators were based on the

m of n bootstrap to reduce computation time. The idea is to sample with replacement

m subjects from all n subjects in the sample. The standard error estimator is then

the bootstrap standard error multiplied by
√

m/n. We sampled 1000 subjects from

the 7110 subjects for each bootstrap resample and 5000 bootstrap samples were

drawn.

We evaluated the race effect over the [0,70] month interval. Within approximately

one month after wait listing, Caucasians have significantly lower cumulative hazard

of death than African Americans (Figure 4.1). The cumulative hazard is lower at the

very beginning of wait-listing, while it is significantly higher comparing Caucasians to

African Americans after approximately 11 months with ratio of cumulative hazards

ranged from φ̂1(t) = 1.18 to φ̂1(t) = 1.47. The pattern of the estimated relative risk is

similar as ratio of cumulative hazards (Figure 4.2). Figure 4.3 shows that Caucasians

have shorter restricted mean lifetime than African Americans based on the first 8

months after wait-listing. The difference in restricted mean lifetime is significant after

18 months of wait-listing, with the estimated difference ranging from ∆̂1(t) = −0.17

months to ∆̂1(t) = −3.39 months comparing Caucasians to African Americans.

We compared the results above to those without applying inverse censoring weight.

The double inverse weighting estimates for ratio of cumulative hazards and relative

risk are lower than those without applying IPCW, especially after 22 months of wait-

listing. When dependent censoring is ignored, the estimated difference of restricted

mean lifetime is smaller than the estimates based on double inverse weighting, espe-
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cially towards the end of follow-up period.

4.6 Discussion

In this chapter, we proposed measures to estimate the cumulative treatment ef-

fect when the proportional hazards assumption does not hold. The proposed esti-

mators adjust for discrepancies in treatment-specific baseline covariate distribution

and overcome dependent censoring due to time-dependent covariates by applying

double inverse weighting. Simulation studies show that the proposed estimators are

approximately unbiased and the estimated standard errors are accurate.

Applying our methods to kidney wait list survival data, we found that the effect

of race (Caucasian vs. African American) is time dependent. The cumulative hazard

and risk of death are significantly higher for Caucasians relative to African Americans

11 months after wait listing, and Caucasians have significantly shorter (3.39 months

shorter) restricted mean lifetime based on the first 70 months after wait listing. The

difference in restricted mean lifetime is significant in a long term, although not of

clinical importance.

In Chapter 3, we found that misspecification of the logistic model (model for

inverse treatment weight) may bring bias to our proposed estimators. The estimates

of the proposed measures in this article also depend on the estimate for inverse

treatment weight. Therefore, misspecification of inverse treatment weight model may

bring bias to the treatment effect. The accuracy of the estimates of our proposed

measures do depend on the accuracy of the estimate of inverse probability of censoring

weight. When very few subjects are censored in the sample, it may not worthwhile

to use IPCW since the estimate for inverse probability of censoring weight may be

biased due to too small sample size for censoring. Accordingly, the estimates for our
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proposed measures may be biased in such settings.

For a very large data set, the computation of asymptotic variance of our proposed

estimators is intensive. The bootstrap method can be applied when sample size is

too large, with the m of n bootstrap method being a practical means of reducing the

computation time.
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4.7 Tables and Figures

t=1 t=2 t=3

Setting C% log φ1(t) BIAS log φ1(t) BIAS log φ1(t) BIAS

I 23% 0 0.004 0.283 0.017 0.584 0.008
40% 0 0.019 0.283 0.022 0.584 -0.007

log φ̂1(t) II 13% 0.496 0.013 0.778 0.004 1.076 0.009
33% 0.496 0.037 0.778 0.022 1.076 0.017

III 28% 0.496 0.038 0.778 0.018 1.076 0.012
46% 0.496 0.058 0.778 0.024 1.076 0.006

Setting C% log RR1(t) BIAS log RR1(t) BIAS log RR1(t) BIAS

I 23% 0 0.004 0.238 0.015 0.429 0.008
40% 0 0.019 0.238 0.019 0.429 -0.004

log R̂R1(t) II 13% 0.451 0.014 0.619 0.007 0.715 0.011
33% 0.451 0.036 0.619 0.021 0.715 0.016

III 28% 0.451 0.037 0.619 0.017 0.715 0.011
46% 0.451 0.056 0.619 0.024 0.715 0.011

Setting C% ∆1(t) BIAS ∆1(t) BIAS ∆1(t) BIAS

I 23% 0 0.001 -0.036 -0.002 -0.171 -0.002
40% 0 -0.001 -0.036 -0.004 -0.171 -0.003

∆̂1(t) II 13% -0.042 0.001 -0.197 0.005 -0.502 0.009
33% -0.042 -0.001 -0.197 -0.002 -0.502 0.001

III 28% -0.042 -0.001 -0.197 -0.002 -0.502 0.001
46% -0.042 -0.001 -0.197 -0.001 -0.502 0.005

I: η1 = 0, η2 = 0.2, η3 = 0.5, θ = 1
II: η1 = 0.5, η2 = 0.2, η3 = 0.5, θ = 1
III:η1 = 0.5, η2 = 0.2, η3 = 0.5, θ = 0.25

Table 4.1: Simulation results: Examination of bias at different time points (n=200)
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t=1 t=2 t=3

Setting C% log φ1(t) BIAS log φ1(t) BIAS log φ1(t) BIAS

I 23% 0 0.009 0.283 0.001 0.584 -0.006
40% 0 0.005 0.283 -0.001 0.584 -0.009

log φ̂1(t) II 13% 0.496 0.007 0.778 0.001 1.076 -0.011
33% 0.496 0.007 0.778 0.010 1.076 -0.011

III 28% 0.496 0.006 0.778 -0.007 1.076 -0.012
46% 0.496 0.019 0.778 0.018 1.076 0.007

Setting C% log RR1(t) BIAS log RR1(t) BIAS log RR1(t) BIAS

I 23% 0 0.009 0.238 0.001 0.429 -0.004
40% 0 0.004 0.238 0.001 0.429 -0.007

log R̂R1(t) II 13% 0.451 0.007 0.619 0.001 0.715 -0.007
33% 0.451 0.007 0.619 0.009 0.715 -0.006

III 28% 0.451 0.006 0.619 -0.004 0.715 -0.008
46% 0.451 0.018 0.619 0.015 0.715 0.005

Setting C% ∆1(t) BIAS ∆1(t) BIAS ∆1(t) BIAS

I 23% 0 -0.001 -0.036 -0.001 -0.171 0.001
40% 0 -0.001 -0.036 -0.001 -0.171 0.001

∆̂1(t) II 13% -0.042 0.001 -0.197 0.001 -0.502 0.005
33% -0.042 0.001 -0.197 -0.001 -0.502 0.003

III 28% -0.042 0.001 -0.197 0.003 -0.502 0.008
46% -0.042 -0.002 -0.197 -0.005 -0.502 -0.006

I: η1 = 0, η2 = 0.2, η3 = 0.5, θ = 1
II: η1 = 0.5, η2 = 0.2, η3 = 0.5, θ = 1
III:η1 = 0.5, η2 = 0.2, η3 = 0.5, θ = 0.25

Table 4.2: Simulation results: Examination of bias at different time points (n=500)
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Setting C% log φ1(t) BIAS ASE ESD CP

I 23% 0.283 0.017 0.331 0.317 0.96
40% 0.022 0.344 0.337 0.96

log φ̂1(t) II 13% 0.778 0.004 0.309 0.320 0.94
33% 0.022 0.323 0.332 0.95

III 28% 0.778 0.017 0.321 0.326 0.95
46% 0.024 0.347 0.356 0.95

Setting C% log RR1(t) BIAS ASE ESD CP

I 23% 0.238 0.015 0.283 0.270 0.96
40% 0.019 0.293 0.286 0.96

log R̂R1(t) II 13% 0.619 0.007 0.255 0.264 0.94
33% 0.021 0.267 0.274 0.95

III 28% 0.619 0.017 0.265 0.269 0.96
46% 0.024 0.288 0.297 0.95

Setting C% ∆1(t) BIAS ASE ESD CP

I 23% -0.036 -0.002 0.087 0.087 0.95
40% -0.004 0.089 0.090 0.94

∆̂1(t) II 13% -0.196 0.005 0.095 0.100 0.93
33% -0.002 0.096 0.099 0.93

III 28% -0.196 -0.002 0.096 0.099 0.94
46% -0.001 0.099 0.102 0.94

I: η1 = 0, η2 = 0.2, η3 = 0.5, θ = 1
II: η1 = 0.5, η2 = 0.2, η3 = 0.5, θ = 1
III:η1 = 0.5, η2 = 0.2, η3 = 0.5, θ = 0.25

Table 4.3: Simulation results: Examination of bootstrap standard errors (t=2, n=200)
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Covariate Covariate value Hazard ratio P-value

Hospitalizations 0.92 <0.001

Gender (reference=Male) 0.95 0.170

18-29 1 –
30-40 0.85 0.015

Age 40-50 0.75 <0.001
50-60 0.76 <0.001
≥60 0.66 <0.001

Lung disease (reference=No) 0.79 0.168

0-20 0.90 0.085
20-25 1 –

BMI 25-30 0.89 0.004
30-35 0.94 0.215
>35 0.76 <0.001

Diabetes 1 –
Glomerulo nephritis 1.11 0.120

Diagnosis Polycystic kidney disease 1.19 0.013
Hypertension 0.99 0.920
Other 1.05 0.250

Table 4.4: Analysis of wait list mortality by race: Parameter estimates for censoring model
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Figure 4.1: Analysis of wait list mortality by race: Estimator and 95% pointwise confidence intervals for
the ratio of cumulative hazard functions (Caucasian/African American), φ1(t).
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Figure 4.2: Analysis of wait list mortality by race: Estimator and 95% pointwise confidence intervals for
the risk ratio (Caucasian/African American), RR1(t).
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Figure 4.3: Analysis of wait list mortality by race: Estimator and 95% pointwise confidence intervals for
the difference in restricted mean lifetime (Caucasian-African American), ∆1(t).
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4.8 Appendix

Proof of Theorem 1

Consistency:

The strong consistency of φ̂j(t) can be proved by proving the strong consistency of

Λ̂j(t, β̂, ŵC(t, θ̂)) and Λ̂0(t, β̂, ŵC(t, θ̂)), where

Λ̂j(t, β̂, ŵC(t, θ̂)) =
1

n

n∑

i=1

∫ t

0

ŵC
i (s, θ̂)wG

ij(β̂)

n−1
∑n

i=1 Yij(s)ŵC
i (s, θ̂)wG

ij(β̂)
dND

ij (s).

Since ŵC
i (s, θ̂)

a.s.
→ wC

i (s, θ0) and wG
ij(β̂)

a.s.
→ wG

ij(β0), by Strong Law of Large Num-

bers (SLLN, Pollard, 1990), n−1
∑n

i=1 Yij(s)ŵ
C
i (s, θ̂)wG

ij(β̂) converges almost surely

to E
[
Yij(s)w

C
i (s, θ0)w

G
ij(β0)

]
. Let Zi0 = Zi(0), Zis = {Zi(u); u ∈ (0, s]}, wC

ij(s, θ0) =

Yi(s)Pr(Ci > s|Gi = j, Z̃i(s))
−1, and f(z̃i(s)) be the density function of Z̃i(s). For

ease of presentation, we assume that Z̃i(s) is continuous, in the development that

follows. We obtain that

E
[
Yij(s)w

C
i (s, θ0)w

G
ij(β0)

]

= E
{
E

[
Yij(s)w

C
ij(s, θ0)w

G
ij(β0)|Z̃i(s)

]}

= E
{
Pr−1(Ci > s|Gi = j, Z̃i(s))Pr−1(Gi = j|Zi0)E

[
Yij(s)|Z̃i(s)

]}

= E
[
Pr−1(Gi = j|Zi0)Pr(Ti > s|Gi = j, Z̃i(s))Pr(Gi = j|Z̃i(s))

]

= E
Z̃i(s)

[
Pr−1(Gi = j|Zi0)Pr(Ti > s, Gi = j, Z̃i(s))f(Z̃i(s))

−1
]

=

∫

Z̃i(s)

Pr(Ti > s, Gi = j, Z̃i(s))Pr−1(Gi = j|Zi0)dZ̃i(s)

=

∫

zi0

∫

zis

Pr(Ti > s, Gi = j,Zi0 = zi0,Zis = zis)Pr−1(Gi = j|zi0)dzisdzi0

=

∫

zi0

Pr(Ti > s|Gi = j,Zi0 = zi0)f(zi0)dzi0

= EZi0
[S(s|Gi = j,Zi0)]

≡ Sj(s).
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Similarly, it can be shown that n−1
∑n

i=1 ŵC
i (s, θ̂)wG

ij(β̂)dND
ij (s) converges almost

surely to E [dFj(s)]. Combining results above, and using continuity, we obtain that

Λ̂j(t, β̂, ŵC(t, θ̂)) converges to

Λj(t) =

∫ t

0

E [dFj(s)]

E [Sj(s)]
.

Exploiting the continuity of φj(t) as a map of Λj(t) and Λ0(t), we obtain that φ̂j(t)

converges almost surely to φj(t).

Asymptotic normality:

One can write:

n1/2
{
φ̂j(t) − φj(t)

}
=

1

Λ̂0(t, β̂, ŵC(t, θ̂))
n1/2

[
Λ̂j(t, β̂, ŵC(t, θ̂)) − Λj(t)

]

+Λj(t)n
1/2

[
1

Λ̂0(t, β̂, ŵC(t, θ̂))
−

1

Λ0(t)

]

By a Taylor Expansion, we obtain that
[

1

Λ̂0(t, β̂, ŵC(t, θ̂))
−

1

Λ0(t)

]
= −

1

Λ0(t)
2

[
Λ̂0(t, β̂, ŵC(t, θ̂)) − Λ0(t)

]
.

This result gives

n1/2
{

φ̂j(t) − φj(t)
}

(4.10)

=
1

Λ0(t)
n1/2

[
Λ̂j(t, β̂, ŵC(t, θ̂)) − Λj(t)

]
−

Λj(t)

Λ0(t)2
n1/2

[
Λ̂0(t, β̂, ŵC(θ̂)) − Λ0(t)

]

For j = 0, · · · , J , one can decompose
[
Λ̂j(t, β̂, ŵC(t, θ̂)) − Λj(t)

]
into α̂j1(t)+α̂j2(t)+

α̂j3(t) + α̂j4(t), where

α̂j1(t) = Λ̂j(t, β̂, ŵC(t, θ̂)) − Λ̂j(t, β0, ŵ
C(t, θ̂))

α̂j2(t) = Λ̂j(t, β0, ŵ
C(t, θ̂)) − Λ̂j(t, β0, ŵ

C(t, θ0))

α̂j3(t) = Λ̂j(t, β0, ŵ
C(t, θ0)) − Λ̂j(t, β0, w

C(t, θ0))

α̂j4(t) = Λ̂j(t, β0, w
C(t, θ0)) − Λj(t).
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The quantity n1/2α̂j1(t) is written as

n1/2α̂j1(t) = n−1/2
n∑

i=1

∫ t

0

{
ŵC

i (s, θ̂)wG
ij(β̂)dND

ij (s)

Rj(s, β̂, ŵC(s, θ̂))
−

ŵC
i (s, θ̂)wG

ij(β0)dND
ij (s)

Rj(s, β0, ŵ
C(s, θ̂))

}

Since Rj(s, β̂, ŵC(s, θ̂)) and Rj(s, β0, ŵ
C(s, θ̂)) converge almost surely to r

(0)
j (s, β0, θ0)

as n → ∞, we obtain that

n1/2α̂j1(t) = n−1/2

n∑

i=1

∫ t

0

ŵC
i (s, θ̂)[wG

ij(β̂) − wG
ij(β0)]dND

ij (s)

r
(0)
j (s, β0, θ0)

By a Taylor Expansion, one can write [wG
ij(β̂) −wG

ij(β0)] = aT
ij(β0)(β̂ − β0) + op(1),

where

aij(β0) =
∂wG

ij(β)

∂β
|β0

= I(Gi 6= 0)

[∑J
k=1 exp{βTXik}Xik

exp{βTXij}
−Xijp

−1
ij (β0)

]
+ Gi0

J∑

k=1

exp{βTXik}Xik.

Therefore, we obtain that

n1/2α̂j1(t) = ĥj(t)
T n1/2(β̂ − β0) + op(1)

ĥj(t) =
1

n

n∑

i=1

∫ t

0

ŵC
i (s, θ)aij(β0)

r
(0)
j (s, β0, θ0)

dND
ij (s),

Using the SLLN, one can obtain that ĥj(t) converges to hj(t), where

hj(t) = E

[∫ t

0

wC
i (s, θ0)aij(β0)

r
(0)
j (s, β0, θ0)

dND
ij (s)

]

One can write n−1/2UG(β0) as

n−1/2UG(β0) = −
1

n

∂UG(β)

∂βT

∣∣∣∣
β

0

n1/2(β̂ − β0) + op(1)

=
1

n

n∑

i=1

J∑

j=1

{
pij(β0)Xij[X

T
ij −

J∑

k=1

XT
ikpik(β0)]

}
n1/2(β̂ − β0).

Using the SLLN, one can obtain that n−1
∑n

i=1

∑J
j=1

{
pij(β0)Xij[X

T
ij −

∑J
k=1 XT

ikpik(β0)]
}

converges almost surely to ΩG(β0) which is defined as in (4.6). These results along



97

with (4.4) give

n1/2(β̂ − β0) = Ω−1
G (β0)n

−1/2
n∑

i=1

J∑

j=1

Xij [Gij − pij(β0)]

Using the results above, we can obtain that

n1/2α̂j1(t) = n−1/2hT
j (t)Ω−1

G (β0)

n∑

i=1

J∑

j=1

Xij [Gij − pij(β0)] + op(1).(4.11)

Since Rj(s, β0, ŵ
C(s, θ̂)) and Rj(s, β0, ŵ

C(s, θ0)) converge to r
(0)
j (s, β0, θ0) as n →

∞, one can obtain

n1/2α̂j2(t)

= n−1/2
n∑

i=1

∫ t

0

ŵC
i (s, θ̂)wG

ij(β0)dND
ij (s)

Rj(s, β0, ŵ
C(s, θ̂))

− n−1/2
n∑

i=1

∫ t

0

ŵC
i (s, θ0)w

G
ij(β0)dND

ij (s)

Rj(s, β0, ŵ
C(s, θ0))

= n−1/2
n∑

i=1

∫ t

0

[ŵC
i (s, θ̂) − ŵC

i (s, θ0)]w
G
ij(β0)

r
(0)
j (s, β0, θ0)

dND
ij (s)

By a Taylor Expansion, one can obtain that n1/2[ŵC
i (s, θ̂)−ŵC

i (s, θ0)] = b̂i(s, θ0)n
1/2(θ̂−

θ0), where

b̂i(s, θ0) =
∂ŵC

i (s, θ)

∂θ

∣∣∣∣
θ=θ0

= ŵC
i (s, θ0)

∫ s

0

Yi(u) exp{θ0
TZC

i (u)}
[
ZC

i (u) − Z
C
(u)

]
dΛ̂C

0 (u).

By the SLLN, b̂i(s, θ0) converges to bi(s, θ0),where

bi(s, θ0) = wC
i (s, θ0)

∫ s

0

Yi(u) exp{θ0
TZC

i (u)}
[
ZC

i (u) − zC(u)
]
dΛC

0 (u).

Using the results above, we obtain that

n1/2α̂j2(t) = n1/2ĝT
j (t)(θ̂ − θ0)

ĝj(t) =
1

n

n∑

i=1

∫ t

0

bi(s, θ0)w
G
ij(β0)

r
(0)
j (s, β0, θ0)

dND
ij (s) + op(1).
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By the SLLN, one can obtain that ĝj(t) converges to gj(t), where

gj(t) =

∫ t

0

E
[
bi(s, θ0)w

G
ij(β0)dND

ij (s)
]

r
(0)
j (s, β0, θ0)

.

Using another Taylor expansion and (4.5), we obtain that

n1/2(θ̂ − θ0) = Ω−1
C (θ0)n

−1/2

n∑

i=1

∫ τ

0

{
ZC

i (t) − zC(t, θ0)
}

dMC
i (t) + op(1)

Therefore, one can write

n1/2α̂j2(t) = n−1/2gT
j (t)Ω−1

C (θ0)

n∑

i=1

∫ τ

0

{
ZC

i (t) − zC(t, θ0)
}

dMC
i (t) + op(1).

Since Rj(s, β0, ŵ
C(s, θ0)) and Rj(s, β0, w

C(s, θ0)) converge to r
(0)
j (s, β0, θ0), one

can write

n1/2α̂j3(t) = n−1/2
n∑

i=1

∫ t

0

[ŵC
i (s, θ0) − wC

i (s, θ0)]w
G
ij(β0)

r
(0)
j (s, β0, θ0)

dND
ij (s).

Applying the Functional Delta Method,

n1/2[ŵC
i (s, θ0) − wC

i (s, θ0)] = wC
i (s, θ0)n

1/2[Λ̂C
i (s, θ0) − ΛC

i (s)]

= wC
i (s, θ0)n

−1/2

n∑

k=1

∫ s

0

exp{θT
0 ZC

i (u)}

R
(0)
C (u, θ0)

dMk(u) + op(1)

Therefore, n1/2α̂j3(t) can be written as

n1/2α̂j3(t)

= n−1/2

n∑

i=1

∫ t

0

wG
ij(β0)w

C
i (s, θ0)

r
(0)
j (s, β0, θ0)

1

n

n∑

k=1

∫ s

0

exp{θT
0 ZC

i (u)}

R
(0)
C (u, θ0)

dMk(u)dND
ij (s) + op(1)

= n−1/2
n∑

i=1

∫ t

0

1

n

n∑

k=1

exp{θT
0 ZC

k (u)}

r
(0)
C (u, θ0)

∫ t

u

wC
k (s, θ0)w

G
kj(β0)

r
(0)
j (s, β0, θ0)

dND
kj(s)dMC

i (u) + op(1).

Since
[
n−1

∑n
k=1

∫ t

u
wk(s, β0)w

G
kj(β0)r

(0)(s, β0, θ0)
−1

dND
kj(s) exp{ZC

k (u)T θ0}
]

con-

verges almost surely to

E

[
exp{θT

0 ZC
k (u)}

∫ t

u

wC
k (s, θ0)w

G
kj(β0)

r
(0)
j (s, β0, θ0)

dND
kj(s)

]
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we obtain that

n1/2α̂j3(t) = n−1/2
n∑

i=1

∫ t

0

E

[
exp{θT

0 ZC
k (u)}

r
(0)
C (u, θ0)

∫ t

u

wC
k (s, θ0)w

G
kj(β0)

r
(0)
j (s, β0, θ0)

dND
kj(s)

]
dMC

i (u) + op(1).

The quantity n1/2α̂j4(t) can be written as

n1/2α̂j4(t) = n−1/2
n∑

i=1

∫ t

0

wG
ij(β0)w

C
i (s, θ0)

Rj(s, β0, w
C(s, θ0)

dMD
ij (s)

Since Rj(s, β0, w
C(s, θ0) converges to r(0)(s, β0, θ0), n1/2α̂j4(t) can be written as

n1/2α̂j4(t) = n−1/2

n∑

i=1

∫ t

0

wT
i (β0)w

C
i (s, θ0)

r(0)(s, β0, θ0)
dMD

ij (s) + op(1)(4.12)

Using expressions for α̂j1(t), α̂j2(t), α̂j3(t) and α̂j4(t), one can obtain that

n1/2
[
Λ̂j(t, β̂, ŵC(θ̂) − Λj(t)

]
= n−1/2

n∑

i=1

Φij + op(1),

where Φij is defined as in the Theorem 1. Using (4.10), one can write

n1/2
{
φ̂j(t) − φj(t)

}
= n−1/2

n∑

i=1

[
1

Λ0(t)
Φij(t, β0, θ0) −

Λj(t)

Λ0(t)2
Φi0(t, β0, θ0)

]
,

which is a sum of independent and identically distributed mean 0 random variates.

Therefore, by the multivariate central limit theorem, for any finite set of (say k) time

points, the vector
[
n1/2

{
φ̂j(t1) − φj(t1)

}
, · · · , n1/2

{
φ̂j(tk) − φj(tk)

}]
converges to

a mean zero multivariate normal distribution. Further, since φ̂j(t) − φj(t) is tight,

the process n1/2
{

φ̂j(t) − φj(t)
}

converges to a mean 0 Gaussian process with covari-

ance function σφ
j (s, t) = E[ξφ

ij(s, β0, θ0)ξ
φ
ij(t, β0, θ0)] for any set pair of (s, t), where

ξφ
ij(s, β0, θ0) is defined as in Theorem 1.

Proof of Theorem 2

Using the continuous mapping theorem, Ŝj(t, β̂, ŵC(θ̂)) = exp{−Λ̂j(t, β̂, ŵC(θ̂))}

converges almost surely to Sj(t) = E[S(t|Gi = j,Zi(0))], Therefore, R̂Rj(t) con-

verges almost surely to RRj(t).
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Using the Functional Delta method, we obtain that

n1/2
{
R̂Rj(t) − RRj(t)

}
= n1/2 Sj(t)

F0(t)

[
Λ̂j(t, β̂, ŵC(θ̂)) − Λj(t)

]

−n1/2 Fj(t)S0(t)

F0(t)2

[
Λ̂0(t, β̂, ŵC(θ̂)) − Λ0(t)

]
+ op(1).

Using similar techniques as in the proof of Theorem 1, we can obtain that

n1/2
{

R̂Rj(t) − RRj(t)
}

= n−1/2
n∑

i=1

[
Sj(t)

F0(t)
Φij(t, β0, θ0) −

Fj(t)S0(t)

F0(t)2
Φi0(t, β0, θ0)

]
+ op(1),

which is a sum of independent and identically distributed mean 0 random variables.

By the Multivariate Central Limit Theorem and the tightness of
{
R̂Rj(t) − RRj(t)

}
,

we obtain that n1/2
{
R̂Rj(t) − RRj(t)

}
converges to a mean 0 Gaussian process with

covariance function σR
j (s, t) = E[ξR

ij(s, β0, θ0)ξ
R
ij(t, β0, θ0)], where ξR

ij(s, β0, θ0) is de-

fined as in (4.8).

Proof of Theorem 3

Since Ŝj(s, β̂, ŵC(θ̂)) converges to Sj(t), using continuous mapping theorem, we ob-

tain that êj(t, β̂, ŵC(θ̂)) =
∫ t

0
Ŝj(s, β̂, ŵC(θ̂))ds converges to ej(t) =

∫ t

0
Sj(t)dt. Ac-

cordingly, ∆̂j(t) converges to ∆j(t).

Similar to the proof of Theorem 1, we can write

n1/2
{

∆̂j(t) − ∆j(t)
}

= n−1/2
n∑

i=1

∫ t

0

−Sj(s)Φij(s, β0, θ0)ds

+n−1/2
n∑

i=1

∫ t

0

S0(s)Φi0(s, β0, θ0)ds + op(1),

which is a sum of independent and identically distributed mean 0 random variables.

Demonstration of normality and weak convergence to a zero mean Gaussian process

is similar as that of Theorem 1.
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CHAPTER V

Conclusion

This dissertation proposes three novel methods for estimating the cumulative

treatment effect for time to event data in the setting when the treatment-specific

hazards are not proportional. These methods were motivated by research questions

on organ failure data. Therefore, the contribution of this research is not only statis-

tical but also clinical. Chapter 2 used the ratio of cumulative hazards to compare

treatment categories. Chapter 3 considered the setting where, in addition to the

treatment effect, the effect of the adjustment covariates may be non-proportional.

In addition to accommodating non-proportionality and unbalanced covariate distri-

bution among treatment groups, Chapter 4 handled the dependent censoring due to

time-dependent covariates.

Through a stratified Cox model, the method in Chapter 2 proposed the ratio of

cumulative hazards as a treatment effect measure suited to the setting where the

treatment effect varies over time. The proposed measure has the familiar hazard

ratio interpretation when proportional hazards holds. Methods proposed in both

Chapter 3 and Chapter 4 applied inverse probability of treatment weighting (IPTW)

to balance the distribution of adjustment covariates among treatment groups. An

inverse probability of censoring weight (IPCW) was applied to deal with dependent
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censoring in Chapter 4. Chapters 3 and 4 compared cumulative hazards, relative

risk, and restricted mean lifetime between treatment categories.

Each method was applied to organ failure data. In Chapter 2 and Chapter 3,

we found that patients with end-stage renal disease who were treated by peritoneal

dialysis have a lower cumulative hazard at the beginning but higher hazard in the

long term compared to those treated by hemodialysis. In Chapter 4, we found that

Caucasians on the kidney transplant wait list have shorter restricted mean lifetime

than African Americans in the long term. This result is consistent with the current

literature.

The methods proposed in this dissertation could be extended in several directions.

For example, the methods in each of Chapters 2 to 4 focused on a treatment assigned

at baseline (time 0). It would be interesting to develop methods to estimate the

cumulative effect of a time-dependent treatment. Additionally, the survival time was

assured to be univariate. The extension of the proposed methods to accommodate

multivariate failure time data (e.g., recurrent events) would be valuable.


