Novel Bioinformatics Approaches for MicroRNA Detection and Target Prediction

by

Subramanian Shankar Ajay

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in The University of Michigan 2009

Doctoral committee:

Professor Brian D. Athey, Co-Chair Research Investigator Inhan Lee, Co-Chair Professor Daniel M. Burns Jr. Assistant Professor Zhaohui Qin Professor David J. States, University of Texas Health Sciences Center at Houston To amma, appa and panni

Acknowledgements

I would like to show my immense gratitude to Prof. Brian Athey and Dr. Inhan Lee who took me under their wings when I first joined the Bioinformatics doctoral degree program. Their enthusiasm has been so infectious that I derived confidence from it every time I interacted with them. They have been a pillar of knowledge and support during the course of my graduate studies. Their ideas have helped shape this thesis to a large extent and I am grateful to them for the encouragement that they continued to provide along every step of the way.

I would like to thank Prof. David States for his invaluable inputs and discussions. The influence his pedagogical role has had in the first few years cannot be emphasized enough. Many thanks are also due to my doctoral committee members, Dr. Zhaohui Qin and Prof. Daniel Burns, for all their help when I turned to them. I have had the pleasure of learning bioinformatics methods and concepts under their tutelage. I really appreciate the fresh perspectives that Dr. Jeffrey DeWet lent when I had a tough time sorting out scientific problems, especially with respect to experiments. The extremely resourceful Bioinformatics graduate program staff, Alicia, Yuri, Julia, Sandy and Janet have helped make my transition and stay in the program facile.

Much of the work in this thesis would not have been possible without the support from laboratories of Dr. Arul Chinnaiyan from the Department of Pathology at the

iii

University of Michigan, Dr. Haiming Chen from the Department of Psychiatry at the University of Michigan and Dr. JongIn Yook at Yonsei University. I am thankful to members of Dr. Chinnaiyan's group, Mohan, Bharathy and Anju who have taught me experimental techniques, from using a pipette to cell transfections.

Outside the scientific community some people have had an immeasurable impact in my life. The unconditional love and support (and money) from my family has seen me through highs and lows. The friends I've made through college and graduate school are ones I'll forever stand by - the spasmers from BITS to the ommalites in Ann Arbor, among whom Jaggi and Sweta deserve a special mention for everything they've helped me with. Work would not have been as much fun without k2 and uthra, and lunches would not have been as entertaining without the discussions on everything from politics to movies with my colleagues at Green Court. I thank them all.

Table of Contents

Dedication	ii
Acknowledgements	iii
List of Figures	viii
List of Tables	ix
List of Appendices	x
Chapter 1	1
Introduction	1
1.1 Post-transcriptional gene regulation	2
1.2 Introduction to microRNAs	
1.2.1 MicroRNA biogenesis	4
1.2.2 Mechanisms of miRNA-mediated repression	6
1.3 Nearest-neighbour thermodynamics	7
1.4 Problem Statement	
1.4.1 Detection of miRNA expression	
1.4.2 Computational miRNA target prediction in animals	
1.5 Contributions	
1.5.1 Target-specific microarray probe design	
1.5.2 Discovery of endogenous 5'-UTR target sites	
1.6 Thesis Outline	
Chapter 2	19
Microarray probe design for miRNAs	
2.1 Background	
2.2 Computational Methods	
2.2.1 Base change strategy	
2.2.1 ProDeG algorithm	
2.3 Computational Results	
2.3.1 Variance of T_m by introducing mismatches	
2.3.2 ProDeG probes for human miRNA cDNAs	
2.3.3 Characteristics of ProDeG probes for cDNA of human miRNAs	
2.3.4 ProDeG probes for RNA samples of human miRNAs	

2.4 Experimental validation – Methods	27
2.4.1 Microarray platform	27
2.4.2 let-7 family spiked-in experiments	27
2.4.3 Hybridization experiment using lymphoblastoid cell-line small RNA	28
2.4.5 Quantitative RT-PCR	30
2.5 Experimental validation – Results	31
2.5.1 Verification of ProDeG cDNA probe specificity using let-7 spike-in	
experiments	31
2.5.2 Expression signals of ProDeG let-7 probes from human lymphoblastoi	id
cell lines	32
2.6 Discussion	33
Chapter 3	47
Discovery of endogenous 5'-UTR miRNA target sites	47
3.1 Background	47
3.2 Results	49
3.2.1 Presence of miRNA interaction sites in human 5'-UTR	49
3.2.2 hsa-miR-34a targets AXIN2 through both UTRs	50
3.2.3 Modified <i>cel-lin-4</i> targets both <i>lin28</i> UTRs	52
3.3 Methods	53
3.3.1 Bioinformatics and statistical analysis	53
3.3.2 Experimental validation – AXIN2 and hsa-miR-34a	54
3.3.3 Experimental validation – LIN28 and <i>lin-4</i> siRNA	55
3.4 Discussion	57
Chapter 4	65
Post-transcriptional regulation by miRNA binding of uAUGs	65
4.1 Background	65
4.2 Methods	67
4.2.1 uAUG and miRNA sequence data	67
4.2.2 Sequence complementarity search	68
4.2.3 miRNA expression data	68
4.3 Results	69
4.3.1 uAUGs are potential miRNA target sites	69
4.3.2 Expressed miRNAs may bind endogenous uAUG sites	71
4.3.3 KLF genes are probable 5'-UTR miRNA targets	72
4.4 Discussion	75

Chapter 5	
Conclusions	
5.1 Summary of work	
5.2 Significance and impact	
5.3 Future work	
Appendices	
Bibliography	

List of Figures

Figure 1.1 Trend showing increase in microRNA research since 2001
Figure 1.2 MicroRNA biogenesis
Figure 1.3 Mechanisms of miRNA-mediated post-transcriptional regulation
Figure 1.4. The human let-7 miRNA family consists of highly similar mature sequences
Figure 2.1 Schematic example of including an imperfectly matched probe to increase specificity
Figure 2.2 The ProDeG flowchart
Figure 2.3 Relative signal intensities of the <i>let-7</i> family with spiked-in cDNA sequences44
Figure 2.4 Relative signal intensities of the <i>let-7</i> family with spiked-in RNA sequences
Figure 2.5 Total RNA sample data from a lymphoblastoid cell-line
Figure 3.1 Analysis of predicted interactions between 8-mers from different conservation classes and miRNAs
Figure 3.2 Analysis of predicted interactions between 8-mers from different conservation classes and miRNAs
Figure 3.3 Human miRNA <i>hsa-miR-34a</i> and target <i>AXIN2</i>
Figure 3.4 Effect of 5'-UTR interaction site for lin4msiRNA on reporter expression levels
Figure 4.1 Number of uAUGs in 5'-UTRs and their conservation
Figure 4.2 Interaction of miRNAs with uAUG sequences

List of Tables

Table 2.1 Parameters used in ProDeG microarray probes for mature human miRNA 37
Table 2.2 Mature human <i>let-7</i> family sequences in DNA and their hybridization T_m with perfectly complementary pairs
Table 2.3 ProDeG-designed probe sequences for cDNA of mature human <i>let-7</i> family and their hybridization T_m with targets and non-targets
Table 2.4 Hybridization T_m for mature human let-7 family of microRNAs between DNA probes and RNA targets and off-targets before ProDeG run
Table 2.5 ProDeG-designed probe sequences for mature human <i>let-7</i> family (RNA as sample) and their respective hybridization T_m with targets and non-targets
Table 4.1 MicroRNAs predicted to interact with uAUG-containing motifs 79
Table 4.2 Genes used in uAUG-binding sequence analysis along with references
Table 4.3 Genes containing uAUGs predicted to interact with expressed miRNAs 82
Table 4.4 uAUGs from members of the KLF family predicted to interact with conserved miRNAs 83
Table 4.5 KLF9 uAUGs predicted to interact with miRNAs in HeLa cells

List of Appendices

Appendix A	95
Table A.1 ProDeG probes for cDNA samples of mature miRNAs along with	
respective cross-hybridization(s)	95
Appendix B	101
Table B.1 Conserved miRNAs predicted to target both 5' and 3' UTR 8-mers	101
B.1 Sequences used in hsa-miR-34a and AXIN2 assay	104
B.2 Multiple alignments of AXIN2 UTRs	105
B.3 Sequences used in lin28 assay	109
Appendix C	110
C.1 GO-term analysis for genes containing targeted uAUGs	110
C.2 GO-term analysis for genes containing uAUGs and not targeted by miRNA	s 115
C.3 Predicted interactions between uAUG 6 and 7 of KLF9 and conserved miRI	NAs
	119

Chapter 1

Introduction

The draft human genome sequence assembly in 2001 was a landmark achievement in the field of genomics (Lander et al. 2001; Venter et al. 2001), paving the way for sequencing of nearly a hundred eukaryotic organisms (Liolios et al. 2008). Improvement in sequencing technology has steadily been lowering costs and turnaround times for access to vast amounts of data. The wealth of information that is being "mined" from this data through sophisticated tools has helped further our knowledge in biology and disease. Comparative genomics, benefiting from the data, has been making strides alongside, which has aided our understanding of genetic variation and evolution. Eventually, scientists aim to define features and gene expression control mechanisms that lend uniqueness not only at the tissue level but also at the level of an organism. Though many new regulatory elements have been characterized at both the DNA and RNA level, it is the harmonious action and interaction of all these elements that hold the key to understanding the emergent properties. The "-omics" revolution in different areas of biology is centered upon large-scale analysis of data mostly through computational approaches followed by experimental validation of models and predictions that are generated. Study of gene regulation has also seen such combinatorial approaches being adopted to elucidate elements and explain mechanisms involved. In this thesis we focus

on aspects related to one subset of eukaryotic gene regulation mechanisms, namely, posttranscriptional regulation mediated by microRNAs (miRNAs).

Broadly, the two main areas of contribution by this body of work relate to the detection of miRNAs using microarrays and to prediction of miRNA targets. Novel approaches for microarray probe design and for identification of regulatory elements specific to miRNAs followed by experimental validations for our predictions are described. In this chapter concepts related to these areas are introduced and a brief overview of challenges faced is presented.

1.1 Post-transcriptional gene regulation

Regulation of gene expression is a complex process that requires the coordination of multiple factors at several different steps (Orphanides and Reinberg 2002). Control begins with the organization of genetic material at the chromatin level which regulates access for DNA transcription (Richards and Elgin 2002). Transcriptional regulation is a highly regulated step that involves sequence and protein elements (Sperling 2007). Following RNA polymerase transcription of DNA, transcripts are further subjected to various processes like capping, editing, polyadenylation and regulation by non-coding RNAs before they are finally turned over (Moore 2005). Genome-wide studies of these post-transcriptional gene regulation mechanisms revealed their importance in cellular processes (Halbeisen et al. 2008).

One highly conserved mechanism of post-transcriptional gene regulation is RNA interference (RNAi), which causes gene silencing mediated by double-stranded RNA (dsRNA) (Cerutti and Casas-Mollano 2006). The term was first coined when repression

mediated by dsRNA was characterized in the nematode worm, *Caenorhabditis elegans* (*C. elegans*) (Fire et al. 1998). The most well-studied mechanism of mRNA degradation through a complex protein machinery is that by small-interfering RNA (siRNA) (Hannon and Rossi 2004). This species of RNA and the associated RNAi machinery has been investigated in several eukaryotic systems, making it an excellent tool for functional genetic studies (Elbashir et al. 2001) and also for therapeutics (Zimmermann et al. 2006). Though usually exogenous, many endogenous siRNAs like small scan-RNAs (scnRNAs), trans-acting siRNAs (tasi-RNAs) and repeat-associated siRNAs (rasiRNAs) have been discovered in other organisms (Kim 2005). In addition to siRNAs, other endogenous small RNAs like miRNAs and Piwi-interacting RNAs (piRNAs) share the RNAi machinery for transcriptional silencing, mRNA degradation or translational repression (Farazi et al. 2008).

1.2 Introduction to microRNAs

MicroRNAs (miRNAs) are 21-23 nucleotide (nt) long post-transcriptional regulators of gene expression many of which are conserved across metazoans (Bartel 2004). The first miRNA, *lin-4*, was discovered by genetics analysis in *C. elegans*, where it was found to negatively regulate protein levels of LIN-14 (Lee et al. 1993; Wightman et al. 1993). The term 'microRNA' was first coined in 2001 when tens of small RNAs with regulatory potential were discovered in *C. elegans* (Lau et al. 2001; Lee and Ambros 2001). A term search for 'microRNAs' on PubMed emphasizes the increasing interest and impact it has had (**Fig. 1.1**). At present there are over 8000 miRNAs that have been identified in over 30 different species through experimental and computational approaches (Griffiths-Jones

et al. 2008). Through diverse experimental approaches their prevalence has been brought to light not only in plants and animals but also in a unicellular alga (Zhao et al. 2007).

Figure 1.1 Trend showing increase in microRNA research since 2001

Their functions are diverse ranging from development control to apoptosis to involvement in disease like cancer (Kloosterman and Plasterk 2006; Bushati and Cohen 2007; Croce 2008). With an estimated 3% of human miRNAs each targeting hundreds of mRNAs their significance in post-transcriptional gene regulation is unmistakably large (Bartel 2004; Engels and Hutvagner 2006).

1.2.1 MicroRNA biogenesis

The mature form of a miRNA is generated through a multi-step process (Kim 2005). miRNA genes are first transcribed from genomic loci either as independent units or as part of introns of other protein-coding genes (Du and Zamore 2005), and like mRNAs, they contain a 5'-cap structure and a poly-A tail (Bracht et al. 2004; Cai et al. 2004). This primary transcript (called pri-miRNA) exists in a hairpin conformation ~200nt long (**Fig. 1.2**), which is further processed by enzymes downstream.

Figure 1.2 MicroRNA biogenesis (Source - http://www.ambion.com)

Drosha, an endoribonuclease belonging to the RNase III family, cleaves the pri-miRNA to form the precursor miRNA (pre-miRNA) molecule (Peters and Meister 2007). The enzyme Exportin-5 mediates the transport of pre-miRNA to the cytoplasm (Yi et al. 2003; Lund et al. 2004). Precursor miRNAs are then processed in the cytoplasm by the enzyme Dicer, which cleaves the hairpin loop to produce miRNA duplexes (Bernstein et al. 2001). In most cases only one of the strands in the duplex functions as a mature miRNA. This is decided by the thermodynamic stability of the ends of the duplex (Khvorova et al. 2003).

1.2.2 Mechanisms of miRNA-mediated repression

The mature strand of the miRNA is incorporated into a complex of ribonucleotide proteins (RNPs) to form the miRNP, also called the miRNA-induced silencing complex (miRISC). The primary proteins in this complex are members of the Argonaute (AGO) family, each of which possesses repressive capabilities. Mammals have four AGO proteins (AGO1-AGO4) of which only AGO2 has the potential to cleave target sequences due to its RNaseH-like domain (Peters and Meister 2007). The mature miRNA is used as a guide in the miRNP to recognize its target mRNA, to which it may be complementary with different degrees. In plants, miRNAs exhibit a near-perfect match to targets, thereby triggering an RNAi-like mechanism that results in cleavage of target mRNAs (**Fig. 1.3**), one of the modes of miRNA-mediated regulation (Jones-Rhoades et al. 2006). In animals, however, there is imperfect complementarity between a miRNA-target pair leading to several alternative mechanisms of repression (Filipowicz et al. 2008).

Figure 1.3 Mechanisms of miRNA-mediated post-transcriptional regulation (Source - www.ambion.com)

Majority of animal miRNA targets are regulated by repressing protein translation either at the initiation stage (Humphreys et al. 2005; Pillai et al. 2005) or during the elongation phase (Nottrott et al. 2006; Petersen et al. 2006). There is also recent evidence to show that mRNA destabilization occurs in certain cases (Bagga et al. 2005; Giraldez et al. 2006). Reconciliation of these mechanisms or at least understanding the context in which each mechanism predominates is an area of active work. One report shows promoter dependency for different translation repression mechanisms (Kong et al. 2008).

1.3 Nearest-neighbour thermodynamics

Much of the subject matter dealt in this thesis, especially microarray probe design tailored to miRNAs, employs a thermodynamic component based on the nearestneighbour model. The approaches described in our work rely on nearest-neighbour thermodynamic quantities to assess the outcomes from our predictions, so a fair introduction to this topic will lay a foundation for rest of the chapters in this thesis.

Thermodynamic quantities have long been used to understand spontaneity of processes and one such is the change in Gibbs free energy. Conceptually, it is the amount of useful work that can be done by a system or the amount of work that must be done on a system for the process to take place (Haynie 2001). By this definition a negative change in free energy indicates spontaneity. Mathematically, the change in free energy at constant pressure and temperature is defined as

$$\Delta G = \Delta H - T \Delta S$$

where ΔH is the change in enthalpy, *T* is the absolute temperature and ΔS is the change in entropy.

An important application of free energy change is in the study of thermodynamics of nucleic acid base-pairing. Although thermodynamic measurements can be made for a sequence-pair of interest, it is not conceivable to record these values for every possible one comprised of Watson-Crick (WC) base-pairs, mismatches and other modified nucleotides. Clearly, a theoretical approximation that could predict these quantities for sequences that have not been studies would be very valuable. It is well understood that stability of base-pairing comes is correlated with the GC content of the nucleic-acid sequence. However, the largest contribution to helix stability comes from vertical stacking of bases in a sequence-dependent manner (Devoe and Tinoco 1962). These short-range interactions are useful to study the thermodynamic properties of a sequence as a function of its structure. The nearest-neighbour model assumes that the thermodynamic parameters of a given base-pair only depend on the adjacent pair and that the stability of helix formation may be approximated by pairwise addition of these nearest-neighbour parameters (Turner 1996; SantaLucia 1998).

Oligonucleotides and polymer duplex sequences have been used to estimate free energy and enthalpy changes by studying the 'melting' of these sequences assuming a two-state cooperative process (Borer et al. 1974). The procedure is repeated for many known sequences to derive the individual nearest-neighbour contributions to overall stability. Contributions by adjacent WC base-pairs have been studied and compiled by several groups for both the DNA (SantaLucia et al. 1996; SantaLucia 1998) and RNA backbones (Uhlenbeck et al. 1973; Borer et al. 1974; Breslauer et al. 1986; Freier et al.

1986). Apart from WC base-pairs, parameters for dangling ends, internal mismatches and loops have since been compiled (SantaLucia and Hicks 2004).

The change in free energy or in enthalpy for an unknown sequence may be calculated using the following equation,

$$\Delta G^{\circ}_{37(total)} = \Delta G^{\circ}_{37initiation} + \Delta G^{\circ}_{37symmetry} + \Sigma \Delta G^{\circ}_{37stack} + \Delta G^{\circ}_{37ATtermina}$$

where $\Delta G^{\circ}_{37initiation}$ is the parameter for duplex initiation, $\Delta G^{\circ}_{37symmetry}$ is the symmetry penalty for self-complementary sequences, $\Sigma \Delta G^{\circ}_{37stack}$ is the sum of individual nearestneighbour contributions from tabulated data and $\Delta G^{\circ}_{37ATterminal}$ is the penalty for a terminal AT nearest-neighbour. The magnitude of negative free energy change thus calculated provides an indication of the strength of base-pairing. This formula is also applied to calculate the total changes in enthalpy and entropy. The melting temperature (T_m), defined as the temperature at which 50% of the oligonucleotide molecules are single stranded, is then given by

$$T_m = \Delta H^{\circ} \times 1000 / (\Delta S^{\circ} + R \times \ln(C_T / x)) - 273.15$$

where ΔH° (kcal/mol) and ΔS° (entropy units) are the changes in standard enthalpy and entropy, *R* is the gas constant (1.9872 cal/K-mol), *C_T* is the total molar strand concentration and *x* equals 4 for nonself-complementary duplexes and 1 for selfcomplementary duplexes.

Applications of nearest-neighbour thermodynamics to nucleic acid base-pairing exist in secondary structure prediction, primer design and microarray probe design among others. A quantum mechanical or a statistical mechanical treatment of thermodynamic quantities can provide an understanding of the molecular interactions involved when base-pairing occurs, but the idea is to be able to predict if a given process can occur spontaneously, which the free energy change in the classical sense using the nearestneighbour model adequately does.

A phenomenon that is common to miRNA expression detection and miRNA target recognition is nucleic-acid hybridization. In the case of miRNA detection, a nucleotide probe or primer is designed to efficiently pair with the miRNA sequence intended to be captured. Similarly, irrespective of the degree of complementarity between a miRNA and target sequence, this process is at least partly responsible for miRNA action. In this thesis, we use tools that employ nearest-neighbour parameters to assess the spontaneity of these processes.

1.4 Problem Statement

Understanding the mechanisms of miRNA-mediated post-transcriptional gene regulation is critical to learning how disease phenotypes are manifested because of dysfunctional regulation and being able to develop therapeutic solutions. Even before we can begin to understand mechanistic implications, the ability to accurately profile miRNA expression and the ability to predict which genes they target, be it in different tissues or in normal and disease states, will bring us closer to this goal.

We developed methods to generate high-confidence predictions in both these respects. We provide an overview of the current approaches and challenges for both miRNA expression profiling and target prediction, which are motivations for this thesis.

1.4.1 Detection of miRNA expression

Being able to determine expression patterns of all miRNAs in different tissues can help us better understand their roles in development and gene regulation. The first described method for miRNA expression detection used a northern blot procedure (Lee et al. 1993). Although this gel-based method can convincingly determine the length of the hybridizing sequence and is fairly sensitive the biggest disadvantage is the amount of time consumed by this technique. This makes it unsuitable for profiling the expression of hundreds of miRNAs simultaneously. Even though quantitative RT-PCR (qRT-PCR) offers a highly sensitive method (Fulci et al. 2007), the lack of parallelism is evident.

Expanding an earlier cloning and sequencing study (Lagos-Quintana et al. 2002) across tens of different tissues and various cell-lines has produced very comprehensive datasets that can be visualized to study miRNA expression (Landgraf et al. 2007); however it has its shortcomings too (Lim and Linsley 2007). A high-throughput alternative to the aforementioned techniques is a microarray. The use of microarray technology was pioneered by Schena et al. to study the expression of a set of *Arabidopsis thaliana (A. thaliana)* genes on a complementary DNA microarray (Schena et al. 1995) and the first global gene expression study followed two years later (DeRisi et al. 1997). Since then microarrays have been used for both genomic and transcriptomic analysis, and have also been adopted to study the expression of miRNAs (Nelson et al. 2004; Thomson et al. 2004). Not only have they been used to profile expression in different tissue types (Babak et al. 2004; Liu et al. 2004)but also in studying their impact on mRNA repression and to gain insight into target evolution (Farh et al. 2005). Some of the challenges associated with detecting miRNAs using microarrays are associated with the inherent nature of miRNA sequences. It has been proven that the mature sequences are involved in hybridizing with the designed probes and not their hairpin precursors (Barad et al. 2004). This means that probes designed to hybridize with the mature miRNAs are, in essence, reverse complementary to the candidate (mature) miRNA. Since there is only one candidate sequence for a probe the challenges at least three-fold:

- *Cross-hybridization with closely-related sequences* many miRNAs are grouped into families based on the similarity of sequences. One such family is the human *let-7* group of miRNAs (Fig. 1.4). It is evident that these miRNAs share extensive similarity and are different only by one or two nucleotides. We show that probes that are designed perfectly complementary to the intended sequence cross-hybridize with non-target sequences.
- Non-uniform melting temperatures the base compositions of all mature sequences are fairly varied which results in a diverse range of melting temperatures. Finding a suitable experimental condition to assay for all miRNAs is, therefore, not a trivial task.

Figure 1.4. The human let-7 miRNA family consists of highly similar mature sequences

• *Probe secondary structure* – Probes may fold upon themselves to form secondary structures, rendering them unable to bind to target sequences being assayed for.

The approaches taken to increase specificity of hybridization or to balance melting temperatures of sequences either use modified nucleotides (Guo et al. 1997; Castoldi et al. 2006) or linker sequences (Wang et al. 2007). Using high-throughput sequencing technologies for RNA profiling (Nagalakshmi et al. 2008) has begun to alleviate specificity issues but current costs, errors rates and associated lack of standards for data analysis still pose an impediment.

We present an alternative probe design strategy that uses naturally occurring nucleotides wherein mismatches introduced in the probes eliminate the above unfavourable scenarios.

1.4.2 Computational miRNA target prediction in animals

Genetic approaches helped identify the first miRNA-target pair in the nematode worm, *C. elegans* (Lee et al. 1993; Wightman et al. 1993). Sequencing data from several different species further led to the discovery of many miRNAs, which in turn spurred the development of computational techniques to identify targets. The mechanisms behind miRNA action have not been revealed completely which pose a challenge in identifying true targets. Some of the earliest data in flies showed regulatory motifs on the 3'-UTRs of mRNAs that were complementary to the 5'-end of miRNAs (Lai 2002). It soon became clear that a short region (6-8 nt) on the 5'-end of the mature miRNA called the 'seed' was

the primary participant in Watson-Crick base-pairing with the 3'-UTR of mRNAs and contributed to efficient repression (Lewis et al. 2003). Several predictions emerged both in fruit-fly (Enright et al. 2003; Rajewsky and Socci 2004) and vertebrates that similarly reported the involvement of the 5'-end of the miRNA in target recognition (John et al. 2004; Kiriakidou et al. 2004). Results from these predictions show that animal target sites are only perfectly complementary to miRNAs.

Considering the short length (6-8 nt) of a match, this is a source for many falsepositive predictions. To counter this problem most programs employ a combination of two or more of three major criteria to identify miRNA targets: 1) seed-match between miRNA and target 3'-UTR – while some programs require or prefer perfect seed-matches (Krek et al. 2005; Lewis et al. 2005) others allow imperfect base-pairing (Enright et al. 2003; Kiriakidou et al. 2004), 2) free energy of binding between the miRNA and target site, and 3) cross-species conservation of miRNAs and/or target sites – all programs use *a priori* conservation information across two or more species based on the idea that evolutionary constraint could signify function. Considerable variation in predictions from different algorithms coupled with the fact that only a small fraction of predictions are validated in each case leaves us with very little knowledge to make predictions with confidence.

The approaches mentioned above leave out possible target sites that may not be conserved yet are functional. It is plausible that these non-conserved sites are unique to certain miRNAs in a species – a source of variation in targeting, and hence in gene regulation, across different organisms. In chapter 3 we present work beginning with

formulation of a hypothesis based on this idea, leading to testing with sequence data on a whole-genome scale followed by validation in biological systems of interest.

1.5 Contributions

The obstacles outlined in the problem statement currently prevent us from harnessing the power of a high-throughput technology like microarrays to detect miRNAs using conventional DNA probes. Though sensitivity and specificity of probes can be improved with artificial probes they are less cost effective. Specificity with respect to target prediction was raised with current approaches that consider conservation across multiple species. Here, we detail the contributions made by this thesis to alleviate these challenges

1.5.1 Target-specific microarray probe design

In combination with the use of nearest-neighbor thermodynamics, we discuss strategies to generate optimal probes for the entire complement of mature human miRNAs. Unlike conventional perfectly-matched probes, we introduce base changes in a probe sequence that serve to eliminate cross-hybridization, reduce probes with high melting temperatures and/or secondary structural features. This strategy was adopted from a study that demonstrates the dependence of oligonucleotide melting temperatures on the natures of mismatches and their positions (Lee et al. 2004). Computationally, Probe Design Guru (ProDeG) was able to design probes for all miRNAs in the human dataset (Lee et al. 2008). We employed the services of LC Sciences, Inc. (Houston, TX) to validate probes designed for six of the *let-7* family of miRNAs using spiked-in samples cDNA and RNA samples. Cross-hybridization observed with perfectly-matched probes was eliminated

when ProDeG designed probes were used. As a collaborative effort with Dr. Haiming
Chen (Department of Psychiatry, University of Michigan) total RNA from
lymphoblastoid cell-line was used to assay *let-7* miRNAs from a true biological sample.
We demonstrate the fidelity of ProDeG probes (microarray experiments at LC Sciences,
Inc.) by reproducing expression patterns of the *let-7* miRNAs as determined by qRT-PCR
(by Dr.Chen's group).

1.5.2 Discovery of endogenous 5'-UTR target sites

Majority of animal miRNA target prediction programs rely on conservation of sites in two or more species and only consider interaction of the seed region with these sites. A hypothesis was proposed by Dr. Inhan Lee suggesting that the 3'-end of the miRNAs may interact with regions on the 5'-UTR that are less conserved – a source of species-specific or gene-specific variation in targeting. We used data from a previously compiled genome-wide motif study (Xie et al. 2005) to examine the propensity of miRNAs, both 5'- and 3'-ends, to interact with 5'-UTR and 3'-UTR motifs of different degrees of conservation. We first show that motifs from the 5'-UTR with little or no conservation interact preferably with 3'-ends of miRNAs. Taken together with the seed-matches, we surmised that a miRNA may target both 5'-UTR and 3'-UTR of a gene simultaneously.

We collaborated with Dr. JongIn Yook (Dental School, Yonsei University, Seoul, South Korea) and Dr. Arul Chinnaiyan (Department of Pathology and Urology, University of Michigan) for *in vitro* verification of results from the computational study. Sequence analysis of two genes, human AXIN2 and the well studied *C. elegans* LIN-28, revealed conserved sites on the 3'-UTRs and non-conserved sites on the 5'-UTRs for *hsa*-

miR-34a and *cel-lin-4*. Reporter gene experiments revealed that the 5'-UTR site of AXIN2 was able to repress protein translation independent of the 3'-UTR site (work done by Dr. Yook's group). Inhibiting the endogenous expression of *hsa-miR-34a* produced a greater rescue from repression when both sites were present compared to when either site was present alone.

We also performed similar experiments to validate the lin4-lin28 pair using a designed siRNA that contains an intact seed-match but modified 3'-end with compensatory modifications in the 5'-UTR. This was done in Dr. Chinnaiyan's laboratory under the guidance of Dr. Saravana Dhanasekaran. We show that the 5'-UTR target site for modified siRNA was found to influence reporter gene product (luciferase) expression. The interaction was determined to be sequence-specific by mutating target sites on the UTRs.

Having established the ability of endogenous 5'-UTRs to interact with miRNAs, we examined a known regulatory element on the 5'-UTR, namely upstream AUGs (uAUG), for their potential to interact with miRNAs. Using uAUG sequences extracted from alignments of human and mouse 5'-UTRs (Churbanov et al. 2005) we demonstrate that these elements are probable target sites specific for miRNAs. We also show that the ability of uAUG motifs to confer cell-specific expression of the gene product correlates with the expression of miRNAs predicted to interact with the uAUG motifs in these celllines.

1.6 Thesis Outline

The following is a brief outline of work done to tackle the problems discussed above: Chapter 2 deals with the design of microarray probes tailored to miRNAs, providing methods for producing high-fidelity probes. In Chapter 3, we provide computational and experimental evidence to show that non-seed regions of miRNAs can target endogenous 5'-UTR sites. Chapter 4 provides a possible unified mechanism for the action of uAUGs, another post-transcriptional regulatory element, along with miRNAs by serving as binding sites. We conclude by discussing findings in this thesis and provide future directions in Chapter 5.

Chapter 2

Microarray probe design for miRNAs

2.1 Background

Many miRNAs are conserved across several species and are highly similar to other miRNAs in the genome. There is a great demand for accurate expression profiling of these miRNAs to better understand their tissue specificities (Babak et al. 2004; Barad et al. 2004; Liu et al. 2004; Chapman and Carrington 2007) and their role in development (Watanabe et al. 2005; Bushati and Cohen 2007; Moss 2007; Zhao and Srivastava 2007) and disease (Lu et al. 2005; Fulci et al. 2007; Jay et al. 2007; Soifer et al. 2007; van Rooij and Olson 2007).

Techniques for determining miRNA expression include Northern blot analyses (Valoczi et al. 2004), quantitative RT-PCR (Fulci et al. 2007), and microarrays (Thomson et al. 2004). Among these, the oligonucleotide microarray platform offers a simple and high-throughput experimental procedure for genome-wide miRNA profiling. Barad *et al.* have shown in expression profiling experiments that mature microRNA sequences, not their precursors, are responsible for fluorescence signals (Barad et al. 2004). By positioning short probes away from a solid support via an unrelated linker sequence, they have demonstrated efficient miRNA hybridization to the probes.

However, miRNA arrays pose several challenges. One is the ability of design strategies to distinguish many highly similar sequences that differ by only a few nucleotides. Another is the mere ~22 nt length of miRNA, which allows no choice for a probe sequence other than the miRNA itself. Given the diverse range of miRNA melting temperatures (T_m) , it is almost impossible to find one experimental condition to satisfy all genomic miRNA hybridizations simultaneously. Currently there exist two major strategies for balancing T_m: 1) by incorporating chemically modified nucleotides with higher affinity (Castoldi et al. 2006) and 2) altering probe sizes (Wang et al. 2007). However, discriminating highly similar sequences, thus featuring similar T_m, remains a challenge. Such sequences will hybridize similarly to the probes and the signal will not be specific any more. Guo et al. have shown experimentally that the introduction of an artificial nucleotide (lacking hybridization ability) into the probes enhanced specificity and allowed discrimination of single nucleotide polymorphisms (Guo et al. 1997). However, the small data set and use of an artificial nucleotide limit genome-wide application, as no microarray could utilize this feature.

Conventionally, mismatched sequences have been used in assessing noise levels rather than signals because hybridization can disappear with single or double nucleotide mismatches. The problem arises that background signals produced by these mismatched probes can be as strong as those of the matched probes.

Here, we present Probe Design Guru, or ProDeG (pronounced *prodigy*), a highly specific microarray probe design algorithm that also ensures a narrower calculated T_m range. This is achieved by following a base-change strategy previously outlined (Lee et al. 2004). We applied ProDeG to miRNA sequences as a first step in validating our probes

based on the importance and feasibility. Since the probes do not include any modified nucleotides or change of lengths, our methods are easy to incorporate into any microarray platform. Applying this method to human mature miRNAs from miRBase version 9.1, we found specific probes for all members of the *let-7*.

2.2 Computational Methods

2.2.1 Base change strategy

In a previous study, we identified mismatched sequences and positions which induced minimal or maximal changes in oligonucleotide hybridization compared to perfectly matched sequences. In addition, we found T_m variance with two-point mismatches to be greater than twice that with one-point mismatches (Lee et al. 2004). By carefully introducing mismatches into a probe sequence, we can increase differences in stabilities of hybridization between target and non-target sequences sufficient to achieve discrimination, as shown in **Fig. 2.1**. This technique allows the reduction of probe-target hybridization melting temperatures (T_m) when they significantly exceed the T_m of most other probe-target pairs. Introducing mismatches in the probe sequence can also serve to eliminate secondary structures of probes.

2.2.1 ProDeG algorithm

ProDeG follows a series of steps in scrutinizing each of the probes before reporting them as specific to a targeted miRNA. The flow chart in **Fig. 2.2** details all the steps in processing before final reporting on probes. Initially, the sole candidate probe is the mature miRNA sequence. Following this, probes are evaluated in two broad stages, first

addressing probe quality in respect to a target and secondly checking non-targets. In the first stage, probes are assessed for their structural properties and for their hybridization with the target sequence. Undesirable stable hairpin formations in probes and uniform T_m are evaluated. Melting temperature as a measure of hybridization stability is calculated using the nearest neighbor thermodynamics model (SantaLucia and Hicks 2004) with licensed software Oligonucleotide Modeling Platform (OMP;

http://www.dnasoftware.com). Observing that OMP calculations correlated with experimental T_m better than our in-house program containing publicly available parameters, we then calculated T_m variance dependency on mismatch positions (Lee et al. 2004). Interestingly, Pizhitkov *et al.* recently reported a similar mismatch position dependency (Pozhitkov et al. 2006) based on microarray signal intensity data, leading us to utilize OMP in the miRNA probe design.

In the second stage, we use BLAST to search for similarities among all the other human miRNA sequences, making sure that the DUST program is turned off using the –F option so all sequence stretches are considered. Candidates predicted to cross-hybridize with matches \geq 14 nucleotides are retained for further processing. Predicted crosshybridizations between probes and non-target sequences may, in fact, not occur due to unstable interactions. Such interactions then undergo a round of thermodynamic stability evaluations using OMP. Probes without any stable cross-hybridization are then reported as specific.

Next, imperfectly matched probes are used to identify a target sequence when candidates fail to satisfy the conditions set forth in the two prior stages of evaluation. If stable cross-hybridizations are present, we change bases in order to alter binding

stabilities enough to distinguish between target and non-target sequences (**Fig. 2.1**). If target-candidate hybridization T_m is above a set temperature (75 °C in the current case) or the candidates have strong secondary structure, imperfectly matched candidates are generated to destabilize secondary structure and also reduce excessively high T_m of hybridization between a candidate and its target. To assess the probe characteristics after base changes have been introduced, each of these modified probes is made a new candidate for which evaluations are repeated *from the start*. When imperfectly matched probes satisfy all the set criteria, they can be reported as specific to the target.

If a single round of changes in the probe sequence fails to weaken secondary structure formation, reduce high T_m of hybridization with the target, or eliminate hybridization with non-target sequences, we subject the probe to a defined maximum number *n* of rounds of base changes (currently, n = 2) and evaluate its hybridization properties. In spite of having two sets of introduced mutations, miRNA probes still showing some cross-hybridizations are reported as such.

Mature human miRNAs have a very wide T_m range of about 36 °C, the lowest and highest melting temperatures being 56 °C and 92 °C for *miR-620* and *miR-663*, respectively (1M salt concentration). Since there are numerous miRNAs with melting temperatures between 65 °C and 75 °C, we set the ceiling for the T_m range at 75 °C. The discriminating ΔT for our program is based on data from experiments conducted by Thomson *et al.* which showed that sequences with one mismatch are distinguishable (Thomson et al. 2004). By calculating T_m for *miR-124a* and the reverse complements of the perfectly and imperfectly matched probe sequences used in their experiments (data not shown), we concluded that 5 °C is sufficient. Even though absolute T_m is a function of

parameters in the nearest neighbor model, T_m difference is not. Since our criteria for lowest hybridization T_m between probe and target is 56 °C, we set the maximum hybridization T_m between probe and non-target to be 51 °C. Detailed calculation parameters are given in **Table 2.1**.

ProDeG is a bundle of programs for the UNIX programming environment written in PERL and C++, process flow being controlled by a PERL script which calls all other programs within it. ProDeG uses two external programs, BLAST and OMP. BLAST is available for download for several platforms; OMP is a licensed application available on several platforms as well and may be purchased from the vendor. By calculating T_m using the nearest neighbor model and published parameters (SantaLucia and Hicks 2004), licensed OMP may feasibly be replaced.

2.3 Computational Results

2.3.1 Variance of T_m by introducing mismatches

One of the most abundant and well-studied miRNAs is the *let-7* family, associated with most cancers (Johnson et al. 2005; Brueckner et al. 2007). The *let-7* family of sequences and their corresponding DNA hybridization T_m with perfectly complementary pairs are shown in **Table 2.2**. Each family member differs by only one or two nucleotides. Predicted cross-hybridizations with $T_m \ge 52$ °C are also presented in **Table 2.2**. With perfectly matched probes, there is no way to prevent cross-hybridizations (Wang et al. 2007). Utilizing our finding that T_m variance with two-point mutations is greater than twice that with one-point mutations (Lee et al. 2004), discrimination is now possible. This synergetic effect is not limited to nearest neighbor two-point mutation sites. Rather,

most positions of an oligonucleotide show this, unless they are close to the chain end. The discrimination of *let-7e* and *let-7a* exemplifies the process diagram in **Fig. 2.1**. One nucleotide among these differs near the middle of the sequences. T_m of a perfectlymatched *let-7e* probe – target is 66 °C; T_m of a perfectly-matched *let-7e* probe – nontarget (*let-7a*) is 62 °C (**Table 2.2**), so that $\Delta T_1 = T_{m1} - T_{m3} = 4$ °C. When we change the 10th position sequence A of the *let-7e* probe to T, T_m for target and non-target becomes 60 and 54 °C, respectively ($\Delta T_2 = T_{m2} - T_{m4} = 6$ °C). After incorporation of a base change, the T_m difference between target and non-target is increased ($\Delta T_2 > \Delta T_1$). This technique, moreover, allows probe-target hybridization T_m 's to be reduced when they significantly exceed the T_m of most other probe-target pairs. Introducing mismatches in the probe sequence can also serve to eliminate secondary structures.

2.3.2 ProDeG probes for human miRNA cDNAs

Taking advantage of the fact that T_m variance with two-point mutations is greater than twice that with one-point mutations, ProDeG processed mature human miRNAs to design microarray probes with the parameters in **Table 2.1** and predicted probes for all 470 of them. Calculations treat samples as reverse complementary DNA sequences to mature miRNA and DNA probes as equivalent to mature miRNA, in accordance with cDNA microarray experiments. These cDNA probes will validate that microarray signals produced by ProDeG from highly similar sequences are discriminated. Moreover, as miRNA amplification methods become more advanced, probes for miRNA cDNA may prove valuable. ProDeG probes for the *let-7* family are shown in **Table 2.3** along with predicted cross-hybridizations where $T_m \ge 52$ °C. Following several mutation steps, all

cross-hybridizations predicted in **Table 2.2** have been eliminated. In addition, all the probes shown in **Table 2.3** have uniform melting temperatures (mostly 57 and 58 °C). Note that *miR-98* did not undergo the mutation steps because our T_m ceiling criterion was set at 75 °C.

2.3.3 Characteristics of ProDeG probes for cDNA of human miRNAs

Among the probes for the 470 mature miRNA sequences, those for 432 miRNAs are target specific, including imperfectly matched probes for 224 miRNAs, 160 of them due to eliminating cross-hybridizations of perfectly matched probes. Secondary structures were eliminated in probes for 27 miRNAs. High T_m was eliminated in probes for 76 miRNAs. We were able to overcome these obstacles (cross-hybridization, secondary structures, and high T_m) using imperfectly matched probe sequences. Designed probes for 38 mature miRNAs presented cross-hybridization with non-target miRNAs (mostly with one other); the detailed sequences and T_m are in **Supplementary Table 3 (new Appendix A.1)**. 20 out of 38 miRNAs were 100% identical to at least one other miRNA except for bases at either end of the sequences, 5 of the 20 being complete subsets of the other miRNAs. 10 other miRNAs contained one mismatch with other mature miRNA sequences at the second or third position from the 3'-end. The remaining eight miRNAs have one middle A which differs from G in another miRNA sample, leading to T (probe)-A (target sample) and T (probe)-G (non-target sample) discrimination tasks.

2.3.4 ProDeG probes for RNA samples of human miRNAs

Since most miRNA profiles use fractionated small RNAs from total RNA, we designed probes for RNA samples using hybridization parameters of DNA-RNA pairs. Again, all
470 probes for RNA samples were predicted. **Table 2.4** shows perfectly matched (control) let-7 probes while **Table 2.5** shows ProDeG-designed let-7 probes and their predicted cross-hybridizations using the same criteria of $T_m \ge 52$ °C. Probes for RNA samples are predicted to present some cross-hybridization on let-7a probe with *let-7c* and *let-7e* samples and on *let-7c* probe with *let-7b*. T_m 's for targets are less uniform and a bit higher than cDNA sample cases.

2.4 Experimental validation – Methods

2.4.1 Microarray platform

Microarray services were provided by LC Sciences Inc. (Houston, TX), which made the detection probes by *in situ* synthesis using photogenerated reagent chemistry on a microfluidic chip. We augmented their microarray layout with custom probes to experimentally validate our probe design strategy. The whole block of probe sets is repeated six times in a microarray. Custom probes include DNA sequences to the *let-7* family in **Table 2.2** (as a control) and the ProDeG *let-7* family probes in **Table 2.3** for the cDNA spiked-in experiments. Custom probes also include the reverse complementary sequences of the *let-7* family (as a control; **Table 2.4**), as well as ProDeG-designed probes for RNA samples (**Table 2.5**) of both spiked-in and total RNA from the lymphoblastoid cell lines.

2.4.2 let-7 family spiked-in experiments

DNA and RNA oligonucleotides with fluorescence dye attached to their 5'-end were purchased from Integrated DNA Technologies, Inc. (Coralville, IA). DNA sequences are reverse complementary to the mature *let-7* member sequences, while RNA sequences are the same as the mature *let-7* family. For pairing, *let-7a*, *let-7c*, and *let-7f* were labeled with Cy-5 and *let-7b*, *let-7d*, *let-7e* with Cy-3. LC Sciences performed custom microarray fabrication, hybridization, and signal reading. All hybridization was performed for one hour in the presence of hybridization buffer (25% formamide, $6 \times$ SSPE, pH 6.8) on a μ Paraflo microfluidic chip using a micro-circulation pump (Atactic Technologies, Inc.; Houston, TX). The signal intensities of each pair (let-7a/7d, let-7b/7c, and *let-7e/7f*) were recorded at seven temperature conditions (25 °C to 55 °C) for both cDNA and RNA cases. Because the microarray platform is microfluidic, the hybridization solution contains formamide, which reduces hybridization temperature (Hutton 1977) to minimize bubble formation in the chamber. Internal controls were used to compare multiple experiments. Hybridization images were collected using a laser scanner (GenePix 4000B, Molecular Devices, Inc; Sunnyvale, CA) and digitized using Array-Pro image analysis software (Media Cybernetics, Inc). Data were analyzed by first subtracting the background and then normalizing the signals using a LOWESS filter (Locally-weighted Regression) to compensate for the intensity difference between Cy5 and Cy3.

2.4.3 Hybridization experiment using lymphoblastoid cell-line small RNA

Lymphoblastoid cell lines were prepared from blood draws of six human subjects using established methods (Neitzel 1986). Briefly, peripheral blood mononuclear cells were isolated from whole blood with Histopaque reagent (Sigma). For each blood sample, 10 ml of Histopaque was added to a 50 ml sterile conical tube. In another 50 ml conical

tube, 10 ml of well-inverted blood was mixed with 10 ml of RPMI 1640 medium (Invitrogen). We then gently layered the blood and RPMI mixture on top of the Histopaque, and centrifuged at 1500-1700 rpm for thirty minutes.

In a bar-coded T_{25} flask, we added 0.15 ml of phytohemagglutinin reagent and 6 ml of 30% FBS complete medium. When blood centrifugation was complete, we aspirated off the top layer and transferred the white cloudy middle layer into a new 50 ml conical tube to wash the PBM cells with RPMI 1640 medium. We then re-suspended the cell pellet in 2 ml of RMPI 1640 medium. In the T_{25} flask prepared as described above, we added 2 ml of filtered EBV and the suspended pellet. We then filled the flask with 30% FBS complete medium up to 10 ml of total volume. The cells were placed in a CO₂ incubator for 6-8 weeks. At the half-way point (about 3 weeks), we fed the cells with 10% FBS complete medium. When the culture grew to a confluency of 10^6 cells/ml, we collected the cells and made stocks with freezing medium, storing the cell stocks in freezers at -140 °C.

Total RNA from each human lymphoblastoid cell line was isolated with Trizol reagent (Invitrogen) according to the manufacturer's protocol (Invitrogen Cat No. 15596). Following the recommendation of LC Sciences, Inc., we used 1.5 ml of isopropyl alcohol per 1 ml of Trizol Reagent for the initial homogenization. We incubated samples at -20°C overnight and centrifuged them at no more than $12,000 \times g$ for 10 minutes at 4°C. These modifications were necessary for the recovery of small RNAs from our cell line samples (based on preliminary study), which would be lost otherwise.

Microarray assay was performed using a service provider (LC Sciences). The assay started from 2 to 5 µg total RNA sample, which was size fractionated using a YM-

100 Microcon centrifugal filter (from Millipore) and the small RNAs (< 300 nt) isolated were 3'-extended with a poly(A) tail using poly(A) polymerase. An oligonucleotide tag was then ligated to the poly(A) tail for later fluorescent dye Cy-3 staining. Hybridization took place at 34 °C. Wash temperatures for control and ProDeG probes were 53 and 47 °C, respectively.

2.4.5 Quantitative RT-PCR

We purchased TaqMan® 2X Universal PCR Master mix and primers of the *let-7* family and a control from Applied Biosystems Inc. and followed the supplied protocol. Briefly, for each 15 μ L RT reaction, 7 μ L of RT master mix was combined with 5 μ L total RNA (5 ng) in a tube and gently mixed. 3 μ L of RT primer was added to each reaction tube, gently mixed and placed on ice. The tubes of a mixture were loaded into a thermal cycler and reverse transcription was performed. For each 20 μ L PCR reaction, 10 μ L of Master Mix were mixed with 7.67 μ L nuclease-free water. Once the mixture was added to the PCR reaction tube, 1 μ L of 20X TaqMan MicroRNA Assay mix and 1.33 μ L of the RT product were transferred and gently mixed. The PCR reaction plate was prepared with 20 μ L of the complete PCR master mix in each well. We used three replicates per RT reaction. Applied Biosystems 7900HT Fast Real-Time PCR System detected the fluorescence intensity during PCR amplification. We used SDS2.1 software (Applied Biosystems, CA) for quantification analysis in conjunction with the comparative Ct method.

2.5 Experimental validation – Results

2.5.1 Verification of ProDeG cDNA probe specificity using let-7 spike-in experiments

Spiked-in experiments were performed to verify designed probe specificity within the *let-7* family. Since there is no significant cross-hybridization for *let-7g*, 7*i*, or *miR-98*, we used designed probes for *let-7a* to 7f (**Table 2.3**). Based on the T_m calculations (**Table** 2.2), we paired *let-7a/7d*, *let-7b/7c*, and *let-7e/7f* for two-color hybridization experiments. Average fluorescent signals from six adjacent spots of perfectly matched probes (controls) and of our probes are shown in Fig. 2.3a and 2.3b. Each control or probe signal value is chosen for its optimal discriminating temperature (35 and 30 °C, respectively, with formamide addition (Hutton 1977)) from 55 to 25 °C data and normalized with the highest signal value from the respective control set or probe set. Two clear advantages over the controls become apparent. First, probe-target signal intensities align except in the case of *let-7e* probes, yielding much more homogeneous fluorescence signals, as predicted. Second, cross-hybridizing signals appearing in the control sets are mostly removed. In addition, the highest signal intensity value from the control set is nearly 4 times greater than that of the probe set. The minimal cross-hybridization signals in **Fig. 2.3b** are practically non-existent. The question arises whether the signals from our probes are strong enough for use in an application.

When we performed RNA spike-in experiments with these probes over 7 temperature points from 25 to 55 °C, we found that the hybridizations were more stable than those in the case of DNA-DNA. Since some signals of the mismatched probes were much stronger than with cDNA, we prepared the normalized signal graph at 40 degrees

for both control and ProDeG probes in **Fig. 2.4a** and **Fig 2.4b**. The T_m calculations are basically held in the signal intensities except for the *let-7b* probe (**Fig. 2.4b**). If we set aside the *let-7b* probe signal, the specificity of ProDeG probes were dramatically superior to the control probes (**Fig. 2.4a**), with only mild cross-hybridization of *let-7c* on *let-7a* probes. Please note that the overall cross-hybridization of control probes was also much more prevalent compared to the case of cDNA. The normalized intensity of control probes is about three times higher than that of ProDeG probes.

2.5.2 Expression signals of ProDeG let-7 probes from human lymphoblastoid cell lines

We prepared total RNA of lymphoblastoid cell lines from a human subject to obtain miRNA profiles. In addition to LC Sciences probes, we incorporated custom probes containing controls (perfectly matched sequences) and ProDeG probes to compare signals among them. Since the hybridization temperature was 34 °C, optimized for the company's probes, gentle wash condition (47 °C) was performed to detect ProDeG signals compensating weaker signals in addition to the normal wash condition (53 °C). Each microarray contained probe blocks repeated six times. The relative signal intensities compared to the *let-7a* signal are shown in **Fig. 2.5a** and **Fig 2.5b** for control and ProDeG probes, respectively. Interestingly, *let-7b* signal from ProDeG probes was detectable, in spite of the unusually low *let-7b* spike-in signal in **Fig. 2.4b**. Rather, the *let-7b* signal in control probes was minimal. On the other hand, the *let-7c* signals from the control probe were significant, while those of the ProDeG probe were non-existent. In order to verify the presence of each *let-7* family, we performed qRT-PCR on the same total RNA. The relative amount compared to *let-7a* quantity is shown in **Fig 2.5c**. The relative amount pattern strikingly resembles the ProDeG probe signal intensity: practically non-existent *let-7c* and *let-7e*, while *let-7a* amount is the largest followed by *let-7f* amount. We therefore conclude that the *let-7c* signals from the conventional perfectly-matched probe were actually false signals from other let-7 family members (probably from cross-hybridization with *let-7a* based on **Fig. 2.4a**). ProDeG probes are highly reproducible using qRT-PCR and proved to be specific in our study.

2.6 Discussion

Which miRNAs need to be discriminated? Even though we definitely removed most cross-hybridizations, at least in computational terms, several remain (Supplementary Table 2, new Appendix A.1). Eliminating these involves discriminating one nucleotide difference near or at the end of the miRNA and discriminating T-A and T-G pairs. We reported that mutation in the first or last three bases of a sequence produces minimal T_m changes. Moreover, the interaction energy between T-A and T-G are similar, indicating limited discrimination by mismatched probes.

This limitation would be overcome when discriminating one nucleotide difference near or at the end of the miRNA by simulating an internal mismatch which may be obtained by padding two or three nucleotides during sample preparation. This concept has already been implemented by other researchers (Wang et al. 2007). ProDeG can then be applied to mismatch probe design. However, among the miRNAs listed in

Supplementary Table 2, new Appendix A.1, some are only predicted, without experimental confirmation. Also, a nuclease might have cut one or more sequences in the process of miRNA maturation. We do not feel compelled to go further in discriminating end sequence differences.

Discrimination of T-A and T-G pairs can be addressed using reverse complementary sequences as probes and mature miRNAs as samples. T (probe)-A (target sample) and T (probe)-G (non-target sample) pairs in the original set become A (probe)-T (target sample) and A (probe)-C (non-target sample) pairs in this reverse set. There should be no miRNAs in common in the G-U wobble category of predicted crosshybridizations. Therefore, two sets of experiments, one using probes with mature miRNAs and the other using their reverse complements, will ultimately discriminate T-A and T-G pairs.

ProDeG probes for cDNA samples are of significant value both in terms of T_m calculations (**Table 2.3**) and spike-in experiments (**Fig. 2.3b**). One intrinsic concern, however, is that signal intensities from the ProDeG probes are relatively weak compared to the perfectly matched probes, thus raising a question regarding signal sensitivity in real applications. The next step is to optimize hybridization conditions and to find a balance between specificity and sensitivity. However, once techniques to obtain cDNAs of small RNAs are further developed and PCR amplification is routinely achievable, increased specificity to a target sequence using the ProDeG algorithm will be of some value.

RNA samples produced stronger signals and more cross-hybridization (**Table 2.4**, **Table 2.5** and **Fig. 2.4**) than cDNA samples. Since signals from the ProDeG probes were strong enough, we could use the same hybridization temperature for both control and

ProDeG probes in total RNA profiling experiments. During the revision process, the Sanger Institute miRBase updated its miRNA sequence database to version 10. Since cDNA samples established the correspondence between microarray signals and our calculations, cDNA data are meaningful by themselves. However, profiling total RNA involves endogenous miRNA, which needs to be updated based on the new information. In terms of the *let-7* family, however, only one nucleotide was added at the 3'-end position for *let-7d*, *e*, *g*, and *i*, whose influence is probably not significant. We added a corresponding sequence A to each *let-7* ProDeG probe, as calculated with version 9.1 and used for probes for RNA samples.

Comparing T_m calculation (**Table 2.5**) and spike-in experimental data (**Fig. 2.4b**), either the *let-7b* T_m calculation was wrong or *let-7b* RNA synthesis was not desirable or both. Since there was no *let-7e* cross-hybridization to the *let-7a* ProDeG probe (different from the Table 2.5 prediction), thermodynamic parameters of RNA-DNA pairs might be less accurate than those of DNA-DNA pairs. Improved thermodynamic parameters will increase the quality of designed probes. On the other hand, considering the *let-7b* signal detection using total RNA samples (**Fig 2.5b**), there might not be a high-purity yield of *let-7b* RNA, as the company warned, due to the difficulty of incorporating Cy-5 into RNA oligonucleotides. Despite these limitations, to our surprise, the relative signal intensity of total RNA using ProDeG probes matched the qRT-PCR data excellently, demonstrating the utility of ProDeG probes.

The presence of *let-7c* signal in the control emphasizes the false positive signal in miRNA microarray data which is prone to generate incorrect inferences in terms of miRNA expression. Another miRNA, miR-99a, is transcribed right next to *let-7c*

transcription site in the same intron of Chromosome 21 open reading frame 34. The expressions of these two miRNAs were reported to be correlated (Landgraf et al. 2007). In our total RNA sample, the *miR-99a* signal was absent from the microarray data. However, significant false signaling of *let-7c* in the control probes (Fig. 2.5a) would not yield such a correlation. With our probes, we can report both *let-7c* and *miR-99a* are probably absent from the transcription stage.

The ProDeG strategy is simple, powerful, cost-efficient and fully compatible with current profiling techniques, moreover considering only naturally occurring nucleotide hybridization. The use of mismatched sequences with natural nucleotides (less toxic than artificial ones) to enhance target specificity (minimal off-target effects) will allow safer *in vivo* applications. Like other hybridization calculations, ours lacks surface effects, which may have led to a lower than predicted *let-7e* signal in **Fig. 2.3b** (note that *let-7d* and *let-7e* are one nucleotide shorter than other members according to v9.1 of miRBase). To our surprise, however, the overall calculation predicted microarray intensity very well. All experimental data point to the validity of our computational algorithm.

Table 2.1 Parameters used in ProDeG microarray probes for mature human miRNA

Parameters

Assay Temperature ¹	53 °C
Maximum hybridization T _m	75 °C
Maximum monomer folding T_m^{-1} (secondary structure measurement)	65 °C
Minimum hybridization T _m between probe and target	56 °C
Maximum hybridization T_m between probe and non-target	51 °C
Na+ concentration	1 M
K+ concentration	0 M
Probe concentration	100 nM
Target concentration	100 nM
BLAST word size	7

¹Specific parameters in the OMP software

Name	Sequence ¹	$T_{\rm m} (^{\rm o}{\rm C})^2$								
		let- 7a	let- 7b	let- 7c	let- 7d	let- 7e	let- 7f	let- 7g	let- 7i	miR- 98
control <i>let-7a</i>	TGAGGTAGTAGGTTGTATAGTT	64	58	59	58	57	59	52	51	51
control <i>let-7b</i>	TGAGGTAGTAGGTTGT G T G GTT	58	70	65	51			51	54	
control <i>let-7c</i>	TGAGGTAGTAGGTTGTAT G GTT	59	64	67	51	51	52	52	51	51
control <i>let-7d</i>	A GAGGTAGTAGGTTG C ATAGT	55	51	51	66					
control <i>let-7e</i>	TGAGGTAG G AGGTTGTATAGT	62	55	57	56	66	55			
control <i>let-7f</i>	TGAGGTAGTAG A TTGTATAGTT	57					62			
control <i>let-7g</i>	TGAGGTAGTAG T TTGTA C AGT							64	55	
control <i>let-7i</i>	TGAGGTAGTAG T TTGT GCT GT							55	68	
control <i>miR-98</i>	TGAGGTAGTA A GTTGTAT T GTT									63

Table 2.2 Mature human *let-7* family sequences in DNA and their hybridization T_m with perfectly complementary pairs

¹Mismatch sequences compared to *let-7a* are shown in bold italics. ²Hybridization T_m 51 °C is shown for reference but not expected to produce signals with our design criteria.

Name	Sequence ¹	$T_m (^{\circ}C)^2$								
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i	miR- 98
probe <i>let-7a</i>	TGAG a TAGTAGGTTGTATAGTT	57			51					
probe <i>let-7b</i>	TG t GGTAGTAGG c TGTGTGGTT		57							
probe <i>let-7c</i>	TG t GG c AGTAGGTTGTATGGTT			57						
probe <i>let-7d</i>	AGAGGTAGTA a GTTGCATAGT				58					
probe <i>let-7e</i>	TGA C GTAGGAGGTTGTATAGT	51				57				
probe <i>let-7f</i>	TG C GGTAGTAGATTGTATAGTT	51					57			
probe <i>let-7g</i>	TGAGGTA a TAGTTTGTACAGT							56		
probe let-7i	TGAGGTAGTACTTTGTGCTGT								58	
probe miR-98	TGAGGTAGTAAGTTGTATTGTT									63

Table 2.3 ProDeG-designed probe sequences for cDNA of mature human *let-7* family and their hybridization T_m with targets and non-targets

¹Mismatch sequences compared to the original are shown in bold lower case. ²Hybridization T_m 51 °C is shown for reference but not expected to produce signals with our design criteria.

Name	Sequence	$T_m (^{\circ}C)^1$								
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i	miR- 98
control <i>let-7a</i>	AACTATACAACCTACTACCTCA	64	59	62	59	63	57	51		51
control <i>let-</i> 7b	AACCACAAACCTACTACCTCA	58	70	64	56	55			52	
control <i>let-</i> 7c	AACCATACAACCTACTACCTCA	60	65	67	56	57				
control <i>let-</i> 7d	AACTATGCAACCTACTACCTCT	61	55	58	67	59	52			
control <i>let-</i> 7e	AACTATACAACCTCCTACCTCA	58	51	55	51	67				
control <i>let-</i> 7f	AACTATACAATCTACTACCTCA	59	52	56	52	57	62	51		
control <i>let-</i> 7g	AACTGTACAAACTACTACCTCA	57	52	55		54	54	65	58	
control <i>let-</i> 7 <i>i</i>	AACAGCACAAACTACTACCTCA	52	57	52				56	68	
control <i>miR-98</i>	AACAATACAACTTACTACCTCA	53		54						63

Table 2.4 Hybridization T_m for mature human let-7 family of microRNAs between DNA probes and RNA targets and off-targets before ProDeG run

¹Hybridization T_m 51 °C is shown for reference but is not expected to produce signals when considering our calculation criteria.

Name	Sequence		$T_{\rm m} (^{\circ}{\rm C})^2$							
		let-7a	let-7b	let-7c	let-7d	let-7e	let-7f	let-7g	let-7i	miR- 98
probe <i>let-7a</i>	AACTATACAACCTACTA t CTCA	59	52	56	52	57				
probe <i>let-7b</i>	AACCACACAAC t TACTACC a CA		60	51						
probe <i>let-7c</i>	AACCATACAACCTA t TACCT t A		55	58						
probe <i>let-7d</i>	A c CTATGC c ACCTACTACCTCT				59					
probe <i>let-7e</i>	Atctataaaacctcctacctca					58				
probe <i>let-7f</i>	t ACTATACA g TCTACTACCTCA	53					57			
probe <i>let-7g</i>	AACTGTAC t AACTACTACCTCA	51						60	52	
probe let-7i	AACAGCAC C AACTACTACCTCA								63	
probe miR-98	AACAAT t CAACTTACTACCTCA									58

Table 2.5 ProDeG-designed probe sequences for mature human *let-7* family (RNA as sample) and their respective hybridization T_m with targets and non-targets

¹Mismatch sequences compared to the original are shown in bold lower case. ²Hybridization $T_m 51$ °C is shown for reference but not expected to produce signals with our design criteria.

 $\Delta T_1 = T_{m1} - T_{m3}$ and $\Delta T_2 = T_{m2} - T_{m4}$

 Δ T1 < Δ T2, enough to discriminate between two similar sequences

Figure 2.1 Schematic example of including an imperfectly matched probe to increase specificity. Probe strand is shown in blue and in lower case characters. Target A and non-target A' differ by one base at the position shown as sequence A. After incorporating a base change (sequence a), the difference in T_m between probe-target and probe-non-target pairs (right, $\Delta T2 = T_{m2} - T_{m4}$) is sufficient to discriminate similar sequences as compared to the difference in T_m before point mutation (left, $\Delta T1 = T_{m1} - T_{m3}$).

Figure 2.2 The ProDeG flowchart.

Figure 2.3 Relative signal intensities of the *let-7* family with spiked-in cDNA sequences. These are shown using control (perfectly matched) sequences as probes at 35 °C (a) and ProDeG designed probes at 30 °C (b). Each x-axis category indicates probes used while the corresponding series shows the relative probe intensities normalized with highest intensity value. Spiked-in sample notations are as follows: blue bars, let-7a; red bars, let-7b; yellow bars, let-7c; pink bars, let-7d; lime bars, let-7e and orange bars, let-7f.

Figure 2.4 Relative signal intensities of the *let-7* family with spiked-in RNA sequences. These are shown using control (perfectly matched) sequences as probes (a) and ProDeG designed probes (b) at 40 °C. Each x-axis category indicates probes used while the corresponding series shows the relative probe intensities normalized with highest intensity value. Spiked-in sample notations are as follows: blue bars, let-7a; red bars, let-7b; yellow bars, let-7c; pink bars, let-7d; lime bars, let-7e and orange bars, let-7f.

Figure 2.5 Total RNA sample data from a lymphoblastoid cell-line. All data are normalized against let-7a data. Relative signal intensity of the let-7 family control (a) and ProDeG (b) probes are shown after Cy-3 labeled total RNA from a lymphoblastoid cell-line was hybridized at 34 °C. The relative amount of each let-7 family miRNA was quantified using TaqMan® qRT-PCR assay (c).

Chapter 3

Discovery of endogenous 5'-UTR miRNA target sites

3.1 Background

miRNA target sites are known to primarily lie in 3'-UTR in animals. The first discovered miRNA, *lin-4* in C. *elegans*, was found to regulate developmental timing by targeting multiple sites in 3'-UTR of lin-14 (Wightman et al. 1993). Since then several miRNAtarget prediction programs have been developed (Rajewsky 2006; Sethupathy et al. 2006) that stress the importance of seed-match between the 5'-end of mature miRNA and 3'-UTR of the target mRNA, while some others show that the 3'-end of a miRNA may either complement a seed match or compensate for an imperfect one (Doench and Sharp 2004; Kiriakidou et al. 2004; Kloosterman et al. 2004; Grimson et al. 2007). The significance of this 5'-end of miRNA targeting 3'-UTR sites was recently confirmed by a proteomics study which showed superior protein inhibition capacity for the 3'-UTR sites over those in the coding region (Baek et al. 2008). It has been suggested a miRNA may target about 200 mRNAs (Krek et al. 2005), with varying degrees of protein repression (Baek et al. 2008; Selbach et al. 2008), though the number of predicted targets can range in the thousands. A major reason for these false positives lies in the partially complementary matches between miRNA and its targets.

To improve specificity of target prediction, many programs utilize sequence data to assess conservation of predicted target sites. This has also been done on a genome-

wide scale using motif data to uncover probable target sites (Xie et al. 2005). This study only discovered target sites on the 3'-UTR that interact with the seed region of miRNAs. Focusing on conserved target sites has the intrinsic limitation of not identifying speciesspecific sequences, including non-conserved miRNAs. Also, most miRNA target verification experiments have only used 3'-UTR interaction sites since many studies had shown miRNA effects with only portions of 3'-UTR. Even the first *lin-4* and *lin-14* experiments used not the whole mRNA, but rather the 3'-UTR together with coding region (Wightman et al. 1993). On the other hand, a few experiments have indicated possible target sites in the 5'-UTR (Jopling et al. 2005; Lytle et al. 2007; Orom et al. 2008).

We report here, based on both hybridization energy and sequence matches, many endogenous motifs within human 5'-UTRs specific to the 3'-ends of miRNAs. Rather than suggesting possible miRNA interactions with other regions of mRNA, we report combinatory interactions between a single miRNA and both end regions of an mRNA, based on our finding that many miRNAs contain significant interaction sites with mRNA 5'-UTR and 3'-UTR motifs through their 3'- and 5'-end sequences, respectively. As a model system, we experimentally verified that *hsa-miR-34a* function depends on both UTR sites of *AXIN2*. Additionally, we show that both UTRs of the *C. elegans lin28* gene is targeted by a modified *cel-lin-4*. We propose a new miRNA target class containing simultaneous 5'- and 3'-UTR interaction sites. This class can serve as an efficient screening tool for identifying real targets, especially in the case of non-conserved miRNAs or target sites.

3.2 Results

3.2.1 Presence of miRNA interaction sites in human 5' UTR

We checked for genome-wide miRNA interaction motifs in human 5'-UTR and 3'-UTR. Xie *et al.* have reported conserved miRNA motifs in the 3'-UTR but not in the 5'-UTR or in coding sequences (Xie et al. 2005). We used the same UTR motif dataset sent to us by the authors but defined new conservation classes C=0 (non-conserved but humanenriched), 1 (minimally conserved and human-enriched), and \geq 10 (highly conserved). To determine seed and non-seed region effects, all mature miRNAs were downloaded from miRBase (Release 11.0) (Griffiths-Jones et al. 2008) and split into their respective 5'- and 3'-ends, making miRNA halves. Following thermodynamic searches for half miRNA-UTR motif interaction using RNAhybrid (Kruger and Rehmsmeier 2006), we treated only consecutively-matched sequences as signals. To calculate significance, total numbers of pairwise interactions between half-miRNAs and UTR motifs were compared with the numbers of interactions with shuffled UTR motifs generated 1,000 times.

In these analyses, we identified 5'-UTR motifs (5U) interact significantly with the miRNA 3'-end (3P) in all conservation categories (5U3P's in **Fig. 3.1a**), most significantly in the case of C=0. 3'-UTR motifs (3U), on the other hand, show significant interactions with miRNA only in the case of highly conserved 8-mers (C \geq 10), which is consistent with previous reports (Conserved 10: 3U5P and 3U3P in **Fig. 3.1a**). Besides the most significant and well-known interaction of 3U5P, our identification of 3U3P interaction is in accordance with previous findings that the 3'-end of a miRNA may either complement a seed match or compensate for an imperfect one (Doench and Sharp 2004; Kiriakidou et al. 2004; Kloosterman et al. 2004; Grimson et al. 2007). Our new finding of

5U3P interaction was also observed with human-enriched 5'-UTR motifs when we followed Xie *et al.*'s conservation score (Methods and **Fig. 3.2**).

Viewed in terms of conserved and non-conserved miRNAs, interactions with conserved miRNAs show a trend similar to the one above, differing only in the levels of significance (**Fig. 3.1b**). Interestingly, 5U3P interactions with non-conserved miRNAs lack significance for C=0 motifs (**Fig. 3.1c**), the 5U3P signal in C=0 in **Fig. 3.1a** coming from that of conserved miRNAs. We also observed significant interactions between highly conserved 5'-UTR motifs and the 5'-end (5U5P) of non-conserved miRNAs (**Fig. 3.1c**).

In conjunction with the significant interaction between the seed region of a miRNA and the 3'-UTR, the preferential 5'-UTR interaction with the 3'-end of miRNA raises the question whether a common miRNA may target both UTRs of an mRNA by interacting with different ends of the miRNA. Based on the significance data in **Fig. 3.1a**, 37 common miRNAs identified between 5U3P (C=0 and 1: total 250 miRNAs) and 3U5P (C=10: total 116 miRNAs) cases are listed in **Appendix B.1**. When these kinds of motifs exist in a single gene, will they be regulated by a single miRNA?

3.2.2 hsa-miR-34a targets AXIN2 through both UTRs

A highly-conserved human miRNA, *hsa-miR-34a*, has such interaction sites in *AXIN2* (Fig. 3.3a). Even though *miR-34a* is not one of the miRNAs in Appendix B.1, the 5'-end was predicted to interact with three highly-conserved (and one non-conserved) *AXIN 3'-*UTR sites, and the 3'-end with two overlapping 5'-UTR sites (Fig. 3.3a) present only in human and mouse but enriched in human 5'-UTRs (Appendix B.2). We used *hsa-miR-* *34a* and *AXIN2* as a model system to verify simultaneous UTR interactions. Since interactions between miRNA and 3'-UTR are well-established, we focused on the 5'-UTR interaction sites, using only minimal interaction sequences of 36-mer in the experimental constructs. As shown in **Fig. 3.3a**, the *hsa-miR-34a* effects on this 36-mer should mostly come from the 3'-end. Note that the full 3'-UTR inserted in the construct is 1,408 nucleotides long.

Reporter gene assay of MCF-7 cells revealed that *miR-34a* downregulated constructs containing either the 5'-UTR (5ULuc) or 3'-UTR (Luc3U) alone. When both Axin2 UTR sites were present (5ULuc3U), luciferase expression was further repressed by miR-34a (Fig. 3.3c). In order to identify endogenous miRNA effects in addition to those exogenously induced, we blocked endogenous miR-34a using inhibitor antisense RNA oligo. 5ULuc3U expression was greater than 5ULuc or Luc3U, suggesting that the 5'-UTR of AXIN2 together with the 3'-UTR are functional target sites for miR-34a in the cells (Fig. 3.3d). In addition, the fold change of 5ULuc3U 1.88 is greater than with the addition of 5ULuc and Luc3U 1.61. Considering the many interaction sites in the 3'-UTR, the synergetic 5'-UTR effect on endogenous miRNA function is remarkable. These data suggest that in conjunction with the 3'-UTR, the 5'-UTR of AXIN2 plays a role in miRNA-mediated repression in human cells beyond fine-tuning. In order to confirm the sequence specificity of 5'-UTR effects, we created a construct with sites mutated (5UmutLuc3U). Separate luciferase experiments inducing *hsa-miR-34a* showed rescue of repression when the 5U interaction sites are mutated (Fig. 3.3e).

3.2.3 Modified cel-lin-4 targets both lin28 UTRs

As an additional model system to verify simultaneous interaction of a miRNA with both UTRs, we chose the *C. elegans* lin-4 and lin-28 pair. The 3'-UTR of lin28 contains a single canonical target site conserved in the lin28 homologs of human, mouse and chimpanzee whereas the single 5'-UTR site predicted to bind with the 3'-end of the miRNA is lacking in all of the homologs. Expecting fewer cellular responses, we decided to use human cell lines. Due to the lower physiological temperature of *C. elegans*, we increased 5'-UTR and 3'-end interaction by changing GU pairs into GC pairs. The resulting construct-miRNA pair consisted of lin-4-like artificial miRNA (lin4msiRNA) and lin-28-like 5'-UTR sequences for 5U3P interaction; lin-4 and lin-28 sequences were for 3U5P interactions (**Fig. 3.4a**). Constructs with mismatched sequences were also prepared to study interaction-site specificity.

Reporter gene assay of HEK293 cells showed that lin4msiRNA repressed luciferase expressions more consistently when the 5'-UTR site is intact (Wilcoxon rank-sum test p < 0.005 for 5UpmLuc3Upm and 5UmmLuc3Upm; p = 0.005 for 5UpmLuc3Umm and 5UmmLuc3Umm). It is clear that mismatches in the 5'-UTR corresponding to the 3'-end of lin4msiRNA disrupt interaction. We recognize that the increased luciferase due to 3'-UTR mutation is much greater than that due to 5'-UTR mutation. Possibilities are 1) there is an additional endogenous effect for the 3'-UTR site due to the site's existence in the human homologue LIN28 (*hsa-miR-125a-5p and hsa-miR-125b* have same seed region compared to *cel-lin-4*), 2) 5'-UTR effects may require more overall structural context in addition to short oligonucleotide sequences, 3) exogenously-induced vector and small

RNA may not be ideal for observing endogenous cellular effects, and 4) 5'-UTR effects may reflect species-specific fine-tuning in this case.

3.3 Methods

3.3.1 Bioinformatics and statistical analysis

Mature human miRNA sequences were downloaded from miRBase, version 11.0. These were separated into two categories, conserved and non-conserved. We define a conserved miRNA as one that has a similarly-named counterpart in at least one other species regardless of the percentage identity. For example, *miR-34a* exists in humans as well as mouse and many others whereas *miR-1178*, a non-conserved miRNA by our definition, exists only in humans. Following this, miRNAs were split into their respective 5-prime and 3-prime end halves.

Xie *et al.* kindly provided us with data on conservation of all possible 8-mer sequences from aligned 5'-UTRs and 3'-UTRs among human, mouse, rat and dog (Xie et al. 2005). Each 8-mer was listed along with the number of occurrences conserved in all four species (C), the number of occurrences in the human sequence (N), and the conservation rate (R) given by the ratio C/N, where $0 \le R \le 1$. We created five motif conservation categories: 1) C=0, non-conserved 8-mers ordered on decreasing N, 2) C=1, 8-mers with exactly one conserved occurrence, ordered on decreasing N, 3) C≥10, 8-mers with at least 10 conserved occurrences ordered on decreasing C and decreasing R, 4) positive MCS, and 5) negative MCS described below. Briefly, the motif conservation score (MCS, from Xie *et al.*) is reported as a Z-score calculated using binomial probability, $MCS = (C - (Np_0))/\sqrt{Np_0(1 - p_0)}$, where C is the number of conserved instances, N the number of occurrences in human and p0 the estimated rate of conservation. We calculated p_0 as the average conservation rate of all 65,536 8-mers. The top 540 highest scoring 5'-UTR and 3'-UTR 8-mers from each category above were then used for further analysis. RNAhybrid (Kruger and Rehmsmeier 2006) was used to search for potential interactions between the UTR motifs and each miRNA. Doench *et al.* having demonstrated the correlation between binding energy and fold repression (Doench and Sharp 2004), we set an energy threshold of -14 kcal/mol based on the RNAhybrid binding energy prediction for the *CXCR4* siRNA seed region and the corresponding target site used in Doench *et al.*'s paper. The results were then filtered for consecutive 8-mer matches with GU wobbles between the 8-mers and miRNA ends.

Shuffled 8-mers derived from the corresponding conservation category were used as controls to assess the significance of the number of interactions between motifs and miRNAs. The control datasets were generated 1000 times and the number of interactions calculated as an average over these iterations. We assumed the distribution of number of interactions to be normal and calculated p-value using the Z-test.

3.3.2 Experimental validation – AXIN2 and hsa-miR-34a

Luciferase coding sequences were amplified from pGL3 vector (Promega) and inserted between HindIII and BamHI sites of pcDNA3.1-Hyg(+) mammalian expression vector (Invitrogen) to generate luciferase expression construct. To make 3'-UTR constructs, the 3'-UTR of *AXIN2* (NM_004655; $+1 \sim +1059$) was amplified from genomic DNA of MCF-7 cells and cloned into the BamHI and NotI sites. The synthetic oligonucleotide containing 5'-UTR sequences targeted by *miR-34a* of *AXIN2* (5'-GCC CGG GGG AGT CGG CTG GAG CCG GCT GCG CTT TGA, corresponding to +44 ~ +79) was inserted into NheI and HindIII sites upstream of luciferase vectors. Each reporter construct (25 ng) was co-transfected with 20 pmol of negative control RNA oligo (Ambion, AM17110) or *miR-34a* precursor RNA oligo (Ambion, product ID PM11030) using Lipofectamine 2000 (Invitrogen) for 48 hrs. In experiments inhibiting endogenous *miR-34a*, 5 ng of each construct was co-transfected with 40 pmol of antimiR-34a inhibitor (Ambion, product ID AM11030) or anti-miR negative control (Ambion, product ID AM17010). Fold change by *miR-34a* or *miR-34a* inhibitor was measured by a dual-luciferase assay kit (Promega), and the firefly luciferase activity normalized relative to a simultaneously transfected SV40-driven *Renilla* luciferase expression plasmid. Experiments were performed in two sets of triplicates simultaneously, one for reporter gene assay and one for qPCR analysis.

3.3.3 Experimental validation – LIN28 and *lin-4* siRNA

Custom-designed lin-28 UTR sequences (Appendix B.3) were purchased from Integrated DNA Technologies, Inc. The expression reporter vector, pMIR-REPORTTM, was purchased from Ambion, Inc. (Cat. # AM5795). 5'-UTR sequences were cloned into the BamHI restriction site upstream of the luciferase coding sequence and the 3'-UTR sequences were cloned into the multiple cloning site using HindIII and SpeI. UTR sequences and their orientation in the constructs were confirmed by DNA sequencing (University of Michigan DNA sequencing core).

Strands that make up the lin4msiRNA duplex were purchased from Integrated DNA Technologies, Inc. The single stranded molecules were later annealed using the

manufacturer's protocol. We used hsa-miR-16 (Ambion, Inc., product ID PM10339) as a negative control since there is no interaction site predicted in lin-28 UTRs.

HEK293 cells were grown to 80% confluence in Dulbecco Modified Eagle Medium (DMEM) with 10% Fetal Bovine Serum. Cells were then trypsinized and plated in 12-well plates with about 250,000-300,000 cells per well. 500ng of each firefly reporter construct and 50ng of internal control Renilla reporter pRL-tk (Promega, Cat. # E2241) were co-transfected with either 37 pmol of control miRNA (hsa-miR-16) or 170 pmol of siRNA using Lipofectamine 2000 (Invitrogen). Owing to mismatches in the duplex we used, we increased the siRNA concentration to compensate for any inefficiency in annealing. Transfections were performed in quadruplicate two independent times. Cells were lysed 24 hours post-transfection and assayed for luciferase expression using the Dual-Luciferase Reporter Assay System (Promega, Cat. # E1910) and GloMax® 96 Microplate Luminometer w/Dual injectors (Promega, Cat. # E6521) according to the manufacturer's protocol.

For the lin-28 study, experiments were repeated two independent times in quadruplicate each time. *Renilla* normalized luciferase values were normalized using values from a non-specific miR-16 transfection. To determine if there was significant difference between the pairs (5UpmLuc3Upm and 5UmmLuc3Upm) and (5UpmLuc3Umm and 5UmmLuc3Umm) we used the Wilcoxon rank-sum test to calculate p-values from the normalized luciferase values for each pair of constructs chosen.

3.4 Discussion

Translation repression has been reported to occur when a 3'-UTR target site for endogenous *let-7a* in HeLa cells is moved to the 5'-UTR (Lytle et al. 2007). We now show there exist many endogenous target sites in 5'-UTR for endogenous miRNAs, so that these 5'-UTR sites can contribute to miRNA function. The data in Fig. 3.1a is intriguing in that 1) significant miRNA interactions in the 5'-UTR occur only with the 3'end of miRNA (5U3P), and 2) such 5U3P significance seems to arise in highly-conserved 8-mers and spread into less-conserved but highly-human-present motifs (C=0 and 1). Non-conserved sites have been explored under the assumption that each species or genome might employ them to attribute specificity in some manner (Farh et al. 2005). Considering that the 3'-end of miRNA family members (intra-species) and those of some miRNAs across species differ, the 3'-end of miRNAs may contribute to gene- or speciesspecific target site recognition of the 5'-UTR. Dividing miRNAs into conserved and nonconserved ones, it seems that human-specific 5U motifs interact with pre-existing miRNAs (Fig. 3.1b) and that human-specific miRNAs interact with pre-existing 5U motifs (Fig. 3.1c). The significant 5U5P presence in the highly conserved UTR motifs and non-conserved miRNAs (Fig. 3.1c) may reflect an emergent feature of humanspecific miRNAs, wherein miRNA and 5'-UTR are actively evolving in response to each other.

We used 36-mer sequences for the *AXIN2* 5'-UTR construct, which interacts mostly with the 3'-end of *miR-34a*. In contrast to 3'-UTR sites, which are well-dispersed across 1,408 nucleotides, making additive miRNA effects possible, the two 5'-UTR sites overlap, leaving no opportunity for additive effects. We expect to see four times higher

3'-UTR effects than with 5'-UTR, assuming the 5'-end represses translation in the 3'-UTR just as the 3'-end does in the 5'-UTR. Therefore, the contribution of *AXIN2* 5'-UTR sites in protein repression by *hsa-miR-34a* induction is no less than that of each site in the 3'-UTR (**Fig. 3.3c**). Of some interest are the endogenous miRNA effects on both UTRs in this pair (**Fig. 3.3d**). Not only is the inserted 5'-UTR site effect similar to that of the whole 3'-UTR (about 40 times longer than the inserted 5'-UTR sequences), but the presence of both UTRs has a synergetic effect on miRNA function. Exogenous *hsa-miR-34a* effects on top of endogenous *hsa-miR-34a* function may lead to saturation of repression capacity with 5ULuc3U in **Fig. 3.3c**, while repression of Luc3U is more easily achieved with exogenous *miR-34a*.

In order to fully understand miRNA function, therefore, we advise the insertion of both 5' and 3'-UTR sequences in miRNA functional experiments, which has rarely been done before. We may see more protein reduction with 5'-UTR inclusion where interaction sites exist as seen in **Fig. 3.3a and 3.4a**. Moreover, this new class of miRNAs and targets may fall into the class of translation blockers prior to the 40S ribosome reaching the translation start region, preventing 60S association (Wang et al. 2008), one possible miRNA mechanism of translation repression.

Figure 3.1 Analysis of predicted interactions between 8-mers from different conservation classes and miRNAs (based on number of occurrences). Closed bars indicate number of predicted interactions between 5'-UTR or 3'-UTR 8-mer sequences (indicated by 5U or 3U respectively) and 5'- or 3'- ends (indicated by 5P or 3P respectively) of a full set of mature miRNAs (a), of conserved miRNAs (b), and of non-conserved miRNAs (c). Open bars correspond to mean number of interactions after 1000 shuffling iterations and error bars indicate standard deviations. Double asterisk indicates p<5e-05 and single asterisk p<5e-03

Figure 3.2 Analysis of predicted interactions between 8-mers from different conservation classes and miRNAs (based on conservation score). Closed bars indicate the number of predicted interactions between 5'-UTR or 3'-UTR 8-mers (5U and 3U respectively) and 5'- or 3'-ends of mature human miRNAs (5p and 3p respectively). Open bars indicate mean number of interactions using shuffled 8-mers after 1000 shuffling iterations. Double asterisk indicates p<5e-05 and single asterisk, p<5e-03.

Figure 3.3 Human miRNA *hsa-miR-34a* and target *AXIN2*. (a) Predicted interactions between hsa-miR-34a and Axin2 UTR sequences. Extended seed match between the 5'-end of miR-34a and one of the 3'-UTR binding sites is shown in bold red. All predicted 3'-UTR sites are marked in the Supplementary Information. Overlapping interactions between the 3'-end of miR-34a and the 5'-UTR inserted sequences are shown in bold blue. Energy was calculated using RNAhybrid. (b) Schematic showing vector constructs containing firefly luciferase reporter gene used in transfection experiments. The 5'-UTR and 3'-UTR inserts are indicated as 5U and 3U respectively. (c) Luciferase expression fold change with miR-34a (red bars) normalized with negative control RNA oligo (blue bars). Firefly luciferase protein expression was normalized with Renilla luciferase protein. (d) Reporter constructs were co-transfected with anti-miR-34a oligo (red bars, Ambion, product ID, AM11030) and normalized with negative control RNA oligo (blue bars). (e) Effect of mutations in the 5'-UTR site – luciferase protein levels when reporter constructs were co-transfected with miR-34a (red bars) or negative control (blue bars). Error bars in panels (c) to (e) represent standard deviation from triplicate experiments

Figure 3.4 Effect of 5'-UTR interaction site for lin4msiRNA on reporter expression levels. (a) Predicted interactions between lin4msiRNA and lin28 UTR sequences. The functional strand of the siRNA contains an intact cel-lin-4 seed region (red) while the 3'-end is modified (green). Extended seed match between the 5'-end of lin4msiRNA and the wild-type lin28 3'-UTR binding site (bold red) is disrupted by introducing mismatches (bold and italics) to create an imperfect match with the seed region. The 3'-end of lin4msiRNA is complementary to the artificial lin28 5'-UTR binding site created by introducing a few GC base-pairs (bold italics) to form a perfect match. The wild-type lin28 5'-UTR presents an imperfect match (bold blue). Structure and energy calculations were carried out using RNAhybrid. (b) Schematic showing vector constructs containing firefly luciferase reporter gene used in transfection experiments. Perfectly matched sites on the lin-28 5'-UTR and 3'-UTR segments are indicated as 5Upm and 3Upm respectively, and imperfectly matched sites are indicated as 5Umm and 3Umm respectively. (c) Fold changes of Renilla normalized firefly luciferase expression levels with respect to non-specific hsa-miR-16 (blue bars) upon treatment with lin4msiRNA (red bars). Error bars represent standard deviation recorded from 8 pooled replicates.

Luc 5UpmLuc3Upm 5UmmLuc3Upm 5UpmLuc3Umm 5UmmLuc3Umm

Chapter 4

Post-transcriptional regulation by miRNA binding of uAUGs

4.1 Background

Translation initiation in eukaryotes is postulated to follow the ribosome scanning model (Kozak 2002), possibly constrained by multiple cis-elements on the 5'-UTR such as secondary structure (Kozak 1991b) and the 5'-terminal oligopyrimidine tracts (Avni et al. 1997) and upstream AUG (uAUG) nucleotides (Iacono et al. 2005). It is known that uAUGs cause a reduction in translational efficiency, therefore acting as a strong negative regulator of gene expression (Kozak 2002). Comparative genomic analysis has revealed that uAUGs are conserved in mammalian 5'-UTRs to a greater extent than in other segments of mRNAs, genes harboring them mainly coding for transcription factors (Churbanov et al. 2005). uAUGs may form alternative start sites forming upstream open reading frames (uORF), which are known to reduce efficiency of translation, possibly by translation of the uORF-encoded peptide (Morris and Geballe 2000). It has been noted that an uAUG/uORF can inhibit translation independent of a downstream secondary structure or its position relative to other uAUGs before the main ORF (Imataka et al. 1994; Jin et al. 2003).

Unlike the start codon of the main ORF, which in good initiation context is typically identified by the consensus Kozak sequence (Kozak 1991a), many of the uAUGs are in sub-optimal context for translation (Iacono et al. 2005). Some groups have been able to assay for *in vitro*-translated uORFs (Wang and Wessler 1998; Raney et al. 2000), which are not, however, readily detectable unless fused to a reporter gene (Kwon

et al. 2001; Song et al. 2007). One study showed that translation repression is not dependent on the encoded peptide sequence (Wang and Wessler 1998), which suggests that the peptide action may be non-specific. Further, Kwon *et al.* demonstrated that addition of a synthetic peptide encoded by an uORF did not alter translation of the protein-coding gene even though the uORF on the 5'-UTR was able to repress translation (Kwon et al. 2001).

Moreover, previous studies have reported that the uAUGs' effect on translation repression is specific to tissue type: though mRNAs containing uAUGs are expressed ubiquitously, the proteins are expressed only in specific tissues (Imataka et al. 1994; Nikolcheva et al. 2002). If indeed the translation of uORF limits downstream ORF translation, why does this repression occur only in certain cell-lines and tissues? There appears to be an additional mechanism of translation repression through uAUG other than upstream-encoded peptides.

In this report we identify certain miRNA interactions specific to the uAUG, preferentially through the 3'-end of the mature miRNA sequence. Based on our findings, we hypothesize that miRNAs expressed in one cell type but not in others may account for differences in protein expression in the cell types without changes in mRNA levels. Using miRNA expression data and results from prior work done with the *KLF9* gene in HeLa and N2A cells, we demonstrate the validity of our hypothesis. Our results suggest the role of miRNAs in cases where uAUG confers tissue-specific protein expression of the target mRNA.

4.2 Methods

4.2.1 uAUG and miRNA sequence data

Pairwise alignments between 5'-UTRs of mammalian human and mouse cDNAs were downloaded from the ftp site listed in Churbanov *et al.* (Churbanov et al. 2005). From each alignment we extracted 11-mer uAUG sequences in the human 5'-UTR beginning at position -4 and ending at position +7, with the 'A' being designated as +1 (e.g. NNNNAUGNNNN, where N is any nucleotide). When fewer than four nucleotides surround the uAUG, as in the case of a start of end of an alignment truncated n-mers ranging from 7 to 10 nucleotides in length were considered. Only uAUG sequences sharing 100% identity with the mouse homolog were categorized as conserved while others were considered as non-conserved uAUGs. Experimentally characterized uAUG sequences in Table 3 were obtained from the references listed in Table 2. For the *KLF* family of genes in Table 4, uAUG sequences were extracted from the 5'-UTR portions of the full RefSeq mRNA.

For the motif analysis, mature miRNA sequences were downloaded from miRBase (version 11.0) (Griffiths-Jones et al. 2008). miRNAs present in at least one other species (e.g. *hsa-let-7d* and *mmu-let-7d*) were categorized as conserved miRNAs (471 in total), and others as non-conserved miRNAs (206 in total). miRNAs were then split into their 5'- and 3'-halves to check for any preferential interaction with one end or the other.

4.2.2 Sequence complementarity search

A two-step strategy was employed in looking for matches between uAUG 11-mers and miRNA sequences. First, the thermodynamic search program RNAhybrid (Rehmsmeier et al. 2004) was used with –e option (ΔG) set to \leq -14 kcal mol⁻¹. Next, hits with at least seven consecutive nucleotide matches were selected.

As control miRNAs were shuffled in order to keep the nucleotide composition of the sequences intact. The search strategy above was repeated over 1000 shuffling iterations and the average number of interactions was calculated. The resulting distribution of number of interactions was assumed to be normal and significance calculated using a Z-test.

4.2.3 miRNA expression data

For miRNAs from Landgraf *et al.*'s study (Landgraf et al. 2007), we used their web visualization tool to assess the presence or absence of miRNAs in a given cell-line. For data from Chen *et al.*'s study (Chen et al. 2008), we used a p-value cutoff of 0.01 to report the miRNA as expressed. We obtained expression evidence for miRNAs of interest in N2A cells from Hohjoh *et al.*'s (Hohjoh and Fukushima 2007) study through personal communication. Expression data from Lawrie *et al.*'s (Lawrie et al. 2008) and Takada *et al.*'s studies (Takada et al. 2006) were obtained directly from the manuscripts and supplementary information.

4.3 Results

4.3.1 uAUGs are potential miRNA target sites

An earlier study of excess conservation of uAUGs used a total of 1955 pairwise alignments of human and mouse 5'-UTR sequences (Churbanov et al. 2005). The authors generated the alignments after careful pre-processing steps to remove any coding sequences that may have been mis-annotated as leader sequences. We used this alignment data to compile sequences containing uAUGs from human 5'-UTRs (see Methods), generating a total of 4009 uAUG 11-mers. The number of uAUGs per 5'-UTR ranges from one to 20, with 68% of the 1955 human 5'-UTRs containing at most two (Fig. 4.1A). In order to investigate conservation patterns of these n-mers we separated them into 2935 conserved and 1074 non-conserved sequences. The uAUG sequences appear to be highly conserved between both human and mouse UTRs, with all 7-mers having 100% identities and roughly 70% of 11-mers being conserved (Fig. 4.1B).

Mature human miRNA sequences (miRBase, version 11.0) (Griffiths-Jones et al. 2008) were downloaded and categorized as conserved (471 sequences) or non-conserved (206 sequences) miRNAs (see Methods). To reveal preferential interaction with any portion of the miRNA we split each sequence into its 5'- and 3'-ends, the former containing the seed region. We then looked for sequence matches between miRNA ends and the uAUG-containing sequences generated. This was done in two steps: 1) a thermodynamics-based search using RNAhybrid (Rehmsmeier et al. 2004) with a ΔG cutoff \leq -14 kcal mol⁻¹ followed by 2) a filter step to look for 7 or more consecutive matches with zero or one GU wobbles. To control for spurious hits, the number of

interacting pairs was compared to the number obtained after shuffling the mature miRNAs sequences and repeating the search procedure.

We observed many predicted interactions between uAUG sequences and the two miRNA ends, characterized by a dependency on conservation of miRNAs. Only conserved miRNAs showed a significant number of interactions while non-conserved miRNAs were no better than their shuffled cohorts (Fig 4.2A and 4.2B). There were a number of 8-mer Watson-Crick complementary matches between the 5'-ends of conserved miRNAs and uAUG sequences (Fig 4.2A). Interestingly, there seemed to be a greater number of such interactions at the 3'-ends (Fig. 4.2A and Table 4.1), which suggests a preference for pairing between uAUGs and 3'-ends. A previous study also reported observations wherein 5'-UTR and coding regions participate in binding the 3'end of the highly conserved miRNA, *let-7* (Forman et al. 2008). Further, when we included at most one GU wobble the only significant result that persisted was the interaction with the 3'-ends of conserved miRNAs (Fig. 4.2B). We conducted a genomewide motif study of 5'-UTRs and 3'-UTRs and observed a similar propensity for interaction between 5'-UTRs and 3'-ends of miRNAs (unpublished data). The preference for interaction with 3'-ends, perhaps, suggests the importance of non-seed region matches on the 5'-UTR. This may explain the fact that there are very few known endogenous targets on the 5'-UTR that exhibit seed-matches (Xie et al. 2005). We conducted a brief GO-term investigation into the nature of genes containing the uAUGs in Table 4.1. Out of a total 1071 genes that contained these uAUGs annotations were retrieved for 678 genes. Majority of these 678 were found to be involved in transcription factor activity (Supplementary data).

Considering that nearly 75% of the 11-mers were found to be conserved between human and mouse 5'-UTRs (2935 out of 4009) we investigated if the interactions with conserved miRNAs were a function of uAUG sequence conservation. Results showed no dependence on uAUG conservation when not allowing GU wobbles (**Fig. 4.2C**). However, when allowing at most one GU wobble only conserved uAUGs exhibited significant interactions with 3'-ends of miRNAs (**Fig. 4.2D**).

The above results indicate that uAUGs may participate in highly sequencespecific Watson-Crick base-pairing with miRNAs, particularly towards the 3'-ends. The fact that inclusion of a GU wobble still resulted in significant number of interactions between the 3'-ends and uAUGs probably suggests functionality.

4.3.2 Expressed miRNAs may bind endogenous uAUG sites

The analyses that follow are based on experiments with genes that contain uAUGs in their 5'-UTRs, drawing upon sequence data and results from previous experiments that attribute translational repression to the uAUGs. We also used miRNA expression evidence from several sources - these references are consolidated in the form of metadata (Table 4.2). We extracted 11-mer sequences containing uAUGs for these genes and looked for interactions with conserved miRNAs using the search strategy outlined above. Based on the observations in Fig. 4.2A and 4.2B, we allowed one GU wobble for interactions with the 3'-end and none with the 5'-end. Many of genes contain multiple uAUGs/uORFs that have different inhibitory effects on translation. We assigned discrete values to these uAUGs that reflect their repressive capabilities on the downstream reporter. These were obtained by comparing the effect of uAUG on reporter expression with a construct used as control. The values range from 1x to 6x, where 1x indicates that the uAUG is least repressive or does not show any effect.

We not only observed complementary matches with conserved miRNA sequences but also confirmed the presence of many of the predicted miRNAs in cell-lines where repression was observed (**Table 4.3**). There also appears to be an association between repressive strength of uAUGs and miRNA target predictions. Two uAUGs that have little or no effect on repression, indicated by '1x' in **Table 4.3**, lack miRNA interaction sites. Conversely, uAUGs with strong repressive potential (2x-6x) are complementary to expressed miRNAs except in the case of the first uAUG in the ADH5/FDH gene where expressions of the predicted miRNAs have not been detected. Note that miRNAs can act in a combinatorial manner on uAUGs to produce a net repressive effect. These observations suggest that some of the uAUG sequences are miRNA-specific and functional target sites.

4.3.3 KLF genes are probable 5'-UTR miRNA targets

Kruppel-like factors (KLFs) are transcriptional regulators that contain a characteristic zinc-finger domain and are known to play a role in differentiation and other cellular events (Bieker 2001; Black et al. 2001). There are as many as 15 members in this family, seven of them containing at least one uAUG. Using the criteria set above we identified 7-mer matches between uAUG-containing sequences and miRNAs in all seven of these genes (**Table 4.4**). Two of these, *KLF9* and *KLF13*, also called *BTEB1* and *RFLAT-1* respectively, are known to be translationally regulated by uAUGs in their 5'-UTRs (Imataka et al. 1994; Nikolcheva et al. 2002). The uAUGs in these two genes have been

implicated in cell-specific control of protein expression though their respective transcripts are present in many other tissues, suggesting a post-transcriptional mechanism of gene regulation (Imataka et al. 1994; Nikolcheva et al. 2002).

Specifically, protein expression of *KLF9*, whose 5'-UTR contains 10 uAUGs, is limited to brain tissue though its mRNA is expressed ubiquitously (Imataka et al. 1994). The 5'-UTR, particularly the portion containing uAUGs 6 and 7, suppressed reporter gene translation in HeLa cells but not in mouse neuroblastoma (N2A) cells (Imataka et al. 1994). This observation was even more intriguing because peptides from the two uORFs starting from uAUG6 and uAUG7 have not been detected (Imataka et al. 1994). Similarly, though *KLF13* mRNA is expressed in multiple tissues, protein expression was only detected in adult spleen and lung tissues (Song et al. 2000). While *KLF13* mRNA levels are constant throughout T-cell activation, KLF13 protein is only expressed later on in the activation process (Nikolcheva et al. 2002). The presence of several uAUGs in its 5'-UTR down-regulated translation of the reporter gene in Jurkat T-cells and, to a lesser degree, in HEK293 cells (Nikolcheva et al. 2002).

We decided to focus our analysis on *KLF9* uAUGs since the effects of wild-type and mutant constructs used to elucidate the roles of uAUGs were demonstrated in both cell-lines relevant to tissue specificity. We extracted uAUG 11-mers from the *KLF9* 5'-UTR sequence used in the experimental study (Imataka et al. 1994) and searched for interactions with both ends of conserved miRNAs. Since the 5'-UTR study for *KLF9* was also done in the mouse neuroblastoma (N2A) cell line, we used both mouse and human miRNAs in the analysis. All uAUGs except uAUG5 and uAUG8 interacted with at least one miRNA (Table 5). The ninth uAUG was predicted to interact with as many as five

miRNAs. Most of these predicted miRNAs are expressed in HeLa cells but not in N2A cells, including those that match uAUG6 and uAUG7. Only *mmu-miR-16* and *mmu-miR-543* were detected in N2A cells.

Regulatory roles of each uAUG/uORF may be studied by mutating one or more of the uAUGs to mitigate repression. In the case of KLF9, mutation of uAUG6 or 7 or both relieved translation repression (Imataka et al. 1994). However, uAUG6 inhibits translation to a greater extent compared to uAUG7, the translation efficiency of the uAUG6 mutant construct being 5 times that of the wild-type construct compared to a two-fold increase for the uAUG7 mutant, based on Imataka et al.'s figure 7 (Imataka et al. 1994). Interestingly, there are five human miRNAs that are predicted to interact with uAUG6, of which two are expressed in the HeLa cell lines and none in N2A cells (Table **4.5 and Appendix C.3**). Only one expressed miRNA, *hsa-miR-31*, is predicted to bind uAUG7. If these two uAUGs are indeed miRNA interaction sites, their mutation should presumably eliminate interactions with the miRNAs predicted in Table 4.5. To test this assumption we repeated the interaction-expression analysis using mutated uAUG sequences that had been shown to relieve translational repression. When mutated, uAUGs implicated in mediation of translation repression in *KLF9* showed fewer predicted interactions with miRNAs (Table 4.5, m6 and m7) compared to wild-type sequences. Moreover, there was little evidence for expression of miRNAs matching mutated uAUG sequences.

4.4 Discussion

Though uAUGs are known to act in post-transcriptional control of gene expression there is no clear account of the mechanism involved when differences in activity of uAUGs exist across cell or tissue types. While studying uAUGs and miRNAs independent of one another, researchers observed that uAUGs affect gene expression by changes to protein levels without a notable change in mRNA levels, a phenomenon that is also a characteristic of one of the mechanisms of miRNA-mediated gene regulation.

Target sites for miRNAs have conventionally been thought to reside on conserved regions of the 3'-UTR and are predicted to bind the seed-region of a miRNA (Lewis et al. 2005). Employing a combination of thermodynamic and sequence-based searches, we found many potential uAUG 5'-UTR sites that are predicted to preferentially bind to the 3'-ends of conserved miRNAs compared to seed regions (or 5'-ends), both ends showing a significant number of interactions. This is in sharp contrast to results which show a lack of an appreciable seed-matches on 5'-UTRs (Xie et al. 2005). Forman *et al.* have also shown *in silico* that a well-conserved miRNA, *let-7*, is predicted to base-pair with the 5'-UTRs through remainder of the miRNA apart from the seed portion (Forman et al. 2008). Based on these observations, we hypothesized that the overlap in function may arise from underlying sequence-specific interactions.

Examining many genes where uAUGs have regulatory properties, we demonstrate here the connection between uAUG-mediated repression and their likelihood as binding sites for conserved miRNAs. miRNA expression data support this link by confirming the presence of miRNAs in cell-lines where reporter translation is affected by uAUGs. Further, we predict that many uAUGs in the *KLF* family of genes are miRNA-binding

sites. Two uAUGs in the well-studied *KLF9* are proven down-regulators of protein expression with regulation observed only in HeLa cells. Many miRNAs likely to interact with these two sequences were found to be expressed in the HeLa and not in N2A cells where regulation was not observed.

Many genes that contain uAUGs are known to be transcription factors (Churbanov et al. 2005). In a very interesting recent report several miRNAs and transcription factors in *C. elegans* were shown to be involved in feedback circuits (Martinez et al. 2008). It is possible that the miRNAs in this study utilize seed matches on the 3'-UTRs while other miRNAs (not necessarily activated by the transcription factors) may bind the 5'-UTRs through either seed or non-seed region matches as means to achieve repression. For instance, we found several uAUGs on the 5'-UTRs of *LIN26* that were predicted to bind miRNAs other than the *miR-43* identified by the authors (data not shown).

Orom *et al.* showed that *miR-10a* binds sequences downstream of a 5'oligopyrimidine tract (5'-TOP) on *RPS16*, a gene encoding a ribosomal protein, to regulate its translation (Orom et al. 2008). This exact binding site on the 5'-UTR was earlier shown to be responsible for conferring cell-specific translational regulation (Avni et al. 1997). Taken together with these findings, our results suggest that miRNAs can interact with uAUG sequences and confer tissue specificity. This would constitute a unifying mechanism of translation repression for miRNAs and uAUGs. We specifically propose that the interaction of miRNAs with uAUGs may impede the progress of the scanning 40S ribosome subunit. Interestingly, primer extension (toeprint) analysis reveals the presence of a 40S ribosomal subunit alone at the start codon on miRNA-repressed

mRNAs (Wang et al. 2008). The same technique also reveals stalling of ribosomes in the vicinity of uAUGs (Gaba et al. 2001; Kwon et al. 2001; Song et al. 2007). Furthermore, Ago2, a member of the Argonaute family of proteins (Peters and Meister 2007; Tolia and Joshua-Tor 2007) and a component of the functional micro-ribonucleoprotein (miRNP) complex, was found to co-sediment with 40S-containing complexes (Wang et al. 2008). These facts indicate that miRNAs associated with miRNPs may recognize uAUG sequences as target sites and prevent translation.

In this chapter we have presented observations that suggest a miRNA role in translational control by uAUG cis-elements on the 5'-UTR. Specifically, we identified many interactions between uAUG sequences and conserved miRNAs to suggest a sequence-specific binding mechanism between these post-transcriptional regulatory factors. We also presented evidence to show that miRNAs possibly to bind uAUGs that inhibit translation of downstream reporters in cells where the miRNAs are expressed, thus explaining differential control. This expands the range of probable miRNA targets to include many endogenous sites on the 5'-UTR.

Our current knowledge has limited us to think of miRNAs and uAUGs as distinct regulatory mechanisms. While distinct functions of miRNAs or uAUGs remain in other contexts, our study unifies them as a single translational repression phenomenon where uAUGs act as miRNA target sites and translation is hindered

* The 46 miRNAs represent conserved miRNAs [§]Only the portion of uAUG11-mer that interacts with the 3'-end of miRNAs without a GU wobble is presented

miRNA*	uAUG-containing motifs [§]
hsa-let-7d	AACUAUG, ACUAUGCAA, CUAUGCAAC
hsa-miR-130a/b	AUGCCCU
hsa-miR-132	GACCAUGGCU
hsa-miR-146a	ACCCAUGG, CCCAUGGAA
hsa-miR-146b-5p	GCCUAUGG, CCUAUGGAA
hsa-miR-194	CCACAUGGA, ACAUGGAG
hsa-miR-199a-3p	ACCAAUGUG
hsa-miR-202	UCCCAUGC, CCCAUGCC
hsa-miR-219-2-3p	ACAGAUGU, CAGAUGUCC, AGAUGUCCA
hsa-miR-297	GCACAUGC
hsa-miR-299-5p	AUGUAUGUGGG
hsa-miR-31	GCUAUGCCA, CUAUGCCAG
hsa-miR-324-5p	ACCAAUGCC, CAAUGCCC
hsa-miR-33a/b	GCAAUGCA, CAAUGCAA, AUGCAAC
hsa-miR-34b	AUGGCAG
hsa-miR-363	ACAGAUGGA, AGAUGGAU, CAGAUGGAU, GAUGGAU
hsa-miR-376b	AACAUGGAUU
hsa-miR-380	AAGAUGUGG, AGAUGUGGA, GAUGUGGA
hsa-miR-431	GCAUGACG, CAUGACGG
hsa-miR-432	CCCAAUGA, CCAAUGAC
hsa-miR-448	AUGGGAC
hsa-miR-450b-3p	AUGGAUGCA, GGAUGCAA
hsa-miR-455-3p	GUAUAUGC, AUAUGCC
hsa-miR-455-5p	CGAUGUAG, GAUGUAGU
hsa-miR-487a	CUGGAUGUC
hsa-miR-487b	GUGGAUGA, UGGAUGAC
hsa-miR-490-3p	CAGCAUGGAG, AGCAUGGAGU
hsa-miR-491-5p	CCUCAUGGAAG
hsa-miR-513b	AUAAAUGACA, AUGACAC
hsa-miR-556-3p	AAAGAUGAGC, AGAUGAGCU
hsa-miR-562	GCAAAUGGU
hsa-miR-580	CCUAAUGA, AUGAUUC
hsa-miR-583	UAAUGGGA, AAUGGGAC
hsa-miR-598	GACGAUGAC, ACGAUGACA
hsa-miR-609	AGAGAUGAG, GAGAUGAGA
hsa-miR-654-3p	GGUGAUGGU
hsa-miR-654-5p	GCACAUG, ACAUGUUCU
hsa-miR-767-3p	AACCAUGGG
hsa-miR-802	AAGGAUGAAU
hsa-miR-887	CGGGAUGG
hsa-miR-889	AAUGGUUG
hsa-miR-890	ACUGAUGC, CUGAUGCC
hsa-miR-942	CACAUGGCC, ACAUGGCCA
hsa-miR-944	UCCGAUG

Table 4.1 MicroRNAs predicted to interact with uAUG-containing motifs

Gene	Evidence showing translational control by uAUG	miRNA expression evidence(s) used for analysis
KLF9/BTEB1	(Imataka et al. 1994)	(Hohjoh and Fukushima 2007; Landgraf et al. 2007; Chen et al. 2008)
KLF13/RFLAT-1	(Nikolcheva et al. 2002)	(Takada et al. 2006; Landgraf et al. 2007; Chen et al. 2008; Lawrie et al. 2008)
MOR	(Song et al. 2007)	(Landgraf et al. 2007; Chen et al. 2008)
СНОР	(Jousse et al. 2001)	(Landgraf et al. 2007; Chen et al. 2008)
MDM2	(Jin et al. 2003)	(Landgraf et al. 2007; Chen et al. 2008)
ADH5/FDH	(Kwon et al. 2001)	(Landgraf et al. 2007; Chen et al. 2008)

Table 4.2 Genes used in uAUG-binding sequence analysis along with references

* Evidence for expression of miRNAs in mouse N2A cells was acquired through personal communication with authors of (Hohjoh and Fukushima 2007).

[†] uAUGs shown in caps. [#] uAUG not present in the GenBank entry but used in reporter constructs (Nikolcheva et al. 2002). [§] Numbers in parentheses indicate the miRNA end predicted to interact. miRNAs in italics indicate matches with one GU wobble.

[‡] Reference for evidence of expression: 1 (Chen et al. 2008), 2 (Landgraf et al. 2007), 3 (Lawrie et al. 2008), and 4 (Takada et al. 2006).

*Expression of the 5p arm of the precursor was detected, but that of 3p was not checked.

Gene		uAUG [†]	Cell line used in experiments	miRNAs predicted to interact [§]	miRNA expression in cell-lines tested [‡]
	1	gcccAUGcucc (1x)		<i>hsa-miR-146a (3')</i> hsa-miR-202 (3')	
MOR	2	ggggAUGcuaa (2x)	HEK293	hsa-miR-324-5p (5') hsa-miR-517b (5')	1 1
	3	aaggAUGcgcc (3x)		hsa-miR-323-5p (3') hsa-miR-324-5p (5') hsa-miR-450b-3p (3')	2
	1	tatcAUGuuaa (1x)		None	
СНОР	2	aaagAUGagcg (6x)	HeLa	hsa-miR-574-3p (5') hsa-miR-556-3p (3')	1,2
	3	gcagAUGugcu (2x)		hsa-miR-219-2-3p (3')	219-5p*
MDM2	1	aaagAUGgagc (3x)	HeI a	hsa-miR-363 (3')	1
	2	tggaAUGaucc (1x)	IICLa	None	
ADH5/FDH	1	gcccAUGccuc (4x)		<i>hsa-miR-146a (3')</i> hsa-miR-202 (3')	
	2	ccggAUGucag (4x)	HeLa	<i>hsa-miR-219-1-3p (3')</i> <i>hsa-miR-219-2-3p (3')</i> hsa-miR-487a (3') hsa-miR-489 (5')	219-5p* 219-5p*
KLF13	1	cacaAUGcgcg#		<i>hsa-miR-323-5p (3')</i> hsa-miR-103 (5') hsa-miR-107 (5') hsa-miR-33a (5') hsa-miR-586 (5')	2 2 3,4
	2	ccccAUGcgcu	Jurkat	hsa-miR-202 (3')	
	3	gcggAUGcgcg		<i>hsa-miR-450b-3p (3')</i> hsa-miR-324-5p (5')	2,3

Table 4.3 Genes containing uAUGs predicted to interact with expressed miRNAs

Table 4.4 uAUGs from members of the KLF family predicted to interact with conserved miRNAs

KLF Gene [§]		uAUG [†]	miRNAs predicted to interact [‡]
<i>KLF6</i> (NM_001300)	1	uugcAUGaaac	hsa-miR-93 (3')
KLF7	1	cuggAUGccuc	hsa-miR-450b-3p (3') hsa-miR-487a (3')
(NM_003709)	2	cuggAUGucug	<i>hsa-miR-450b-3p (3')</i> hsa-miR-487a (3')
	1	cucuAUGauuc	hsa-miR-376a (5') hsa-miR-376b (5') hsa-miR-376c (5')
	2	cuuuAUGuuca	None
KI F8	3	gaggAUGggug	hsa-miR-331-3p (3') hsa-miR-363 (3') hsa-miR-802 (3') hsa-miR-99b (5')
(NM_007250)	4	uuggAUGcuug	hsa-miR-450b-3p (3')
	5	cgcuAUGucag	hsa-miR-31 (3')
	6	cagaAUGgggc	hsa-miR-448 (3') hsa-miR-583 (3') hsa-miR-136 (5')
	7	gagtAUGagcc	hsa-miR-767-3p (5')
	8	cggcAUGaguu	hsa-miR-574-3p (5')
	1	gauuAUGcaau	hsa-let-7d (3') hsa-miR-153 (5')
KLF10	2	agcaAUGgcuc	hsa-miR-160 (5')
(NM_001032282,	3	caucAUGcauu	None
isoloilli aj	4	aagaAUGuuuu	None
	5	uuuaAUGgaaa	None
	1	aucaAUGugac	hsa-miR-199a-3p (3') hsa-miR-23a (5') hsa-miR-23b (5')
KLF12	2	acaaAUGgaug	hsa-miR-136 (5')
(NM_007249)	3	auggAUGaaug	hsa-miR-450b-3p (3') hsa-miR-487b (3') hsa-miR-802 (3')
	4	augaAUGaaua	None

[§] KLF13 and KLF9 are presented along with miRNA expression data in Table 4.3 and 4.5, respectively.
[†] uAUGs are shown in caps.
[‡] Numbers in parentheses indicate the miRNA end predicted to interact. miRNAs in italics indicate matches with one GU wobble.

[§] uAUG shown in caps, mutated sequences prefixed with letter 'm', and mutated positions shown in bold. [†] Three letter species codes (hsa/mmu) are indicated only when one sequence interacts and omitted if both interact. Numbers in parentheses indicate the miRNA end predicted to interact. miRNAs in italics indicate matches with one GU wobble.

‡ Reference for evidence of expression: 1 (Chen et al. 2008), 2 (Landgraf et al. 2007), 3 (Hohjoh and Fukushima 2007)

"AUC [§]		miRNAs predicted to	miRNA expressed in cell- lines tested? [‡]	
	uAUG	interact [†]	HeLa	N2A
1	cauaAUGgggu	hsa-miR-583 (3') hsa-miR-490-3p (3') mmu-miR-490 (3')	1 	
2	aaagAUGuguc	miR-380 (3') hsa-miR-576-5p (3')	1 1	
3	gccaAUGccag	<i>miR-16 (3')</i> hsa-miR-31 (3') miR-324-5p (3')	1,2 1,2 1,2	2,3
4	aaagAUGuguc	miR-380 (3') hsa-miR-576-5p (3')	1 1	
5	uuaaAUGucag	None		
6	cgugAUGggau	miR-448 (3') hsa-miR-583 (3') hsa-miR-609 (3') miR-654-3p (3') hsa-miR-605 (5') mmu-miR-325 (3')	 1 1 	
m6	cgugA A Gggau	hsa-miR-491-3p (3') miR-188-5p (5') hsa-miR-211 (3') hsa-miR-520h (3')	1 	
7	gagaAUGccgg	hsa-miR-31 (3')	1,2	
m7	gagaA A Gccgg	None		
8	gtgaAUGuccu	None		
9	guggAUGcugc	hsa-miR-450b-3p (3') hsa-miR-487b (3') miR-103 (5') miR-107 (5') miR-338-3p (5') mmu-miR-376b (3') mmu-miR-450a-3p (3')	 1 1,2 	3
10	aaagAUGaggg	hsa-miR-556-3p (3'), hsa-miR-609 (3')	1	

Table 4.5 KLF9 uAUGs predicted to interact with miRNAs in HeLa cells

Figure 4.1 Number of uAUGs in 5'-UTRs and their conservation. (A) Distribution of uAUGs in human 5'-UTR sequences. (B) Fraction of uAUG-containing n-mer sequences conserved in human and mouse 5'-UTRs.

Figure 4.2 Interaction of miRNAs with uAUG sequences. Each predicted interaction is characterized by a 7-mer consecutive match between the indicated half of mature miRNA (5p and 3p for the 5'- and 3'-end respectively) and uAUG sequence with $\Delta G37 \leq -14$ kcal mol-1. Closed bars represent actual counts and open bars represent average number of counts over 1000 repetitions of miRNA shuffling. Error bars represent the standard deviations. Significant outcomes are indicated with the corresponding p-values (**A**, **B**) Number of interactions between uAUG sequences (4009 in total) and conserved and non-conserved miRNAs (471 and 206 in total respectively) without GU wobbles (**A**) and with at most one GU wobble (**B**). (**C**, **D**) Number of interactions between conserved miRNAs and uAUG sequences (2935 conserved and 1074 non-conserved) without GU wobbles (**C**) and with at most one GU wobble (**D**).

Chapter 5

Conclusions

5.1 Summary of work

In this thesis we have examined some outstanding challenges in the field of microRNA biology, provided techniques to overcome them and demonstrated the usefulness of these novel methods. Here, we provide a synopsis of the contributions by this thesis.

Many miRNAs have been grouped into families based on sequence homology, one being no different than another in the family but for one or two nucleotides. We used the example of the *let-7* family of miRNAs to demonstrate how conventional microarray probes designed to detect these sequences fail to distinguish them. Leveraging a novel base change strategy we provided a method to eliminate cross-hybridizations between similar sequences while creating a uniform melting temperature profile. The base-change strategy takes advantage of the changes in free energies of hybridization and in melting temperatures as dictated by the nearest-neighbour thermodynamics model. These changes are then utilized in the optimization process to generate one or more probes for a given mature miRNA.

Although conservation may signify a probable functional role the opposite does not necessarily hold true. Our work exemplifies this point in case with regards to miRNA targets. Using a combination of thermodynamic and sequence-based searches we showed

that the 3'-end participates in targeting 5'-UTR sites that are not conserved. We validated the hypothesis by using *AXIN2*, a gene part of the *Wnt* signaling pathway, containing a non-conserved 5'-UTR site and three conserved sites on the 3'-UTR, both of which are functional sites for *hsa-miR-34a*. Screening for targets that contain both UTR sites can reduce the set of probable biological targets.

Upstream AUGs are regulatory elements that are known to repress protein translation, with several mechanisms being proposed for their action. However, there is no explanation for how certain AUGs can confer tissue-specific expression of the protein. Utilizing data from sequence analysis and from miRNA expression in various cell types we provide evidence to show that the 3'-ends of miRNAs preferentially interact with the uAUGs and that the repressive action of uAUGs is correlated with the expression of miRNAs that bind them. We propose that miRNAs are responsible for cell-specific action of uAUGs by preventing the progress of a scanning ribosome.

5.2 Significance and impact

The methods developed in this thesis together with results generated can potentially influence the field of miRNA biology in a positive manner. It is evident that our strategy for designing miRNA probes is superior to probes conventionally designed with perfectly-matched sequences (Lee et al. 2008). Not only can ProDeG-designed probes be used for microarray experiments but also for *in situ* hybridization experiments to observe spatial expression of miRNAs, information which microarray experiments lose. Other methods developed for *in situ* probes involve using locked-nucleic acids for increasing specificity. However, this strategy requires adjustment of experimental conditions for

LNA-incorporated probes with different melting temperatures. In combination with the use of tetramethyl ammonium chloride (TMAC), as done in an earlier study (Deo et al. 2006) for highly specific wash conditions, our strategy might be able to generate more improved results.

The base-change strategy can also be used to design probes for DNA oligonucleotide microarrays that are used to detect gene expression. Lee *et al.* established specific guidelines to incorporate changes in probe sequences. These guidelines were based on the effects of base changes to melting temperatures as a function of length of probes, position and nature of mismatches. Using these rules one can reduce the search space for candidate probes and eventually distinguish similar sequences from a family of closely related genes. Being able to correctly detect expression of coding or non-coding transcripts in a particular cell-line, tissue or sample affects the inferences that are made downstream during miRNA-target analysis, especially with respect to correlation studies between miRNA and gene expression. Errors associated with expression data are propagated down the analysis pipeline that is used to predict possible targets that are regulated.

In tackling the two-part problem, this thesis also studied aspects of miRNA targeting that, so far, have not been explored. Pan-genomic conservation has been used as a determinant in studying seed-match sites on the 3'-UTR. This strategy showed very few seed-matches on 5'-UTRs and coding regions of a miRNA. Employing conservation might be a convenient method to reduce search space of possible target sites complementary to a stretch of 6-7 nucleotides on the seed region of a miRNA. The drawback, however, is that it eliminates species-specific interactions between miRNAs

and target sites. In other words, are there sites that are specific to one species and not others?

Our studies revealed many endogenous sites on the 5'-UTR that possibly interact with 3'-ends of miRNAs. This was true of 5'-UTR sites that are conserved across multiple species. What is even more interesting, however, is the significant number of interactions with 3'-ends of miRNAs when we considered sites that are not conserved and are enriched in human sequences. In the absence of 3'-UTR, *in vitro* experiments in Chapter 3 showed that it is possible that sites on the 5'-UTR may contribute towards targeting by binding the 3'-end of the miRNA. If this is the case, it seems that current prediction strategies that use conserved 3'-UTR regions as perceived target sits might be grossly underestimating the number of genes that are under regulatory control by miRNAs.

When studying a small portion (~1%) of the human genome researchers observed that only 40% of constrained sequences mapped back to protein-coding loci and their associated UTR sequences (Birney et al. 2007). Relevant to this discussion some of the other intriguing results from their work are: 1) 5'-UTRs are more divergent, an observation that is thought to reflect positive selection and 2) a large fraction of experimentally characterized functional elements shows no evolutionary constraint at the sequence level. The authors hypothesize functional conservation of non-orthologous sequences. In keeping with the results obtained and the hypothesis, it is plausible that non-orthologous sites on the 5'-UTR are functional. It will be interesting to study the abundance of sites on both UTRs and understand under what circumstances they are functional.

As a special case, we identified many upstream AUGs that may be involved in binding the 3'-ends of miRNAs and cause cell- or tissue-specific control of translation (Chapter 4). This finding shares striking similarity with a result from the study by Orom *et al.* where *miR-10a* binds a region of the 5'-UTR of *RPS16* that was earlier found to confer cell-type specific regulation of translation (Avni et al. 1997; Orom et al. 2008). Using Orom *et al*'s strategy of crosslinking miRNAs by UV light will shed light on binding sites and will help determine if miRNA-uAUG interactions occur as hypothesized. Majority of the genes that harbour uAUGs on 5'-UTRs are transcription factors (Churbanov et al. 2005). A recent report shows a network of miRNAs and transcription factors in *C. elegans* involved in a negative feedback mechanism (Martinez et al. 2008). Though this study primarily considered 3'-UTR sites predicted by other programs, it is possible that a different set of miRNAs might be involved in binding the 5'-UTR uAUGs.

Finally, over-expression or inhibition of miRNAs followed by microarray analysis has revealed hundreds of genes that are whose mRNA levels are regulated (Krutzfeldt et al. 2005; Lim et al. 2005). However, not all these genes may be direct miRNA targets containing seed-match sites on the 3'-UTR. Some possible scenarios are: 1) direct targets of miRNAs (regulated at the protein or mRNA level) may regulate other genes downstream which, therefore, appear differentially expressed, and 2) sites on the 5'-UTR could act independently or in conjunction with 3'-UTR sites to cause differential mRNA expression. The contribution of 5'-UTR sites may be further explored, perhaps by using an unbiased tagging method (Orom et al. 2008), to understand if the attribution in the 2nd scenario is valid. Further experimentation of sites on the 5'-UTR might also shed light on

the mechanistic differences of miRNA-mediated repression that currently are not fully understood.

One salient feature of the methods that we have used involves considering thermodynamics of nucleic acid binding. In some cases, we also allow G:U wobbles in the hybridizations even though they are not the most optimal in terms of free energy changes unlike Watson-Crick pairs. Stability is usually related to structure which in turn is related to function. However, it may not be that stability needs be 'extremized' for function. For instance, single molecule experiments show that catalytic activity of DNA polymerase depends on the tension of DNA; any lower or higher than 6 pN affects the enzyme's activity (Wuite et al. 2000; Haynie 2001). Considering G:U wobbles may allow for flexibility that might be necessary for protein complexes associated with miRNA and mRNA duplexes to perform their functions.

Our contributions in this thesis will, no doubt, help further discoveries in the field of miRNAs and pave the way for their application in therapeutics, changing the landscape of medicine.

5.3 Future work

Though the first miRNA was discovered more than 20 years ago, bulk of the research in miRNA biology has taken place in just over 5 years. The interest that this field has garnered in such a short span of time indicates that its impact cannot be underestimated. This thesis has made important contributions to the field but our curiosity knows no bounds. Some of the areas that we wish to explore for future research include but are not limited to:

- Design and execution of experiments to test our hypothesis that unifies uAUGs and miRNAs. Validation of this hypothesis should bring us one step closer to understanding miRNA function.
- Develop machine-learning techniques to include *a priori* information and increase confidence in target predictions
- Understanding how miRNAs have evolved across species and how the process has had an effect on target site evolution.
- Use work done in this thesis and incorporate miRNA and gene expression data to build gene-miRNA regulatory networks. Incorporating high quality data from next-generation sequencing methods should produce better results.

Appendices

Appendix A

Table A.1 ProDeG probes for cDNA samples of mature miRNAs along with respective cross-hybridization(s)

Target microRNA	Probe sequence ¹	microRNA name	Target and Non-target sequence(s) ¹	T _m		
	Targets and non-targets differ by one or two bases at ends					
mi R-17-5p	CAAAGTaCTTACAGTtCAGGTAGT	mi R-17-5p mi R-106a	ACTACCTGCACTGTAAGCACTTTG GCTACCTGCACTGTAAGCACTTTT	57 54		
mi R-106a	AAAAGTcCTTACAGTcCAGGTAGC	mi R-106a mi R-17-5p	GCTACCTGCACTGTAAGCACTTTT ACTACCTGCACTGTAAGCACTTTG	58 55		
mi R-449	TGGC t GTGTATTGTTA c CTGGT	mi R-449 mi R-449b	ACCAGCTAACAATACACTGCCA GCCAGCTAACAATACACTGCCT	57 55		
mi R-449b	AGGCAaTcTATTGTTAGCTGGC	mi R-449b mi R-449	GCCAGCTAACAATACACTGCCT ACCAGCTAACAATACACTGCCA	57 55		
miR-517a	ATCGT t CATCCCTTTAGA a TGTT	mi R-517a mi R-517b	AACACTCTAAAGGGATGCACGAT AACACTCTAAAGGGATGCACGA	57 57		
		mi R-517b	AACACTCTAAAGGGATGCACGA	57		

mi R-517b ²	TCGTG a ATCCCTTTA t AGTGTT	mi R-517a	AACACTCTAAAGGGATGCACGA <u>T</u>	56
		mi R-128a	AAAAGAGACCGGTTCACTGTGA	57
MI R-128a	TCACAGIGAAC aa GICICIIII	mi R-128b	G AAAGAGACCGGTTCACTGTGA	56
		mi R-128b	GAAAGAGACCGGTTCACTGTGA	57
mi R-1280	TCACAGIGAAC at GICICIIIC	mi R-128a	A AAAGAGACCGGTTCACTGTGA	56
		mi R-133a	ACAGCTGGTTGAAGGGGACCAA	60
mi R-133a	TIGCILLLIILAALLATLIGI	mi R-133b	TAGCTGGTTGAAGGGGACCAA	56
mi D 122b		mi R-133b	TAGCTGGTTGAAGGGGACCAA	59
III K-1330	TIGUICCUTTCALCCCGUTA	mi R-133a	<u>A</u>C AGCTGGTTGAAGGGGACCAA	60
		mi R-520c	AACCCTCTAAAAGGAAGCACTTT	60
	A t AGTGCTTCCTTTTAGA a GGTT	mi R-520f	AACCCTCTAAAAGGAAGCACTT	60
mi R-520c		mi R-520b	CCCTCTAAAAGGAAGCACTTT	58
		mi R-526b*	G CCTCTAAAAGGAAGCACTTT	58
		mi R-520f	AACCCTCTAAAAGGAAGCACTT	60
		mi R-520c	AACCCTCTAAAAGGAAGCACTT <u>T</u>	60
mi R-520t ²	tAGIGCIICCIIIIAGAaGGII	mi R-520b	CCCTCTAAAAGGAAGCACTT <u>T</u>	58
		mi R-526b*	G CCTCTAAAAGGAAGCACTT <u>T</u>	58
		mi R-520b	CCCTCTAAAAGGAAGCACTTT	60

		mi R-520c	AACCCTCTAAAAGGAAGCACTTT	61
mi R-520b ²	AAAGTGCTTCCTTTTA a AGGG	mi R-526b*	G CCTCTAAAAGGAAGCACTTT	59
		mi R-520f	AACCCTCTAAAAGGAAGCACTT	61
		mi R-520e	CCCTC A AAAAGGAAGCACTTT	56
		mi R-526b*	GCCTCTAAAAGGAAGCACTTT	59
mi D 5266*		mi R-520c	AACCCTCTAAAAGGAAGCACTTT	56
	AAAGTaCITCCTTTTAGAGGC	mi R-520b	C CCTCTAAAAGGAAGCACTTT	56
		mi R-520f	AACCCTCTAAAAGGAAGCACTT	55
		mi R-520h	ACTCTAAAGGGAAGCACTTTGT	59
mi R-520h ²	AC g AAGTGCTTCCC c TTAGAGT	mi R-520g	ACACTCTAAAGGGAAGCACTTTGT	60
		mi R-519d	ACACTCTAAAGGGAGGCACTTTG	54
		mi R-520g	ACACTCTAAAGGGAAGCACTTTGT	60
mi R-520g	ACAAAGT t CTTCCCTTT c GAGTGT	mi R-520h	ACTCTAAAGGGAAGCACTTTGT	56
		mi R-519d	ACACTCTAAAGGGA G GCACTTTG	54
mi D 519c		mi R-518c	CACTCTAAAGAGAAGCGCTTTG	57
	CAAAGUGUCTUTUTTCGAGTG	miR-518f	TC CTCTAAAGAGAAGCGCTTT	52
miD E10f		miR-518f	TCCTCTAAAGAGAAGCGCTTT	58
	AAALCGUTTUTUTUTAGUGGA	mi R-518c	CA CTCTAAAGAGAAGCGCTTT <u>G</u>	54

mi R-518f*	CTCTAGAcGGAAGCAgTTTCTCT	mi R-518f* mi R-526a	AGAGAAAGTGCTTCCCTCTAGAG AGAAAGTGCTTCCCTCTAGAG	57 54
mi R-526a²	CTCTAGAG a GAAGCACTTTCT	mi R-526a mi R-518f* mi R-518c* mi R-526b	AGAAAGTGCTTCCCTCTAGAG <u>AG</u> AGAAAGTGCTTCCCTCTAGAG <u>C</u> AGAAAGTGCTTCCCTCCAGAGA <u>AAC</u> AGAAAGTGCTTCCCTC A AGAG	59 60 55 55
	Targets and non-targets differ b	oy one or two bases	at positions near chain end	
mi R-103	AGCA t CATT c TACAGGGCTATGA	mi R-103 mi R-107	TCATAGCCCTGTACAATGCTGCT T G ATAGCCCTGTACAATGCTGCT	57 53
mi R-107	AGCAtCATTcTACAGGGCTATCA	mi R-107 mi R-103	TGATAGCCCTGTACAATGCTGCT T C ATAGCCCTGTACAATGCTGCT	57 53
mi R-215	ATGACCTATGgATTGACgGAC	mi R-215 mi R-192	GTCTGTCAATTCATAGGTCAT G G CTGTCAATTCATAGGTCA G	57 54
mi R-376b	ATCATAGgGGAAAATgCATGTT	mi R-376b mi R-376a	AACATGGATTTTCCTCTATGAT AC G TGGATTTTCCTCTATGAT	57 53
mi R-520e	AAAGTGCTTCCaTTgTGAGGG	mi R-520e mi R-520c	CCCTCAAAAAGGAAGCACTTT <u>AA</u> CCCTC T AAAAGGAAGCACTTT	59 53
		mi R-520f	AACCCTCTAAAAGGAAGCACTT	52
------------	---	---------------------	---	----
mi R-527		mi R-527	AGAAAGGGCTTCCCTTTGCAG	62
iiii (027		mi R-520d*	<u>C</u> AGAAAGGGCTTCCCTTTG T AG <u>A</u>	57
mi P_18a	ΤΑΛΟΩΤΟΤΑΩΤΟΤΑΟΤΟΟΟΑΟΤΑ	miR-18a	TATCTGCACTAGATGCACCTTA	60
III K-10a	TAGUTUGATA	mi R-18b	TA A CTGCACTAGATGCACCTTA	58
miD 19h		miR-18b	TAACTGCACTAGATGCACCTTA	60
IIII K-100		miR-18a	TA T CTGCACTAGATGCACCTTA	57
mi D 22h	ATCACAgTGCCAGaGATTACC	miR-23b	GGTAATCCCTGGCAATGTGAT	58
IIII K-230		mi R-23a	GG A AATCCCTGGCAATGTGAT	52
mi D 27h		miR-27b	GCAGAACTTAGCCACTGTGAA	57
IIII K-270		miR-27a	GC G GAACTTAGCCACTGTGAA	53
	Non-target sequence and	probe pair contains	interior G-U wobble	
		mi R-20a	CTACCTGCACTATAAGCACTTTA	64
mi R_20a	TAA t GTGCTTATAGTGCAGGTAG	mi R-20b	CTACCTGCACTATGAGCACTTT G	61
m n−zoa		mi R-106a	<u>G</u> CTACCTGCACTGTAAGCACTTT	63
		mi R-17-5p	<u>A</u> CTACCTGCACT G TAAGCACTTT G	63
mi R-19a	TGTG t AAATCTATG g AAAACTGA	mi R-19a	TCAGTTTTGCATAGATTTGCACA	59

		mi R-19b	TCAGTTTTGCAT G GATTTGCACA	55
mi R-135a	TATGGCTTTTTATT a CTA g GTGA	mi R-135a mi R-135b	TCACATAGGAATAAAAAGCCATA CACATAGGAAT G AAAAGCCATA	57 53
mi R-30a-5p	T a TAAACATCCTCGACT a GAAG	mi R-30a-5p mi R-30d	CTTCCAGTCGAGGATGTTTACA CTTCCAGTCG G GGATGTTTACA	57 54
mi R-30e-5p	g GTAAAC c TCCTTGACTGGA	mi R-30e-5p mi R-30a-5p	TCCAGTCAAGGATGTTTACA <u>CT</u> TCCAGTC G AGGATGTTTACA	57 53
mi R-517c	ATCGTGCATCCTTTT t GA c TGT	mi R-517c mi R-517a	ACACTCTAAAAGGATGCACGAT <u>A</u> ACACTCTAAA G GGATGCACGAT	58 52
mi R-519e	AAAtTGCCTCCTTTTAGtGTGT	mi R-519e mi R-519d	ACACTCTAAAAGGAGGCACTTT ACACTCTAAA G GGAGGCACTTT <u>G</u>	58 52
mi R-29c	T t GCACCATTTGAAATCGGT	mi R-29c mi R-29a mi R-29b	ACCGATTTCAAATGGTGCTA <u>A</u> ACCGATTTCA G ATGGTGCTA <u>AAC</u> AC T GATTTCAAATGGTGCTA	66 62 60

¹ all sequences are shown from 5' to 3' direction. ² miRNAs that are shorter than and identical to another miRNA as shown.

Appendix B

miRNA	5' UTR Motif ¹	3' UTR Motif ¹
hsa-let-7i	GGCGGCAC (0, 48)	CTACCTCA (139, 263),
		ACTACCTC (63, 160),
		TTACCTCA (99, 262),
		GCTACCTC (48, 152),
		ATTACCTC (40, 156)
hsa-miR-16	GCCAGTGT (1, 53)	TGCTGCTA (124, 380)
hsa-miR-17	GCCTGCAC (0, 66), CCTGCACT	AGCACTTT (190, 601).
	(1, 63)	GCACTTTG (119, 398),
		AAGCACTT (123, 483),
		GGCACTTT (64, 276)
hsa-miR-18b	GACTGCGC (0, 54)	GTGCCTTA (147, 271),
		GCACTTTA (193, 405),
		TGCACTTT (244, 596),
		GCACTTTG (119, 398),
		ATGCACTT (82, 302)
hsa-miR-20a	GCCTGCAC (0, 66), CCTGCACT	GCACTTTA (193, 405),
	(1, 63)	AGCACTTT (190, 601),
		AAGCACTT (123, 483),
		GGCACTTT (64, 276)
hsa-miR-20b/93	GCCTGCAC (0, 66), CCTGCACT	AGCACTTT (190, 601),
	(1, 63)	GCACTTTG (119, 398),
		GGCACTTT (64, 276)
hsa-miR-25	TCAGGCCG (0, 37),	AGTGCAAT (90, 273),
	CGGGCTGA (1, 69),	GGTGCAAT (33, 116),
	GACTGAGA (1, 57),	AAGTGCAA (81, 306),
	GACCGGGGG (1, 50)	GTGCAATG (46, 183)
hsa-miR-93	GCCTGCAC (0, 66),	AGCACTTT (190, 601),
		GCACTTTG (119, 398),
		GGCACTTT (64, 276)
hsa-miR-106a	GCCTGCAC (0, 66), CCTGCACT	AGCACTTT (190, 601),
	(1, 63)	AAGCACTT (123, 483),
		GGCACTTT (64, 276)
hsa-miR-125a-3p	CTCCTAGG (0, 47)	GCCTTACT (36, 172)
hsa-miR-128	AGGGGACC (1, 64),	CACTGTGA (132, 414),
	GAGACCGG (1, 49)	TACTGTGA (99, 354)
hsa-miR-133b	TGGCTGGT (1, 51)	GGGACCAA (44, 214)
hsa-miR-139-5p	TGGGGGCA (1, 63)	GTACTGTA (136, 338),
1		TGTACTGT (129, 506),
		TGCACTGT (90, 418),
		GTACTGTG (55, 265)
hsa-miR-196a/b	CCCAGCGA (1, 57)	AACTACCT (43, 194)

Table B.1 Conserved miRNAs predicted to target both 5' and 3' UTR 8-mers.

hsa-miR-199a-3p	GCCAGTGT (1, 53)	ACTACTGT (59, 268)
hsa-miR-199b-3p	GCCAGTGT (1, 53)	ACTACTGT (59, 268)
hsa-miR-202	TCTGTGCC (1, 74)	TATACCTC (35, 161)
hsa-miR-330-5p	CTGAGACA (1, 60)	CTCAGGGA (129, 451)
hsa-miR-362-5p	CTTGCACC (0, 37)	TTCAGGGA (81, 395)
hsa-miR-373	GCCCTGAA (0, 56),	AGCACTTT (190, 601),
	CCCCAAGA (1, 49)	AAGCACTT (123, 483),
		GGCACTTT (64, 276)
hsa-miR-503	TGCGGGAC (0, 47),	TGCTGCTA (124, 380),
	AGAGCTGT (1, 54)	TTGCTGCT (145, 664)
hsa-miR-506	TGCTCGGG (0,45)	GTGCCTTA (147, 271),
		GTGCCTTG (133, 355),
		GGTGCCTT (82, 281),
		GGTGCTTT (85, 340)
hsa-miR-509-3p	CCCGCAGA (0, 55),	GTGCCAAT (40, 142)
	ACTCACAG (0, 46),	
	TCTACAGA (0, 38),	
hsa-miR-517a/b	GCGCTCTG (1, 61)	GIGCAIGA (38, 170)
hsa-miR-517c	GCGCTCTG (1, 61)	GTGCATGA (38, 170)
hsa-miR-519a	GCGCTCTG (1, 61)	TGCACTTT (244, 596),
		ATGCACTT (82, 302)
hsa-miR-520a-3p	AGTCCAGA (1, 52)	AAGCACTT (123, 483)
hsa-miR-520d-3p	ACCCACCA (0, 38),	AAGCACTT (123, 483)
	CTCGCCGA (0, 37),	
	CGCCAGAG (1, 59)	
hsa-miR-520g	GCGCTCTG (1, 61)	AGCACTTT (190, 601),
		GCACTTTG (119, 398),
		AAGCACTT (123, 483),
1		GGCACIII (64, 2/6)
hsa-miR-524-3p	CCGGAGGG (1, 90)	GIGCCIII (179, 482), GTCCCTTC (107, 261)
		A G T G C C T T (227, 472)
		GGTGCCTT(227, 473),
		AAGTGCCT (196, 430)
hsa_miR_608	GCTGTCCT (0, 70), CGGGGTTG	ACTACCTC (63, 160)
nsu-mill-000	(0 41)	CTACCTCT (96, 284)
	(0, 11)	GCTACCTC (48, 152)
hsa-miR-613	GGCGAAGG (0. 64).	ACATTCCT (85, 405)
nsu mil 015	GGCAAGGG (1, 56)	
hsa-miR-650	CTGAGGGT (0, 67).	GTTGCCTT (66, 319)
	TCTGAGGG (1, 75)	×))
hsa-miR-652	GCGACCCT (0, 46),	TGGTGCTA (116, 272),
	CGACCCTG (0, 44)	GGTGCTAT (59, 167),
		GTGCCATT (61, 277)
hsa-miR-661	TGCGGGCC (0, 59),	CTCAGGTA (39, 156),
	CGCGTGGG (0, 43),	ACTCAGGT (37, 175)
	CGTGGGCC (1, 61)	

hsa-miR-770-5p	GGTTCTGA (0, 44), CTTGGCGC	TGGTGCTG (118, 525)
*	(1, 52), CCTTGGCA (1, 52)	
hsa-miR-885-3p	GTCCGCTG (0, 38), TCCACTGC	TTGCTGCT (145, 664)
	(1, 59), CCACTGCA (1, 58)	

¹Numbers within parentheses indicate conserved instances and number of human occurrences

B.1 Sequences used in *hsa-miR-34a* and AXIN2 assay

AXIN2 5'-UTR (NM_004655). Sequence cloned upstream of the luciferase coding region is shown in italics with predicted overlapping binding sites for the 3'-end of miR-34a shown in bold blue italics.

AXIN2 3'-UTR (NM_004655). Seed match sites are shown in bold underlined red and

3'-end interaction sites in blue italics. Seed match site with no GU wobble is in caps.

gccctggggtctggctttggtgaactgttggagcccgaagctcttgtgaactgtcttggctgtga gcaactgcgacaaaacattttgaaggaaaattaaaccaatgaagaagacaaagtctaaggaagaa t*cggccagt*gggccttcgggagggcggggggggggggggttgattttcatgattcatgagctgggtactg actgagataagaaaagcctgaactatttattaaaaacatgaccactcttggctattgaagatgct gcctgtatttgagagACTGCCAtacataatatatgacttcctagggatctgaaatccataaacta agagaaactgtgtatagcttacctgaacaggaatccttactgatatttatagaacagttgatttc ccccatccccagtttatggatatgctgctttaaacttggaaggggggagacaggaagttttaattg ttctgactaaacttaggagttgagctaggagtgcgttcatggtttcttcactaacagaggaatta ggatgatctgttgcagaggggagggggggagccctgctccttcgggccccaggttgatcctgtg actgaggctccccctcatgtagcctccccaggcccagggccctgaggcctgctagaatcactgcc gctgtgctttcgtggaaatgacagttccttgttttttttgtttctgtttttgttttacattagtc attggaccaccactectaccocctgccccacaaagaaatgaacagttgtagggagac ccaqcaqcacctttcctccacacaccttcattttqatqttcqqqtttttqtqttaaqttaatctq tacattctgtttgccattgttacttgtactatacatctgtatatagtgtacggcaaaagagtatt aatccactatctctagtgcttgactttaaatcagtacagtacctgtacctgcacggtcacccgct ccqtqtqtcqccctatattqaqqqctcaaqctttcccttqttttttqaaaqqqqtttatqtataa atatattttatgcctttttattacaagtcttgtactcaatgacttttgtcatgacattttgttct acttatactgtaaattatgcattataaagagttcatttaaggaaaattacttggtacaataatta ttgtaattaagagatgtagcctttattaaaattttatattttcaaaa

B.2 Multiple alignments of AXIN2 UTRs

B.2.1 Alignment of Axin2 5'-UTR sequences from 4 mammalian species (CLUSTAL

2.0.8 multiple sequence alignment). Predicted 5'-UTR target sites for the 3'-end of miR-

34a are shown in bold blue italics.

Human Dog Mouse Rat	CGGCTGTGATTGGCGCGGGGATCACTGGCTCCGCGAGC	40
	GCGCGGCGGGATCACTGGCTCCCCGAGCCCGGCCCGGGGGGA GTCGGCTGGAGCCGGCTG C	60
Human	CTGGCCCGGGGGGAGTCGGCTGGAGCCGGCTGCGCTTGATAAGGTCCTGGCAACTCAGTA	100
Mouse Rat	GCTTTGATAAGGTCCTGGCAACTCAGTAACAGCCCAAGAACCGGGAAATAAAAATAAGCA	120
Human	ACAGCCCGAGAGCCGGGAAATAAAAATAACCCCTCAGAGCGATGGATTTCGGGGCCGCCC	160
Mouse Rat	GCCGTTCGCGATGGATTTCGGGGCCACCCGGAGGCCGAGGCGTCCGCCTCCCCAAAGGAG	180
Human	GGCGGCCGAGGCGCCGCGAAGGCCCTGCTGTAAAAGAGAGGAGGTTCAGATGAGCCCC	220
Mouse Rat	AGCTTTGCTGTAAAAGAGAGGAGGCTCACATGAGCCCCTGCTGACTTAAGAGAGAG	240
Human Dog Mouse Rat	TGCTGACTTGAGAGAGACAGAGAGACCACGCCGATTGCTGAGAGGAACTGGAAGAAGAAA GAGAGAGAAAAGAGAGAGACCACGCTGATTGCTGAGAGGAACTGGGGGAAGGGA CCGATTGCTGAGAGGAACTGGAAGAAGAAGAAGAAGAGGAGGAGGGAAAA-AAAGCAAAACA TGAGAGGAACTGGAAGAAGAAGAAGAAGAGGAGGAAAAAAA-AAAGCAAAACA ***** * * * * * * * * * * * * * * * *	280 51 299 51
Human Dog Mouse Rat	AATTCCCAGACTCAGTGGGAAGAGCTCCCTCACC 314 ACAAACAAACTCCGTCGCGAAGAACTCCCTCACC 85 AAATCCAAACTCAGT-GAGACGCTCTCCCTCACC 332 AAACCCAAACTCAGT-GAGACGCTCTCCCTCACC 84 * * * * * * * * * *	

B.2.2 Alignment of Axin2 3'-UTR sequences from 4 mammalian species (CLUSTAL

2.0.8 multiple sequence alignment). Predicted seed match sites are shown in bold red and

the 3'-end interaction sites in blue italics.

Human Dog Mouse Rat	GCCCTGGGGTCTGGCTTTGGTGAACTGTTGGAGCCCGAAG GCCTCGGGGGTCGGGCCCCGGCGGACGCGGGGCCACCG CCTTGGCCTCCTCGGCGTGCAACCTGGGCAAGCACCTCGGCGTGCACCATGGAGCCGAAG CCTCGGCCTCCGCCGCGTGCA-CCTCCGCGTGCACCACGGAGCCGGAG * * * * * * * * * * * * * * * * *	40 38 60 59
Human Dog Mouse Rat	CTC-TTGTGAACTGTCTTGGCTGTGAGCAACTGCGACAAAACATTTTGAAGGAAAATTAA CCC-GCGCCACCAGCCTGGGCCATGACCGACCGCGACGAGACCTTTTGAAGGAAAACGAA CCCAGAGAC-CCTGTCTCAGGCCTACGCAACAGCCACGAAATATTCTGAAGGAAAATGAA CCCAGAGAGACCTGTCTCAGGCCTACACAACAGCCATGAAATATTTTGAAGGAAAATGAA * * * * * * * * * * * * * * * * * * *	99 97 119 119
Human Dog Mouse Rat	ACCAATGAAGAAGACAAAGTCTAAGGAAGAAT CGGCCAGT GGGCCTTCGGGAGG ACCAATGAAGAAGACAGAGTCTAGGGAAGACTTGGCCACTGGCCACGCGGGGAGGGCGGG ACCAATTAAGAAGACAAAGCCTAGGGAGGGACTGGCGCCTGGGCCTTCAGGAG ACCAATTAAGAAGACAAAGCCTAGGGAGGGACTGGCCCCTGGGCCTTCAGGAG ****** ******** ** *** *** *** *** ***	153 157 172 172
Human Dog Mouse Rat	GCGGGGGGGGGGGGTTGATTTTCATGATTCATGAGC-TGGGTACTGACTGAGATAAGAAAAGC GAGGGGGGGGGGG	212 212 228 227
Human Dog Mouse Rat	CTGAACTATTTATTAAAAACATGACCACTCTTGGCTATTGA AGATGCTGCC TGTATTTGA CTGAACTATTTATTAAAAACATGACCACTCTTGGCTATTGA TGATGCTG ACTGTATTTGA CTGAACTATTTATTCAAAACATGACCACTCTGGGCTATAGA AGATGCTG AGTGTGTGTTTGA CCGAACTATTTATTCAAAACATGACCACTCTGGGCTATAGA AGATGCTG AGTGCTCGA * ********** ************************	272 272 288 285
Human Dog Mouse Rat	GAG ACTGCCA TACATAATATATGACTTCCTAGGGATCTGAAATCCATAAACTAAGAGAAA GAG ACTGCCA TACATAATATATGACTGCCTAGGGATCTGAAATCCATAAACTAAGAGAAA GAG ACTGACA TACATAATAGATGACTTCCTAGGGTTCTGAAATTCATAGACTAAGAGAAA GAG ACTGCCA TACATAATAGATGGCTTCCTAGGGATCTGAAATCCATAGACTAAGAGAAA ******* ********** *** ** ******* ******	332 332 348 345
Human Dog Mouse Rat	-CTGTGTATAGCTTACCTGAACAGGAATCCTTACTGATATTTATAGAACAGTTGATTTCC -CTGTGTATAGCTTACCTGAACAGGAGTCCTTACTGCTATTTATT	391 391 408 405
Human Dog Mouse Rat	CCCA-TCCCCAGTTTATGGAT- ATGCTGC TTT-AAACTTGGAAG CCCAGCCCCCAGTTTATGGAT- ATGCTGC TTT-AAACACGGAAG CTACCCGCCCTCCCTACCCCAGCCCCAGTTT ATGCTGC TTTTAAACCTGGAAG CTACCCCACTCCCACCCCCAACCCCCAGTTT ATGCTGC TTT-AAACCTGGAAA * * ***** * * ********************	432 433 463 464

Human Dog Mouse Rat	GGGGAGACAGGAAGTTTTAATTGTTCTGACTAAACTTAGGAGTTGAGCTAGGA GGGGAGAGGGGGAAGTTTTAATTGTCCTATCTATCCCAGCTTGGGAGTGGAGCGAGGG TGGGAGTGAGAAGTTTGGATTGCTGTCCACGCTTAGGAGCCAAGCCGGGA TGAGAGAGAGAAGTTTGGTTTGCTGTCTATGCTTAAGAGCCAAGCCGGGA * *** ******* *** ** * * * * * * *** *** ***	485 493 513 514
Human Dog Mouse Rat	GTGCGTTCATGGTTTCTTCACTAACAGAGGAATTATGCTTTGCACTACGTCCCTCCA GCGCGTTAATGATTTCTTCGTTAAGAGGGGAATTATTATGCTTGGCCCTGCATTTCTCCG ATGCATTAATCATTTCTTCGTTAACAGAGGAATCTGCTCTGCATGGCATTTCTCCA ACGCATTAATCATTTCTTCGTTAACAGAGGAATCCGCTCTGCATGGCATCTCTCCCA ** ** ** ** ****** *** ** *****	542 553 569 570
Human Dog Mouse Rat	AGTGAAGACAGACTGTTTTAGACAGACTTTTTTAAAATGGTGCCCTACCATTGACACAT AGTGAGGATAGACTTGTTTAAATGGTGCCCTACCATTAACACAC AGTGAAGACAGGCTTCTTTTTTTTTT	600 597 629 591
Human Dog Mouse Rat	GCAGAAATTGGTGCGTTTTGTTTTTTTTTTTTCCTATGCTGCTCTGTTTTGTCT-TAAAGG GC-GAAATTGGTGCATTTTTTTTTTTTTTTTTCCCTATGCTGCTCTGTTTTGTCT-TAAAGG GCAGAAATGGGTCACCCCCACCCCACCCCCCCCCC	659 655 689
Human Dog Mouse Rat	TCTTGAGGGTTGACC-ATGTTGCGTCATCATCAACATTTTGGGG-GTTGTGTTGGATGGG TCTTGAGGATTGATTTATGTTGCAACATCACCGCCATTTGGGGCCATCGTGTGGGACTGG ACGTCCTGTGGGTTGGTTGTGACAGCATCTTCACCACTTTGGGG	717 715 733
Human Dog Mouse Rat	ATGATCTGTTGCAGAGGGAGAGGGAGGGAACCCTGCTCCTTCGGGCCCCAGGTTGATCCT ATCCATCGTGAGGGTGGGGGGGGGGGGGGAAGCCTCATTTGGAGGACCCCAGATTAACTCT ACCATCCAGAGTGGGGGGAGTGGGGGGAGACTTCACCCTGGAGCCAAAGGCTA	777 773 784
Human Dog Mouse Rat	GTGACTGAGGCTCCCCCTCATGTAGCCTCCCCAGGCCCAGGGCCCTGAGGCCTGCTAG AACTTCTCTTAACTCCCCACCAAGGCCCCAGTGTCCAGTGCC-TGAGGCCCCCTAG CACCGTACGTGTAGTCCCAGAGCCCGTCAC	835 827 814
Human Dog Mouse Rat	AAT CACTGCCG CT-GTGCTTTCGTGGAAATGACAGTTCCTTGTTTTTTTGTT AACCTTGTAGTTCAACTCGTGCTTGTATCGAAACAACAGTTCCTTGGAGTGTTGGTTG	887 887 867
Human Dog Mouse Rat	TCTGTTTTTGTTTTACATTAGTCATTGGACCACAGCCATTCAGGAACTAC TGGTTGATTTCATTTTTAAATTAGTCTTTGGACCACCACCATTCTGGAAACCACCACCAC TCTCCTTTAAAAATCAGTCTCTAGACTACGGCCATCAGGAATCTAC	937 947 913
Human Dog Mouse Rat	CC-CCTGCCCCACAAAGAAATGAACAGTTGTAGGGAGACCCAGCAGCACC-TTTCCTCCA CCGCTTGCCCTGCAAAGAAGCGGACAGTTGTGGGAAGACCTAGCAGCACCCTTTCCTCCA CCTCGCCCACCTGACCCTGCGAGGACACGGGCACCCAGCAGCACCTCTCCTCTGT	995 1007 968

Human Dog Mouse Rat	CACACCTTCATTTTGATGTTCGGGTTTTTGTGTTTAAGTTAATCTGTACATTCTGTTTGCC GACACCTTCATTTTGACGTTCGGGTTTTTGTGTTTAAGTTAATCTGTACATTCTGTTTGCC TACCTTCCCCTTGGCGATCGCTCGGGTTTGTGTTTGTGTTAAGTTAATCTGTATGTCCTGTCTGCC	1055 1067 1028
Human Dog Mouse Rat	ATTGTTACTTGTACTATACATCTGTATATAGTGTACGGCAAAAGAGTATTAATCCACTAT ATTGTTACCTGTACTATACGTCTGTATATATTGTACGACAGAAGAGTATTAATCCACTAT AGCGTTCCCTGTACTATAGGCCTGTGTATAGTGTAGGGCAGAGCGTTGACCCACTGG	1115 1127 1085
Human Dog Mouse Rat	CTCTAGTGCTTGACTTTA-AATCAGTACAGTACCTGTACCTGCACGGTCACCCGCTCCGT CTCTAGTGCTTGACTTGA	1174 1186 1143
Human Dog Mouse Rat	GTGTCGCCCTATATTGAGGGCTCAAGCTTTCCCTTGTTTTTTGAAAGGGGTTTATG GTGTCGCCCTATATTGAGGGGCTCCAACTTTCCCTTGTTTTTTGAAAGGGGTTTATG CCGTGCGCCGCCCTATATTGAGGGGCTCCAGCTCTCCCTTGGTTTTTGAAAGGGGTTTATG	1230 1242 1203
Human Dog Mouse Rat	TATAAATATATTTTATGCCTTTTTATTACAAGTCTTGT-ACTCAATGACTTTTGTCATGA TATAAATATATTTTATGCCTTTTTATTACAAGTCTTGT-ACTCAATGACTTTTGCCATGG TATAAATATATTTTATGCCTTTTTATTACAAGTCTTGTTACTCAATGACTTTTGTCATGG	1289 1301 1263
Human Dog Mouse Rat	CATTTTGTTCTACTT-ATACTGTAAATTATGCATTATAAAGAGTTCATTTAAGGAAAATT CATTTTGTTCTACTT-ATACTGTAAATTATGCATTATAAAGAGTTCATTTAAGGAAAATT CAGTTTGTTCTACTTTAGACTGTAAATTATGCATTATAAAGAGTTCATTTAAAGAAAACT	1348 1360 1323
Human Dog Mouse Rat	ACTTGGTACAATAATTATTGTAATTAAGAGATGTAGCCTTTATTAAAATTTTATATTTT ACTTGGTACAATAATTATTGTAATTAAGAGATGTAGCCTTTATTAAAATTTTTATATTTT ACTTGGTACAATAATTATTGTAATTAAGAGATGTAGCCTTTATTAAAATTTTATATTTTT	1408 1420 1383
Human Dog Mouse Rat	CAAAA 1413 C 1421 C 1384	

B.3 Sequences used in lin28 assay

lin28, miRNA, and siRNA sequences used in reporter gene assays are shown below. Predicted binding sites and miRNA interaction sites are in bold; mutated sites are in bold small case.

lin28 3UTR with perfectly matched site (3Upm, wild-type sequence)

lin28 3UTR with imperfectly matched site (3Umm)

5'- CACCTACCTCCTCAAATTGCACTCTCAtttATTCTTTTTTTTTCAAATAGAACT- 3'

lin28 5UTR with perfectly matched target site (5Upm)

5'- GTGGTATTGTTGTTCTG**TAagccacA**TAGGTTGTATTCTCTAGTTAACACATAGT- 3'

lin28 5UTR with mismatched site (5Umm, wild-type sequence)

5'- GTGGTATTGTTGTTCTG**TATATTTGA**TAGGTTGTATTCTCTAGTTAACACATAGT- 3'

cel-lin-4 miRNA	5'- UCCCUGAGACCUCAAGUGUGA - 3'
lin4msiRNA	5'- UCCCUGAGACCUgugGcuUgA - 3' (functional strand) 5'- AAGCCACAGGUCUCAGAAGUU - 3' (opposing strand)
hsa-miR-16	5'- UAGCAGCACGUAAAUAUUGGCG - 3'

Appendix C

C.1 GO-term analysis for genes containing targeted uAUGs

C.1.1 Genes containing uAUGs in Table 4.1 (Total 1071)

AICF	ARF6	B4GALT2	C14orf100	CASD1	CITED2	CRYAB
ABCF2	ARHGEF12	BACH2	C14orf147	CASK	CKAP5	CRYGC
ABCG1	ARHGEF9	BAII	C15orf41	CASP8AP2	CLCF1	CSDE1
ACCN1	ARID4A	BAIAP2	C18orf1	CBLL1	CLCN3	CSK
ACTL6B	ARL15	BAIAP2L2	Clorf119	CBX4	CLCN5	CSMD3
ACTR1A	ARL4C	BANF1	Clorf164	CBX6	CLDN23	CSNK1D
ACVR2A	ARL5A	BAP1	Clorf25	CBX7	CLDND1	CSNK2A1
ADC	ARL8A	BARHL1	Clorf27	CBX8	CLIC1	CSNK2A2
ADCK1	ARNTL	BARHL2	Clorf76	CCDC109A	CMTM4	CTDSP1
ADIPOR1	ARPC4	BAT1	C1QL2	CCDC53	CNIH2	CTDSPL2
ADRA1B	ARPC5	BBC3	C20orf24	CCNB2	CNKSR2	CTNNA2
ADRA2C	ASB8	BBX	C20orf67	CCND1	CNOT4	CTNNBIP1
ADRM1	ASCC2	BCL11A	C2orf25	CCNI	CNOT7	CTNND1
AFTPH	ASH1L	BCL11B	C2orf33	CCNJ	CNTN4	CUL5
AGBL5	ASPH	BCL3	C3orf10	CD2AP	CNTN6	CUX1
AHSA1	ATAD2B	BCL6	C4orf18	<i>CD37</i>	COIL	CXorf6
AJAP1	ATF4	BCL7C	C5orf41	CDC2L1	COL1A1	CYBA
AKR1B10	ATF7	BCOR	C5orf5	CDH24	COL3A1	DAB1
ALDOA	ATG5	BDNF	CA10	CDH8	COL4A1	DCTN2
ALX1	ATG9A	BDP1	CABIN1	CDK5RAP3	COLQ	DDEF2
AMD1	ATOH8	BHLHB3	CABYR	CDX1	COPS3	DDX25
AMFR	ATP10A	BHLHB5	CACNA1E	CDYL2	COPS4	DGCR2
AMPH	ATP2A2	BMP2	CACNA1G	CENTA2	CPEB3	DGCR8
ANKFY1	ATP2C1	BMP2K	CACNA2D2	CENTD1	CPSF3	DGKI
ANKH	ATP8A2	BMP6	CACNG3	CFL1	CRABP1	DGKZ
ANKS1A	ATXN1	BMPER	CADM1	CHD2	CRBN	DHCR24
ANP32A	ATXN3	BRD2	CALB2	CHD4	CREB1	DICER1
ANP32B	ATXN7	BRD4	CALU	CHMP7	CREB3L2	DLX1
ANP32E	AZIN1	BTBD10	CAMK2B	CHST11	CREBL2	DLX3
AP1G1	B3GALNT2	BTG1	CAMK2G	CHSY1	CRK	DLX5
ARF1	B3GALT2	C13orf7	CAPRINI	CHUK	CRKRS	DNAJA2
DNAJB12	DOC2A	DOK5	DOK7	DOT1L	DPYSL2	DSCAM
DNAJB5	DOC2B	DOK6	DOLPP1	DPP4	DRP2	DSG1

DTNA	ENAH	FLRT3	GRK1	HOXD9	KCND2	LCE1B
DTX3	ENTPD7	FMO1	GSC	HPCA	KCNH2	LCE1E
DULLARD	EPC1	FMR1	GTF3C2	HR	KCNIP1	LCE3D
DUSP15	EPHA3	FOXA1	GTPBP1	HRB	KCNJ2	LCORL
DUSP16	EPHA4	FOXG1	HAND1	HS2ST1	KCNJ8	LDB1
DUSP6	EPHB2	FOXJ1	HCCA2	HS6ST1	KCNK3	LDB2
DVL3	ERF	FOXJ3	HCN2	HS6ST3	KCNN3	LDLRAP1
DYRK1A	ERGIC3	FOXN3	HDAC2	HSD11B2	KCNN4	LEPROTL1
DYRK1B	ERRF11	FRS2	HDAC4	HSDL1	KCNS2	LGI1
EBF1	ETF1	FRS3	HDAC5	HSP90AB1	KCNS3	LHX5
EDA	ETV1	FURIN	HDGFRP3	ICK	KCTD10	LIN28
EDC4	ETV2	FYN	HEATR3	ID2	KCTD15	LMO1
EEF1D	ETV5	G3BP1	HELZ	ID3	KCTD17	LMO2
EEF1G	EXOC1	GABRB2	HERC4	IHPK1	KHDRBS3	LMO4
EFNA1	EXOC5	GABRG2	HERPUD2	IKZF1	KHK	LOXL1
EFNA3	EXT1	GADD45A	HES1	IL1RAPL1	KIAA0082	LRFN2
EFNA5	EYA1	GALNT7	HEXIM1	IL7	KIAA0427	LRP2
EFNB1	FA2H	GATAD2B	HGS	ILK	KIAA0562	LRRC4
EFTUD2	FAF1	GDF5	HHIP	ING3	KIAA1219	LRRC4C
EGLN2	FAM110B	GGNBP2	HIP1R	INHBA	KIAA1715	LRRTM3
EHBP1	FAM129A	GJB1	HIP2	INHBB	KIF3C	LRRTM4
EIF1	FAM33A	GLIS3	HMBOX1	INPP5A	KIF5B	LTBP1
EIF1B	FAM70A	GNA11	HMG2L1	IPO13	KIT	LUC7L
EIF2S2	FAM98A	GNAI2	HMGB1	IRF2	KITLG	LYAR
EIF3B	FBXL3	GNAI3	HMGB3	<i>IVNS1ABP</i>	KLF12	MAFB
EIF4A2	FBXL4	GNAT1	HNRNPC	JAK1	KLF13	MAGI3
EIF4G2	FBXO42	GNAZ	HNRNPR	JAKMIP2	KLF4	Magmas
EIF4G3	FBXW11	GOLIM4	HNRPAB	JARID2	KLF7	MAML3
EIF4H	FBXW2	GPBP1	HOXA1	JAZF1	KLF9	MAP2K2
EIF5A	FEM1B	<i>GPD1L</i>	HOXA11	JDP2	KLHL10	MAP3K11
EIF5A2	FEN1	GPHN	HOXA3	JMJD1A	KLHL18	MAP3K2
ELAVL1	FEV	GPR26	HOXA4	JMJD1C	KLHL20	MAP3K7IP2
ELAVL2	FEZF2	GPR61	HOXA9	JPH1	KLHL24	MAPK1
ELK3	FGD1	GPR85	HOXB13	JPH4	KLHL28	MAPK10
ELL2	FGD6	GPSM2	HOXB3	JUN	KPNA3	MAPK8IP3
ELOVL1	FGF14	GRIA2	HOXB6	KATNB1	KPNA4	MAPKAP1
ELOVL6	FGF8	GRIA3	HOXC13	KBTBD4	KRTAP4-5	MARCKS
EML5	FGFR1	GRID1	HOXC6	KBTBD8	LAD1	MAST1
EMX2	FIS1	GRIN2A	HOXC8	KCNA4	LASS6	MATR3
ENI	FLII	GRIPAP1	HOXD4	KCNB1	LBX1	MAX

MBNL1MYBL2MBNL2MYBPC1MBOAT2MYC	NRSNI NRXN2 NRXN3 NTF5 NTNG1	PDE7B PDGFA PDGFC PDPK1	PLK3 PLP1 PLSCR3	PSMC4 PSME3 PTEN	RBM18 RBM39
MBNL2MYBPC1MBOAT2MYC	NRXN2 NRXN3 NTF5 NTNG1	PDGFA PDGFC PDPK1	PLP1 PLSCR3	PSME3 PTEN	RBM39
MBOAT2 MYC	NRXN3 NTF5 NTNG1	PDGFC PDPK1	PLSCR3	PTEN	DCINO
	NTF5 NTNG1	PDPK1		11210	RCAN2
MBTDI MYL3	NTNG1		PNKD	PTGES3	REEP1
MBTPS1 MYST2		PDXDC1	PNRC2	PTP4A1	REEP5
MCF2 MYST3	NTRK3	PDZD2	POLR3F	PTPLAD1	RELA
MCRS1 MYST4	NUDT3	PELI2	PORCN	PTPN23	RELL2
MED31 MYT1	NUMBL	PEX11B	POU2F1	PTPRK	REPS2
MED7 NAP1L1	NUS1	PEX5	POU2F2	PUM2	RER1
MEF2C NAT12	NUTF2	PFN1	POU4F2	PVRL4	REV1
MEIS1 NBR1	NXN	PGM5	POU6F2	PYGO2	RFTN2
MEMO1 NCK2	OAZ2	PGRMC1	PPAP2A	RAB10	RGL2
MEN1 NCOA2	ODF2	<i>PH-4</i>	PPAPDC3	RAB13	RHOA
METTL3 NDEL1	OPA3	PHACTR1	PPARGC1A	RAB14	RHOB
MEX3C NDUFAB1	ORMDL2	PHACTR3	PPFIA2	RAB1A	RHOBTB2
MFSD2 NEK11	OTUB1	PHEX	PPM1A	RAB2A	RHOG
MGAT2 NEK6	PACS1	PHF1	PPM1B	RAB31	RIC8B
MGAT3 NELF	PAFAH1B1	PHF10	PPM1D	RAB33A	RICH2
MGAT4B NEUROD6	PAK1	PHF12	PPM1G	RAB35	RLBP1L1
MGC4172 NF1	PAK3	PHF2	PPP1R10	RAB39B	RND3
MIDN NF2	PAPOLG	PHF21A	PPP1R16A	RAB5A	RNF10
MIER1 NFAT5	PARD6A	PHF21B	PPP1R7	RAB6A	RNF126
MINK1 NFATC3	PARK2	PHF23	PPP2CA	RAC1	RNF139
MKRN1 NFATC4	PARP6	PHF3	PPP2CB	RAC3	RNF144A
MLF2 NFE2L1	PARP8	PHOX2A	PPP2R2B	RAD23A	RNF41
MLL5 NFIA	PAX3	PHTF1	PPP2R5E	RAD50	RNPEPL1
MLLT3 NFIB	PAX6	PI4K2A	PPP3CA	RAI1	ROD1
MME NFIX	PBRM1	PIAS1	PPP3CB	RALBP1	RORC
MNT NKD1	PBX1	PIAS3	PPP4C	RALGPS2	RPIA
MORF4L1 NKIRAS2	PBX3	PIAS4	PPP4R1L	RALYL	RPL12
MOSPD1 NKX2-8	PCBP2	PICALM	PRKCA	RANBP9	RPL13
MOSPD3 NLGN3	PCDH7	PIK3CG	PRKCE	RAP2A	RPL21
MPP5 NLK	PCGF1	PIK3R3	PRKD3	RARB	RPL29
MRVI1 NOC3L	PCGF2	PITX1	PRKG1	RASD1	RPLP0
MSL3L1 NR1D1	PCSK1N	PKIG	PROX1	RASGRP1	RPP25
MSX1 NR2C2	PCTK1	PLAG1	PRPH2	RAX	RPS2
MTA1 NR4A2	PCYT1B	PLCB1	PRRX1	RBBP5	RPS6KA1
MTCP1 NRBP1	PDAP1	PLCH1	PSCD2	RBM10	RTN2
MTMR14 NRIP1	PDCD10	PLD5	PSKH1	RBM12	RUNX1T1

RUSC1	SLC43A2	ST6GALNAC5	TLL1	TSC22D3	USP19	ZC3H10
RXRA	SLC4A10	ST6GALNAC6	TLOC1	TSC22D4	USP2	ZC3H15
RXRG	SLC4A3	ST8SIA2	TMCO6	TSHZ2	USP42	ZC3H7B
RYBP	SLC6A8	ST8SIA3	TMEFF2	TSPAN12	USP46	ZCCHC14
SATB2	SLCO3A1	ST8SIA4	TMEM1	TSPAN17	USP48	ZCCHC17
SBDS	SMAD5	STAG1	TMEM121	TSPAN18	USP49	ZCCHC6
SBF1	SMAD6	STK36	TMEM161B	TSPAN5	USP52	ZDHHC14
SCAMP1	SMAD7	STRN3	TMEM49	TSPAN9	VANGL2	ZDHHC3
SCARF2	SMCR7L	STX1B	TMOD4	TSSK6	VAPA	ZDHHC5
SCN3A	SMURF1	SUMO2	TMSB10	ТТС9В	VEGFA	ZFAND3
SCN5A	SMURF2	SURF4	TMTC2	TTLL11	VEZF1	ZFAND5
SCYL1	SNCA	SUSD4	TNFAIP1	TTLL5	VPS26B	ZFAND6
SELI	SNCAIP	SUV420H1	TNFRSF11A	TULP4	VPS33B	ZFHX3
SEMA4G	SNCB	SV2A	TNFSF8	TWIST1	VPS36	ZFHX4
SEMA7A	SND1	SYNCRIP	TNMD	TWIST2	VPS4A	ZFP161
SENP2	SNF1LK2	SYT13	TNPO1	TXNIP	VSX2	ZFR
SERP1	SNIP	TAF10	TNPO2	TYRO3	VWC2	ZFYVE27
SERTAD2	SNN	TAF5L	TNRC4	UBA1	WAC	ZIC1
SF3B14	SNRPB	TAF9	TOLLIP	UBAC1	WAPAL	ZIC3
SFN	SNRPD1	TAGLN3	TOX4	UBAP1	WASF2	ZIC5
SFRS15	SNRPD2	TAOK2	TPD52L2	UBAP2L	WDR44	ZMIZ1
SFRS16	SNRPD3	TBC1D15	TPM1	UBE2E1	WNT10A	ZMYND11
SFRS9	SNUPN	TBL1XR1	TPM2	UBE2E2	WNT11	ZNF148
SH3GL1	SNX24	TBPL1	TRA2A	UBE2M	WNT2	ZNF219
SH3GLB2	SNX5	TBR1	TRAF4	UBE2Q1	WNT9A	ZNF238
SH3RF1	SOCS3	TBX2	TRAM1	UBE2R2	WRNIP1	ZNF282
SH3RF2	SORCS3	TBX3	TRIM11	UBE4A	WSB1	ZNF318
SIAH2	SOX21	TCEB2	TRIM2	UBE4B	WSCD1	ZNF32
SIRPA	SOX4	TCF7L2	TRIM3	UBL7	WWP1	ZNF410
SIX2	SP1	TEAD1	TRIM33	UBOX5	XPO1	ZNF491
SIX3	SP4	TEAD2	TRIM37	UBP1	XPR1	ZNF503
SKP1	SPA17	TEK	TRIM46	UBQLN2	YES1	ZNF521
SLC20A1	SPAG7	TESK1	TRIM62	UBTD1	YIPF4	ZNF532
SLC25A36	SPI1	TFAP2E	TRIM66	UCHL3	YWHAE	ZNF592
SLC25A5	SRPK1	TFE3	TRIM8	UCK2	YWHAQ	ZNF627
SLC26A9	SRRM1	THAP1	TRIOBP	UGCG	YY1 ~	ZNF638
SLC35A4	SSBP2	THOC4	TRPM3	UPF2	ZBTB2	ZNF710
SLC35E1	SSNA1	THRA	TRPS1	USF1	ZBTB20	ZNF804A
SLC39A13	ST3GAL3	TIA 1	TSC1	USF2	ZBTB33	ZNRF1
SLC41A1	ST5	TLE4	TSC22D1	USP12	ZBTB7B	ZZZ3

C.1.2 GO-term analysis

Number of genes among 1071 (above) with available annotations = Number of genes in test set (X) = 678Number of genes in reference set (N) = 8649x indicates the number of genes in test set in the functional category listed n indicates the number of genes in reference set in the functional category listed p-values calculated using hypergeometric test.

GO-ID	p-value	corr p-valu	e x	n	Х	Ν	Description
30528	1.1933E-17	7.6612E-15	145	923	678	8649	transcription regulator activity
3700	5.5821E-11	1.7919E-8	84	520	678	8649	transcription factor activity
16564	4.0031E-10	8.5667E-8	39	168	678	8649	transcription repressor activity
5488	3.7291E-9	5.9853E-7	527	5881	678	8649	binding
8134	1.9686E-8	2.5155E-6	59	356	678	8649	transcription factor binding
3676	2.3510E-8	2.5155E-6	138	1132	678	8649	nucleic acid binding
3702	4.2668E-7	3.9133E-5	36	189	678	8649	RNA polymerase II transcription factor activity
3677	6.9153E-7	5.5495E-5	104	836	678	8649	DNA binding
3924	1.5696E-6	1.1197E-4	27	128	678	8649	GTPase activity
5515	2.0281E-6	1.3020E-4	430	4753	678	8649	protein binding
4722	1.2510E-5	7.3011E-4	11	31	678	8649	protein serine/threonine phosphatase activity
16462	1.7399E-5	9.3085E-4	42	274	678	8649	pyrophosphatase activity
16817	2.0819E-5	9.5472E-4	42	276	678	8649	hydrolase activity, acting on acid anhydrides
16818	2.0819E-5	9.5472E-4	42	276	678	8649	hydrolase activity, acting on acid anhydrides, in
phospl	horus-contai	ning anhydri	des				
17111	2.3087E-5	9.8813E-4	40	259	678	8649	nucleoside-triphosphatase activity
3712	3.3140E-5	1.3298E-3	40	263	678	8649	transcription cofactor activity
3714	4.9684E-5	1.8763E-3	20	97	678	8649	transcription corepressor activity
4674	1.3454E-3	4.7985E-2	30	215	678	8649	protein serine/threonine kinase activity

ABI2	ARMC8	C12orf30	CDH2	CTR9	DYNLL2	FGF9
ABLIM1	ARMCX3	C14orf4	CDH7	CTTNBP2	E2F4	FGFR10P
ACSL4	ARPC1B	C14orf43	CDK5	CTTNBP2NL	EED	FHIT
ACTR2	ARPC2	C17orf28	CDK8	CUGBP1	EFCBP2	FLI1
ACTR3	ASF1A	CIGĂLTICI	CDKN2C	CUL1	EHD1	FLOT1
ACTR6	ASTN1	Clorf58	CEBPE	CUL3	EIF2C3	FLOT2
ACVR1B	ATAD1	Clorf77	CENTG2	CXCL14	EIF2S1	FOSB
ADAMTS10	ATN1	C200rf52	CFL2	CXXC5	ELF1	FOSL2
AFF4	ATP11B	C5orf13	CHCHD3	DAZAP2	ENC1	FOXB1
AHCYL1	ATP1B2	C6orf62	CHD6	DCUN1D1	ENOX2	FOXD2
AIFM1	ATP2A1	C7orf23	CHMP4B	DDEF1	ENSA	FOXM1
AIP	ATP6V1C1	C9orf126	CITED1	DDX3X	EPB41L4A	FOXN2
AK3L1	B3GAT1	CABP7	CKS1B	DDX6	EPB41L4B	FOXP2
AKAP10	B3GAT3	CACNA2D1	CLPTM1	DENND4A	EPC2	FRAP1
AKT3	B4GALT5	CACNB3	CNBP	DES	EPHA7	FRMD5
ALDH9A1	B4GALT7	CACNG2	CNN2	DHX30	ERH	G3BP2
ALX4	BAI2	CAMK1	CNOT10	DHX40	ETS1	GABRA1
AMBN	BCL2L1	CAMK4	CNOT2	DHX9	ETV3	GABRA4
AMELX	BCL2L11	CAMKK2	CNOT3	DIS3L	ETV6	GABRB1
AMMECR1	BCL7A	CAMTA2	CNOT6	DLG1	EWSR1	GALNT1
ANKMY2	BEX1	CAPN6	CNOT6L	DLG3	EXOC4	GALNT5
ANKRD11	BLCAP	CAPZA2	COL1A2	DMRT3	EXOSC1	GALNTL4
ANXA1	BMI1	CASC3	COL4A3BP	DMTF1	EZH2	GAP43
AP1S2	BMP7	CCBL2	COPG2	DNAJA4	FAM108B1	GARNL4
AP2M1	BNC2	CCDC130	COPZ2	DNAJB4	FAM126B	GBF1
AP3M1	BNIP2	CCDC55	CPEB4	DNAJC11	FAM134A	GBX2
AP3S1	BRD7	CCM2	CPS1	DNAJC6	FBLN5	GDI2
APBB2	BRDT	CCNG1	CREBBP	DOCK3	FBXL2	GGA1
APBB3	BTBD14A	CDC2L6	CRISPLD1	DPF2	FBXL5	GJC2
APPL1	BTF3	CDC42BPB	CRY1	DPH5	FBXO36	GLCE
ARHGAP30	BTG2	CDC73	CSNK1G2	DSCR3	FBXO46	GLRA2
ARHGEF7	BUB3	CDGAP	CSNK1G3	DTD1	FBXW7	GLTP
ARL2	BZW1	CDH11	CTCF	DYNC1L11	FGF12	GNA13
ARL8B	C11orf73	CDH13	CTPS	DYNC1LI2	FGF17	GNAQ

C.2 GO-term analysis for genes containing uAUGs and not targeted by miRNAs

C.2 Genes that do not exhibit Watson-Crick interactions with 3'-ends of conserved miRNAs (Total 716)

GNB2	HOXB7	KDELR1	MAP2K6	NCAM1	PDE6D	PTBP2
GNB5	HOXB8	KDELR2	MAP4K3	NCAM2	PDIK1L	PTP4A2
GNPDA2	НОХВ9	KIAA0494	MAPK14	NCOA5	PDP2	PTPN11
GOLGA1	HOXC11	KIAA1267	MAPK6	NDP	PFN2	PTPN12
GPC3	HOXC5	KIF13A	MAPK8	NEDD8	РНС3	PTPN4
GRASP	НОХС9	KIF2A	MAPK8IP2	NEK9	PHF14	PTPRG
GRB2	HOXD10	KIFAP3	MAPRE3	NEUROD2	PHF17	PUM1
GRHL2	HOXD3	KLHDC3	MARCH5	NFATC1	PHF20	PURA
GRIK5	HSF2	KPNA1	MARCKSL1	NIT1	PHIP	PURB
GRIN3A	HSP90AA1	KRT16	MARK3	NKX2-1	PHOX2B	PVRL1
GRIP1	HSPA4	L3MBTL3	MBD3	NKX2-2	PITPNA	QKI
GRK5	IBSP	LARP5	MCTS1	NMNAT2	PJA2	RAB11A
GSK3B	IBTK	LATS2	MDH1	NMT2	POLG	RAB1B
GTPBP2	ID4	LCOR	MDM1	N-PAC	POLR2J2	RAB2B
H1F0	IFRD1	LDLRAD3	MECP2	NPTXR	POLS	RAB30
H1FX	IGF2BP1	LENG1	MEF2D	NR2E1	POU2AF1	RAB6B
H2AFZ	IGF2BP2	LHFPL2	METT10D	NR2F1	PPARG	RAB8A
HAS2	IGSF9	LHX1	MFSD5	NR2F2	PPARGC1B	RABL3
HBP1	ILF2	LHX2	MGAT5	NRAS	PPL	RAF1
HDGF	IMMP2L	LIM2	MGAT5B	NUP93	PPM1E	RANBP2
HDLBP	IMP3	LINGO2	MIER3	OAZ1	PPM1H	RAP2B
HESX1	ING4	LLGL1	MIR16	OAZ3	PPP1CA	RAP2C
HGD	INSM1	LMBR1L	MLLT10	ODF1	PPP1CB	RASIP1
HIPK1	INTS12	LMBRD2	MOBKL1A	OGDH	PPP2R2C	RBBP6
HIPK3	IRX2	LRFN5	MOBKL3	OLIG3	PPP2R4	RBBP7
HIST2H2AA3	IRX4	LRP1	MORF4L2	ONECUT2	PPP5C	RBM35B
HMGB2	ISL1	LRP1B	MOV10	OPHN1	PPRC1	RBM4B
HNRNPA2B1	ISL2	LRRC42	MRLC2	OTP	PPTC7	RBM5
HNRPF	ITGB8	LRRC59	MSI1	OTUB2	PRKAA2	RBPMS
HNRPH2	ITPR1	LRRC8D	MTCH2	OTX1	PRKACA	RDH10
HNRPM	KBTBD7	LRRTM1	MTDH	OTX2	PRKCB1	REEP2
HNT	KCNA6	LZIC	МҮСВР	OXSR1	PRKCI	RFC1
HOMER1	KCNC1	MAB21L1	MYF6	PAIP2	PRPSAP2	RGS3
HOMER2	KCNC4	MAB21L2	MYLIP	PALMD	PSIP1	RLF
HOXA10	KCNG3	MACROD1	MYNN	PAX9	PSMA1	RNF122
HOXA2	KCNH5	MAF1	МҮОТ	PCDHB8	PSMA7	RNF20
HOXA5	KCNJ3	MAFG	NACA2	PCDHGC3	PSMC6	RNPS1
HOXA7	KCNK1	MAML2	NALCN	PCGF3	PSMD11	RPL10A
HOXB4	KCNMB2	MAN1A1	NARG1	PCMT1	PSMD14	RPL15
HOXB5	KCTD4	MAP2K4	NAV1	PCMTD1	PSMD3	RPL27A

RPL30	SMAP1L	SYN2	TRIP4	WNT7A
RPL31	SMARCC2	<i>SYT14</i>	TRPM7	WNT7B
RPN2	SMARCE1	SYT9	TSN	WT1
RPS8	SMYD5	TACC2	TSPAN15	WWP2
RRAGC	SNRPA1	TAF12	TUB	XKR6
SAP18	SNRPN	TAF5	TUBB6	XPNPEP1
SAPS3	SNX8	TAOK1	TUBG2	XPO7
SAR1A	SORBS2	TBC1D19	TUSC2	XYLT1
SARS	SOX17	TBC1D22B	TXNDC11	YBX1
SAT1	SOX18	TCEB3	U2AF1L4	YTHDF2
SATB1	SOX2	TCF20	UBE2D3	YTHDF3
SEMA6A	SOX6	TCF4	UBE2L3	YWHAG
SEPT5	SOX9	TFAP2B	UBE2N	ZBTB1
SERBP1	SPARC	TFAP2C	UBE2S	ZBTB10
SFRS10	SPATA6	TFAP2D	UBE2V2	ZBTB12
SFRS12	SPOP	TFDP2	UBE3A	ZBTB16
SFRS6	SPRY2	TGFB3	UBN1	ZBTB26
SGIP1	SPTLC2	THAP7	UBXD8	ZBTB37
SGMS2	SRF	TIAL1	UGP2	ZBTB39
SH3BGRL	SRGAP1	TLK1	USP25	ZBTB7A
SH3BGRL3	SRP54	TMED1	USP28	ZCCHC5
SHC1	SRPK2	<i>TMEM108</i>	USP5	ZDHHC23
SHOC2	SRR	<i>TMEM135</i>	USP8	ZEB1
SIRT1	SSBP3	TMEM164	UTX	ZEB2
SIX1	STAG2	TMEM185A	VCPIP1	ZHX1
SLC10A7	STC1	TMEM39B	VIM	ZMAT2
SLC12A5	STK32B	TMEM59	VKORC1L1	ZMYM3
SLC15A2	STK39	TMEM60	VPRBP	ZMYND8
SLC22A4	STK40	TMEM93	VPS25	ZNF24
SLC22A5	STMN2	TMSB4X	VPS26A	ZNF275
SLC25A13	STOML2	TNFAIP3	VPS54	ZNF281
SLC25A14	STRBP	TOP1	VPS72	ZNF384
SLC35B4	STT3A	TOX	WBP2	ZNF428
SLC39A10	STUB1	TPH2	WDFY3	ZNF496
SLIT3	STX5	ТРМЗ	WDR1	ZNF512
SLITRK2	STX8	TRAIP	WDR48	ZNF513
SLITRK5	STXBP6	TRAPPC3	WDR67	ZNF706
SLK	SUMO1	TRAPPC6B	WD R 68	ZNF76
SMAD9	SUMO3	TRDN	WNT10B	
SMAP1	SUZ12	TRIB2	WNT3	

C.2.2 GO-term analysis

Number of genes among 716 (above) with available annotations = Number of genes in test set (X) = 448Number of genes in reference set (N) = 8648x indicates the number of genes in test set in the functional category listed n indicates the number of genes in reference set in the functional category listed p-values calculated using hypergeometric test.

GO-ID p-value	corr p-value x	n	Х	Ν	Description Genes in test set
20520 0 15200 0		010	440	0 < 4 0	
30528 9.1528E-8	4.9059E-5 84	919	448	8648	transcription regulator activity
5488 2.2855E-7	6.1252E-5 35	2 5879	448	8648	binding
5515 3.5780E-7	6.3927E-5 29	4753	448	8648	protein binding
3676 2.2083E-6	2.9592E-4 93	1131	448	8648	nucleic acid binding
3700 1.2579E-5	1.3485E-3 50	519	448	8648	transcription factor activity
3677 5.0034E-5	4.4697E-3 69	835	448	8648	DNA binding
48027 1.3814E-4	1.0578E-2 3	3	448	8648	mRNA 5'-UTR binding
3723 4.3415E-4	2.9088E-2 29	288	448	8648	RNA binding
8134 7.5201E-4	4.0469E-2 33	355	448	8648	transcription factor binding
3702 7.5501E-4	4.0469E-2 21	189	448	8648	RNA polymerase II transcription factor activity

C.3 Predicted interactions between uAUG 6 and 7 of KLF9 and conserved miRNAs

Shown below is a portion of the 5'-UTR of *KLF9* that contain uAUGs6 and 5. The interactions and the associated free energy of binding were predicted using 11-mers and miRNA 5'- or 3'-ends. Full miRNAs and sequences surrounding the uAUGs are shown for clarity.

Bibliography

- Avni, D., Biberman, Y., and Meyuhas, O. 1997. The 5' terminal oligopyrimidine tract confers translational control on TOP mRNAs in a cell type- and sequence contextdependent manner. *Nucleic Acids Res* 25(5): 995-1001.
- Babak, T., Zhang, W., Morris, Q., Blencowe, B.J., and Hughes, T.R. 2004. Probing microRNAs with microarrays: tissue specificity and functional inference. *Rna* 10(11): 1813-1819.
- Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., and Bartel, D.P. 2008. The impact of microRNAs on protein output. *Nature*.
- Bagga, S., Bracht, J., Hunter, S., Massirer, K., Holtz, J., Eachus, R., and Pasquinelli, A.E. 2005. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. *Cell* 122(4): 553-563.
- Barad, O., Meiri, E., Avniel, A., Aharonov, R., Barzilai, A., Bentwich, I., Einav, U., Gilad, S., Hurban, P., Karov, Y. et al. 2004. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. *Genome Res* 14(12): 2486-2494.
- Bartel, D.P. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. *Cell* **116**(2): 281-297.
- Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. *Nature* 409(6818): 363-366.
- Bieker, J.J. 2001. Kruppel-like factors: three fingers in many pies. *J Biol Chem* **276**(37): 34355-34358.
- Birney, E. Stamatoyannopoulos, J.A. Dutta, A. Guigo, R. Gingeras, T.R. Margulies, E.H. Weng, Z. Snyder, M. Dermitzakis, E.T. Thurman, R.E. et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. *Nature* 447(7146): 799-816.
- Black, A.R., Black, J.D., and Azizkhan-Clifford, J. 2001. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. *J Cell Physiol* **188**(2): 143-160.
- Borer, P.N., Dengler, B., Tinoco, I., Jr., and Uhlenbeck, O.C. 1974. Stability of ribonucleic acid double-stranded helices. *J Mol Biol* **86**(4): 843-853.
- Bracht, J., Hunter, S., Eachus, R., Weeks, P., and Pasquinelli, A.E. 2004. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. *Rna* **10**(10): 1586-1594.
- Breslauer, K.J., Frank, R., Blocker, H., and Marky, L.A. 1986. Predicting DNA duplex stability from the base sequence. *Proc Natl Acad Sci U S A* **83**(11): 3746-3750.

- Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sultmann, H., and Lyko, F. 2007. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. *Cancer Res* 67(4): 1419-1423.
- Bushati, N. and Cohen, S.M. 2007. microRNA functions. *Annu Rev Cell Dev Biol* 23: 175-205.
- Cai, X., Hagedorn, C.H., and Cullen, B.R. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. *Rna* **10**(12): 1957-1966.
- Castoldi, M., Schmidt, S., Benes, V., Noerholm, M., Kulozik, A.E., Hentze, M.W., and Muckenthaler, M.U. 2006. A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). *Rna* **12**(5): 913-920.
- Cerutti, H. and Casas-Mollano, J.A. 2006. On the origin and functions of RNA-mediated silencing: from protists to man. *Curr Genet* **50**(2): 81-99.
- Chapman, E.J. and Carrington, J.C. 2007. Specialization and evolution of endogenous small RNA pathways. *Nat Rev Genet* **8**(11): 884-896.
- Chen, J., Lozach, J., Garcia, E.W., Barnes, B., Luo, S., Mikoulitch, I., Zhou, L., Schroth, G., and Fan, J.B. 2008. Highly sensitive and specific microRNA expression profiling using BeadArray technology. *Nucleic Acids Res* 36(14): e87.
- Churbanov, A., Rogozin, I.B., Babenko, V.N., Ali, H., and Koonin, E.V. 2005. Evolutionary conservation suggests a regulatory function of AUG triplets in 5'-UTRs of eukaryotic genes. *Nucleic Acids Res* 33(17): 5512-5520.
- Croce, C.M. 2008. MicroRNAs and lymphomas. Ann Oncol 19 Suppl 4: iv39-40.
- Deo, M., Yu, J.Y., Chung, K.H., Tippens, M., and Turner, D.L. 2006. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. *Dev Dyn* 235(9): 2538-2548.
- DeRisi, J.L., Iyer, V.R., and Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. *Science* **278**(5338): 680-686.
- Devoe, H. and Tinoco, I., Jr. 1962. The stability of helical polynucleotides: base contributions. *J Mol Biol* **4**: 500-517.
- Doench, J.G. and Sharp, P.A. 2004. Specificity of microRNA target selection in translational repression. *Genes Dev* **18**(5): 504-511.
- Du, T. and Zamore, P.D. 2005. microPrimer: the biogenesis and function of microRNA. *Development* **132**(21): 4645-4652.
- Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. *Nature* **411**(6836): 494-498.
- Engels, B.M. and Hutvagner, G. 2006. Principles and effects of microRNA-mediated post-transcriptional gene regulation. *Oncogene* **25**(46): 6163-6169.
- Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. 2003. MicroRNA targets in Drosophila. *Genome Biol* **5**(1): R1.
- Farazi, T.A., Juranek, S.A., and Tuschl, T. 2008. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. *Development* 135(7): 1201-1214.
- Farh, K.K., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P. 2005. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. *Science* **310**(5755): 1817-1821.

- Filipowicz, W., Bhattacharyya, S.N., and Sonenberg, N. 2008. Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? *Nat Rev Genet* **9**(2): 102-114.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. *Nature* **391**(6669): 806-811.
- Forman, J.J., Legesse-Miller, A., and Coller, H.A. 2008. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. *Proc Natl Acad Sci U S A* **105**(39): 14879-14884.
- Freier, S.M., Kierzek, R., Jaeger, J.A., Sugimoto, N., Caruthers, M.H., Neilson, T., and Turner, D.H. 1986. Improved free-energy parameters for predictions of RNA duplex stability. *Proc Natl Acad Sci U S A* 83(24): 9373-9377.
- Fulci, V., Chiaretti, S., Goldoni, M., Azzalin, G., Carucci, N., Tavolaro, S., Castellano, L., Magrelli, A., Citarella, F., Messina, M. et al. 2007. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. *Blood* 109(11): 4944-4951.
- Gaba, A., Wang, Z., Krishnamoorthy, T., Hinnebusch, A.G., and Sachs, M.S. 2001. Physical evidence for distinct mechanisms of translational control by upstream open reading frames. *Embo J* **20**(22): 6453-6463.
- Giraldez, A.J., Mishima, Y., Rihel, J., Grocock, R.J., Van Dongen, S., Inoue, K., Enright, A.J., and Schier, A.F. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. *Science* **312**(5770): 75-79.
- Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. 2008. miRBase: tools for microRNA genomics. *Nucleic Acids Res* **36**(Database issue): D154-158.
- Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. *Mol Cell* 27(1): 91-105.
- Guo, Z., Liu, Q., and Smith, L.M. 1997. Enhanced discrimination of single nucleotide polymorphisms by artificial mismatch hybridization. *Nat Biotechnol* 15(4): 331-335.
- Halbeisen, R.E., Galgano, A., Scherrer, T., and Gerber, A.P. 2008. Post-transcriptional gene regulation: from genome-wide studies to principles. *Cell Mol Life Sci* **65**(5): 798-813.
- Hannon, G.J. and Rossi, J.J. 2004. Unlocking the potential of the human genome with RNA interference. *Nature* **431**(7006): 371-378.
- Haynie, D. 2001. Biological Thermodynamics. Cambridge University Press.
- Hohjoh, H. and Fukushima, T. 2007. Marked change in microRNA expression during neuronal differentiation of human teratocarcinoma NTera2D1 and mouse embryonal carcinoma P19 cells. *Biochem Biophys Res Commun* 362(2): 360-367.
- Humphreys, D.T., Westman, B.J., Martin, D.I., and Preiss, T. 2005. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. *Proc Natl Acad Sci U S A* **102**(47): 16961-16966.
- Hutton, J.R. 1977. Renaturation kinetics and thermal stability of DNA in aqueous solutions of formamide and urea. *Nucleic Acids Res* **4**(10): 3537-3555.
- Iacono, M., Mignone, F., and Pesole, G. 2005. uAUG and uORFs in human and rodent 5'untranslated mRNAs. *Gene* **349**: 97-105.

- Imataka, H., Nakayama, K., Yasumoto, K., Mizuno, A., Fujii-Kuriyama, Y., and Hayami, M. 1994. Cell-specific translational control of transcription factor BTEB expression. The role of an upstream AUG in the 5'-untranslated region. *J Biol Chem* 269(32): 20668-20673.
- Jay, C., Nemunaitis, J., Chen, P., Fulgham, P., and Tong, A.W. 2007. miRNA profiling for diagnosis and prognosis of human cancer. *DNA Cell Biol* **26**(5): 293-300.
- Jin, X., Turcott, E., Englehardt, S., Mize, G.J., and Morris, D.R. 2003. The two upstream open reading frames of oncogene mdm2 have different translational regulatory properties. *J Biol Chem* 278(28): 25716-25721.
- John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. 2004. Human MicroRNA targets. *PLoS Biol* **2**(11): e363.
- Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K.L., Brown, D., and Slack, F.J. 2005. RAS is regulated by the let-7 microRNA family. *Cell* 120(5): 635-647.
- Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B. 2006. MicroRNAS and their regulatory roles in plants. *Annu Rev Plant Biol* **57**: 19-53.
- Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., and Sarnow, P. 2005. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. *Science* **309**(5740): 1577-1581.
- Jousse, C., Bruhat, A., Carraro, V., Urano, F., Ferrara, M., Ron, D., and Fafournoux, P. 2001. Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5'UTR. *Nucleic Acids Res* **29**(21): 4341-4351.
- Khvorova, A., Reynolds, A., and Jayasena, S.D. 2003. Functional siRNAs and miRNAs exhibit strand bias. *Cell* **115**(2): 209-216.
- Kim, V.N. 2005. MicroRNA biogenesis: coordinated cropping and dicing. *Nat Rev Mol Cell Biol* **6**(5): 376-385.
- Kiriakidou, M., Nelson, P.T., Kouranov, A., Fitziev, P., Bouyioukos, C., Mourelatos, Z., and Hatzigeorgiou, A. 2004. A combined computational-experimental approach predicts human microRNA targets. *Genes Dev* 18(10): 1165-1178.
- Kloosterman, W.P. and Plasterk, R.H. 2006. The diverse functions of microRNAs in animal development and disease. *Dev Cell* **11**(4): 441-450.
- Kloosterman, W.P., Wienholds, E., Ketting, R.F., and Plasterk, R.H. 2004. Substrate requirements for let-7 function in the developing zebrafish embryo. *Nucleic Acids Res* **32**(21): 6284-6291.
- Kong, Y.W., Cannell, I.G., de Moor, C.H., Hill, K., Garside, P.G., Hamilton, T.L., Meijer, H.A., Dobbyn, H.C., Stoneley, M., Spriggs, K.A. et al. 2008. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. *Proc Natl Acad Sci U S A* 105(26): 8866-8871.
- Kozak, M. 1991a. An analysis of vertebrate mRNA sequences: intimations of translational control. *J Cell Biol* **115**(4): 887-903.
- -. 1991b. Structural features in eukaryotic mRNAs that modulate the initiation of translation. *J Biol Chem* **266**(30): 19867-19870.
- -. 2002. Pushing the limits of the scanning mechanism for initiation of translation. *Gene* **299**(1-2): 1-34.

- Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. et al. 2005. Combinatorial microRNA target predictions. *Nat Genet* 37(5): 495-500.
- Kruger, J. and Rehmsmeier, M. 2006. RNAhybrid: microRNA target prediction easy, fast and flexible. *Nucleic Acids Res* **34**(Web Server issue): W451-454.
- Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. 2005. Silencing of microRNAs in vivo with 'antagomirs'. *Nature* 438(7068): 685-689.
- Kwon, H.S., Lee, D.K., Lee, J.J., Edenberg, H.J., Ahn, Y.H., and Hur, M.W. 2001.
 Posttranscriptional regulation of human ADH5/FDH and Myf6 gene expression by upstream AUG codons. *Arch Biochem Biophys* 386(2): 163-171.
- Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. 2002. Identification of tissue-specific microRNAs from mouse. *Curr Biol* **12**(9): 735-739.
- Lai, E.C. 2002. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. *Nat Genet* **30**(4): 363-364.
- Lander, E.S. Linton, L.M. Birren, B. Nusbaum, C. Zody, M.C. Baldwin, J. Devon, K. Dewar, K. Doyle, M. FitzHugh, W. et al. 2001. Initial sequencing and analysis of the human genome. *Nature* 409(6822): 860-921.
- Landgraf, P., Rusu, M., Sheridan, R., Sewer, A., Iovino, N., Aravin, A., Pfeffer, S., Rice, A., Kamphorst, A.O., Landthaler, M. et al. 2007. A mammalian microRNA expression atlas based on small RNA library sequencing. *Cell* **129**(7): 1401-1414.
- Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. 2001. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. *Science* 294(5543): 858-862.
- Lawrie, C.H., Saunders, N.J., Soneji, S., Palazzo, S., Dunlop, H.M., Cooper, C.D., Brown, P.J., Troussard, X., Mossafa, H., Enver, T. et al. 2008. MicroRNA expression in lymphocyte development and malignancy. *Leukemia* 22(7): 1440-1446.
- Lee, I., Ajay, S.S., Chen, H., Maruyama, A., Wang, N., McInnis, M.G., and Athey, B.D. 2008. Discriminating single-base difference miRNA expressions using microarray Probe Design Guru (ProDeG). *Nucleic Acids Res* **36**(5): e27.
- Lee, I., Dombkowski, A.A., and Athey, B.D. 2004. Guidelines for incorporating nonperfectly matched oligonucleotides into target-specific hybridization probes for a DNA microarray. *Nucleic Acids Res* **32**(2): 681-690.
- Lee, R.C. and Ambros, V. 2001. An extensive class of small RNAs in Caenorhabditis elegans. *Science* **294**(5543): 862-864.
- Lee, R.C., Feinbaum, R.L., and Ambros, V. 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. *Cell* **75**(5): 843-854.
- Lewis, B.P., Burge, C.B., and Bartel, D.P. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell* **120**(1): 15-20.
- Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. 2003. Prediction of mammalian microRNA targets. *Cell* **115**(7): 787-798.
- Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. 2005. Microarray analysis shows that some

microRNAs downregulate large numbers of target mRNAs. *Nature* **433**(7027): 769-773.

- Lim, L.P. and Linsley, P.S. 2007. Mustering the micromanagers. *Nat Biotechnol* **25**(9): 996-997.
- Liolios, K., Mavromatis, K., Tavernarakis, N., and Kyrpides, N.C. 2008. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* **36**(Database issue): D475-479.
- Liu, C.G., Calin, G.A., Meloon, B., Gamliel, N., Sevignani, C., Ferracin, M., Dumitru, C.D., Shimizu, M., Zupo, S., Dono, M. et al. 2004. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. *Proc Natl Acad Sci U S A* 101(26): 9740-9744.
- Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A. et al. 2005. MicroRNA expression profiles classify human cancers. *Nature* 435(7043): 834-838.
- Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E., and Kutay, U. 2004. Nuclear export of microRNA precursors. *Science* **303**(5654): 95-98.
- Lytle, J.R., Yario, T.A., and Steitz, J.A. 2007. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. *Proc Natl Acad Sci U S A* **104**(23): 9667-9672.
- Martinez, N.J., Ow, M.C., Barrasa, M.I., Hammell, M., Sequerra, R., Doucette-Stamm, L., Roth, F.P., Ambros, V.R., and Walhout, A.J. 2008. A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity. *Genes Dev* 22(18): 2535-2549.
- Moore, M.J. 2005. From birth to death: the complex lives of eukaryotic mRNAs. *Science* **309**(5740): 1514-1518.
- Morris, D.R. and Geballe, A.P. 2000. Upstream open reading frames as regulators of mRNA translation. *Mol Cell Biol* **20**(23): 8635-8642.
- Moss, E.G. 2007. Heterochronic genes and the nature of developmental time. *Curr Biol* **17**(11): R425-434.
- Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. *Science* **320**(5881): 1344-1349.
- Neitzel, H. 1986. A routine method for the establishment of permanent growing lymphoblastoid cell lines. *Hum Genet* **73**(4): 320-326.
- Nelson, P.T., Baldwin, D.A., Scearce, L.M., Oberholtzer, J.C., Tobias, J.W., and Mourelatos, Z. 2004. Microarray-based, high-throughput gene expression profiling of microRNAs. *Nat Methods* 1(2): 155-161.
- Nikolcheva, T., Pyronnet, S., Chou, S.Y., Sonenberg, N., Song, A., Clayberger, C., and Krensky, A.M. 2002. A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. *J Clin Invest* **110**(1): 119-126.
- Nottrott, S., Simard, M.J., and Richter, J.D. 2006. Human let-7a miRNA blocks protein production on actively translating polyribosomes. *Nat Struct Mol Biol* **13**(12): 1108-1114.
- Orom, U.A., Nielsen, F.C., and Lund, A.H. 2008. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. *Mol Cell* **30**(4): 460-471.

- Orphanides, G. and Reinberg, D. 2002. A unified theory of gene expression. *Cell* **108**(4): 439-451.
- Peters, L. and Meister, G. 2007. Argonaute proteins: mediators of RNA silencing. *Mol Cell* **26**(5): 611-623.
- Petersen, C.P., Bordeleau, M.E., Pelletier, J., and Sharp, P.A. 2006. Short RNAs repress translation after initiation in mammalian cells. *Mol Cell* **21**(4): 533-542.
- Pillai, R.S., Bhattacharyya, S.N., Artus, C.G., Zoller, T., Cougot, N., Basyuk, E., Bertrand, E., and Filipowicz, W. 2005. Inhibition of translational initiation by Let-7 MicroRNA in human cells. *Science* **309**(5740): 1573-1576.
- Pozhitkov, A., Noble, P.A., Domazet-Loso, T., Nolte, A.W., Sonnenberg, R., Staehler, P., Beier, M., and Tautz, D. 2006. Tests of rRNA hybridization to microarrays suggest that hybridization characteristics of oligonucleotide probes for species discrimination cannot be predicted. *Nucleic Acids Res* 34(9): e66.
- Rajewsky, N. 2006. microRNA target predictions in animals. Nat Genet 38 Suppl: S8-13.
- Rajewsky, N. and Socci, N.D. 2004. Computational identification of microRNA targets. *Dev Biol* 267(2): 529-535.
- Raney, A., Baron, A.C., Mize, G.J., Law, G.L., and Morris, D.R. 2000. In vitro translation of the upstream open reading frame in the mammalian mRNA encoding S-adenosylmethionine decarboxylase. *J Biol Chem* 275(32): 24444-24450.
- Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. 2004. Fast and effective prediction of microRNA/target duplexes. *Rna* **10**(10): 1507-1517.
- Richards, E.J. and Elgin, S.C. 2002. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. *Cell* **108**(4): 489-500.
- SantaLucia, J., Jr. 1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. *Proc Natl Acad Sci U S A* **95**(4): 1460-1465.
- SantaLucia, J., Jr., Allawi, H.T., and Seneviratne, P.A. 1996. Improved nearest-neighbor parameters for predicting DNA duplex stability. *Biochemistry* **35**(11): 3555-3562.
- SantaLucia, J., Jr. and Hicks, D. 2004. The thermodynamics of DNA structural motifs. *Annu Rev Biophys Biomol Struct* **33**: 415-440.
- Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. *Science* 270(5235): 467-470.
- Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. 2008. Widespread changes in protein synthesis induced by microRNAs. *Nature* 455(7209): 58-63.
- Sethupathy, P., Megraw, M., and Hatzigeorgiou, A.G. 2006. A guide through present computational approaches for the identification of mammalian microRNA targets. *Nat Methods* **3**(11): 881-886.
- Soifer, H.S., Rossi, J.J., and Saetrom, P. 2007. MicroRNAs in Disease and Potential Therapeutic Applications. *Mol Ther*.
- Song, A., Nikolcheva, T., and Krensky, A.M. 2000. Transcriptional regulation of RANTES expression in T lymphocytes. *Immunol Rev* 177: 236-245.
- Song, K.Y., Hwang, C.K., Kim, C.S., Choi, H.S., Law, P.Y., Wei, L.N., and Loh, H.H. 2007. Translational repression of mouse mu opioid receptor expression via leaky scanning. *Nucleic Acids Res* 35(5): 1501-1513.

Sperling, S. 2007. Transcriptional regulation at a glance. *BMC Bioinformatics* **8 Suppl 6**: S2.

- Takada, S., Berezikov, E., Yamashita, Y., Lagos-Quintana, M., Kloosterman, W.P.,
 Enomoto, M., Hatanaka, H., Fujiwara, S., Watanabe, H., Soda, M. et al. 2006.
 Mouse microRNA profiles determined with a new and sensitive cloning method. *Nucleic Acids Res* 34(17): e115.
- Thomson, J.M., Parker, J., Perou, C.M., and Hammond, S.M. 2004. A custom microarray platform for analysis of microRNA gene expression. *Nat Methods* **1**(1): 47-53.
- Tolia, N.H. and Joshua-Tor, L. 2007. Slicer and the argonautes. *Nat Chem Biol* **3**(1): 36-43.
- Turner, D.H. 1996. Thermodynamics of base pairing. *Curr Opin Struct Biol* **6**(3): 299-304.
- Uhlenbeck, O.C., Borer, P.N., Dengler, B., and Tinoco, I., Jr. 1973. Stability of RNA hairpin loops: A 6 -C m -U 6. *J Mol Biol* **73**(4): 483-496.
- Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. 2004. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. *Nucleic Acids Res* **32**(22): e175.
- van Rooij, E. and Olson, E.N. 2007. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. *J Clin Invest* **117**(9): 2369-2376.
- Venter, J.C. Adams, M.D. Myers, E.W. Li, P.W. Mural, R.J. Sutton, G.G. Smith, H.O. Yandell, M. Evans, C.A. Holt, R.A. et al. 2001. The sequence of the human genome. *Science* 291(5507): 1304-1351.
- Wang, B., Yanez, A., and Novina, C.D. 2008. MicroRNA-repressed mRNAs contain 40S but not 60S components. *Proc Natl Acad Sci U S A* **105**(14): 5343-5348.
- Wang, H., Ach, R.A., and Curry, B. 2007. Direct and sensitive miRNA profiling from low-input total RNA. *Rna* 13(1): 151-159.
- Wang, L. and Wessler, S.R. 1998. Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. *Plant Cell* 10(10): 1733-1746.
- Watanabe, T., Takeda, A., Mise, K., Okuno, T., Suzuki, T., Minami, N., and Imai, H. 2005. Stage-specific expression of microRNAs during Xenopus development. *FEBS Lett* 579(2): 318-324.
- Wightman, B., Ha, I., and Ruvkun, G. 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. *Cell* 75(5): 855-862.
- Wuite, G.J., Smith, S.B., Young, M., Keller, D., and Bustamante, C. 2000. Singlemolecule studies of the effect of template tension on T7 DNA polymerase activity. *Nature* 404(6773): 103-106.
- Xie, X., Lu, J., Kulbokas, E.J., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander, E.S., and Kellis, M. 2005. Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. *Nature* 434(7031): 338-345.
- Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. *Genes Dev* **17**(24): 3011-3016.

- Zhao, T., Li, G., Mi, S., Li, S., Hannon, G.J., Wang, X.J., and Qi, Y. 2007. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. *Genes Dev* **21**(10): 1190-1203.
- Zhao, Y. and Srivastava, D. 2007. A developmental view of microRNA function. *Trends Biochem Sci* **32**(4): 189-197.
- Zimmermann, T.S., Lee, A.C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M.N., Harborth, J., Heyes, J.A., Jeffs, L.B., John, M. et al. 2006. RNAi-mediated gene silencing in non-human primates. *Nature* **441**(7089): 111-114.