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INTRODUCTION

The natural history of ischemic heart disease (IHD) is
known to be heterogeneous among individuals within and
between gender and racial groups. All individuals within
a particular population of inference who develop IHD
have not been exposed to the same combination of factors
that determine risk. Traditional linear statistical modeling
approaches to evaluate the contribution of risk factors
ignore this reality. The Patient Rule-Induction Method
(PRIM) was first developed by Friedman and Fisher [1999]
and incorporated into an approach by Dyson et al. [2007]
for ascertaining which values of which measures of the
genetic and environmental risk factors predict a discrete
disease endpoint in which subset of the sample being
studied. This approach yields multiple models, one for
each subset of individuals, which is consistent with the
assumption that there are multiple etiological pathways
responsible for a common disease that has a complex
multifactorial etiology in a sample of individuals repre-
sentative of the population at large [Sing et al., 2003].

The objective of the PRIM is to create mutually exclusive
partitions of individuals, defined by terms (selected values
of predictor variables), with a higher cumulative incidence

than expected under the null distribution. This is achieved
through repeated implementations of the peeling and
pasting algorithms. Peeling is an iterative process that
creates a partition by excluding individuals with particular
values of predictor variables, while pasting iteratively
amends individuals to the partition, also based upon
values of predictor variables, after the peeling stage has
been completed [Dyson et al., 2007].

The peeling and pasting algorithms used to create
partitions are controlled by two parameters, support and
complexity. The support parameter (b), which is identical
for each partition in a PRIM application, is the minimum
proportion of unassigned individuals (individuals not
already assigned into a partition) that are required to
construct a valid partition. The support parameter value
for a particular PRIM application is chosen by a grid
search. Likelihoods for b’s, ranging from 0.05 to 0.50 in
increments of 0.005 are compared with those for the null
model via a likelihood ratio test (LRT) using logistic
regression. The null model fits a logistic regression with
the intercept as the only predictor of risk. The logistic
regression model that considers the set of partitions
obtained by a PRIM application using a particular support
parameter includes the intercept and a predictor variable
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that represents the partition class in which an individual
was assigned by the corresponding PRIM application. The
support parameter which results in the most significant
LRT is declared optimal. The complexity parameter, which
is pre-selected by the investigator, is the minimum increase
in cumulative incidence (y) in a partition required to add a
term to the definition of an existing partition. The
statistical significance of the y for a partition is tested
using permutations created from exchangeable observa-
tions. Further details are given in Dyson et al. [2007].

The study of non-additive effects of variations in IHD
risk is not typically amenable to traditional linear regres-
sion modeling approaches because the relative frequencies
of risk factor effects are often correlated and/or there may
be rare, or non-existent, multivariable risk factor classes
that are characteristic of epidemiological samples repre-
sentative of the population at large. In an effort to
circumvent these possibilities, Nelson et al. [2001] intro-
duced the Combinatorial Partitioning Method (CPM) to
‘‘identify sets of partitions of multi-locus genotypes that
predict quantitative trait variability’’ in a potentially
correlated or sparse space of predictor variables. The
partitioning algorithm component of the CPM considers
all possible ways of partitioning the values (both additive
and non-additive) of a set of categorical variables into m
groups and then utilizes an analysis of variance to
compare the means of the quantitative trait of the m
groups to identify the most statistically significant parti-
tion. The CPM was later extended to use a chi-square test
for evaluating partitions for categorical traits [Stengård
et al., 2006].

This article introduces methodology which (1) combines
the features of PRIM and CPM to permit the inclusion of
non-additive effects of values of multiple predictor
variables in defining peeling and pasting terms and
incorporates, (2) permutation testing of the statistical
significance of each term used in defining a partition, (3)
an adjustment for multiple-testing in establishing the
terms that characterize a partition and (4) a confidence
interval for the estimate of y associated with each partition.
These modifications extend the PRIM analysis presented
by Dyson et al. [2007] which partitioned the data using
only one predictor for each term, tested only the statistical
significance of the overall cumulative incidence in a
partition, did not correct for multiple testing and lacked
a mechanism to compare ys across partitions. An
illustrative application of this modified analytical strategy
to test whether combinations of genetic variants improve
the ability to predict an IHD event beyond that predicted
by the traditional risk factors is presented.

METHODS

MODIFICATION OF THE PRIM STRATEGY

Combining PRIM and CPM
Through the peeling and pasting processes the previously

defined PRIM analysis [Dyson et al., 2007] produces
mutually exclusive partitions of individuals that are char-
acterized by combinations of values of predictor variables
selected one at a time. The incorporation of the CPM
partitioning algorithm component facilitates the selection of
combinations of values of multiple predictors (Z2) to define
the terms that may be used to characterize the partitions. The

algorithm for selection of the value of b for a particular
application described above is similarly employed in the
execution of a PRIM-CPM application.

Table I presents an example of a possible peeling (or
pasting) term obtained using the standard PRIM algorithm
(a) and the modified PRIM-CPM algorithm (b). The
selection of the term defined by value AA of variable
SNP2 in Table Ia does not depend on the level of SNP1.
The peeling (or pasting) term in Table Ib is defined by four
combinations of the levels of two predictor variables
considered simultaneously: (SNP1 5 CC and SNP2 5 AA)
or (SNP1 5 CC and SNP2 5 GG) or (SNP1 5 TT and
SNP2 5 AA) or (SNP1 5 TT and SNP2 5 GG). This exam-
ple grouping of genotypes corresponds to the contrast that
defines the dominance by dominance non-additive inter-
action between two locus genotypes in the traditional
linear statistical models that have been used in experi-
mental genetics [Cheverud and Routman, 1995]. The
partitioning term illustrated in Table Ia is also a possibility
that may be constructed by the application of the PRIM-
CPM strategy as is any combination of the nine possible
pairs of predictor values. The advantage of incorporating
the CPM partitioning into the PRIM algorithm is that non-
additive effects of two or more variables may be employed
to construct terms that may be used to define a partition.

Determining the statistical significance of each term in
each partition

We have modified the PRIM algorithm presented by
Dyson et al. [2007] to perform a hypothesis test for each
term within each partition at each step in the peeling and
pasting processes. This modification eliminates the need
for a complexity parameter that serves as a quasi-statistical
mechanism for evaluating significance of a term. For any
given peeling stage involving n individuals, a support
parameter of b and a significance level of a0, the PRIM (or
PRIM-CPM) algorithm selects the term that produces the
subset of individuals (n1) that results in the largest increase
in the cumulative incidence of disease, y, given that
n1Zn�b. Permuting the observed values of the disease
outcome among the n individuals, running the algorithm
using the same b and returning the resultant y0 creates one
realization of the expectation of y under the null distribu-
tion. Repeating this procedure k times creates a null
distribution for y associated with the particular term being

TABLE I. Standard PRIM (a)a and PRIM-CPM (b)b

examples of a possible peeling or pasting term (meshed
squares)

(a) SNP2 (b) SNP2
AA AG GG AA AG GG

SN
P
1 CC

SN
P
1 CC

CT CT
TT TT

aIllustrates the term (SNP2 5 AA), which is not dependent on the
levels of SNP1.

bIllustrates the term (SNP1 5 CC and SNP2 5 AA) or (SNP1 5 CC
and SNP2 5 GG) or (SNP1 5 TT and SNP2 5 AA) or (SNP1 5

TT and SNP2 5 GG), which is dependent on the levels of both
SNP1 and SNP2.
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considered. If less than (100� a0)% of the ys obtained from
the permutations are greater than the original y, the term
being tested is included in the characterization of the
partition and the peeling algorithm then searches for a
significant subset of these n1 individuals. If none of the
remaining terms significantly increases y the peeling
process in characterizing this partition is completed and
the pasting process is initiated.

Our modification of the pasting process is similar to
that adopted for the peeling process. Of the pasting terms
(after the completion of the peeling process) that increase
y (the resultant cumulative incidence for the partition
from the completion of the peeling process), the one that
results in the largest updated y is tested for statistical
significance. Permutations of the observed values of the
disease outcome among those individuals that have not
been assigned to the partition are used to construct the
null distribution of the largest y anticipated by chance
alone for a single pasting term. If less than (100� a0)% of
the ys obtained using the permutations are greater than
the y from this pasting term, then the term is included in
the characterization of the partition. Any further pasting
terms are similarly tested, using at each step permuta-
tions of the disease outcome among the individuals not
assigned to a partition at that step in the algorithm. If the
inclusion of any of the remaining terms does not
significantly increase y, the pasting process is completed,
and the next peeling stage will begin to characterize a
new partition using the remaining sample of individuals
that have not been assigned to a partition. Since no
pasting is attempted unless one or more peeling
terms have already defined a partition, the modified
PRIM or PRIM-CPM algorithm is terminated when the
first peeling term produced from n observations is not
statistically significant.

Multiple testing
Each time a term has the potential to define a partition a

hypothesis test is performed using the term testing
strategy described above. To lessen the probability of
making a Type I error, an experiment-wise correction for
multiple testing in the inclusion of multiple terms in the
characterization of a partition is required. Since the
modified PRIM (or PRIM-CPM) strategy involves sequen-
tial hypothesis testing (e.g., a second term is only
considered in defining a partition if a first term is
statistically significant) a specialized, multiple testing
correction is necessary. To achieve this objective we make
two assumptions:

(a) PH0
ðTiþ1 is significantjTi is significantÞ � PH0

ðTi is
significantÞ � a and

(b) PH0
ðPartition iþ 1 is significantjPartition i is

significantÞ � PH0
ðPartition i is significantÞ;

for sequential tests (of terms within a single partition)
Ti and Tiþ1 and partitions i and i11.

Since a second peeling (or pasting) term being con-
sidered is conditional on a first peeling (or pasting) term
being statistically significant, the probability of making a
Type I error on the second peeling (or pasting) term is less
than or equal to PH0

ðT1 is significantÞ � PH0
ðT2 is

significantjT1 is significantÞ ¼ a� a, using (a). Note that
if T1 is not truly statistically significant and T1 is
called significant, a Type I error has already occurred,

regardless of the results of T2. The computation of
PH0
ðT2 is significantjT1 is significantÞ occurs when T1 is

truly statistically significant and called significant and T2

is not truly significant and called significant. The same
argument can be made for further tests in the same
partition (e.g., T3, T4,y). Therefore, assuming p peeling (or
pasting) terms are produced, the probability of making a
Type I error in the peeling (or pasting) stage is less than
limp!1 aþ a2 þ � � � þ ap ¼ a=ð1� aÞ. So the probability of
making a Type I error for any particular partition,
including both peeling and pasting steps, is at most 2a/
(1�a). Likewise, since the second partition being con-
structed is conditional on the first one being statistically
significant, the probability of making a Type I error if p
partitions are produced, using (b), is less than

lim
p!1
½2a=ð1� aÞ þ ð2a=ð1� aÞÞ2 þ � � � þ ð2a=ð1� aÞÞp�

¼ 2a=ð1� 3aÞ

Therefore, if an overall experiment-wise Type I error rate
of a� is desired, each hypothesis test is performed at the
a�=ð2þ 3a�Þ level of probability.

Confidence interval for y
A confidence interval for the estimated y for each

partition in the original analysis is produced by bootstrap
resampling [Efron and Tibshirani, 1993]. Briefly, we
construct a bootstrap sample of the individuals that had
the potential to be included in the partition in the original
analysis. Therefore individuals already assigned to an
earlier partition are not used in creating the bootstrap
sample. A PRIM (or PRIM-CPM) application is then
performed on this bootstrap sample using the same
support parameter and number of peeling and pasting
terms as in the original analysis. There is no testing of the
significance of each peeling and pasting term as in the
original analysis since we want to estimate the distribution
of y given the number of peeling and pasting terms that
were used to characterize the partition in the original
analysis. The resultant y0 for this single partition model
associated with a bootstrap sample is a realization from
the distribution of the estimated y obtained from the
original analysis. The 0.025th and 0.975th quantiles of this
distribution (generated from 1,000 bootstrap samples) are
used to define the 95% confidence interval for the y
estimated from the original analysis. The same procedure
is done for each of the partitions produced by the original
analysis.

ANALYSIS STEPS

Two analyses were carried out on the same example
data set, one performing a standard PRIM analysis
considering only one variable at a time to define a term
and the other using the PRIM-CPM strategy that considers
two variables at a time to define a term. In both analyses,
the hypothesis testing of each term using the permutation
method, the correction for multiple testing described
above and the partition confidence interval for y were
produced. The model building strategy follows two steps
in the convention of Dyson et al. [2007], which tests the
added predictive value of the genetic variables beyond
that obtained using only the traditional risk factors. In the
first step only the traditional risk factors are used in the
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PRIM (or PRIM-CPM) application to develop predictive
models, one for each partition, for incident IHD. In the
second step we used PRIM (or PRIM-CPM) applications to
evaluate the ability of any of the genotyped single
nucleotide polymorphisms (SNPs) to further improve the
predictive model of incident IHD in each of the partitions
established in the first step.

EXAMPLE DATA SET

The sample used to illustrate the proposed modified
PRIM analysis strategy consists of 2,258 European male
participants from the prospective longitudinal general
population Copenhagen City Heart Study (CCHS) who
enrolled between 1976 and 1978, were IHD free and at
least 45 years old at the second follow-up exam
(1991–1994), which is treated as the baseline time point
for this analysis. These individuals, of whom more than
99% were white and of Danish descent, were followed
until December 31, 1999. The study was approved by a
Danish ethics committee No. 100.2039/91. The diagnosis
of IHD, the definitions and categorizations of all non-
genetic predictor variables and the descriptions of the
eight SNPs in the apolipoprotein E (APOE) and lipoprotein
lipase (LPL) genes that were genotyped for this study are
presented in the methods given in Dyson et al. [2007].

RESULTS OF AN APPLICATION TO
THE EXAMPLE DATA SET

Table II presents information on each categorical predictor
variable used in the two-step PRIM and PRIM-
CPM modeling strategies. The relative frequencies of
diabetes status, age level, triglyceride level and hypertension
status varied significantly between those individuals who
experienced an IHD event and those who did not at the 0.05
level. None of the eight SNPs under study had a significant
association with the outcome (w2 test statistic P-valueo0.05).

A standard PRIM analysis (one variable to define a term
in a partition) and the newly developed PRIM-CPM
strategy using two variables to define a term to character-
ize a partition were performed. In each case we utilized the
new permutation testing strategy to test the significance of

TABLE II. Characteristics of male participants in the
Copenhagen City Heart Study recruited between 1976
and 1978 and followed until December 31, 1999

Covariate
With IHD
(n 5 286)

Without IHD
(n 5 1,972)

Age
45–65 90 (0.31) 1,070 (0.54)���

Over 65 196 (0.69) 902 (0.46)

Smoking
No 89 (0.31) 717 (0.36)
Yes 197 (0.69) 1,255 (0.64)

Diabetes mellitus
No 252 (0.88) 1,830 (0.93)��

Yes 34 (0.12) 142 (0.07)

Hypertension
No 36 (0.13) 490 (0.25)���

Yes 250 (0.87) 1,482 (0.75)

Cholesterol
r200 45 (0.16) 380 (0.19)
(200, 240) 101 (0.35) 752 (0.38)
Z240 140 (0.49) 840 (0.43)

HDL-C
o40 68 (0.24) 374 (0.19)
Z40 218 (0.76) 1,598 (0.81)

Triglycerides
o150 118 (0.41) 962 (0.49)�

Z150 168 (0.59) 1,010 (0.51)

BMI
r25 89 (0.31) 737 (0.37)
(25,30) 142 (0.50) 912 (0.46)
Z30 55 (0.19) 323 (0.17)

APOE �491A4T (E560)
AA 204 (0.71) 1,407 (0.71)
AT 73 (0.26) 524 (0.27)
TT 9 (0.03) 41 (0.02)

APOE �427T4C (E624)
TT 229 (0.80) 1,587 (0.80)
TC 55 (0.19) 368 (0.19)
CC 2 (0.01) 17 (0.01)

APOE �219G4T (E832)
GG 75 (0.26) 565 (0.29)
GT 150 (0.53) 991 (0.50)
TT 61 (0.21) 416 (0.21)

APOE g.2059T4C (E3937)
TT 204 (0.71) 1,391 (0.71)
TC 73 (0.26) 533 (0.27)
CC 9 (0.03) 48 (0.02)

APOE g.2197C4T (E4075)
CC 246 (0.86) 1,652 (0.83)
CT 37 (0.13) 312 (0.16)
TT 3 (0.01) 8 (0.01)

LPL g.8756G4A (LPL9)
GG 279 (0.98) 1,924 (0.98)
GA 7 (0.02) 48 (0.02)

LPL g.16577A4G (LPL291)
AA 265 (0.93) 1,866 (0.95)
AG 21 (0.07) 105 (0.05)
GG 1 (0.00)

TABLE II. Continued

Covariate
With IHD
(n 5 286)

Without IHD
(n 5 1,972)

LPL g.22772C4G (LPL447)
CC 227 (0.79) 1,604 (0.81)
CG 56 (0.20) 346 (0.18)
GG 3 (0.01) 22 (0.01)

All exonic sites in APOE and LPL are named according to human
mutation nomenclature [den Dunnen and Antonarakis, 2001]. To
correspond with well-established literature names of promoter
variants in APOE, nucleotide numbering is counted from
transcriptional start site. The name in the parentheses is shorthand
notation used throughout the article. The combination of E3937
and E4075 SNPs represents the traditional three-allelic [e2, e3, e4]
APOE polymorphism. IHD, ischemic heart disease.
���Significant at 0.001 level of probability.
��Significant at 0.01 level of probability.
�Significant at 0.05 level of probability.
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a peeling or pasting term, corrected for multiple tests and
applied the bootstrap procedure to compute confidence
intervals for the estimated values of y. To ensure an overall
Type I error rate of 0.10, we tested every hypothesis at
a5 0.10/(213�0.10) 5 0.043, following the rationale given
in methods section. Figures 1 and 2 display the results of
PRIM using one variable at a time and of PRIM-CPM using
two variables at a time to define a term, respectively.

STANDARD PRIM: ONE VARIABLE TO DEFINE
A TERM (FIG. 1)

Step 1 (traditional risk factors): The overall cumulative
incidence of an IHD event during 8 years of surveillance for
male CCHS participants was 0.13. The b parameter chosen
by the algorithm described in Dyson et al. [2007] for this
PRIM application was 0.095. The first partition included
1,180 individuals who were aged 65 and older or were
diabetic (P1, y1 5 0.18, confidence interval (CI): (0.16, 0.21)).
The second partition consisted of the 112 individuals out of
the 1,078 unassigned individuals (non-diabetic individuals

less than 65 years old) who had BMIZ30 and smoked
(P2, y2 5 0.14, CI: (0.09, 0.21)). The remaining 966
individuals make up the remainder group (P2R;

y2R ¼ 0:06, CI: (0.04, 0.07)).
Step 2 (genetic variations): There were no significant

genetic effects when individual SNPs were used to define
the peeling and pasting terms in any of the three partitions
from step 1.

PRIM-CPM: TWO PREDICTOR VARIABLES TO
DEFINE A TERM (FIG. 2)

Step 1 (traditional risk factors): The b parameter chosen
for this PRIM-CPM application was 0.085. The first
partition included 286 individuals who had HDL-C less
than 40 and were at least 65 years of age or were diabetic
and had a BMI between 25 and 30 or were diabetic and
had HDL-Co40 (P1, y1 5 0.24, CI: (0.20, 0.29)). The second
partition consisted of the 177 individuals out of the 1,972
unassigned individuals who had a total cholesterol greater
than or equal to 240 and were 65 years or older and were

Fig. 1. PRIM results using one variable to define each term.

Fig. 2. PRIM-CPM results using two variables to define each term.
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hypertensive and smokers (P2, y2 5 0.25, CI: (0.19, 0.32)).
The third partition consisted of the 546 individuals out of
the 1,795 unassigned individuals were 65 years of age or
older and were hypertensive (P3, y3 5 0.16, CI: (0.14, 0.20)).
The fourth partition consisted of the 125 individuals out of
the 1,249 unassigned individuals who had a BMI equal to
or greater than 30 and were smokers (P4, y4 5 0.14, CI:
(0.10, 0.21)). The 1,124 individuals that make up the
remainder group (P4R) had y4Rj of 0.06, CI: (0.04, 0.07).

Step 2 (genetic variations): Further partitioning of each
of the five partitions produced in step 1 (P1, P2, P3, P4, and
P4R in Fig. 2) was carried out using information on two
genetic variations at a time to define a term. The 177
individuals assigned to partition P2 were further parti-
tioned by a PRIM application (using a b of 0.050) into two
groups using SNPs E560 and E624 to define terms
considered in the predictive model. Eighteen individuals
who were heterozygous (TC) for E624 and homozygous
for the most frequent homozygote (AA) for E560 had a
significantly higher cumulative incidence than individuals
in all other genotype classes (P21, y21 ¼ 0:78 (CI: (0.57,
0.95)) versus 0.19 (CI: (0.13, 0.26))). The 546 individuals
assigned to partition P3 were further partitioned by a
PRIM application (using a b of 0.070) into two groups
using SNPs LPL291 and E3937 to define terms considered
in the predictive model. Thirty-nine individuals who were
in one of the following three genotype combinations:
(LPL291 5 AG and E3937 5 TC), (LPL291 5 AA and
E3937 5 CC), (LPL291 5 AG and E3937 5 TT) had a sig-
nificantly higher cumulative incidence than individuals in
all other genotype classes (P31; y31 ¼ 0:33 (CI: (0.24, 0.48))
versus 0.14 (CI: (0.11, 0.17))).

DISCUSSION

The past several decades of human genetic research
have generated great enthusiasm for the utility of
information about genomic variation for understanding
and predicting common diseases that have a complex
multifactorial etiology [Dollery, 2007; Guttmacher and
Collins, 2005]. The most impressive progress toward this
goal has been in the development of high throughput
laboratory methods to measure DNA sequence variations
[Mardis, 2008]. Research to understand the complex causal
relationships between genome sequence variation and
emergent clinical endpoints through dynamic metabolic
networks is in its infancy [Benfry and Mitchell-Olds, 2008;
Loscalzo et al., 2007]. Most practical research focuses on
the evaluation of the ability of genomic variations to
statistically predict inter-individual variation in intermedi-
ate metabolites and clinically defined phenotypes of
disease. However such research is often divorced from
the reality about the limited impact of genetic variants in
clinical practice and the inherent complexity of the
biological systems that link genomic variation with
variation in risk of disease. The PRIM and PRIM-CPM
strategies address three goals of research to develop
pragmatic prediction models for complex disease end-
points: (1) evaluation of the added predictive value of
genomic information beyond traditional risk factors, (2)
modeling that recognizes the inherent etiological hetero-
geneity among subdivisions of the population at large and
(3) identification of non-additive effects of genetic and
environmental predictors that take into account the reality

of correlated frequencies of predictor values and a sparse
space of multivariable combinations that are typical of
non-experimental data representative of the human
population.

Because of the historical evolution of the incorporation
of biological information into the practice of medicine, the
primary goal of such statistical research is to determine
which of the millions of genomic variations add value to
prediction beyond those traditional risk factors and
biomarkers that have been accepted by medicine as
having utility in the clinic for evaluating risk of disease
and predicting progression of disease and response
to therapy. The two-step strategy for applying the
modified PRIM and PRIM-CPM algorithms acknowledges
this reality.

It is widely acknowledged in clinical medicine that the
etiology of a complex multifactorial disease is heteroge-
neous among patients and families. The search for those
genomic variations that have clinical utility using tradi-
tional regression modeling approaches ignores the possi-
bility that variations in different genes are relevant for
determining disease endpoints in different subsets of the
population at large. Given this context-dependent reality,
the analytical question becomes which combination of
predictor variables, in which subset of individuals of the
population defines the best prediction model of the
endpoint of interest?; not which variables are the best
predictors in a model that is assumed to be appropriate for
every individual of the population at large. We propose
the modified PRIM and PRIM-CPM algorithms as a non-
traditional, non-parametric, alternative statistical strategy
for building multiple prediction models that acknowledge
and reflect the etiological realities of a common human
disease.

Three of the four major modifications of the PRIM
algorithm that are introduced in this article address
hypothesis testing issues that have parallels in the
application of traditional parametric approaches: signifi-
cance testing of each combination of predictor variables
potentially used in defining a partition, an adjustment to
correct the number of hypothesis tests carried out in
selecting the terms in the peeling and pasting processes to
characterize a partition and a confidence interval for y that
allows for comparisons to be made between partitions.
Permutation testing of the statistical significance of each
term in the building of each partition is expected
to result in fewer terms than testing the significance of
the estimate of y associated with the final partition.
Furthermore, the problem of over-determination and
sparseness inherent when using the CPM partitioning
structure in high dimensions is expected to be lessened by
performing a permutation test of the significance of each
term considered for inclusion in the prediction model. The
expected result is a more parsimonious and robust set of
models defined by the PRIM (or PRIM-CPM) application.
Although this improvement is tenable when the
number of predictor variables is in the hundreds, the
strategy quickly exceeds the computational limits when
the number of variables is in the millions. To address
this limitation, we are currently developing a theoretical,
non-permutation based method that tests every
term in every partition. This alternative will alleviate the
computational limit imposed by permutation testing to
allow applications of the proposed partitioning strategy to
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data sets that include millions of predictor variables (e.g.,
genome-wide association studies).

While some researchers [Talmud et al., 2002; Wright
et al., 2006] advocate lowering the threshold of statistical
significance as a way to correct the experiment-wise error
for multiple testing, we acknowledge that performing
many sequential, correlated hypothesis tests in defining
the terms that characterize a partition requires an alter-
native correction mechanism. The derivation of the multi-
ple testing adjustment approach introduced in this article
(applicable regardless of the number of predictor variables
and consequently the number of potential terms) requires
two assumptions: (1) the probability that a peeling or
pasting term at any step in the modeling building process
is significant is less than or equal to the probability that the
previously incorporated peeling or pasting term is
statistically significant and (2) the probability that a
completed partition is significant at any step in the
modeling building process is less than or equal to the
probability that the previously defined partition is
statistically significant. Insights into the validity of these
assumptions cannot be made from the application to one
data set. Only large-scale simulation studies considering a
broad range of risk variable-endpoint etiologies to evalu-
ate these assumptions could help resolve the utility of the
experiment-wise error rate adjustment that we have
proposed here. The inferences about these assumptions
that are possible from simulation studies will depend
entirely on the domain of possibilities defined by para-
meter values that are unknown, or unknowable, for a
particular population of inference.

The bootstrap approach to producing a confidence
interval for y estimated for a partition introduced in the
modification of the PRIM plays a key role in the
comparisons between partitions. Determining if a y from
a partition is statistically significantly different than a y
from another partition enables the investigator to evaluate
the distribution of y among partitions and make practical
decisions about the utility of particular partitions in
clinical practice.

The analysis of the example data set illustrates the
presence of etiological heterogeneity and non-additive
influences of predictor variables. Both the analyses of one
variable at a time and two variables at a time illustrate the
etiological expectation that different variables define
terms that predict IHD in different subgroups of the
sample. When traditional risk factors are considered one at

a time, age, diabetes and smoking contribute to partition-
ing the sample into three subgroups of individuals (Fig. 1).
When risk factors are considered two at a time to define a
partition these predictor variables combine non-additively
with BMI, total cholesterol, HDL-C and hypertension to
define five statistically significant partitions (Fig. 2).
Comparing the P2 partition, Fig. 1, established in the
analysis of one variable at a time with the P4 partition,
Fig. 2, established by the analysis two variables at a time
suggests that smoking status combines with BMI to predict
IHD in two different contexts. However, the analysis of
two variables at a time also illustrates that smoking
combines non-additively with total cholesterol, age and
hypertension to define a partition (P2, Fig. 2). Considera-
tion of the confidence intervals associated with the
estimates of y for the five subgroups suggests three risk
groups: (P1 5 0.24 and P2 5 0.25), (P3 5 0.16 and P4 5 0.14)
and (P4R ¼ 0:06).

The expected etiological role that non-additive genetic
and environmental effects have in the development of IHD
is illustrated by the PRIM-CPM application presented in
step 2, Figure 2. Particular two locus genotypic variations
have added value in defining partitions only in particular
partitions established in the step 1 application of the
PRIM-CPM (Fig. 2 and Table III). Two variations in the
50 of the APOE gene identify a subgroup with a significant
increase in risk (y21 ¼ 0:78 versus y21R ¼ 0:19) only in
partition 2. Similarly, the two locus genotypes defined
by the combination of LPL and APOE SNPs define a
statistically significant increase in risk (y31 ¼ 0:33
versus y31R ¼ 0:15) only in partition 3. The same combina-
tion of two 50 APOE SNPs were selected to define the same
partition of individuals when step 2 analysis considered
variables one at a time. Neither the LPL291 nor the
E937 SNP was selected to define a partition when
considered one at a time suggesting non-additivity in
their contribution to predicting IHD. Before any substan-
tive conclusions regarding the validity of the inferences
from the models defined in this study are drawn, the
models should be validated in another independent
sample from the same population of inference, which is
a relevant issue regardless of the model building strategy
employed.

As b was defined to be larger than 0.05 in the peeling
process, rare combinations of values of one or more
predictor variables (including genotypes) can only be used
to define terms that characterize partitions in the pasting

TABLE III. Comparison of significant PRIM-CPM-defined genotype contrasts across step 1 partitions

SNPs Contrast All partitions Partition 1 Partition 2 Partition 3 Partition 4 Remainder

E560/E624 AA/TC 0.13 (355) 0.20 (46) 0.78 (18) 0.14 (98) 0.11 (19) 0.05 (174)
Others 0.13 (1,903) 0.25 (240) 0.20 (159) 0.16 (448) 0.15 (106) 0.06 (950)

LPL291/E3937 (AA/CC,AG/TC,AG/TT) 0.17 (181) 0.18 (34) 0.22 (18) 0.33 (39) 0.29 (7) 0.06 (83)
Others 0.12 (2,077) 0.25 (252) 0.26 (159) 0.15 (507) 0.14 (118) 0.06 (1,041)

Overall – 0.13 (2,258) 0.24 (286) 0.25 (177) 0.16 (546) 0.14 (125) 0.06 (1,124)

Significant contrasts are bordered.
Cells in table display the cumulative incidence and sample size in parentheses.
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process. This is illustrated through the inclusion of the
(diabetic and 25oBMIo30) and (diabetic and HDL-Co40)
terms that characterize partition 1 of the PRIM-CPM
analysis (Fig. 2). Since in the entire sample only 62 (2.7%)
and 70 (3.1%) individuals, respectively, are in these two
low relative frequency terms, these terms could only
characterize a partition in the pasting process. Although
no rare combination of genotypes resulted in characteriz-
ing a partition in the step 2 (genetic) analysis in either
example presented, the pasting process would be able to
identify such a context-dependent effect if it existed
within a partition of individuals defined by traditional
risk factors in step 1.

APOE and LPL are key components in human lipid
metabolism, mediating the clearance and modulation of
triglyceride-rich lipoproteins [Brunzell and Deeb, 2001;
Mahley and Rall, 2001]. Genetic variants in the two genes
encoding these proteins have been extensively studied in
human populations and influence the inter-individual
variation in levels of cholesterol and triglycerides
[Brunzell and Deeb, 2001; Davignon et al., 1988; Frikke-
Schmidt et al., 2000; Stengård, 2006]. Their contribution as
single sites to prediction of IHD in the general population
as a whole has, however, been subtle [Frikke-Schmidt
et al., 2007; Wittrup et al., 2006]. The example analysis
presented here illustrates that the incidence of a common
disease having a complex multifactorial etiology may be
influenced by gene–gene and/or gene–environment
interactions that result in high-risk subgroups of the
population defined by different combinations of
genetic and environmental factors. We suggest that such
genetic/biological interactions will have a higher like-
lihood of being detected with statistical strategies that
consider how many predictive models there are for a
particular population of inference rather than which
variables should be included in a single prediction
model.

In summary, the application of PRIM and PRIM-CPM to
a large example data set illustrates the selection of multiple
models for an etiologically heterogeneous complex disease
endpoint, added value of genetic variation dependent on
context defined by traditional risk factors and non-
additivity of predictor variables at three levels, between
variables in step 1 (both term-level non-additive effects
and partition-level non-additivity), between genetic varia-
tions in step 2 and between traditional predictor variables
in step 1 and genetic variations in step 2. Multiple
prediction models that incorporate these realities are
expected to improve the utility of genetic variations in
the practice of medicine and in the design of studies to
understand the role of non-additive effects of the many
factors that contribute to the etiology of a disease such as
IHD.
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