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Executive Summary 

Increasing competition in the automotive industry to improve customer perceptions of 

final vehicle fit and finish quality is driving tighter dimensional specifications for manufacturers 

of body exterior assemblies such as closures, headlamps, and tail lamps. Achieving these tighter 

specifications is complicated by historical limitations with stamping and molding processes to 

produce complex-shaped components used within these assemblies with all dimensions centered 

at their nominal specification, particularly within the shorter tryout periods now characteristic of 

aggressive vehicle product development plans.  

This report presents a comprehensive dimensional validation methodology for exterior 

body assemblies to help manufacturers achieve higher dimensional capability during the 

preproduction phase of new product development. We refer to this methodology as datum 

transformation analysis (DTA). The DTA approach utilizes 3D non-contact (3DNC) 

measurement to obtain a full part dimensional representation at all critical matching interfaces of 

a part assembly to the vehicle. Next, a part measurement realignment process is applied to 

identify new positions for the assembly datum locators that optimize the overall product quality 

at these matching interfaces. Next, datum locations are adjusted at the component level (at the 

same physical location as the corresponding assembly) to improve mean conformance of the 

assembly dimensions.  Of note, the adjustments to the datum locators at the component level are 

not necessarily made to improve component quality, but rather to optimize final part assembly. 

In some cases, an individual component may be purposely adjusted away from its design 

nominal if the final part assembly is closer to its nominal specification. 

We demonstrate the usage of this DTA methodology for production part approval of an 

automotive headlamp. Here, we show the potential of DTA to minimize mold tooling rework and 

produce a complex-shaped headlamp assembly whose assembly mean dimensions are centered 

close to nominal and capable of meeting desired tolerance levels even though the individual 

headlamp lens and housing components are not within their specifications. In this case study, we 

identify tooling rework moves to increase the percent of critical assembly dimensions whose 

values are within ±0.5 mm from 50% to over 95%.  
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1. Introduction 

As vehicle manufacturers strive for tighter final vehicle specifications, they cascade these 

requirements down to suppliers, making it difficult to meet criteria for the Production Part 

Approval Process (PPAP1). This has implications to suppliers in terms of both their quality 

reputation and financial success as attainment of PPAP quality standards often is tied to 

suppliers’ new tooling investment recovery and unit costs.  

Unfortunately, the mere assignment of tighter specifications by vehicle assemblers does 

not make the specifications achievable. For processes such as injection molding or stamping, 

limitations exist in precisely predicting material flow through forming and molding operations 

and final resultant shapes after cooling. Past studies have shown that manufacturers of such 

complex-shaped parts often are unable to simultaneously produce all critical part features with 

mean values centered at their nominal specification, hindering their ability to meet part approval 

capability requirements such as Ppk > 1.33 (Hammett et al., 1999). Moreover, injection molding 

and stamping processes have no simple adjustment factors to simultaneously shift all these 

dimensions to nominal without unintended consequences. For instance, the rework of a mold or 

die in one area may change material flow conditions resulting in a problem in another area that is 

not reworked.  

Specification changes such as a “nominal re-target”2 (Guzman et al., 2003) often are 

feasible for underbody or other non-visible components provided they yield an acceptable 

finished body. However, these changes are less likely to be granted for exterior assemblies that 

are directly visible to the customer or closely related to a finished vehicle-level specification. For 

instance, a true high condition on a headlamp assembly relative to the fender position of the body 

(i.e., top of the headlamp is positioned high relative to design nominal of the fender-headlamp 

interface) is detectable by the end customer (see Figure 1). This condition affects customer 

perceptions of vehicle fit quality.   

 

 

                                                 
1 Production Part Approval Process, Automotive Industry Action Group, 2000. 
2 Type of tolerance adjustment that typically occurs when a dimension has a mean value that deviates from 

its design nominal, but with low variation. This usually results in a dimension that passes a Pp or Cp process 

capability requirement, but fails its Ppk or Cpk requirement. 
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Figure 1. Automotive Headlamp-to-Fender/Hood/Fascia Interface 

 

As a result, these visible automotive exterior assemblies must be reworked as close to 

nominal as possible. A challenge facing manufacturers is how to achieve these improvements 

with minimal rework costs and avoidance of unintended consequences. Unintended 

consequences occur when an acceptable part dimension becomes unacceptable due to an 

unforeseen issue resulting from process rework of another part area or component.  

For an exterior product like a headlamp assembly, a conventional improvement approach 

is to utilize one of the following:  

 rework tooling for the lens and/or housing component to get them closer to their 

design nominal in hopes that their subsequent assembly also will shift closer to 

nominal,  

 add design features to affect the locating of the lens and the housing component 

during the assembly process to correct assembly deviations,  

 rework component-housing assembly tooling to move dimensions on outer lens of the 

assembly closer to their desired nominal, or  

 utilize more expensive fasteners or vehicle assembly techniques to allow assemblers 

to adjust each headlamp’s assembly relative to its mating component.  

 

Although each option above has merit, each also adds extra development cost and 

typically requires several trial-error adjustments (i.e., it is difficult to correct in one rework loop). 

Furthermore, even with extensive rework, manufacturers often are unable to simultaneously 

improve all of the part dimensions and will still make numerous adjustments during regular 

production. 
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The intent of this report is to provide a systematic methodology to help complex-shaped 

exterior part manufacturers meet tighter specifications with significantly fewer dimensional 

rework loops. We refer to this approach as datum transformation analysis (DTA). It requires 

adherence to a functional build quality evaluation philosophy that places a greater emphasis on 

optimizing end-customer fit requirements versus meeting specifications for individual 

components (Hammett et al., 1995; Gerth and Baron, 2003).   

With DTA, rather than validating components solely to their print specifications, 

manufacturers evaluate them relative to their mating parts or mating conditions during assembly. 

The DTA approach is enabled by advances in 3D non-contact (3DNC) measurement3 (Hammett 

et al., 2005). Here, one may obtain a full part dimensional representation of an assembly at all 

critical matching interfaces and then systematically explore different part alignment strategies.  

To perform DTA, iterative alignment algorithms within 3DNC measurement software are 

utilized to find a best-fit assembly position that minimizes error across all of the selected critical 

assembly dimensions4. Once the critical mating features are optimized, one may determine the 

location (i.e., position) of all the datum locators used for part measurement and assembly in this 

new, more optimal orientation. Next, the assembly datum locators are adjusted at the component 

level equal in magnitude, but opposite in direction. The net effect is to improve mean 

conformance of all the assembly dimensions relative to their nominal specifications at the critical 

mating interfaces.  Of note, adjustments to the datum locators on the component parts used to 

locate the assembly are not necessarily made to improve component quality, but rather to 

optimize the part assembly dimensions.  

So, instead of using datum locators primarily to establish a part reference system for 

measurement and assembly, they become the rework or tuning mechanisms to optimize assembly 

conditions. Since DTA involves optimization of mating features in multiple directions, we 

recommend performing the measurements using 3D non-contact measurement and aligning with 

a related software tool. Where possible, once optimal locators are determined at all the datum 

locator points, the tool should be reworked at these positions only. 

                                                 
3 The measurement technology used for this research project is a CogniTens Optigo 200 system. 
4 This method assumes that critical part features have been identified that reference a part in all directions. 
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Since checking fixtures and downstream assembly tooling use these datum positions, 

some minor adjustments to these tools may be needed if the relative position between datum 

locators changes with DTA. For example, the nominal distance between a two-way and a four-

way locator may be different after applying DTA. Of course, these adjustments will be unknown 

to the end customer as datum features are used internally for alignment of parts for measurement 

and assembly.  

This approach contrasts with more conventional methods where a part is measured at 

critical mating feature locations relative to its datum locator references, usually described by 

geometric dimension and tolerancing (GD&T) drawings (Liggett, 1993). Then, if these features 

deviate from their nominal specifications, tooling is reworked to improve conformance.  

We acknowledge that most manufacturers have applied similar concepts as DTA, but 

they typically have done so only at the component part level (e.g., stamped parts) and for 

individual datum locators, versus systematically across an entire part based on assembly 

conditions. For instance, some manufacturers will move the position of a four-way or two-way 

locator hole to shift part dimensional measurements in a particular direction (e.g., they shift an 

entire part in the inboard/outboard to vehicle center direction by moving the locator hole). 

However, they typically apply such corrections only after making unsuccessful rework attempts 

to first shift the mating features. Alternatively, they make datum tuning adjustments without a 

comprehensive analysis across the entire part. For instance, they adjust one direction at a time 

versus using a three-dimensional realignment. This typically results in a suboptimal change for a 

complex-shaped part.  

The methodology described here entails a more comprehensive approach that includes: 

 identification of DTA opportunities (conditions that increase the likelihood of 

successful application) 

 establishment of design-friendly features for datum adjustment 

 recommendations for data collection and measurement including a technique for 

selection of representative part(s) to establish optimal alignment corrections 

 selection of part features to use within an iterative alignment algorithm 

 creation of DTA datum locator tuning matrix 

 verification techniques for mold tuning recommendations using mock-up parts  
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To illustrate the DTA methodology, we utilize an automotive headlamp case study. In 

this particular case, the manufacturer was asked to produce all critical part mating features on its 

headlamp assembly within ± 0.5 mm at a Ppk quality level of at least 1.0 (Production Part 

Approval Process, 2006).  

For this headlamp, the tooling design, construction, and initial tryout process yielded 

assemblies with only 7% of dimensions meeting this desired Ppk quality standard. Furthermore, 

~20% of the mean values for the critical headlamp assembly dimensions were within ± 0.25 mm 

from nominal (i.e., 80% of dimensions had mean values using up over 50% of the allowable 

design tolerance due to mean-off-nominal conditions only). By using DTA, the percentage of 

key assembly dimensions having a mean value within ± 0.25 mm was improved from ~20% to 

~90% with all observed sample points within specification (± 0.5 mm). 

The DTA methodology and sample case study are described in this report as follows. 

Section 2 provides an overview of dimensional challenges achieving production part approval for 

complex-shaped parts such as molded assemblies. Section 3 then discusses the DTA 

methodology. Section 4 provides an example of this methodology using a headlamp assembly. 

Section 5 considers part design criteria to facilitate DTA based on observations from this case 

study. In Section 6, we summarize the findings of this report and identify opportunities for future 

research.  

 

2. Manufacturing Validation Dimensional Challenges for Complex-Shaped Parts 

The manufacturing validation phase of new product development for supplier parts 

traditionally has been an iterative, inspect-and-rework process that begins with an initial tryout at 

a tool construction facility and concludes with part approval at the component or assembly 

production source. For suppliers, the part approval process often yields significant cost overruns, 

particularly as vehicle manufacturers require suppliers to commit toward meeting tighter 

specifications in order to receive business. 

A major reason for these cost overruns is tooling rework costs (Hammett et al., 1995). In 

some cases, these tooling rework costs are exacerbated by component specifications that are not 

necessary to meet final vehicle fit and finish quality requirements. For example, some tooling 

rework has minimal effect because the components are weak contributors to final assembly 
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quality (Takezawa, 1980; Liu et al., 1996). In some cases, it may not even be feasible to fix an 

issue through tooling rework based on the product design, particularly within the tooling and unit 

cost targets provided to suppliers by vehicle manufacturers (Majeske and Glenn, 2007). 

Another reason for high tooling costs is ineffective rework. Here, a manufacturer may 

rework tooling only to find that the part does not behave as predicted or unintended 

consequences occur. Unintended dimensional consequences are where a manufacturer reworks 

one area of a tool to correct a dimensional problem only to create another problem somewhere 

else.  Computer simulation tools used to identify physical rework moves are rarely able to predict 

all dimensional outcomes of a complex-shaped part within tolerance bands for surface profiles of 

± 0.5 mm. Manual rework moves are typically even less precise. Some rework is inevitable as 

manufacturers try to meet high dimensional quality standards. 

 Tooling rework for dimensional issues derives from difficulties producing parts such that 

the mean for every feature is centered at its nominal (see Figure 2 for an example from this case 

study). For injection molded parts, these initial mean deviations usually result from limitations 

predicting warp or shrinkage. Even with extensive tool modifications, simultaneously reworking 

all mean values to nominal is rarely achieved as simple process adjustment factors do not exist to 

move some features independent of others. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Initial Headlamp Assembly Quality – Average Color Map 
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Although manufacturers rarely produce parts with all features having mean values close 

to nominal, they often achieve their process variation objectives (Hammett et al., 1999). For 

instance, they may produce a stable part with dimensions that meet a Cp (or Pp) criteria but fail 

Cpk (or Ppk) due to mean deviations from nominal (see Figure 3).  

 

Figure 3. Sample Dimension with Mean Off Target but Low Variation 
(Note: LSL and USL represent lower and upper specification limits) 

 

In some cases, if a mean for a particular dimension is stable with low variation relative to 

its tolerance width specification, an assembly processes may be robust to the mean deviation. For 

example, in this case study, several dimensions on the housing component were significantly off 

nominal. These deviations, however, did not affect the final assembly dimensions as many 

housing dimensions adhered to the more rigid exterior lens. In practical terms, the dimensions of 

the headlamp assembly may be built closer to nominal than the components that comprise it.  

This condition results in the recurring challenge of manufacturing validation where one 

wants to rework only those component dimensions that inhibit one from meeting vehicle level fit 

requirements. This requires effective rework loops where one shifts problem dimensions in the 

desired direction and appropriate magnitude with minimal unintended consequences. DTA 

provides a methodology to identify and perform such improvements.    

 

3. Datum Transformation Analysis (DTA) 

Datum transformation analysis (DTA) is a methodology to identify tooling tune-in 

adjustments to datum locators in order to optimize the best functional fit of the overall product. 

USLLSL  
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DTA involves adjusting datum reference locations to optimize mean dimensions of the critical 

part features that are off target yet are produced from a stable process with acceptable inherent 

variation. The proposed DTA methodology is outlined in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. DTA Methodology 

 

3.1 Assess Process Stability  

Before making tooling adjustments that affect mean values, manufacturers must have 

confidence that the process yields predictable mean deviations. In other words, until a process is 

deemed stable, the observed mean for various part dimensions should not be considered reliable 
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and representative of production conditions. Thus, the first step in applying DTA is to evaluate 

process stability5.   

To evaluate process stability, one needs to measure a representative sample from normal 

production conditions. During the manufacturing validation phase of new product development, 

the number of available samples to measure under such conditions is often limited. Still, most 

manufacturers should be able to generate a 30-piece sample which should be sufficient to 

evaluate short-term process stability. Of note, in some cases, a manufacturer may assess stability 

with even fewer samples if it has extensive historical knowledge of a process and the variation 

observed in the smaller sample is significantly less than the tolerance width and is similar to 

historical variation levels (Hammett and Guzman, 2006).  

Although we recommend using 3D non-contact measurement to identify datum 

adjustment recommendations, one should utilize the production measurement process for 

assessing stability.  Stability may effectively be assessed using numerous systems including 

check fixtures with data collection probes, coordinate measuring machine (CMM), 3D non-

contact measurement, or other measurement tools (Hammett et al., 2005). If a manufacturer is 

using production check fixtures with data collection probes to measure key features, it may be 

faster to use this system to measure a sample of 30 parts than to rely on a portable 3D non-

contact measurement device.  

The most common analysis tools used to evaluate process stability are statistical process 

control charts. Although not all of the potential sources of production variation may be present 

during manufacturing validation for processes such as injection molding or stamping, most 

manufacturers should be able to use control chart methods to assess short-term stability. For 

instance, process variation typically is predictable relative to historical data for injection 

molding, provided the key manufacturing process parameters such as fill pressures are 

appropriate and consistent across a sample.  

One challenge with applying control charts for complex-shaped parts is that they 

typically have numerous quality characteristics being measured. For some parts, measurement 

may consist of 10-20 dimensions; for others, it may be several hundred.  As the number of 

                                                 
5 This assumes that the measurement system has been validated. In the automotive industry, measurement 

systems are typically validated by passing a check fixture certification test and passing a gage capability study such 

as a gage R&R. 
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dimensions on a part increases, it is not uncommon to have a few subgroups of a few dimensions 

exhibit out-control conditions using conventional control charts, especially given the small 

sample sizes typically available to assess stability during manufacturing validation. Here, the 

process may be stable even though some observed out-control conditions for a few part 

dimensions are observed. To mitigate this effect, one could use multivariate statistical analysis 

methods (Guzman et al., 2004), or classify the part as stable if, say, over 95% of the part 

dimensions are in statistical control and the range for all dimensions is sufficiently less than its 

tolerance width.  

3.2 Assess Process Capability and Overall Mean Conformance  

Once a part is deemed stable, we recommend assessing the overall part mean 

conformance before assessing the potential improvement of DTA realignment. To do so, we first 

recommend evaluating mean values. As an initial guideline, we recommend evaluating the 

percentage of mean values that are within half their original tolerance widths. We refer to this as 

the mean conformance window. For instance, if a critical mating assembly feature has a profile 

tolerance of ± 0.5 mm, we would seek to get mean values for all related dimensions within a 

mean conformance window of ± 0.25 mm. Of note, a more effective evaluation would involve 

using coordinated exterior assembly-to-vehicle builds to determine how close individual mean 

dimensions must be to their nominal specification to meet end vehicle quality specifications.   

If a significant percentage of dimensions (e.g., at least more than 20%) are outside the 

mean conformance window (e.g., ± 0.25 mm), we would proceed with datum transformation 

realignment analysis. Of note, this critical decision clearly involves some experience-based 

decision making. For example, if the vast majority of mean dimensions are within the mean 

conformance window, then more localized tooling rework corrections may be appropriate.  

 

3.3 Select Representative Sample for Realignment Analysis  

If one decides to use DTA, we recommend using a biased sampling technique (Hammett 

et al., 1997) to select a representative subset of parts to identify tooling corrections. The selection 

of a representative sample within a larger sample is sometimes referred to as the best-of-the-best 

(BOB) part (Bhote and Bhote, 2000). Of note, the selection of this representative subset using 3D 
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non-contact measurement may not be critical if the process is stable with very low part-part 

variation (i.e., all of the samples exhibit similar deviations).  

Several strategies may be utilized to identify a representative subset within a 

measurement sample. One approach to selecting the most representative sample (or subset) is 

based on finding the samples that are closest to the quadratic mean of the various dimensions 

across a part. Another approach is to select the individual sample(s) whose values are closest to 

the design nominal specification. Of note, if the mean values for the majority of dimensions are 

off nominal, then these two methods will yield different results. Figure 5 highlights this 

difference for the simple case of a part with a single dimension whose mean is off nominal. Since 

DTA involves datum locator adjustments to simultaneously shift multiple mean values closer to 

their nominal specification, we recommend a variant of the first approach to find the sample 

(subset) that is most representative of the various part dimensional distributions. 

 

 

 

 

 

 

 

 

 

Figure 5. Most Representative Part 

 

Determining the most representative part(s) within a sample may be determined by 

computing a representative part index, Rp, for each sample using Equation 1. We suggest 

obtaining Rp by computing the squared deviation of each measured value from its median for 

each dimension on a part and then averaging these deviations based on the number of dimensions 

measured. We recommend using the median instead of the mean to represent the center of the 

distribution for the following reasons. First, since observed measurements may not be normally 

distributed, the statistical median provides a more robust measure of the distribution center. 
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Second, the intent here is to select a physical part to apply DTA, and the median more closely 

relates to actual observed measurements of a physical part versus a calculated center point. 

 

Rp j =
k

MdX i

k

i
ij

2

1
)( −∑

=      (Equation 1) 

where, 

Xij = deviation from nominal specification for dimension i of sample j. 

Mdi = the median of the distribution for each dimension i. 

i 1..k check point dimensions 

j 1..n samples (n is the number of samples) 

 

After computing the Rp index for each sample part, one may rank order the sample parts 

according to their respective index values. The part with the smallest Rp value represents the 

sample that is closest to its respective medians across all the dimensions on the part (i.e., 

minimizes the median-squared error). Of note, large Rp values indicate those parts with 

dimensions that are farthest from their distribution centers. To assess the sensitivity of a datum 

adjustment recommendation, a manufacturer may also wish to perform DTA using the least 

representative part (i.e., the sample part with the highest Rp value). 

Once a subset of at least three parts has been identified, we recommend using 3DNC 

measurement to comprehensively measure the sample parts. Our recommendation for using 

3DNC instead of a coordinate measuring machine is as follows. First, 3DNC systems provide a 

better graphical representation of the complete measured part. Thus, a user is better able to 

visualize the rotation of the part in 3D space per different realignment alternatives. Second, most 

3DNC measurement systems have the capability to either quickly perform virtual realignments 

or their results may be exported into a common format (such as a *.STL), which may be used by 

several CAD measurement software packages to perform iterative realignment analysis.  

 

3.4 Identify Tooling Corrections Based on Part Realignment  

Figure 6 shows the average deviation of all surface measurements relative to their 

product design nominal using a color map based on 3DNC measurements for a headlamp 



 

14 

assembly. This figure suggests that the part is consistently outboard relative to the vehicle center 

across the upper half of the part and has a twist in the fore-aft direction from the top of the part to 

the bottom (i.e., fore condition at the top of the headlamp; aft condition at the bottom). Thus, 

optimizing this part will likely involve a rotation top to bottom and shift outboard to improve the 

mean values for these dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Initial Measurement Condition (Aligned using Assembly GD&T Locators) 

 

To perform a datum transformation re-alignment, one must select critical dimensions on 

the part for this secondary alignment. Although the selection of these secondary alignment 

dimensions requires an understanding of the part’s function and product design, some general 

guidelines may be identified.  

First, we recommend using at least six points to control for six degrees of freedom, as is 

customary with three-dimensional part measurement (Liggett, 1993). Beyond the six control 

points, we recommend additional points to iteratively explore multiple alignment configurations 

to find a solution that minimizes total error. Although we recommend using more than six points, 

we do not necessarily recommend using all inspection points. Here, one may optimize an entire 

Foreward to
Nominal at Top
Aft at bottom

More Outboard
At top than bottom

Green
+/- 0.5 mm

Foreward to
Nominal at Top
Aft at bottom

More Outboard
At top than bottom

Foreward to
Nominal at Top
Aft at bottom

More Outboard
At top than bottom

Green
+/- 0.5 mm



 

15 

part without necessarily optimizing the most critical mating interfaces. In general, we 

recommend limiting the number of iterative alignment points to approximately 206.  

A second guideline is to spread dimensions across a part with multiple points in each 

alignment direction (i.e., X, Y, and Z axis). Third, the secondary alignment features should focus 

on measurement points at all key part interfaces (assumes that the part has more than one mating 

interface). A fourth guideline is to include a weighting factor if a particular area is deemed the 

most critical. With most alignment software, this may be done by forcing a feature(s) into an 

alignment model and iterating a best-fit part condition across the remaining secondary alignment 

points.   

The figure below shows the secondary alignment points versus the assembly GD&T 

locators used for this headlamp case study. The orange balls represent the location of critical part 

dimensions to realign the part. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Part GD&T Locator Points vs. Secondary Alignment Points 

 

Once a part is realigned using the secondary alignment points, the resultant position of 

the datum locators relative to this alignment may be determined. From here, one may create a 

                                                 
6 Future research is recommended to further explore optimal alignment point selection guidelines. 

Surface
F/A

Surface
F/A

4-Way Pin
U/D & C/C

Slot
F/A

2-Way Pin
C/C

Assembly GD&T Locators Secondary Alignment
Best Fit Iterative Points

Fascia Interface

Fe
nd

er
 I

nt
er

fa
ce

H
ood Interface

Front of Headlamp AssemblyRear of Headlamp Assembly



 

16 

locator tuning matrix to identify rework moves (see Figure 8 for example). In general, tuning 

adjustments for each locator should be equal in magnitude, but opposite in direction, as the 

secondary best-fit alignment results. So, if a cross-car datum locator is 1.0 mm inboard from 

nominal based on the best-fit condition, then a tooling adjustment of 1.0 mm outboard at this 

datum location would be recommended.  

In identifying adjustments, one may wish to consider measurement noise. For instance, 

we typically would not recommend making physical tooling surface moves if the calculated 

adjustment is 0.2 mm or less.  Here, we believe that a rework move of this magnitude would 

unlikely have an observable effect on the assembly dimensions. Of note, an exception to this 

recommendation may involve a hole or slot. In general, a hole or slot positional move may be 

done with greater precision than a surface change.   

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Best Fit Datum Locator Measurements and Tuning Table 

 

To fully benefit from datum transformation analysis, one should make all of the 

recommended adjustments to properly re-position the part in three-dimensional space. 

Adjustment recommendations for a datum locator should be considered correlated to other 

recommendations. In other words, we strongly caution against making datum moves one at a 

time if the analysis suggests changes at multiple locations.  

To check the proposed datum adjustments, we recommend first creating mock-up parts. 

In most cases, this approach should be feasible without physical changes to the production tools. 

Position of Locators
In Best Lens Condition Locator Tuning Table

Locator Dir Recommendation

Top Pin (4-Way) C/C 1.3 inboard move 1.3 outboard
U/D 0.0 up none

Lwr Pin (2-Way) C/C 1.0 inboard move 1.0 outboard

Attachment Tab: Lower I/B F/A 1.3 fore increase wall thickness by 1.3 
mm on backside

Attachment Hole: Lower I/B C/C 0.9 inboard move 0.9 outboard

U/D 0.5 up move 0.5 down

Attachment Tab Lower O/B F/A 1.0 fore increase wall thickness by 1.0 
mm on backside

Attachment Hole: Lower O/B C/C 2.6 inboard move 2.3 inboard

U/D 0.6 down move 0.6 up

Top Tab (fore edge of slot) F/A 0.4 fore

Top Tab (rear edge of slot) F/A 0.2 fore

Top Tab (Slot Center) F/A move slot center 0.25 aft

Average (3)

Position of Locators
In Best Lens Condition Locator Tuning Table

Locator Dir Recommendation

Top Pin (4-Way) C/C 1.3 inboard move 1.3 outboard
U/D 0.0 up none

Lwr Pin (2-Way) C/C 1.0 inboard move 1.0 outboard

Attachment Tab: Lower I/B F/A 1.3 fore increase wall thickness by 1.3 
mm on backside

Attachment Hole: Lower I/B C/C 0.9 inboard move 0.9 outboard

U/D 0.5 up move 0.5 down

Attachment Tab Lower O/B F/A 1.0 fore increase wall thickness by 1.0 
mm on backside

Attachment Hole: Lower O/B C/C 2.6 inboard move 2.3 inboard

U/D 0.6 down move 0.6 up

Top Tab (fore edge of slot) F/A 0.4 fore

Top Tab (rear edge of slot) F/A 0.2 fore

Top Tab (Slot Center) F/A move slot center 0.25 aft

Average (3)
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For example, mock-ups may be created by adding spacers at locator surfaces, grinding off 

material, or changing the center position of a hole, slot, or molded pin7.  Next, one should 

measure the mock-up parts relative to their part GD&T to verify that the changes result in the 

intended improvements. If acceptable, one may then make physical changes to the production 

tooling.  

One potential issue with datum transformation analysis is part rigidity. To perform a 

virtual alignment, one assumes the part measurements are taken from a rigid structure. If DTA is 

applied to a part assembly, as in the case of a headlamp assembly, we maintain that this 

assumption likely will be reasonable. However, if DTA is applied to a complex non-rigid 

component, then the secondary alignment recommendations may be unreliable8. Of note, even if 

a component by itself is not rigid and easily influenced by its orientation during measurement, it 

still may be rigid after assembly. In other words, the component orientation becomes rigid after 

assembly.  Here, changes to the component datum locators may be different when measuring a 

detail component versus measuring this same component within a larger assembly.  As such, we 

recommend performing the realignment in the more rigid assembly state. 

Another possible issue with DTA tuning recommendations is that realignment may not 

yield a tuning locator matrix solution that optimizes all part dimensional mean values. In other 

words, once a part is realigned, it may still have dimensions that pass Cp criteria, yet fail Cpk 

criteria due to a mean deviation from design nominal. At this point, we would recommend using 

a coordinated part-assembly part evaluation process to determine if the adjusted part is 

sufficiently close to produce a dimensionally acceptable finished vehicle without further tooling 

rework. If not, some localized rework or conventional adjustment methods may be necessary to 

secure final part approval. 

 

                                                 
7 Changes to molded pins or hole positions are likely more difficult than moving a surface. See Section 5 

for details on designing for DTA. 
8 We leave the issue of DTA for complex, non-rigid components as a subject for future research. 
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4. Case Study – Headlamp Assembly 

To demonstrate the application of DTA, an automotive headlamp case study is used. As 

shown in the following figure, this headlamp assembly consists of an outer lens (vehicle 

interface) and main housing (attachments to vehicle)9. The headlamp assembly has several 

critical vehicle functional interfaces including fits to the fender, hood, and fascia (Figure 9). 

 

 

 

 

 

 

 

 

 

 

Figure 9. Headlamp Assembly and Main Components 

 

To assemble this headlamp to its vehicle, three mounting tabs (fore/aft), a four-way 

(cross-car and up-down), and a two-way locator (cross-car) are used (see Figure 10). Once the 

assembly is positioned using the locator pins, bolts are used to attach the headlamp to the body at 

the three mounting tab locations. Of note, these vehicle level alignment points also are used as 

the datum reference points for assembly part measurements.  

 
 

                                                 
9 The other components of a headlamp assembly (e.g., lighting system) do not have any affect on final 

assembly mating dimensions to the vehicle. 
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Figure 10. Headlamp Assembly GD&T and Vehicle Alignment Features 
(Note: Assembly shown from rear view) 

 

4.1 Initial Dimensional Capability  

A review of the initial measurement data indicates that this part is not capable of meeting 

its Ppk expectations for tolerances of ± 0.5 mm at its critical vehicle interface dimensions. 

Although the process exhibits stability based on statistical process control charts, numerous 

dimensions have mean values off nominal and some have inherent variation slightly larger than 

the original tolerance width.  

This is illustrated using several dimensions in the following run chart of the check fixture 

data based on a sample size of 80 head lamp assemblies (see Figure 11). This charts shows that 

the measurements for each critical part dimension are consistent but exhibit large mean 

deviations. In fact, control charts for the individual points indicate that the process is in statistical 

control with each individual check point exhibiting a range of about 0.5-to-1.1 mm. Thus, the 

primary concern with this assembly is mean deviation from nominal, making it a good candidate 

for datum transformation analysis.  
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Figure 11. Run Charts for Six Critical Check Points 

 

Given this stable condition, three parts were chosen from the sample of 80 as the most 

representative of the median distribution across all dimensions. Measurements for the first 40 

samples (out of 80) and the overall summary statistics for each dimension are shown in Table 1. 

This table also shows the Rpi calculations for the first 40 samples. In this particular case, we may 

note the median and mean dimensions are very close for nearly all of the check points. However, 

this may not always be the case. Samples #22, #35, and #40 are deemed the most representative 

of the full sample. These three samples were then measured using 3D non-contact measurement. 
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Table 1. Sample Data and Most Representative Part Rankings 
(Note: Only partial table shown) 

Sample 1 2 3 4 5 6 8 9 10 15 16 21 22 26 27 RPi RP 
Rank

1 -0.05 -0.77 0.19 -0.98 1.37 0.43 1.11 0.29 -0.25 0.56 0.41 -0.18 1.21 1.04 0.16 0.18 50
2 0.19 -0.77 0.37 -0.86 1.17 0.41 1.26 0.14 -0.32 0.53 0.55 0.06 1.26 1.30 0.34 0.12 26
3 0.01 -0.72 0.06 -0.84 1.35 0.70 1.09 0.05 -0.24 0.66 0.27 -0.18 1.27 1.06 0.25 0.19 52
4 0.10 -0.90 0.30 -1.13 1.71 0.27 1.03 -0.06 -0.36 0.78 0.59 -0.25 1.34 0.94 0.32 0.26 69
5 0.19 -0.68 0.49 -0.77 1.19 0.19 1.05 -0.08 -0.14 0.61 0.31 0.10 1.22 1.32 0.33 0.13 35
6 0.24 -0.60 0.72 -0.71 1.32 0.49 0.90 0.04 -0.49 0.09 0.58 0.03 1.43 1.24 0.46 0.20 55
7 -0.13 -0.89 -0.01 -1.17 1.63 0.59 1.16 0.04 -0.11 0.54 0.36 -0.41 1.27 0.69 0.11 0.33 80
8 0.04 -0.58 0.30 -0.75 1.39 0.72 1.08 0.06 -0.49 0.66 0.51 0.07 1.16 1.21 0.21 0.12 32
9 0.03 -0.47 0.30 -0.57 0.98 0.48 1.06 0.15 -0.41 0.43 0.34 0.25 1.14 1.48 0.23 0.11 22
10 -0.04 -0.58 0.23 -0.81 1.54 0.35 1.00 -0.11 -0.41 0.60 0.52 -0.04 1.20 1.11 0.18 0.15 42
11 0.13 -0.62 0.43 -0.62 1.37 0.27 1.00 0.16 -0.46 0.67 0.38 0.11 1.15 1.29 0.33 0.08 6
12 0.18 -0.38 0.46 -0.50 1.15 0.35 1.05 0.04 -0.61 0.65 0.26 0.18 1.09 1.31 0.32 0.12 30
13 0.16 -0.78 0.17 -1.03 1.67 0.44 1.01 -0.23 -0.32 0.46 0.44 -0.19 1.54 0.97 0.28 0.25 68
14 0.00 -0.74 0.22 -0.92 1.52 0.39 1.10 -0.18 -0.37 0.71 0.53 -0.32 1.12 0.98 0.16 0.21 60
15 0.08 -0.59 0.24 -0.76 1.09 0.63 0.83 0.23 -0.36 0.50 0.65 -0.08 1.19 1.26 0.29 0.11 23
16 0.20 -0.43 0.44 -0.57 1.11 0.27 1.08 -0.15 -0.55 0.55 0.38 0.23 1.30 1.51 0.41 0.13 36
17 0.13 -0.64 0.13 -0.91 1.72 0.33 0.95 0.04 -0.52 0.80 0.68 -0.62 1.57 0.87 0.37 0.31 79
18 0.04 -0.67 0.28 -0.90 1.45 0.39 1.02 0.05 -0.52 0.79 0.53 -0.01 1.20 1.08 0.23 0.14 39
19 0.10 -0.35 0.31 -0.60 0.96 0.50 0.53 0.38 -0.48 0.66 0.88 -0.63 1.17 1.43 0.21 0.27 71
20 0.07 -0.63 0.27 -0.80 0.99 0.45 0.98 0.18 -0.16 0.42 0.18 0.09 1.14 1.31 0.20 0.13 34
21 0.04 -0.45 0.61 -0.63 1.17 0.11 0.77 0.10 -0.59 0.65 0.54 0.23 1.09 1.45 0.25 0.14 41
22 0.17 -0.40 0.32 -0.67 1.16 0.25 0.91 0.14 -0.46 0.53 0.59 0.04 1.10 1.33 0.35 0.07 1
23 0.16 -0.37 0.42 -0.69 1.14 0.35 0.81 0.17 -0.36 0.59 0.34 0.19 1.14 1.46 0.31 0.09 10
24 0.11 -0.43 0.21 -0.80 0.99 0.28 0.85 0.15 -0.42 0.57 0.75 0.12 1.06 1.45 0.29 0.11 24
25 0.12 -0.44 0.25 -0.77 1.10 0.26 0.93 0.12 -0.44 0.61 0.69 0.17 1.10 1.41 0.35 0.08 4
26 0.09 -0.45 0.21 -0.65 1.04 0.27 0.89 0.03 -0.40 0.47 0.65 0.23 1.13 1.40 0.34 0.09 12
27 0.15 -0.48 0.36 -0.73 1.07 0.30 0.84 -0.01 -0.56 0.50 0.62 0.29 1.15 1.43 0.23 0.10 18
28 0.13 -0.36 0.44 -0.74 1.05 0.33 0.79 0.06 -0.53 0.52 0.49 0.20 1.09 1.39 0.26 0.10 15
29 0.10 -0.41 0.58 -0.76 1.01 0.40 0.85 0.08 -0.50 0.57 0.51 0.13 1.07 1.37 0.24 0.11 21
30 0.26 -0.58 0.21 -0.80 1.32 -0.01 0.88 0.19 -0.55 0.54 1.39 0.35 1.15 1.51 0.33 0.28 74
31 0.22 -0.97 0.42 -0.70 1.52 0.19 1.07 0.41 -0.27 0.53 0.56 -0.14 1.31 1.13 0.41 0.20 56
32 0.28 -0.46 0.41 -0.57 1.19 0.32 0.96 0.18 -0.48 0.59 0.60 0.38 1.25 1.51 0.39 0.12 27
33 0.03 -0.43 0.23 -0.63 1.06 0.56 1.02 0.27 -0.31 0.58 0.44 0.16 1.11 1.48 0.22 0.10 16
34 0.07 -0.45 0.22 -0.63 1.17 0.35 1.01 0.20 -0.38 0.50 0.45 -0.14 1.26 1.16 0.38 0.10 14
35 0.15 -0.40 0.36 -0.75 1.14 0.45 0.97 0.24 -0.34 0.53 0.42 0.27 1.15 1.23 0.37 0.07 2
36 0.16 -0.37 0.35 -0.59 1.10 0.48 0.90 0.22 -0.36 0.51 0.40 0.35 1.09 1.31 0.24 0.10 17
37 0.02 -0.33 0.40 -0.62 1.08 0.43 0.93 0.18 -0.40 0.55 0.38 0.29 1.08 1.40 0.26 0.10 13
38 0.12 -0.41 0.24 -0.64 1.12 0.39 1.04 0.27 -0.31 0.49 0.43 0.31 1.16 1.44 0.38 0.09 11
39 0.17 -0.84 0.23 -0.67 1.11 0.51 0.95 0.26 -0.37 0.46 0.43 0.33 1.12 1.51 0.40 0.12 33
40 0.10 -0.45 0.28 -0.69 1.16 0.53 0.93 0.25 -0.33 0.60 0.45 0.27 1.10 1.35 0.19 0.08 3

Sample Size 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80
Average 0.10 -0.61 0.32 -0.77 1.27 0.41 0.98 0.10 -0.40 0.60 0.50 0.06 1.23 1.24 0.31
Median 0.10 -0.60 0.30 -0.75 1.20 0.41 1.00 0.10 -0.40 0.60 0.45 0.10 1.20 1.30 0.30
Maximum 0.44 -0.33 0.72 -0.41 1.74 0.93 1.26 0.61 -0.09 0.96 1.39 0.38 1.69 1.54 0.60
Minimum -0.13 -0.98 -0.01 -1.35 0.83 -0.03 0.37 -0.50 -0.81 0.09 0.18 -0.63 0.98 0.69 0.08
RANGE 0.57 0.65 0.72 0.94 0.91 0.96 0.89 1.10 0.72 0.87 1.21 1.00 0.71 0.85 0.52
STD. DEV. 0.09 0.18 0.14 0.19 0.22 0.19 0.16 0.17 0.16 0.13 0.19 0.22 0.15 0.22 0.10  

 

In examining the results across the entire sample, only 20% of the 15 critical headlamp 

assembly dimensions exhibited a mean value within ± 0.25 mm of nominal and nearly half the 

points have the mean out-of-specification. In general, the critical vehicle assembly interface 

dimensions are outboard (O), forward at the top (F), and aft (A) at the bottom (see Figure 12).  
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Figure 12. Initial Mean Conformance 

 

As with conventional problem solving, an initial question is the contribution of the detail 

components to these assembly mean deviations. Figure 13 shows measurements from the two 

main detail components (outer lens and housing). Of note, both individual components exhibit 

some mean deviations from nominal, though this condition is much more pronounced on the 

housing component. In particular, one may observe the severe inboard warp condition in the 

middle of the part (over 2.5 mm inboard).  
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Figure 13. Component and Assembly Measurement Deviations 

 

The high warping effect observed in the housing, however, is not being transmitted in 

similar magnitude to the assembly. In other words, a large proportion of the narrow condition of 

the housing is conforming to the outer lens during assembly. Thus, reworking the housing 

tooling to correct this severe inboard condition would likely have minimal improvement on the 

assembly. This illustration represents a common challenge with assembling non-rigid 

components in which the components continue to change or deform during assembly. As such, 

optimizing component dimensions may have minimal effect on improving the final assembly 

dimensional quality that interfaces to the vehicle. 

  

4.2 Dimensional Corrections  

Given that this part is stable with mean values off nominal, the next step in datum 

transformation analysis is to evaluate the assembly in its optimal best-fit position of interface 

dimensions instead of relative to its assembly datum locators (i.e., the mounting tabs and 

assembly locator pins). To do so, we selected 20 points on the periphery of the lens assembly 

(see Figure 14). These points reflect gap and flush conditions for each of the key mating areas 

(headlamp-fender, headlamp-hood, and headlamp-fascia).  The points are spread across the entire 

part and represent the position of the part in fore/aft (X), in/out (Y), and up/down (Z) directions 

relative to the vehicle coordinate system. 
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Figure 14. Best-Fit Iterative Secondary Alignment Points 

 

Next, an iterative best-fit alignment is used to rotate the part in three-dimensional space 

until error is minimized across these secondary alignment points. For this case study, we used the 

CogniTens Measurement System iterative alignment algorithm to generate a solution. Once a 

solution was obtained, we measured the position of the datum locators. The results are shown in 

Figure 15 below.  

 

 

Figure 15. Deviations of Locators in Outer Lens Best-Fit Condition 
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We now may identify adjustments to the locators. Again, because the part is being rotated 

in three-dimensional space to optimize it across all of the secondary alignment points, it is 

important to make corrections at all positions. Making only localized adjustment to one locator, 

or trying to make adjustments one at a time, will not likely achieve the desired objective. 

In this example, the in/out locators measure inboard relative to the optimal exterior 

vehicle fit condition. Thus, to realign the mating surfaces, one needs to adjust these locators 

outboard. In other words, by moving the cross-car locator features outboard without touching the 

current exterior interface condition, the resultant part (after locator adjustment) is brought 

inboard toward nominal.  

Similarly, the upper mounting tab slot used to locate this part in the fore/aft direction is 

forward from nominal in the optimal vehicle fit position by about 0.3 mm. Thus, we would 

recommend moving the center of the slot aft by a similar 0.3 mm. The various moves for each of 

the locators are summarized in Table 2. 

Table 2. Locator Adjustment Table 

Locator Dir Recommendation

Top Pin (4-Way) C/C 1.3 inboard move 1.3 outboard
U/D 0.0 up none

Lwr Pin (2-Way) C/C 1.0 inboard move 1.0 outboard

Attachment Tab: Lower I/B F/A 1.3 fore increase wall thickness by 1.3 
mm on backside

Attachment Hole: Lower I/B C/C 0.9 inboard move 0.9 outboard

U/D 0.5 up move 0.5 down

Attachment Tab Lower O/B F/A 1.0 fore increase wall thickness by 1.0 
mm on backside

Attachment Hole: Lower O/B C/C 2.6 inboard move 2.3 inboard

U/D 0.6 down move 0.6 up

Top Tab (fore edge of slot) F/A 0.4 fore

Top Tab (rear edge of slot) F/A 0.2 fore

Top Tab (Slot Center) F/A move slot center 0.25 aft

Average (3)
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4.3 Virtual Dimensional Verification  

To visually assess the predicted results of the tuning adjustments, the existing part 

measurements may be realigned using nominal feature offsets. Here, one may use CAD 

measurement software to put in a mean nominal offset at the datum locator positions only. For 

example, if the nominal center position of the four-way locator hole is at Z=100 and Y=100, one 

may offset these nominal position to Z=100 and Y=101.3 in the measurement software. Of note, 

one should only offset the nominal positions of the locators, not the entire product CAD. In 

doing so, one simulates the measured dimensions in this best-fit condition. 

Using this method, Figure 16 illustrates the simulated results for the most representative 

part using the locating adjustment recommendations. After realignment, all of the exterior points 

have a mean within ± 0.25 mm. The largest deviation is 0.2 mm from nominal.  

Of note, one may observe that the part has been re-positioned about a nominal condition 

in all three directions to an overall best-fit condition. The part now has some dimensions slightly 

outboard, while others are slightly inboard. It also has some dimensions slightly fore and others 

slightly aft. Still, these results show that datum transformation analysis has the potential to 

significantly reduce the mean off-nominal conditions by centering the part overall relative to 

design nominal. 

 

 

 

 

 

 

 

 

 

Figure 16. Simulated Realignment Using Lens Best Fit Condition 

 

 

Note: critical tab mounting 
surface is on back side of part. 
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4.4 Part Mock-Up Results  

Before physically reworking the tooling, mock-up parts should be made to verify the 

feasibility and likely effect of the tuning recommendations.  In this example, the datum locators 

were moved by adding spacers to locator surfaces and changing the center of the holes and pins 

per the locator tuning recommendations. Of note, not all of the locators were easily adjusted. In 

particular, moving the pins proved difficult. One reason was that this part was not designed with 

the intention of using datum transformation analysis. By designing for such a dimensional 

optimization strategy, we believe this process may be greatly simplified. We discuss design for 

DTA issues in Section 5. 

The mock-up part measurements are shown in Figure 17. As predicted, all sample points 

are within their specification limits, although the mock-up parts had some deviations. For 

instance, one of the dimensions exhibited a deviation of 0.4 mm in the aft direction (see Table 3). 

Still, the mock-up part measurements suggest a significant improvement may be achieved by 

reworking the datum locators. In this example, we wish to reiterate that although individual 

components will continue to have mean out-of-specification conditions, their resultant assembly 

is acceptable.  

 

 

Figure 17. Measurement of Mock-Up Part (Based on Locator Tuning Recommendations) 
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Table 3. Dimensional Comparison: Before and After DTA 

Mean Value (N=3) Best Fit Re-align Post DTA
Most Rep Part Most Rep Part Mock Up Part

P# 1 0.1 -0.1 -0.4
P# 2 -0.6 0.0 0.2
P# 3 0.3 0.2 0.0
P# 4 -0.8 -0.1 0.2
P# 5 1.2 -0.2 -0.2
P# 6 0.4
P# 8 1.0 0.1 0.2
P# 9 0.1 -0.1 0.1
P# 10 -0.4 0.0 0.3
P# 15 0.6 0.2 0.4
P# 16 0.5 -0.1 0.2
P# 21 0.1 0.0 -0.2
P# 22 1.2 0.1 0.1
P# 26 1.3 0.1 0.2
P# 27 0.3 0.1 0.0

# Points 15 14 14
# within +/- 0.25 3 14 11
% within +/- 0.25 20% 100% 79%  

 

Finally, although the transformed part is significantly improved, some tolerance 

adjustments for variation are needed to meet a Cpk objective. Here, a functional review of the 

finished vehicle suggested that this revised part is sufficient to meet final vehicle requirements.  

 

5. Design for Datum Transformation Analysis  

Although datum transformation analysis has been shown to be very effective for the 

headlamp case study, we recognize that several conditions must exist for its successful 

application. Even in this example, the locators were not easily adjusted due to their product 

design, making it difficult to apply the methodology. In this section, we discuss several enablers 

or pre-conditions for applying DTA and some part design recommendations to improve its 

applicability. 

The following enablers or pre-conditions increase the likelihood of DTA success. First, 

the process must be stable. DTA should be viewed as a tool to improve mean off-nominal 

conditions. One first needs confidence that the measured mean values are representative of the 

process. For most processes, such as injection molding or stamping where DTA would be a 
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benefit, we believe that this state may be reached fairly quickly once the proper process settings 

are established and maintained. 

A second enabler is that the part datum locators used for part inspection and assembly are 

different from the functional requirements of the part during the end-use (i.e., vehicle) condition. 

For instance, one typically defines datum locators for a headlamp based on the features used to 

assemble the part to the vehicle. However, the end customer only observes the relationship 

between the headlamp and its mating or vehicle interfaces. Thus, a reasonable argument could 

have been made in this case that the assembly datum locators should have been on the outer lens 

component as this is the vehicle interface. In this case, the inspection points would have been the 

mounting tabs and vehicle locators. As such, DTA would have been unnecessary. Although we 

appreciate the merits of such an approach, it is not typical in manufacturing. In most cases, part 

datum reference systems are based on how the part is held for manufacture or assembly. 

A third critical enabler for DTA relates to sufficient part rigidity. A part must be 

sufficiently rigid to allow exploration of different alignments without changing the shape of the 

part. If a part is significantly influenced by gravity effects, then it may not be possible to apply 

DTA. As such, we believe that DTA offers greater potential for improving a subassembly rather 

than an individual component, as subassemblies typically are sufficiently rigid. Furthermore, 

components, particularly non-rigid ones, may have minimal effect on assembly dimensional 

quality. In this example, the non-rigid housing had a relatively minor impact on the final 

assembly quality. Thus, reworking the housing datum locators to optimize the housing relative to 

its GD&T would not have been as effective.  

Another reason why rigidity matters in applying DTA relates to part measurement. If one 

wants to evaluate the position of locators relative to secondary mating alignment features, one 

must collect data on both features. This is best done by measuring a part in free state (i.e., 

without clamps or pins through the locator holes). With free-state measurements, one obtains 

measurement data for both the critical interface dimensions and at the locator features. If one 

were to measure a part by throwing a clamp over the locator, then a 3DNC measurement system 

may not be able to obtain sufficient point data in this area (obstructed view). If free-state 

measurements are not an option, we would recommend measuring a part on surface locators but 

without clamps. Here, the part would effectively bottom out on the locators due to gravity, but 

the measurement data would be obtained on the visible side of the part.  
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In addition to these enablers, DTA may be enhanced through part design considerations. 

For instance, locating features should be designed such that they may be adjusted through rework 

of the tooling. For instance, a part and corresponding tool design must allow for some change in 

locators within an envelope. For example, the mounting tabs’ thickness must be sufficient to 

remove material, or the tab must be made to allow some additional material to extend the locator 

surface. If possible, the locator surfaces should be designed with enough segmentation to allow 

them to be adjusted without affecting other part features. As a general rule, we would 

recommend allowing up to at least two millimeters in adjustment for locators on datum surfaces. 

A similar argument may be made for holes and slots. Here, one must have enough surface 

area around the hole or slot to allow repositioning the center of the hole or slot. As a general rule, 

we recommend designing holes and slots to be adjusted up to three millimeters in any direction. 

Here, we would recommend slightly more adjustability than, say, a surface point, because 

holes/slots are typically easier to move without affecting other features in comparison to a 

surface locator.  

For locator pins on molded parts, adjustments are more difficult, particularly if the 

locating feature is a non-cylindrical or non-diamond shape as was the case with this headlamp 

assembly. As a design characteristic for a molded locator pin, we recommend the use of a 

diamond-shaped feature with an end taper for loading/unloading. A diamond-shaped feature has 

the benefit of acting as either a four-way or two-way locator but it has more adjustment 

flexibility (see Figure 18): For instance, diamond pins 

 may be reduced in size by grinding down the sides 

 may easily be changed between four-way and two-way by adjusting the blade size 

(Note: In some cases, one might reduce overall rework by switching the four-way 

locator to a two-way and vice versa)  

 may be expanded either by extending blade width or temporarily fitting a cylindrical 

cap over the diamond blade to simulate a wider or off-target dimension. Of note, the 

center of the diamond shape may be adjusted by extending blades unequally across 

the four blades. For instance, one blade may be extended while another is reduced to 

simulate a center position shift without changing overall width. 

 may be adjusted simply by re-machining tooling inserts 
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Figure 18. Diamond Pin Adjustment Capability 

 

Although not a pre-condition for applying DTA, the success of the diamond pin 

adjustment process may have some limitations based on part dimensional quality prior to 

applying any transformations. For example, if a part area is severely off nominal requiring a very 

large adjustment, the recommendation may not be feasible based on the product design. For 

instance, a hole may only be moved within some design envelope area before it infringes upon 

another part feature (e.g., radius or surface wall).  

As another example, if a part has a waviness condition of, say, +1 mm to -1 mm and then 

back to +1 mm along a mating interface, then an optimal solution will not be feasible. In some 

cases, one may need to resolve localized deformations before applying DTA. Fortunately, 3DNC 

CAD measurement software may be used to simulate different alignments to evaluate the 

potential of locator tuning recommendations before making physical adjustments.  
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6. Conclusions and Future Work 

In this study, we present a methodology that we refer to as datum transformation analysis. 

This methodology incorporates 3D non-contact measurement within a functional build strategy 

to optimize assembly dimensional capability without necessarily optimizing individual 

components. The use of 3DNC measurements allows one to virtually explore different alignment 

conditions and identify locator tuning recommendations to re-position the part in a more optimal 

condition relative to the final vehicle.  

This report presents an example of applying DTA to an automotive headlamp assembly. 

In this case, the percentage of means within half the tolerance band for key vehicle interface 

dimensions was increased from approximately 20% to over 80%. Furthermore, the sample mock-

up parts exhibited 100% of points within their original specification limits.  

The usage of datum transformation analysis has significant implications for streamlining 

manufacturing validation processes and reducing overall automotive body development time. In 

particular, this methodology may be used to reduce overall tooling rework among components 

and assemblies by minimizing corrections and making adjustments with a clear cause-effect 

relationship. Historically, complex-shaped components are often stable but with mean values off 

target. Rather than reworking non-rigid individual components, DTA offers recommendations to 

realign the part such that its mating dimensions are in their best-fit condition with only minimal 

change to the components themselves. 

Like all problem-solving methods, DTA has some limitations and challenges. One of its 

main challenges relates to part rigidity. Future work is needed to evaluate its applicability in 

those cases where a part is insufficiently rigid to measure without clamps or locator surfaces. 

DTA is also limited by product design. If locators are not designed to be adjusted within some 

reasonable dimensional windows, its benefits are limited. Still, given that complex-shaped parts 

from injection molding or stamping processes almost universally have stable mean-off nominal 

conditions, we believe it prudent to plan for such an outcome and utilize DTA to minimize the 

amount of tooling rework. 
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