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ABSTRACT: Relative rate techniques were used to study the title reactions in 930-1200 mbar
of Ny diluent. The reaction rate coefficients measured in the present work are summarized
by the expressions k(Cl 4+ CHyFy) = 1.19 x 10717 T2 exp(—1023/T ) cm? molecule™! s~! (253—
553 K), k(Cl4+ CH3CCl3) = 2.41 x 10712 exp(—1630/T ) cm?® molecule™! s~! (253-313 K), and
&(Cl+ CF3CFH;) = 1.27 x 10~'2 exp(—2019/T ) cm? molecule™! s~! (253-313 K). Results are
discussed with respect to the literature data. © 2009 Wiley Periodicals, Inc. Int ] Chem Kinet

41: 401-406, 2009

INTRODUCTION

The title compounds are released into the atmosphere
as the result of human activities. CH,F, (HFC-32)
and CF;CFH, (HFC-134a) are used as refrigerants and
have atmospheric lifetimes of approximately 4.9 and
14 years, respectively [1]. CF;CFH; is used widely in
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vehicle air conditioning systems and is the most abun-
dant HFC in the atmosphere [1]. CH;CCl; or 1,1,1-
trichloroethane was widely used as an industrial sol-
vent until it was banned under the Montreal protocol.
CH3CCl; has an atmospheric lifetime of approximately
5 years [1]. The global budget of CH;CCl; has been
used to estimate the global average tropospheric OH
concentration [2].

Chlorine atoms are often used to initiate the oxida-
tion of organic compounds in smog chamber studies
of the atmospheric chemistry of halogenated organic
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compounds. Accurate kinetic data for the reactions of
chlorine atoms with halogenated organics are needed
for the analysis of such smog chamber data. Unfortu-
nately, there are significant uncertainties in the kinetic
data at ambient temperature and very limited informa-
tion concerning the temperature dependence for such
reactions. Measurements of k(Cl+ CH,F;) at 298 K
by Tschuikow-Roux et al. [3] and Nielsen et al. [4]
differ by a factor of 2, and the work by Tschuikow-
Roux et al. [3] provides the only information con-
cerning the temperature dependence of the reaction.
Measurements of k(Cl+ CH3CCls) at 280-418 K by
Cillien et al. [5], Tschuikow-Roux et al. [6], Platz
et al. [7], and Talhaoui et al. [8] span a range of ap-
proximately 2. Measurements of k(Cl+ CF;CFH,) at
298 K by Sawerysyn et al. [9], Wallington and Hurley
[10], Tuazon et al. [11], Louis et al. [12], and Kaiser
[13] are in excellent agreement; however, only lim-
ited data are available at temperatures below ambi-
ent. To improve our understanding of the kinetics of
the reactions of chlorine atoms with halogenated or-
ganic compounds, we have measured k(Cl + CH;F;)
relative to k(Cl+ CHy), k(Cl+ CH3CCls) relative
to k(Cl+ CH,F,), and k(Cl+ CF;CFH,) relative to
k(Cl+4 CH3CCls) over the temperature range 253—
553 K in 930-1200 mbar of N, diluent.

EXPERIMENTAL

Experiments were performed using the reaction sys-
tems at the University of Copenhagen and the Univer-
sity of Michigan—Dearborn. Unless stated otherwise,
quoted uncertainties are two standard deviations from
least-squares regression analysis.

Measurement of fz; at the University
of Copenhagen

The reaction chamber at the University of Copenhagen
consists of a 100-L cylindrical quartz reaction cham-
ber in a temperature-controlled housing described
in detail elsewhere [14]. Experiments were per-
formed using CH2F2/CH4/C12, CH3CC13/CH2F2/C12,
and CF;CFH,/CH;CCl;/Cl, mixtures in 930 mbar
of N, diluent at 253, 273, 298, and 313 or 318 K.
A Bruker IFS 66v/s FTIR spectrometer was used to
monitor the loss of the organic compounds follow-
ing successive UV irradiation of the reaction mixtures.
FTIR spectra were analyzed using an iterative non-
linear least-squares fitting procedure [15]. Reference
spectra of CHy4, HCI, and H,O were taken from the
HITRAN database [16]. Reference spectra of CH,F,
CH;CCl;, and CF;CFH, were recorded under the

same conditions as photolysis experiments (resolution
0.125 cm™!, pressure 930 mbar N»), three spectra were
taken for each compound and averaged to give the ref-
erence spectra used in the analysis.

The reference spectra were recorded at a tempera-
ture of 298 K and used for the analysis at all tempera-
tures. Spectra of reaction mixtures of CH,F, and CHy
were analyzed in the region 2800-3200 cm~'. HCI
is a reaction product, and H,O is always observable
as a background contaminant in FTIR smog chamber
experiments. HCI and H,O spectral features were sub-
tracted in the analysis. CH3CCl; and CF3CFH, were
analyzed in the region 1400-1480 cm™'; here H,0O was
also included in the analysis.

The partial pressures of the organic compounds
were in the range 0.01-0.06 mbar. The partial pressure
of Cl, was 1-3 mbar. Chlorine atoms were produced by
the photolysis of molecular chlorine using UVA lamps
with an emission maximum at about 368 nm. Typi-
cally, four to six irradiations were performed for each
reaction mixture. The mixture was allowed to stabi-
lize for 2 min after each photolysis step. The pressure
in the cell was monitored to quantify potential tem-
perature changes induced by the lamps. There was no
discernable change (<0.2%) in the pressure of the gas
mixtures in the chamber, indicating that there was less
than 1 K change in gas temperature during an exper-
iment. Control experiments were performed to check
for possible loss of reactants and reference compounds
in the chamber in the absence of UV irradiation. There
was no (< 1%) loss of reactants and/or reference com-
pounds when reaction mixtures were left to stand in
the dark for 60 min.

The relative rate method is a well-established tech-
nique for measuring the reactivity of Cl atoms with
organic compounds [17]. Kinetic data are derived by
monitoring the loss of the reactant and the reference
compound. In the present work, we have measured
the kinetics of reactions ((1)—(3)) relative to the well-
established kinetics of reaction (4).

Cl + CH,F, — HCI + CHF, (1)
Cl + CH;CCl; — HCI+ CH,CCl;  (2)
Cl + CF;CFH, — HCIl + CF3CFH 3)

Cl + CH; — HCI + CHj; @)

The rates of reactions (3) and (4) differ by approx-
imately a factor of 100, precluding a direct mea-
surement of ks/ks. Values of ks/ks were derived by
measuring ks/k;, ka/ky, and ki/k4 and using the equal-
ity ks/ky = kslky X kalky X ki/ks. In a similar fashion,
ko/k4 was obtained from k,/k; x k;/k4. As indicated in
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Table I Rate Constant Ratios Measured at the
University of Copenhagen

Reactant  Reference kreactant/kreference Temperature (K)
CH,F, CHy 0.277 £ 0.004 253
CH;F, CHy 0.283 +0.008 273
CH,F, CHy 0.3344+0.016 298
CH,F, CHy 0.3394+0.010 318
CH3CCl3 CHyF> 0.288 4 0.006 253
CH3CCl3 CH,F, 0.291 £0.005 273
CH;3CCl3 CH,F> 0.294 +0.017 298
CH3CCl3 CH,F> 0.290£0.011 313
CF3CFH,; CH3CCl3  0.105 40.003 253
CF3CFH,; CH3CClz  0.1514£0.007 273
CF3CFH; CH3CCl3  0.128 +0.008 298
CF3CFH,; CH3CCl3  0.15740.015 313

Table I, values of k3/k,, k»/k1, and k/k4 were measured
at 253, 273, and 298 K and calculation of k3/k, and
ky/ky at these temperatures is straightforward. While
values of ks/k, and k,/k; were measured at 313 K,
ki/k4 was determined at 318 K. An Arrhenius fit to the
measured values of k;/ks was used to provide a value
of ki/k4 at 313 K (the uncertainty was assumed to be
the same as that for the measured ratio at 318 K)), which
enabled calculation of k3/k4 and kp/k4 at 313 K.
In([reactant],,/[reactant],) versus In([reference]/
[reference];) was plotted using the expression

[reactant],, Kreact I [reference],,

t ( [reactant]t> T ket n ( [reference]t)
where [reactant],,, [reactant],, [reference],,, and
[reference], are the concentrations of reactant and ref-
erence at times “to” and ¢ (see Fig. 1), and ke, and
ks are the rate constants for reactions of Cl atoms
with the reactant and reference. Plots of In([reactant];,/
[reactant],) versus In([reference],/[reference],) should

be linear, pass through the origin and have a slope of
kreact/ kref .

Measurement of f; at the University
of Michigan

Experiments were performed over the temperature
range 297-553 K using a 40-cm® Pyrex cylinder reac-
tor (26 mm ID x ~7 cm length) with a thermocouple
well down the center and a stopcock attached to a Pyrex
capillary tube on the other end. The reactor was placed
inside a tube oven whose lid was open approximately
6 mm to allow radiation from a UVA fluorescent lamp
to enter. The calibration of the Chromel-Alumel ther-
mocouple was checked in ice and boiling water. The
temperature along the axis of the reactor was uniform
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Figure 1 Loss of CHyF, versus CHy following exposure
to chlorine atoms at 253 K.

to ~2 K from the mean. During a reaction, a portion
of the unreacted mixture was placed into the reactor at
pressures varying from 930 to 1200 mbar depending on
the depletion in the reactant storage flask. The mixture
was then irradiated for a chosen time, and the contents
were withdrawn into a 100-cm? transfer flask outside
of the oven. This sample was diluted with N, and then
injected into the GC using a gas-tight syringe. Only
one irradiation was possible per sample placed into the
reactor. The consumption of CH,F, was 7%—40%.
The unreacted mixture contained CHy
(~1000 ppm), CH,F, (~500 ppm), and CF;CFH,
(~500 ppm as an internal calibrant to allow nor-
malization for small variations in the amount of
reaction mixture extracted for the GC analysis), Cl,
(1200-2500 ppm), and N,. The CF;CFH; internal
calibrant reacts slowly with CI atoms. The measured
CF;CFH, concentration was corrected for loss using
the measured loss of CH4 and the value of k3/k4
discussed herein. This correction never exceeded 3%.
For selected samples, two analyses were performed to
assess sample stability, which showed that the samples
were always stable over 10-15 min. In addition,
unirradiated mixtures were also placed in the reactor
to determine the degree of thermal reaction that may
occur as the temperature is increased. Significant
thermal reaction was only observed at the highest
temperature (~550 K). The two highest temperature
data points in shown in Fig. 2, for which a thermal
reaction was observed, were derived from the loss
of CF,H, versus loss of CHy. They are entirely
consistent with the data obtained at lower temperature
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Table II Rate Constant Ratios Measured at the
University of Michigan—Dearborn

Temperature Temperature

kcH,F,/kcH, X kcH,F,/kcH, X
0.324 297 0.429 449
0.308 297 0.422 457
0.317 297 0.389 457
0.341 297 0.481 508
0.323 297 0.437 510
0.339 344 0.439 511
0.357 345 0.422 511
0.379 398 0.490 548
0.394 400 0.444 553
0.417 402

where no thermal reaction occurs. Thus, the reactivity
of chlorine atoms is not impacted by the method
by which chlorine atoms are formed in the system
(photolysis of Cl, or thermal decomposition of Cl,
followed by chain chlorination chemistry).

At ambient temperature, experiments were per-
formed in both the high-temperature reactor described
above and in a 0.5-L spherical Pyrex flask. The rate
constant ratios were indistinguishable in these two re-
actors (see Table II—first three entries at 297 K are in
the high-temperature reactor; remaining two are in the
0.5-L flask), verifying that surface reactions play no
significant role in these measurements.

RESULTS

k(Cl + CH>F>)

Figure 1 shows plots of the observed decay of CH,F,
versus CHy4 for experiments performed in Copenhagen.
Consistent with expectations, as discussed in the
section “Measurement of k; at the University of
Copenhagen,” plots of In([CH,F;]i/[CH,F];) versus
In([CH4]:o/[CH4],) were linear and passed through the
origin. The lines through the data in Fig. 1 are linear
least-squares fits that give the values of k;/k4 listed in
Table I. To place these rate constant ratios on an ab-
solute basis, we chose to use k; = 5.69 x 10719724
exp(—609/T) cm?® molecule™ s~! derived from a fit
by Bryukov et al. [18] to the available literature data
over the temperature range 200—1000 K. The resulting
values of k; are shown in the Arrhenius plot in Fig. 2.
Rate constant ratios k;/k; measured in Dearborn are
listed in Table II and are also plotted as rate constants
in Fig. 2.

As seen from Fig. 2, where comparison is possi-
ble at temperatures near ambient the data obtained

—  Tschuikow-Roux et al. (1985)
| | Nielsen et al. (1992)
A This work - FTIR (University of Copenhagen)
O This work - GC (University of Michigan)
Fit

—_
o
T

Cl+ CH,F,

K(Cl + CH,F,), 10 *cm® molecule 's™

1 | | | | |
1.5 2.0 25 3.0 35 4.0 4.5

1000/T

Figure 2 Arrhenius plot for k(Cl+ CH,F,). The data ob-
tained at the University of Copenhagen are represented by
triangles, and the data obtained at the University of Michigan
are represented by circles. The solid line is a fit to the data of
Nielsen et al. [4] and the present work: k1 = 1.19 x 10~1772
exp(—1023/T) cm? molecule! s~1.

in Copenhagen and Dearborn are in excellent agree-
ment. Also, both sets of data are in good agreement
with the previous measurement by Nielsen et al. [4],
which was obtained 16 years ago in the FTIR-smog
chamber system at the Ford Motor Company labora-
tory in Dearborn. The results obtained in the present
work and by Nielsen et al. [4] are approximately a fac-
tor of 2 lower than in the study by Tschuikox-Roux
et al. [3].

In the relative rate study by Tschuikow-Roux et al.
[3], rate constant ratios k/k4 were measured by mon-
itoring the formation of CHF,Cl and CH;Cl follow-
ing UV irradiation of CH,F,/CH4/Cl, mixtures. The
formation of CHF,Cl and CH3;Cl was measured by
GC-FID and used to infer the loss of CH,F, and CHy.
Tschuikow-Roux et al. [3] found it necessary to apply
an “unexpectedly large” correction factor of 5.838 to
account for the response of the GC-FID to CHF,Cl.
The use of a smaller correction factor would lead to
better agreement with results from the present work
and from Nielsen et al. [4]. It seems clear that k; was
overestimated by Tschuikow-Roux et al. [3]. The curve
through the data in Fig. 2 is a least-squares fit of the ex-
pression k = CT? exp(— D/T) to the combined data set
from the present work, which gives k; = 1.19 x 10~"7
T? exp(—1023/T) cm?® molecule™! s™!. As seen from
Fig. 2, this expression fits the data to within +15%
across the entire temperature range.

International Journal of Chemical Kinetics DOI 10.1002/kin
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Table IIl Rate Constant Ratios Measured at
Copenhagen, Scaled to k(Cl + CHy4)

Reactant Reference  kRreactant/kCH, Temperature (K)
CH3CClz  CHF,  0.0796 £+ 0.0021 253
CH3CCl; CHF,  0.082540.0026 273
CH3CCl;  CHF,  0.0982 4+ 0.0074 298
CH3CCl3  CHF,  0.0981 4 0.0048 313
CF3CFH; CH3CClz 0.00838 & 0.00032 253
CF3CFH,; CH3CCly  0.0125 4 0.0007 273
CF3CFH; CH3CClz  0.0126 +0.0012 298
CF3CFH; CH3CClz  0.0154 +0.0017 313

k(Cl + CH3CCl3)

Rate constant ratios k»/k; measured in Copenhagen are
given in Table I. Multiplication by the appropriate val-
ues of ki/k4 (in Table 1, see the section “Measurement
of k; at the University of Copenhagen” regarding k;/k4
data point at 318 K) gives the values of k,/k4 listed
in Table III. Uncertainties in Table III were computed
using standard error propagation. The values of ky/ky4
in Table III can be placed on an absolute basis using
k4 =5.69 x 1071°T24 exp(—609/T) cm? molecule ™!
s~! [18] and are shown in the Arrhenius plot in Fig. 3.
As seen from Fig. 3, the results from the present work
are in good agreement with the previous relative rate
measurement by Platz et al. [7] using the FTIR-smog
chamber system at Ford. However, the results from the
discharge flow absolute rate study by Talhaoui et al.

100 [

-0 Cl + CH,CCI,

%) .
- r N

‘QJ A '\_

S .

9] .

Q@ N \

2 N

1S & N
(3]

[ AN

o A N
T 10F

o L

— L N

= L

) L

(@)

g O Platzetal (1995)

I A Talhaoui et al. (1996)

(ST I o Cillien et al. (1967)

+ — — Tschuikow-Roux et al. (1985)

6 @  This work - FTIR (University of Copenhagen)

et —— This work - FTIR

x

1 | | | |
2.0 2.5 3.0 3.5 4.0 45

1000/T

Figure 3 Arrhenius plot for k(Cl+ CH3CCl3). The solid
line is a fit to the data from the present work: ky =
241 x 10712 exp(—1630/T) cm? molecule™! s~1.
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[8] lie about 25% below the present work, whereas
those from the relative rate study by Tschuikow-Roux
et al. [6] are about 60% above those from the present
work. A linear least-squares regression analysis to the
data from the present work gives k(Cl 4+ CH3CCl;) =
2.41 x 107! exp(—1630/T) cm® molecule™! s~1.

k(Cl + CF3CFH3)

Rate constant ratios k3/k, measured in Copenhagen
are given in Table I. Multiplication by the appropriate
values of k;/k4 and k,/k; (in Table I; see the section
“Measurement of k; at the University of Copenhagen”
regarding k/k, data point at 318 K) gives the values
of kz/k4 listed in Table III. Uncertainties in Table III
were computed using standard error propagation. The
values of k3/k4 in Table I1I can be placed on an absolute
basis using k4 = 5.69 x 10719T24° exp(—609/T) cm?
molecule™' s~! [18] and are shown in the Arrhenius
plot in Fig. 4. As seen from Fig. 4, there is excellent
agreement between the values of k3 at ambient temper-
ature reported by Sawerysyn et al. [9], Wallington and
Hurley [10], Tuazon et al. [11], Kaiser [13] (calculated
from measured values of k3/k(CF;CFCIH) using the
temperature dependent expression for k(CF;CFCIH)
determined by Warren and Ravishankara [19]), Louis
et al. [12], and the present work. Inspection of Fig. 4
also reveals that the temperature dependence of k3

T
7]
T
2 o
S 10F Cl + CF,CFH,
o L
o |
g L
™
e L
(&]
[To)
| L
o
h
—~
N1
E [| O Sawerysynetal. (1992)
O H A Wallington and Hurley (1992)
r H ¥ Tuazonetal. (1992)
L H @ Louis etal. (1997)
O | Y% This work - FTIR (University of Copenhagen)
+ — Arrhenius fit to data from all studies
— H O Kaiser (1993)
O ——=- Arrhenius fit to data from present work
:!’ T T |
2.0 25 3.0 3.5 4.0
1000/T

Figure4 Arrhenius plot for k(Cl + CF3CFH;). The dashed
line is a fit to the data from the present work, which gives
k3 =1.27 x 10712 exp(—2019/T) cm? molecule~! s~1. The
solid line is a fit to the combined data set from all stud-
ies, which gives k3 = 2.13 x 107'2 exp(—2165/T) cm?
molecule ™! s~
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observed by Kaiseretal. [13] and Louis et al. [12] is in-
distinguishable from that observed in the present work.
The present work confirms and extends to lower tem-
peratures the subambient data for k3. The dashed line
is a fit to the data from the present work, which gives
k3 =1.27 x 10712 exp(—2019/T) cm® molecule ' s~!.
The solid line is a fit to the combined data set from all
studies, which gives k3 = 2.13 x 107! exp(—2165/T)
cm?® molecule™" s~

DISCUSSION

We report a substantial and self-consistent set of ki-
netic data for the reactions of chlorine atoms with
CH,F,, CH;CCl;3, and CF;CFH,. The kinetic data
for the reaction of chlorine atoms with CH,F, deter-
mined using two independent techniques (FTIR anal-
ysis in Copenhagen and GC in Dearborn) are in good
agreement. The kinetic data for the reaction of chlo-
rine atoms with CF;CFH, determined in the present
work are in good agreement with five previous stud-
ies using relative [10,11,13] and absolute [9,12] rate
methods. The kinetics of this reaction appear to be
very well established, and a fit to the combined data
set from six different studies gives k3 = 2.13 x 10712
exp(—2165/T) cm?® molecule ™! s~

As shown in Fig. 3, there is substantial scatter in the
kinetic data for the reaction of chlorine atoms with
CH3CCl3. As indicated in Table III, we have used
k(Cl+ CH3CCl3) as a “stepping stone” to relate the
reactivity of CF;CFH, to CHy4. The excellent agree-
ment between the values of k(Cl+ CF3CFH,) mea-
sured in the present work and the literature data sug-
gests (but does not prove) that our measurement of
k(Cl + CH3CCl3) is free from substantial errors. In the
relative rate work of Tschuikow-Roux et al. [6], the loss
of CH3CCl; was measured indirectly by observing the
formation of the chlorinated product CH,CICCl;. A
correction factor of 2.35 was applied to account for the
reduced sensitivity of the flame ionization detector to-
ward CH,CICCl;. In the same study, Tschuikow-Roux
et al. [6] report k(Cl+ C,Hg)/k(Cl+CHy) = 7.33
exp(1298/T) cm® molecule™! s~!. Using k(Cl 4 CHy)
= 6.6x 10712 exp(—1240/T) [20] gives a value of
k(Cl+ C,Hg) = 3.98 x 107! cm?® molecule™! s~ at
298 K, which is significantly different from the well-
established value of k(Cl+ C,H¢) =5.9 x 10~!! cm?
molecule™" s~! [20]. The study by Tschuikow-Roux
et al. [6] appears to have significant systematic errors.
The relative rate study by Cillien et al. [5] employed a
very similar method to that used by Tschuikow-Roux
et al. [6] (loss of CH3CCl; inferred from CH,CICCl;
formation measured by GC) and reported similar re-

sults (see Fig. 3). It appears that there is a problem with
this method.

The data reported herein improve our understanding
of the kinetics of reactions (1)—(3) and should facili-
tate future smog chamber studies of the atmospheric
degradation mechanisms of halogenated organics.
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