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Bayesian EM Algorithm for Scoring Polymorphic Deletions From
SNP Data and Application to a Common CNV on 8q24
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Copy number variations (CNVs) in the human genome provide exciting candidates for functional polymorphisms. Hence,
we now assess association between CNV carrier status and diseases status by evaluating the signal intensity of SNP
genotyping assays. Here, we present a novel statistical method designed to perform such inference and apply this method
to a known CNV in a bipolar disorder linkage region. Using Bayesian computations we calculate the posterior probability
for carrier status of a CNV in each individual of a sample by jointly analyzing genotype information and hybridization
intensity. We model the signal intensity as a mixture of normal distributions, allowing for locus-specific and allele-specific
distributions. Using an expectation maximization algorithm we estimate the parameters of these distributions and use these
estimates for inferring carrier status of each individual and for the boundaries of the CNV. We applied the method to a
sample of 3,512 individuals to a previously described common deletion on 8q24, a region consistently showing linkage to
bipolar disorder, and unambiguously inferred 172 heterozygous and 1 homozygous deletion carrier. We observed no
significant association between bipolar disorder and carrier status.

We carefully assessed the validity of the inferred carrier status and observed no indication of errors. Furthermore, the
algorithm precisely identifies the boundaries of the CNV. Finally, we assessed the power of this algorithm to detect shorter
CNVs by sub-sampling from the SNPs covered by this deletion, demonstrating that our EM algorithm produces precise
estimates of carrier status. Genet. Epidemiol. 33:357–368, 2009. r 2008 Wiley-Liss, Inc.
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INTRODUCTION

After the human genome was sequenced it became clear
that large segments of the human sequence exists in
differing copy number [Redon et al., 2006]. Such copy
number variations (CNVs) often include genes and open
reading frames and hence are compelling candidates for
risk variants for complex traits. Recent studies demon-
strated association between a common deletion and
reduced risk of HIV infection [Gonzalez et al., 2005], a
novel neurodegenerative disorder caused by a deletion on
17q2 [Sharp et al., 2006] and an association between de
novo deletions in several regions of the genome and
autism [Sebat et al., 2007; Weiss et al., 2008] and
schizophrenia [Walsh et al., 2008]. Presently, several efforts
are underway to catalog all common CNVs in humans
[Eichler et al., 2007], thus a map of most common CNVs
may soon be available.

The next challenge will be to evaluate if common CNVs
affect disease risk for common complex disorders. To this

end, CNVs need to be typed in large samples of cases and
controls. Several experimental methods exist to assess
copy number, such as competitive genetic hybridization.
However, it is efficient to use SNP genotype information
generated for association mapping for the additional
purpose of testing for CNVs as multiple genome-wide
association studies, typing 300.000–500.000 SNPs in hun-
dreds or thousands of cases and controls have been carried
out. Thus, there is interest how to use the SNP genotype
data to infer carrier status of known CNVs, and to test
those CNVs for association with the studied disease
phenotype and QTLs. Using genotyping technology, it is
not possible to observe a duplicated or hemizygous region
in the genome directly; hemizygous regions will be
interpreted as homozygous sequence and duplicated
regions may easily stump modern genotyping algorithms
and appear as failed genotypes.

At least three methods to infer carrier status from
genotyping data are conceivable: (1) tagging the alleles of
each CNV with adjacent SNPs; (2) identifying segregating
deletions based on non-Mendelian inheritance errors
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(NMIs) in family data; or (3) assessing the carrier status
from the signal intensity of the genotyping reaction. The
first method is dependent on linkage disequilibrium (LD)
between the CNV and the surrounding SNPs. Such LD will
be high for CNVs that are the result of one single past
event. Common CNVs in unique regions of the genome
are often in strong LD to neighboring SNPs [McCarrol
et al., 2006; Hinds et al., 2006]. However the mean r2

between CNVs and flanking markers is significantly lower
than the mean r2 between pairs of SNPs [Redon et al.,
2006] and CNVs in duplication-rich regions often show
little LD to flanking markers [Locke et al., 2006]. Likely,
CNVs in segmental duplications have a higher mutation
rate [Sharp et al., 2005] and thus less LD, while CNVs
outside of those regions are the result of single mutation
events [Locke et al., 2006]. Therefore, it is not possible to
tag every CNV using SNPs.

The second method, using NMIs to identify segregating
deletions, has proven to be a powerful approach to
localize deletions [Conrad et al., 2006; McCarrol et al.,
2006]. If the deletion is transmitted from a hemizygous
parent to a hemizygous offspring, both will appear to be
homozygous for the allele carried on the other chromosome.
Hence, if the chromosome transmitted by the other parent is
different from the allele carried by the hemizygous parent,
the offspring will appear to be homozygous for an allele not
carried by one parent and will be counted as an
NMI. However, only families where a deletion is actually
transmitted will produce an NMI that can be detected.
Thus, many carriers in the parental generation will
not be identified, making it challenging to apply methods
commonly used for family data to test for association
between a phenotype and a deletion inferred from
NMIs, as such tests rely on transmission distortion
[Spielman and Ewens, 1996; Horvath et al., 2001].
Kohler and Cutler [2007] have recently developed a
method to overcome this limitation, combining NMIs,
deviations from Hardy-Weinberg Equilibrium (HWE), and
frequency of missing data. However it is not clear how
robust this method is to population genetic effects affecting
HWE such as inbreeding and population substructure.
Further, this method is contingent on the availability of
family data.

Hence, it is often advantageous to infer CNV carrier
status directly from the genotyping intensity signal. The
two most commonly used high throughput genotype
platforms generate a signal for a genotype whose intensity
depends on the number of alleles present. However,
interpreting this signal is challenging because the inference
of CNV status is confounded with the genotype calling
based on the same signal. Furthermore it is not obvious
how to model the distribution of hybridization signals
across multiple markers. Often such data are analyzed with
somewhat ad hoc methods [Weiss et al., 2008]. Statistically
more rigorous methods jointly model uncertainty about the
location of the CNV and the carrier status of each individual
in the sample [Wagenstaller et al., 2007]. Hidden Markov
methods are the most commonly used tool; Komura et al.
[2006] extended the SW-ARRAY algorithm [Price et al.,
2005] to infer CNVs from data generated from an
Affymetrix 500 K chip. Colella et al. [2007] proposed an
objective Bayes Hidden Markov Model to infer location and
carrier status of CNVs from Illumina Bead array data.
PenCNV [Wang et al., 2007] extends this model to include
information of related individuals. Furthermore, several

methods that have been designed for CGH array [e.g.
Fridlyand et al., 2004; Henrichsen et al., 2008] can be
extended to genotyping data. As such methods model the
uncertainty of the location of the CNV, they have relatively
high error rates when calling CNVs; PenCNV has an error
rate of 25% for CNVs of any length [Wang et al., 2007] and
8% for CNVs encompassing 10 SNPs or more [Wang et al.,
2007; Jakobsson et al., 2008]. Such imprecise estimates of
carrier status reduce the power of a test for association
between a deletion and a phenotype.

However, once the location of a CNV is known, it may
be more efficient to infer only the carrier status of the
individuals in the sample. For the following reasons, we
can assume, that most candidate regions are known. For
association studies of complex disorders, we expect two
types of risk affecting CNVs, either common, transmitted
CNVs of moderate effect, or novel mutations. As complex
diseases rarely show strong linkage peaks, transmitted
CNVs with larger effects are unlikely. Common CNVs
likely were observed before and their approximate loca-
tion is recorded in one of the existing CNV databases. On
the other hand, CNVs with high rates of recurring
mutation are usually located in segmental duplications
[Sharp et al., 2006]. These regions have also been well
characterized and can be specifically targeted. Hence, we
can reduce noise in the data by focusing on the regions
most likely to contain CNVs of interest.

Here, we present a novel EM algorithm to infer the
carrier status in unrelated individuals based on both SNP
genotype calls and hybridization intensity data, assuming
that the general location of the CNV is known, even
though the specific boundaries may be unspecified.
We model the signal intensity as a mixture of normal
distributions allowing for locus-specific and allele-specific
hybridization signals, similar to approach by Marioni et al.
[2007] applied to CGH data. We combine information
across markers and use genotype information to identify
obligate non-carriers and use these known non-carriers
to enhance the estimates of signal distribution and the
precise boundary of the CNV. Thus, we generate the
posterior probability for the carrier status of each
individual in the sample. This estimate can then be used
to test for association, e.g. in a logistic regression. We
implemented this algorithm in the freely available pro-
gram CNVEM.

We applied this method to a sample of 3,512 individuals
from 737 families typed for 1,536 SNPs on 8q24 [Zandi
et al., 2008], a region that has repeatedly shown linkage to
bipolar disorder [Avramopoulos et al., 2004; McInnis et al.,
2003; McQueen et al., 2005]. D8S272 marks a common
192 kb deletion localized in this region [Yu et al., 2002],
called Variation_0337 in the database of genomic varia-
tions [Iafrate et al., 2004]. Twelve successfully called SNPs
are located in the region covered by this deletion. We
demonstrated the segregation of this deletion in our
sample by considering NMIs of covered SNPs. Applying
our EM-algorithm, we inferred the carrier status for each
individual. After performing several quality-control
checks on the inferred carrying status and validating
a subset of the inferred deletion carriers by PCR, we
found no indication of any error in the inferred carrier
status. Using LAMP [Li et al., 2005, 2006], a family-based
test for association, we and found no evidence for
association between the deletion carrier status and bipolar
disorder.
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The 8q24 dataset is well suited to explore the
properties of CNVEM and other CNV-typing algorithms.
By generating and analyzing subsamples from that
dataset, we showed that EM-methods provide precise
estimates of carrier status for CNV with minor allele
frequency above 1%, spanning five or more SNPs.
Furthermore, we demonstrated the capacity of CNVEM
to fine-map the borders of a CNV.

METHODS

Here, we describe a Bayesian approach for predicting
carriers and boundaries of a CNV from the allelic
hybridization intensity data of L SNPs sampled in n
individuals. For ease of exposition, we limit our initial
description to the simplest possible case wherein m40
individuals carry a deletion, n�m40 individuals do not,
heterozygous genotypes are observed without error, and
the deletion boundaries are constant across carriers (in the
sense that the deletion is assumed to cover the L SNPs in
every carrier). Our method is, however, easily extended to
more complicated settings where any of the following may
be present: carriers of duplications, genotype errors, or
SNPs that are outside the span of the CNV, and we present
extensions for the latter two in subsequent sections. For
computational convenience, we ignore the unlikely possi-
bility that individuals could carry multiple copies of a
duplication, or two copies of a deletion. The latter is
confounded with missing data at consecutive markers, and
these individuals (if any), are often detected based on this
pattern.

PREDICTING CARRIERS WITHOUT GENO-
TYPING ERROR

Let Gij 2 fAA;A�;AB;B�;BBg be the true genotype of
individual i at SNP j, for i ¼ 1; . . . ; n, and j ¼ 1; . . . ; L with
‘‘�’’ denoting a deletion. Furthermore, let Dij 2

f;;A;AB;Bg be the observed alleles of genotype Gij as
generated by genotyping algorithms such as BRLMM
[Rabbee and Speed, 2006] and DM [Di and Cawley, 2005].
For a pair of indices in the set G � fði; jÞ : Dij 2 fA;Bgg, let
Hij be the hybridization intensity of allele Dij. Hence, the
observed data are H � fHij : ði; jÞ 2 Gg and D � fDijg. Now,
define C � ðC1; . . . ;CnÞ where Ci 2 f0; 1g is the carrier
status of individual i. Note that Gij is a deterministic
function of Ci and Dij, and that we condition on D ¼ d
throughout. The goal then, is to predict carriers and non-
carriers in the sample based on the posterior distribution
of C.

Under the assumption that Hij is conditionally
independent of all other variables given Gij, and that Ci

depends only on variables specific to individual i, the
posterior distribution of C is

PrðCjDataÞ ¼ PrðCjH;DÞ

/ PrðC;HjDÞ

¼ PrðHjC;DÞPrðCjDÞ

¼
Y
G

PrðHijjGijÞ
Y

i

PrðCijDi�Þ: ð1Þ

In the absence of any information about the conditional
distribution of C given D, one may adopt a uniform prior

(as we do here)

PrðCi ¼ 1jDi�Þ ¼
c if Dij 2 fA;Bg 8j;
0 otherwise;

�
ð2Þ

by setting c ¼ 0:5. Alternatively, one could consider
incorporating information about the frequency of the
deletion from public databases like DGV (Database of
Genomic Variants, http://projects.tcag.ca/variation/) into
the prior as well. Also, note that the prior given in (2)
implicitly assumes that any individual who is hetero-
zygous at any SNP is an obligate non-carrier. We will relax
this assumption later, when we consider the possibility
that we observed heterozygous genotypes in hemizygous
individuals due to genotyping errors.

For each ði; jÞ 2 G, we model the conditional distri-
bution of Hij given Gij ¼ g as a normal random variate
with mean mðgÞ, and variance s2ðgÞ. Thus, there are
eight L unknown parameters in the model, and to find
the maximum likelihood (ML) estimates of these para-
meters, we use the expectation-maximization (EM)
[Dempster et al., 1977] algorithm. For example, if we
define pi as the posterior probability that individual i is a
carrier, then the parameter updates for the AA genotype at
SNP j are

mjðAAÞ ¼
1P

i:Dij¼Að1� piÞ

X
i:Dij¼A

ð1� piÞHij; ð3Þ

s2
j ðAAÞ ¼

1P
i:Dij¼A ð1� piÞ

�
X

i:Dij¼A

ð1� piÞðHij � mjðAAÞÞ2: ð4Þ

In the case where g is A�, B�, or BB, parameter updates
are defined by analogous equations. For a complete
derivation of all of the EM updates, see Appendix B.
Hence, the ML estimates for the AA and BB genotypes
are influenced by both potential carriers and obligate
non-carriers, due to the hybridization intensities of the
latter at observed homozygous genotypes. Given the ML
estimates ðmðgÞ;s2ðgÞÞ for all g 2 fAA;A�;BB;B�g, the
posterior probability of being a carrier is easily computed
from (1).

PREDICTING CARRIERS WITH GENOTYPING
ERROR

In the presence of genotyping error, heterozygous
genotypes may be observed in carriers. Let Ki � L denote
the number of observed heterozygous genotypes in
individual i. To account for genotyping error, we assume
that a hemizygous genotype is observed as a heterozygous
genotype with probability e, and that the conditional
distribution of Ki given Ci ¼ 1 is BinðL; eÞ.

Furthermore, when e is small (e.g. 0.01),

PreðCi ¼ 1jKi ¼ 0Þ

� PrðCi ¼ 1jDij 2 fA;Bg8jÞ � c;
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and, for deletions that span two or more SNPs, PreðCi ¼

1jKi41Þ is generally very close to zero. As a result,

PreðCi ¼ 1jKi ¼ kÞ

¼

c if k ¼ 0;

PreðKi ¼ 1jCi ¼ 1ÞPrðCi ¼ 1Þ

PreðKi ¼ 1Þ
if k ¼ 1;

0 otherwise;

8>><
>>:

ð5Þ

where PreðKi ¼ kÞ for k ¼ 0; 1 is estimated from the
observed genotypes in the data, and PrðCi ¼ 1Þ is
estimated as cPreðKi ¼ 0Þ½PreðKi ¼ 0jCi ¼ 1Þ��1. To com-
pute PreðCjH;DÞ in the presence of genotyping error, we
continue to ignore the observed heterozygous genotypes
in the calculation of PrðHijjGijÞ, but we replace PrðCi ¼

1jDi�Þ in (1) with PreðCijKi ¼ kÞ in (5). Thereafter, carrier
status prediction proceeds as before, only this time,
PreðCjH;DÞ is used instead of PrðCjH;DÞ. Note that this
model may also identify individuals hemizygous for
deletions that differ in length from the deletion assessed
by the algorithm.

ESTIMATING DELETION BOUNDARIES

To estimate the boundaries of a deletion, we consider the
L SNPs in physical order and we suppose now that some
of the L SNPs may not be spanned by the deletion.
Therefore, let a and o denote the left-most and right-most
SNPs spanned by the deletion. We estimate the deletion
boundaries by finding the pair (a;o) that maximize

Pa;o ¼
Ya�1

j¼1

PrðH�jjD�jÞ
Yo
j¼a

Pr
e
ðH�jjC

	;D�jÞ

�
YL

j¼oþ1

PrðH�jjD�jÞ;

with H�j � ðH1j; . . . ;HnjÞ, D�j defined similarly, C	 �
argmax PreðCjH;DÞ relative to the SNPs spanned by the
deletion, and the hybridization intensities of obligate non-
carriers are not modeled at heterozygous genotypes. To
compute the outer products in the expression above, we
estimate mjðAAÞ, mjðBBÞ and s2

j ðAAÞ, s2
j ðBBÞ using the

sample mean and variance of the observed hybridization
intensities for each homozygous genotype, since these
distributions are assumed to be univariate normal. Then,
the EM algorithm and PreðCjH;DÞ are used to estimate the
parameters needed to compute the middle product. This
model assumes that the CNV has the same boundaries in
all carriers. This is a likely scenario if the CNV is the result
of a single mutation event. However, present data on
CNVs is insufficient to assess the heterogeneity of
boundaries of CNVs caused by recurring mutations.

TESTING FOR ASSOCIATION

After calculating the posterior probability of being a
carrier, pi, for each i ¼ 1; . . . ; n, several methods can be
used to test for association between carrier status and
disease. If all calls of carrier status are unambiguous
(all pi 
 0:99 or pi � 0:01), we can directly consider the
inferred carrier status as the true carrier status. Ambiguity
(0:01opio0:99) can be resolved by selecting less stringent
thresholds. While the latter approach ignores some
information, an alternative test which does not dichot-

omize the continuous p is also possible. Specifically,
we can calculate the expected number of carriers in cases
as

P
i2fcasesg pi, and the same quantity in controlsP

i2fcontrolsg pi. Then, the two could be compared with a

w2 test with one degree of freedom. Similarly, one could
also consider the logistic regression of pi onto disease
status, in which case covariates are easily included as well.

DATA AND MATERIALS

The interval between Mb123.0 and Mb131.1 on chromo-
somal region 8q24 has twice met criteria for genome-wide
significance [Lander and Kruglyak, 1995] for linkage with
bipolar disorder [Cichon et al., 2001; McInnis et al., 2003;
Avramopoulos et al., 2004]. Moreover, McQueen et al.
[2005] recently pooled the primary genotype data from 11
BP genome-wide linkage scans (including individuals
from our study) and reported two regions, 6q21 and
8q24, achieving genome-wide significance. As reported
before [Zandi et al., 2008], we typed 1,536 SNPs across the
region, 1,458 of those SNPs passed quality control filters.
The sample consisted of 3,512 subjects from 737 multiplex
families in which 1,954 subjects were affected (1,546
bipolar I disorder, 314 bipolar II disorder, and 94 subjects
with schizo-affective disorder, bipolar type). The families
were collected by the NIMH bipolar initiative [Nurnberger
et al., 1997], and a sample collected by our group in the
Mood Disorders Research Program at Johns Hopkins
University [McInnis et al., 2003]. Genotyping was per-
formed by the Center for Inherited Disease Research
(CIDR) using an Illumina BeadLab system with Golden
Gate chemistries. We performed single-locus tests with
FBAT [Horvath et al., 2001] and Geno-PDT [Martin et al.,
2003], and multi-locus test using HBAT [Horvath et al.,
2004] and multi-locus Geno-PDT. None of the 1,458 SNPs
showed strong evidence for association to bipolar disorder,
the most significant P-value after data cleaning was 2:82�
10�4 [Zandi et al., 2008].

However, the common deletion Variation 0337, marked
by D8S272, as described by Yu et al. [2002], located between
137.7 and 137.9 Mb is a potential risk allele. Yu et al. [2002]
observed the deletion in each of six population samples, one
sample consisting of families with autism cases, a sample of
individuals with learning disabilities, a sample of Alzhei-
mer patients, two control samples and a sample of CEPH
founders with allele frequencies ranging from 0.013 to 0.104,
averaging 0.038. No association of the deletion with autism,
learning disability, or Alzheimer was reported. The deletion
does not contain any refseq genes, however several mRNAs
and ESTS are mapped to this region (See the UCSC Genome
Browser, http://genome.ucsc.edu/.). It covers 14 SNPs in
our dataset: rs2613825, rs305276, rs305312, rs10505666,
rs305279, rs2582431, rs2610077, rs10505665, rs305274,
rs2613841, rs2613837, rs7825584, rs2649120, rs2681672. Two
SNPs did not pass Illumina’s default QC criteria and were
not called (rs2649120 and rs2613825), the other 12 SNPs
produced genotype calls.

VALIDATING THE PRESENCE OF A DELETION

To assess whether Variation 0337 segregated in our
sample we examined NMIs in the SNPs covered by the
deletion [Conrad et al., 2006; McCarrol et al., 2006].
While we expect consecutive NMIs to be highly specific
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for the presence of deletions, using NMIs to infer a
deletion is not necessarily a very sensitive method;
especially in sibpairs the probability to detect an NMI is
zero. Furthermore, deletions need to be transmitted to
generate an NMI, deletions that only occur in the parental
generation cannot be inferred by NMIs. We counted a total
of 269 NMIs in the 12 sites covering the deletion,
compared to 393 NMIs over all other 1,446 SNPs,
indicating a significant excess of NMIs (po10�100 ) in
sites covered by the deletion, a clear indicator that the
deletion is segregating in the sample. To assess the number
of deletion carriers, we considered all nuclear families
with at least one NMI, assuming that the NMI was caused
by a segregating deletion, and identified the pair of
individuals that are obligate carriers under such a model.
All individuals implicated to carry a deletion by at least
two NMIs were considered certain carriers; we counted 76
such individuals. Furthermore, we counted 18 individuals
that were implicated by an NMI at exactly one of the 12
markers. Finally, one individual had missing genotypes for
all 12 SNPs, showing low signal intensities of all 12
genotyping reactions, but not for other SNPs. We verified
by PCR that this individual was homozygous for the
deletion (data not shown).

RESAMPLED DATA

To obtain more general information about the perfor-
mance of CNVEM, we generated datasets by sub-sampling
k of the 12 markers without replacement, maintaining the
patterns of LD. We analyzed the generated dataset
using the EM algorithm to calculate for each individual i
the probability of carrying the deletion ~pi. Assuming the
carrier status pi obtained from the full dataset is the true
carrier status, we compared ~pi to pi by calculating the error
E from

E ¼
1

z

Xn

i¼1

jpi � ~pij;

where z is the true number of hemizygous individuals in
the sample. Thus, E can roughly be considered the number
of individuals falsely assigned to be hemizygous per true
hemizygous individual. We generated 100,000 subsamples
of size k 2 f1; . . . ; 12gmarkers and calculated the mean and
standard deviation of the error term E.

To assess the impact of sample size and CNV-frequency
on the precision of our algorithm, we sampled with
replacement n individuals from our sample of 4,001 sets of
genotypes (including Illumina control individuals and
duplicate individuals) and applied the EM algorithm,
while maintaining the same proportion of hemizygous
individuals as in the original sample (4:9%). For each
subsample, we used CNVEM to infer the expected carrier
status of each individual; then we compared the inferred
carrier status with the inferred status based on the full
dataset, calculating E. We thus generated 100,000 sub-
samples and summarized the distribution of E by
calculating its mean and standard deviation. We repeated
this analysis using hemizygous frequencies of 1, 2, 3, 10,
and 20%.

PCR ANALYSIS OF SELECTED SAMPLES

Based on the junction sequence and primers F0 and R0
of [Yu et al., 2002], PCR reactions were performed with the

following three primers: F0: gatcaagggatgatgagtatctc, F01:
ggctgagtgaaaggaatgtg, and R0: gtgtagtggagccactatgctc. In
the presence of the deletion, primer F01 is deleted, and F0
and R0 result in a fragment of 180 bp, in the absence of the
deletion, primers F0 and R0 are more than 100 kb apart
and thus will not give a fragment, but F01 and R0 together
will result in a 249 bp fragment. Annealing temperature
was 55�C, extension 72�C. Fragments were separated by
agarose gel electrophoresis in the presence of ethidium
bromide (data not shown).

RESULTS

We applied CNVEM to estimate the carrier status of
each individual in the sample using the normalized
signal intensity of the Illumina Golden Gate assay as the
signal strength (see Illumina white papers at https://icom.
illumina.com.icom/software.ilmn). We included all dupli-
cated individuals and CIDR control individuals in the
analysis; thus the sample consisted of 4,001 individual in
total [Zandi et al., 2008]. After running five steps of the
algorithm, the likelihood of the estimates converged to a
local maximum. We ran the process for 30 steps to ensure
convergence, running time was approximately 2 sec. To
ensure that the process converged to the global maximum,
we repeated the analysis starting the EM-algorithm from
multiple random starting points; we always generated the
identical result.

PREDICTING DELETION CARRIERS

We applied CNVEM to the individuals in the 8q24
dataset, treating the individuals as unrelated and 997
individuals in the 8q24 dataset are homozygous for all 12
SNPs and thus potential carriers of the deletion; 775
individuals are heterozygous for a single SNP and thus
potential carriers with a genotyping error. After running
the algorithm without modeling genotyping error, we
observed posterior probabilities pi ¼ 1, or pi ¼ 0 for all
individuals i, thus we could assign carrier status unequi-
vocally, inferring 172 hemizygous carriers. After re-
running the analysis while allowing for genotyping error,
we observed one individual with one heterozygous
genotype and a carry probability pi ¼ 0:83 while carry
probabilities for all other individuals were 40:99 or o0:01,
almost identical to the analysis without genotyping error.
However, this individual was not experimentally con-
firmed being hemizygous (see below). As the status of this
individual is unclear, we removed him from further
analysis. We thus inferred 172 hemizygous carriers in
addition to the one homozygous carrier for a deletion
frequency of 2.5% and carrier frequency of 4.9% in the
3,512 individuals of the 8q24 sample. Among the 885
pedigree founders, 40 hemizygous carriers were inferred
(deletion frequency 2.3%). We could not reject HWE in
either the entire sample (p 5 0.42) or the founders
(p 5 0.46). A deletion frequency of 2.5% is consistent with
previously reported frequencies of 0.013–0.104 [Yu et al.,
2002].

To evaluate the validity of these inferences, we
compared the set of individuals inferred to carry the
deletion by the EM-algorithm with the set of individuals
inferred by NMI-errors. All 74 individuals implicated by at
least two NMIs and 16 of the 18 individuals implicated by
one NMI were also inferred to be deletion carriers by the
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EM algorithm. The remaining two individuals are a
parent-offspring pair; both are heterozygous for multiple
SNPs in the deletion. This suggests that the NMI in this
family is caused by genotyping error, rather than by a
deletion that had not been inferred by the EM. Hence, all
deletions inferred by NMIs were also called by the EM
algorithm, proving a high sensitivity of the algorithm. The
algorithm, however, was able to call an additional 82
carriers not implicated by NMIs. Using a binomial
approximation suggests a 95% confidence interval for the
false-negative rate of ½0; 0:033�.

As a second control of the inferred carrier status, we
tested the deletion for Mendelian segregation. As our EM-
analysis does not account for family information, we used
the segregation of the deletion as independent control for
the inferred carrier status. We assessed if offspring
inferred to be hemizygous also had at least one parent
inferred to be hemizygous. Failure to see such a pattern
would have two possible explanations, either a recurring
deletion event had occurred or the inferred carrier status
was false in either parent or the offspring. In fact, each
offspring carrying the deletion also had at least one parent
carrying the deletion. Thus, our algorithm had a high
power to identify carriers of the deletion. Furthermore, this
result also indicated no evidence for recurring deletion
events in this region in the 5,346 transmission events
covered by our dataset. This is concordant with the
observation that CNVs outside of segmental duplications
are the result of rare events [Locke et al., 2006].

Finally, we used the junction sequences and two primers
published by Yu et al. [2002] to develop a three primer
PCR reaction, which results in amplified fragments of
180 bp in the presence and of 249 bp in the absence of the
deletion, and both fragments in heterozygote samples.
Thirteen samples (one predicted homozygote for the
deletion, nine predicted heterozygotes for the deletion,
two predicted non-deleted samples and the putative
genotyping error) were PCR amplified. The individual
identified as putative genotyping error only amplified the
249 bp fragment, indicating that this individual carries no
deletion with the same 3’ breakpoint as D8S272. For all
other individuals the fragment sizes observed were exactly
as predicted in all cases (data not shown).

In summary, using a model without genotyping error,
we unambiguously inferred the carrier status for all
individuals in the sample and did not see any indications
of erroneous assignments among the 172 hemizygous
carriers, nor among the non-carriers. Including genotyping
error in the model added ambiguity for only one
individual. We consider the inferred carrier status for all
other individuals to be highly reliable. This allows testing
for association between the carrier status and bipolar
disorder (BP). Furthermore, we can generate subsamples
with known carrier status for each individual and thus
assess the performance of CNVEM for smaller and less
common CNVs.

TESTING FOR ASSOCIATION

We used LAMP [Li et al., 2005, 2006], a ML method that
jointly tests association and linkage in families, to asses the
evidence for association between D8S272 and bipolar
disorder (BP); we did not reject the hypothesis of no
association (p 5 0.42). Thus, the D8S272 deletion has no

major effect on the risk of BP and is unlikely to explain the
linkage signal to 8q24.

ESTIMATION OF CNV BORDERS

To assess the ability of the program to correctly infer the
boundaries of a deletion, we reanalyzed the 8q24 data,
assuming that the boundaries of the deletion are not
known precisely. We selected a set of 20 consecutive SNPs
consisting of the 12 markers covered by the deletion and
an additional 4 markers on each side of the CNV region.
Thus, the deletion covers markers 5 through 16. To
estimate these start- and endpoints, we calculated the
posterior probability for every pair of start- and endpoints
as described in the ‘‘Methods’’ section. We performed one
calculation using the model assuming no genotyping error.
The configuration starting at SNP 5, ending at SNP 16 had
the highest posterior probability (Table I). Furthermore all
of the top 10 most likely border configurations had less
than 2% miscalls of carrier status. Markers 17 and 18 have
heterozygosities below 0.05 and thus provide little
information to exclude non-carriers. Thus, including
markers 17 and 18 in the putative CNV does not
substantially reduce the posterior probability. For a CNV
with unknown boundaries such an observation would
indicate some uncertainty about the terminal boundary of
the CNV.

When inferring the borders of the CNV using a model
with genotyping error, we observe that the configuration
starting at SNP 5, ending at SNP 17 had the highest
posterior probability. However, this posterior probability is
close to the probability of the 5–16 configuration and the
same carriers are inferred for both sets of boundaries
(Table I). Further when modeling genotyping error, the 10
most probable border configurations have more similar
posterior probabilities than the 10 most probable border
configurations in a model without genotyping error.

TABLE I. Normalized log-likelihood of CNV-boundaries

First
SNP

Last
SNP LPP Error

First
SNP

Last
SNP LPP Error

5 16 61,896 0 5 17 61,913 0
5 18 61,613 0.017 5 16 61,908 0
5 17 61,609 0.017 5 18 61,625 0.018
6 16 60,788 0 5 19 61,433 0.030
5 15 60,778 0 4 18 61,424 0.034
6 18 60,517 0.017 4 17 61,420 0.034
6 17 60,513 0.018 4 16 61,414 0.034
7 16 59,839 0 3 18 61,231 0.046
6 15 59,673 0 3 17 61,228 0.046
7 18 59,590 0.017 3 16 61,221 0.046

We normalized the log-likelihoods for each pair of boundaries by
subtracting the log-likelihood of the data without a segregating
CNV and ranked them by the result. The left half of the table
displays the 10 most likely boundary pairs and their unnorma-
lized log posterior probability using a model with no genotyping
error (LPP), and the error of the called carrier status using these
boundaries; the right side of the table provides the 10 most likely
boundary pairs, their unnormalized log-likelihood, and the error
using a model with genotyping error. CNV, copy number
variations.
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Hence, modeling genotyping error reduces the ability to
fine map the borders of a CNV.

RESAMPLED DATA

We explored the properties of the algorithm by
randomly generating subsets of the original dataset,
varying the sample size and number of markers. We
compared inference results based on subsets of the data to
inferences from the entire dataset using the error statistic
E, which is normalized for the total numbers of CNV
carriers in the population. Varying the number of SNPs
covered by the CNV between 1 and 12, we observed that
datasets of four or less SNPs generate on average an error
statistic 40:25 (Table II), roughly equivalent of one false
call for every four true carriers in the sample. Furthermore,
some posterior probabilities were near 0.5, further indicat-
ing that the data were insufficient to assign carrier status.
For CNVs covered by 5 or 6 markers, we observed an
acceptable error statistic of 0:05 and 0:02; for CNVs
covered by 8 or more markers, the error was negligible.

Heterozygosity of the covered SNPs and the LD between
the covered SNPs has a large influence on the resolution of
the algorithm. Markers with low minor allele frequency
are less likely to be heterozygous in non-carriers and
therefore less likely to exclude these individuals as
carriers. Furthermore, markers in strong LD will not
independently exclude individuals as CNV-carriers. In
each simulated dataset, we summarized heterozygosity
and LD by counting the number of individuals that are
homozygous for all markers covering the CNV. Then we
calculated the correlation coefficient (r) between this

summary statistic and E for each number of markers.
Values of r ranged from 0.4 to 0.9, showing a strong effect
of marker selection on the large standard deviation of E
(Table II). Hence, seven to eight randomly selected SNPs
are necessary to reliably assign carrier status; if the SNPs
are selected to have high heterozygosity and little mutual
LD (e.g. tag SNPs) four to six SNPs covering the CNV are
sufficient.

To study the impact of sample size and deletion
frequency on the precision of the estimate, we generated
sub-samples of 100, 200, 400, 600, 800, 1,000, 1,500, 2,000,
2,500, and 3,000 individuals from the NIMH data, setting
the frequency of hemizygous individuals to 1, 2, 3, 4.9%
(as observed in the NIMH sample), 10, and 20%. Based on
the generated dataset, we inferred the carrier status of
individuals in that subsample by applying the algorithm
on all 12 SNPs covered by the deletion (Fig. 1) and
calculating the error of the inferred carry probabilities
relative to the true number of hemizygous individuals.
The frequency of deletion carriers has a large effect on
the precision of the estimate. Deletions that occur in only
1% of individuals are very difficult to infer, even for
samples of 3,000 individuals (Fig. 1A). On the other
hand deletions occurring in 10 or 20% of families can be
inferred with almost no error even in samples of 100
individuals (Fig. 1B). For deletions with a frequency
between 2 and 3%, the precision of the inference is
strongly dependent on the sample size, for 2% (3%)
frequency, more than 1,500 (500) individuals are required
to reduce the error below 0.05. For a deletion with the
frequency of Variation 0337 (4:9%), samples of 200
individuals are sufficient to observe only seven erroneous

TABLE II. Error of CNV carrier status inference dependent on the number of SNPs covering the CNV

1 2 3 4 5 6 7 8 9 10 11 12

Mean E 8.745 3.977 1.364 0.257 0.054 0.019 0.010 0.007 0.005 0.003 0.001 0.000
Standard deviation 2.250 2.015 1.312 0.507 0.139 0.041 0.011 0.008 0.006 0.005 0.002 0.000

The first line displays the number of SNPs that was randomly sampled to generate a dataset. The second and third line shows the mean
error statistic and the standard deviation of such datasets over 100.000 simulated datasets. CNV, copy number variations.
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inferences per 100 true hemizygous individuals.
Thus, samples of 200 individuals assessed for all 12 SNPs
have approximately the same error as samples of 4,000
individuals assessed for only five SNPs.

DISCUSSION

CNVs are a major part of human genetic variation
[Iafrate et al., 2004; Conrad et al., 2006; Redon et al., 2006;
Jakobsson et al., 2008]. The most cost-effective way of
assessing their carrier status in a genome-wide association
study is using signal intensities of the genotyping reaction.
We describe a novel EM-algorithm to analyze such signal
information together with the SNP genotypes for large
samples. We use genotype information to identify obligate
non-carriers of the CNV (i.e. individuals heterozygotes for
at least one SNP) and hybridization signal intensities to
infer carrier status in all other individuals. By including
such obligate non-carriers in the analysis we improve
estimates of signal intensity distributions. Our method
does not consider family information and can thus be
applied both to related and unrelated individuals. It is
computationally efficient and can infer carrier status for
410:000 individuals in seconds. The method was im-
plemented the method in the program CNVEM available
from the authors at http://http://www.sph.umich.edu/
csg/zollner.

We applied CNVEM to infer carrier status of the
Variation 0337 deletion in the 8q24 dataset in the NIMH
sample, unequivocally inferring 172 hemizygous carriers
and one homozygous carrier. We verified the carrier status
using the family information and observed no contra-
diction between inferred carrier status, family relatedness,
and SNP genotype. Furthermore, we used PCR to verify a
subset of inferred carriers experimentally, again observing
no error in the inferred carrier status. When including
genotyping error in our model, we identified one putative
additional carrier. Using PCR, we could not detect
Variation 0337 in this individual. Hence, the individual
either carries a deletion with different boundaries or the
inference is erroneous. We tested the inferred deletion
status for association with bipolar disorder using LAMP
[Li et al., 2005, 2006], a family-based test for association.
We observed no significant result.

We further analyzed the properties of CNVEM with data
from the 8q24 dataset. Resampling SNPs from this dataset
provided important information on the limits of CNVEM
and related algorithms. Our algorithm is precise even for
small sample sizes of 200 individuals at the hemizygous
frequency of 4.4% of Variation 0337. Large samples of
41; 500 individuals are required for precise inference only
for less common CNVs with frequencies below 3%.
However, if CNVs contribute to the risk of a disease, we
would expect them to be more common in samples of
affected individuals, even if their frequency in the general
population is low.

On the other hand, the number of SNPs covered by the
CNV has a larger effect on the error of the inference
procedure; CNVs covered by fewer than four SNPs were
inferred with low reliability. For CNVs covered between
four and six SNPs, the resolution was uneven, particularly
depending on the LD between the covered SNPs. Only for
CNVs covered by 7 or more markers did the algorithm
perform well, having error rates of 1%, regardless of the

specific subset of SNPs selected. Two reasons may explain
this high level of precision:

We focus on specific region rather than the entire
genome. At least 90% of all SNPs will lie outside of CNV
regions. Even within CNV region, at least 90% of
individuals will have the baseline copy number. Hence,
evaluating the entire genome requires isolating 1% signal
from data that consists mostly of noise. Therefore, the
quality of calling CNV carrier status can be improved by
concentrating on known CNV regions. While the precise
borders of CNVs in databases are generally unknown, we
have shown that our algorithm can overcome such
uncertainty and finemap the borders of a CNV.

Furthermore, by focussing on smaller regions, we are
able to apply detailed models of hybridization intensity in
CNVEM, as we assume known CNV location. The
distribution of hybridization signals across markers is
highly heterogeneous, even after the signal intensities have
been normalized by Illumina’s normalization algorithm.
Methods such as QuantiSNP [Colella et al., 2007] and
PenCNV [Wang et al., 2007] normalize the hybridization
intensity at each SNP using the signal intensity of a
canonical genotyping cluster. Such methods are appro-
priate when the entire genome is scanned for signals of
copy number variation; however they reduce the fit of the
modeling of the hybridization intensity [Wagenstaller
et al., 2007]. More detail about the models of hybridization
intensity are given in Appendix A.

With the current 500,000–1,000,000 SNP panels, the
median density is about one SNP every 1.5–3.2 kb, thus
our algorithm allows calling most deletions that are larger
than about 10–20 kb. In the set of CNVs described by Kidd
et al. [2008] the median length of CNVs discovered by SNP
arrays was 33.4 kb, thus our method can detect most such
variation present in the human genome [Cooper et al.,
2008]. Furthermore, both Illumina and Affymetrix have
recently developed chips that hybridize additional probes
for CNV-detection, potentially decreasing the average size
of deletions identifiable with CNVEM.

However, it is not clear how the properties of the
algorithm depend on the genotyping platform and SNP
calling algorithm used to generate genotypes and hybri-
dization intensities. Illumina technology generally gener-
ates fewer genotyping errors than Affymetrix technology
and large numbers of genotyping errors are likely to
reduce the precision of CNVEM.

The algorithm in CNVEM can be applied to duplications
as well as deletions. However, for inferring duplications,
the resolution of the algorithm is lower for two reasons:
The relative signal difference between an individual
carrying two copies and an individual carrying three
copies is smaller than the relative difference between an
individual carrying two copies and an individual carrying
one copy. Furthermore, it is more challenging to identify
obligate non-carriers from genotype calls. Finally, in the
presence of a segregating duplication, more genotypes will
be impossible to call, requiring a more detailed modeling
of markers with missing genotype calls.

A further avenue of improving carrier status calls is
analyzing repeat measurements of the genotyping signal
as occur within families. During the inference, we
disregard all the family information in the data and treat
individuals as unrelated. This allows us to test the inferred
carrier status by assessing NMIs of the deleted allele, as
described earlier. However calling CNV carrier status

364 Zöllner et al.

Genet. Epidemiol.



would be more powerful if we combined the evidence of a
segregating CNV across generations. As chromosomes are
transmitted from parent to offspring, they are genotyped
several times in different individuals. Modeling the
transmission can thus combine the signal across indivi-
duals and increase the resolution of our method. Further-
more, in such a model we can include NMIs and departure
from HWE to directly call carriers [Kohler and Cutler,
2007].

In summary the present algorithm provides a simple
and powerful tool to assess CNV carrier status from
genotype signal that can be applied to score all common
large deletions in the human genome with high accuracy.
CNVEM, the implementation of this program is compu-
tationally efficient even for large samples thus making it
possible to extend genome-wide association studies to
these polymorphisms.
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APPENDIX A

DISTRIBUTION OF NORMALIZED SIGNAL
INTENSITIES

How to best model the normalized signal intensity of a
genotyping reaction is an open question. A priori, it is not
obvious how such distributions vary between markers and
alleles after an appropriate normalization has been
performed. In the algorithm presented here, we carefully
model the signal distribution of each marker and each
allele. Other methods instead normalize the hybridization
intensities into the summary statistic Log R ratio (LRR),
the logarithm base 2 of the observed total signal intensity
divided by the signal intensity of a canonical genotyping
cluster for that SNP [Peiffer et al., 2006; Wang et al., 2007].
This statistic is modeled to be independent of genotype
and identically distributed across markers [Colella et al.,
2007; Wang et al., 2007].

To assess whether more careful modeling improves the
calling of carrier status, we used the 8q24 dataset to
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estimate properties of the signal distribution for all
genotypes. Based on the inferred carrier status, we
calculated the mean and standard deviation of the
hybridization intensity signal for each SNP (Fig. 2). We
assessed the signal distribution of the major allele in
individuals that were inferred to be homozygous or
hemizygous for the major allele; we estimated the signal
distribution for the minor allele in individuals that were
inferred to be homozygous or hemizygous for the minor
allele and we estimated the signal intensity for both alleles
in heterozygous individuals. Figure 2 reveals that for all
markers the signal intensity of hemizygous individuals is
lower than the signal intensity of homozygous individuals,
indicating that each marker provides some information
about the deletion carrier status. However, individual
markers do not provide sufficient resolutions to reliably
infer deletion carriers. Thus, combining the information
across multiple markers is required.

Moreover, the patterns of hybridization intensity are
highly heterogeneous between markers and between
alleles. Our results indicate large differences between the
mean signal intensity at individual SNPs. In extreme cases,
this leads to homozygous markers at some loci having a
weaker signal than hemizygous markers at an other locus.
For example, the signal intensity for homozygote at
marker 6 is lower than the mean signal intensity of a
hemizygous individual at marker 12.

Even within the same marker the signal distribution
between the A and B allele can be markedly different. In
markers 5 and 8, the signal intensity of the homozygous
for the A allele is lower than the signal intensity or the
hemizygous of the B allele. Clearly is not possible to use a
single distribution to model the genotyping signal across
all genotypes and all loci. Furthermore, the heterozygous
individuals is consistently lower than the signal intensity

of the hemizygous individuals 2. Hence, heterozygous
individuals cannot be used to precisely estimate the signal
distribution in hemizygous individuals.

For comparison, we also calculated the mean LRR for
each genotype at each marker 3, observing much less
heterogeneity across markers than for genotyping signal
intensity. For almost all markers, average LRR of a
hemizygous individual is significantly lower than the
average LRR of a heterozygous or homozygous individual.
However, while models assume that LRR is independent
of genotype, the average LRR between genotypes is
different for different genotypes. While the expected
LRR of a locus with two copies is 0, the mean LRR is
consistently 40 in homozygous individuals and consis-
tently o0 in heterozygous individuals. Furthermore, the
difference between the average mean LRR of an AA
homozygote is significantly different from the average
LRR of a BB homozygote (two-sided t-test 1df, a ¼ 0:05)
for all markers. This heterogeneity extends across markers,
60% of all pairs of markers have significantly different
mean (t-test 1 df a ¼ 0:05). Particularly for markers with
low minor allele frequency, the mean LRR at markers
homozygote for the minor allele differ strongly from the
mean LRR observed at other loci (see Fig. 3).

Nevertheless, estimate carrier status based on one
mixture distribution of LRR requires estimating fewer
parameters (four parameters total) than using CNVEM
(eight parameters per SNP). To assess if using the more
complicated model of CNVEM improves the fit to the
data, we re-analyzed the 8q24 dataset using LRR rather
than signal intensity. We apply the CNVEM algorithm to
calculate the maximal likelihood, modeling LRR as
sampled from either the two copy or the one copy
distribution. To compare the fit of the 4 parameter model
with the fit of the 96 parameter model, we used a
likelihood ratio test. The log-likelihood under the 4
parameter model was 24,981, the log-likelihood under
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Fig. 2. Estimated mean signal intensities. For each of the 12

SNPs covered by the deletion, this figure displays the mean
intensity of the normalized hybridization signal dependent on
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of the hybridization signal of allele A for AA homozygotes
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the 96 parameter model was 38,196. Modeling the signal
intensity of each marker individually thus resulted in a
significantly better fit to the data (po10�100). Notably,
using only LRR to estimate carrier status also results in
several ambiguous calls with final probability of carrying
the CNV neither zero or one.

APPENDIX B

EM UPDATING EQUATIONS

Here, we derive the EM updating equations used to
compute the ML estimates of ðm; yÞ � ððmjðgÞ;s

2
j ðgÞÞ : g 2

ðAA;A�;BB;B�ÞÞ; j ¼ 1; . . . ; L. Given current estimates
ðmðkÞ; y ðkÞÞ, the EM updates are defined by the following
recursion:

ðmðkþ1Þ; y ðkþ1Þ
Þ

� argmax E½log PrðH;CjD; m; yÞjH;DÞ�;

where the expectation is indexed by ðmðkÞ; y ðkÞÞ, the
maximization occurs of ðm; yÞ, H are the observed
hybridization intensities, D are the distinct alleles, and C
are the carrier status indicator variables (as describe in
‘‘Methods’’). Now,

E½log PrðH;CjD; m; yÞjH;DÞ�

¼ E
X
G

log PrðHijjCi;DijÞ þ log PrðCijDi�ÞjH;D

" #

¼
X
G

X
Ci

ðlog PrðHijjCi;DijÞ þ log PrðCijDi�Þrij

" #
;

where G � fði; jÞ : Dij 2 fA;Bgg, rij � PrðCiH;D; mðkÞ; y
ðkÞ
Þ.

To maximize the preceding expression over ðm; yÞ, we
must compute its gradient, set that to zero, and then solve
those equations for m and y. Since the prior distribution of
Ci given Di� is independent of ðm; yÞ, the gradient, denoted

by H is

HE½log PrðH;CjD; m; yÞH;DÞ�

¼
X
G

X
Ci

H log PrðHijCi;DijÞrij

" #
:

Given GijðCi;DijÞ ¼ g, and that Hij � NðmjðgÞ; yjðgÞÞ, the
gradient is easily managed. Hence, after equating the
gradient to zero, the resulting equations for ðm; yÞ are

0 ¼
X
fi:Dij�gg

ðHij � mjðgÞÞrijðCi � gÞ;

0 ¼
X
fi:Dij�gg

ðHij � mjðgÞÞ
2

yj
� 1

" #
rijðCi � gÞ;

for all g 2 fAA;A�;BB;B�g and for all j ¼ 1; . . . ; L, where
x � y indicates that x is consistent with y. By definition, the
solutions to these equations are

mðkþ1Þ
j ðgÞ ¼

P
fi:Dij�gg rijðCi � gÞHijP
fi:Dij�gg rijðCi � gÞ

;

yðkþ1Þ
j ðgÞ ¼

P
fi:Dij�gg½ðHij � mjðgÞÞ

2rijðCi � gÞ�P
fi:Dij�gg rijðCi � gÞ

8g and j:

Note that equations (3) and (4) in ‘‘Methods’’ are just
special cases of the general equations given here, with
g ¼ AA. It is well known that convergence of the EM
algorithm only applies to local maxima of LðcÞðm; y;HÞ, where
the superscript c indicates that the likelihood is conditional
on D. Therefore, to increase the chance of finding the global
maximum, we repeat the algorithm multiple times with
different starting points each time. Then, we select the
parameter estimates with the highest likelihood. In our
analyses, the likelihoods appeared to be unimodal.
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