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ABSTRACT

Tolerance, representing a permissible variation of a dimension in an engineering
drawing, is synthesized by considering assembly stack-up conditions based on
manufacturing cost minimization. A random variable and its standard deviation are
associated with a dimension and its tolerance. This probabilistic approach makes it
possible to perform trade-off between performance and tolerance rather than worst case
analysis as it is commonly practiced. Tolerance (stack-up) analysis, as an inner loop in the
overall algorithm for tolerance synthesis, is performed by approximating the volume under
the multivariate probability density function constrained by nonlinear stack-up conditions
with a convex polytope. This approximation makes use of the notion of reliability index
[10] in structural safety. Consequently, the probabilistic optimization problem for
tolerance synthesis is simplified into a deterministic nonlinear programming problem. An
algorithm is then developed and is proven to converge to the global optimum through an
investigation of the monotonic relations among tolerance, the reliability index, and cost.

Examples from the implementation of the algorithm are given.



1. INTRODUCTION

Dimensicns in engineering drawings specify ideal geometry for size, location, and
form [1,2]. Since dimensions are subject to variability inherent in the manufacturing
process, some variations, such as * 0.001, from the nominal value are allowed. The

permissible amount, in this example 0.002, is called tolerance.

As a design variable, tolerance should be as near zero as possible. But, because of
practical considerations such as an increase in cost, tolerance as a manufacturing variable
is often larger than ideal. While larger tolerances are less costly to realize, they are
usually associated with poor performance. This trade-off between specification and

realization illustrates the traditional conflict between design and manufacturing.

As a design-manufacturing variable, tolerance has more than a local effect in the
decision process. Parts are “in-spec” if they are functionally equivalent and
interchangeable in assembly. Even though individual tolerances are in-spec, the sum of
the individual tolerances in an assembly may not be. For example, in Figure 1, suppose
the dimension D consists of nominal dimensions A, B, and C with tolerances of ta, *b,
and - tc, respectively. Now, the variations a, b, and ¢ represent the worst case for the
components. Does the entire assembly whose nominal dimension is D need a tolerance of
t(a + b +c)? The study of the aggregate behavior of given individual variations is
referred to as tolerance analysis or, more commonly, as stack-up analysis. In practice, a
designer starts with some initial values for tolerances. If the result of the analysis turns
out to be “out-of-spec,” the designer reassigns some of the tolerances and iterates the
analysis procedure. The process of deciding which tolerances are to be changed and by
how much, is referred to as tolerance distribution. When performed manually, tolerance
distribution is often guided by experience. Without a rigorous procedure, it is difficult to
ensure that local changes in tolerances reflect global criteria such as functionality and cost.

Distributing tolerances such that the result of tolerance analysis is reflected is referred to



as tolerance synthesis. This paper presents the development of such a procedure.

<Insert Figure 1>

Tolerance synthesis is formulated here as an optimization problem by treating cost
minimization as the objective function and the stack-up conditions as the constraints.
Probabilistic concepts are used. Since tolerance implies randomness, a random variable
and its standard deviation are associated with a dimension and its tolerance. Such a
probabilistic approach enables the partial satisfaction of the stack-up conditions. By
permitting a small fraction of the assemblies, say 0.3%, to be out-of-spec, an increase in
tolerances may be obtained and in turn a reduction in cost may be achieved. This
probabilistic approach is considered to be advantageous over the deterministic approach.
Since the deterministic approach [3,4,16] handles only the 100% in-spec case, the resulting

tolerances are often more conservative than necessary.

In the probabilistic approach, tolerance analysis involves computing the probability
of satisfying the stack-up conditions, given the standard deviations (tolerances). Suppose
an inequality F(X) = 0 represents a certain stack-up condition, where X is a random
vector composed of dimensions. The probability of satisfying this stack-up condition, i.e.,
P(F(X) = 0), is then described by the following multiple integral:

T pexy » o FX) X (1)

where f(X) is the multivariate probability density function (p.d.f.) for X. F(X), the function
for stack-up condition, is nonlinear if non-rectangular shapes and/or angular dimensions
are in an engineering drawing. Consider Figure 2—(b). Suppose the vertical distance
between points A and B is to be less than 5.2000. The stack-up condition is F,(X)=0,
where

FZ(X) = - x, sin X, — X, sin (x1 + x3) + 5.2000. (2)

The linear case [5,11,13,21] offers simplicity in representation and in processing. As



another example, suppose the clearance between two components is to be greater than

0.0001. As illustrated in Figure 2—(a), the stack-up condition is FI(X)ZO, where

F,(X) = x, - x, - 0.000L, 3)

Processing for the linear case is made simple by the following property: under the
assumption of independence, the variance of a linear function can be expressed as the
linear sum of the variances of the constituting dimensions. Hence, tolerance synthesis
becomes the problem of distributing the given sum of variances into the constituting
variances. This distribution can be done by using linear programming [5,21] provided that
the tolerance-cost relation takes the form of a piecewise convex function. Unfortunately,
this approach cannot be used for the nonlinear case, since there is no general rule for
expressing the variance of a nonlinear function such as F,(X) in terms of variances of its
parameters X, X

X., and X,

27y

<Insert Figure 2>

To compute the multiple integral of (1) without knowledge of the variance of F(X),
two approaches to tolerance analysis have been considered — simulation and
approximation. Monte Carlo simulation [9,21], while powerful, is computationally
intensive. As tolerance analysis is an inner loop in a procedure for tolerance synthesis, a
faster method is sought. Now, approximation is practical if it also gives a reasonably
accurate solution. In this paper, the volume under the multivariate p.d.f. constrained by
nonlinear stack-up conditions is approximated by a convex polytope. The distance of each
face of the polytope from the nominal dimension point, which is the origin of a transformed
coordinate system, is computed through a notion called the “reliability index” introduced by
Hasofer and Lind [10] in their civil engineering work. Such an approximation yields a
pleasant surprise to the computation as it converts a probabilistic optimization problem
(with nonlinear cost function as objective function and nonlinear stack-up conditions as

constraints) to a deterministic one (with distances as constraints).



A nonlinear programming (NLP) algorithm for tolerance synthesis is developed. The
steps in the algorithm are shown in Figure 3. For a given probability of yield, it computes
optimal assignments of tolerances to individual dimensions while minimizing the
manufacturing cost. The algorithm is shown to converge to the global optimum through an
investigation of the monotonic relations among tolerances, the reliability index, and cost.
(Conceptually, monotonicity is easy to understand: as tolerance increases, performance,
which is measured by the reliability index, and cost decrease.) This theoretical basis is
considered to have an advantage over others [12,16,17,18] whose algorithms do not
necessarily guarantee convergence.

<Insert Figure 3>

This paper is organized as follows. Section 2 presents the probabilistic concepts for
tolerance analysis and synthesis. Section 3 reviews tolerance analysis in connection with
the reliability index and provides the basis for simplification. Section 4 formulates
tolerance synthesis as a probabilistic optimization problem and then converts the problem
into an NLP problem. Section 5 develops an algorithm of ensuring convergence to global

optimum. Section § illustrates the algorithm with examples.



2. BASIC CONCEPTS FOR TOLERANCE ANALYSIS AND SYNTHESIS

To capture the randomness of manufacturing processes, a random vector
X=(x1,-~,xn)T is used to represent the n dimensions in an engineering drawing. Mean and
standard deviation vectors for X, denoted by f(':(;l,-",;n)T and E=(al,---,an)T, are
associated with nominal dimensions and tolerances, respectively. The notation in this
paper is given in Table 1.

<Insert Table 1>

Each dimension variable X, is assumed to follow the normal distribution since errors
in the processing of X, are due to many small independent sources (operator, material,
machine, etc). Indeed, Mansoor [15] showed that most manufacturing processes produce
dimensions having a normal distribution. The interval between symmetric tolerance limits
is then considered as a confidence interval. Symbolically, if the confidence coefficient for a
dimension X, is T the corresponding confidence interval is ;i — 0 S X < "Ei + %, and
the tolerance is 27icri. Tolerance is then determined by standard deviation and confidence

coefficient.

In the n dimensional space, the region bounded by the tolerance limits is called a
tolerance region R.. It is the region within which dimensions are to be manufactured.

The tolerance region for the two dimensions x, and x, of F (X) in (3) is illustrated in

1
Figure 4—(a). Because of the probabilistic nature, this manufacturing objective can be
represented by a confidence level. For example, i3¢7i indicates a confidence level that
99.73% of the dimensions will be in-spec. The confidence level o for each dimension is
assumed to be given. Then, the confidence coefficients 7;'s can be derived strictly from the
normal distribution table since =1~ 2@(-7i). Hence, tolerances can be determined by

standard deviations only.

<Insert Figure 4>



Stack-up conditions are assumed to be given and are represented by requirement
functions FJ.(X), 1<j<m, that are inequalities. Each inequality divides the space into a safe
region Rg = {X | FJ.(X)ZO for j=1,-m} and a fail region R,={X | FJ.(X)<0 for j=1,--m}.
These two regions are illustrated in Figure 4—(b), again using F (X) as-an example. The
hypersurface denoted By FJ.(X)=0 is called the limit-state surface and the value of FJ.(X),

denoted by MJ., is called the safety margin of the j-th requirement function.

The intersection of R, and Ry is referred to as the reliable region RR' Symbolically,
R={ X|R NRg} = { X|{N1, & - 70, = x;, < X +30)} N{F,X)=0,~F_(X)=0}}.
It is formed by m+ 2n functions: m of them are from the requirement functions for R and
2n functions are from the upper and lower tolerance limits for the n dimensions. To
simplify the explanation on reliable region, hereafter, the functions defined by tolerance
limits will also be referred to as requirement functions. That is, the tolerance limit for Xy
ie., Ei - Ne S XS §i+7i0i’ will be treated as two different requirement functions X, —
x,+7.0, and §i+~/iai — x;. A reliable region is illustrated in Figure 4—(c) for the R, and
RR from Figures 4—(a) and (b). It is noted that the RR depends on o, since the RT varies
with o, Figure 5—(a) shows two tolerance regions having the same P(RT). These two
regions are, however, different in area because of the difference in the standard deviation
of the two density functions. But, for a given set of stack-up conditions, R, is fixed as

S
illustrated in Figure 5—(b).

An important concept called yield is computed as the probability of X being in RR’

i.e.:

PRp) =[x cg, 4& V)X (@)

This probability indicates the degree to which the manufactured dimensions satisfy the
given stack-up conditions. Note that R, and RS correspond to the region for the

manufactured dimensions and for the desired stack-up conditions, respectively. The yield



P(Rp) increases by being given smaller tolerances (standard deviations). Figure 5-(c)
illustrates this concept. The one on the right offers a higher yield than the one on the left,
since it has smaller tolerances. But, smaller tolerances may incur higher manufacturing
costs. To resolve the trade-off between yield and cost, due to tolerances, a synthesis
procedure is needed. But, the basis for synthesis should be established first.

<Insert Figure 5>



3. SIMPLIFICATION OF TOLERANCE ANALYSIS

Tolerance analysis is to compute the yield P(RR) from a set of tolerances (standard
deviations) that constitute the multivariate normal p.d.f. ¢(X;V) in equation (4). The
integration is to be taken in the reliable region RR bounded by m+2n functions. As an
inner loop in the overall algorithm for tolerance synthesis (shown in Figure 3), tolerance

analysis demands speed and accuracy.

For speed, a two-step approximation of RR’ illustrated in Figure 6, is taken: first as
a convex polytope and then as an inscribed hypersphere. While the computational
advantage of replacing m+2n functions by m+2n hyperplanes and subsequently by a
single radius may be obvious, the locations at which linear approximation is to be taken
may not be. For accuracy, the consideration of preserving the probabilistically densest
area should be taken as illustrated by the column of figures on the right. Now, suppose
Ry has been suitably transformed such that the dimensions z, are independent and that
they follow the standard normal distribution. Refer to Figure 7 and consider two

expansion points for linearization, Zl* and Z_*

0 with distances d1 and d2’ respectively.

Because of normality, the densest area is in the vicinity of the origin. Furthermore, the
: o . -d.2/2 _ -d,%2
density decreases exponentially in distance squared, ie., (1/27)(e "1 "“ —e "2 " %) It
becomes clear then, by choosing the point Z* closest to the origin, as illustrated in Figure

7—(b), both speed and accuracy can be achieved.

<Insert Figures 6 and 7>

The reliability index 8 is defined as the minimum distance from the origin to a limit-
state surface formed by a requirement function in an independent standardized coordinate
system, called the standard system. (The transformation from the dependent vector space
X to the standard system Z is explained in the Appendix.) The point Z* on the limit-state
surface with the minimum distance to the origin is referred to as the design point.

Linearization at the design point is performed by finding the tangent hyperplane in the



standard system. The requirement function G(Z) is thus linearized by the tangent
hyperplane L(Z*) at Z* such that RF is approximated by R,; The remainder of this

section is devoted to the relations between P(RR) and .

Consider the simple case of only one requirement function. Because of the rotational
symmetry in the standard system, the probability of covering one side of the tangent
hyperplane can be computed from the univariate normal distribution. Hence, the

approximated yield P(R;) only involves looking up the standard normal distribution table.

Lemma 1. In the case of a single requirement function, P(RR) can be approximated by

P(Rp) ~ #(). (5)

Note that, for a linear requirement function, P(RR)= ®(3). The accuracy of (5) depends on
the curvature of the requirement function. As long as the radius of curvature at the
design point is large compared to the reliability index, (5) has been shown to be quite

accurate in most practical cases [14].

Now, consider the general case of multiple requirement functions. The
approximated reliable region RR after the linearization is always convex and P(RR) can be

obtained by the following lemma:

Lemma 2. The yield P(RR) is approximated after the linearization by:

PRy = PR = frrine % 400ty s .

where the correlation matrix of z's, denoted by CM’ is the correlation matrix of the safety

margins Mj [6].

Bounds are useful since equation (6) cannot be evaluated for a general CM [6,7].
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Lemma 3. The probability of covering the convex polytope R; is bounded by:

xi((min ;}__ﬁzn ﬂj)z) < P(R;) < min

m+2n

The lower bound is based on the observation that the hypersphere with a radius of the

*

minimum of BJ always lies inside R’R (and RR) and the probability covered by this n-

m+2n

dimensional hypersphere is X,zl ((min i=1

,Bj)z). The upper bound of (7) holds since the

probability of the intersection is less than or equal to its component probability.
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4. FORMULATION OF TOLERANCE SYNTHESIS

The objective of tolerance synthesis is to determine tolerances by minimizing the
manufacturing cost C(T). The tolerances t, are constrained to satisfy the stack-up
conditions with a certain probability level such that at least a given yield, 1 — 6, should be

guaranteed. The problem can be then formulated as:

Min C(T)
subject to (8)

P(RR) =>1-4

where t. =0 fori=1,--n,

Associating tolerance t. with standard deviation o,, problem (8) becomes the following
probabilistic optimization problem, in which all the parameters are described by random

variables and their first and second moments:

Min C(%)

subject to (9)

XV)dX=1-6
erRR¢

where o z0 for i=1,-,n.

Since (9) involves the computation of yield in the constraint, the formulation can be
simplified by using the reliability index. This simplification converts (9) into a

deterministic optimization problem.

The discussion begins with the simple case of a single requirement function. Based
on Lemma 1, the constraint of (9) can be modified such that the reliability index should be
greater than 8* where the constant f* comes from the equation 1—§=&(3*). Then, the

formulation becomes:
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Min C(Y)
subject to (10)
B=p

1-6 = &(G*).

Formulation (10) is next extended to the general case if the values of 6j for each of the

FJ.(X), 1<j=m+2n, are given.

Suppose the 6j’s are same, e.g., 6j=6, for 1<jsm+2n. This implies that each stack-
up condition is satisfied with at least 1—¢ level. Then, the resultant yield P(RR) is upper
bounded by 1-6 due to Lemma 3. This approach, referred to as MULTI-1, is formulated

as follow:

Min C(T)
subject to (11)

,Bj = [* for j=1,--m

1-6=%(3%).

Notice that the constraints for the tolerance limits are omitted since they have already
been considered when setting the confidence coefficients. That is, for m+1<j<m+2n,
ﬂj = g% = % MULTI-1 gives loose tolerances since the desired yield is reflected by its

upper limit.

Another approach MULTI-2 is designed here to reflect the desired yield with the
lower limit so that tighter tolerances are produced. As indicated by Lemma 3, the lower
limit of P(RR) can be obtained through the largest hypersphere inscribed in the
approximated reliable region R;, which is a convex polytope. The center of such a

hypersphere must be coincident with the origin in the standard system. This approach can
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be summarized as follows:

Min C(T)
subject to (12)

B8 = g* for j=1,m

2
1-8=x.(8*%.

As in (11), the constraints for the tolerance limits are omitted since ﬂJ =p¥ = % for

m+1<jsm+2n. MULTI-2 produces tolerances that ensure at least 1—§ yield.

From these two approaches, the limits of tolerances for the convex polytope

representing the yield 1—46 can be obtained as follows:

% sg < % forl<i<n (13)

where o, and o, , are the i-th standard deviations from MULTI-1 and MULTI-2,

1 12

respectively.

To aid the decision of choosing o, a simple variation of MULTI-1, referred to as
MULTI-1.5, is also developed by setting /* based on the equations @(ﬁ*)=(1—6)1/m
MULTI-1.5 has a special meaning if the requirement functions are nonnegatively
correlated, i.e., if every element of CM is nonnegative. Under this condition, P(R;) of

m+2n

equation (6) is greater than [].

i=1 <I>(ﬁj), which is the approximated yield when the

requirement functions are independent, i.e., when C, is an identity matrix [7]. In other

words,

T2 "8(8) < PRy) < min |~ ™(a(4)). (14)

1/m

By distributing 6 equally into the m stack-up conditions through (1—6)"", the lower and

upper bounds of (14) become (1-6) xP(RT) and (1-6) l/m, respectively.
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5. ALGORITHM

An algorithm for the nonlinear programming problems (11) and (12) is developed.
To show convergence, emphasis is given to the monotonicity among the reliability index,
cost, and tolerances (standard deviations). A function g(X) is said to be monotone

nonincreasing in every elements X if X12X2 results in g(Xl)Sg(Xz).

5-1. Monotonicity of Cost in Tolerance

Monotonicity is generally understood in practice: the more tolerance the less cost.
Indeed, most tolerance-cost models [19,20,22] describe this relation with inverse or
exponential functions. A common characteristic of these models is that the first derivative
of the cost function 49Ci(c7i)/6ai is always negative and monotone increasing with respect to
tolerance (standard deviation). These properties imply that Ci(c’i) is strictly decreasing
convex. This paper uses the following additive cost function to represent the total

manufacturing cost:
n
C(® =Y Co) (15)
1=1
Then, the following lemma holds since the sum of convex functions is also convex:

Lemma 4. C(Y) is a convex function.

5-2. Monotonicity of Reliability Index in Tolerance

Observe the effect of a change in tolerance on the change of distance dj 0 of a point

X0 on the limit-state surface Fj(X)=O to the origin of the standard system.
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Theorem 1. If the dimensions are independent,

ijo
— =<0 for 1<i<nand 1sjsm.
Bcri

Proof. The distance dj o can be expressed by {(Xo--“)ff)TV—l(Xo—i)}l/2 (For details, refer
to the Appendix). This expression corresponds to the equation of an ellipsoid with center
X, the semi-axes of which are expressed as the product of dj 0 and the standard deviations.

Then,

=2
, & (g %)
0 = X (16)

y k" 2
%k

d,
i

—

As a standard deviation o decreases, the distance dj 0 from a point chosen arbitrarily on

FJ.(X) to the origin increases. @

From this theorem, it follows immediately that the minimum distance, i.e., the reliability

index, also increases if a standard deviation decreases.

Lemma 5. If the dimensions are independent,

%

—=<0 for 1sisnand 1<jsm.
Bai

This lemma not only shows the nonincreasing monotonicity of the reliability index, but also
reconfirms the trade-off between tolerance and performancs: the tolerance represented by
standard deviation has an inverse relationship with performance implied by the reliability

index.
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5-3. Convergence to Global Optimum

From Lemma 5, the functional form of ﬁi can be established.

Lemma 6. ﬂj, which is a function of X, is a quasi-concave function provided that the

dimensions are independent.

Proof. A function is quasi-concave if the functional value of the convex combination of
any two arbitrarily chosen points is greater than or equal to the lesser of the functional

values of the two chosen points. From Lemma 5, ﬁJ is quasi-concave. @

Lemmas 4 and 6 provide the basis for the development of the algorithm. With the
additional aid of Lemma 7, the local optimum satisfying the Kuhn-Tucker conditions [23]

becomes the global optimum.

Lemma 7. In the NLP problem with C(X) and ﬁj, for 1<j=m, differentiable to o, for
1<i<n, let the minimization-based objective function C(Z) be convex and the censtraints 5_,
be quasi-concave. Suppose I* satisfies the Kuhn-Tucker conditions. Then I* is optimal

for the NLP problem.

Proof. The proof can be found in pp. 43-44 of [23].

5-4. Development of the Algorithm

Algorithm TOL-M is developed for problems (11) and (12). The algorithm starts
with fairly large tolerances. This initial assignment incurs a low cost but it may not
satisfy the stack-up conditions. To satisfy the conditions, some or all of tolerances need to
be decreased. TOL-M provides a tolerance reduction procedure to the level that the

resulting reliability index is equal to *. For clarity, it is described in pseudo-PASCAL.
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Algorithm TOL-M

{Input : Requirement functions FJ.(X), j=1,m
Output: Optimum standard deviation vector £*
Note : * comes from the equation 1—6=&(3*) for (11) or 1-6= X,zl(ﬂ*z) for (12).}
Begin
StopFlag: = false;
T*:= fairly large standard deviations;
Repeat
Forj:= 1tomdo
Calculate ﬁJ under the current T*;

{Refer to the iterative scheme in the Appendix for computing ﬁj}
ﬁ = min(ﬁly""ﬂm);

min’
If Iﬂmm‘ﬁ*l < ¢ then StopFlag: = true
Else
If ﬂmin > B* then

Obtain new I* by increasing some standard deviations
{Under the current solution, the system is over-reliable}
Else
Obtain new I* by decreasing some standard deviations;
{Under the current solution, the system is under-reliable}
Until StopFlag = true;
End;

The increase or decrease of standard deviations at every iteration is done by the following

three steps:

(1) Check each variable in the given order to see if it can be changed to make the

constraints more feasible.

(i) If so, modify the variable. The amount is determined by bisection because of the

monotonicity of the reliability index.

(iii) Repeat steps (i) and (ii) from the next variable.

This local search procedure (i)~ (iii) guarantees the convergence to the global optimum due

to Lemma 7.

Theorem 2. Algorithm TOL-M converges to the global optimum of problems (11) and

(12), under the assumption of independence of dimensions.
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6. EXAMPLES

The algorithm has been implemented in PASCAL and it runs on the University of
Michigan IBM 3090-400/VM under the MTS operating system. Two examples, in which

the requirement functions are linear and nonlinear, are examined.
Example 1. Linear Stack-Up Conditions

The linear requirement functions for this example are listed in Figure 8. The first
requirement function F (X) is for the size condition of the base part, that is, the length
x,+x, is to be less than or equal to 5.005 . The other three functions reflect the clearance
conditions between the two parts.

<Insert Figure 8>

The nominal dimensions are given as X' = (1.0, 2.0, 3.0, 4.0, 1.0, 0.998, 2.0,
2.998). And, the additive cost function of (15) is used for total manufacturing cost where

each tolerance-cost function Ci(cri) is assumed to follow

ajx10_3

C(s) = —m—m——— (17)
11 b
(6071

The coefficients in (17) are set as: a.=a,=1.0, a

152, =a,= 1.5, a5=0.8, a6=0.9, a7=0.8, and

3
a;=0.6; and b1=2.0, b2= 1.8, b3= 1.7 b4=2.0, b5=3.0, b6=2.0, and b7=b8=1.9. With
these data, three approaches (MULTI-1, MULTI-1.5, and MULTI-2) are tested for a 95%

yield, i.e., 1—6=0.95.

The initial variances are assigned in accordance with the loose fit case of ANSI-
Y14.5M [2] for hole and shaft tolerance determination. The result of executing TOL-M is
given in Table 2. MULTI-1 generates loose tolerances as prescribed by the upper bound in

Lemma 3. For a total cost of 946.83, each stack-up condition would be satisfied with a
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95% confidence if the dimensions X, to xg are manufactured within the tolerances obtained
by MULTI-1. MULTI-1.5 gives the result when the 95% yield is equally distributed into

)1/4=O.98726. With the tolerances from

the given‘ four stack-up conditions by (0.95
MULTI-1.5, each stack-up condition can be satisfied with 98.726% confidence. MULTI-2
generates tight tolerances by inserting a hypersphere covering 95% into the reliable region,
for a total cost 6383.17. The four stack-up conditions are satisfied simultaneously with at
least the 95% confidence. The resulting yield from the tolerances of MULTI-1 and
MULTI-1.5 are upper bounded by 95% and 98.726%, respectively. MULTI-2 ensures the
given 95% yield while MULTI-1 and MULTI-1.5 may not.

<Insert Table 2>

Example 2. General Stack-Up Conditions

Six requirement functions for Example 2 are shown in Figure 9. The first and
second functions, Fl(X) and FZ(X), are for the vertical and the horizontal clearance
conditions of the two parts. And, the third and the fourth functions show that the
difference between angles 01 and 92 should be within +#/180 radians for successful
assembly. The last two functions show that the size difference of the two parts should be
within 0.01.

<Insert Figure 9>

The nominal dimensions are given as XT = (59.0, 40.00125, 20.05, 9.9985, 9.9985,
30.0, 10.0, 30.0, 10.05, 30.0, 40.0, 50.0). Each tolerance has the cost function of (17).

The coefficients in (17) are set as: a1=0.2, a2=1.0, a =a4=0.015, a5=0.008, a6=0.009,

3

a7=0.008, a8=0.006, a9=1.0, a10=0.01, a11=0.015, and a12=0.2; and bl=~-=b12=2.0.
With these data, three approaches (MULTI-1, MULTI-1.5, and MULTI-2) are tested for a
95% yield. The result of executing TOL-M is given in Table 3.

<Insert Table 3>
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7. SUMMARY

This paper presents a unified procedure for tolerance synthesis by distributing
tolerances so as to satisfy the stack-up conditions. As a global criterion, cost minimization

is used.

Probabilistic concepts for tolerance analysis and synthesis are introduced. In terms
of dimensions and tolerances, areas of interest to manufacturing and to design are defined
as tolerance region and safe region, respectively. The intersection of the two regions, i.e.,

the reliable region RR’ is investigated in detail.

Tolerance analysis for computing P(RR) is expedited through an approximation of
RR with a convex polytope R;. Bounds of P(R;) is examined by using the reliability index
B. For the upper and lower bounds, the probabilistic optimization problem for tolerance
synthesis is converted into two NLPs. Then, effort is devoted to developing an algorithm,

which is an iterative method of ensuring convergence.

This iterative method demonstrates the potential for automatic tolerance synthesis,
especially for the general nonlinear case. The concepts in this paper contributes to the
understanding of parameters in design, manufacturing, and assembly by investigating:

(a) the relation between tolerance and nominal dimension,
(b) the relation between tolerance and desired yield, and

(c) the relation between tolerance and stack-up condition.
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APPENDIX. RELIABILITY INDEX

The solution scheme for the reliability index is composed of the following two steps:
first, transform the correlated variable space into the standard system; second, find a point
which is of the minimum distance from origin to the limit-state surface of a requirement

function.

The transformation of the correlated vector X is accomplished by taking the
following three steps [8]: first, translation X°= X — X; second, orthogonal transformation
Z°=PTX°, where P is the orthogonal matrix to diagonalize V through PTVP=VZ; third,
standardization Z=D " 'Z° where DDT=VZ. Figure 10 shows the changes of a given
function before and after the transformation. Then, the requirement function in the

standard system is expressed symbolically by G(Z) as:

GZ) = FO " 'P'xX-X)

<Insert Figure 10>

The next step is to find a point on the limit-state surface G(Z) having the minimum
distance from the origin. Since the Euclidean distance from the origin to a point Z is

12 _

expressed as (2'2)"% = (X-X)TV ™1 (x-X))

, the following NLP can be used for finding 3:

Min #=X-X)'V x-X)
subject to (18)

FX) < o.

Here, the objective function is expressed as 52 instead of S since the positive definiteness of

the covariance matrix V always guarantees the same solution.

As a solution scheme for (18), the iterative method based on the Newton-Raphson

method [7,14] is used:
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X = X+ VVFX"™)

vF(X(k))T vV VF(X(k))
where X% denotes the solution after the k-th iteration and VF(X) is the nx1 gradient

vector of F(X) at X.
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Table 1. Notation

Notation Description
CQ) manufacturing cost function
Fj(X) the j-th requirement function where FJ.(X) = 0 is the desired condition
m number of given requirement functions, 1<j<m
MJ. safety margin of FJ.(X)
n number of tolerances to be decided, 1<i<n
P(; probability
RR reliable region
RS’ RF safe region, fail region
RT tolerance region
R* approximated region
T tolerance vector
\Y% nxn covariance matrix
X random vector for dimensions
X mean vector of X
Z dimension vector transformed into the standard system
ﬂj reliability index for FJ.(X)
g* reliability index derived from the desired yield
g7 given éonﬁdence coefficient for X,
) permissible dissatisfaction of assembly ,i.e., 1—¢ is the desired yield
6). permissible dissatisfaction of Fj(X)
) standard deviation vector of X
&() cumulative standardized normal distribution function
¢X;V)  multivariate normal p.d.f. having mean X and covariance V
2

cumulative chi-squared distribution with n degree of freedom




Table 2. Result of Example 1

Dimension X,

(*)
Tolerance ti

MULTI-1 MULTI-1.5 MULTI-2

X, 0.00446 0.00328 0.00186

X, 0.00168 0.00124 0.00070

Xg 0.00238 0.00176 0.00100

X, 0.00547 0.00403 0.00229

Xg 0.01740 0.01281 0.00727

Xg 0.00168 0.00123 0.00070

X, 0.00142 0.00104 0.00059

Xg 0.00371 0.00273 0.00155
Normalized Cost 1.00 1.92 6.74
(Actual Cost) (946.83) (1,816.38) (6,383.17)

Run Time
in CPU seconds 0.137 0.141 0.151

*)

set at Gai




Table 3. Result of Example 2

Dimension X

Tolerance t.l

*)

MULTI-1 MULTI-1.5 MULTI-2

X, 0.0265 0.0187 0.0093

X, 1.7907 1.2331 0.6411

Xq 0.0840 0.0579 0.0301

X, 0.1023 0.0705 0.0367

Xy 0.0280 0.0019 0.0010

Xg 0.0032 0.0022 0.0011

X, 0.0028 0.0019 0.0010

Xg 0.0021 0.0015 0.0008

Xq 1.7947 1.2385 0.6451

X0 0.1035 0.0714 0.0371

X, 0.0840 0.0579 0.0301

X, 0.0250 0.0168 0.0092
Normalized Cost '1.00 2.11 7.77
(Actual Cost) (4.93) (10.38) (38.30)

Run Time
in CPU seconds 0.416 0.418 0.417

*

) set at 60.1
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D+ (@+b+c¢

Figure 1. Tolerance Stack-Up
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X
«—l »
(a)
— X3 g
clearance between x, and x, 2 0.0001
FiX) 20 where F(X)= x,-x,-0.0001
(b)

vertical height from AtoB < 5.2000
F,(X) 2 0 where

F,(X)= - x,sinx; - x, sin(x; +X3) +5.2000

Figure 2. Examples of Linear and Nonlinear Stack-Up Conditions
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Tolerance Synthesis

Initial Tolerance
- Setting

r

Tolerance Distribution

l

Tolerance Analysis

|

Feasibility Test

l feasible
optimum

not
( Cost Model %4~  Optimality Test

A

rStack-up conditions |#----1.-%

Infeasible

N

r Desired yield Y s B

N

Optimum Tolerances

Figure 3. Basic Scheme of Tolerance Synthesis
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(a) tolerance Rl‘

limit of X, 2

>4

A
H : ' \ > X .
tolerance
limit of x;
F(X) =0
(b)
» X
FX) =0
(c)
* —
0.00

Figure 4. Tolerance, Safe, and Reliable Regions
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- §99.73% 99.713% | Ry
(a) \ 99.46% 9 99.46%

99.73% ‘ ’ 1/99.:73% ‘ '
Xl X {
X, 4 X, 4
(b)
> >
X, Xy

< 99.46%

()

99.46%

Figure 5. Effect of Tolerances on Reliable Region
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Figure 6. Approximation of R,
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- Limit-State Surface G(Z)

R*
F
. design point Z*

(b)

Figure 7. Reliability Index as Distance
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< X3 "
\ '« e —>
: : >
< b ! : :
> *3 > E :
< ‘{4 *—XS >
FX)= -x -x + 5005
1 4 5
F (X) = X _ =X - X +x - 00003
2 2 1 8 7
F (X) = X_=- X - X +x = 0.001
3 7 6 3 2
F X) = X - xX_ - x = 0.0003
4 4 3 6

Figure 8. Example of Linear Requirement Functions



+ >
: - X3 »
Sy G . E
X 5
Xl6 E E
A A ' :
é = s
s SR R
b : \ :
< X5 > ! :
E‘ 717 . ’E
F (X) = (xs-xs)-(xs- x7)
K X)= (X3-%xy) - (X~ Xy9
F3(X)= (Xg-X.,)*(X 2-X3)-(X6- Xs)*(xlo‘xg)
+tan (/ 180) * {(xw' xg)*(x2 - )(3)+(x8 - x7)*(x6- xs)}
F4(X)= (X6-X5)*(X10- Xg)-(Xs-X7)*(X 2'X3)
+ tan(w/ 180) * { (Xy0- Xo)* (X2 - X3 )+(Xg - X7 ) *(x¢- X5)}
EX)= -x, +x  +00l
Fs (X) = X; - Xy + 001

Figure 9. Example of Linear and Nonlinear Requirement Functions
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X* (design point)

' Up)

\ Z* (design point)

A\

W >

ﬂ\ 2
G(Z)

Figure 10. Transformation to the Standard System
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