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PREFACE

One of the major driving forces of the semiconductor industry is the continuous scaling

of the silicon process technology. Over the last four decades, the scaling into a new silicon

technology every few years offered to the computer architects smaller, faster, and cheaper

transistors that made possible the development of high-performance microprocessors. This

technological achievement also fueled the widespread adoption of microprocessor-based

products in applications that touch every aspect of our life. However, the challenges in

producing reliable devices in extremely dense silicon technologies are growing, with many

device experts warning that continued scaling will inevitably result in silicon technology

generations that are much less reliable than the current ones. Microprocessors manufac-

tured in future silicon technologies will likely experience failures in the field due to silicon

defects occurring during system operation. In the absence of any viable alternative tech-

nology, the success of the semiconductor industry in the future will depend on the creation

of cost-effective mechanisms to tolerate silicon defects in the field while the microproces-

sor is in operation.

This thesis is focused on the exploration and evaluation of new alternative defect toler-

ance techniques that will provide low-cost online mechanisms to protect a microprocessor

design from silicon defects. The approach of these novel defect tolerance solutions rep-

resents a new thinking in the field of defect-tolerant design. In particular, traditional ap-

proaches to defect-tolerant design saddle a system with costly redundant components that

continuously verify the integrity of all computation. In contrast, the BulletProof approach,

presented in this thesis, provides very low cost defect-tolerance through periodic online

hardware checking by combining area-frugal hardware checkers with microarchitectural

checkpointing. The use of checkpointing and recovery mechanisms provides computa-

tional epochs and a substrate for speculative unchecked execution. At the end of each

epoch, the epoch’s speculative computation is validated bychecking the integrity of the

underlying hardware using on-chip hardware checkers. Thisenables a low overhead solu-

tion that only needs to periodically check the integrity of the underlying hardware rather

than continuously validate the execution using redundant computation.
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To further lower the cost of the BulletProof mechanism and provide more flexible

hardware checking strategies a new defect-tolerance approach is developed, called the

Access-Control Extension (ACE) Framework, that shifts thesilicon defect detection and

diagnosis process from hardware to software. This new approach, allows special ISA

instructions to access and control virtually any part of theprocessor’s internal state. Based

on this framework, special firmware periodically suspends the processor’s execution and

performs high-quality testing of the underlying hardware to detect defects.

This thesis, also makes the case that the hardware used to implement defect tolerance

solutions, like the hardware resources of the ACE framework, can also be used for other

applications to amortize their cost and ease the adoption ofdefect-tolerance mechanisms

in future generation microprocessor designs. Specifically, it is demonstrated that the ACE

framework hardware resources can also be used for (i) the online detection of design bugs,

(ii) as a post-silicon debugging tool, and (iii) for improving the manufacturing testing

process.

Finally, this thesis presents CrashTest, a novel FPGA-based framework used to assess

the threats and the reliability requirements of a microprocessor design. The CrashTest

framework differs from other resiliency analysis tools in two ways. First, it can automati-

cally orchestrate a fault injection and analysis campaign on the gate-level netlist of a mi-

croprocessor design using an extensive collection of low-level fault models, and second, it

employs FPGA-based accelerated hardware emulation to enable a detailed low-level fail-

ure analysis of complex full-system designs that can boot anoperating system and run

applications.

Altogether, the defect tolerance solutions presented in this thesis provide to a micropro-

cessor design the same reliability guarantees as traditional defect tolerance techniques, but

at a much lower cost and with higher flexibility and online adaptivity. This cost-effective

defect-tolerance framework makes possible the development of reliable microprocessors

using unreliable silicon technologies. The ability to use unreliable silicon technologies

to manufacture reliable microprocessors will enable the continued silicon process scaling

into smaller but less reliable transistors, a key requirement for the development of the next

generation microprocessors and the extension of microprocessor-based products into new

applications.
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CHAPTER I

Introduction

For the last four decades, the semiconductor industry followed a trend known as the

Moore’s law [92]. Specifically, the Moore’s law states that about every two years the

transistor density of integrated circuits doubles. This means that about every two years, a

microprocessor can have double the number of transistors inthe same chip area. Since the

release of the first commercial silicon-based microprocessor, almost forty years ago, the

semiconductor industry was able to follow Moore’s law due tothe continued scaling of

the silicon process technology that enables the fabrication of transistors with smaller di-

mensions. The major benefit of following the Moore’s law is that with each scaling into a

new silicon technology, every couple of years, the computerarchitects are offered smaller,

faster, and cheaper transistors that makes possible the development of high-performance

modern microprocessors. This technological achievement,over the last few decades, fu-

eled the widespread adoption of microprocessor-based products in applications that touch

every aspect of our life.

Currently, most mainstream consumer electronic devices are being produced with 65

and 45 nm silicon technology processes (that is the size of the smaller dimension in a

transistor), and most microprocessor vendors are moving towards the adoption of the 32

nm silicon process technology. However, challenges in producing reliable components in

these extremely dense technologies are growing, with many device experts warning that

continued scaling will inevitably result in silicon technology generations that are much

less reliable than the current ones [15, 123].

The cost due to the reliability challenges of future siliconprocess technologies is qual-

itatively illustrated in Figure 1.1. As shown in the graph, the primary benefit of technol-

ogy scaling is the reduction in the cost per transistor with each new technology genera-

tion [44]. This trend makes the transition to newer technology generations more profitable

to microprocessor vendors and it also enables the development of higher-performance mi-

croprocessors with more transistors. However, as the inherent reliability of new silicon

1
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Figure 1.1: The Cost of Silicon Reliability: The graph shows the cost per transistor and
the reliability cost for producing reliable microprocessors as the silicon process technology
scales into future less reliable generations.

technologies wanes, we observe an increase in the reliability cost. The increase of the re-

liability cost can be due to either (i) the cost of shielding the microprocessors with built-in

defect-tolerance techniques, or (ii) the cost of research and development (R&D) needed

to develop new silicon process technologies that would allow the scaling to smaller fea-

ture sizes, but maintain the device reliability characteristics of the previous silicon pro-

cess technologies. This reliability cost is contributing to the projected overall product

cost. Experts warn that if this trend continues, eventuallythe silicon process technology

scaling will reach a point where the reliability cost will overtake any benefits offered by

smaller/cheaper transistors and any further scaling will be unprofitable for microprocessor

manufacturing companies. This point is the minimum on the projected product cost curve

shown in Figure 1.1.

To postpone or even eliminate this technology advancement barrier, the rate at which

the reliability cost is increasing must be constrained. Technology experts suggest that this

can be achieved by (i) building silicon-based semiconductor products out of unreliable

components/technologies, and (ii) providing reliabilityto these products through online

very low cost defect-tolerance techniques [17, 4]. The goalof this thesis is the exploration

and evaluation of new, alternative, low-cost defect-tolerance solutions for microproces-

sor designs that will reduce the reliability cost induced byscaling into smaller and more

unreliable silicon process technologies.

1.1 Why Does Silicon Fail?

1.1.1 The Bathtub Curve

Since the dawn of silicon processing, it has been recognizedthat the failure probabil-

ity distribution function of silicon-based semiconductorelectronic products over time is

2
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Figure 1.2: The Bathtub Curve: The bathtub curve indicates the qualitative trend of
device failure rates for the population of a silicon-based semiconductor electronic product
over time. The initial operational phase and the “aged-silicon” phase are characterized by
much higher failure rates. The bathtub curves of future silicon process technologies are
expected to shrink and exhibit higher device failure rates.

shaped like a bathtub. The bathtub-curve failure probability distribution function is char-

acterized by three distinct phases as illustrated in Figure1.2.

• Infant Period: The beginning of the product’s lifetime is characterized byan initial

high rate of device failures. These high failure rates are due to latent manufacturing

defects that escape the initial product testing. These failures surface quickly when

the manufacture-impaired devices are stressed as the products get into operation.

However, the initial high failure rate declines rapidly as the remaining devices that

pass the initial operating stress are more robust and less likely to fail.

• Grace Period: When early device failures are eliminated, the failure ratefalls to a

constant value where device failures occur sporadically due to the occasional break-

down of weak transistors or interconnect. It is highly desirable that the grace period

will dominate a product’s lifetime since this is the period where the product exhibits

the lowest failure rates and the highest reliability.

• Breakdown Period: After the grace period, device failures start to occur with in-

creasing frequency over time due to age-related wearout. Many devices will enter

this phase at roughly the same time, creating an avalanche effect and a quick rise in

device failure rates. However, since not all devices will fail at once, it is likely that

a short graceful degradation period exists over which a few initial device failures

begin to signal the onset of the device breakdown period.
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As the silicon process technology scales into smaller transistor feature sizes, the bath-

tub curve of electronic products fabricated with these silicon process technologies is ex-

pected to shrink and exhibit higher failure rates. This willlead to products with shorter

expected lifetimes. Furthermore, during their grace period, these products would be char-

acterized by more frequent device failures.

The low-cost defect-tolerance solutions explored in this thesis are addressing the de-

vice failures that occur in the first two phases of the bathtubcurve, namely, the infant

period and the grace period. The objective of these mechanisms is to protect the micro-

processor from occasional device failures that might occurearly in its lifetime and tolerate

the first device failures through the graceful degradation period. This strategy, offers to the

user a time window to replace the defective part before the final breakdown.

1.1.2 Silicon Failure Mechanisms

Throughout the lifetime of a silicon-based semiconductor electronic product, its sil-

icon fabric is subject to a variety of failure mechanisms that can cause device failures

(leading to the previously mentioned bathtub curve). As thetransistor dimensions scale to

smaller sizes, these silicon failure mechanisms get aggravated. The following discussion

highlights the types of device failures that are expected tocharacterize future silicon tech-

nologies. Each of these failure mechanisms has received significant attention in the silicon

process technology literature, and each has been identifiedas a growing concern for deep-

submicron silicon technologies. The interested reader canrefer to [32, 103, 115, 125, 57]

for a detailed treatment of these mechanisms.

Transistor Infant Mortality: Extreme device scaling exacerbates early transistor fail-

ures. Early transistor failures are caused by weak transistors that escape post-manufacturing

validation tests. These weak transistors work initially, but they have dimensional and dop-

ing deficiencies that subject them to much higher stress thanrobust transistors. Quickly

(within days to months) they will break down from stress and render the device unus-

able. Traditionally, early transistor failures have been reduced through aggressive burn-in

testing, where, before being placed in the field, devices aresubjected to high voltage and

temperature testing, to accelerate the failure of weak transistors [23]. Those that survive

the burn-in testing are likely to be robust devices, therebyensuring a long product life-

time. However, in the deep-submicron silicon technologies, burn-in becomes less effective

as devices are subject to thermal run-away effects, where increased temperature leads to

increased leakage current, which in turn leads to even higher temperatures [87]. The end

result is that aggressive burn-in of deep submicron siliconcan destroy even robust devices.

Manufacturers are forced to either sacrifice yield by deploying aggressive burn-in testing,
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or experience more frequent early failures in the field by using less aggressive burn-in

testing.

Manufacturing Defects that Escape Testing:Optical proximity effects, airborne im-

purities, and processing material defects can all lead to the manufacturing of faulty transis-

tors and interconnect [103]. Moreover, deep-submicron gate oxides have become so thin

that manufacturing variation can lead to currents penetrating the gate, rendering it unus-

able [115]. Even small amounts of manufacturing variation in the gate oxide could render

the device unusable. The manufacturing defect problem is compounded by the immense

complexity of current microprocessor designs. Design complexity makes it more difficult

to test for defects during manufacturing. Vendors are forced to either spend more time

with parts on the tester, which reduces profits by increasingtime-to-market, or risk the

possibility of untested defects escaping to the field. Moreover, in highly complex micro-

processor designs, many defects are not testable without additional hardware support. As

a result, even in today’s manufacturing environment, untestable defects can escape test-

ing and manifest themselves later on in the field during operation. All these problems

are expected to worsen for future technologies and designs with smaller transistor feature

sizes.

Time-Dependent Wearout:Technology scaling has adverse effects on the lifetime of

transistor devices and interconnect, due to time-dependent wearout. There are three major

failure modes for time-dependent wearout:

• Electromigration: Due to the momentum transfer between the current-carryingelec-

trons and the host metal lattice, ions in the conductor can move in the direction of

the electron current. This ion movement is called electromigration [32]. Gradually,

this ion movement can cause clustered vacancies that can grow into voids. These

voids can eventually grow until they block the current flow inthe conductor. This

leads to increased resistance and propagation delay, whichin turn leads to possible

device failure. Other effects of electromigration are fractures and shorts in the inter-

connect. The trend of increasing current densities in future technologies increases

the severity of electromigration, leading to a higher probability of observing open

and short-circuit nodes over time [41].

• Gate Oxide Wear-out: Thin gate oxides lead to additional failure modes as devices

become subject to gate oxide wear-out (e.g., Time Dependent Dielectric Breakdown,

TDDB) [32]. Over time, gate oxides can break down and become conductive. If

enough material in the gate breaks down, a conduction path can form from the tran-

sistor gate to the substrate, essentially shorting the transistor and rendering it useless
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[41, 57]. Fast clocks, high temperatures, and voltage scaling limitations are well-

established architectural trends that aggravate this failure mode [125].

• Hot Carrier Degradation (HCD): As carriers move along the channel of a MOS-

FET and experience impact ionization near the drain end of the device, it is possible

to gain sufficient kinetic energy to be injected into the gateoxide [32]. This phe-

nomenon is called Hot Carrier Injection. Hot carriers can degrade the gate dielectric,

causing shifts in threshold voltage and eventually device failure. HCD is predicted

to worsen for future thinner oxide and shorter channel lengths [57].

Single-Event Upsets (SEU):There is also a growing concern about providing pro-

tection from single-event upsets (also known as transient errors or soft errors) caused by

charged particles, such as neutrons and alpha particles, that strike the bulk silicon portion

of a die [151]. Although SEUs do not break the silicon, their effect is a logic glitch that

can potentially corrupt combinational logic computation or state bits. While a variety of

studies have been performed that demonstrate the unlikeliness of such events [144, 142],

concerns remain in the architecture and circuit communities. This concern is fueled by the

trends of reduced supply voltage and increased transistor budgets, both of which exacer-

bate a design’s vulnerability to SEU.

Process Variation: Another reliability challenge designers are expected to face in

future silicon technologies is the design uncertainty thatis created by increasing process

variations. Process variations result from device dimension and doping concentration vari-

ation that occur during silicon fabrication. These variations are of particular concern be-

cause their effects on devices are amplified as device dimensions shrink [104], resulting

in structurally weak and poor performing devices. Designers are forced to deal with these

variations by assuming worst-case device characteristics(usually, a 3-sigma variation from

typical conditions), which leads to overly conservative designs.

In many systems today, these silicon failure mechanisms areassessed, and the nec-

essary margins and guards are placed into the design to ensure it will meet the intended

level of reliability, essentially employing a fault-avoidance design strategy. For example,

most transistor failures (e.g., gate-oxide breakdown) can be reduced by limiting voltage,

temperature, and frequency [59]. While these approaches have served manufacturers well

for many technology generations, many device experts agreethat silicon reliability will

begin to wane as silicon processing scales in deep-submicron technologies. As devices

become subject to extreme process variation, particle-induced transient errors, and tran-

sistor wearout, it will likely no longer be possible to avoidthese faults. Instead, computer

designers will have to begin to directly address system reliability through fault-tolerant

design techniques.
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1.2 Defect-Tolerant Microarchitectures

To address the concerns of silicon reliability, in this thesis we turn toward the devel-

opment and application of defect-tolerant microarchitectures. In addition to their base

functionality, defect-tolerant microarchitectures mustsupport extra capabilities that will

let the microprocessor to continue providing its intended service under the presence of

silicon defects. A defect-tolerant microarchitecture, once it becomes aware of a defective

part in the design, it needs to invoke a process that will reconfigure and repair the underly-

ing hardware. After a silicon defect manifestation, the system also needs to be recovered

from the defect’s effects, including the restoration of anycorrupted data or machine state.

In order to address wearout-related silicon defects, or manufacturing defects that escape

manufacturing testing, these capabilities need to be provided online while the product is

operating in the field. Online defect tolerance is usually divided into the following four

basic phases:

• Error Detection: Error detection is a vital capability for a defect-tolerantmicroar-

chitecture. Without error detection the system is unaware of the presence of any de-

fects in the design and can lead to incorrect functionality that violates the system’s

specifications. Error detection can be accomplished by redundant computation, by

error detection codes (i.e., parity and error correction codes), or by checking the

hardware for correct functionality. Unlike soft error detection, silicon defect detec-

tion through redundant computation requires the computation to be done on different

hardware to avoid common mode failures.

Error detection can be performed either at the macro-level or at the micro-level.

Macro-level error detection is usually applied at the microprocessor scope by tech-

niques like dual-modular redundancy and execution lock-stepping [118] that moni-

tor the output of the microprocessor for errors. Micro-level error detection is usually

applied at microprocessor subcomponents (e.g., functional units, or the register file)

by techniques like on-line built-in-self-test (BIST), residue checkers, or error detec-

tion codes.

Since execution errors can be caused by both silicon defectsand transients faults

(due to neutron strikes, electrical noiseetc.), error detection mechanisms are often

required to distinguish the source of the error in order to invoke the necessary re-

pair/recovery process. For example, restoring the processor’s state and restarting

execution is often adequate to recover from the effects of a transient fault. How-

ever, recovering from a permanent silicon defect is a more tedious process involving
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defect diagnosis and hardware repair/reconfiguration. Theability of an error detec-

tion mechanism to accurately distinguish the source of an execution error is very

important, since incorrect decision could disable or reconfigure functionally correct

hardware resources that have been victims of transient faults and lead to impaired

system functionality and/or performance.

• Online Defect Diagnosis:After an execution error detection, if a permanent sili-

con defect is indicated as the source of the error, an online defect diagnosis process

is triggered in order to identify the defective component inthe microprocessor de-

sign [20, 111]. During this process, the system needs to stall execution making

online defect diagnosis a performance-critical operation.

• Hardware Repair & Reconfiguration: The reconfiguration and repair of hard-

ware resources is an essential phase of defect tolerance forrepairing a defective

microprocessor and enabling the proper system functionality. Hardware repair can

be handled in many ways, including disabling, ignoring, or replacing the defective

hardware component. When there is enough hardware resourceredundancy in the

system, the hardware repair process can exploit this resource redundancy and simply

disable the defective component. Alternatively, if there is enough redundant compu-

tation in the system (like there is in systems that employ triple-modular redundancy)

the hardware repair may just be the ignorance of the defective component. Finally,

when the system employs hardware sparing, the repair process replaces the defective

component with a spare one.

• System Recovery:The final phase of online defect tolerance is the system recov-

ery. After hardware repair, the system needs to restore any data and machine state

that possibly got corrupted by the failure. System recoveryessentially makes the

manifestation of a silicon defect or a transient fault transparent to the application

execution and provides correct system functionality to theuser.

1.3 The Reliable System Design Space

When designing a defect-tolerant microarchitecture, there are two important design

factors that need to be taken into consideration. The first, is the type of device failures

that will be covered by the defect-tolerant microarchitecture. As discussed in the previous

section, the types of device failures range from transient faults (SEUs) due to energetic par-

ticle strikes [151] and electrical noise [138], to permanent silicon wearout-related defects

caused by electro-migration [50], stress-migration [59],and dielectric breakdown [147].
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The second design consideration, is the degree to which the system will be protected from

those device failures. Design solutions range from ignoring any possible device failures

(as is done in many systems today), to detecting and reporting device failures, to detecting

and correcting device failures, and finally failure correction with repair capabilities. This

results to a rich design space to be considered, as illustrated in Figure 1.3. Specifically,

Figure 1.3 illustrates the current fault-tolerant design space with the horizontal axis list-

ing the type of device failure that systems might experienceand the vertical axis listing

the design solutions to deal with these device failures. Note that in this design space,

the final two design solutions are the only solutions that canaddress permanent silicon

defects, with the final solution being the only approach thatmaintains efficient operation

after encountering a silicon defect.

In recent years, industry designers and academics have paidsignificant attention to

building resistance to transient faults into their designs. A number of recent publications

have suggested that transient faults, due to energetic particles in particular, will grow in

future technologies [15, 93]. A variety of techniques have emerged to provide a capability

to detect and correct these type of faults in storage, including parity or error correction

codes (ECC) [117], and logic, including dual or triple-modular spatial redundancy [117]

or time-redundant computation [31, 118] or checkers [68, 143].
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In contrast, little attention has been paid into incorporating design tolerance for per-

manent silicon defects, such as transistor and interconnect wearout. The typical approach

used today is to reduce the likelihood of encountering permanent silicon defects through

post-manufacturing burn-in, a process that accelerates the aging process as devices are

subjected to elevated temperature and voltage [147]. The burn-in process accelerates the

failure of weak transistors, ensuring that, after burn-in,devices still working are com-

posed of robust transistors. Additionally, many computer vendors provide the ability to

repair faulty memory and cache cells, via the inclusion of spare storage cells [121]. Re-

cently, academics have begun to extend these techniques to support sparing for additional

on-chip memory resources such as branch predictors [19] andregisters [114].

Currently, in the reliable system design space there are no low-cost defect-tolerance

techniques that can provide effective mechanisms to onlineprotect a microprocessor de-

sign from silicon defects, either those that occur during manufacturing or those that occur

when the device is in operation in the field. This thesis will attempt to bridge this gap in

the reliable system design space and explore defect-tolerance solutions that would cover

the dash bordered area of the reliable system design space map of Figure 1.3.

1.4 Contributions of This Thesis

Traditional approaches to defect-tolerant design saddle asystem with costly redun-

dant components that continuously verify the integrity of all computation. Examples of

such techniques are Dual Modular Redundancy (DMR) [117], and lockstep systems [64].

These techniques detect silicon defects by validating the execution through independent

redundant computation. However, independent redundant computation requires signifi-

cant hardware cost in terms of silicon area (100% extra hardware in the case of DMR and

lockstep systems). Furthermore, continuous checking consumes significant energy and

requires part of the microprocessor’s power budget to be dedicated to it.

A major contribution of this thesis is a paradigm shift in theway that silicon defects

can be detected in defect-tolerant microarchitectures. Rather thancontinuouslychecking

computation for execution errors, the new approach isperiodicallychecking the integrity

of the underlying hardware without the need of redundant execution. This periodic hard-

ware checking can be done through area-frugal, distributed, online checkers. This new

defect-tolerance paradigm is relying on checkpointing andrecovery mechanisms that pro-

vide computational epochs and a substrate for speculative unchecked execution. At the end

of each computational epoch, the hardware is checked by on-chip testers. If the hardware

tests succeed, the results produced during the epoch are committed and execution proceeds
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to the next computational epoch. Otherwise, the system is deemed defective and system

repair and recovery are required. A detailed prototype implementation of this approach,

calledBulletProof, is described and evaluated in Chapter III.

Another key requirement for a successful defect-tolerancesolution is to have an ultra-

low overhead in terms of silicon area, thus driving the overall product reliability cost low.

Even though periodic hardware checking eliminates the higharea cost of hardware repli-

cation required for redundant computation, it still requires a way to periodically check the

underlying hardware. This could mean the addition of on-chip checkers and the bearing

of their extra hardware cost, as we will observe later in Chapter III in the BulletProof

prototype.

The amount of adaptivity and flexibility that defect-tolerance solutions provide, once

the microprocessor is shipped and operating at the customerside, is also a central concern

in their design. Flexible defect-tolerance solutions thatcan be modified, upgraded, and

tuned in the field are very desirable. Today, many defect-tolerance techniques bind specific

testing approaches into silicon, making it impossible to change the testing strategy after

the microprocessor in deployed in the field.

To address both of these requirements and (i) offer low-overhead hardware checkers for

periodic checking, and (ii) provide a flexible defect-tolerance mechanism that can be modi-

fied, adapted, and tuned to the needs of the microprocessor while it is operating in the field,

we developed a new software-based defect-tolerance approach. The novelty of this new

defect-tolerance approach is that it shifts the silicon defect detection and diagnosis pro-

cess from on-chip hardware checkers to software. In this software-based defect-tolerance

technique, called the Access-Control Extension (ACE) framework, the hardware provides

the necessary substrate to facilitate hardware checking and the software makes use of this

substrate to perform the hardware checking. The software nature of this approach offers

a low area overhead mechanism for periodic hardware checking and inherently provides a

flexible way for upgrading, modifying, and tuning the mechanism in the field. The ACE

framework is described and evaluated in detail in Chapter IV.

Another challenge in the domain of defect tolerance for microprocessor designs is to

overcome the expense of defect-tolerance mechanisms, which is necessary before they

can be deployed in commercial mainstream microprocessor designs. One solution to this

challenge is to add value to the defect-tolerance mechanisms by utilizing their hardware

resources for more than just defect tolerance. To this extend, this thesis makes the case that

the hardware resources used to implement a defect-tolerance solution can also be utilized

for other applications. Specifically, as it will be demonstrated in Chapter V, the hardware

resources of the ACE framework can be extended to other important applications such
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as online design bug detection, a post-silicon debugging tool, and improving hardware

manufacturing testing. This approach, adds value to defect-tolerance solutions and it can

ease their early adoption in future generation microprocessors.

The last major contribution of this thesis is the development of CrashTest, a high-

fidelity hardware resiliency analysis infrastructure on anFPGA-based emulation platform.

Hardware resiliency analysis tools are used to assess the threats and the reliability require-

ments of a hardware design. During this process, faults are injected in the design and their

impact on the behavior of the design is analyzed. After the fault injection and analysis

process, the hardware design can be characterized for its reliability standards. However,

the accurate assessment of the robustness of a hardware design is not a trivial process.

Accurately modeling the effects of low-level silicon failure mechanisms and monitoring

their impact up to the software level places conflicting requirements to the resiliency anal-

ysis tools. On the one hand, if low-level detail models of thehardware design are used to

faithfully model the silicon failure mechanisms, the simulation performance is very poor

and it limits the fault analysis from observing the impact offaults at the software level.

On the other hand, if high-level architectural models of thehardware design are used to

improve the simulation performance of the tool, the fidelityof the tool is in jeopardy since

the effects of silicon failure mechanisms cannot be accurately modeled in high-level ar-

chitectural models. In Chapter VI, the CrashTest hardware resiliency analysis tool makes

an attempt to solve this conundrum by performing fault injection campaigns at the gate-

level and accelerating the fault analysis process using an FPGA-based hardware emulation

platform to achieve both accuracy and performance.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter II gives an overview of previous work done in the areaof defect-tolerant mi-

croarchitecture design. It first highlights the traditional defect-tolerance techniques, fol-

lowed by a discussion of their shortcomings. Chapter II alsocovers recent related work

presented in the research literature.

Chapter III presents theBulletProofpipeline, a microprocessor defect-tolerance solu-

tion that employs periodic hardware checking coupled with microarchitectural checkpoint-

ing to provide low-cost protection from silicon defects. A description of the BulletProof

physical-level prototype is provided, as well as a coverageand performance analysis in the

context of a low-cost embedded VLIW microprocessor.

Chapter IV introduces the Access-Control Extension (ACE) framework, a software-

based technique for online low-cost defect detection and diagnosis. The ACE framework
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effectively moves the hardware checking process from the hardware to the software level.

The ACE framework is evaluated on a commercial chip-multiprocessor system and exper-

imental results and analysis are presented.

Chapter V extends the ACE framework to other applications. Specifically, it demon-

strates that the ACE framework hardware resources can be extended and used for online

design bug detection, as a post-silicon debugging tool, andfor improving hardware man-

ufacturing testing. Chapter V also provides an RTL-level design bug analysis of a mod-

ern commercial microprocessor that motivates the potential benefit of extending the ACE

framework into an online design bug analysis mechanism. Thechapter concludes with the

experimental evaluation of the extended ACE framework.

Chapter VI presentsCrashTest, an FPGA-based hardware resiliency analysis frame-

work. The chapter starts with a high level overview of the CrashTest framework. Then,

the gate-level fault injection methodology employed by theframework is described. The

chapter continuous with the details on how CrashTest is implemented using a commer-

cial FPGA. The chapter concludes with the experimental evaluation of the framework’s

performance and its effectiveness.

Finally, Chapter VII gives conclusions and discusses directions for future work.
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CHAPTER II

Traditional Techniques and Recent Research Approaches
for Defect-Tolerant Design

From the early adoption of computer systems, reliability was, and still is, one of the

most important requirements in the design of computer systems. Computer applications

ranging from life-critical aviation/ground transportation systems and medical systems, to

business-critical applications found in the financial sector, to mission-critical applications

like outer space exploration programs, they all place high hardware reliability demands to

the computing systems. Furthermore, in applications such as outer space exploration, the

computing systems are expected to operate in adversary environments and conditions that

are very different from the ones here at Earth, such as very high rates of neutron strikes

that cause transient faults.

These reliability requirements and challenges throttled ahigh research interest in re-

liable computer system design. This chapter, provides a brief overview of the traditional

defect-tolerance techniques employed in high-end computing systems today and discusses

their shortcomings. It also highlights the related work that was recently published in the

research literature.

The scope of this chapter is to present the previous work thatis more relevant to the

general topic of this thesis. Other previous work that is related with the specific techniques

described in each of the remaining chapters of this thesis ispresented in each chapter

respectively.

2.1 Traditional Defect-Tolerance Techniques

One of the first defect-tolerance approaches used to protecthigh-end computer systems

is dual modular redundancy. Dual modular redundancy, employs spatial redundancy in the

form of two microprocessors operating in lockstep. The output of the two microprocessors
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Figure 2.1: Traditional Defect-Tolerance Techniques:Part (a) shows a dual redun-
dancy system where two identical processors are operating in lockstep and checked by an
external checker. Part (b) shows a triple modular redundancy system where errors are both
detected and corrected. Part (c) shows a 2-version redundancy system where two different
processors, with the same specifications, are running in lockstep. This approach avoids
common mode failures and also detects design bugs.

is checked by an external checker, as shown in Figure 2.1(a).If any deviation at the output

of the two microprocessors is detected, a system error is flagged. An early example of a

system that employed this approach was Tandem’s NonStop system [64].

One shortcoming of dual modular redundancy is that althoughit can effectively detect

single defects in the design, once a defect is detected, it cannot detect which of the two

microprocessors is the defective one and continue operating with the other one. There-

fore, once a defect is detected, the system halts operation and it requires repair. A way to

address this limitation is by adding more hardware redundancy to the system, in the form

of triple modular redundancy [117]. In triple modular redundancy, three identical micro-

processors are used with an additional majority voter, as shown in Figure 2.1(b). If one of

the microprocessors fail, its output is outvoted by the other two microprocessors providing

forward system recovery. The system then downgrades into a dual modular redundancy

system with the remaining two defect-free microprocessors.

Another similar approach to dual and triple modular redundancy is N-version redun-

dancy. With N-version redundancy, instead of just replicating the microprocessors N times

as in modular redundancy, N different microprocessors, with the same specifications, are

designed by N different design teams or companies. An example of a 2-version redun-

dancy system is shown in Figure 2.1(c). The N-version redundancy has the additional

advantage over modular redundancy of detecting not only hardware failures, but also de-

sign bugs and avoiding common mode failures.
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The advantage of these hardware redundancy techniques is that they are not intrusive

in the microprocessor design and they can be applied to builddefect-tolerant computer

systems using over-the-shelf processors. Also, these techniques cover uniformly the whole

microprocessor and can detect errors caused by any defective structure in the processor.

However, the major shortcoming of these techniques is that they add extra hardware into

the system leading to significant area and power overheads.

Another traditional defect-tolerance technique used to protect memories, buses, or

other microprocessor array structures (e.g., register file) are parity and error correction

codes (ECC) [117]. ECC and parity bits provide a lower overhead solution for data-

holding hardware structures than modular redundancy. Parity bits are more similar to

dual modular redundancy where errors can only be detected but not corrected. On the

other hand, ECC resembles triple modular redundancy providing both error detection and

forward recovery as the ECC computation masks and corrects the faulty value of a bit.

The overhead of parity and ECC bits is relatively low compared to modular redundancy

techniques and it comes from the extra storage overhead and the extra logic needed for

their computation. However, ECC and parity bits are intrusive in the design of the micro-

processor1 and protect only a limited part of the processor.

In the context of online testing of processors, various concurrent error detection schemes

have been proposed [89]. Most schemes incorporate a checkerthat compares the expected

behavior with that of the unit under test. Another solution proposed in the direction of

online testing are Berger codes [12] which can detect all unidirectional errors, and Bose-

Lin codes [16] which can detectt unidirectional errors (known ast-EC). These codes are

suitable for the protection of circuits that are skewed towards one of the two logic values

(logic 0 or 1). However, the use of these codes for online testing of datapaths is not trivial

as they impose constraints on the way the logic block is designed such that only unidirec-

tional faults occur. As with the parity and ECC bits, concurrent error detection schemes

and the Berger codes are intrusive in the design of the microprocessor and protect only

some parts of the processor design.

2.2 Fault Avoidance Strategies

Today, the defect-tolerance techniques presented in the previous section are only used

in high-end systems running critical applications. In contrast, the microprocessors used

in most mainstream desktop and laptop computers and embedded systems employ a fault-

1This means that they need changes at the design phase of the processor, unlike modular redundancy
techniques that can be applied to over-the-shelf processors.
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avoidance design strategy to achieve their projected failure rate targets. Microprocessor

manufacturing companies assess the sources of possible failures, and they place in the de-

sign the necessary guards and preventive measures to ensurethat their exposure to failing

scenarios does not compromise the overall reliability target. The incident of silicon failure

mechanism, such as wearout-related silicon defects and transient faults, is proportional to

supply voltage, circuit temperature, and transistor activity factors [59], thus, reliability in

these microprocessors is typically ensured through the useof safety margins inserted into

the clock period and limits on the maximum supply voltage.

If the microprocessor failure rate resulting from ignoringthe occurrence of the faults

falls within the targeted reliability standards, the sole use of fault avoidance techniques is

adequate to provide a relatively reliable population of products. Although previous and

current generations of silicon process technologies exhibit sufficiently low device failure

rates that silicon defect could be completely ignored, thisapproach is expected to be inef-

fective for future silicon technologies where device wear-out, untestable defects, and early

transistor failures will increase the in-the-field (i.e., during operation) microprocessor de-

fect rates and necessitate stronger measures of protection.

2.3 Defect-Tolerance Techniques in Research Literature

To date, only a few efforts have explored techniques to provide low-cost defect toler-

ance to microprocessor designs. This section, provides a brief overview of the previous

research work that is more generic to the subject of microprocessor defect tolerance. Pre-

vious research works that are more relevant to the specific techniques explored in the re-

maining chapters of this thesis are described and discussedin those chapters respectively.

Also, some of the research work discussed in this section wasconcurrently developed with

the work presented in this thesis.

Defect Tolerance Through Continuous Execution Checking:DIVA, is an online

checker component inserted into the retirement stage of a microprocessor pipeline that

continuously validates the computation, communication, and control exercised in a com-

plex microprocessor core [6, 143]. The approach unifies all forms of permanent and tran-

sient faults, making it capable of detecting computations error due to design bugs, soft

errors, and permanent silicon defects. However, a limitation of DIVA is that it does not

diagnose the root problem in order to repair the underlying hardware and prevent the errors

from occurring again.

To address this limitation, Boweret al., in [20], propose a fault-tolerant microprocessor

design that uses DIVA checkers for system-level error detection coupled with a mechanism
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for diagnosing silicon defects by tracking the instructionoccupancy through the micropro-

cessor’s pipeline. After diagnosing a silicon defect, the microprocessor reconfigures (i.e.,

disables) the defective part and continues operation at a gracefully degraded level of per-

formance.

More recently, Meixneret al. presented Argus [85], an error detection technique for

simple processor cores. The Argus technique continuously checks invariants to detect

execution errors. Specifically, Argus, uses run-time invariant checking to detect errors in

four fundamental tasks: the control flow, the dataflow, computation, and memory access.

The Argus technique provides error detection for errors caused by both permanent silicon

defects and transient faults and offers an alternative low-cost defect-tolerance approach

when compared to the traditional defect-tolerance approaches.

Hardware Testing and Built-In-Self-Test: After chip fabrication, microprocessor

chips are tested in order to screen out parts with defective or weak devices. Today, most

complex microprocessor designs use scan chains as the fundamental design for test (DFT)

methodology. During hardware testing, the design’s scan chains are driven by external

automatic test equipment (ATE) that applies pre-generatedtest patterns to check the chip

under test [23]. Every single microprocessor chip has to go through this testing process

multiple times at different voltage, temperature, and frequency levels. This makes the

manufacturing testing cost for each chip to be as high as 25-30% of the total microproces-

sor manufacturing cost [45]. An alternative approach that eliminates the need of external

equipment to drive the hardware testing is Built-In-Self-Test (BIST) techniques [23]. BIST

techniques use specialized circuitry to generate test patterns and validate the test responses

on the chip without the need of any communication with external devices. The way BIST

techniques generate test patterns on the chip is either by the use of pseudo-random test

pattern generators, or by storing previously generated test vectors in on-chip memories.

Silicon Defect Prediction: Blome et al. [14], proposed an online technique that de-

tects the performance degradation caused by wearout over time in order to anticipate fail-

ures. In particular, the proposed technique leverages the progression of wearout over time

and provides a low-overhead self-calibrating hardware structure that identifies increasing

propagation delay, which is symptomatic of many forms of wearout, to forecast the failure

of microarchitectural structures. Specifically, they propose the implementation of an on-

line latency sampling unit that is capable of sampling and filtering by statistical analysis

the propagation latencies of signals to identify significant changes in the latency of a given

microarchitectural structure and predict a device failure.

In [129], Sylvesteret al. propose in the context of the ElastIC architecture the use of

in-situ sensors in combination with reliability and power models to predict the lifetime
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and wearout of the underlying hardware. This enables the dynamic tradeoff of perfor-

mance with longer lifetime and reliability using dynamic voltage scaling techniques. A

similar approach was employed by Srinivasanet al. in [124] where microarchitectural

components are swapped by spare ones based on the predictionof their failure. The fail-

ure time of microarchitectural components is predicted by monitoring the dynamic activity

and temperature of the microarchitectural components in combination with the analytical

reliability models proposed in [122].

Resource Redundancy for Hardware Repair & Reconfiguration: Shivakumaret

al. [114], proposed the use of hardware redundancy and reconfiguration to improve the

yield and increase the defect tolerance of future microprocessors. They also suggest that

the use of hardware redundancy should not be limited only to memories but that inherent

resource redundancy, that is abundant in modern microprocessors, should be exploited in

both single-core and multi-core processors. Three primarytypes of inherent redundancy

that can potentially be used in a microprocessor were identified: component level redun-

dancy (replicated functional unitsetc.), array redundancy (spare rows and columns in bit

arrays), and dynamic queue redundancy (spare queue entries).

In [42], Guptaet al. presented StageNet, a highly reconfigurable multicore architec-

ture. StageNet is a reconfigurable multicore computing substrate designed as a network

of pipeline stages, rather than isolated cores in a chip-multicore processor. The StageNet

network is formed by replacing the direct connections at each pipeline stage boundary by

a crossbar switch. Within the StageNet network, pipeline stages can be selected dynam-

ically from the pool of available stages to form logical processing cores, thus permanent

silicon failures can be easily isolated by adaptively routing around defective stages. In

essence, the StageNet substrate can effectively exploit the natural resource redundancy

of moder multicore processors and reconfigure the hardware resources around a defective

component to repair a microprocessor design.

Aggarwalet al. [3] introduced the notion of configurable isolation for low-level fault

containment and component reconfiguration through cost-effective modifications to com-

modity designs. Specifically, the proposed mechanism employs dynamic repartitioning of

a chip-multiprocessor’s hardware resources into multiplefault zones. Silicon defects are

detected at the fault-zone granularity and once a defect is detected, the defective compo-

nent is disabled and the remaining hardware resources are dynamically repartitioned into

new fault zones. Furthermore, the power budget of the defective disabled components is

re-assigned to the remaining operating components. This enables the voltage/frequency

upscaling of the remaining hardware resources in an attemptto mitigate the performance

loss due to the disabled components.
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Bower et al. [19] proposed a hardware mechanism for self-repairing array structures

to provide defect detection and repair capabilities for microprocessor array structures such

as the reorder buffer and branch history table. The proposedmechanism detects silicon

defects by employing dedicated “check rows”. Every time an entry is written to the array

structure, the same data is also written into a check row. Then, both locations are read

out and their values are compared to detect defective rows. To repair defective arrays, the

mechanism exploits the inherent resource redundancy of these structures and redirects any

accesses to defective rows to other functionally correct rows.

Finally, an algorithmic approach for dynamic hardware reconfiguration and system

repair from silicon defects was proposed recently by Ficket al. in [34]. Specifically, the

work presented in [34] proposes a distributed routing algorithm for networks on chip that

allows a network to reconfigure around defective components. The proposed algorithm is

able to overcome large number of silicon defects by running in lockstep at each network

router and collectively reconfiguring the network’s routing tables. It was demonstrated

that due to the high hardware resource redundancy of networks on chip, the dynamic

reconfiguration algorithm could provide a 99.99% reliability to the on-chip network even

after 10% of its interconnect links were defective.
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CHAPTER III

Defect Tolerance Through Periodic Hardware Checking -
The BulletProof Pipeline

This chapter introducesBulletProof, an ultra low-cost defect-tolerance mechanism to

protect a microprocessor pipeline and on-chip memory system from permanent silicon de-

fects. The traditional approach to defect tolerance saddles a system with redundant compo-

nents that continuously monitor the microprocessor’s execution for errors through redun-

dant computation. This redundant computation leads to significant area and power over-

heads and constraints the microprocessor’s resource budget. The BulletProof technique

shifts the traditional defect-tolerance paradigm from continuous checking for execution

errors (through redundant computation) to periodic onlinehardware checking. Specif-

ically, it combines area-frugal periodic online hardware testing with microarchitectural

checkpointing to provide the same guarantees of reliability as traditional defect-tolerance

techniques, but at a much lower cost.

This approach, utilizes a microarchitectural checkpointing mechanism to create coarse-

grained epochs of execution, during which a distributed online hardware testing mecha-

nisms verify the integrity of the underlying hardware. If the hardware is deemed unbroken

at the end of a computation epoch, the epoch’s speculative computation is allowed to retire

to a non-speculative system state, otherwise, the system isrolled back to the beginning

of the epoch, and the last known-good system state is restored. At recovery, the system

is reconfigured to disable any defective components. This technique relies on the natural

resource redundancy that is abundant in ILP-style microprocessors combined with a small

amount of carefully-placed control logic redundancy to repair the system such that it can

operate in a degraded performance mode. Once repaired, the user can decide whether to

replace the system or tolerate the degraded performance. The BulletProof technique also

employs a double-sampling flip-flop design to protect the pipeline from transient faults

and latch defects.
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Section 3.1, describes in detail the implementation of the BulletProof defect-tolerance

technique, including a detailed coverage of the distributed checkers used to perform the

periodic hardware testing. It also explains how the technique employs microarchitectural

checkpointing to provide speculative computational epochs and system recovery, how the

BulletProof pipeline is repaired, and how input/output operations are handled by the Bul-

letProof mechanism. Next, Section 3.2 describes in detail the double-sampling flip-flop

design used to protect the BulletProof pipeline from transient faults. Section 3.3 evaluates

the BulletProof mechanism using both detailed circuit-level and architectural simulation.

The simulation testbed used for the evaluation of the BulletProof mechanism is based on

a low-cost embedded VLIW processor. Finally, Section 3.4 discusses previous research

work that is related to the BulletProof technique, and Section 3.5 summarizes the work

presented in this chapter.

3.1 Online Periodic Hardware Checking

Figure 3.1 illustrates the high-level system architectureof the BulletProof defect-

tolerance approach, and it shows a timeline of execution that demonstrates its operation. At

the base of the proposed approach is a microarchitectural checkpoint and recovery mech-

anism that createscomputational epochs. A computational epoch is a protected region

of computation, typically at least 1000’s of cycles in length, during which the creation of

any errant computation, in this case due to the encounteringof a defective device, can be

undone by rolling the computation back to the beginning of the computational epoch.

During a computational epoch, online checkers perform hardware built-in-self-test

routines in the background, checking the integrity of all system hardware components.

Ideally, this hardware checking will occur while functional units, decoders, and other mi-

croprocessor components are idle, as is often the case in a processor with parallel re-

sources.

By the end of a computational epoch, there are three possiblescenarios that the Bullet-

Proof mechanism will need to handle. The first scenario (shown in the first computational

epoch of Figure 3.1(b) is when the checking completes beforethe end of the computational

epoch. In this scenario, the hardware is known to be free of defects, thus, the results of the

computational epoch are known to be free of defect-induced errors, and it can be safely

retired to non-speculative system storage.

In the second scenario (shown in the second epoch of Figure 3.1(b), the computational

epoch ends before the online testing infrastructure has completed testing all of the un-

derlying hardware components. This scenario can occur because the microarchitectural
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Figure 3.1: High-level System Architecture of the BulletProof Microprocessor: The
schematic in part (a) shows an overview of the BulletProof protected microprocessor. Part
(b) shows three possible execution scenarios within a computational epoch.

checkpointing mechanism has only a finite amount of storage into which speculative state

can be stored – once this space is exhausted, the computational epoch must end. Addition-

ally, I/O requests can force early termination of a computational epoch. In the event the

computational epoch completes before testing is finished, testing will continue with the

processor pipeline stalled. If at the end of testing the hardware is deemed free of defects,

the epoch’s speculative state can safely retire to non-speculative system storage.

Finally, the third scenario, depicted in the third epoch of Figure 3.1(b), is when the on-

line testing infrastructure encounters a defect in an underlying component, due to a transis-

tor wearout, early transistor failure, or manifestation ofan untested manufacturing defect.

In this event, the execution from the start of the computational epoch to the point where the

defect was detected cannot be trusted as correct, because this unchecked computation may

have used the defective component. Consequently, the results computed during the epoch

23



are discarded, and the underlying hardware must be repaired. This is done by disabling

the defective component. In a processor with instruction-level parallelism (ILP), there are

typically multiple copies of virtually all hardware components. Once a component is dis-

abled the processor will continue to run in a performance-degraded mode. Additionally, a

software interrupt is generated which notifies the system that the underlying hardware has

been degraded, so the user can optionally replace the impaired processor.

3.1.1 Online Hardware Testing Techniques

The online hardware testing infrastructure is responsiblefor fully verifying the in-

tegrity of the underlying hardware components. The testingtechniques are adopted from

built-in self-test (BIST) [22], although they are tailoredto minimize the area of the test-

ing hardware, and hence the area of the defect-protection infrastructure. For each of the

pipeline components, a high quality input vector set is stored in an on-chip ROM, which is

fed into the modules during idle cycles. A checker is also associated with each component

to detect any defect in the system. The primary techniques utilized to verify the integrity

of the underlying hardware are illustrated in Figure 3.2 anddescribed below.

Decoder Checker: The decoders are validated by sending the same test vector to mul-

tiple decoders, and then comparing their outputs. The decoder test harness is illustrated

in Figure 3.2(a). In the event that the outputs do not match, one of the decoders has ex-

perienced a defect-related failure. In addition, it is important to determine which of the

decoders has failed. Consequently, three decoders are sentthe test vector, and a majority

operator is used to identify which of the decoders has failed. In the case that the architec-

ture has more than three decoders, each can be tested by including it in a battery of tests

with any two other decoders.

Register File Checker: Register file integrity is checked using a four phase split-

transaction test procedure, as illustrated in Figure 3.2(b). The register file is unchanged

from the original design, except that it has two address decoders (one for read and one for

write), which allows the testing of address decoder faults.In the first phase, a register file

entry is read from the register file and stored in thereplacement register. Testing of that

register may now proceed whenever free read/write ports areavailable. If the register under

test is read or written by the processor, the value is supplied by the replacement register.

This same register is used to repair a broken entry, as described later. In the second phase,

a random vector (generated with a linear feedback shift register, LFSR) is written into the

register being tested, and in the third phase it is read back out and compared to the original

vector. Finally, in the last phase the register entry (previously copied into the replacement

register during the first phase) is written back into the appropriate register.
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line. Part (e) shows the early clock edge for checker logic.

This process effectively tests both the register storage aswell as the address decoders

in the register file. The register storage is tested by writing and reading a value from the

register. The address decoders are tested by virtue of the fact that the value written and

read is fairly unique (i.e., it is randomly generated), thus if either the read or write address

decoder incurs a defect, some other (likely another register value) value will incorrectly

appear during the read phase of the register file testing. Because the value stored in the

register entry under test is available at all times from the replacement register, the test-

ing process can be implemented as a series of split transactions. Consequently, different

phases can be executed in non-subsequent cycles, whenever afree port is available on the

register file. This facet of the approach greatly contains the performance impact, as shown
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in Section 3.3. The register file testing procedure is repeated until all of the registers have

been validated. For a processor with 32 registers, the register file can be fully tested within

128 cycles, spread out over an entire computational epoch incycles when the register file

is not in use.

ALU and Multiplier Checker : The ALU is checked using a 9-bit mini-ALU, as

shown in Figure 3.2(c). During each cycle a test vector from the BIST unit is given to

the ALU and compared with the output of the mini-ALU. It takesfour cycles for the mini-

ALU to test the full output of the main ALU. A 9-bit ALU is used to validate the carry out

of each 8th bit in the 32-bit output. The same type of ALU checker is also used to verify

the output of the address generation logic. Using the mini-ALU checker, it is possible to

fully verify that the ALU circuitry is free of stuck-at-0 andstuck-at-1 faults with only 20

carefully selected test vectors.1 A similar approach is used to validate the multiplier, which

employs arithmetic residue checks [7]. Given ann-bit operandx, the residuexr with re-

spect tor is the result of the operationx%r. When applied to multiplication, residue codes

adhere to the following property:(xr ∗ yr) = (x ∗ y)r. When the value ofr = 2a − 1

for somea, the residue operations are much simpler to implement in hardware [7]. The

resulting multiplication checker requires only a shifter and simple custom logic.

Residue codes can detect most of the faults in a multiplier except those that manifest

as multiples of the residue, a small class of faults where a single fault at an internal node

could manifest as a multiple of the correct value on the output. The errors missed by

the residue checker are caught by a few additional carefullyselected test vectors, against

which the exact output is matched.

Cache Line Checker:Cache line integrity is maintained, as illustrated in Figure 3.2(d),

through the use of cache line parity. A single parity bit is associated with each line, holding

the parity of the entire cache line plus the tag, valid bit, and LRU state for the line. When

cache lines are written to the cache, the parity for the line is generated and stored. Sub-

sequently, when the cache line is read, the parity is recomputed to verify the contents. In

the event that the parity is correct, notwithstanding a multi-bit failure, which is beyond the

scope of the single bit failure model, the cache line is knownto be correct. In the event that

a cache line parity check fails, a defect has been detected within the storage of the cache,

consequently, the line must be disabled from further use andexecution is rolled back to

the last checkpointed epoch. Cache lines are disabled by setting a two bit field in the LRU

state table, which indicates which line in the current set has been disabled. The disable

1It should be noted that this testing approach is in contrast to traditional BIST-style testing techniques
that store both the input and output vectors, with the outputvectors being compared to the output of the
ALU. By computing the output vector on a smaller adder, a tester that was significantly smaller could be
produced.
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bits in the LRU table are periodically reset to avoid soft errors in caches being interpreted

as hard errors and rendering the cache lines unusable for therest of the design’s lifetime.

Furthermore, at the end of each computational epoch, dirty cache lines are checked and

written back to the next level of the memory hierarchy to guarantee recoverability in the

presence of cache silicon defects. This approach is area-efficient, but it can only support

a single failed line per set of a cache. Additional failed lines could be supported within a

single set if more disable bits were to be included in the LRU logic.

The Test Clock: An important consideration in the testing of hardware components

is the timing of the test vector samples. Since many transistor wearout-related failures

manifest as progressively slower devices [41], the failureof the device may occur in a

way where timing is no longer met for the component’s critical path. Figure 3.2(e) shows

how this issue is addressed by utilizing a slightly shorter clock cycle for sampling test

vector outputs. The clock frequency safety margins in current microprocessors (e.g., to

mitigate process variation) permits the use of this slightly shorter cycle testing clock with

a negligible amount of false positives. This ensures that ifa device is failing by showing

slower response, it can be detected long before it affects any processor computation, which

operates on the main clock cycle that is longer than the testing cycle.

Protecting Control Logic: To achieve high fault coverage it is critical to protect the

control logic, since this logic constitutes a non-trivial fraction of the area in most mi-

croprocessor designs. For the protection of the pipeline’scontrol logic, a dual-modular

redundancy based approach is employed, as illustrated in Figure 3.3. Two copies of the

pipeline control logic run in parallel, each with the same set of inputs. Every cycle, the

outputs of the control blocks are compared and if any difference occurs, a fault is flagged.

To localize the fault, built-in-self-test is used to determine which of the two control block
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copies is defective. Once identified, the defective controllogic block is permanently dis-

abled. Note that this approach can only tolerate defects to the extent that they occur in only

one of the two control logic blocks. This technique has area-cost advantages over triple-

modular redundancy because checker and built-in-self-test logic are typically smaller than

a third copy of control logic as required to implement triple-modular redundancy. Note

also that each control logic block is protected individually, leading to smaller overhead in

the interconnect and higher resiliency.

Checker, Check Thyself:The checkers constitute a non-trivial portion of the micro-

processor’s area.2 Consequently, if the checkers themselves were not checked,they would

severely limit overall design fault coverage. To keep area cost low, checkers are checked

using the same component they monitor, a technique calledreflexive self-test. In other

words, the online checkers are designed such that they produce a correct result only when

both the unit-under-test and the checker are free of silicon defects and other faults. For

example, a built-in-self-test vector generator and a 9-bitadder is used to check the proces-

sor’s adder. At the same time, the processor’s adder is used to test the functional integrity

of the built-in-self-test vector generator and the 9-bit adder.

In traditional testing the built-in-self-test vectors areselected so that they have a high

probability to detect defects in the unit under test. In reflexive testing, there is an additional

constraint that the test vectors must also expose defects ina broken checker (assuming that

the unit under test is still working). Consequently, assuming a single-defect fault model,

a built-in-self-test routine will fail if there is a defect either in the unit-under-test or in the

checker. If the defect is in the checker, the end result will be the disabling of the working

unit and its broken checker, hence the desired result of disabling the defective checker

component is achieved as a byproduct.

3.1.2 Microarchitectural Checkpointing

The BulletProof technique relies on a microarchitectural rollback mechanism to restore

correct program state in the event of a defect detection. Theemployed mechanism is

similar to the one described in [80]. During the execution ofa computational epoch, the

processor generates register and memory updates which would need to be discarded if a

fault is detected. To prevent any memory updates with corrupted data, such updates are

buffered in speculative state within the processor, until when the hardware is checked and

certified to be functionally correct. It is worth noting thatthe same level of fault coverage is

not feasible by simply stopping the computation and runningthe built-in tests on a regular

basis, without any checkpointing, and reconfiguring the pipeline if a fault is found. In fact,

2More than 10% of the area of our prototype design.
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with this approach it would not be possible to ensure that a detected fault had not corrupted

earlier computation. In contrast, with the microarchitectural checkpointing facility, the

state of the machine can always be rolled back to the point when the last completed online

test passed successfully (a point in the computation known to be correct). In addition, once

the hardware is repaired, the program can safely restart from this checkpoint.

As shown in Figure 3.4, register state is preserved by backing up the register file into

a dedicated single-port SRAM at the beginning of each computational epoch. The register

backup can be done lazily by tagging the registers and copying them only before they get

overwritten, so that there is no associated performance penalty.

To support long epochs, memory updates are buffered within the local cache hierarchy.

To implement in-cache speculative state, each cache line isaugmented with avolatile bit.

At the beginning of an epoch, all volatile bits are reset. When a value is stored to the cache,

the volatile bit of the target cache line is set to indicate that the contents are speculative

in the current epoch. The end of an epoch is determined by the ability of the local cache

hierarchy to buffer the memory updates issued during the epoch. Therefore, the end of

an epoch is triggered by a cache miss on a cache set with all itscache lines already been

marked as volatile. In this event, all speculative state resources have been exhausted and

the processor must stall until the testing sweep is complete. Once the underlying hardware

is determined to be defect-free, an epoch may end. At this point, all volatile bits from the

cache lines are cleared, changing all formerly speculativestate to non-speculative state.

To minimize the performance cost of starting a new epoch (i.e., copying the register file

and clearing volatile bits), each epoch is extended as long as possible, until when specula-

tive state resources are exhausted or a high-priority I/O request is generated, as discussed

in Section 3.1.6. To provide even longer epochs, a small fully associative victim cache for

volatile cache lines is introduced, so that the end of an epoch is now triggered by a cache

miss on a cache set with all its lines been marked as volatile,and while the victim cache is
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Figure 3.5: Incorrect System Recovery Scenario:During the execution of epoch A,
a fault manifests after the testing sweep is complete. The fault causes memory updates
with corrupted data, which are committed at the end of the epoch. In epoch B, the fault
is detected and recovery occurs. However, this happens too late to revert the corrupted
memory updates of epoch A.

full of volatile lines. This work assumes a uni-processor environment; hence, delaying the

commit of stores to non-speculative storage has no effects on the system’s performance.

Similar microarchitectural checkpointing techniques that address the performance penalty

of delayed stores in shared-memory multi-processor environments are described in [58].

3.1.3 Checkpointing with Two-Phase Commit

Unfortunately, if only one checkpoint of the microprocessor’s architectural state is

preserved, there is a chance that errant computation from a silicon defect could be missed.

The potential problem is illustrated in Figure 3.5: If a hardware check completes before

a fault manifests, it becomes possible for an errant computation to be generatedlater in

the same computational epoch. In this event, corrupted state updates would be committed

to non-speculative state at the end of the epoch. The manifested fault will eventually

be detected in the next epoch, but not before erroneous computation had a chance to be

committed to non-speculative storage. This conundrum can be solved by adopting a two-

phase commit procedure, which maintains two checkpoints ofthe processor’s state.

To implement this two-phase commit, an additional bit is used for each L1 data cache

line. An extra backup register file is also used so that the processor’s architectural state

can be stored alternatively to one or the other of the two backup register files. This enables

to keep backups of the microprocessor’s state for the last two epochs. Lines in the L1 data

cache will be marked (using the two volatile bits) as being either non-speculative, in the

previous epoch, or in the current epoch. At the end of each epoch, the volatile bits of the

previous epoch are cleared, and the tags of the current epochare updated to indicate that
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they refer to the previous epoch. During the new epoch, any access to the previous epoch’s

state must be first copied into the current epoch before beingwritten, so that the previous

epoch’s state does not get corrupted. A similar technique for providing a sliding rollback

window is described in [134].

3.1.4 System Fault Recovery

In presence of a fault, recovery to a correct microprocessorarchitectural state is accom-

plished by flushing the pipeline and copying the architectural registers from the backup

register file. The memory system is protected against possible corrupted updates issued

after the fault manifestation by invalidating all the cachelines marked as volatile in the lo-

cal cache hierarchy. Therefore, the presence of the fault istransparent to the application’s

correct execution. To provide forward progress the defective module must be disabled via

hardware reconfiguration.

3.1.5 Repairing the BulletProof Pipeline

In the event of a fault manifestation, the microarchitectural checkpointing mechanism

will restore correct program state. However, before execution can safely continue, the un-

derlying hardware must be repaired. The proposed techniquerelies on the natural hardware

resource redundancy of ILP processors to reduce the cost of repair. Faulty components are

removed from future operations, and the pipeline can keep running in a performance-

degraded mode. To implement pipeline repair, the followingfacilities are included in the

design:

1. Faulty functional units, such as ALUs, multipliers and decoders are disabled from

further use. Consequently, further execution must limit the extent of parallelism

allowed.

2. Faulty register file entries are repaired using the replacement register, as shown in

Figure 3.2(b). The replacement register overrides a singleentry of the register file,

thus, any value read or written to the defective register is now serviced by the re-

placement register.

3. Faulty cache lines are excluded using a two-bit register in the LRU logic. Upon

detecting a faulty line, the LRU state register is updated toindicate that the defective

line is no longer eligible as a candidate line during replacement.

If the microprocessor is already impaired by many silicon defects, it may be no longer

possible to tolerate an additional defect in a particular subcomponent. The degree to which
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silicon defects can be tolerated is dictated by the number ofredundant hardware compo-

nents available. In general, withN components, it is possible to tolerateN-1defects. Once

theN-1-th component fails, the hardware should generate a signal to the operating system

to indicate that the system is no longer protected against defects. Finally, it should be noted

that if the failure is the result of a transistor slowdown,e.g., due to gate oxide wearout or

to a negative-bias temperature instability (NBTI), it may be possible to recover the failing

component by slowing down the system clock or increasing thecomponent’s voltage.

3.1.6 Handling Input/Output Requests

Instructions that perform input and output requests require special handling in the Bul-

letProof defect tolerant microprocessor design. Since I/Ooperations are typically non-

speculative, they can only be executed at the end of a computational epoch. To accom-

modate them efficiently, three flavors of I/O requests are introduced into the design: high-

priority, low-priority, and speculative (the type of I/O request is associated with the mem-

ory address, and it is specified in the corresponding page table entry).

• High priority I/O requestsare deemed extremely time sensitive, thus, they force the

end of a computational epoch, which may force the processor to stall to complete

the testing sweep. After this, the I/O request executes safely, and another epoch can

start immediately after it.

• Low priority I/O requestsare less time sensitive. Hence, they are held in a small

queue where they age until the end of the current epoch, at which point they are all

serviced. To prevent I/O starvation in programs with long computational epochs,

low-priority I/O requests are only allowed to age for a smallfixed period of time

(about oneµsec in this design). In addition, the computational epoch must end

when any attempt is made to insert a low-priority request into a full I/O queue.

• Speculative I/O requestsare I/O requests that are either insufficiently important to

care about the impacts of unlikely defects (e.g., writes to video RAM, which could

be fixed in the next frame update), or they are idempotent (e.g., the reading of a

data packet from a network interface buffer). Such requestsare allowed to execute

speculatively before the end of a computational epoch. If a defect is encountered

during the epoch in which they execute, they will just be re-executed in the following

epoch, once the defective component has been disabled.
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3.1.7 Assumptions and Limitations

While the BulletProof approach provides defect protectionfor a microprocessor pipeline

and on-chip memory system at low cost with very limited performance impact, it does have

a number of error model assumptions and usage limitations which are detailed below in

this subsection.

In the presented BulletProof approach, a fairly treacherous error model is assumed.

Specifically, it is assumed that devices can suffer from catastrophic failures at any time,

which can be successfully detected with the proposed onlinehardware tests. In addition,

transistors can suffer gradual slowdown, for example from gate oxide wearout or negative-

bias temperature instability (NBTI), in which case transistors gradually slow down until

they do not meet frequency requirements. In this case, the aggressive online testing clock

will detect this condition before it affects computation.

Another limitation of the BulletProof technique is that it places a few restrictions on the

pipeline and on-chip cache organizations. In particular, the approach of disabling defective

functional units requires multiple units of each class, otherwise, a single defect in a critical

non-replicated unit could render the processor broken. Given the abundance of resources

in most modern ILP processors, this limitation is not a significant drawback for most

designs. Additionally, the cache organization must be set-associative to accommodate

both speculative and non-speculative state.

3.2 BulletProof Protection from Transient Faults

The BulletProof techniques described so far in the previoussection provide micropro-

cessor protection only to permanent silicon defects. This section, extents the BulletProof

capabilities and presents a novel circuit for transient fault detection that is based on a

double-sampling scan flip-flop.

Figure 3.6 depicts the proposed fault-tolerant scan cell that is capable of detecting soft

errors in both sequential and combinational logic. In addition, it can also detect permanent

silicon defects in sequential elements. Figure 3.6 also lists different operating modes of

the cell and their corresponding input configurations.

The BulletProof SER-tolerant flip-flop is composed of a main flip-flop block and a scan

flip-flop block where each block includes a master and a slave latch. In addition, the scan

flip-flop block contains an XOR gate detecting when the two master-slave flip-flops have

latched different values (as it is the case when a transient fault hits) and an additional latch

storing this information permanently. The two blocks are fed with two distinct clocks, the

main clock and a skewed clock. In this design the skewed clockis the inverse of the main
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Figure 3.6: BulletProof SER-Tolerant Flip-Flop Design: The BulletProof SER-
tolerant flip-flop design is based on double-sampling scan flip-flop. The flip-flop operates
under five different operating modes depending on its input configuration.

clock and is indicated in Figure 3.6 asclk b. The main flip-flop latches the incoming data

signal on the positive edge of the clock, while the scan flip-flop samples the same signal

on the skewed clock’s positive edge. The assumption is made that transient faults manifest

as glitches of less than half clock cycle duration (which is asafe assumption up to designs

operating at several GHz) [88, 150]. Hence, if an incorrect value is latched in the main

flip-flop due to a transient fault, the glitch will subdue before the signal is latched again

half a clock cycle later by the scan block. When this situation occurs the XOR gate outputs
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Figure 3.7: Timing Diagram of a Transient Fault Detection: The timing diagram
illustrates the detection of a glitch caused by a transient fault. Once the glitch is detected,
the error signal is trapped until the end of the computation epoch when all error signals are
scanned out and checked.

a 1, which is stored in theOutput Latch right away. In addition, the output signalSO

is fed back to theXOR1gate, which forces the input of the scan flip-flop to always observe

the complement of the data signal, continuously forcing an ”SER-detected” situation.

Figure 3.7 shows a timing diagram of the situation just described. Theprotect ,

scandata en andmaindata en are enabling signals which are always active during

the normal protected operation. Note that in order for this flip-flop design to work, a

minimum path delay constraint of 50% of the clock cycle must be enforced.

At the end of each computation epoch all error signals (SO) are shifted out through the

scan chain (using theshift out configuration). The latches are partitioned into zones

to speed up this process. If an error is detected, each cell within the zone is evaluated to

discern between a transient fault or a permanent silicon latch failure. This is done using

thesi , scan clk andaux clk signals. If the error does not repeat, it is assumed that

a transient fault had occurred, and the rollback mechanism to restore the previous known

correct state is triggered. Otherwise, the cause of the error was a permanent silicon defect

and hardware resource reconfiguration is triggered.
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The bottom of Figure 3.6 shows the results of timing and powersimulations on the

error trapping cell with the skewed input clock. The output latch and the extra gates used

for implementing the correct functionality account for theincrease in power, area and

delay in the new design, compared to a simple scan cell.

3.3 Experimental Evaluation

In this section, we evaluate the Bulletproof architecture by enhancing physical-level

prototype of a 4-wide VLIW processor including instructionand data caches with the

proposed BulletProof technology. The performance of the design is analyzed using both

circuit timing simulation as well as architectural simulation. This enables to gauge the

impacts of defect protection, both during normal operationand after a microprocessor

component has been disabled. Finally, the cost of the defectprotection technology is

examined by measuring the area overhead of the testing logic(e.g., vector generation and

checkers). The defect coverage provided by the BulletProofapproach,i.e., what fraction

of randomly placed defects are detected and successfully recovered, is also evaluated by

carefully measuring the portion of the design’s protected silicon area.

3.3.1 Experimental Framework

Circuit-Level Evaluation: The 4-wide VLIW prototype was specified in Verilog, and

synthesized for minimum delay using the Synopsys Design Compiler. This produced a

structural Verilog netlist of the processor mapped to the Artisan standard cell logic library

using the TSMC 0.18um fabrication technology. The design was then placed and routed

using Cadence Sedsm, which in turn yields a physical design with wire capacitances and

individual component areas. Finally, the design was back annotated to obtain a more

accurate delay profile, and simulated with Synposys’ PrimeTime to verify its timing and

functional correctness.

For each hardware component and test vector set it is verifiedthat all stuck-at-0 and

stuck-at-1 faults are detected. In general, test vector sets were identified using carefully

hand-selected vectors, or by randomly cycling through random vector sets until a small

group of effective vectors was located. Test vector coverage is verified by inserting a hard

fault at each net of the design and then determining if a change in the output is observable

for the current input test vector set. For a test vector set toprovide full coverage, there

must be at least one vector that identifies a hard fault in all nets of the design. Once the

test vector set is identified, it is encoded into an on-chip ROM storage unit, created using

Synopsys design tools.
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Figure 3.8: The BulletProof Baseline Processor:The 4-wide 32-bit VLIW micropro-
cessor used for the evaluation of the BulletProof defect-tolerance technique.

Architectural Evaluation: The architectural evaluation was done using the Trimaran

toolset, a re-targetable compiler framework for VLIW/EPICprocessors [135], and the

Dinero IV cache simulator [47]. The simulator was configuredto model the VLIW base-

line configuration and memory hierarchy as detailed in the following section. The system

was evaluated using benchmarks from SPECint2000, MediaBench [69] and MiBench [43]

benchmark suites. These benchmarks cover a wide range of potential applications, includ-

ing desktop applications, server workloads, and embedded codes.

Coverage Analysis: Coverage analysis is measured by injecting faults into a logic

timing-level simulation of the detailed VLIW processor physical design. Since characteri-

zation of silicon defects in nanometer-sized technologiesis still an open research problem

the stuck-at-0 and stuck-at-1 fault models were used. Defects are injected into a placed-

and-routed implementation of the design. Faults are assigned to gates and wires so that the

probability of a deviceX becoming defectivepdefect is equal to:pdefect α Ax ∗ λx where

Ax is the area of the device andλx is the average estimated activity of the device. As such,

large devices with high activity rates are most apt to failure, while small components or

components with little activity are at lower risk.
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Component Number of Test Vectors

ALU 20

MUL 55

Decoder 63

Register File 128

Pipeline Control 12

Memory Control 13

Table 3.1: Online Test Vectors: Number of test vectors to achieve 100% coverage for
stuck-at-0 and stuck-at-1 faults.

Baseline Architecture: The baseline architecture, which is enhanced with the pre-

sented BulletProof defect protection technology, is a 4-wide VLIW architecture, with a

32-KByte instruction and data caches. This architecture was chosen for the evaluation of

the proposed technique because it represents a mainstream embedded target, often used

in applications where cost and reliability are paramount concerns. An overview of the ar-

chitecture and details of its components are shown in in Figure 3.8. The baseline pipeline

is a 4-wide VLIW processor with 32-bit fixed-point datapaths. The instruction set of the

processor is loosely based on the Alpha instruction set. Each VLIW instruction bundle

is 128-bit long, consisting of 4 independent 32-bit instructions. The processor pipeline

has five stages. The instruction fetch (IF) stage is responsible for fetching the 128-bit

VLIW instruction from the 32-KByte instruction cache. The instruction decode (ID) stage

decodes 4 independent instructions per cycle and fetches register operands from a regis-

ter file with 8 read ports and 4 write ports. The execute (EX) stage performs arithmetic

operations, multiplications, and address generation. Thememory (MEM) stage accesses

the 32-KByte data cache and main memory. Finally, the writeback (WB) stage retires

instruction results to the register file.

3.3.2 Testing Performance and Design Coverage

In this section, the cost of the online testing infrastructure is examined. In particular,

the number of vectors required to fully test each hardware component and the area cost

of the hardware checkers are examined, and the overall defect coverage of the design is

computed.

Online Testing Vectors:Table 3.1 lists the number of vectors needed to fully test each

hardware component for stuck-at-0 and stuck-at-1 faults. The table shows that only few

vectors are required to test each unit. Considering that thelength of a computational epoch

will typically be 1000’s of cycles, it is quite promising that testing can be completed using
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Design 
Block 

Total Area 
(mm2) 

Checker Area 
(mm2) 

% of 
Total Area 

Protected 
Area (mm2) 

% of 
Total Area 

IF 0.127 0.008 6.6 0.114 89.8 
ID 0.278 0.023 8.2 0.261 96.3 
RF 2.698 0.133 4.9 2.635 97.7 
EX 2.993 1.166 39.0 2.896 96.8 
WB 0.171 0.007 4.2 0.158 92.7 

Flip-Flops 0.164 0.122 1.4 0.164 99.9 
Overall Core 6.431 1.459 22.7 6.228 96.8 
I-cache 32KB 2.033 0.009 0.5 1.881 92.5 
D-cache 32KB 2.044 0.009 0.5 1.892 92.6 

Overall System 10.508 1.477 14.1 10.001 95.2 
 Table 3.2: Area Overhead of the BulletProof Technique: The table reports the total

area of each design block, the area dedicated to checkers, and the portion of the overall
area that is protected as a result of the BulletProof technique.

only occasional idle cycles. The caches are not listed in Table 3.1 because the use of parity

bits allow for the continuous detection of defects. Clearly, the time required to fully test

the hardware is quite small, only 128 cycles, with the register file taking the longest time

to complete its test.

Area Overhead and Design Coverage:The addition of test vector ROMs, where test

vectors are stored, plus the checkers and checkpointing infrastructure bears a cost on the

overall size of the design. Table 3.2 lists the total area of the defect tolerant component

(Total Area), the defect protection infrastructure area (Checker Area), and the area that is

covered by the test harness (Protected Area).

As shown in Table 3.2, the area overhead for defect protection is quite modest, with

most overheads less than 10%. The overheads within the caches are even lower, less than

1% for the prototype. Consequently, the overall area overhead for defect protection is quite

low. Adding support for defect and transient fault protection increased the total area of the

design by only 14%.

The fault coverage of the BulletProof mechanism is examinedby measuring the frac-

tion of faults covered through fault injection experiments. This fraction represents the

overall design defect coverage. Table 3.2 lists the coverage of the overall design, as well

as the coverage of individual processor components. Overall, the design coverage is 95%,

meaning that 95 out of 100 defects randomly placed into the microprocessor are covered

in the BulletProof fault-tolerant design.

3.3.3 Run-time Performance

This section examines the impact of the BulletProof defect protection mechanism on

the performance of programs running on the defect tolerant prototype design. The primary

source of potential slowdown occurs when a computational epoch is too small (or the
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Benchmark Avg. epoch  
size (cycles) 

Loads 
(%) 

Stores 
(%) 

Data L1 
miss rate 

Avg. ALU 
util. (%)  

Avg. LSM 
util. (%) 

Avg. Dec. 
util. (%) 

Avg. reg. 
rw/cycle 

175.vpr 50499 17.74 5.61 3.10 69.71 18.41 59.00 4.72 
181.mcf 120936 21.68 3.68 3.54 36.89 10.70 67.00 5.36 
197.parser 106380 22.34 13.69 2.10 54.22 19.71 52.25 4.18 
256.bzip2 162508 18.78 6.39 8.88 55.91 33.93 73.50 5.88 
unepic 33604 10.93 6.70 17.16 68.70 14.29 55.50 4.44 
epic 196211 9.70 1.15 6.60 72.80 8.28 29.25 2.34 
mpeg2dec 1135142 26.03 8.54 0.59 55.81 54.55 46.25 3.70 
pegwitdec 169617 18.79 3.78 10.42 62.15 45.06 62.50 5.00 
pegwitenc 304310 16.62 3.26 12.81 69.09 42.19 63.75 5.10 
FFT 23145 19.18 17.89 1.49 56.88 43.95 33.50 2.68 
patricia 139952 25.81 12.83 1.19 55.20 37.69 57.75 4.62 
qsort 1184756 33.29 27.44 2.55 20.08 18.74 32.25 2.58 
Average 302254 20.07 9.25 5.87 56.45 28.96 52.71 4.22 

 
Table 3.3: Epoch Statistics for the Baseline Configuration: The table lists epoch
statistics such as the average epoch size in cycles, along with L1 data cache miss rates, and
statistics regarding the utilization of ALUs, L1 data cachememory ports (LSM), decoders,
and register file ports.

testing requirements too great) to allow testing to complete within the time speculative

state resources are exhausted.

Performance Impact of Defect Testing:Table 3.3 lists statistics about computational

epochs for a variety of programs while running on the baseline VLIW processor with a 32

KByte 4-way set-associate data cache and an eight entry fully associative volatile victim

cache. Listed is the average epoch size in cycles along with the L1 data cache miss rate.

Also shown are statistics regarding the utilization of ALUs, L1 data cache memory ports

(LSM), decoders, and register file ports. It is clear from this table that the performance

overhead of defect testing is quite low. For the program withthe shortest average epoch

length (FFT), the number of test cycles is at most 0.5% of the total number of cycles within

the epoch. For this program, even if the testing during idle cycles could not be completed,

the performance impact would be negligible.

It should be noted that there is an interesting correlation between the epoch length and

the average component utilization. For many of the programswith short epoch lengths

(e.g., FFT and unepic), there is also a low functional unit utilization. This is to be expected

because a program with a short epoch length would have a largeamount of cache turnover,

which in turn would lead to many pipeline stalls and low functional unit utilization – and

plenty of time for defect testing. While programs with long epochs tend to have higher

component utilization, they do provide more time for the test harness to complete its task.

In addition, the effect of different cache geometries on average epoch size is examined,

and found that there is little performance impact for defecttesting for a wide range of

cache geometries.
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Figure 3.9: Performance Degradation of a Reconfigured BulletProof Processor: The
graph shows the performance of a variety of prototype processor pipelines that have been
impaired through reconfiguration. A configuration withn-ALU/m-LSMindicates that the
prototype processor pipeline hasn ALUs andm address generation/multiplier units.

Performance Impact of Degraded Mode Execution:Once a defect has been located,

the microprocessor must be reconfigured by disabling the defective component. This re-

configuration will not allow as much parallelism as previously afforded in the unbroken

pipeline, resulting in a performance degradation. Figure 3.9 graphs the performance of a

variety of prototype processor pipelines that have been impaired through reconfiguration.

In the experiments,n-ALU/m-LSMindicates that the experiment was run withn ALUs

andm address generation units/multipliers. The number of resources is varied from one to

four. As shown in Figure 3.9, losing an ALU in a 2ALU/2LSM machine configuration ren-

ders an average of 18% performance degradation. The averageperformance degradation is

limited to only 4% when losing an address generation/multiplier unit in the same machine

configuration. Machine configurations with more resources can exhibit even lower perfor-

mance degradation after being impaired through resource reconfiguration. For example,

machine configurations with four and three ALUs loosing one ALU results in an average

performance degradation of 3% and 8% respectively.
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3.4 Related Work

Defect-Tolerance Solutions:Table 3.4 compares qualitatively the BulletProof mecha-

nism with traditional defect-tolerance solutions and morerecent solutions proposed in the

research literature. As discussed in Section 2.1, techniques like dual and triple modular

redundancy are full-scope techniques that can provide defect coverage to the whole design

with very limited intrusion to the original design. However, these hardware replication

techniques lead to very high area overheads. An approach similar to hardware redun-

dancy is N-version redundancy where the protected component is designed byN different

groups. This approach avoids common failure modes, howeverit suffers from very high

design cost since the replicated components are designed independently. Another tradi-

tional approach is error correction codes (ECC) that is usedfor detecting and correcting

data corruption in memory structures and data buses. Although ECC has been proven a

low overhead and effective technique to provide data protection, it is limited only to the

data structures of a microprocessor design, most commonly the memory caches and the

register file.

The lower part of Table 3.4, compares the BulletProof approach [116, 83] with more

recent mechanisms found in the research literature, listedin chronological order with the

less recent at the top. The first work that proposed a comprehensive approach for micropro-

cessor tolerance to silicon defects was DIVA, proposed by Austin in [6]. DIVA is a simple

online checker component inserted into the retirement stage of a complex out-of-order

microprocessor pipeline that continuously validates the computation, communication, and

control exercised in the microprocessor core [6, 143]. The approach unifies all forms of

permanent and transient faults, making it capable of detecting computations error due to

design bugs, soft errors, and permanent silicon defects. The hardware overhead of a DIVA

checker is estimated to be around 6% of a full complex out-of-order microprocessor, which

compared to the traditional hardware replication techniques is extremely low. However,

augmenting a complex microprocessor design with a DIVA checker has a higher design

complexity and it is more intrusive than the traditional hardware replication techniques.

Furthermore, a limitation of the DIVA approach is that it does not diagnose the root cause

of an error in order to repair the underlying hardware and prevent the error from occurring

again.

Next, Boweret al. [19] proposed a hardware mechanism for self-repairing array struc-

tures to provide defect detection and repair capabilities for microprocessor array structures

such as the reorder buffer and branch history table. The proposed mechanism detects sil-

icon defects by employing dedicated “check rows”. Every time an entry is written to the
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Defect Tolerance 
Solution 

Defect 
Coverage 

Area 
Overhead 

Performance 
Overhead 

Design 
Intrusion/ 

Complexity 
Comments 

Traditional Solutions 
Dual Modular 
Redundancy (DMR) 

Very High 
(~99%) 

Very High 
(>100%) 

Very Low 
(<5%) 

Low 
Provides only error detection. 
Easy to cover the whole design. 

Triple Modular 
Redundancy (TMR) 

Very High 
(~99%) 

Ultra High 
(>200%) 

Very Low 
(<5%) 

Low 
Provides both error detection and 
forward recovery. Easy to cover 
the whole design. 

N-Version 
Redundancy 

Very High 
(~99%) 

Very High 
(>100%) 

Very Low 
(<5%) 

Very High 
N different versions of the 
component have to be 
implemented. 

Error Correction 
Codes (ECC) 

Memory 
Structures 

Medium 
(~15%) 

Very Low 
(<5%) 

Low 
Limited only to memory structures 
or data buses. 

Research-Stage Solutions 
DIVA  
Austin [6] 

Not 
Available 

Low 
(~6%) 

Not 
Available 

Medium 
Uses an online checker at the 
pipeline’s retirement stage. 

SRAS  
Bower et al. [19] 

Only 
Array 

Structures 

Not 
Available 

Not  
Available 

Medium 
Limited to array structures. 
Requires hardware changes in the 
array structures. 

Bower et al. [20] 
Not 

Available 
Medium 
(>15%) 

Not  
Available 

High 
Uses DIVA checkers and pipeline 
additions that truck instruction 
execution for defect diagnosis. 

BulletProof [116, 83] 
High 

(~95%) 
Medium 
(~14%) 

Ultra Low 
(<1%) 

Medium 
Uses BIST-like on-chip hardware 
checkers. 

ElastIC 
Sylvester et al. [129] 

Under Development/Evaluation High 
Uses on-chip sensors, silicon 
wear-out prediction units, and on-
chip testers.  

Argus  
Meixner et al. [85] 

High 
(~98%) 

Medium 
(~11%) 

Low 
(~4%) 

Medium 

Uses runtime checkers for the 
validation of control flow, 
computation, dataflow, and 
memory operations. 

StageNet  
Gupta et al. [42] 

Not 
Available 

Medium 
(~15%) 

Medium 
(~10%) 

High 

Pipeline stages need to be isolated 
and connected through crossbar 
switches. No error detection 
support. 

 

 

Table 3.4: Comparing BulletProof To Related Work: Comparison of BulletProof
to traditional defect-tolerance solutions and more recenttechniques found in the research
literature. The techniques are compared in respect to theirdefect coverage, area overhead,
runtime performance overhead, and the degree they intrude in the original design and they
are presented in chronological order with the less recent atthe top.

array structure, the same data is also written into a check row. Then, both locations are

read out and their values are compared to detect defective rows. To repair defective arrays,

the mechanism exploits the inherent resource redundancy ofthese structures and redirects

any accesses to defective rows to other functionally correct rows. Although the area over-

head of the technique is expected to be low, its implementation requires hardware design

changes to the protected array structures. Furthermore, the technique is limited only to

array structures and it does not cover the other resources ofthe microprocessor.

To address this limitation, Boweret al. extended their work in [20], where they pro-

posed a fault-tolerant microprocessor design that uses DIVA checkers for system-level

error detection coupled with a mechanism for diagnosing silicon defects by tracking the

instruction occupancy through the microprocessor’s pipeline. This mechanism covers the
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whole microprocessor pipeline and after diagnosing a silicon defect in one of the pipeline

components, the microprocessor reconfigures (i.e., disables) the defective part and contin-

ues operation at a gracefully degraded level of performance. The estimated area overhead

of this solution is around 15% of the pipeline area.

In [129], Sylvesteret al. proposed the ElastIC architecture which uses in-situ sensors

in combination with reliability and power models to predictthe lifetime and wearout of the

underlying hardware. This approach enables the dynamic trade-off of performance with

longer lifetime and reliability using dynamic voltage scaling techniques. The prototype

and evaluation process for this approach is currently in progress and there are not yet

known estimates for its coverage, area, or performance overhead.

More recently, Meixneret al., in [85], presented Argus, an error detection technique

for simple processor cores. The Argus technique continuously checks invariants to de-

tect execution errors, without the need for redundant computation. Specifically, Argus,

uses run-time invariant checking in four fundamental tasks: the control flow, the dataflow,

computation, and memory access. An implementation of the Argus system, the Argus-1,

that illustrates the engineering trade-offs between checker costs and error coverage was

presented in [85]. The Argus-1 prototype implementation was based on a single-issue,

4-stage, in-order processor and is characterized by a 11% area overhead and around 4%

runtime performance overhead. The Argus approach, like theBulletProof approach, pro-

vides error detection for errors caused by both permanent silicon defects and transient

faults and offers an alternative low-cost defect-tolerance approach compared to the tra-

ditional defect-tolerance approaches. However, Argus incurs a slightly higher runtime

performance overhead than the BulletProof approach.

Finally, in [42], Guptaet al. presented StageNet, a highly reconfigurable multicore

architecture. StageNet is a reconfigurable multicore computing substrate designed as a

network of pipeline stages, rather than isolated cores in a chip-multicore processor. The

StageNet network is formed by replacing the direct connections at each pipeline stage

boundary by a crossbar switch. Within the StageNet network,pipeline stages can be se-

lected dynamically from the pool of available stages to formlogical processing cores, thus

permanent silicon failures can be easily isolated by adaptively routing around defective

stages. The StageNet and the BulletProof approaches can be considered complementary

techniques, since the BulletProof framework can efficiently detect and diagnose silicon

defects in the microprocessor, and the StageNet substrate can effectively reconfigure the

microprocessor’s hardware resources and repair the microprocessor design.

From Table 3.4, we observe that the BulletProof mechanism ischaracterized by ex-

tremely low runtime performance overhead, but the provideddefect coverage is lower
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than some of the most recently proposed techniques and has higher area overhead. Based

on this observation, we considered to trade-off runtime performance overhead with higher

defect coverage and lower area cost. To make this trade-off possible, we found that we

could move the defect detection and diagnosis process form the BulletProof’s on-chip

hardware checkers to software testing routines. The movement of the hardware checking

process from hardware to software is the topic of the next chapter, Chapter IV.

Transient Fault Tolerance Solutions: Several approaches for providing transient

fault tolerance have been proposed in the past few years. Theconcept of using time re-

dundancy methods for mitigating soft errors has been explored in [5], [97] and [81]. In

particular, in [81], three samples of the input are taken at different clock edges and the

final output is determined using a majority voter.

An approach closer to the technique used by BulletProof to tolerate transient faults is

presented in [90]. In [90], Mitraet al. propose reusing scan chain resources for transient

fault detection in flip-flops. They introduce two different scan cell designs which are

based on blocking and trapping transient faults at the output of each flip-flop. While

their approach is efficient in terms of area, power and delay overhead, it does not detect

transient faults in combinational logic. The solution in [91] proposes a time-redundancy

based scheme with scan-path reuse in which a time-shifted version of the input is given to

the scan flip-flop. The C-element which was introduced in [90]is then used to block the

error at the flip-flop’s output.

3.5 Chapter Summary

This chapter presented BulletProof, a low cost technique that protects a microprocessor

pipeline and caches against transient faults and permanentsilicon defects. The approach

taken by BulletProof is notably different from traditionalapproaches to fault tolerance. A

microarchitectural checkpointing mechanism creates speculative epochs of computation

after which distributed, domain-specific on-line checkersrun BIST-like tests to verify the

integrity of the underlying hardware. Additionally, a double-sampling latch design is used

to detect transient fault logic glitches which have corrupted the pipeline state. If, at the end

of an epoch, the hardware is fault-free, the epoch computation is allowed to retire to non-

speculative state. In the event that a fault is exposed, the program state is rolled back to

the last known good program state at the beginning of the lastepoch. If the fault is due to

a transient fault, the epoch is re-executed, otherwise, thedefective component is disabled,

thereby allowing the processor to continue correct execution in a degraded-performance

mode.
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A 4-wide VLIW physical-level prototype processor enhancedwith the BulletProof

low-cost solution for fault tolerance was implemented. Analysis of this design indicates

that area overhead of the BulletProof mechanism is quite modest, providing transient and

hard silicon fault protection with only a 14% increase in total area. This is a remark-

able improvement over traditional redundancy-based techniques, such as triple-modular

redundancy, which incurs overheads starting at 200%. Additionally, it was demonstrated

through gate-level fault injection studies that fault-detection coverage is very high: 95% of

all hard silicon defects and 99% of all transient faults are covered. Additional simulation

studies confirmed that periodic online testing has negligible impact on the overall system

performance. Additionally, we examine the performance of prototype processors running

with disabled components in a degraded mode. When a 4-wide VLIW lost only one re-

source, performance impacts were limited to only a 6% slowdown. Larger impacts were

seen by the loss of a single resource in 2-wide VLIW processor, resulting in an overall

slowdown of 26%.

The BulletProof technique makes a strong case for the use of online periodic hard-

ware checking coupled with microarchitectural checkpointing to implement future defect

tolerant microprocessors. The approach is both efficient, with high coverage and low per-

formance impacts, and also inexpensive, with small area overhead.
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CHAPTER IV

A Software-Based Periodic Hardware Checking Solution -
The ACE Framework

The BulletProof approach, presented in the previous chapter, demonstrated that pe-

riodic hardware checking techniques can provide the same reliability guarantees as tradi-

tional defect-tolerance solutions that continuously monitor the execution for errors through

redundant computation, but at a much lower cost. However, even in the BulletProof ap-

proach, there is a need for some additional hardware resources needed to perform the peri-

odic hardware checking. This need, leads to some additionalhardware overhead which in

the case of the BulletProof prototype examined in the previous chapter, it was observed to

reach a 14% area overhead over the whole processor design. Furthermore, in BulletProof,

in order to lower the silicon cost, the testers were customized to the tested modules, a

design decision that lead to increased design complexity asa specialized tester needed to

be designed for each module covered by BulletProof. In addition, the majority of the Bul-

letProof online hardware checkers used BIST-like testing techniques that bind a specific

testing approach (e.g., fault model) into silicon and cannot be modified or adapted in the

field while the processor is operating.

To address the limitations observed in the BulletProof mechanism, this chapter intro-

duces theAccess-Control Extension (ACE) Framework, a software-based technique that

shifts the silicon defect detection and diagnosis process from on-chip hardware checkers

into software. In the ACE framework, the hardware provides the necessary substrate to

facilitate the hardware testing, and the software makes useof this substrate to perform

the hardware testing. The ACE framework addresses the limitations of the BulletProof

approach by: 1) it effectively removes the need for on-chip hardware checkers and moves

this functionality to software, 2) it is not hardwired in thedesign and therefore has am-

ple flexibility to be modified/upgraded in the field, 3) it can be uniformly applied to any

microprocessor module with low design complexity because it does not require module-

specific customizations, and 4) it provides wider coverage across the whole chip, including

non-core modules.
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Figure 4.1: ACE Framework Overview: The ACE framework fits in the hard-
ware/software stack below the operating system.

The ACE framework introduces specialized Access-Control Extension (ACE) instruc-

tions that are capable of accessing and controlling virtually any portion of the microproces-

sor’s internal state. Special firmware periodically suspends microprocessor execution and

uses the ACE instructions to run directed tests on the hardware and detect if any compo-

nent has become defective. To provide faster and more flexible software access to different

microarchitectural components at low hardware overhead, the ACE framework leverages

the pre-existing scan-chain infrastructure [67] that is conventionally integrated in existing

microprocessor designs and used during manufacturing testing.

Figure 4.1 shows how the ACE framework fits in the hardware/software stack below

the operating system layer. The ACE framework provides particularly wide coverage, as

it not only tests the internal processor control and instruction sequencing mechanisms

through software functional testing, but it can also check all datapaths, routers, inter-

connect and microarchitectural components by issuing ACE instruction test sequences.

Additionally, the ACE framework provides a complete defect-tolerance solution by incor-

porating its defect detection and diagnosis capabilities in a coarse-grained checkpointing

and recovery environment.

In the remainder of this chapter, Section 4.1 introduces a novel set of instructions,

called Access-Control Extension (ACE), that can access andcontrol the microprocessor’s

internal state. This set of instructions can be used by special firmware that periodically sus-

pend microprocessor execution to run directed tests on the hardware. Section 4.2 provides

the methodology used to experimentally evaluate the ACE framework, and Section 4.3

presents an analysis of the results of the ACE framework’s experimental evaluation on a

commercial chip-multiprocessor based on Sun’s Niagara. Section 4.4 provides previous

research work that is related with the ACE framework, and thechapter is summarized in

Section VII.
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4.1 Software-Based Periodic Defect Detection and Diagnosis

A key challenge in implementing a software-based defect detection and diagnosis tech-

nique is the development of effective software routines to check the underlying hardware.

Commonly, software routines for this task suffer from the inherent inability of the soft-

ware layer to observe and control the underlying hardware, resulting in either excessively

long test sequences or poor defect coverage. Current microprocessor designs allow only

minimal access to their internal state by the software layer; often all that software can ac-

cess consists of the register file and a few control registers(such as the program counter

(PC), status registers,etc.). Although this separation provides protection from malicious

software, it also largely limits the degree to which stock hardware can utilize software to

test for silicon defects.

An example scenario where the lack of observability compromises the efficiency of

software testing routines is a defective reorder buffer entry. In this scenario, a software-

based solution can detect such a situation only when the defect causes an error that propa-

gates to an accessible state, such as the register file, memory, or a primary output. More-

over, without specific knowledge as to how the architecturalstate was corrupted, thediag-

nosisof the source cause of the erroneous result is very challenging.1

To overcome this limited accessibility, the software-based framework presented in this

chapter employs architectural support through an extension to the processor’s ISA. Specif-

ically, the ISA extension adds a set of special instructionsthat enable full observability and

control of the hardware’s internal state. These Access-Control Extension (ACE) instruc-

tions are capable of reading/writing from/to any part of themicroprocessor’s internal state.

ACE instructions make it possible to probe underlying hardware and systematically and

efficiently assess if any hardware component is defective.

4.1.1 An ACE-Enhanced Architecture

A microprocessor’s state can be partitioned into two parts:accessible from the software

layer (e.g., register file, PC,etc.), or not (e.g., reorder buffer, load/store queues,etc.). An

ACE-enhanced microarchitecture allows the software layerto access and control (almost)

all of the microprocessor’s state. This is done by usingACE instructionsthat copy a value

from an architectural register to any other part of the microprocessor’s state, andvice versa.

This approach inherently requires the architecture to access the underlying microarchi-

tectural state. To provide this accessibility without a large hardware overhead, we leverage

1The sole fact that a hardware fault had propagated to an observable output does not provide information
on where the defect originated.
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Figure 4.2: A Typical Scan Flip-Flop: The presented scan flip-flop is adapted from
[90]. The system flip-flop is used during the normal operationof the microprocessor, while
the scan portion is used during testing to shift in and out test patterns and test responses.
The ACE framework leverages the microprocessor’s scan architecture to facilitate online
testing.

the existing scan chain infrastructure. Most modern processor designs employ full hold-

scan techniques to aid and automate the manufacturing testing process [67, 146]. In a full

scan design, each flip-flop of the processor state is substituted with a scan flip-flop and

connected to form one or more shift registers (scan chains) [23]. Figure 4.2 shows a typi-

cal scan flip-flop design [90, 67]. The system flip-flop is used during the normal operating

mode, while the scan portion is used during testing to load the system with test patterns

and to read out the test responses. The ACE framework extendsthe existing scan-chain

using a hierarchical, tree-structured organization to provide fast software access to differ-

ent microarchitectural components. The scan chain is operated at-speed,i.e., at the same

frequency as the processor clock, to facilitate online testing, as in some modern micropro-

cessors [75].

ACE Domains and Segments:In the ACE extension implementation, the micropro-

cessor design is logically partitioned into severalACE domains. An ACE domain consists

of the state elements and combinational logic associated with a specific part of the mi-

croprocessor. Each ACE domain is further subdivided intoACE segments, as shown in

Figure 4.3(a). Each ACE segment includes only a fixed number of storage bits, which is

the same as the width of an architectural register.

ACE Instructions: Using this hierarchical structure, ACE instructions can read or

write any part of the microprocessor’s state. Table 4.1 shows a description of the ACE

instruction set extensions.
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ACE_set $src,<ACE Domain#>,<ACE Segment#> 
Copy src register to the scan state (scan portion)

ACE_get $dst,<ACE Domain#>,<ACE Segment#>
Load scan state to register dst

ACE_swap <ACE Domain#>,<ACE Segment#>
Swap scan state with processor state (system FFs)

ACE_test: Three cycle atomic operation.
Cycle 1 : Load test pattern, Cycle 2 : Execute for 
one cycle, Cycle 3 : Capture test response

ACE_test <ACE Domain#>: Same as ACE_test but local 
to the specified ACE domain

Table 4.1: The ACE Instruction Set Extensions: The ACE instructions can copy a
value from an architectural register to any other part of themicroprocessor’s state, and
vice versa.

ACEset copies a value from an architectural register to the scan state (scan por-

tion in Figure 4.2) of the specified ACE segment at-speed (i.e., at the processor’s clock

frequency). Similarly,ACEget loads a value from the scan state of the specified ACE

segment to an architectural register at-speed. These two instructions can be used for ma-

nipulating the scan state through software-accessible architectural state. TheACEswap

instruction is used for swapping the scan state with the processor state (system flip-flops)

of the ACE segment by asserting both the UPDATE and the CAPTURE signals (see Fig-

ure 4.2).

Finally, ACEtest is a test-specific instruction that performs a three-cycle atomic

operation for orchestrating the actual testing of the underlying hardware (see Section 4.1.2

for an example).ACEtest is used after the scan state is loaded with a test vector using

theACEset instruction. In the first cycle, the scan state is swapped with the processor

state. The second cycle is the actual test cycle in which the processor executes for one

clock cycle.2 In the third cycle, the processor state is swapped again withthe scan state.

The last swap restores the processor state in order to continue normal execution and moves

the test response back to the scan state where it can be validated using theACEget

instruction. Another version ofACEtest takes as argument an ACE domain index,

which allows testing to be performed locally only in the specified domain.3

ACE Tree: During the execution of an ACE instruction, data needs to be transferred

from the register file4 to any part of the chip that contains microarchitectural state. In order

2Note that this is analogous to single-stepping in software debugging.
3ACEtest is logically the same as an atomic combination ofACEswap, followed by a single test

cycle, followed by anotherACEswap.
4Either from general-purpose architectural registers or from special-purpose architectural registers.
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Figure 4.3: The ACE Architecture: In part (a), the chip is logically partitioned into
multiple ACE domains. Each ACE domain includes several ACE segments. The union
of all ACE segments comprises the full chip’s state (excluding SRAM structures). In
part (b), data is transferred from/to the register file to/from an ACE segment through the
bidirectional ACE tree.

to avoid long interconnect, which would require extra repeaters and buffering circuitry, the

data transfer between the register file and the ACE segments is pipelined through theACE

tree, as shown in Figure 4.3(b). At the root of the ACE tree is the register file while the

ACE segments are its leaves. At each intermediate tree levelthere is anACE nodethat

is responsible for buffering and routing the data based on the executed operation. The

ACE tree is a bidirectional tree allowing data transfers from the register file to the ACE

segments and back. By designing the ACE tree as a balanced tree (all paths have the same

length), each ACE instruction that reads/writes any segment of the microprocessor state

takes the same number of clock cycles (i.e., the tree’s depth). Note that ACE instructions

can be executed in a pipelined fashion over the ACE tree.
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In a uniprocessor system the ACE topology is the simplest possible, since it consists of

a single ACE tree rooted at the processor’s register file. However, CMP systems consisting

of several cores, on-chip caches, and supporting modules such as memory controllers and

cross-bars (i.e., non-coremodules), might require more complex ACE topologies. In CMP

systems it is possible to design multiple ACE trees, each originating from a distinct reg-

ister file of the multiple cores in the system. Since non-coremodules usually do not have

instruction execution capabilities, they cannot include an ACE tree of their own. There-

fore, in the ACE framework implementation, each core’s ACE tree spans over the core’s

resources as well as over non-core modules.

In order to avoid any malicious use of the ACE infrastructure, ACE instructions are

privileged instructions that can be used only byACE firmware. ACE firmware routines

are special applications running between the operating system layer and the hardware in

a trusted mode, similarly to other firmware, such as device drivers. Each microprocessor

vendor can keep the specific mapping between the microprocessor’s state and the ACE

domains/segments as classified information for security reasons. Therefore, it is expected

that ACE firmware will be developed by microprocessor vendors and distributed to the

customers.

Design Complexity: Since the ACE Tree is a regular structure that routes data from

the register file to the scan chains and vice versa, its implementation and insertion into

the microprocessor implementation can be automated by CAD tools, similar to the way

that scan chains are automatically implemented and inserted in current microprocessors

today. The main intrusive portion of the ACE Tree that needs interaction with existing

processor components are the additional read/write ports needed to connect the root of the

ACE Tree to the processor register file. Similarly, the ACE instruction set extensions are

likely not intrusive to the microarchitecture since their operations are relatively simple and

their implementation does not affect the implementation ofother instructions in the ISA.

4.1.2 ACE-Based Online Testing

ACE instruction set extensions make it possible to craft programs that can efficiently

and accurately detect underlying hardware defects. The approach taken in building test

programs, however, must have high-coverage, even in the presence of defects that might

affect the correctness of ACE instruction execution and test programs. This section de-

scribes how test programs are designed.

ACE Testing and Diagnosis: Special firmware periodically suspends normal pro-

cessor execution and uses the ACE infrastructure to performhigh-quality testing of the

underlying hardware. A test program exercises the underlying hardware with previously
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Step 1: Test Pattern Loading

// load test pattern to scan state
for(i=0;i<#_of_ACE_Domains;i++){

for(j=0;j<#_of_ACE_Segments;j++){
load    $r1,pattern_mem_loc
ACE_set $r1, i, j
pattern_mem_loc++

}

Step 2: Testing

// Three cycle operation
// 1)load test pattern 
// to processor state// to processor state
// 2)execute for one cycle
// 3)capture test response &
// restore processor state
ACE_test

Step 3: Test Response Validation

// validate test response
for(i=0;i<#_of_ACE_Domains;i++){

for(j=0;j<#_of_ACE_Segments;j++){
load    $r1,test_resp_mem_loc
ACE_get $r2, i, j
if ($r1!=$r2) then ERROR else
test_resp_mem_loc++

}

Figure 4.4: ACE Firmware: Pseudo-code for 1) loading a test pattern, 2) testing, and
3) validating the test response.

generated test patterns and validates the test responses. Both the test patterns and the asso-

ciated test responses are stored in physical memory. The pseudo-code of a firmware code

segment that applies a test pattern and validates the test response is shown in Figure 4.4.

First, the test program stops normal execution and uses theACEset instruction to load

the scan state with a test pattern (Step 1). Once the test pattern is loaded into the scan

state, a three-cycle atomicACEtest instruction is executed (Step 2). In the first cycle,

the processor state is loaded with the test pattern by swapping the processor state with the

scan state (as described in the previous section). The next cycle is the actual test cycle

where the combinational logic generates the test response.In the third cycle, by swapping

again the processor state with the scan state, the processorstate is restored while the test

response is copied to the scan state for further validation.The final phase (Step 3) of the

test routine uses theACEget instruction to read and validate the test response from the

scan state. If a test pattern fails to produce the correct response at the end of Step 3, the test
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program indicates which part of the hardware is defective5 and disables it through system

reconfiguration [114, 29]. If necessary, the test program can run additional test patterns to

narrow down the defective part to a finer granularity.

Given this software-based testing approach, the firmware designer can easily change

the level of defect coverage by varying the number of test patterns. As a test program

executes more patterns, coverage increases. Automatic test pattern generation (ATPG)

tools [23] can be used to generate compact test pattern sets adhering to specific fault mod-

els.

Basic Core Functional Testing: When performing ACE testing, there is one initial

challenge to overcome: ACE testing firmware relies on the correctness of a set of basic

core functionalities which load test patterns, execute ACEinstructions, and validate the test

response. If the core has a defect that prevents the correct execution of the ACE firmware,

then ACE testing cannot be performed reliably. To bypass this problem, specific programs

to test the basic functionalities of a core before running any ACE testing firmware are

employed. If these programs do not report success in a timelymanner to an independent

auditor (e.g., the operating system running on the other cores), then we assume that an

irrecoverable defect has occurred on the core and it is permanently disabled. If the basic

core functionalities are found to be intact, finer-grained ACE testing can begin. Although

these basic functionality tests do not provide high-quality testing coverage, they provide

enough coverage to determine if the core can execute the targeted ACE testing firmware

with a very high probability. A similar technique employingsoftware-based functional

testing was used for the manufacturing testing of Pentium 4 [99].

Testing Frequency: Device experts suggest that the majority of wearout-related de-

fects manifest themselves as progressively slow devices before eventually leading to a per-

manent breakdown [15, 71]. Therefore, the initial observable symptoms of most wearout-

related defects are timing violations. To detect such wearout-related defects early, we

employ a test clock frequency that is slightly faster than the operating frequency. Specif-

ically, the existing dynamic voltage/frequency scaling mechanisms employed in modern

processors [79] can be extended to support a frequency that is slightly higher than the

fastest used during normal operation.6

5By interpreting the correspondence between erroneous response bits and ACE domains.
6The safeguard margins used in modern microprocessors (to tolerate process variation) allow the use of

a slightly faster testing frequency with a negligible number of false positives [33].
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4.1.3 ACE Testing in a Checkpointing and Recovery Environment

The ACE testing framework is incorporated within a multiprocessor checkpointing

and recovery mechanism (e.g., SafetyNet [120] or ReVive [101]) to provide support for

system-level recovery. When a defect is detected, the system state is recovered to the last

checkpoint (i.e., correct state) after the system is repaired.

In a checkpoint/recovery system, the release of a checkpoint is an irreversible action.

Therefore, the system must execute the ACE testing firmware at the end of each checkpoint

interval to test the integrity of the whole chip. A checkpoint is released only if ACE testing

finds no defects. With this policy, the performance overheadinduced by running the ACE

testing firmware depends directly on the length of the checkpoint interval, that is, longer

intervals lead to lower performance overhead. The trade-off between checkpoint interval

size and ACE testing performance overhead is explored in Section 4.3.5.

To achieve long checkpoint intervals, I/O operations need to be handled carefully. I/O

operations such as filesystem/monitor writes or network packet transmissions are irre-

versible actions and can force an early checkpoint termination. Premature checkpoint ter-

minations can be avoided by buffering I/O operations as described in [95]. Alternatively,

the operating system can be modified to allow speculative I/Ooperations as described

in [98]. Section 4.3.7 evaluates the effect of frequent I/O operations on the performance

overhead of our technique.

4.1.4 Putting it Together: Algorithmic Flow of ACE-Based Testing

Table 4.2 shows the flow of ACE-Based Online testing in a checkpointing and recovery

environment with single-threaded execution. Other execution models are examined in the

next section. Two points are worth noting in the algorithm. First, a lightweight context

switch is performed from the application thread to the ACE testing thread at the beginning

of the test and vice versa at the end of the test. Lightweight context switching [2, 65]

in a single cycle is supported by many simultaneously-multithreaded processors today,

including Sun’s UltraSPARC T1. If lightweight context switch support is not available,

then a pipeline flush is required. Our results show that context switch penalty, even if it

is hundreds of cycles, only negligibly increases the overhead of ACE testing. Second, if

either the basic core functional test or the ACE firmware testfails, ACE testing firmware

disables the tested core and traps to system software.7 If the ACE firmware test fails, the

7Note that if a certain test takes longer than an unreasonablylong time interval (i.e., greater than 10 times
the maximum latency of the performed test), a watchdog timerdetects this and repeats the test. If the test
fails or times out twice, then an irrecoverable core defect is assumed and the microprocessor traps to system
software.
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Step Action

1 Run regular application thread until the 
checkpointing interval is reached

2 Lightweight context switch to ACE testing mode

3 Run basic core functional test (described in 
Sections 4.1.2 and 4.3.1)

3-Fail If the functional test fails twice, declare 
fault, disable core, and trap to system 
software for analysis and recovery

4 Run the ACE firmware (shown in Figure 4.4)

4-Fail If ACE firmware results in ERROR, declare 
fault, disable core, and trap to system 
software for analysis and recovery

5 Discard old checkpoint, create new checkpoint, 
context switch back to regular application 
thread; go to Step 1thread; go to Step 1

Table 4.2: Algorithmic Flow of ACE-Based Testing: During ACE-based testing, a
lightweight context switch is performed from the application thread to the ACE testing
thread at the beginning of the test and vice versa at the end ofthe test. If either the basic
core functional test or the ACE firmware test fails, ACE testing firmware disables the
tested core and traps to system software.

system software performs defect diagnosis to localize the defect. To do so, the system

software maps the ACE segments that fail to match the expected test response to specific

hardware components (i.e., the combinational logic driving the flip-flops of the ACE seg-

ments). If reconfigurability support is provided within those hardware components, the

ACE firmware can pinpoint these components to be disabled.

4.1.5 ACE Testing Execution Models

Single-Threaded Sequential ACE Testing:The simplest execution model for ACE

testing is to invoke the ACE testing process at the end of eachcheckpoint interval. In

this execution model, the application runs normally on the processor until the buffering

resources dedicated to the checkpoint are full and a new checkpoint needs to be taken. At

this point, a context switch between the application process and the ACE testing process

happens. If the ACE testing routine deems the underlying hardware defect-free, a new

checkpoint of the processor state is taken and the executionof the application process is

resumed. Otherwise, system repair and recovery are triggered. Figure 4.5(a) illustrates

this single-threaded sequential execution model.
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Figure 4.5: Different ACE Testing Execution Models: Part (a) illustrates ACE testing
in a single-threaded sequential execution model where the ACE testing thread is executed
exclusively after application execution. In part (b) the ACE testing thread runs simultane-
ously with the application in a 2-way SMT execution environment. In part (c) ACE testing
is interleaved with application execution and runs in the shadow of L2 cache misses.

SMT-Based ACE Testing: In processors that support simultaneous multithreading

(SMT) execution [112, 48, 136], it is possible for the ACE firmware to run simultaneously

with the application threads running on separate executioncontexts. This execution model

is illustrated in Figure 4.5(b) and could be higher performance since it overlaps the latency

of ACE testing with actual application execution.

Fortunately, the majority of the instructions used by the ACE testing firmware do not

entail any synchronization requirements between the ACE testing thread and the other

threads running on the processor. For example, the ACE instructions used to load a test

pattern into the scan state (ACEset ) or read and validate a test response (ACEget ) do

not affect the execution of other threads running on the processor. The work performed by

these instructions can be fully overlapped with application execution.

However, theACEtest instruction momentarily changes the microarchitectural state

of the entire processor and thus affects the normal execution of all running threads. To

avoid the incorrect execution of other running threads, when anACEtest instruction is

executed by the ACE testing thread, all other threads need topause execution. This is

implemented by using simple synchronization hardware thatpauses execution of all other

threads (i.e., stalls their pipelines) when anACEtest instruction starts execution and re-

sumes their execution once the test instruction is completed. Notice that during testing, the

processor’s microarchitectural state is stored in the scanstate. The microarchitectural state

gets restored right after the test cycle (see Section 4.1.1)enabling the seamless resumption

of normal processor execution.

The advantage of the SMT-based ACE testing model is its lowerperformance overhead

compared to single-threaded sequential ACE testing. The disadvantage is that this model

requires a separate SMT context to be present in the underlying processor.

Interleaved ACE Testing in the Shadow of L2 Misses:When the ACE testing thread

is sharing the processor resources with other critical applications, it is important to avoid
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penalizing the performance of these critical applicationsdue to hardware testing. Perfor-

mance penalties can be reduced by allowing the ACE testing thread to execute only when

the processor resources are not utilized by the performancecritical threads. An example

scenario is to execute the ACE testing thread when the processor is stalled waiting for an

L2 cache miss to complete,i.e., in the shadow of L2 cache misses. This execution sce-

nario is illustrated in Figure 4.5(c). In this execution model, the processor suspends the

execution of the application and context switches into the ACE testing thread when the

application incurs an L2 cache miss due to its oldest instruction. This context switch is

similar to the lightweight context switches used in switch-on-event multithreading [2, 65].

When the L2 miss is fully serviced, the processor context switches back to the applica-

tion and suspends the execution of the ACE thread. Under thisexecution policy, the ACE

testing thread utilizes resources that would otherwise be not utilized and does not use

the processor resources when these are needed by other performance critical applications.

However, it is possible that the full ACE testing might not becompleted in the shadow

of L2 misses because the application might not incur enough L2 cache misses. If that is

the case, the remaining portion of the ACE testing thread is executed at the end of the

checkpoint interval.

The advantage of this ACE testing model is that it does not require a separate SMT

context and can possibly provide lower performance overhead than sequential ACE test-

ing. On the other hand, if L2 misses are not common in an application, this model can

degenerate into single-threaded sequential ACE testing.

4.1.6 Flexibility of ACE Testing

The software nature of ACE testing inherently provides a more flexible solution than

hardwired solutions. The major advantages offered by this flexibility are:

Dynamic tuning of the performance-reliability trade-off: The software nature of

ACE testing provides the ability to dynamically trade-off performance with reliability (de-

fect coverage). For example, when the system is running a critical application demanding

high system reliability, ACE testing firmware can be run morefrequently with higher qual-

ity and higher coverage targets (i.e., use of different fault models and more test patterns).

On the other hand, when running a performance critical application with relatively low re-

liability requirements (e.g., video decompression), ACE testing frequency can be reduced.

Utilization-oriented testing: ACE testing allows the system to selectively test only

those resources utilized by the running applications. For example, if the system is running

integer-intensive applications, there might be no need to test non-utilized FPU resources.
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Upgradability: Both fault models and ATPG tools are active research areas. Re-

searchers continuously improve the quality and coverage ofthe generated test patterns.

Therefore, during the lifetime of a processor, numerous advances will improve the qual-

ity and test coverage of the ATPG patterns. The software nature of ACE testing allows

processor vendors to periodically issue ACE firmware updates that can incorporate these

advances, and thus improve the defect detection quality during the processor’s lifetime.

Adaptability: ACE testing allows vendors to adapt the testing method basedon in-

the-field analysis of likely defect scenarios. For example,if a vendor observes that the

failure of a specific processor is usually originating from aparticular module, they can

adapt the ACE testing firmware to prioritize efforts on that particular module.

4.2 Experimental Methodology

The OpenSPARC T1 architecture, the open source version of the commercial Ultra-

SPARC T1 (Niagara) processor from Sun [127], is used as the experimental testbed for the

evaluation of the ACE framework.

The OpenSPARC T1 processor implements the 64-bit SPARC V9 architecture and tar-

gets commercial applications such as application servers and database servers. It contains

eight SPARC processor cores, each with full hardware support for four threads. The eight

cores are connected through a crossbar to a unified L2 cache (3MB). The chip also includes

four memory controllers and a shared FPU unit [127].

First, using the processor’s RTL code, the processor was divided into ACE domains.

This partition was made based on functionality, where each domain comprises a basic

functionality module in the RTL code. When dividing the processor into ACE domains,

the modules that are dominated by SRAM structures (such as caches) were excluded be-

cause such modules are already protected with error-codingtechniques such as ECC. Fig-

ure 4.6 shows the processor modules covered by the ACE framework (note that the L1

caches within each core are also excluded). Overall, the RTLimplementation of the ACE

framework consists of 79 ACE domains, each domain includingon average 45 64-bit ACE

segments. The whole chip comprises roughly 235K ACE-accessible bits.

Next, each ACE was synthesized using the Synopsys Design Compiler with the Artisan

IBM 0.13um standard cell library. The test patterns were generated using the Synopsys

TetraMAX ATPG tool. TetraMAX takes as input the gate-level synthesized design, a fault

model, and a test coverage target and tries to generate the minimum set of test patterns that

meet the test coverage target.
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Figure 4.6: ACE Coverage of the OpenSPARC T1 Processor: Modules that are
dominated by SRAM structures, such as on-chip caches, are not covered by ACE testing
since they are already protected by ECC.

Fault Models: In the evaluation of the ACE framework, three single-fault models were

used: stuck-at, N-detect and path-delay. The stuck-at fault model is the industry standard

model for test pattern generation. It assumes that a circuitdefect behaves as a node stuck

at 0 or 1. However, previous research has shown that the test pattern sets generated using

the N-detect fault model are more effective for both timing and hard failures, and present

higher correlation to actual circuit defects [82, 40]. In the N-detect test pattern sets, each

single stuck-at fault is detected by at leastN different test patterns. As expected, the benefit

of more effective testing by using the N-detect model comes with the overhead of larger

test pattern set sizes and longer testing times. To provide the flexibility of dynamically

trading off between reliability and performance, test pattern sets using both fault models

were generated.

In addition to the stuck-at and N-detect fault models, test patterns were also generated

using the path-delay fault model [23]. The path-delay faultmodel tests the design for

delay faults that can cause timing violations. The test patterns generated using the path-

delay fault model exercise the circuit’s paths at-speed to detect whether a path is too slow

due to manufacturing defects, wearout-related defects, orprocess variation. A detailed

description of the path-delay fault model used is availablein the Synopsis TetraMAX user

guide [130].
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Benchmarks: A set of benchmarks from the SPEC CPU2000 suite were used to eval-

uate the performance overhead and memory logging requirements of ACE testing.8 All

benchmarks were ran with the reference input set.

Microarchitectural Simulation: To evaluate the performance overhead of ACE test-

ing, the SESC simulator [106] was modified to simulate a SPARCcore enhanced with the

ACE framework. The simulated SPARC core is a 6-stage, in-order core (with 16KB IL1

and 8KB DL1 caches) running at 1GHz [127].9 For each simulation run, the first billion

instructions were skipped and then cycle-accurate simulation for different checkpoint in-

terval lengths (10M, 100M and 1B dynamic instructions) was performed. To obtain the

number of clock cycles needed for ACE testing, a process thatwas emulating the ACE

testing functionality was also simulated. For the SMT experiments, a separate thread that

runs the ACE testing software was used with a round-robin thread fetch policy. For these

experiments, the simulation terminates when the ACE threadfinishes testing and at least

one of the other threads executes 100M instructions.The thread combinations simulated

for these experiments were determined randomly. Unless otherwise stated, the presented

experimental results were obtained using the single-threaded sequential execution model

of ACE testing.

Experiments to Determine Memory Logging Requirements:The Pin x86 binary

instrumentation tool [77] was used to evaluate the memory logging storage requirements

of coarse-grained checkpointing. A Pin tool that measures the amount of storage needed to

buffer the cache lines written back from the L2 cache to main memory during a checkpoint

interval, based on the ReVive checkpointing scheme [101], was implemented. Note that

only the first L2 writeback to a memory address during the checkpoint interval causes the

old value of the cache line to be logged in the buffer. 64 bytes(same as our cache line

size) are logged for each L2 writeback. Benchmarks were run to completion for these

experiments. Section 4.3.4 presents the memory logging overhead of the ACE framework.

Performance Overhead of I/O-intensive Applications:An irreversible I/O operation

(e.g., sending a packet to a network interface or writing to the disk) requires the termina-

tion of a checkpoint before it is executed. If such operations occur frequently, they can

lead to consistently short checkpoint intervals and therefore high performance overhead

for our proposal. To investigate the performance overhead due to such frequent I/O op-

erations, some I/O-intensive file-system and network processing benchmarks were also

simulated. Specifically, the microbenchmarks Bonnie and IOzone were used to exercise

8Results from some SPEC CPU2000 benchmarks that we were not able to port to the simulation frame-
work are not presented.

9SESC provides a configuration file for the OpenSPARC T1 processor, which was used in the evaluation
experiments.
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the file system by performing frequent disk read/write operations. The NetPerf bench-

marks [46] were also used to exercise the network interface by performing very frequent

packet send/receive operations. In addition to the Netperfsuite, three other benchmarks,

NetIO, NetPIPE, and ttcp, that are commonly used to measure network performance were

evaluated. In these experiments, the execution of an irrecoverable I/O operation is pre-

ceded by a checkpoint termination and the new checkpoint interval begins right after the

execution of the I/O operation. Section 4.3.7 presents our results.

RTL Implementation: The ACE tree structure was implemented in RTL using Verilog

in order to obtain a detailed and accurate estimate of the area and power consumption

overheads of the ACE framework. The ACE tree design was synthesized using the same

tools, cell library and methodology that was used for synthesizing the OpenSPARC T1

modules, as described earlier in this section. Section 4.3.8 evaluates and quantifies the area

overhead of the ACE framework while Section 4.3.9 evaluatesits power consumption.

4.3 Experimental Evaluation

4.3.1 Basic Core Functional Testing

Before running the ACE testing firmware, a software functional test is performed

first to check the core for defects that would prevent the correct execution of the test-

ing firmware. If this test does not report success in a timely manner to an independent

auditor (i.e., the OS running on other cores), the test is repeated to verify that the failing

cause was not transient. If the test fails again, then an irrecoverable core defect is assumed,

the core is disabled, and the targeted tests are canceled.

The software functional test used to check the core consistsof three self-validating

phases. The first phase runs a basic control flow check where 64basic blocks are executed

in a non-sequential control flow and each of the 64 basic blocks sets the value of a bit in

a 64-bit architectural register. At the end of the phase, a control flow assertion checks the

value of the register to determine whether or not the execution was correct. The second

phase checks the core’s capability to access the register file. This phase consists of a se-

quence of data-dependent ALU instructions that eventuallyread and write all architectural

registers. At the end of this phase, the final result of this chain of computation is checked

by an assertion. The final phase of the basic core test consists of a sequence of dependent

instructions that uses each of the instructions in the ISA atleast once. The final result of

the functional test is checked by an assertion that validates the last generated value. The

total size of the software functional test is approximately700 dynamic instructions.
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Control Flow Assertion Incorrect execution during the control flow test.

Register Access Assertion Incorrect execution during the register access test.

Incorrect Execution Assertion The final result of the test is incorrect.

Early Termination The execution terminated withoutexecuting all the Early Termination The execution terminated withoutexecuting all the 
instructions (wrong control flow)

Execution Timeout The test executed for more than the required clock 
cycles (wrong control flow, e.g., infinite loop)

Illegal Execution The test executed an illegal instruction (e.g., an
instruction with an invalid opcode)

Memory Error Memory request for an invalid memory address

Undetected Fault The test executed correctly

Figure 4.7: Fault Coverage of Basic Core Functional Testing: The pie chart shows
the distribution of the outcomes of a fault injection campaign on a 5-stage in-order core
running the purely software-based preliminary functionaltests.

A stuck-at fault injection campaign on the gate-level netlist of a synthesized 5-stage

in-order core (similar to the SPARC core with the exception of multithreading support)

was performed to evaluate the effectiveness of the basic core test. Figure 4.7 shows the

distribution of the outcomes of the fault injection campaign. Overall, the basic core test

successfully detected 62.14% of the injected faults. The remaining 37.86% of the injected

faults lied in parts of the core’s logic that do not affect thecore’s capability of executing

simple programs such as the basic core test and the ACE testing firmware. ACE testing

firmware will subsequently test these untested areas of the design to provide full core

coverage.

These results also demonstrate that software-based functional tests that, unlike the

ACE testing firmware, do not have access/control on the core’s internal state, are inade-

quate to provide a high-quality, high-coverage test of the underlying hardware. Similar
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Module Area 
(mm2) 

ACE Accessible 
Bits 

Stuck-at 
Test Insts

Test (%) 
Coverage 

Path-Delay
Test Insts 

N-Detect Test Insts 
N = 2 N = 4 

SPARC CPU Core 8x17=136 8x19772=158176 152370 100.00 110985 234900 434382 
CPU-Cache Crossbar 14.0 27645 67788 100.00 10122 117648 200664 
Floating Point Unit 4.6 4620 88530 99.95 31374 126222 212160 
e-Fuse Cluster 0.2 292 11460 94.70 4305 33000 68160 
Clock and Test Unit 2.3 4205 68904 92.88 10626 126720 240768 
I/O Bridge 4.9 10775 110274 100.00 31479 171528 316194 
DRAM Controller 2x6.9=13.8 2x14201=28402 122760 91.44 126238 204312 365364 
Total 175.8 234115  99.22    

 

Table 4.3: Test Instructions Needed to Test Each Major Modules: The table shows
the number of test instructions needed by the ACE framework to test each of the major
modules in the OpenSPARC T1 design.

software functional testing techniques were used for the manufacturing testing of the Intel

Pentium 4 [99]. The coverage of these tests as reported in [99] is in the range of 60-70%,

which corroborates the results observed from our fault-injection campaign on a simpler

Niagara-based core.

4.3.2 ACE Testing Latency, Coverage, and Storage Requirements

An important metric for measuring the efficiency of the ACE framework is how long

it takes to fully check the underlying hardware for defects.The latency of testing an ACE

domain depends on (1) the number of ACE segments it consists of and (2) the number of

test patterns that need to be applied. In this experiment, test patterns for each individual

ACE domain in the design were generated using three different fault models (stuck-at,

path-delay and N-detect) and the methodology described in Section 4.2. Table 4.3 lists the

number of test instructions needed to test each of the major modules in the design (based

on the ACE firmware code shown in Figure 4.4).

For the stuck-at fault model, the most demanding module is the SPARC core, requir-

ing about 150K dynamic test instructions to complete the test. Modules dominated by

combinational logic, such as the SPARC core, the DRAM controller, the FPU, and the I/O

bridge are more demanding in terms of test instructions. On the other hand, the CPU-cache

crossbar, which consists mainly of buffer queues and interconnect, requires much fewer

instructions to complete the tests.

For the path-delay fault model, test pattern sets for the critical paths that are within 5%

of the clock period were generated. The required number of test instructions to complete

the path-delay tests is usually less than or similar to that required by the stuck-at model.

Note that, with these path-delay test patterns, a defectivedevice can cause undetected

timing violations only if it is not in any of the selected critical paths and it causes extra
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Design 
Module 

Storage Requirements of Test Patterns/Responses (MB) 
Stuck-at Path-Delay N-Detect (N=2) N-Detect (N=4) All Models 

SPARC CPU Core (spac) 0.36 0.33 0.56 1.03 2.28 
CPU-Cache Crossbar (ccx) 0.17 0.03 0.30 0.51 1.01 
Floating-Point Unit (fpu) 0.22 0.10 0.30 0.50 1.13 
e-Fuse Unit (efc) 0.03 0.01 0.08 0.16 0.27 
Clock and Test Unit (ctu) 0.17 0.03 0.32 0.61 1.14 
I/O Bridge (iobdg) 0.28 0.10 0.43 0.79 1.60 
DRAM Controller (dram_ctl) 0.59 0.72 0.93 1.44 3.69 
Total 1.83 1.34 2.91 5.04 11.11 

 

Table 4.4: Storage Requirements for Test Patterns and Responses: Test pat-
tern/response storage requirements per fault model and design module.

delays greater than 5% of the clock period. This probabilityis expected to be very low;

however, stricter path selection strategies can provide higher coverage if deemed necessary

(with a higher testing latency). For the specific experiments, it was found that the path

selection strategy used does not lead to a large number of selected paths. However, in

designs where delays of the majority of paths are within 5% ofthe clock period, more

sophisticated path selection strategies can keep the number of selected paths low while

maintaining high test coverage [94].

For the N-detect fault model, the number of test instructions is significantly more than

that needed for the stuck-at model. This is because many moretest patterns are needed to

satisfy the N-detect requirement. For values ofN higher than four, it was observed that the

number of test patterns generated increases almost linearly with N, an observation that is

aligned with previous studies [82, 40].

Full Test Coverage: The overall chip test coverage for the stuck-at fault model is

99.22% (shown in Table 4.3). The only modules that exhibit test coverage lower than

99.9% are the e-Fuse cluster, the clock and test unit, and theDRAM controllers, which

exhibit the lowest test coverage at 91.44%. The relatively low test coverage in these mod-

ules is due to ATPG untestability of some portions of the combinational logic. In other

words, no test patterns exist that can set a combinational node to a specific value (lack of

controllability), or propagate a combinational node’s value to an observable node (lack of

observability). If necessary, a designer can eliminate this shortcoming by adding dummy

intermediate state elements in the circuit to enable controllability and observability of the

ATPG untestable nodes. The test coverage for the two considered N-detect fault models

is slightly less than that of the stuck-at model, at 98.88% and 98.65%, respectively (not

shown in Table 4.3 for simplicity).

Storage Requirements for ATPG Test Patterns/Responses:Table 4.4 shows the

storage requirements for the ATPG test patterns and the associated test responses. The
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Module 
Cores [0,1]  
Test Insts 

Cores [2,4]  
Test Insts 

Cores [3,5]  
Test Insts 

Cores [6,7]  
Test Insts 

Stuck-at Path-delayStuck-at Path-delay Stuck-at Path-delay Stuck-at Path-delay 
1xSPARC CPU Core 152370 110985 152370 110985 152370 110985 152370 110985 
1/8xCrossbar 8474 1265 8474 1265 8474 1265 8474 1265 
1/2xFPU       44265 15687 
1/2xe-Fuse Cluster     5730 2153   
1/2xClock & Test Unit 34452 5313       
1/2xI/O Bridge   55137 15740     
1/2xDRAM Ctrl (pair)   61380 63119 61380 63119   
Total 195296 117563 277361 191109 227954 177522 205109 127937 
Stuck-at + Path-delay 312859 468470 405476 333046 

 

Table 4.5: Full-Chip Distributed ACE Testing: The testing process is distributed over
the chip’s eight SPARC cores. Each core is assigned to test its resources and some parts of
the surrounding non-core modules. The table shows the number of test instructions needed
by each core pair to perform the distributed testing.

storage requirements are shown separately for each major module in the OpenSPARC

T1 chip and for each fault model considered in this work. Notice that since there is re-

source replication in the OpenSPARC T1 chip (e.g., there are eight SPARC cores and four

DRAM controllers on the chip), only one set of test patterns/responses is required to be

stored per resource. The least amount of test pattern storage is required by the path-delay

fault model (1.34 MB) while the most demanding fault model isN-detect, whereN = 4,

which requires about 5 MB. The overall test pattern/response storage requirement for all

modules and all fault models is 11.11 MB, which is similar to what is reported in previ-

ous work [74]. In ACE framework, the test patterns and responses are stored in physical

memory and loaded into the register file during the testing phase. Therefore, for physical

memories of several gigabytes in modern processors, the storage requirements of 11 MB

is considered negligible.

4.3.3 Full-Chip Distributed Testing

In the OpenSPARC T1 architecture, the hardware testing process can be distributed

over the chip’s eight SPARC cores. Each core has an ACE tree that spans over the core’s

resources and over parts of the surrounding non-core modules (e.g., the CPU-cache cross-

bar, the DRAM controllersetc.). Therefore, each core is assigned to test its resources and

some parts of the surrounding non-core modules.

The testing responsibilities of the non-core modules were distributed to the eight SPARC

cores based on the physical location of the modules on the chip (shown in Figure 4.6). Ta-

ble 4.5 shows the resulting distribution. For example, eachof the coreszeroandoneare

responsible for testing a full SPARC core, one eighth of the CPU-cache crossbar and one

half of the clock and test unit. Therefore, coreszeroandoneneed 195K dynamic test
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Figure 4.8: Memory Logging Storage Requirements:Average and maximum memory
log size requirements for checkpoint intervals of 10 million, 100 million, and 1 billion
executed instructions.

instructions to test for stuck-at faults and 117K instructions to test for path-delay faults in

the parts of the chip they are responsible for. Note that the ACE tree of a core is designed

such that it covers all the non-core areas that the core is responsible for testing.

The most heavily loaded pair of cores are corestwo andfour. Each of these two cores

is responsible for testing its own resources, one eighth of the CPU-cache crossbar, one

half of the DRAM controller and one half of the I/O bridge, fora total of 468K dynamic

test instructions (for both stuck-at and path-delay testing). The overall latency required to

complete the testing of the entire chip is driven by these 468K dynamic test instructions,

since all the other cores have shorter test sequences and will therefore complete their tests

sooner.

4.3.4 Memory Logging in Coarse-grained Checkpointing

The performance overhead induced by running the ACE testingfirmware depends on

the testing firmware’s execution time and execution frequency. When ACE testing is cou-

pled with a checkpointing and recovery mechanism, in order to reduce its execution fre-

quency, and therefore its performance overhead, coarse-grained checkpointing intervals

are required.

Figure 4.8 explores the memory logging storage requirements for such coarse-grained

checkpointing intervals on the examined SPEC CPU2000 benchmarks. The memory log

size requirements are shown for a system with a 2MB L2 data cache (recall that memory

logging is performed only for the first L2 writeback of a cacheline to main memory in

a checkpoint interval [101]). For each benchmark, the average and maximum required

memory log size for intervals of 10 million, 100 million, and1 billion executed instructions

are shown. The maximum metric keeps track of the maximum memory log size required
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Figure 4.9: Performance Overhead of Single-Threaded Sequential ACE Testing:
Performance overhead of ACE testing for a 100M-instructioncheckpoint interval.

in any of the checkpoint intervals during the benchmark’s execution, while the average

metric averages the memory log size requirement over all thecheckpoint intervals (note

that the benchmarks were ran to completion with the reference inputs).

We observe that when considering checkpoint intervals thatare in the order of 100

million executed instructions, the average memory log sizerequirements are in the range of

a few kilobytes to 10MB. The most demanding benchmark isswim: on average it requires

1.8MB, 10MB and 91.4MB respectively for checkpoint intervals of 10M, 100M and 1B

instructions. Since the memory log will be maintained at thesystem’s physical memory,

the results of this experiment suggest that checkpoint intervals of hundreds of millions of

executed instructions are sustainable with insignificant memory storage overhead.10

4.3.5 Performance Overhead of ACE Testing

This section evaluates the performance overhead of ACE testing for the execution mod-

els described in Section 4.1.5. For all experiments, the checkpoint interval is set to 100M

instructions.

Single-Threaded Sequential ACE Testing:With this execution model, at the end of

each checkpoint interval normal execution is suspended andACE testing is performed. In

these experiments, the ACE testing firmware executes until it reaches the maximum test

coverage. The four bars in the graph of Figure 4.9 show the performance overhead when

the fault model used in ACE testing is i) stuck-at, ii) stuck-at and path-delay, iii) N-detect

(N=2) and path-delay, and iv) N-detect (N=4) and path-delay.

10Note that most current systems are equipped with several gigabytes of physical memory.
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Checkpoint 
Interval

Average Memory 
Log Size (MB)

Perf. Overhead (%)  
(Stuck-at)

Perf. Overhead (%)  
(Stuck-at + Path Delay)

10M Instr. 0.48 53.74 96.91

100M Instr. 2.59 5.46 9.85

1B Instr. 14.94 0.55 0.99

Table 4.6: Performance and Memory Log Size Tradeoffs: The Tables shows the
memory log size and ACE testing performance overhead for different checkpoint intervals.

The minimum average performance overhead of ACE testing is 5.5% and is observed

when only the industry-standard stuck-at fault model is used. When the stuck-at fault

model is combined with the path-delay fault model to achievehigher testing quality, the

average performance overhead increases to 9.8%. As expected, when test pattern sets are

generated using the higher-quality N-detect fault model, the average performance over-

head increases, to 15.2% and 25.4%, for N=2 and N=4 respectively.

Table 4.6 shows the trade-off between memory logging storage requirements and per-

formance overhead for checkpoint intervals of 10M, 100M and1B dynamic instructions.

Both log size and performance overhead are averaged over allevaluated benchmarks. As

the checkpoint interval size increases, the required log size increases, but the performance

overhead of ACE testing decreases. This experiment demonstrates that checkpoint inter-

vals in the order of hundreds of millions of instructions aresustainable with reasonable

storage overhead, while providing an efficient substrate toperform ACE testing with low

performance overhead.

SMT-Based ACE Testing: Figure 4.10 shows the performance overhead when ACE

testing is used in a 2-way SMT processor with several SPEC CPU2000 benchmarks. The

ACE testing thread runs concurrently, on a separate SMT context, with the benchmark

that is evaluated. In this execution model, when ACE testingchecks for stuck-at failures

the average performance overhead is 2.6%, which is 53% lowerthan the 5.5% overhead

observed when testing is performed in a single-threaded sequential execution environ-

ment. For other fault models, the observed results follow a similar trend: the performance

overhead of SMT-based ACE testing is lower than the performance overhead of single-

threaded sequential ACE testing. The performance overheadreduction observed under the

SMT-based execution model stems from better processor resource utilization between the

ACE testing thread and the running application. This is a consequence of the ACE testing

thread simultaneously sharing the processor resources instead of sequentially executing

exclusively on the processor. The latency of major portionsof ACE testing (loading and

checking of test patterns) is hidden by application execution.
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Figure 4.10: Performance Overhead of SMT-Based ACE Testing: Performance
overhead of SMT-based ACE testing for a 100M-instruction checkpoint interval.

Note that, even with the SMT-based execution model, ACE testing causes performance

overhead. This is due to two reasons. First, the ACE testing thread shares the processing

(e.g., functional units, instruction scheduler entries) and memory system resources (e.g.,

the L1/L2 caches, buses, and DRAM memory) with the normal application thread. This

resource sharing leads to interference between the two threads and delays the execution

of the application thread. Second, when the ACE testing thread executes anACE testin-

struction, the execution of the application thread is suspended for one cycle, which also

delays the application thread’s execution. Even so, the contacted experiments have shown

that SMT-based ACE testing results in a relatively low performance overhead for the ap-

plication thread.

In SMT-based ACE testing, the testing thread occupies an SMTcontext. Although per-

forming ACE-based testing in an SMT environment can reduce the potential performance

overhead of testing, it is important to also evaluate the system throughput loss due to the

testing thread since the extra SMT context utilized by the testing thread could otherwise be

utilized by another application thread. Figure 4.11 shows the reduction in system through-

put when the testing thread competes for processor resources with other threads in a 2-way

and a 4-way SMT configuration. In these experiments, system throughput is defined as the

number of instructions per cycle executed by application threads (excluding the testing

thread). Also, for these experiments, ACE testing is performed for only one thread in the

application mix, the leftmost thread for each mix shown in Figure 4.11, which is assumed

to be the only application thread with high reliability requirements. We observe that, for

stuck-at testing, the system throughput reduction in a 2-way SMT configuration is limited

to 3%. The highest throughput reduction, 24%, is observed ina 2-way SMT configuration
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Figure 4.11: Throughput Reduction Due to SMT-Based ACE Testing: The ACE
testing thread occupies an extra SMT context which leads to system throughput reduction.
The graph shows the system throughput reduction due to ACE SMT-based ACE testing
for a 2-way and a 4-way SMT configurations.

when high quality testing is performed (N-Detect, N=4, in combination with the path-

delay fault model). We also observe that when the number of SMT contexts increases to

4, the throughput reduction due to software-based testing significantly reduces. This is

because ACE testing occupies only a single thread context inthe SMT processor and other

thread contexts can still contribute to system throughput by executing application threads.

Interleaved ACE Testing in the Shadow of L2 Misses:Figure 4.12 shows the per-

formance overhead when ACE testing is run in the shadow of L2 cache misses. With this

execution model, whenever there is an L2 cache miss on the application thread there is a

lightweight context switch with the ACE testing thread. Theapplication thread resumes

execution after the L2 cache miss is served. In the case that the checkpoint buffering re-

sources are full (signaling the end of the checkpoint interval) and the ACE testing is not

completed, the ACE testing thread starts running exclusively on the processor resources

and executes the remaining of the ACE testing routine to completion. The dark part of

each bar in Figure 4.12 shows the fraction of ACE testing overhead that is due to testing

performed in the shadow of L2 cache misses, while the gray part shows the fraction of

ACE testing overheads that is due to testing performed at theend of the checkpoint inter-

val. The overhead of testing that is performed in the shadow of L2 cache misses is caused

by the additional time taken to switch between the application thread and the ACE testing

thread, and vice versa.

72



0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

ammp art bzip2 crafty equake gcc gzip mcf mesa parser twolf vpr

P
er

fo
rm

a
nc

e 
O

ve
rh

ea
d 

(%
)

Execution in the 
shadow of L2 misses

Stuck-at          Stuck-at + Path-Delay          N-Detect(N=2) + Path-Delay          N-Detect(N=4) + Path -Delay

Figure 4.12: Performance Overhead of Interleaved ACE Testing: The graph shows
the performance overhead of interleaved ACE testing in the shadow of L2 cache misses
for a 100M-instruction checkpoint interval.

We observe that for some memory intensive benchmarks that exhibit a high L2 cache

miss-rate, such asammpandmcf , the ACE testing routine was able to run in its entirety in

the shadow of L2 cache misses. For these benchmarks, we observe an average performance

overhead reduction of 57% and 43% respectively compared to single-threaded sequential

ACE testing. However, for the rest of the benchmarks we noticed that due to the low L2

cache miss-rate there were very few opportunities to execute the ACE testing thread in the

shadow of L2 cache misses. These benchmarks, depending on the amount of ACE testing

performed in the shadow of L2 cache misses, exhibit the same or slightly less performance

overhead when compared to single-threaded sequential ACE testing.

Based on these experimental results, we conclude that the interleaved ACE testing

execution model benefits only benchmarks that exhibit a highenough L2 cache miss-

rate and provide enough opportunities for interleaved ACE testing to utilize the processor

resources more efficiently. Different thread interleavingcriteria other than L2 cache misses

could lead to higher benefits and affect more uniformly all benchmarks. However, the

overhead of switching between the application thread and the ACE testing thread should

be kept low.

4.3.6 Performance-Reliability Trade-off

The test coverage achieved by the testing firmware increasesas more test instructions

are executed (and therefore more test patterns are applied). However, the relation be-
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Figure 4.13: Performance Overhead of ACE Testing VS. Test Coverage: Part (a)
shows the number of executed test instructions versus the achieved test coverage for each
of the major modules, while part (b) shows the test coverage versus performance overhead
for each core pair in full-chip distributed testing.

tween the number of executed test instructions and the test coverage level is not linear.

Figure 4.13(a) shows the number of executed test instructions versus the test coverage

obtained for each of the major modules (using the stuck-at fault model along with the

single-threaded sequential execution model for ACE testing). We observe that for some of

the modules there is an exponential increase in the number ofinstructions needed to earn

the last few percentage points of coverage. For example, thenumber of dynamic instruc-

tions required to achieve 100% test coverage for the SPARC core is approximately 152K,

almost twice the number of instructions required to achieve93% coverage.

This observation suggests that there is plenty of opportunity to dynamically tune the

performance-reliability trade-off in the ACE testing framework. Figure 4.13(b) shows the

test coverage (for the stuck-at model) versus the performance overhead for each core pair

74



(based on the testing partition described in Section 4.3.3). The results demonstrate that

test coverage can dynamically be trade-off for reductions in the performance overhead of

testing. For example, the performance overhead for corestwo andfour to reach 89% test

coverage is only 3%. This is a 46% reduction from the performance overhead of 5.5% to

reach 98.7% test coverage. This experiment demonstrates that the software-based nature

of the ACE testing provides a flexible framework to trade-offbetween test coverage, test

quality, and performance overhead.

4.3.7 Overhead of ACE Testing in I/O-intensive Applications

In I/O-intensive applications, frequent I/O operations significantly affect the perfor-

mance overhead of checkpoint-based system rollback and recovery. Several system I/O

operations are not reversible (e.g., sending a packet to a network interface, writing to the

display, or writing to the disk), and thus cause early checkpoint termination. Consequently,

frequent I/O operations lead to shorter checkpoint intervals and more frequent hardware

testing that can have a negative impact on system performance. This section evaluates

the performance overhead of ACE testing under a heavy I/O usage environment using

I/O-intensive file-system and network processing benchmarks.

Figure 4.14 shows the execution time overhead of ACE testingfor the stuck-at fault

model and the stuck-at combined with the path-delay fault model. Except for three of

the Netperfbenchmarks, all benchmarks exhibit an execution time overhead that ranges

from 4% to 10% for the stuck at fault model and from 6% to 17% when combined with

the path-delay fault model. Note that the overheads are veryhigh (greater than 25%) in

someNetperfbenchmarks because these benchmarks are intentionally designed to stress-

test the network interface, by executing a very tight loop that continuously sends and

receives packets to/from the network interface. Even with these adversarial benchmarks,

the performance overhead of ACE testing is at most 27% with the stuck-at fault model and

48% with the combined stuck-at and path-delay fault models.

In this experiment, a checkpoint terminates whenever thereis a write operation to the

file-system or a send/receive operation to the network interface (i.e., an irrecoverable I/O

operation). This assumption is pessimistic. The executiontime overhead observed in this

experiment can be significantly reduced with more aggressive and intelligent I/O handling

techniques like I/O buffering [95] or I/O speculation [98],which we do not consider in

these experiments. Furthermore, we note that heavily I/O-intensive applications, such as

theNetperfbenchmarks, constitute an unfavorable running environment for the ACE test-

ing technique due to two reasons. First, if high performanceis desired when running such

I/O intensive applications, the system can alternatively reduce the test quality require-
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Figure 4.14: ACE Testing on I/O-Intensive Applications: The graph shows the
execution time overhead of ACE testing on I/O-intensive file-system and networking ap-
plications

ments of ACE testing (or even completely switch it off) and trade-off testing quality with

performance. Second, we note that such I/O intensive applications have very low CPU uti-

lization; therefore there might be little need for high-quality, high-coverage ACE testing

of the CPU during their execution.

4.3.8 ACE Tree Implementation and Area Overhead

The area overhead of the ACE framework is dominated by the ACEtree. In order

to evaluate this overhead, the ACE tree for the OpenSPARC T1 architecture was imple-

mented in Verilog and synthesized with the Synopsys Design Compiler. The ACE tree

implementation consists of data movement nodes that transfer data from the tree root (the

register file) to the tree leaves (ACE segments) andvice versa. In this specific implemen-

tation, each node has four children and therefore in an ACE tree that accesses 32K bits

(about 1/8 of the OpenSPARC T1 architecture), there are 42 internal tree nodes and 128

leaf nodes, where each leaf node has four 64-bit ACE segmentsas children. Figure 4.15(a)

shows the topology of this ACE tree configuration, which has the ability to directly access

any of the 32K bits. To cover the whole OpenSPARC T1 chip with the ACE framework,

eight such ACE trees were used, one for each SPARC core. The overall area overhead of

this ACE framework configuration (for all eight trees) is 18.7% of the chip area.

In order to contain the area overhead of the ACE framework, a hybrid ACE tree design

was implemented that combines the direct processor state accessibility of the previous
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Figure 4.15: ACE Tree Implementation: Part (a) shows the topology of a direct-access
ACE tree. Part (b) shows the topology of a hybrid (partial direct-access, partial scan-chain)
ACE tree.

implementation with the existing scan-chain structure. Inthis hybrid approach, the 32K

ACE-accessible bits are divided into 64 512-bit scan chains. Each scan chain has 64 bits

that can be directly accessed through the ACE tree. The reading/writing to the rest of the

bits in the scan chain is done by shifting the bits to/from the64 directly accessible bits.

Figure 4.15(b) shows the topology of the hybrid ACE tree configuration. The overall area

overhead of the ACE framework when using the hybrid ACE tree configuration is 5.8% of

the chip area.11

Notice that although the hybrid ACE tree is a less flexible ACEtree configuration,

it does not affect the latency of the ACE testing firmware. TheACE testing firmware

accesses the 64 scan chains sequentially. Since there is an interval of at least 64 cycles

between two consecutive accesses to the same scan chain, data can be shifted from/to the

11It was found that the ACE tree’s impact on the processor’s clock cycle time is negligible in both direct-
access and hybrid implementations.
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direct access portion of the chain to/from the rest of the scan chain without producing any

stall cycles. For example, during test pattern loading, each 64-bit parallel load to a scan

chain is followed by 64 cycles of scan chain shifting. While the parallel loaded data is

shifted into the rest of the scan chain in an ACE segment, the testing firmware loads the

rest of the scan chains in the other 63 ACE segments. By the time the testing firmware

loads the next 64 bits to the scan chain, the previous 64 bits have already been shifted into

the scan chain. Similarly, during test response reading, each parallel 64-bit data read is

followed by shifting cycles that move the next 64 bits from the scan chain to the direct

access portion.

4.3.9 Power Consumption Overhead of the ACE Framework

An important consideration in evaluating the ACE frameworkis the degree to which

the extra hardware increases the baseline design’s power consumption envelope. To eval-

uate this power consumption overhead for our design on Sun’sOpenSPARC T1 chip-

multiprocessor, we first estimated the power consumption ofthe baseline design that lacks

the ACE framework capabilities. We calibrated the estimated power consumption with ac-

tual power consumption numbers provided by Sun for each module of the chip [72]. After

we validated our power estimates for the baseline OpenSPARCT1 design, we estimated

the additional power required by the ACE framework.

Power Estimation Methodology:Figure 4.16(a) shows the major design components

of the OpenSPARC T1 and the methodology/tools we used to estimate their power con-

sumption. We estimated the power consumption of the majority of OpenSPARC T1 mod-

ules using the Synopsys Power Compiler (part of the SynopsysDesign Compiler package)

and the available RTL code for the design. Each module’s RTL code is synthesized us-

ing the Design Compiler. The resulting gate-level netlist is subsequently analyzed by the

Power Compiler to estimate the module’s power consumption.To perform the synthesis

and power consumption analysis, we used the Artisan IBM 130nm standard cell library,

characterized at typical conditions of 1.2V (Vdd) and 25C average temperature. The aver-

age transistor switching activity factor was set to 0.5.

For modules dominated by SRAM structures, such as the on-chip caches, where logic

synthesis and power analysis using the RTL code is inefficient,12 we used existing tools

designed specifically to characterize SRAM modules. To estimate the power consumption

of the L1 and L2 caches, we used the CACTI 4.2 tool [132], a toolwith integrated cache

performance, area, and power models.

12In logic synthesis memory elements are synthesized into either latches or flip-flops. Therefore, SRAM
macro cells are implemented using memory compilers insteadof using the conventional logic synthesis flow.
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Figure 4.16: Power Consumption Overhead of the ACE Framework: Part (a)
shows all the major design components and the methodology/tools used to estimate the
associated power consumption. Part (b) shows the power envelope of the OpenSPARC T1
design enhanced with the ACE framework.

This methodology is sufficient enough to estimate the power consumption of most of

the chip’s logic modules. However, there are parts of the design whose power consumption

cannot be accurately estimated with these tools. These include 1) numerous buses, wires,

and repeaters distributed all over the design, which are very hard to model accurately using

the Design and Power Compilers, unless the design is fully placed and routed, 2) I/O pads

of the chip. In order to estimate the power consumption of these two parts, we used values

from the reported power envelope of the commercial Sun UltraSPARC T1 design [72].
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Results: The estimated power envelope for the whole OpenSPARC T1 chipwithout

the addition of the ACE framework is 56.3W.13 Figure 4.16(b) shows the power consump-

tion for our enhanced OpenSPARC T1 design including the ACE framework. The power

envelope of the ACE-enhanced design is 58.5W, where the power consumption of the ACE

framework is estimated to be 2.2W. Thus, the ACE framework consumes 4% of the de-

sign’s total power. Our estimation assumes that the ACE framework is enabled all the time

while the chip is in operation. However, as illustrated in the previous sections, the ACE

framework is actually used during very short testing periods at the end of each checkpoint

interval. Therefore, we expect the actual power consumption and power envelope overhead

of the ACE framework to be significantly lower than 4%, depending on the frequency and

length of testing (i.e., checkpoint interval size and time spent in testing).

4.4 Related Work

Hardware-Based Reliability Techniques: A traditional defect detection technique

that is predominantly used for manufacturing testing is logic BIST [23]. Logic BIST

incorporates pseudo-random pattern generation and response validation circuitry on the

chip. Although on-chip pseudo-random pattern generation removes any need for pattern

storage, such designs require a large number of random patterns and often provide lower

fault coverage than ATPG patterns [23].

The ACE framework improves on this traditional defect detection technique due to

the following major reasons: 1) it effectively removes the need for on-chip test pattern

generation and validation circuitry and moves this functionality to software, 2) it is not

hardwired in the design and therefore has ample flexibility to be modified/upgraded in the

field (as described in Section 4.1.6), and 3) it has higher test coverage and shorter testing

time because it uses ATPG instead of pseudo-randomly generated patterns.

A more recent work, CASP [74], proposes the use of ATPG test patterns, stored in

non-volatile memory (e.g., hard disk), as a system self-test technique that runs concur-

rently with normal operation. Hardware testing in CASP is orchestrated by an on-chip

hardware controller. To initiate the CASP self-test process, the controller suspends normal

execution on a core and isolates the core from the rest of the cores by disabling its inter-

connect links with other cores. This enables the application of test patterns to exercise

and test the core’s integrity while preserving correctness. The hardware controller loads

the test patterns from non-volatile storage into the serialscan chain of the core, observes

13Our estimate of the OpenSPARC T1 power is within 12% of the reported power consumption of the
commercial Sun Niagara design [72].
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the scan response generated by the core, and checks if the response matches the correct

response that is also stored in non-volatile storage. Afterthe self-test process is finished,

normal execution resumes on the core. In [74], CASP is evaluated only for testing single

cores and it does not cover non-core modules.14 The major differences between CASP and

the ACE framework are: 1) in CASP the self-test process is orchestrated by an on-chip test

controller whereas ACE framework exposes the microarchitecture to software so that soft-

ware/firmware test programs can perform self test, 2) CASP loads the test patterns through

the slow, serial scan chain structure whereas in ACE testingtest patterns are loaded into

the scan state through the very fast, parallel-loadable ACEinfrastructure. As a result, ACE

testing results in a lower area/power overhead (no need for an on-chip test controller) and

orders of magnitude faster testing time (CASP testing time is in the order of seconds [74].

In contrast, the testing time for the ACE framework is in the order of milliseconds).

Smolenset al. [119] proposed a detection technique for emerging wearout defects

that periodically runs functional tests that check the hardware under reduced frequency

guardbands. Their technique leverages the existing scan chain hardware for generating

hashed signatures of the processor’s microarchitectural state summarizing the hardware’s

response to periodic functional tests. This technique allows the software to observe a sig-

nature of the microarchitectural state, but it does not allow the software to directly control

(i.e., modify) the microarchitectural state. In contrast, the ACE framework approach pro-

vides the software with direct and fastaccess and controlof the scan state using the ACE

infrastructure. This direct access and control capabilityallows the software to run online

directed hardware tests on any part of the microarchitectural state using high-quality test

vectors (as opposed to functional tests that do not directlycontrol the microarchitectural

state and do not adhere to any fault model). Furthermore, theproposed direct fast access

to the scan state enables the validation of each test response separately (instead of hashing

and validating all the test responses together), thereby providing finer-grained defect diag-

nosis capabilities and higher flexibility for dynamic tuning between performance overhead

(i.e., test length) and test coverage.

Finally, in Table 4.7, we compare the ACE framework mechanism [28] to other defect-

tolerance solutions, both traditional techniques and techniques that were proposed more

recently in the research literature. Table 4.7 is an updatedversion of Table 3.4 presented in

Section 3.4. The research-stage solutions presented in Table 4.7 are listed in chronological

order with the less recent at the top. A detailed descriptionof these techniques is provided

in Section 3.4. From Table 4.7 we observe that among the research-stage solutions, the

ACE framework provides the highest defect coverage (99%), with the lowest area over-

14However, CASP can be extended to test non-core modules.
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Defect Tolerance 
Solution 

Defect 
Coverage 

Area 
Overhead 

Performance 
Overhead 

Design 
Intrusion/ 

Complexity 
Comments 

Traditional Solutions 
Dual Modular 
Redundancy (DMR) 

Very High 
(~99%) 

Very High 
(>100%) 

Very Low 
(<5%) 

Low 
Provides only error detection. 
Easy to cover the whole design. 

Triple Modular 
Redundancy (TMR) 

Very High 
(~99%) 

Ultra High 
(>200%) 

Very Low 
(<5%) 

Low 
Provides both error detection and 
forward recovery. Easy to cover 
the whole design. 

N-Version 
Redundancy 

Very High 
(~99%) 

Very High 
(>100%) 

Very Low 
(<5%) 

Very High 
N different versions of the 
component have to be 
implemented. 

Error Correction 
Codes (ECC) 

Memory 
Structures 

Medium 
(~15%) 

Very Low 
(<5%) 

Low 
Limited only to memory structures 
or data buses. 

Research-Stage Solutions 
DIVA  
Austin [6] 

Not 
Available 

Low 
(~6%) 

Not 
Available 

Medium 
Uses an online checker at the 
pipeline’s retirement stage. 

SRAS  
Bower et al. [19] 

Only 
Array 

Structures 

Not 
Available 

Not  
Available 

Medium 
Limited to array structures. 
Requires hardware changes in the 
array structures. 

Bower et al. [20] 
Not 

Available 
Medium 
(>15%) 

Not  
Available 

High 
Uses DIVA checkers and pipeline 
additions that truck instruction 
execution for defect diagnosis. 

BulletProof [116, 83] 
High 

(~95%) 
Medium 
(~14%) 

Ultra Low 
(<1%) 

Medium 
Uses BIST-like on-chip hardware 
checkers. 

ElastIC 
Sylvester et al. [129] 

Under Development/Evaluation High 
Uses on-chip sensors, silicon 
wear-out prediction units, and on-
chip testers.  

Argus  
Meixner et al. [85] 

High 
(~98%) 

Medium 
(~11%) 

Low 
(~4%) 

Medium 

Uses runtime checkers for the 
validation of control flow, 
computation, dataflow, and 
memory operations. 

ACE Framework [28] 
Very High 

(~99%) 
Low 

(~6%) 
Low 

(~5%) 
Low 

Add architectural support for 
ACE-based testing: ACE Tree 
(CAD tools) + ISA Extensions 

StageNet  
Gupta et al. [42] 

Not 
Available 

Medium 
(~15%) 

Medium 
(~10%) 

High 

Pipeline stages need to be isolated 
and connected through crossbar 
switches. No error detection 
support. 

 

Table 4.7: Comparing The ACE Framework To Related Work: Comparison of
the ACE Framework to traditional defect-tolerance solutions and more recent techniques
found in the research literature. The techniques are compared in respect to their defect
coverage, area overhead, performance overhead, and the degree they intrude in the original
design and they are presented in chronological order with the less recent at the top.

head (6%), for a very low runtime performance overhead (5%).When compared to the

traditional defect-tolerance solutions, the ACE framework provides the same defect cov-

erage as the traditional techniques, but at a much lower areaoverhead. The only drawback

of ACE framework when compared to traditional defect-tolerance solutions is the higher

degree of intrusion in the original design and its higher design complexity.

Software-based Reliability Techniques:A very recent approach proposes the de-

tection of silicon defects by employing low overhead detection strategies that monitor

for simple software symptoms at the operating system level [73]. These software-based
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detection techniques rely on the premise that silicon defects manifested in some microar-

chitectural structures have a high probability (∼95%) to propagate detectable symptoms

through the software stack to the operating system [73].

The main differences between [73] and the ACE framework are:1) unlike the proba-

bilistic software symptom-based defect detection, the ACEframework checks the under-

lying hardware in a deterministic process through a structured high-quality test method-

ology with very high fault coverage (99%) and can be executedon demand, 2) software

symptom-based defect detection techniques can flag the possible existence of a hardware

failure, but they do not have the capability to diagnose which part of the underline hard-

ware is defective. In ACE framework, by employing ATPG test patterns, it is trivial to

diagnose the defective device at a very fine granularity.

There are numerous previous works, such as [105, 113, 13], that proposed the use

of software-based techniques for online detection of soft errors. However, none of them

addresses the problem of online defect detection.

Instruction-based Functional Testing: A large amount of work has been performed

in functional testing [21, 63, 70] of microprocessors. The most relevant of these to the ACE

framework are the instruction-based functional self-testtechniques. In general, these tech-

niques apply randomly-generated or automatically-selected instruction sequences and/or

combinations of instruction sequences and randomly- or automatically-generated operands

to test for hardware defects. If the result of the test sequence does not match the expected

output of the instruction sequence, then a hardware fault isdeclared. We briefly describe

the state-of-the-art approaches that work in this manner. In [133], a self-test program writ-

ten in processor assembly language and the expected resultsof the program are stored in

on-chip ROM memory. When invoked, the self-test program performs at-speed functional

testing of the processor. The proposed scheme requires verylittle additional hardware cost.

It requires an LFSR for generating randomized operands for test instructions and a MISR

for generating the result signature. Also, a minor modification of the ISA is required for

the test instructions to read/write from the LFSR/MISR. Similarly, [66] uses the knowledge

of the ISA and the RTL-level model of a processor to select high fault-coverage instruc-

tions and their operands to include in self-test software routines. Batcher and Papachris-

tou [11] employ instruction randomization hardware to generate randomized instructions

to be used in self-test software routines for functional testing. Brahme and Abraham [21]

describe how to generate randomized instruction sequencesto be used in self-test software

routines. Building upon these works, Chen and Dey [26] propose a mechanism that gen-

erates instruction sequences to exercise structural test patterns designed to test processor

components and applies such instruction sequences in the software-based self-test rou-
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tines to achieve higher coverage than other approaches thatrandomly generate instruction

sequences.

The ACE framework is fundamentally different from these instruction-based func-

tional testing techniques in that it is a structural testingapproach that uses software routines

to apply test patterns. We introduce new instructions that are capable of applying high-

quality ATPG-generated structural test patterns to every processor segment by exposing

the scan chain to the instruction set architecture. Software self-test routines that use these

instructions can therefore directly apply test patterns toprocessor structures and read test

responses, which results in the fast and high-coverage structural testing of each proces-

sor component. In contrast, none of the previously-proposed instruction-based functional

testing techniques are capable of directly applying test patterns to processor components.

Instead, they execute existing ISA instruction sequences to indirectly (functionally) test

the hardware for faults. As such, previous instruction-based functional test approaches in

general lead to higher testing times or lower fault coveragesince they rely on (randomized)

functional testing.

One recent previous work [99], employed purely software-based functional testing

techniques during the manufacturing testing of the Intel Pentium 4 processor (see Sec-

tion 4.1.2 for a discussion of this work). In the ACE framework, we use a similar func-

tional testing technique (the “basic core functional test”program) to check the basic core

functionality before running the ACE firmware to perform directed, high-quality testing.

In fact, any of the previously proposed instruction-based functional testing approaches can

be used as the basic core functional test within the ACE framework.

Checkpointing Mechanisms: There is also a large body of work proposing various

versions of checkpointing and recovery techniques [120, 101, 95]. Specifically, Safe-

tyNet [120] provides a unified, lightweight checkpoint/recovery mechanism. Conceptu-

ally, the SafetyNet mechanism maintains multiple system-wide, consistent checkpoints of

the state of a shared memory multiprocessor. After a detected fault, SafetyNet is capable

of recovering the processor state to a pre-fault, error-free checkpoint. To enable system

recovery, SafetyNet adds on-chip checkpoint buffers to logthe memory and architectural

changes across checkpointing intervals. Therefore, the size of checkpoint intervals in

SafetyNet is limited by the size of the on-chip log buffers.

To address this limitation and offer longer checkpoint intervals, ReViVE [101] pro-

poses the use of main memory to maintain the checkpoint logs.The drawback of this

approach is that due to the memory-based checkpoint logging, ReViVE can cause more

network and memory traffic that might result to larger performance overheads than Safe-

tyNet.

84



Another limitation of both ReViVe and SafetyNet is the handling of I/O operations. In

both schemes, system recovery cannot undo/redo I/O operations and therefore checkpoints

cannot cross I/O operation. This limitation results to either delaying all I/O operations until

the end of the current checkpoint interval, which leads to a significant performance over-

head, or to the termination of the current checkpoint whenever an I/O operation occurs.

In the latter case, applications with frequent I/O operations can cause shorter checkpoint

intervals that in our mechanism can result to more frequent ACE-based hardware testing

and higher runtime performance overhead. To address this limitation, ReViVeI/O [95]

proposes a checkpoint and recovery mechanism based on ReViVe but with the additional

capability of undoing and redoing I/O operations, thus enabling checkpoint intervals that

can cross I/O operations. Another work that addresses the recovery of I/O operations in

checkpoint and recovery mechanisms is [98] that proposes the implementation of specula-

tive I/O operations at the operating system level.

Although no real system today employs similar checkpointing and recovery tech-

niques, the simulation-based results from these works conclude that coarse-grained check-

point intervals are feasible for complex commercial designs. The coarse-grained check-

point/recovery substrate provided by such techniques enables efficient ACE testing with

low performance overhead.

4.5 Chapter Summary

This chapter introduced a novel, flexible software-based technique, ISA extensions,

and microarchitecture support to detect and diagnose hardware defects during online op-

eration of a chip-multiprocessor. The technique uses the Access-Control Extension (ACE)

framework that allows special ISA instructions to access and control virtually any part

of the processor’s internal state. Based on this framework,special firmware periodically

suspends the processor’s execution and performs high-quality testing of the underlying

hardware to detect defects. Several execution models for the interaction of the special

testing firmware with the applications running on the processor were described, for both

single-threaded and simultaneously-multithreaded processing cores.

Using a commercial ATPG tool and three different fault models, the ACE framework

was experimentally evaluated on a commercial chip-multiprocessor design based on Sun’s

Niagara. The experimental results showed that ACE testing is capable of performing high-

quality hardware testing for 99.22% of the chip area. Based on a detailed RTL implemen-

tation, implementing the ACE framework requires a 5.8% increase in Sun Niagara’s chip

area and a 4% increase in its power consumption envelope.
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Finally, it was demonstrated how ACE testing can be seamlessly coupled with a coarse-

grained checkpointing and recovery mechanism to provide a complete defect-tolerance

solution. The evaluation showed that, with coarse-grainedcheckpoint intervals, the aver-

age performance overhead of ACE testing is only 5.5%. The results also showed that the

software-based nature of ACE testing provides ample flexibility to dynamically tune the

performance-reliability trade-off at runtime based on system requirements.
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CHAPTER V

ACE Framework Extensions - Adding Value
to Resiliency Mechanisms

The previous chapters introduced the BulletProof approachand the ACE framework

that, compared to traditional techniques, provide a very low cost defect-tolerance solu-

tion for microprocessor designs. Although the hardware overhead of these techniques

is estimated to be around 5-10% of the chip’s area, today, thedesigners of mainstream

microprocessors still consider this hardware cost high to be dedicated solely for defect

tolerance. Instead, due to the very low failure rate of current silicon process technologies,

microprocessor designers prefer to use that part of the microprocessor’s hardware budget

for performance improvement modules like bigger memory caches and on-chip memory

controllers, and limit defect-tolerance mechanisms only to the most unreliable micropro-

cessor components like memory caches, in the form of error correction codes (ECC).

However, as devices scale into smaller sizes and the failurerate of future silicon pro-

cess technologies is rising, at some point, even mainstreammicroprocessor designs will

require to protect the whole processor design with defect-tolerance mechanisms in order

to provide adequate reliability standards to the user. Thistransition, can be made smoother

and easier to adopt if the hardware resources used for defect-tolerance mechanism could

also be used for other important applications (i.e., adding value to the resiliency mecha-

nisms).

This chapter, describes how the ACE framework defect-tolerance mechanism can be

extended in such a way that its hardware resources can be usedby three other applica-

tions. Specifically, Section 5.1 describes how the ACE framework can be extended to

provide online design bug detection and Section 5.2 compares the proposed mechanism

with previous research approaches. Next, Section 5.3 describes how the ACE framework

can be extended to improve two important phases of the microprocessor design cycle;

the post-silicon debugging process and the manufacturing testing. Finally, the chapter is

summarized in Section 5.4.
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5.1 ACE Framework for Online Design Bug Detection

This Section, describes how the ACE framework hardware can be extended to perform

online design bug detection. First, Section 5.1.1 providesa brief overview of the problem

of design bugs in microprocessor designs and motivates the need of online design bug

detection mechanisms for future generation microprocessors. Next, Section 5.1.2 high-

lights previous design bug analysis studies and discusses their shortcomings, followed by

a rigorous RTL level design bug analysis on a commercial chip-multiprocessor. Based on

the insights drawn from the RTL design bug analysis, Section5.1.3 describes how design

bugs can be detected at runtime while the microprocessor is operating at the customer

side. Section 5.1.4 demonstrates how this online design bugdetection technique can be

implemented by extending the ACE framework hardware. The proposed mechanism is

experimentally evaluated in Section 5.1.6.

5.1.1 The Problem of Design Bugs in Modern Microprocessors

The Challenges of Correct Design -The advent of chip-multiprocessing has led to

unprecedented levels of chip integration. Today, most general purpose processor chips are

equipped with multiple cores, multiple levels of coherent memory, on-chip interconnection

networks, and memory and I/O controllers. At the same time, processors are augmented

with new technologies such as virtualization, dynamic power management, and 64-bit ex-

tensions. Complex interactions between these modules, as well as the complexity of the

modules themselves, put a tremendous pressure in the verification of the system. Although

the verification phase of modern processors can consume a large portion of the design cy-

cle [9], require significant amount of resources [39], and utilize state-of-the-art verification

techniques,design bugs(also known as errata, design defects, or design errors) still slip

into the final products and“buggy” processors find their way into the field.

This trend is clearly shown in Figure 5.1. We studied the errata documentation of five

recent Intel processors and found that the rate of design bugs discovered after product

release has more than doubled in the latest generation of processors.1 The graph shows the

number of discovered design bugs over the lifetime of five Intel processors. The Pentium

4, Pentium M, and the Xeon 1.4-3.2 processors exhibit a similar trend with an average

of 1.2 design bugs discovered per month during their lifetime.2 On the other hand, the

higher chip-level integration of resources and the addition of new features in the Core Duo

1The data is extracted from the processors’ errata documentation [55, 54, 51, 53, 52].
2We suspect that the reason why the Pentium M processor had less design bugs than the other two

processors is because it was based on the matured Intel P6 architecture.
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Figure 5.1: Design Bugs in Modern Microprocessors:Timeline of discovered design
bugs over the lifetime of five Intel processors.

and Core 2 Duo processors resulted in more design bugs. For example, although the Core

Duo dual-core processor was derived from the Pentium M single-core processor and had

the same architecture, it exhibited a much higher rate of design bugs than its predecessor.

Specifically, the design bug discovery rate of the two multi-core processors is 3.5 design

bugs per month, almost triple that of their single-core predecessors. This trend is expected

to worsen in the future as technology scaling will allow for more diverse resources to be

integrated into a single chip.

Why is Online Bug Detection Needed?Today, design bugs are treated withad-hoc

heuristic techniques that seek to avoid the occurrence of design bugs through software and

hardware configuration changes [78]. A common approach employed by such techniques

to avoid the occurrence of design bugs is disabling some processor features that trigger

the design bugs (e.g., support for cache prefetching [78], dynamic power management [1],

etc.). However, this often leads to reduced product quality/performance and lower cus-

tomer satisfaction. Furthermore, when such workarounds are not possible, design bugs

can lead to expensive product recalls [145] and a potentially diminishing brand/company

reputation.

Augmenting a design with a mechanism that enables a systematic approach to detect

and avoid design bugs after the product release and while thesystem is operating in the

field can offer the following benefits:
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Figure 5.2: Overview of Online Design Bug Detection and Avoidance: An in-
the-field design bug and avoidance framework requires 1) a flexible field-programmable
substrate for signal monitoring, 2) a field-programmable design bug detection mechanism,
3) a system recovery mechanism, and 4) design bug avoidance techniques. The ACE
framework hardware will be extended to provide the first two layers.

1. Faster design cycle and time to market. Today, a significant fraction of the verifica-

tion phase is spent to discover a very small number of design bugs [38]. This time

can be saved by discovering and fixing that small number of design bugs in the field

after product release.

2. Reduce the risk of expensive product recalls (and potentially damaged company

reputation) due toad-hocheuristic techniques that might not be able to avoid a dis-

covered design bug. A systematic online design bug detection technique increases

the probability of successfully dealing with the design bugand avoiding expensive

recalls.

3. Avoid potential impact to product quality and customer satisfaction due to the use of

conventional techniques that disable design features to avoid design bugs. Instead,

online design bug detection allows the system to operate with all its features enabled

and recover the system only when the design bug occurs. Therefore, during bug-free

execution the system is operating under its original specifications.

Online Design Bug Detection and Avoidance -A high-level overview of an online

design bug detection and avoidance framework is shown in Figure 5.2. The framework has

four layers: 1) The bottom layer that provides a field-programmable substrate for flexible

signal monitoring. This substrate is programmed by specialfirmware at system startup to

select the set of signals that are required to be monitored for design bug detection. 2) A

field-programmable design bug detection mechanism that checks if the monitored signals

match with a bug triggering condition. The mechanism is programmed by special firmware

at system startup with the bug triggering conditions. 3) A system recovery mechanism
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that rolls back the system state to the last correct state when a design bug occurrence

is detected. 4) Design bug avoidance techniques that are activated after a design bug

detection to guide execution around the bug triggering conditions and avert the design

bug. This chapter, will demonstrate how the ACE framework hardware can be extended to

provide the first two layers of the online design bug detection mechanism.

5.1.2 Design Bug Analysis

We first analyze design bugs in a real processor to obtain insights into their character-

istics and to develop a mechanism that can flexibly and efficiently detect the occurrence of

design bugs while the system is in operation.

Previous Design Bug Analysis Studies

The potential of augmenting future microprocessors with online design bug detection

has led to a number of studies that analyzed the known design bugs that slipped into recent

commercial microprocessors. The objective of these studies was to better understand and

gain insights into the characteristics of the known design bugs in existing microprocessors,

and extrapolate the expected characteristics of the designbugs of future microprocessors.

Specifically, Avžieniset al. [8] analyzed the known design bugs in the Intel Pentium

II since its initial release. More recently, Sarangiet al. [110] analyzed the design bugs

in ten modern commercial microprocessors from Intel, AMD, IBM and Motorola, and

Narayanasamyet al. [96] analyzed the design bugs in two microprocessors: Intel’s Pen-

tium 4 and AMD’s Athlon 64. Another study by Wagneret al. [141] analyzed the design

bugs in Intel StrongARM SA1100 and IBM PowerPC 750GX. The analysis in all of these

studies was based on information extracted from the available microprocessor errata sheets

e.g.[56, 1, 36]. An errata sheet is a document published and maintained by the micropro-

cessor manufacturer to provide its customers with details about known microprocessor

design bugs. The document provides an assessment of each design bug’s severity, the

degree to which it can affect the system, a possible set of conditions that can trigger the

design bug, any possible workarounds, and sometimes the company’s intention to provide

a fix in a future version of the microprocessor.

A major drawback of using the errata sheets to extrapolate statistics about design bugs

is that the errata sheets commonly provide very high-level descriptions of the design bugs.

Such descriptions provide little or no insight into the low-level details of the underlying

hardware problem. An example description of a design bug listed in the Intel Pentium 4

errata sheet [56] is shown in Figure 5.3(a). This design bug is related to complex interac-
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R31. Interactions between the Instruction Translation Lookaside 
Buffer (ITLB) and the Instruction Streaming Buffer May Cause 
Unpredictable Software Behavior

Problem: Complex interactions within the instruction fetch/decode 
unit may make it possible for the processor to execute instructions 
from an internal streaming buffer containing stale or incorrect 
information.

Implication: When this erratum occurs, an incorrect instruction 
stream may be executed resulting in unpredictable software behavior.

(a)

63 - TLB Flush Filter Causes Coherency Problem in Multiprocessor 
Systems

Description: If the TLB flush filter is enabled in a multiprocessor 
configuration, coherency problems may arise between the page tables 
in memory and the translations stored in the on-chip TLBs. This can 
result in the possible use of stale translations even after software 
has performed a TLB flush.

Potential Effect on System: Unpredictable system failure.

(b)(b)

Figure 5.3: Design Bugs Documented in Microprocessor Errata Sheets: Examples
of design bugs from (a) the Pentium 4 errata sheet, and (b) theOpteron errata sheet.

tions between the processor’s instruction translation lookaside buffer and the instruction

streaming buffer that can result in the execution of an incorrect instruction stream with

unpredictable software behavior. Using this description,it is very hard to accurately re-

late this design bug to the actual hardware implementation and reason about, for example,

exactly what hardware signals (i.e., wires) need to be monitored by an online design bug

detection mechanism to effectively detect the occurrence of the design bug. Figure 5.3(b)

shows another example design bug description, from AMD’s Opteron errata sheet [1]. This

bug is related to the translation lookaside buffer flush filter and can lead to unpredictable

system behavior. Again, from this high-level description,it is very difficult to infer the set

of hardware signals that should be examined to dynamically detect its occurrence. Without

knowing the set of hardware signals that needed to be monitored to detect the bug, it is

very difficult to design a mechanism that would detect the bugand to accurately estimate

the hardware cost of such a mechanism.

In order to design a hardware mechanism that detects design bugs, the signals that af-

fect the occurrence of each bug need to be known. Our goal in this section is to perform

a more rigorous, lower-level (RTL) analysis of design bugs.Our purpose is to understand

design bug characteristics at the register transfer level to (1) design a flexible mechanism
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that can detect known design bugs during online operation after the chip is manufactured,

and (2) more accurately estimate the hardware cost of such a design bug detection mecha-

nism. To this end, we first draw insights from our analysis of design bugs found and fixed

in an existing commercial processor, Sun’s OpenSPARC T1.

RTL Design Bug Analysis

In this Section, we perform a design bug analysis at the Register Transfer Level (RTL)

in an attempt to bridge the gap between the high-level designbug descriptions provided

by the microprocessor errata sheets and the low-level hardware implementation details

needed to devise effective online design bug detection mechanisms. At the RTL level,

the microprocessor design behavior is described in a hardware description language (e.g.,

Verilog or VHDL). This level is considered to be very close tothe actual hardware im-

plementation. The only design phases separating the RTL level with the actual hardware

implementation are 1) logic synthesis, which generates thedesign’s gate-level netlist and

2) place-and-route, which creates the transistor-level layout of the netlist. Therefore, the

direct relation between the RTL level and the underlying implementation provides an ad-

equate level of detail that allows the extraction of low-level design bug characteristics.

Our study focuses on the Verilog RTL source code of the OpenSPARC T1 chip-

multiprocessor [127], the open source version of Sun’s commercial UltraSPARC T1 (Ni-

agara) chip-multiprocessor. Since no errata documentation is publicly available for the

UltraSPARC T1 microprocessor, we focus on the actual designbugs found during the de-

velopment of the OpenSPARC T1 and documented in the RTL source code. Specifically,

when the designers corrected a design bug, they left the original buggy code in the RTL

source file as a comment. Therefore, both the original erroneous implementation as well

as the fixed implementation are available in the source code.As such, by examining these

two implementations, it is straightforward to discover what hardware signals are involved

in each design bug. Although these design bugs did not slip into the final product, we

believe they share similar characteristics with the designbugs that eventually slipped into

the released version of the microprocessor with the exception of some differences which

we discuss in the next section.

Methodology: We analyzed 296 design bugs that were documented in the Verilog

source files of two OpenSPARC core units. These bugs account for about 99% of all

documented and commented-out bugs in the OpenSPARC T1 RTL. We classified these

bugs into three major classes: 1)Logic design bugs, 2)Algorithmicdesign bugs, and 3)

Timingdesign bugs. Later, in Section 5.1.3, we analyze the logic signals that need to be

monitored to detect these bugs.
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Example 1 from Verilog file tlu_tcl.v

line 1089:   assign  intrpt_taken =
line 1090:               rstint_taken | hwint_taken  | sirint_taken;
...
line 1105:   // modified for bug 3919
line 1106:   // assign       trap_to_redmode = trp_lvl_at_maxtlless1 & 

~intrpt_taken;
line 1107:   assign  trap_to_redmode = trp_lvl_at_m axtlless1 & ~(rstint_taken

| sirint_taken);

Buggy Code

Correct Code

Figure 5.4: Logic Design Bug: Example of a logic design bug at the RTL level.

Example from Verilog file lsu_qctl1.v

line 2993: //bug4814 - change rrobin_picker1 to rrobin_picker2
line 2993: // Choose one among 4 loads.
line 2994: //lsu_rrobin_picker1 ld4_rrobin  (
line 2995: //    .events             ({ld3_pcx_rq_vld,ld2_pcx_rq_vld,
line 2996: //                  ld1_pcx_rq_vld,ld0_pcx_rq_vld}),
...
line 3007: //    .se(se),
line 3008: //    .so()
line 3009: //  );
line 3010:
line 3011:   lsu_rrobin_picker2 ld4_rrobin  (
line 3012:  .events      ({ld3_pcx_rq_vld,ld2_pcx_r q_vld,
line 3013:                       ld1_pcx_rq_vld,ld0 _pcx_rq_vld}),
...
line 3020:    .se(se),
line 3021:    .so()
line 3022:  );

Buggy Code

Correct Code

Figure 5.5: Algorithmic Design Bug: Example of an algorithmic design bug at the
RTL level.

Classification of Design Bugs

Logic Design Bugs:This class of design bugs is characterized by erroneous logic in

combinational circuits. A logic bug occurs because the designer formed an erroneous logic

block; for example an AND gate could be used instead of an OR gate, or an inverted signal

rather than the non-inverted one. The code segment presented in Figure 5.4, taken from

the OpenSPARC T1 Verilog source files, illustrates an example of a logic design bug.

The design bug is located in the core’s trap logic unit (TLU) and is associated with the

combinational logic that computes the control signaltrap to redmode . The incorrect

combinational circuit implementation is commented out in line 1106. The corrected com-

binational circuit implementation is shown in line 1107. Byexamining lines 1089-1090,

we notice that the signal replaced in the correct code (intrpt taken ) is computed by

ORing three other signals. One of the three signals (hwint taken ) is no longer a source

signal in the correct implementation. We observed that manylogic design bugs cannot be
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Example from Verilog file lsu_qdp1.v

line 1228:   // Begin - Bug3487.
...
line 1239:   dff #(48) ifu_std_d1 (
line 1240:           .din    (tlb_st_data[47:0]),
line 1241:           .q      (lsu_ifu_stxa_data[47: 0]),
line 1242:           .clk (asi_data_clk),
line 1243:           .se     (1'b0),     .si (),          .so ()
line 1244:           );
line 1245:
line 1246:   // select is now a stage earlier, which should be
line 1247:   // fine as selects stay constant.
line 1248:   //assign  lsu_ifu_stxa_data[47:0] = tlb_st_data_d1[47:0] ;
line 1249:
line 1250:   // End - Bug3487.

Buggy Code

Correct Code

Figure 5.6: Timing Design Bug: Example of a timing design bug at the RTL level.

fixed by simply redefining the logic between the source signals in the buggy implemen-

tation. Instead, it is very common that fixing the bug requires the addition or removal of

signals to/from the buggy implementation (more than 95% of logic design bugs had this

requirement).

This example demonstrates the amount of low-level information provided in the RTL

code that is missing from the design bug descriptions in the errata documentation. For

instance, by observing the code segment associated with thedesign bug, it is very easy to

find the set of hardware signals that activate the bug (i.e., trp lvl at maxtlless1 ,

rstint taken , hwint taken , andsirint taken ). In analyses solely based on

errata sheets, this low-level information is abstracted away in the high-level design bug

description and has to be inferred, a process that involves ahigh amount of uncertainty

and inaccuracy.

Algorithmic Design Bugs: This class covers major design bugs related to the algo-

rithmic implementation of the design. These design bugs exhibit algorithmic deviations

from the design specification and they usually require majormodifications to be fixed.

Figure 5.5 illustrates an example algorithmic design bug located in the load queue control

logic at the core’s load/store unit. This bug is due to an incorrect implementation of the

round robin algorithm for selecting one of the four loads buffered in the load queue. To fix

the incorrect round robin implementation described in module lsu rrobin picker1 ,

a new module had to be implemented (lsu rrobin picker2 ). Unlike fixes for logic

design bugs, fixes for algorithmic design bugs are not limited to combinational circuit

modifications, rather they sometimes require multiple major modifications that can span

the whole module.

Timing Design Bugs: This third class of design bugs is associated with the timing

correctness of the implementation. We have observed that most of these design bugs are
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Figure 5.7: Design Bugs in the OpenSPARC T1 Core:After studying the OpenSPARC
T1 Verilog source files we found that almost all of the documented design bugs are located
in two units, the load/store unit (LSU) and the trap logic unit (TLU).

cases where a signal needed to be latched a cycle earlier or a cycle later in order to keep

the timing of signals correct in the design. An example of such a design bug is shown

in Figure 5.6. This timing design bug is located in the queue data path of the core’s

load/store unit. As shown in the Verilog source code, the incorrect implementation in line

1248 assigns the value of the 48-bittlb st data d1 bus to thelsu ifu stxa data

bus in the same cycle. However, as shown in lines 1239-1244, the correct timing of the

data movement between the two buses requires the data to be latched for one clock cycle.

We found that the most common fix for this class of design bugs is the addition or removal

of flip-flops to adhere to the timing constraints required to keep the design correct.

Design Bug Type Distribution

After studying the OpenSPARC T1 Verilog source files [126] wefound that almost all

(∼99%) of the documented design bugs are located in two units, the load/store unit (LSU)

and the trap logic unit (TLU) [127], shown in Figure 5.7. The LSU processes all data

memory access instructions. It interfaces with all the functional units and it serves as the

gateway between the SPARC core and the core-cache crossbar to the memory subsystem.

The LSU also includes the core’s data TLB and L1 cache. The TLUimplements the

SPARC core’s trap and software interrupt handling logic. Itsupports six trap levels ranging

from hypervisor and supervisor mode traps to user mode trapsand is capable of handling

96



Trap Logic Unit (TLU)
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Design Bugs

(5) - 4%

Figure 5.8: Design Bug Distribution: The graphs show the design bug distribution for
the Load/Store Unit (LSU) and the Trap Logic Unit (TLU).

up to 64 pending software interrupts per thread. In our studywe analyzed a total of 296

design bugs documented in these two units.

Figure 5.8 shows the design bug type distribution. A large fraction of the documented

design bugs in the two units belong to the logic design bug class, which accounts for 59%

and 49% of the total design bugs for the LSU and the TLU, respectively. The second

most frequent design bug class is algorithmic design bugs, while timing design bugs are

less frequent and account for only∼5% of all bugs. The dominance of logic design bugs

over the other two bug classes might imply that the process ofimplementing complex

combinational logic is more prone to human error than implementing the algorithmic or

timing specifications of the design.

As mentioned earlier in this section, these design bugs werediscovered, fixed, and

documented before the final tape-out of the design. As such, we expect them to have some

differences with the design bugs that escape the verification phase and slip into the final

product. We suspect that the algorithmic and timing design bugs have a more severe impact

on the design’s correctness and therefore they might have a higher probability of being

discovered during the design verification phase. In contrast, because logic design bugs are

isolated and localized to small combinational logic portions, they could be less likely to be

discovered during the verification of the chip. This is because the erroneous effects of the

logic design bugs either might not be exercised or might be masked before propagating

to observable outputs during testing. For example, in orderfor the logic bug illustrated

in Figure 5.4 to be active, the source combinational circuitmust be set to specific values

(which might be a rare combination of values). Based on this reasoning, the distribution

of design bugs that actually slip into the final product mighthave fewer algorithmic and

timing design bugs than the distribution shown in Figure 5.8.
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Figure 5.9: Design Bug Triggering and Source Signals: In part (a), the shaded
column shows the values that source signals need to take to trigger the logic bug shown in
Figure 5.4. Part (b) shows the source-level and first-level signals for the same logic bug.

5.1.3 Detecting Logic Design Bugs at Runtime

Although logic design bugs might be harder to discover than the other two design bug

classes, we believe that once they have been discovered, it is much easier to detect their oc-

currence while the “buggy” microprocessor is in operation in the field. Their characteristic

of being isolated in a combinational logic circuit portion makes it possible to deterministi-

cally detect their occurrence by monitoring the values of their source signals. To illustrate

this concept, we consider the logic bug example shown in Figure 5.4. By computing the

truth table of the buggy circuit (line 1106) and the correct circuit (line 1107), as shown in

Figure 5.9(a), we can infer that the design bug occurs when the source signals are set to a

specific combination of values (shown in the shaded column ofthe table). Therefore, by

monitoring the values of the bug’s source signals it is possible to deterministically detect

the occurrence of the specific design bug. In this work, we call this set of signalsfirst-level

monitor signals(i.e., signals that directly determine the occurrence of the design bug).
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Figure 5.10: Design Bugs Source Signal Statistics:Cumulative distribution of logic
bugs versus the first-level and source-level monitor signalset sizes for the LSU and TLU.

For this specific bug, the size of the first-level monitor signal set is 4 because there are 4

signals whose values directly determine the bug’s occurrence.

Although it is easy to find the set of first-level monitor signals in the RTL model, these

signals unfortunately might not exist in the lower transistor-level implementation due to

the logic synthesis process and optimizations employed during the process of translating

the RTL implementation to gate-level and then to transistor-level implementation [131].

Thus, there is not a guaranteed one-to-one mapping between signals in the RTL and signals

in the transistor-level implementations. However, the logic synthesis process maintains a

one-to-one mapping of the state-holding elements (e.g., flip-flops) and module-level pri-

mary inputs/outputs3 between the RTL and transistor-level implementations [131]. To

effectively detect the occurrence of a logic design bug in the transistor-level hardware im-

plementation, we need only to trace back the combinational logic that feeds the first-level

monitor signals to a set of signals that are directly connected to either 1) state-holding

elements or 2) primary inputs of the module. We call this set of signals thesource-level

monitor signals. Figure 5.9(b) illustrates this process. Monitoring the source-level mon-

itor signal set of a design bug allows the detection of the bug. Note that it is simple to

construct a truth table using the source-level monitor signals instead of the first-level mon-

itor signals to understand which combination of the values assigned to source-level signals

would exercise the bug.

To determine the number of signals required to be monitored to detect the occurrence

of logic design bugs, we measured the first-level and source-level signals of the 162 logic

design bugs located in the LSU and the TLU units. Figure 5.10 shows the cumulative

3In this work we consider a module to be a Verilog design modulein the RTL code.
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Metrics LSU TLU

Min./Average/Max. number of first-level 
monitor signals per logic design bug

2/8/43 2/12/44

Min./Average/Max. number of source-
level monitor signals per logic design bug

2/17/97 2/24/89

Source-level monitor signal sharing 
among different design bugs

68% 64%

Average number of unique source-level 
monitor signals per logic design bug

6 9

Unique source-level monitor signals (for 
all logic design bugs)

516 602

Table 5.1: Logic Design Bug Statistics: The table lists several statistics regarding the
first-level and source-level design bug signals.

distribution of the logic design bugs versus the first-leveland source-level monitor signal

set sizes in the LSU and the TLU units. We observe that 97% of the logic bugs located in

the LSU and 92% of those located in the TLU have a source-levelmonitor signal set size

that is smaller than 64 signals. This means that for detecting anysinglebug that is within

the aforementioned percentage, at most 64 signals need to bemonitored.

Table 5.1 focuses on the number of first-level and source-level signals needed to be

monitored to detect logic design bugs. An interesting observation is that the average set

size of source-level monitor signals per logic bug is about double the size of the first-level

monitor signal set. Notice that the size of the first-level monitor signal set determines the

minimum number of RTL signals required to be monitored to precisely detect the occur-

rence of a certain bug, given that those signals exist in the actual hardware implementation,

and can be probed. On the other hand, the size of the source-level monitor signal set de-

termines the number of transistor-level signals required to be tapped to detect a bug, given

that design flip-flops and module inputs can be probed. Furthermore, the average num-

ber of source-level monitor signals per logic design bug is 17 and 24 for the LSU and

the TLU units respectively (The minimum and maximum set sizes are presented as well).

Hence, the detection of an average design bug requires 17 to 24 transistor-level signals to

be monitored.

The total amount of tapped signals can be small if there is a high degree of source

signal sharing between multiple design bugs. To quantify this, we studied the amount

of sharing between the 162 logic bugs covered by our study. Wefound that the sharing

between the source-level monitor signal sets is about 65% onaverage (68% in LSU and

64% in TLU). This means that 65% of the signals that belong to the source-level monitor
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signal set of a logic design bug also belong to the source-level monitor signal set of at

least one other logic design bug. Furthermore, each logic design bug has on average 6-9

signals in its source-level monitor signal set that are unique, i.e., they do not belong to

the source-level monitor signal set of any other logic design bug. This result implies that

the discovery of a new design bug requires the monitoring of an additional 6-9 signals, on

average, that have not been previously monitored for any other bug, thus increasing the

total number of tapped signals.

In order to detect all the 162 studied logic design bugs, 516 and 602 unique source-

level monitor signals need to be monitored in the LSU and the TLU modules, respectively.

Note that these numbers are much higher than previous work estimates that used high-level

errata documentation to analyze design bugs. Specifically,the study in [110] reports that

on average, for the ten processors studied, only 210 signalsneed to be monitored to detect

all design bugs in all modules of a processor, with the maximum requirement out of the

ten microprocessors being 260 signals. The study in [96] reports that monitoring only 41

signals is adequate to detect the occurrence of 43 out of the 63 known design bugs in the

AMD Athlon 64 and AMD Opteron microprocessors. In contrast,our study shows that

1118 signals need to be monitored to detect 162 bugs in two modules of the SPARC core.

We believe this discrepancy stems from the attempt in previous studies to infer low-level

hardware implementation information from the high-level,abstract information provided

in the microprocessor errata documents. By studying the documented design bugs at the

lower RTL level, we found that the signal monitoring requirements of online design bug

detection are significantly higher than the estimates of these previous studies. As a result,

the problem of detecting design bugs is more difficult and thesolution is likely more

hardware intensive than estimated by previous work.

Insights from RTL Design Bug Analysis

In summary, our RTL design bug analysis provides the following conclusions and in-

sights:

1. The design bugs documented in the Verilog source files of the OpenSPARC T1 chip-

multiprocessor can be classified into three major classes based on their characteris-

tics: logic, algorithmic, and timing design bugs (Section 5.1.2).

2. Logic design bugs outnumber the documented design bugs ofthe other two design

bug classes. Furthermore, they might dominate the distribution of design bugs that

escape the verification phase and slip into the final product (Section 5.1.2).
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3. Because they only affect combinational logic, the occurrence of logic design bugs

is more readily detectable while the system is in operation.This can be done deter-

ministically by monitoring a set of source-level signals.

4. The number of signals that need to be monitored to detect the occurrence of logic

design bugs is significantly higher than estimates providedby previous work. The

discovery of a new design bug requires the monitoring of additional 6-9 signals, on

average, that have not been previously monitored for any other bug.

These conclusions and insights call for a mechanism capableof concurrently moni-

toring a large number of different signals scattered in the design and thus providing an

effective and efficient substrate to perform online detection of the occurrence of logic de-

sign bugs. In the rest of this section we describe how the ACE framework can be extended

to provide such a mechanism.

5.1.4 ACE-Based Distributed Online Bug Detection

Figure 5.11 illustrates the high-level architecture of theACE-based online design bug

detection mechanism. The mechanism is characterized by twophases: 1) the initial setup

of the mechanism and 2) the cycle-by-cycle operation where design bugs are detected

while the system is operating in the field.

Initial Setup Process

The first step of the mechanism’s setup process is the determination of the triggering

conditions for each design bug in the system. The design bug triggering conditions are

characterized by (1) the bug’s source-level monitor signals and (2) their values that would

activate the bug. The design bug triggering conditions of each bug are determined by

system engineers after performing the bug analysis processpresented in Section 5.1.3.

Bug Signatures:Once bug triggering conditions are determined, they are represented

by a structure called abug signature(step 1 in Fig. 5.11). Conceptually, the bug signature

is a list of all the signals in the system. From that list, the bug’s source-level monitor

signals are marked with the value they need to take to triggerthe bug, while non-source

signals are marked with adon’t care value (X) indicating that their values are irrele-

vant to the bug activation. The bug signature can be considered as a representation of the

system state that would activate the design bug. Each designbug can have multiple bug

signatures due to multiple possible combinations of triggering conditions.

System Bug Signature:The next step in setting up the design bug detection mech-

anism is the generation of thesystem bug signature. The collection of bug signatures of
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Figure 5.11: Overview of ACE-Based Online Design Bug Detection: The ACE-Based
online design bug detection is partitioned in the initial setup phase (steps 1-4) and the
online bug detection phase (steps 5-7).

all design bugs are merged together to form thesystem bug signature(step 2 in Fig. 5.11).

The system bug signature constitutes a representation of all the conditions that can trigger

any individual design bug in the system. The process of merging multiple bug signatures

into the system bug signature is detailed in Section 5.1.4.

Bug Detection Segments:The system bug signature is subsequently encoded into a

binary representation, partitioned into segments, and loaded into the mechanism’sbug de-

tection segments(step 3 in Fig. 5.11). The bug detection segments are field programmable

structures each associated with a part of the system state (i.e., the system’s flip-flops). Each

bug detection segment is loaded with the part of the system bug signature corresponding to

its part of the system state. The loading of the bug detectionsegments is done by firmware

that has access to the segments’ field programmable resources. During system operation,

the bug detection segments compare the system state to the system bug signature and gen-

erate match/mismatch signals.

Segment Match Detection Tables:The source-level signals of a design bug might be

located only in some of the bug detection segments. Therefore, each bug is associated with

a segment match detection entrythat indicates which lower-level segments need to match

the system bug signature with the system state for the bug to be detected. In essence, the

system bug signature summarizes all the triggering conditions from all bugs whereas each

segment match detection entry demultiplexes them to enablethe detection of individual
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bugs. The segment match detection entries are loaded into the segment match detection

tables by firmware (step 4 in Fig. 5.11).

Cycle-by-cycle Operation and Design Bug Detection

Flip-Flop Level Checking: Once the initial setup of the mechanism is done by the

firmware, the remaining task of the mechanism is to check if the system steps into a bug

triggering state while it is operating. To check this, each bug detection segment compares

its portion of the system bug signature to the system state and generates a segment-wide

match/mismatch signal (step 5 in Fig. 5.11).

Segment Checking Tree:The detection of each individual bug usually requires only a

subset of all the bug detection segments in the design to match their portion of system bug

signature with the system state. For each bug, this information is encoded into a segment

match detection entry. However, the set of segments that arerequired for the detection

of an individual bug might be scattered in different areas ofthe chip. To aggregate the

match/mismatch signals of all the segments on the chip, our mechanism employs a dis-

tributedsegment checking tree. The structure of the checking tree is identical to the ACE

tree presented in the previous chapter, only with some minormodifications. Specifically,

each node in the segment checking tree has asegment match detection tablethat is popu-

lated with the segment match detection entries of each bug that has bug-detection required

segments connected to the tree node. These entries are loaded during the initial setup

phase by firmware (step 4 in Fig. 5.11). During system operation, if the match/mismatch

signals of the underlying segments match with one of the node’s segment match detection

entries, this indicates that the local triggering conditions of a design bug within that node

are met. In a similar fashion, each level of nodes in the tree generates a match/mismatch

signal and feeds the upper level of nodes (step 6 in Fig. 5.11). If a match signal propagates

all the way from the bug detection segment level to the top level of the tree, this indicates

that the triggering conditions of a specific design bug are met for the whole chip and a

global bug detection signalis asserted. This process is illustrated in detail with an exam-

ple in Section 5.1.5. The bug is subsequently flagged to thebug recovery handler(step 7

in Fig 5.11).

Design Bug Recovery Handler:If a bug is flagged by the global bug detection signal,

the design bug recovery handler recovers the system into thelast validated system state.

Execution is then restarted and guided by design bug avoidance techniques so that the

design bug is averted, if possible. Since our focus is on bug detection, we leave the design

of the bug recovery handler to future work.
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Figure 5.12: Bug Detection Flip-Flop: Modified scan flip-flop with bug detection
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Hardware Implementation

Bug Detection Flip-Flops: In the ACE-based online design bug detection mecha-

nism, the system bug signature and its comparison with system state is distributed to the

flip-flop level. This is achieved by augmenting the system flip-flops with extra logic for

storing the system bug signature and comparing it to the system state. Figure 5.12 shows

a system flip-flop augmented with these extensions. The non-shaded logic comprises a

scan flip-flop, the common type of flip-flop used in modern processors to enable scan-in

and scan-out functionality to facilitate manufacturing testing using Automatic Test Pattern

Generation [67, 146]. The system portion is used for holdingthe system state, while the

scan portion is used to scan-in test patterns and scan-out test responses. In current de-

signs, the scan portion is utilized only during the manufacturing testing phase and stays

idle during normal operation. Also, notice that the non-shaded logic is identical with the

ACE flip-flop used in the ACE framework for online defect detection and diagnosis, thus

the hardware extension of the ACE flip flop to perform online design bug detection, as

illustrated in Figure 5.12, is straightforward.

Specifically, during normal operation, the ACE-based online design bug detection

mechanism uses the scan portion in combination with an extrabug detection portionto
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Figure 5.13: Bug Detection Example: Example of an 8-bit bug signature encoding and
checking.

store the system bug signature. The scan portion is used to indicate whether the specific

flip-flop belongs to any bug’s source-level monitor signal set. If the scan portion is set to 1

the flip-flop is indicated as a bug source signal, otherwise the flip-flop’s value is irrelevant

to the activation of a design bug. In the former case, the value that will activate the design

bug is stored in the bug detection portion.

The box at the top of Figure 5.13 illustrates the three encoding rules used to binary

map the system bug signature to the bug detection portion (shaded box) and the scan por-

tion (white box). If the scan portion is set, the value of the system flip-flop is compared

to the value of the bug detection portion to check if there is amatch between the system

state and the system bug signature. In our mechanism, flip-flops are grouped intobug de-

tection segmentsto simplify checking; the comparison result isORedwith the comparison

result of the previous flip-flop to generate a segment-wide match/mismatch signal. The

signal is propagated to the next flip-flop (0 indicates a segment match and 1 indicates a

segment mismatch). A bug detection segment consists of multiple bug detection flip-flops

connected together in a serial fashion (this is analogous toscan segments in scan chains).
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Figure 5.13 demonstrates the system bug signature binary encoding process with an

example 8-bit system bug signature. The system bug signature is encoded and loaded into

the bug detection and scan portions, and the checking is partitioned into two 4-bit bug

detection segments. Figure 5.13 also demonstrates how the bug detection segment signals

are generated for two different scenarios. In the first scenario, the system state matches

with the system bug signature and the segment bug detection signals are both set tozero

indicating that the bug is activated. In the second scenario, the second bit of the system

state does not match with that of the system bug signature andtherefore the bug detection

signal of the particular segment is set toone indicating that the bug is not activated.

Merging Bug Signatures into the System Signature:In this section we describe

the technique we employ to merge multiple bug signatures to generate the single system

bug signature. First, we merge all the bug signatures related to a single design bug into

an intermediate bug signature. To do so, for each bit location we check the values of all

bug signatures. If the bit takes the value ofzero in some signatures and the value of

one in others, then adon’t care (X) value is assigned to the merged intermediate bug

signature since for that signal either value can lead to a bugtriggering combination. If

the value of the bit is constant for all signatures then that value is assigned to the merged

intermediate bug signature. This technique is illustratedin Figure 5.14 for two example

design bugs.

When merging the intermediate bug signatures of multiple bugs into the system bug

signature, we employ a slightly different technique. Again, if a bit location takes both val-

ues (one andzero ) among different intermediate signatures, it is marked with adon’t

care . The difference from the previous technique is that now it ispossible for a bit lo-

cation to have azero or a one in the intermediate signature of one bug and adon’t

care in the intermediate signature of another. This case is treated differently depending

on the status of the remaining signals in the bug detection segment:

• CASE 1:Consider the two rightmost bits of the middle bug detection segment of

Figure 5.14. They both have the value ofone in one of the intermediate bug sig-

natures and adon’t care value in the other. Since the whole bug detection seg-

ment needs to match to trigger a bug and both bugs have other source signals in

this bug detection segment (the second source signal with the valuezero ), the spe-

cific source signal is assigned adon’t care value so that it will not prevent the

detection of any of these two particular design bugs.

• CASE 2:Now, consider the third bits of the leftmost and the rightmost bug detection

segments. Again, in one of the intermediate signatures theyhave the value ofone
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Figure 5.14: Bug Signature Merging: Merging bug signatures into system bug signa-
ture

while in the other they have adon’t care value. However, in this case no other

source signal in the bug detection segments is shared between the two bugs. This

means that the segments are associated with only one design bug. Therefore, the

source signals can be set toone in the system bug signature because only a single

bug requires the particular segment to match its portion of system bug signature with

the system state to detect the bug activation.

False Positives -Notice that our mechanism usesdon’t care values to merge mul-

tiple bug triggering conditions and multiple bug signatures. This approach relaxes the

bug triggering conditions and can result infalse positives, that is, non-errant conditions

which initiate an innocuous recovery sequence. However, since the technique only relaxes

the triggering conditions, it cannot exhibitfalse negatives, that is, discovered design bugs

with installed signatures that do not successfully initiate recovery. This is a very important

property, since it guarantees that the system will not experience the effects of a specific

design bug once the bug is covered by the mechanism.

However, the presence of false positives can adversely impact the performance of the

system if too many false recovery alarms are issued. Since the false positive rate highly
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changing the set of covered design bugs to regulate the falsepositive rate and performance
overhead

depends on the dynamic system conditions and workload, we propose a dynamic scheme

for trading off design bug coverage with system performance. Figure 5.15 gives a high-

level overview of this scheme. At system start-up, firmware loads into the mechanism the

initial system bug signature that covers all design bugs. A triggered design bug detection

is followed by a diagnosis process that determines if the design bug detection is correct or

if it is a false positive. If the detection is correct, the system execution is recovered and

the design bug is averted using design bug avoidance techniques. If the detection is a false

positive, then the false positive rate of the specific designbug is logged using the bug’s

ID tag and the system’s false positive rate is calculated. The system’s false positive rate

is then compared with a predefined threshold. If the system’sfalse positive rate is larger

than the threshold, the design bug with the highest false positive rate is removed from the

set of covered design bugs and firmware regenerates and loadsinto the mechanism the

new system bug signature. On the other hand, if the system’s false positive rate is smaller

than the threshold, the design bug with the lowest false positive rate is added to the set of

covered design bugs.
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Figure 5.16: ACE-Based Distributed Bug Detection: Example of online design bug
detection on an ACE-based distributed segment checking tree.

The predefined threshold can be adapted dynamically based onthe requirements of the

running applications. For example, a performance-critical application with low depend-

ability requirements can set the threshold low, while a dependability-critical application

can set it high. Furthermore, this scheme can be optimized toachieve the optimum trade-

off between design bug coverage and performance overhead due to false positives.

5.1.5 ACE-Based Segment Checking Tree Implementation

In the ACE-based online design bug detection mechanism, thebug detection segment

signals are aggregated to generate one global bug detectionsignal through a hierarchical

tree structure, the ACE-based segment checking tree. The implementation of this structure

is shown in Figure 5.16 and is similar to the implementation of the ACE tree presented

in Chapter IV. Each leaf node of the structure is connected toa set of bug detection

segments. For each bug that has source signals located in bugdetection segments assigned

to a leaf node, asegment match detection entryis allocated in that node. Each segment

match detection entry indicates which subset of the node’s bug detection segments need to

match the system bug signature to trigger the given bug through theMatch-bitvector

field. Each entry also has aBugID and aFlag field. TheBugID field indicates the bug
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associated with the specific entry, while theFlag field indicates whether the specific bug

has source signals that are mapped on a different leaf node.

For example, the design bug with the ID tag 12, has source signals both in the leftmost

and in the rightmost leaf nodes of the tree. Therefore, it is allocated a segment match

detection entry in each of those nodes with theFlag field set tozero . On the other

hand, the design bugs with ID tags 7 and 9 have source signals limited only to one leaf

node and this is indicated by having theirFlag field set. A bug that has itsFlag field set

means that if theMatch-bitvector field of that particular bug matches with the values

of the underlying bug detection segments, then no further checking is required (since the

bug’s signals are limited only to that node) and the bug is flagged, along with its ID tag,

through the tree to the top levelglobal bug detection signal. Notice that if two bugs are

flagged in the same cycle (e.g., bugs 7 and 9), only one of them will be flagged to the top

level and the decision will be arbitrary based on the implementation. However, due to the

rare occurrence of design bugs, we don’t expect two design bugs to be triggered in the

same cycle.

Figure 5.16 illustrates the detection of the bug with the ID tag 12. In the specific

example, the values generated by the underlying bug detection segments match with the

Match-bitvector fields of bug 12 in both leaf nodes. Since theFlag field is set to

zero , the bug is not flagged and the hit/miss signal from the leaf nodes are passed to the

upper level. When the node hit/miss signals reach the top level node of the tree, the values

match with the bug’sMatch-bitvector entry and therefore the global bug detection

signal is set toone , triggering the design bug recovery process, and the bug ID tag is

passed to the bug recovery handler.

System-Level Integration

In order to provide a complete online design bug detection solution, the ACE frame-

work presented in the previous chapter offers two additional functionalities:

1. In-the-Field Programmability: The system bug signature and the data that need

to be stored in segment match detection entries are dynamic and change as new

design bugs are discovered or old bugs get fixed. This part of the design needs to be

field-programmable and upgradable by special firmware developed and distributed

by microprocessor vendors. Since the ACE framework can read/write to any of the

tree nodes and any scan flip-flop in the design, it can also be used to program the

segment match detection entries in the distributed bug checking tree and load the bug

signature at the flip-flop level. Specifically, this functionality is already available in
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Figure 5.17: ACE Framework for Online Design Bug and Defect Detection: Unifying
online design bug detection and silicon defect detection under the ACE framework.

the ACE framework in the form of the ACE instructions, ACE firmware, and ACE

tree as described in Chapter IV.

2. Recovery Support: The detection of the occurrence of a design bug is only the first

step in providing a solution to the problem. Further action is required to avert the

design bug and avoid corrupting the execution. This is commonly achieved through

recovery support where the system state recovers to the lastvalidated/correct state

and execution is guided from there in a way that the design bugis averted. The

system state recovery can be provided by the ACE framework since, as described

in Chapter IV, it employs coarse-grained checkpoint and recovery techniques to

provide system recovery from hardware defects. By rolling back the system state to

the last validated and correct system state, execution can be guided by design bug

avoidance techniques in a way to avert the design bug. Several design bug avoidance

techniques have already been proposed in the research literature [109, 141, 96] and

any further advancement toward this direction is not in the scope of this work.

System-Level Operation:The two applications, online design bug detection and on-

line defect detection, can use the ACE framework hardware synergistically and provide a

collective solution for reliable and dependable computing. Figure 5.17 shows the synergis-

tic execution timeline of the two applications. At system startup, special firmware uses the

ACE framework to load the bug signature and the segment matchdetection entries needed

for online design bug detection. During a checkpoint interval, execution is guarded from

the effects of design bugs by the online bug detection mechanism (phase 1). If no de-

sign bug is detected, at the end of the checkpoint interval special firmware uses the ACE

framework to test the underlying hardware for defects as described in Chapter IV. If the

test succeeds, a new checkpoint is taken. If, during the checkpoint interval, a design bug is

112



detected, the system state is rolled back to the last checkpoint (phase 2) and bug avoidance

techniques are employed to avoid the design bug (phase 3). Ifa hardware defect manifests

during a checkpoint (phase 4), the defect is detected at the end of the checkpoint and, after

system repair, the system state is rolled back to the last checkpoint for re-execution as de-

scribed in Chapter IV. Notice that the use of the ACE tree resources and the scan state is

mutually exclusive by the two mechanisms. The online designbug detection mechanism

utilizes these resources during a checkpoint interval, while the hardware defect detection

mechanism utilizes the resources at the end of a checkpoint interval. Hence, the cost of

the ACE framework is amortized between bug detection and defect detection.

5.1.6 Experimental Evaluation

Experimental Methodology

The case study design used for the experimental evaluation of our mechanism is the

OpenSPARC T1 chip-multiprocessor, the open-source version of Sun’s Niagara (Ultra-

SPARC T1) [126]. We choose this design because the OpenSPARCT1 chip-multiprocessor

targets commercial applications such as database and web servers where system correct-

ness is of paramount importance. We believe such systems constitute ideal candidates to

employ our mechanism to provide the required correctness guarantees. The OpenSPARC

T1 is a full-system multiprocessor design implementing the64-bit SPARC V9 architec-

ture. It contains eight 6-stage pipelined in-order cores, each with 8KB L1 data-cache,

16KB L1 instruction-cache and full hardware support for four threads. The eight cores are

connected through a crossbar to a unified 3MB L2 cache and a shared floating-point unit.

The chip also includes four memory controllers and an input/output bridge [127].

RTL Implementation: To make an accurate assessment of our mechanism’s require-

ments in silicon area and power consumption, we developed a detailed RTL model of our

mechanism in Verilog. Specifically, in our prototype we implemented 1) the bug detection

flip-flops that hold the bug signature and compare it with the system state, 2) the segment

checking tree with a parameterized number of segment match detection entries per tree

node, and 3) the ACE-based field programmable framework thatloads through firmware

the bug signature and the segment match detection entries. Our implementation covers

all modules in OpenSPARC T1 except the memory cache data and tag arrays (we don’t

expect logic design bugs to be located in regular and meticulously optimized arrays).

Logic Synthesis and Tools:We used the Synopsys Design Compiler to perform logic

synthesis on the RTL code of the OpenSPARC T1 and our mechanism. Logic synthesis

mapping is done using the Artisan IBM 0.13um standard cell library. The resulting gate-
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Methodology/Tools Used Design Components

Synopsys Power Compiler

1) SPARC Cores, 2) Crossbar, 3) FPU, 
4) Misc. Units (I/O Bridge, DRAM 
Controllers, Control & Test Unit) 
5) ACE Framework, 6) Online Design 
Bug Detection Mechanism

CACTI 4.2 1) L1 Inst. & Data Caches, 2) L2 Cache

Taken from [72] 1) I/O Pads, 2) Wires & Repeaters

Table 5.2: Power Consumption Estimation Methodology: The table lists the method-
ology/tools used to estimate the power consumption of the major OpenSPARC T1 compo-
nents.

level netlists of the OpenSPARC design and our mechanism provided a common substrate

to accurately estimate the silicon area and power consumption overhead on the whole

OpenSPARC design.

Power Consumption Estimation Methodology:To evaluate the power consumption

overhead of our mechanism, we first estimated the power consumption of the baseline

OpenSPARC T1 design without the extra hardware required by our mechanism. We cal-

ibrated the estimated power consumption with actual power consumption numbers pro-

vided by Sun for each module of the chip [72]. After we validated our power estimates for

the baseline OpenSPARC T1 design, we estimated the additional power required by our

mechanism. Table 5.2 shows the major design components of the OpenSPARC T1 and

the methodology/tools we used to estimate their power consumption. We estimated the

power consumption of the majority of the OpenSPARC T1 modules using the Synopsys

Power Compiler (part of the Synopsys Design Compiler package). To estimate the power

consumption of the L1 and L2 caches, we used the CACTI 4.2 tool[132], a tool with

integrated performance, area, and power models for memory cache structures.

This methodology is sufficient to estimate the power consumption of most of the chip’s

logic modules. However, there are parts of the design whose power consumption cannot

be accurately estimated with these tools. These include 1) numerous buses, wires, and

repeaters distributed all over the design, which are very hard to model accurately using

the Power Compiler, unless the design is fully placed and routed, 2) I/O pads of the chip.

In order to estimate the power consumption of these two parts, we used values from the

reported power envelope of the commercial Sun UltraSPARC T1design [72].

Area Overhead and Design Bug Coverage

Control vs. Data Signals -After synthesizing the OpenSPARC T1 chip we found that

there are about 262K flip-flops in the design. We also found that providing monitoring and

114



Chip Submodule Data Signals Control Signals

SPARC Core (x8) 15632 (79.06%) 4140 (20.94%)

CPU-Cache Crossbar 27283 (98.69%) 362 (1.31%)

Floating-Point Unit 4054 (87.75%) 566 (12.25%)

Control & Test Unit 2325 (55.29%) 1880 (44.71%)

Input/Output Bridge 10251 (95.14%) 524 (4.86%)

DRAM Controller (x4) 13449 (94.70%) 752 (5.30%)

Total 222765 (84.95%) 39460 (15.05%)

Table 5.3: Data and Control Signals in OpenSPARC T1: The table shows the
percentage of data and control signals in the OpenSPARC T1 processor.

bug detection capabilities for all these signals results inprohibitive area overhead (∼69%).

However, we observed that the majority of these flip-flops serve as buffers to data buses

or data registers, and only a small fraction of them are control signals. Furthermore, after

analyzing the source signals of the logic design bugs studied in Section 5.1.3, we found

that all of the bug source signals were control signals, and no logic design bug had a source

signal that was part of a data bus or a data register. After this observation, we partitioned

the flip-flops of the OpenSPARC T1 design intodataandcontrolsignals. Table 5.3 shows

the fraction of data and control signals for all modules in the OpenSPARC T1. For the

whole chip, only 39K flip-flops drive control signals, accounting for 15% of all flip-flops

in the design.

Our prototype implementation taps all 39K control signals in the OpenSPARC T1

design. This means that each of these flip-flops is augmented with the extra bug detection

logic shown in Figure 5.12. The area overhead of this flip-flopaugmentation is estimated

to be 3%. Flip-flops are grouped into 8-bit bug detection segments and connected to a

four-level segment checking tree structure (shown in Figure 5.16). The area overhead of

the tree structure depends on the number of segment match detection entries per tree node.

The number of design bugs that can be covered by our mechanismalso depends on the

number of segment match detection entries per tree node, raising an engineering trade-off

between area overhead and bug coverage.

Area Overhead vs. Coverage -Figure 5.18 illustrates this trade-off based on the

162 logic design bugs located in the SPARC core’s LSU and TLU units studied in Sec-

tion 5.1.3. The figure depicts the percentage of design bugs covered (left Y-axis) and the

area overhead (right Y-axis) versus the number of segment match detection entries per tree

node. When the tree nodes are equipped with 32 entries, our mechanism can cover all the

162 design bugs with an overall area overhead of 17%. Fortunately, not all design bugs
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Figure 5.18: Area Overhead Versus Design Bug Coverage:The graph illustrates
the trade-off between area overhead and design bug coverage. As the number of segment
much detection entries per tree node is increasing, so does the design bug coverage and
the area overhead.

are critical to functional correctness and need to be covered. Sarangi et al. [110] studied

the errata documentation of ten modern microprocessors andfound that, on average for all

the studied processors, 64% of the design bugs are critical to functional correctness. The

remaining 36% of the design bugs were found to be non-critical to the correctness of the

system and commonly located in modules such as performance counters, error reporting

registers, or breakpoint support [110]. In Figure 5.18, we can observe that 16 segment

match detection entries per tree node provide a design bug coverage of 80% that is much

higher than the typical fraction of critical design bugs. This design configuration leads to

a silicon area overhead of 10% of the whole OpenSPARC T1 design.

Power Consumption Overhead

Employing the methodology described in Section 6.5.1, we estimated the power en-

velope of the baseline OpenSPARC T1 chip, without the additional hardware required by

our mechanism, to be 56.3W. Our estimate of the OpenSPARC T1 power is within 12% of

the reported power consumption of the commercial Sun Niagara design [72]. Figure 5.19

shows the power consumption for our enhanced OpenSPARC T1 design including our

online design bug detection mechanism. The power envelope of the enhanced design is

58.3W. From this, a total of 3.4% (1.96W) is devoted to the extra hardware required by our

mechanism. The overall power consumption overhead of our mechanism over the baseline

is therefore about 3.5%.
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Figure 5.19: Power Consumption Overhead: The pie chart shows the power con-
sumption of the OpenSPARC T1 processor augmented with the ACE-based online design
bug detection mechanism.

Mechanism
Flip-Flops
Covered

Area 
Overhead

Power
Overhead

Online Design 
Bug Detection
(16 seg. comparator 
entries per tree node)

39K Flip-Flops 10.26% 3.5%

Online Hardware
Defect Detection

262K Flip-Flops 5.8% 4%

Online Design
Bug Detection 

+
Online Hardware
Defect Detection

39K Flip-Flops
(bug detection)

262K Flip-Flops
(defect detection)

15.15% 6.8%

Table 5.4: Overhead of the Extended ACE Framework: The table shows the total
overhead of the combined design bug and defect detection ACEframework.

Unified Design Bug & Defect Detection Overhead

Table 5.4 presents the silicon area and power consumption overhead of the extended

ACE framework. The estimated silicon area overhead of the extended framework is

15.15%, and its power consumption overhead is 6.8%. Based onthese numbers, we believe

that the extension of the ACE framework hardware to provide online design bug detection,

in addition to Online defect detection and diagnosis, is an attractive and relatively low

overhead solution for high-dependability computing.
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5.2 Related Work

Design Bug Analyses:Our online design bug detection mechanism is based on in-

sights from this work and previous design bug analyses that characterize the known design

bugs of existing processors. Section 5.1.2 provides a discussion on previous design bug

analyses and how our RTL design bug analysis differs from those previous works.

Online Design Bug Detection:Recently, several works proposed the use of online,

in-the-field design bug detection and avoidance as a mechanism to mitigate the negative

effects of design bugs [110, 96, 141].

Specifically, Sarangiet al. [110] propose the Phoenix, a field-programmable mecha-

nism that continuously taps key logic signals to detect the occurrence of design bugs while

the processor is operating in the field. In particular, Phoenix uses a software structure at

the supervisor level, called the signature buffer, to hold the triggering conditions of design

bugs. The supervisor uses the triggering conditions storedin the signature buffer to pro-

gram the field-programmable portion of the Phoenix mechanism. The field-programmable

portion of Phoenix consists of two components: i) the SignalSelection Unit (SSU), a

switch that is made out of programmable pass transistor and selects the logic signals that

need to be monitored for the detection of the occurrence of a specific design bug, and ii)

the Bug Detection Unit (BDU), a logic array that combines signals selected by the SSU

into logic expressions that flag the occurrence of a design bug. The input signals to the

SSU are a set of control signals selected at designs time, that at the designers’ judgment

could possibly help the detection of any yet unknown design bugs.

The Phoenix mechanism is partitioned into several subsystems, each with a local

SSU and BDU, that are distributed to the different microarchitectural components. Each

Phoenix subsystem uses a hub to collect monitored signals from the local SSU and pass

them over to the hubs of other neighboring subsystems, and tobring in signals from other

hubs to the local BDU.

Wagneret al. in [141] proposed FRCL, a field-programmable mechanism for the

online detection and recovery of design bugs. In FRCL, the online detection of design

bugs is performed by routing a set of signals that are selected at design time to a centralized

state matcher, a fully-associative field-programmable array that holds the bit-patterns that

represent the triggering conditions of design bugs. In order to limit the number of the state

matcher entries, the state matcher is structured in way to allow the use of “don’t care”

values in the bit-patterns. This extension, enables optimizations like the combination of

similar design bug bit-patterns into a single bit-pattern.These optimizations were used for

the development of a pattern-compression algorithm with the goal of reducing the number
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of entries required for the state matcher. In the same work, Wagneret al. also developed a

software tool for the automatic selection of the set of signals to be monitored. Specifically,

in order to find the more critical set of signals to monitor, the tool considers the RTL

description of the design and it ranks signals based on the width of the cone of logic that a

signal drives and the number of submodules that they feed into. The proposed tool helps

the designers to choose the set of critical signals to be monitored for the online detection

of design bugs and can potentially improve the effectiveness of FRCL by predicting which

design signals would be involved in the triggering conditions of future, yet undiscovered,

design bugs.

A field-programmable approach for online design bug detection was also proposed by

Narayanasamyet al. in [96]. The approach proposed in [96] differs from the otheronline

design bug detection techniques and the technique proposedin this thesis because of its

capability of detecting design bugs with triggering conditions that span across multiple

clock cycles. Specifically, in [96], the triggering conditions of each design bug are rep-

resented as a combination of set of events that happen in a specific time interval, where

events are signals with a particular value. As design bug triggering events occur, they

are reported to a monitoring unit that is programmed with allthe combinations of events

and the time interval that these events need to occur for eachparticular design bug to be

triggered. Each event is reported to the monitoring unit with a timestamp and if the mon-

itoring unit determines that all the triggering events of a particular design bugs occurred

in the specified time interval, the occurrence of the design bug is effectively detected and

recovery is initiated.

Contribution Over Previous Work: In all these previously proposed mechanisms,

the online design bug detection is facilitated by a signal monitoring substrate. However, in

all these works the signal monitoring substrate is limited to a small set of signals selected

at design time when the design bugs are still unknown. With this approach, if a design bug

is discovered after the final release of a microprocessor andits bug triggering conditions

involve signals not included in the original set of signals that was selected to be monitored

by the substrate, the occurrence of the design bug cannot be detected. In some cases, such

design bugs can be detected by over-approximating the bug triggering conditions using the

the original set of signals that was selected to be monitored, but this can lead to a high rate

of false positives and high runtime performance overhead due to the false recoveries. This

means that the effectiveness of these online design bug detection mechanisms depends

on decisions made at design time based on assumptions regarding the set of signals that

would be involved in yet unknown design bug triggering conditions. This constitutes a

major limitation for the effectiveness of these previouslyproposed mechanisms. The ACE
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framework hardware extensions used for the online detection of design bugs address this

limitation and improve on these previous works with a novel field-programmable substrate

that is capable of monitoringall control signals in the designthat can trigger a design bug.

This capability waives the requirement of selecting the setof signals to be monitored at

design time and allows this decision to be made after the product release and the discovery

of design bugs, when the design bugs and their triggering conditions are known.

Bug Avoidance Techniques:After the occurrence of a design bug has been detected,

the next action that needs to be taken is to avoid any effects on correct execution. Since the

design bug is detected a few cycles after its occurrence, thesystem state first needs to be

rolled back to the last correct state before the design bug occurrence, and then execution

has to be repeated. The goal during this second execution iteration is to employ techniques

that avoid exercising the “buggy” part of the design and avert another occurrence of the

design bug. In the research literature, there are already several design bug avoidance

techniques proposed [109, 141, 96, 110]. Below we provide a brief description of some of

these techniques:

• Degradation to a formally-verified mode: Wagneret al. in [141], proposed that

once the execution has been rolled back and the system state has been recovered,

execution switches to a simpler (lower-performance), formally verified safe-mode

that is free of design bugs. The execution is resumed to the normal mode of operation

once it passes the point where the design bug occurrence was detected.

• Replay after pipeline flush: If the design bug can be detected before its effects cor-

rupt the architectural state, then a pipeline flush might be adequate to change the

order of execution events that triggered the design bug [109]. Several techniques

have been proposed on how to change the order of execution events, such as adding

extra NOPs between instructions [109].

• Replay after checkpoint recovery: Conceptually, this technique is the same as the

replay after pipeline flush technique, but this technique also recovers the architec-

tural state in case that the design bug was detected late and its effects could have

corrupted the architectural state [109].

• Instruction-stream editing: This technique overrides the BIOS microcode of spe-

cific instructions with a new sequence of micro-operations that avoid exercising the

“buggy” part of the design [109, 141].

• Hypervisor-guided execution: In this technique, after the system state has been re-

covered, execution traps to the hypervisor. In many cases, the hypervisor is capable
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of intercepting and interrupting the control flow of execution and taking sophisti-

cated corrective actions in a way to guide execution past thethe point where the

design bug was detected without triggering the detected design bug [109].

Dynamic Validation: Another approach to deal with the design bugs found in modern

microprocessors is the dynamic validation of the executionwhile the microprocessor is

operating in the field by adding some extra on-chip checkers.In particular, these on-chip

checkers continuously monitor the microprocessor execution and check if the execution

steps into a non-validated state, or detect execution errors that were caused by design bugs.

An example of a dynamic validation checker is DIVA, an onlinechecker component, in

the form of a very simple core, that is inserted into the retirement stage of a micropro-

cessor pipeline that continuously validates the computation, communication, and control

exercised in a complex out-of-order microprocessor core [6, 143].

In this context, more recently, Wagneret al. proposed the concept of semantic guardians

in [139] to guarantee bug-free and functional correct execution in microprocessor designs.

A semantic guardian is a hardware component that is automatically synthesized based

on the microprocessor’s functional validation coverage data and it is included in the mi-

croprocessor design. At runtime, the guardian monitors a subset of the design’s internal

signals. If the guardian detects that the system steps in a non-validated configuration, it

switches execution into a lower-performance but formally verified safe-mode version of

the microprocessor to guarantee functionally correct execution.

Another on-chip checker is Chico, presented by DeOrioet al. in [30]. Chico focuses

on the dynamic validation of control logic by monitoring theflow of instructions executed

by the processor. Specifically, Chico is targeting to detectexecution errors that manifest in

the control aspects of the execution like data forwarding and branching selection. Similar

to the semantic guardians approach, when Chico detects an execution error, it switches

execution into a formally verified, lower-performance execution mode until the offending

instruction that caused the error is committed.

Other dynamic validation solutions proposed in the research literature include the work

by Meixneret al. [86] that detects execution errors caused by design bugs in the dataflow

circuitry by dynamically verifying high-level invariantsthat error-free executions are guar-

anteed to maintain, and the work by Chenet al. [25] that uses constraint graph models to

dynamically validate the end-to-end correctness of a transactional memory system.

One of the drawbacks of dynamic validation when compared to online design bug de-

tection is that specific on-chip checkers need to be designedfor the validation of each

functional task of the microprocessor, which results into ahigher complexity and more

intrusive solution to address design bugs. In contrast, online design bug detection can

121



provide a comprehensive solution that addresses the designbugs of a microprocessor de-

sign as a whole. Another limitation of dynamic validation techniques like the semantic

guardians [139] is that they treat all non-validated systemconfigurations as potential de-

sign bugs and trigger system recovery and a switch into a lower-performance safe-mode

execution. In a complex system with a lot of non-validated system configurations, this can

result to significant performance overhead. On the other hand, dynamic validation solu-

tions can provide functional correctness against design bugs that are not yet discovered.

5.3 Other Applications of the ACE Framework

We believe that the ACE framework is a general framework thatcan be extended to sev-

eral other applications to amortize its hardware cost. Specifically, its capability to provide

hardware accessibility and controllability to the software can find use in many applica-

tions. In this section, we describe how the ACE framework canbe extended to improve

two important phases of the microprocessor design cycle. Specifically, Section 5.3.1 de-

scribes how the ACE framework hardware can be extended and used as a tool to ease the

post-silicon debugging process, while Section 5.3.2 describes how the ACE framework

can improve the microprocessor manufacturing testing.

Notice that today, for none of these two applications the area overhead of the ACE

framework would be justifiable. However, if the area overhead of the ACE framework

can be justified by the need to provide defect tolerance to themicroprocessor design (as

it was proposed in Chapter IV), and for the additional capability of online design bug

detection (as it was proposed in Section 5.1), then the extension of the ACE framework

to these applications comes for free as an additional feature and adds value to the ACE

framework. This additional value and extra capabilities can ease the potential adoption of

the ACE framework in future generation microprocessors, asit would be possible to use

the framework’s hardware resources to address multiple problems.

5.3.1 ACE Framework Extensions for Post-silicon Debugging

Post-silicon debugging is an essential and highly resource-demanding phase that is on

the critical path of the microprocessor development cycle.Following product tape-out (i.e.,

the fabrication of the microprocessor into a silicon die), the post-silicon debugging phase

checks if the physical design of the product meets all the performance and functionality

specifications as they were defined in the design phase. The goal of post-silicon debugging

is to find all design errors, also known as design bugs, and to eliminate them through design

changes or other means before selling the product to the customer [60, 49, 61].
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The first phase of post-silicon debugging is to run extended tests to validate the func-

tional and electrical operation of the design. The validation content commonly consists of

focused software test programs written to exercise specificfunctionalities of the design or

randomly generated tests that exercise different parts of the design. We refer to these test

programs as thevalidation test suite. These tests are applied under different operating con-

ditions (i.e., voltage, clock frequency, and temperature) in order to electrically characterize

the product. When the observed behavior diverges from the expected pre-specified correct

behavior (i.e., when a failure is found), further investigation is required by the post-silicon

debugging team. During a failure investigation the post-silicon debug engineer tries to i)

isolate the failure, ii) find the root cause of the failure, and iii) fix the failure, using features

hardwired into the design to support debugging as well as tools external to the design [60].

Motivation : The trends of higher device integration into a single chip and the high

complexity of modern processor designs make the post-silicon debugging phase a signif-

icantly costly process, both in terms of resources and time.For modern processors, the

post-silicon debugging phase can easily cost $15 to $20 million and take six months to

complete [39]. The post-silicon debugging phase is estimated to take up to 35% of the

chip design cycle [24], resulting in a lengthy time-to-market. As the level of device inte-

gration continues to rise and the complexity of modern processor designs increases [35],

this problem will be exacerbated leading to either i) very expensive and long post-silicon

debugging phases, which would adversely affect processor’s cost and/or time-to-market

or ii) more buggy designs being released to the customers dueto poor post-silicon debug-

ging [140, 109], which would likely increase the fraction ofchips that fail in the field.

There are two major challenges in the post-silicon debugging process of modern highly-

integrated processors. First, because the internal signals of the microarchitecture have

limited observability to the testing software, it is difficult to isolate a failure and find its

root cause. Second, because the hardware design is not easily or flexibly alterable by the

post-silicon debug engineer, it is difficult to evaluate whether or not a potential fix to the

design eliminates the cause of the failure [61]. Existing techniques that are used to address

these two challenges are not adequate, as briefly explained below.

Traditional techniques used to address the limited signal observability problem are

built-in scan chains [146, 61] and optical probing tools [149]. Unfortunately, both have

significant shortcomings. The use of built-in scan chains tomonitor internal signals is

very slow due to the serial nature of external scan testing [45], which is part of the rea-

son why post-silicon debugging takes a significant fractionof the processor design cycle.

The effectiveness of optical probing tools reduces with each technology generation as di-

rect probing becomes very difficult, if not impossible, withmore metal layers and smaller
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devices [137]. Furthermore, it is very hard to integrate these two techniques into an auto-

mated post-silicon debugging environment [137].

The traditional technique used to evaluate design fixes is the Focused Ion Beam (FIB)

technique [60], which temporarily alters the design by physically changing the metal layers

of the chip. Unfortunately, FIB is limited in two ways. First, FIB typically can only

change metal layers of the chip and cannot create any new transistors. Therefore, some

potential design fixes are not possible to make or evaluate using this technology. Second,

FIB’s effectiveness is projected to diminish with further technology scaling as the access

to lower metal layers is becoming increasingly difficult dueto the introduction of more

metal layers in modern designs [24, 60].

Recently proposed mechanisms try to address the limitations of these traditional tech-

niques. Specifically, recently proposed solutions suggestthe use of reconfigurable pro-

grammable logic cores and flexible on-chip networks that will improve both signal ob-

servability and the ability to temporally alter the design [102]. However, these solutions

have considerable area overheads [102] and still do not provide complete accessibility to

all of the processor’s internal state [102].

Solution - ACE Framework Extensions for Post-silicon Debugging: The ACE frame-

work can be an effective low-overhead framework that provides the post-silicon debug

engineers with full accessibility and controllability of the processor’s internal microarchi-

tectural state at runtime. This capability can be helpful topost-silicon debug engineers in

isolating design bugs and finding their root causes. Furthermore, once a design bug is iso-

lated and its causes have been identified, the ACE framework can be used to dynamically

overwrite the microarchitectural state and thus emulate a potential hardware fix. This al-

lows the debug engineer to quickly observe the effects of a potential design fix and verify

its correctness without any physical hardware modification.

Specifically, the event that triggers a failure investigation by a post-silicon debug en-

gineer is an incorrect design output during the execution ofthe validation test suite. How-

ever, by just observing the incorrect output it is very hard to pinpoint the root cause of

the failure.4 Therefore, further debugging of the failure is required. The first step in this

process is the reproduction of the conditions under which failure occurred. Once the fail-

ure is reproduced, debugging tools can be used to analyze thedesign’s internal state and

pinpoint the design bug. This is where the ACE firmware could be very useful to a post-

silicon debug engineer. The debug engineer can run the ACE firmware as an independent

thread (called the ACE debugging thread) that runs in conjunction with the validation test

thread to identify the root cause of the failure and evaluatea potential design fix. We first

4As is also the case for buggy software.
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Post-silicon Debugging ACE Instructions

ACE_pause <# of clock cycles>
Pauses the execution of the running validation test  thread after it is 
executed for a given number of clock cycles, and sw itches execution into 
the ACE debugging thread.

ACE_return
Returns execution from the ACE debugging thread to the validation test 
thread and swaps the scan state with the processor state in order to 
restore the microarchitectural state of the validat ion test thread.

Table 5.5: ACE Instruction Extensions for Post-Silicon Debugging: Additional ACE
instruction set extensions for post-silicon debugging.

describe the required extensions to the ACE framework to support post-silicon debugging

using the ACE firmware, then provide a detailed example of howthe debug engineer uses

the ACE framework.

ACE Instructions for Post-Silicon Debugging: Table 5.5 shows the ACE instruction

set extensions that enable the synchronization between thevalidation test thread and the

ACE debugging thread.

TheACEpause instruction pauses the execution of the running validationtest thread

after it is executed for a given number of clock cycles, and switches execution to the ACE

debugging thread. The execution switch between the validation test thread and the ACE

debugging thread is scheduled by setting an interrupt counter to the parameter value of the

ACEpause instruction. This interrupt counter decrements every clock cycle during the

execution of the validation test thread. Once the counter becomes zero, the processor state

and scan state get swapped, thus taking a snapshot of the running microarchitectural state

of the validation testing thread into the scan state. In the same clock cycle, execution is

switched to the ACE debugging thread.

The ACEreturn instruction returns execution from the ACE debugging thread to

the validation testing thread and swaps the scan state with the processor state in order to

restore the microarchitectural state of the validation test thread.

Post-Silicon Debugging Example using the ACE Framework:Figure 5.20 shows

an example of a possible ACE firmware written to perform post-silicon debugging. The

example firmware is written by the post-silicon debug engineer. Suppose that the debug

engineer runs a validation test program that fails after tenthousand cycles of execution,

and the validation engineer suspects that the bug is in the third ACE domain of the core.

Figure 5.20 shows the pseudo-code of the ACE firmware writtento analyze such a failure.

The first portion of the code (Figure 5.20-top left) pauses the execution of the validation

test program at the desired clock cycle; the second portion (Figure 5.20-top right) allows

the debug engineer to single-step the execution by one cycleto observe state changes.
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Based on the information obtained by running these portionsof the code, the engineer

devises a possible fix. The third portion of the code (Figure 5.20-bottom center) is used

by the engineer to evaluate whether or not the design fix wouldresult in correct execution.

We describe each code portion of the ACE firmware in detail below.

The debugging process starts with the execution of the ACE debugging firmware thread

(Figure 5.20-top left). In this thread, the first instruction is anACEpause instruction that

sets the interrupt counter to the clock cycle in which detailed debugging is desired by the

post-silicon debug engineer. In the example shown in Figure5.20, the validation test is

set to be interrupted at clock cycle ten thousand (assuming that this is the phase of the

validation test where the post-silicon debug engineer suspects that the first error occurs).

TheACEpause instruction is followed by anACEreturn instruction.ACEreturn

switches execution from the ACE debugging thread to the validation test thread and thus

the validation test program’s execution begins.

After ten thousand cycles into the execution of the validation test thread, the validation

test thread is interrupted. At this point, 1) processor state is swapped with the scan state,

and 2) execution is switched from the validation test threadto the ACE debugging thread.

Once execution is transferred to the ACE debugging thread, the post-silicon engineer uses

the ACE framework to investigate the microarchitectural state of the validation test thread

during clock cycle ten thousand (which is stored in the scan state). The example scenario

in Figure 5.20 assumes that the suspected bug is in the third ACE domain of the core.

ACEget instruction reads the third ACE domain’s microarchitectural state and prints it

to the debugging console. We assume that the domain’s microarchitectural state is checked

by the debug engineer and is found to be error-free. Therefore, the debug engineer decides

to check the domain’s state in the next clock cycle. In order to step the execution of the

validation test thread for one clock cycle, the interrupt counter is set to one using the

ACEpause instruction, and the validation test thread’s execution isresumed with the

execution of theACEreturn instruction (Figure 5.20-top right).

After one clock cycle of validation test execution, controlis transferred again to the

ACE debugging thread and the domain’s new microarchitectural state is checked by the

debug engineer. After inspecting the domain’s microarchitectural state, the debug engineer

finds that the third bit of the domain’s sixth segment is a control signal that should be a

zero but instead it has the value of one. Thus, the engineer pinpoints the root cause of the

failure. In order to verify that this is the only design bug that affects the execution of the

validation test thread, and that fixing the specific control signal does not cause any other

erroneous side effects, the debug engineer modifies the domain’s microarchitectural state

and sets the control signal to its correct value using theACEset instruction (Figure 5.20-
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1.Pause Execution
Read Processor State

ACE_pause 10000
ACE_return
// Continue running the validation 
// test for 10000 cycles
...
// 10000 cycles later the processor
// state and scan state are swapped
// and the ACE thread is resumed

// The bug is suspected to be in 
// domain#3. Read and print 
// domain’s state for cycle 10000
for(j=0;j<#_of_ACE_Segments;j++){

ACE_get $r1, 3, j
print $r1

}

2. Step for one cycle
Read Processor State

// Set the interrupt counter
// to step for one cycle
ACE_pause 1
// Swap processor state with 
// scan state and resume the
// validation test execution
ACE_return

// After one cycle of validation
// test execution the ACE 
// debugging thread is resumed

// Read and print domain’s 
// state for cycle 10001
for(j=0;j<#_of_ACE_Segments;j++)
{

ACE_get $r1, 3, j
print $r1

}

3. Fix Buggy State
Continue Execution

// Bug found by debug engineer at the state of cycle 10001.
// A control signal should be 0 instead of 1 in segment#6 bit 3.
// Modify processor state to check if bug is fixed.
ACE_get $r1,3,6
and      $r1,$r1,FFFFFFF7
ACE_set $r1,3,6

// Run the rest of the validation test
ACE_pause 90000
// Swap processor state with scan state and resume execution
ACE_return
... 
// At the end of validation test check if bug is fixed

Figure 5.20: ACE Firmware for Post-Silicon Debugging: Example ACE firmware
pseudo-code used for post-silicon debugging.

bottom center). Assuming that the whole validation test takes one hundred thousand clock

cycles to execute, the debug engineer sets the next debugging interrupt to occur after ninety

thousand clock cycles, which is right after the completion of the validation test. At this

point, the execution is transferred to the validation test thread, which runs uninterrupted

to completion. After completion, the debug engineer checksthe final output to verify that

the potential design bug fix led to the correct output and there were not any erroneous side

effects due to the introduction of the bug fix. In the case thatthe final output is incorrect, a

new failure investigation starts from the beginning and thedebug engineer writes another

piece of firmware to investigate the failure.
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We would like to note the analogy between ACE framework basedpost-silicon de-

bugging and conventional software debugging.ACEpause instruction is analogous to

setting a breakpoint in software debugging.ACEreturn is analogous to the low-level

mechanism that allows switching from the debugger to the main program code. Examin-

ing the state of the processor and stepping hardware execution for one cycle are analogous

to examining the state of program variables and single stepping in software debugging. Fi-

nally, ACE framework’s ability to modify the state of the processor while the test program

is running is analogous to a software debugger’s ability to modify memory state during the

execution of a software program that is debugged. We note that, similarly to a software

debugging program, a graphical interface can be designed toencapsulate the post-silicon

debugging commands to ease the use of ACE firmware for post-silicon debugging.

Advantages: The results of this detailed debugging process, demonstrated by the

above example, are sometimes achievable using traditionalpost-silicon debugging tech-

niques that were described previously. However, the use of the ACE framework provides

a promising post-silicon debugging tool that can ease, shorten, and reduce the cost of the

post-silicon design process. The main advantages of ACE framework based post-silicon

debugging are:

1. It eases the debugging process: ACE framework based debugging is very similar

to the software debugging process, and therefore is trivialto understand and use

by the debug engineer. This ease in debugging is achieved by providing complete

accessibility and controllability of the hardware state tothe debug engineer.

2. It can test potential design bug fixes without physically and permanently modifying

the underlying hardware. This reduces both the cost and difficulty of post-silicon

debugging by reducing the manual labor involved in fixing thedesign bugs.

3. It can accelerate the post-silicon debugging process because it does not require very

slow procedures such as scan-out of the whole microarchitectural state or manual

modification of the underlying hardware using the aforementioned FIB technique to

evaluate potential design fixes.

5.3.2 ACE Framework Extensions for Manufacturing Testing

Manufacturing testing is the phase that follows chip fabrication and screens out parts

with defective or weak devices. Today, most complex microprocessor designs use scan

chains as the fundamental design for test (DFT) methodology. During the manufacturing

testing phase, the design’s scan chains are driven by external automatic test equipment
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(ATE) that applies pre-generated test patterns to check thechip under test [23]. The test

pattern set size depends on several factors, such as the design size, the fault models used,

and the capabilities of the automatic test pattern generation (ATPG) tool used [45]. During

the manufacturing testing phase, every single chip has to gothrough this testing process

multiple times, at different voltage, temperature and frequency levels. Therefore, the man-

ufacturing testing cost for each chip can be as high as 25-30%of the total manufacturing

cost [45].

Motivation : Although this testing methodology served the semiconductor industry

well for the last few decades, it has started to face an increasing number of challenges due

to the exponential increase in the complexity of modern microprocessors [35], a product

of the continuous silicon process technology scaling.

Specifically, the external ATE testers have a limited numberof channels to drive the

design’s scan chains due to package pin limitations [45]. Furthermore, the speed of test

pattern loading is limited by the maximum scan frequency that is usually much lower

than the chip’s operating frequency [45, 23]. The limited throughput of the scan interface

between the external tester and the design under test constitutes the main bottleneck. These

limitations, in combination with the larger set of test patterns required for testing modern

multi-million gate designs leads to longer time spent on thetester per chip. Even today,

the amount of time a chip spends on a tester can be several seconds [45]. Considering

that the amortized testing cost of high-end test equipment is estimated to be at thousands

of dollars per hour [18, 45], the conventional manufacturing testing process can be very

cost-ineffective for microprocessor vendors.

Alternative Solutions: Logic built-in self-test (BIST) is a testing methodology based

on pseudo-random test pattern generation and test responsecompaction. To speed up

manufacturing testing, logic BIST techniques use the scan infrastructure to apply the on-

chip pseudo-randomly generated test patterns and employ specialized hardware to compact

the test responses [23]. Furthermore, the control signals used for testing are driven by an

on-chip test controller. Therefore, a clear advantage of logic BIST over the traditional

manufacturing testing methodology is that it significantlyreduces the amount of data that

is communicated between the tester and the chip. This leads to shorter testing times and, as

a result, lower testing cost. Logic BIST also allows the manufacturing test to be performed

at-speed (i.e., at the chip’s normal operating frequency rather than the frequency of the

automatic test equipment), which improves both the speed and quality of testing.

Although logic BIST addresses major challenges of the traditional manufacturing test-

ing methodology, it also imposes some new challenges. First, logic BIST requires the

on-chip storage of a very large amount of pseudo-randomly generated test patterns. Sec-
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ond, because logic BIST uses pseudo-randomly generated test patterns, it often provides

significantly lower fault coverage than that provided by a much smaller number of high-

quality, ATPG pre-generated test patterns [23]. Third, theuse of the logic BIST method-

ology requires significantly more stringent design rules than conventional manufacturing

testing [45]. For example, bus conflicts must be eliminated and the circuit must be made

random-pattern testable [45]. Therefore, logic BIST techniques significantly increase both

the hardware cost and the design complexity, while resulting in lower test coverage.

Proposed Solution - Use of the ACE Framework for Manufacturing Testing: The

ACE infrastructure incorporates the advantages of both thescan-based and logic BIST

testing methodologies, while it also can effectively address their limitations. Specifically,

the ACE infrastructure provides two capabilities that are not together present in previous

manufacturing testing techniques. First, the ACE framework is a built-in solution for fast

loading of high-quality pre-generated ATPG test patterns into the scan-chain structures

through software. This capability can eliminate the need for expensive and slow external

equipment, currently needed for test pattern loading. Second, the ACE framework allows

the test patterns to be loaded and applied at-speed at the chip’s normal operating frequency

rather than the much slower operating frequency of the automatic test equipment, which

results in higher quality testing.

With these two capabilities, the ACE framework provides thebest of both existing

manufacturing testing techniques: 1) fast loading of test patterns to reduce testing time, 2)

at-speed testing of the chip to improve testing quality as well as to reduce testing time, and

3) testing with ATPG pre-generated test patterns rather than the use of pseudo-randomly

generated test patterns, to improve testing quality. Thus,if employed by the future in-

tegrated circuit manufacturing testing methodologies, itcan greatly improve the speed,

cost, and test coverage of the costly manufacturing testingphase of the microprocessor

development cycle.

5.4 Chapter Summary

This chapter demonstrated that the ACE framework, presented in Chapter IV as a low-

cost solution for online design bug detection and diagnosis, can be extended to other im-

portant applications to amortize its cost and ease its adoption in future generation micro-

processor designs.

The first application that we considered as an ACE framework hardware extension is

online design bug detection. We first described the problem of design bugs in modern

microprocessors and motivated the need for the adoption of online design bug detection
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mechanisms in future generation microprocessor designs. Next, we provided a rigorous

analysis of processor design bugs in the RTL code of a commercial microprocessor, Sun’s

OpenSPARC T1 chip. Our low-level analysis of design bugs concluded that the signal

monitoring requirements of online design bug detection aresignificantly higher than the

estimates of previous studies. We believe that this discrepancy stems from the attempt in

previous studies to infer low-level hardware implementation information from the high-

level, abstract information provided in the microprocessor errata documents.

Based on the insights obtained from our rigorous design bug analysis, we proposed

a novel distributed online bug detection mechanism based onthe ACE framework. The

proposed mechanism is able to flexibly monitorall control signals. This approach enables

flexibility in bug detection because, unlike previous proposals, it does not rely on the suc-

cessful selection of relevant signals at design time. Instead, any signal that can participate

in the exercising of a bug can be monitored as needed.

In this chapter, we also described how the ACE framework can be extended to improve

the quality and reduce the cost of two critical phases of microprocessor development: post-

silicon debugging and manufacturing testing. Our descriptions showed that the flexibility

provided by the ACE framework can significantly ease and accelerate the post-silicon

debugging process by making the microarchitecture state easily accessible and controllable

by the post-silicon debug engineers. Similarly, the flexibility of the ACE framework can

eliminate the need for expensive automatic test equipment or costly yet lower-coverage

hardware changes (e.g., logic BIST) needed for manufacturing testing.

Finally, we evaluated the cost of the extended ACE frameworkon a detailed RTL pro-

totype implementation and we found that the total silicon area overhead incurred is 15%

of the whole OpenSPARC T1 chip, while the power consumption overhead is only 6.8%.

Based on these numbers, it was demonstrated that the ACE framework is a general frame-

work that can be used for multiple purposes to enhance the reliability and to reduce the

design/testing cost of modern microprocessors and that it can provide additional value for

its cost, something that would make its possible adoption infuture generation micropro-

cessors easier.
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CHAPTER VI

FPGA-Based Accelerated Hardware Resiliency Analysis -
The CrashTest Framework

A critical early stage in the development of a defect-tolerant microarchitecture is the

assessment of the threats and the reliability requirementsof the microprocessor design.

During this process, system engineers employ hardware resiliency analysis tools to gauge

the robustness of the microprocessor design and check if it meets the specified reliability

targets. Hardware resiliency analysis tools are also useful to researchers for evaluating the

effectiveness of existing and newly proposed microprocessor defect-tolerance techniques.

The common approach followed by hardware resiliency analysis tools is to first inject

faults in the microprocessor design and then analyze their impact on its behavior. After

the fault injection and analysis process, the microprocessor design can be characterized

for its reliability standards.

Today, simulation-based hardware resiliency analysis tools are limited by the use of

high-level models of microarchitectural components that renders them incapable of faith-

fully modeling the silicon failure mechanisms. Furthermore, in order for current simulation-

based resiliency analysis tools to gain statistical confidence over the generated results, the

fault injection and analysis experiments need to be repeated several times in a Monte

Carlo-like simulation environment that results in very long runtimes.

In order for hardware resiliency analysis tools to accurately gauge detailed circuit-level

reliability phenomena and faithfully model silicon failure mechanisms, they need to use

a detailed circuit-level model of the microprocessor. Design models that are capable of

providing such a detailed circuit-level representation ofthe microprocessor are register-

transfer level (RTL) models synthesized to gate-level netlists. However, the simulation of

synthesized gate-level netlists in software is extremely slow, thus exacerbating the already

long simulation runtimes.
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This chapter presents CrashTest, a novel hardware resiliency analysis framework that

addresses the challenges discussed above. Specifically, CrashTest automatically orches-

trates a fault injection campaign and performs a detailed fault monitoring and analysis on

the synthesized gate-level netlist of the design. Furthermore, the CrashTest framework is

capable of accurately assessing the impact of run-time injected faults on the operation of

large complex systems. In particular, in the CrsahTest framework the faults are injected

into the design using novel gate-level logic transformations that instrument the design’s

netlist with fault emulation logic. The CrashTest framework is also augmented with a rich

collection of fault models that encompass all variants of faults designers would expect to

encounter at run time, ranging from soft faults to permanentsilicon defects. The different

fault models are defined by logic netlist transformations that can be easily modified and

adapted by the user to model new failure mechanisms. Anothernovel characteristic of the

CrashTest framework is that it employs FPGA-based accelerated hardware emulation to

enable the analysis of complex full-system designs that canboot an operating system and

run applications.

The remaining of this chapter is organized as follows: Section 6.1 discusses the chal-

lenges of accurate microprocessor resiliency analysis. Next, Section 6.2 gives a high-level

overview of the CrashTest framework, while Sections 6.3 and6.4 explain in detail the

gate-level fault injection methodology and the FPGA-basedfault emulation techniques

used by the CrashTest framework. Section 6.5 evaluates the performance of CrashTest

and presents experimental results that demonstrate its application and effectiveness, while

Section 6.6 briefly describes related previous work. Finally, the work presented in this

chapter is summarized in Section 6.7.

6.1 The Challenges of Hardware Resiliency Analysis

The process of accurately assessing the robustness of a hardware design or evaluating

the effectiveness of a fault-tolerant technique, places some challenging set of requirements

on the hardware resiliency analysis infrastructure.

• Low-level Fault Analysis: High fidelity is a very important aspect of a hardware

resiliency analysis framework. Using high-level models ofmicroarchitectural com-

ponents with limited knowledge of the underlying circuit isinadequate to perform

high-fidelity resiliency analysis. In order to correctly model the introduction, prop-

agation, and possible masking of the faults, the hardware resiliency analysis frame-

work must accurately gauge circuit-level phenomena using adetailed low-level model

of the design under analysis (e.g., gate-level netlist).
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• Flexible Fault Modeling: Due to the existence of multiple silicon reliability threats,

the resiliency analysis framework needs to support an extensive collection of low-

level fault models to cover silicon failure mechanisms thatrange from transient

faults, to manufacturing faults, process variation induced faults, and silicon wear-out

related faults. Moreover, fault modeling is an open area of research with continuous

advancements [23, 40]. Often, new fault models are devised targeting emerging sili-

con failure modes or more accurately modeling existing failure mechanisms. There-

fore, it is crucial that the fault model collection of a hardware resiliency analysis

framework can be easily upgraded with new fault models.

• Fast Design Simulation: The simulation of the design must deliver sufficient per-

formance to enable the analysis of complex systems, including booting an operating

system and running applications. This will enable users to assess the impact of

faults at the full system and application level and still have a quick turnaround for

the evaluation.

• Flexible Simulation Interface: It is critical for the usability of the hardware re-

siliency analysis framework to provide an intuitive way to analyze a wide range of

hardware designs and fault-tolerant techniques. To this end, the resiliency analy-

sis framework demands a flexible interface and proper stubs to accommodate the

evaluation of different systems.

Given the challenging set of requirements for hardware resiliency analysis, the CrashT-

est framework is focused toward the use of fault injection campaigns performed at the

gate-level model, accelerated by FPGA-based hardware emulation in order to achieve both

accuracy and performance.

6.2 Overview of the CrashTest Framework

The goal of the CrashTest hardware resiliency analysis framework is to provide a fast,

high-fidelity, and comprehensive analysis of the effects ofseveral different fault models on

the applications running on the design under analysis (thiscould be either an unprotected

design or a fault-tolerant design). Given the specificationof the design under analysis

in a hardware description language (HDL), CrashTest automatically orchestrates a fault

injection/analysis campaign. This process is composed of two stages: (i) the front-end

translation that generates the fault-injection ready gate-level netlist of the design under

analysis, and (ii) the back-end fault simulation and analysis that performs the actual fault
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Figure 6.1: Overview of the CrashTest Hardware Resiliency Analysis Framework:
The framework is composed of (i) the front-end stage generating the fault injection-ready
gate-level netlist and (ii) the back-end stage performing fault injection and analysis and
generating the final resiliency analysis report.

injection and fault monitoring and evaluates the effects ofthe injected faults. The overview

of this process is illustrated in Figure 6.1.

Framework Front-End : First, the HDL model of the design under analysis is pro-

vided by the user (either in Verilog or VHDL). Subsequently,the HDL model of the design

is synthesized by the front-end stage of the framework usinga technology-independent

standard cells library to get atechnology-independent gate-level netlistof the design.

For each standard cell in the library (i.e., a combinational gate or a sequential element),

CrashTest is enhanced with agate-level logic transformationthat can modify the netlist

and insert extra fault injection logic. This extra logic canbe activated at runtime to emu-

late the effects of a fault injected into the cell. We developed a wide range of fault models

and gate-level logic transformations to provide the capability of emulating different failure

mechanisms. The collection of all logic transformations isstored in the framework’sfault

library. Based on theinjection parametersselected by the user (i.e., the fault models and

the injection locations), the framework automatically generates thefault injection-ready

netlist of the design using the logic transformations in the library. This netlist is then

delivered to the fault analysis simulator at the back-end stage.

Framework Back-End: At the framework back end, the fault injection-ready netlist

is re-synthesized and mapped on an FPGA. At this point the fault injection and analysis

campaign is ready to begin. Based on thefault simulation parametersgiven by the user, the

fault injection/analysis emulator injects faults at different sites in the netlist and monitors

their propagation and impact on the design and the running applications. During fault

emulation, the design under analysis is exercised with theapplication stimuli. To gain

statistical confidence on the provided results, the experiments are repeated in a Monte

Carlo simulation model by altering the fault sites and/or the application stimuli. After
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running a sufficient number of experiments to gain statistical confidence, the results are

aggregated into theresiliency analysis reportwhich is the final deliverable of the CrashTest

framework.

In the following sections, we describe each step and each process of the CrashTest

framework in more detail.

6.3 Gate-Level Fault Injection Methodology

Technology Independent Logic Synthesis -The first step in the front-end stage of the

CrashTest framework is to convert the user-provided high-level HDL model of the design

under analysis into a common format that the framework can analyze and get an accurate

list of candidate circuit locations to perform gate-level fault injection. This is achieved

by performing logic synthesis with Synopsys Design Compiler targeting a technology-

independent standard cell library (GTECH). The resulting gate-level netlist is composed

of simple logic gates (e.g., AND, OR, NOT, Flip-Flops,etc.) and it is free from any

fabrication technology related characteristics and properties. This gate-level netlist is sub-

sequently parsed to generate a list of all possible fault injection locations in the circuit (i.e.,

a list of all logic gates and flip-flops in the design). This list is used by the user to specify

the fault injection locations. Alternatively, if randomized fault injection is desired, random

selection of fault sites can be performed by the framework.

Netlist Fault Injection Instrumentation - Once fault locations are selected, the gate-

level netlist is instrumented with extra fault injection logic that, when enabled, emulates

the effects of the injected faults. Each fault model supported by the framework is associ-

ated with a gate-level logic transformation that modifies the netlist and instruments it with

the extra fault injection logic. The collection of gate-level logic transformations composes

the framework’s fault library. This modular design makes itfairly easy to upgrade the

framework with new fault models by simply implementing and adding new netlist logic

transformations into the fault library.

Fault Models - The CrashTest hardware resiliency analysis framework is already en-

hanced with a collection of fault models and their corresponding netlist logic transforma-

tions. This fault model collection covers an extensive spectrum of silicon failure mecha-

nisms ranging from transient faults due to cosmic rays to permanent faults due to silicon

wearout:

• Stuck-at: The stuck-at fault model is the industry standard model for circuit testing.

It assumes that a circuit defect behaves as a node stuck at logical 0 or 1. The stuck-at
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fault model is most commonly used to mimic permanent manufacturing or wearout-

related silicon defects.

• Stuck-open: The stuck-open fault model assumes that a single physical line in the

circuit is broken. The unconnected node is not tied to eitherVcc or Gnd and its

behavior is rather unpredictable (logical 0 or 1 or high impedance). The stuck-open

fault model is commonly used to mimic permanent defects thatare not covered by

the stuck-at fault model.

• Bridge: The bridge fault model assumes that two nodes of a circuit areshorted

together. The behavior of the two shorted nodes depends on the values and the

strength of their driving nodes. The bridge fault model covers a large percentage of

permanent manufacturing or wearout-related defects.

• Path-delay: The path-delay fault model assumes that the logic function of the cir-

cuit is correct, however, the total delay in a path from its inputs to outputs exceeds the

predefined threshold and it causes incorrect behavior. The path-delay fault model is

most commonly used to mimic the effects of process variationor device degradation

due to age-related wearout.

• Single Event Upset: The single event upset (SEU) fault model assumes that the

value of a node in the circuit if flipped for one cycle. After this one cycle upset, the

node behaves as expected. The SEU fault model is used to mimictransient faults

that are most commonly used by cosmic radiation or alpha particles.

Gate-Level Logic Transformations - Some fault models require trivial gate-level

logic transformations. For example, the instrumentation needed to emulate a stuck-at fault

is just a multiplexer that controls the output of the faulty gate and has one of its inputs

connected to logic zero/one. However, there are fault models that are more complex and

affect the design at the transistor level. For example, the bridge fault model assumes that

two nodes in the design are shorted together. To emulate the effect of a bridge fault model

with high fidelity, we simulated the faulty gates at the CMOS transistor level and generated

the correspondingfault symptom tables. To illustrate this process, Figure 6.2(a) shows the

CMOS transistor level representation of a NAND2 logic gate,while Figure 6.2(b) shows

the respective fault symptom table of the bridge fault model.

By observing the fault symptom table we notice that for some inputs the effects of the

fault are masked, thus the faulty gate behaves exactly like afault-free gate. However, for

other input combinations the fault’s effects propagate to the gate’s output and result into
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NAND2 gate

A 0 1 0 1

B 0 0 1 1

Fault-Free 1 1 1 0

Bridge-A-B 1 X X 0

Bridge-A-C X 1 X X

Bridge-A-n1 1 1 1 X

Bridge-B-n1 1 X 1 X
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Fault Symptom Table Instrumentation logic for Bridge-A-B

(a) (b) (c)

A B

B

A

C

n1

Gnd

Vdd
A
B C

Random ValueA
B
A
B Fault 

Inject

0

1

Figure 6.2: Logic Transformations - Bridge Fault: The CMOS transistor-level design
of a gate in (a) is used to generate the gate’s fault symptom table for the bridge fault model
that is shown in (b). Part (c) shows the instrumentation logic for emulating the effects of
the Bridge-A-B fault.
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Figure 6.3: Fault Injection Scan Chain: The netlist is instrumented with fault injection
logic for multiple faults. The scan chain controls the enabling of the injected faults during
emulation.

an unstable output signal that could be either a logic zero orone (Random Value in Fig-

ure 6.2(c)). The framework’s fault library is populated with a fault symptom table for each

combination of a standard cell library gate and a supported fault model. Given the gate

type and the fault model, the netlist instrumentation routine accesses the fault library and

applies the respective logic transformation that would insert the necessary instrumentation

logic to emulate the fault effects. Figure 6.2(c) shows the instrumentation logic needed

to emulate the effects of a bridge fault between the circuit nodes A and B of the NAND2

gate.

Fault Injection Scan Chain - To avoid re-instrumenting the netlist each time a new

fault is injected and simulated, the netlist can be instrumented for multiple faults at mul-

tiple locations. This accelerates the fault emulation at the back-end of the framework, but
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it also increases the instrumented circuit size. The insertion of each fault into the netlist

also adds an extra control signal used for enabling and disabling the inserted fault at run-

time (for instance, signalFault Inject andRandom Valuein 6.2(c)). During emulation,

these signals are accessible by theFault Injection Manager(see Section 6.4) through a

fault injection scan chain. This scan chain is automatically inserted during the netlist in-

strumentation phase and it greatly simplifies the interfacebetween the injection interface

and the emulated faulty design. The number of faults that canbe instrumented using this

method is arbitrary and it is limited only by the size of the target FPGA device. The design

of the fault injection scan chain is illustrated in Figure 6.3.

The Path-Delay Fault Model -The gate-level logic transformations employed for the

rest of the supported fault models are similar to the one presented at Figure 6.2(c) for

the bridge fault. One exception is the path-delay fault model which has slightly different

characteristics. Path-delay faults are characterized by slower combinational logic gates

that cause longer path delays than the ones expected at design time. Whenever these

slower gates get exercised, they can increase the path delaybeyond the critical path delay

and cause timing violations (i.e., the flip-flops at the end of the path miss to latch the newly

computed value). In our framework, the effects of the path-delay fault model are emulated

by the gate-level logic transformation shown at Figure 6.4.To find out the set of flip-flops

that are affected by the slowerfaulty gate, we trace forward the combinational logic and
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Figure 6.5: FPGA-Based Fault Injection and Simulation: The FPGA-mapped netlist
is wrapped by a standard interface providing a seamless connection to the fault injection
manager that is running on an on-chip processor core. All experiment data and results are
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find all those flip-flops that have a path that includes the faulty gate. From that set of

flip-flops we choose only those that have a path delay with a timing slack smaller than a

predefined threshold specified by the user (i.e., the expected delay due to the faulty gate).

6.4 FPGA-Based Fault Emulation

CrashTest employs an FPGA platform to emulate the fault injected hardware and accel-

erate the fault simulation and analysis process. The first step in this process it to synthesize

and map the fault injection-ready netlist to the target FPGA. To provide a standard simu-

lation interface that is independent of the design under analysis, we add an automatically

generatedinterface wrapperto the fault injected-ready netlist. This interface wrapper pro-

vides a seamless connection with thefault injection manager, which is an automatically

generated software program responsible for orchestratingthe fault injection and analysis

process. The interface wrapper and the fault injection manager are connected through an

on-chip interconnect bus. Figure 6.5 shows the major components and the data-flow of the

fault injection, simulation and analysis process.

Fault Injection Manager - During the emulation and analysis process, the FPGA-

mapped design is exercised and controlled by the fault injection manager. In our experi-

ments we used a Xilinx Virtex-II Pro FPGA, which has two on-chip PowerPC processors,

with the fault injection manager software running on one of them. Alternatively, the fault

injection manager can also run on a soft-core (e.g., Microblaze). Specifically, the fault

injection manager is responsible for the following tasks:

• Feed the instrumented injection scan chain with all the control signals required to

perform the fault injection campaign. This is done through aFIFO queue updated
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whenever a new fault is injected into the design. The fault injection parameters (i.e.,

fault location and time) are stored on an off-chip memory accessible by the fault

injection manager.

• Stimulate the FPGA-mapped design through the input registers. The applications

stimulus is either provided by the user or automatically generated, and it is stored in

the off-chip memory.

• Monitor the output of the FPGA-mapped design for errors through the output regis-

ters. The output is compared to a golden output that is collected through a fault-free

version of the same design and it is stored in the off-chip memory.

• Maintain fault analysis statistics and store the results tothe off-chip memory for

later processing.

• Synchronize the FPGA-mapped design with the fault injection and analysis process

through the interrupt counter.

6.5 Framework Evaluation

In this section, we evaluate our FPGA-based resiliency analysis infrastructure and

compare its performance to an equivalent software-based implementation. In addition,

we perform an initial study by using the CrashTest infrastructure to examine the effects of

design resiliency as the underlying fault models are changed.

6.5.1 Experimental Methodology

Benchmark Designs -For the evaluation of CrashTest we used three benchmark de-

signs. These benchmark designs and their characteristics are shown at Table 6.1. The

chip-multiprocessor (CMP) interconnect router implements a wormhole router pipelined

at the flit level with credit-based flow control functionality for a two-dimensional torus

network topology [100]. We used SPEC CPU2000 communicationtraces derived from

the TRIPS architecture [108] to provide application stimuli to the router. The DLX core

is a 32-bit 5-stage in-order single-issue pipeline runningthe MIPS-Lite ISA. Finally, the

LEON3 is a system-on-chip including a 32-bit 7-stage pipelined processor running the

SPARC V8 architecture, an on-chip interconnect, basic peripherals and a memory con-

troller [37] able of booting an unmodified version of Linux 2.6. The LEON processor was

configured without on-chip caches and faults were injected only in the core component.
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Benchmark 
Name 

Logic Gates 
(GTECH) 

Flip 
Flops 

Description 

CMP Router 16,544 1,705 
chip-multiprocessor interconnect router for a 
2D mesh network with 32-bit flits 

DLX Core 15,015 2,030 
5-stage in-order DLX pipeline running  
MIPS-Lite ISA  

LEON3 
System- 
on-chip 

66,312 6,925 

System-on-chip with a 7-stage pipeline 32-bit 
processor compliant with the SPARC V8 
architecture, an on-chip interconnect, basic 
peripherals and a memory controller. 

 

Table 6.1: Benchmark Designs: Characteristics of the benchmark designs used to
evaluate the CrashTest framework.

Netlist Fault-Injection Instrumentation - The HDL model of the design under anal-

ysis is synthesized using the Synopsys Design Compiler and the GTECH standard cell

library. The resulting netlist is a technology-independent GTECH gate-level netlist. The

gate-level netlist is subsequently parsed by Perl scripts to locate all the possible injection

sites in the circuit. Once the sites and fault types are selected (using a uniform random dis-

tribution for these experiments), a Perl script implementsgate-level logic transformations

to instrument the netlist with the necessary fault injection logic.

Software-Based Analysis Methodology -The software-based fault simulation and

analysis is performed using the Synopsys VCS logic simulator for the CMP router and the

DLX core. For the simulation of the LEON3 system-on-chip we used ModelSim since it

required the simulation of both Verilog and VHDL modules. The fault simulations using

VCS were run on an Intel Core 2 Duo running at 2.13GHz with a 2MBL2 cache and 2GB

of RAM, while the ModelSim simulations were run on a P4 at 3.4GHz and 2GB RAM.

FPGA-Based Analysis Methodology -For the FPGA-based fault emulation and anal-

ysis we used the XUP V2P Development Board [148]. The board isequipped with a

Virtex-2 Pro XC2VP30 FPGA with 13,696 slices (each with two 4-input LUTs and two

flip-flops), and two PowerPC 405 processors. At the time of writing, this FPGA repre-

sented a mid-sized device; devices with up to 10X as many resources are currently avail-

able. For off-chip memory we used one 256MB module of DRAM. The main tools used

to develop the CrashTest framework are the Xilinx Platform Studio (XPS) version 9.1i in

combination with Xilinx Integrated Software Environment 9.1i (ISE). We also used Syn-

plicity’s Synplify 9.0.1 for the FPGA-based synthesis. TheFPGA synthesis and mapping

process was ran on a P4 CPU at 3.0Ghz and 1GB RAM. The synthesisand mapping pro-

cess for the LEON3 system took about 45 minutes, while the other two benchmark designs

required significantly less time.
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Confidence Level = 95% Confidence Interval 
Number of Fault 

Injections (Sample Size) 
CMP Router 
(18249 gates) 

DLX Core 
(17045 gates) 

LEON3 
(73237 gates) 

256 ±6.08 ±6.08 ±6.11 
512 ±4.27 ±4.27 ±4.32 
1024 ±2.98 ±2.96 ±3.04 
2048 ±2.04 ±2.03 ±2.14 
4096 ±1.35 ±1.33 ±1.49 
8192 ±0.8 ±0.78 ±1.02 

 

Table 6.2: Statistical Confidence: The Table shows the confidence level of the results
obtained when different number of faults are injected during the injection campaigns for
our benchmark designs.

6.5.2 Monte Carlo Simulation & Statistical Confidence

Performing gate-level fault injection campaigns in complex designs and observing

their impact at the application level is a fairly computationally intensive process. The

propagation of fault effects from the gate level to the application level requires a signif-

icant amount of gate-level simulation of the design under analysis. A common practice

used to reduce the number of fault injections and make the resiliency analysis process

more computationally tractable is the use of Monte Carlo simulation methods. Through

Monte Carlo simulation, fault injection experiments are repeated by randomly changing

the fault injection location and time (i.e., the clock cycle that the fault will be enabled).

The number of times that the Monte Carlo experiments are repeated depends on the desired

statistical confidence that will characterize the obtainedresults.

Table 6.2 shows the confidence intervals for different numbers of fault injection exper-

iments for the three benchmark designs. These figures were calculated using the statistical

sample size formulas from [10]. For most applications, a confidence level of 95% and

a confidence interval of 3% are acceptable. From Table 6.2 we notice that this degree

of statistical confidence can be achieved by 1024 fault injections for all three benchmark

designs.

6.5.3 Framework Performance

Fault Injection Logic Overhead - Table 6.3 shows the allocated FPGA resources

when the baseline (fault-free) benchmark designs were synthesized and mapped on the

FPGA. When the designs are augmented with the fault simulation interface wrapper the

utilization of the FPGA slices is increased from 15% to 31%. As shown in the fourth

and fifth columns of Table 6.3, not all of the flip-flops and LUTsin each utilized slice
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Bench. 
Design 

Injected 
Faults 

Slices 
(out of 13696) 

Slice Flip 
Flops 

(out of 27392) 

4 Input LUTs 
(out of 27392) 

CMP 
Router 

0 (baseline) 2968 (21%) 3021 (11%) 3705 (13%) 
0 (wrapper)  6679 (48%) 4731 (17%) 10840 (39%) 

8 6718 (49%) 4745 (17%) 10781 (39%) 
64 6912 (50%) 4857 (17%) 11192 (40%) 

128 7161 (52%) 4985 (18%) 11408 (41%) 
256 7279 (53%) 5241 (19%) 11425 (41%) 
512 7854 (57%) 5753 (21%) 12020 (43%) 

1024 8903 (65%) 6778 (24%) 13059 (47%) 

DLX  
Core 

0 (baseline) 2499 (18%) 2520 (9%) 2386 (8%) 
0 (wrapper) 6820 (49%) 8202 (29%) 4573 (16%) 

1024 9593 (70%) 6700 (24%) 9948 (36%) 
LEON3 
System-
on-chip 

0 (baseline) 10281 (75%) 10178 (37%) 20562 (75%) 
0 (wrapper) 11057 (80%) 11103 (40%) 22113 (80%) 

1024 11785 (86%) 13146 (47%) 23570 (86%) 
 

Table 6.3: Fault Injection Logic Overhead: Utilization of the FPGA resources compar-
ing the baseline (fault-free) designs and the fault injection instrumented designs mapped
on the FPGA.

are used. The table also shows the overhead of the instrumentation logic for designs in-

jected with different numbers of stuck-at faults. The capability of injecting several faults

into the design is very important since it significantly accelerates the fault simulation pro-

cess by avoiding time-consuming iterations of netlist instrumentation and FPGA synthe-

sis/mapping.

Fault Simulation/Analysis Speed -Table 6.4 compares the speed of the software-

based and the FPGA-based fault emulation and analysis engines. For the CMP router

design we noticed that the speed of the software-based scheme varied for different fault

models. This difference stems from the different logic complexity required to emulate the

behavior of each fault model. On average, for the CMP router the software-based scheme

provides a simulation speed that is in the order of 10 KHz. We have observed similar

results for the DLX core design (not shown in the table for brevity). On the other hand, the

speed of the FPGA-based scheme is not affected by the fault injection logic. Therefore, all

fault models are emulated with the same clock frequency and achieve the same emulation

speed. For the CMP router, the speed of the emulation framework is 220 KHz, leading to

an average speed up of≈20X for simple fault models and≈85X for the more complex

fault models.

The simulation speed achieved by the software-based schemewhen analyzing the

LEON3 system-on-chip is much lower than the one observed forthe other two simpler

designs (i.e., the CMP router and the DLX core). Specifically, the simulation speed is
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Bench. 
Design 

Fault 
Model 

Software-Based Fault 
Simulation Speed 

FPGA-Based Fault 
Simulation Speed 

Speed Up 

CMP 
Router 

Stuck-at-0 9.75 KHz 

220 KHz 

22X 
Stuck-at-1 8.09 KHz 27X 
Stuck-open 2.42 KHz 90X 
Bridge 2.63KHz 83X 
Path-delay 11.34 KHz 19X 
SEU 13.04 KHz 16X 

LEON3 
System-
on-chip 

Stuck-at-0 28 Hz 25 Mhz ~900 000X 

 

Table 6.4: Fault Simulation Speed: Performance comparison of the software- and
FPGA-based fault simulation engines.

limited to 28 Hz, due to the much higher complexity of the full-system LEON3 design. In

contrast, the emulation speed of the LEON3 system on the FPGA-based scheme is faster

than the other two simpler designs. This is due to how the application stimulus is ap-

plied to different designs by the fault injection manager. Since the LEON3 full-system

design includes a memory controller, the interaction with the external environment is lim-

ited to memory read/write requests, which are serviced by the off-chip DRAM module.

Therefore in the LEON3 analysis there is very little interaction between the fault injection

manager and the design under analysis in feeding the application stimulus. On the other

hand, when emulating the other two designs, the fault injection manager must provide

input stimuli cycle-by-cycle in order to drive the emulation, thus limiting the overall per-

formance. The emulation speed of the LEON3 design on the FPGA-based scheme is 25

MHz, which leads to a six orders of magnitude speedup compared to the corresponding

simulation speed achieved by the software-based scheme.

6.5.4 Experimental Results

Fault Effects per Fault Model - The graph in Figure 6.6 shows the percentage of

injected faults that caused a failure, grouped by fault model. The fault injection experi-

ments were run on the CMP router stimulated with communication traces of several SPEC

CPU2000 benchmarks and a synthetic high-traffic communication trace (hi util). We ob-

serve that the effects of the injected faults on the design vary for different fault mod-

els. Specifically, fault models of permanent silicon failures (i.e., stuck-at, stuck-open, and

bridge) have more adverse effects on the design, and 70-80% of them cause an error that is

observable at the primary outputs of the design during the emulation. On the other hand,

the path delay fault model has less adverse effects, and on average only 40% of these faults
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Figure 6.6: Design Resiliency vs. Underlying Fault Model: Percentage of injected
faults that were exposed for each fault model. Experiments are run on the CMP router
using SPEC2000 traces.

manifest an error. Finally, the SEU faults have the least impact on the correct functionality

of the design and on average less than 10% of them cause an error.

Failure Observation Latency - The graph in Figure 6.7 shows the average latency of

an injected fault to propagate an error to the primary outputs of the design. The results

shown are for different fault models for the CMP router and the LEON3 system-on-chip.

The failure observation latency is a very important metric when assessing the resiliency

of a design because it provides insight on whether specific error detection and recovery

techniques can provide a detection and recovery window thatwould allow a successful

recovery from the fault’s effects. We notice that the failure observation latency varies de-

pending on the fault model. Specifically, we observe that forthe CMP router the injected

path-delay faults have the highest failure manifestation latency, while fault models associ-

ated with permanent failure mechanisms usually have similar failure manifestation laten-

cies. Furthermore, we notice that the error manifestation latency for SEU faults is very

small. When this observation is combined with the results ofthe previous experiment, we

conclude that SEU transient faults either cause an error in the design immediately after

they occur, or they do not cause an error at all, as would be expected due to their transient

nature.

We also notice that the measured failure observation latencies for the LEON3 system-

on-chip are orders of magnitude larger than the ones observed for the CMP router. This

difference stems from the higher complexity of the LEON3 system-on-chip which leads

to more cycles required for a fault to propagate to the design’s output (the output of the

running application). To give more insights regarding the failure observation latency of

the faults injected in the LEON3 system, the graph of Figure 6.8 shows the cumulative
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Figure 6.7: Failure Detection Latency: Failure observation latency at the design’s
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Figure 6.8: Application-Level Detection Latency: Latency (in cycles) for a stuck-at
fault to propagate to the application results in the LEON3 SoC.

distribution of the injected faults over the failure observation latency in clock cycles. An

interesting observation is that more than half of the injected faults propagate a failure to the

application output almost immediately, but the remaining ones require billions of cycles

for the failure to manifest. This observation supports the argument that if a fault hits a

critical part of the design, then its effect are immediate. On the other hand, if it hits a less

critical/exercised part of the design, then its effects aredelayed by long latencies.
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6.6 Related Work

Fault Simulation vs. Resiliency Analysis:Fault simulators are software tools that

can determine the set of faults that can be exposed by a given test vector. They are mainly

used for ATPG (Automatic Test Pattern Generation) with the objective of measuring the

fault coverage of a given set of test vectors [23]. On the other hand, resiliency analysis

tools employ fault injection campaigns on a design executing typical workloads to mea-

sure the impact that the injected faults have on the design’soperation and on the running

applications. Although both methodologies use fault models to simulate the effects of

faults on the circuit under test, their goals and requirements are fundamentally different.

For example, fault simulators need to simulate the design under test only for a limited

number of clock cycles to grade the test vectors. Furthermore, in order to measure the fault

coverage of the test vectors, fault simulators need to activate a fault in every single node in

the design. In contrast, resiliency analysis tools need to simulate the design under analysis

for a significant amount of clock cycles in order to observe the fault effects at the appli-

cation level. Moreover, resiliency analysis tools usuallyemploy Monte Carlo simulation

methodologies and inject only the number of faults requiredto provide adequate statisti-

cal confidence for the results obtained. Due to these key different characteristics of the

two methodologies, ATPG fault simulators cannot be efficiently used as a fault injection

substrate to perform design resiliency analysis.

Several works in the literature have proposed resiliency analysis frameworks that are

based on fault injection campaigns. These works can be partitioned into software-based

and hardware-based resiliency analysis, based on the methodology used to perform the

fault simulation and analysis [84].

Software-Based Resiliency Analysis:Often, software-based fault injection is pre-

ferred to hardware-based solutions due to its low cost, faster and less complex develop-

ment cycle, flexibility of customization, or simply becauseno low-level hardware model

of the design is available. There are several software-based resiliency analysis frameworks

presented in the literature [62, 107, 142]. Although they have many advantages, the ma-

jor limitation of software-based fault injection is that itis too slow to perform low-level

(e.g., gate-level) fault simulation and analysis on complex designs or full systems running

software applications. One way to address this issue is by using high-level models of a

design (i.e., microarchitectural models), but this higher level of abstraction and the lack of

circuit-level information jeopardizes the fidelity of the resiliency analysis results. Another

workaround is to limit the complexity of the design under analysis down to blocks of a

few thousands gates, but this greatly limits the usability of the approach.
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Hardware-Based Resiliency Analysis:The performance limitation of the software-

based fault injection approach can be addressed by employing hardware-based fault in-

jection. Hardware-based resiliency analysis frameworks usually employ FPGAs (Field

Programmable Gate Arrays) that are capable of emulating thefault injected design orders

of magnitude faster than software-based approaches, therefore significantly speeding up

the fault simulation and analysis process. Although the useof FPGA emulation platforms

addresses the limited performance of the software frameworks, it introduces some other

major challenges. Specifically, by employing FPGA platforms to emulate the fault in-

jected design, the automation of the fault injection and analysis process becomes more

challenging. Furthermore, FPGA-based resiliency analysis frameworks are characterized

by the difficulty of mapping complex fault models into hardware which greatly limits

the range of supported fault models. Hence, the previously proposed hardware-based re-

siliency analysis frameworks were limited to simple transient and stuck-at faults [27, 76].

6.7 Chapter Summary

This chapter presented CrashTest, a novel FGPA-based resiliency analysis framework

capable of automatically orchestrating a fault injection and analysis campaign on the gate-

level netlist of the design. To accelerate the fault injection process, multiple faults are

injected into the design simultaneously by instrumenting the netlist with fault injection

logic through gate-level logic transformations. The CrashTest framework supports an ex-

tended collection of fault models ranging from transient faults to silicon defects, and it

can easily be upgraded with new fault models. In addition, the CrashTest framework

employs FPGA-based accelerated hardware emulation to enable the analysis of complex

full-system designs that can boot an operating system and run applications.

The CrashTest hardware resiliency analysis framework was evaluated on a commercial

FPGA-based platform and we found that the use of hardware emulation, when compared

to an equivalent software-based hardware resiliency analysis simulator, it can accelerate

the fault simulation and analysis process by 16-90x for simple designs and six orders of

magnitude for a more complex system-on-chip design.
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CHAPTER VII

Conclusions and Future Work

Silicon process technology scaling has been one of the majordriving forces in the

impressive growth of the semiconductor industry for several decades. The continuous

silicon process technology scaling over these decades offered smaller, faster, and cheaper

transistors to the microprocessor manufacturers that enabled the development of more

powerful and cheaper microprocessors. The concurrent development of more capable and

cheaper microprocessors with that of more advanced and easier to use software, flooded

our society with microprocessor-based electronic products with applications that touch

every aspect of our life.

However, as silicon process technology scales into extremely small transistor sizes,

with dimensions that measure in just few atoms, new challenges have developed in main-

taining transistor reliability and offering a reliable fabrication substrate that will guarantee

durable microprocessor designs. As argued in Chapter I, many technology experts today

warn that we are reaching the limits of what traditional silicon scaling can achieve and

that we are entering an era where any further silicon processtechnology scaling will have

major effects on transistor reliability. This has a strong implication on the design of future

generation microprocessors: indeed, the durability and widespread use of microprocessors

relies on highly reliable silicon processes exhibiting very low failure rates. However, as

the reliability wanes, new design paradigms will need to be developed and adopted that

allow to fabricate reliable systems out of unreliable devices. This will entail adopting new

design techniques to tolerate silicon defects that might occur during the lifetime of the

microprocessor design and still present high reliability standards to the end user.

As discussed in Chapter II, although today high-end computing systems for criti-

cal applications demanding high reliability standards arealready augmented with defect-

tolerance techniques, these techniques incur high overheads and account for a significant

fraction of the microprocessor’s area and power consumption budgets. To this extent, this

thesis makes the case that novel and clever defect-tolerance techniques can offer to future
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generation microprocessor designs the same reliability guarantees at a much lower cost, so

to enable the adoption of reliability solutions in mainstream, cost-sensitive microprocessor

designs.

7.1 Thesis Summary

This thesis developed low-cost defect-tolerance solutions that can provide to micropro-

cessor designs the same reliability guarantees as those of costly traditional defect-tolerance

techniques that today are deployed only in high-end systems. To make this possible, this

thesis suggested a paradigm shift in the way the defect tolerance is provided to micropro-

cessor designs. Specifically, traditional defect-tolerance techniques saddle the micropro-

cessor design with extra hardware components that continuously monitor the execution

for errors through redundant computation. These redundanthardware resources lead to

extremely high area and power overhead that in some cases, such as triple modular redun-

dancy, can reach up to 200%. Consequently, this is not an affordable approach to provide

defect tolerance to mainstream cost-sensitive microprocessor designs. To this end, this the-

sis suggests that the same degree of defect tolerance can be provided at a much lower cost

by periodically checking the integrity of the underlying hardware rather than continuously

monitoring the execution for errors.

To demonstrate the feasibility and effectiveness of the periodic hardware checking

defect-tolerance paradigm, this thesis proposed the BulletProof approach. The Bullet-

Proof approach augments the processor with a microarchitectural checkpointing and re-

covery mechanism that provides a substrate for speculativecomputation epochs. After

each speculative computation epoch, distributed component-specific on-chip checkers run

BIST-like tests to verify the integrity of the underlying hardware components. Addition-

ally, a double-sampling flip-flop design is used to detect transient fault logic glitches that

can corrupt the pipeline state. If, at the end of an epoch, thehardware is fault-free, the

epoch computation is allowed to retire to non-speculative state. In the event that a fault

is exposed, the program state is rolled back to the last knowngood program state at the

beginning of the last epoch.

To evaluate the effectiveness of the BulletProof approach,we developed a physical-

level prototype of a 4-wide VLIW processor augmented with on-chip component-specific

hardware checkers. Based on the prototype implementation,we found that the BulletProof

technique can provide about 95% defect coverage to the design, for an area overhead of

14%, and a runtime performance overhead of less than 1%. Although the runtime per-

formance overhead of BulletProof is negligible, and its area overhead is extremely low
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compared to that of traditional defect-tolerance techniques, the area overhead is still high

for its adoption in cost-sensitive designs. Furthermore, the defect coverage is lower than

the almost 100% coverage provided by traditional defect-tolerance techniques. However,

the negligible runtime performance overhead of BulletProof allowed us to trade-off per-

formance overhead with higher defect coverage and lower area overhead in order to reach

our goal of very high defect coverage for very low area overhead. To enable that trade-off,

this thesis proposed another novel approach by moving the defect detection and diagnosis

from the on-chip hardware checkers to software routines that are able to test the underlying

hardware for defects.

We called this new novel software-based hardware testing approach the Access-Control

Extension (ACE) Framework. The ACE framework allows special ISA instructions to ac-

cess and control virtually any part of the processor’s internal state. Based on this frame-

work, special firmware periodically suspends the processor’s execution and performs high-

quality testing of the underlying hardware to detect defects by exercising the hardware

with pre-generated high-quality ATPG test patterns. The use of these software testing

routines eliminates the need for the on-chip hardware checkers used in the BulletProof ap-

proach. However, the other techniques employed by the BulletProof approach, such as mi-

croarchitectural checkpointing and recovery that enablesthe periodic hardware checking,

the online hardware reconfiguration techniques used for hardware repair, and the double-

latching flip-flops to provide transient-fault tolerance, are still used in combination with the

hardware testing capabilities of the ACE framework to provide a comprehensive defect-

tolerance solution.

The experimental evaluation of the ACE framework was done ona commercial multi-

core processor design that is based on Sun’s Niagara. Based on our experimental evalua-

tion, we found that the ACE testing is capable of performing high-quality hardware testing

for 99.22% of the chip area. We also found that, based on a detailed RTL implementation

of the ACE framework, augmenting the Sun Niagara processor with the ACE framework

results in a 5.8% increase in chip area and a 4% increase in power consumption. We also

found that the runtime performance overhead of the ACE framework is around 5% when

the underlying hardware is tested for stuck-at faults, the industry standard fault model used

for manufacturing testing. These experimental results demonstrate that by combining the

periodic hardware checking approach of BulletProof with the software-based hardware

checking of the ACE framework, we can develop defect-tolerance solutions that can pro-

vide very high defect coverage that is close to 100%, for a very low area cost of around

6%, and a low runtime performance slowdown of 5%. This makes the case for this the-

sis, that is, it is indeed possible to develop defect-tolerance solutions for microprocessor
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designs that can provide the same reliability guarantees asthe traditional defect-tolerance

solutions, but at a much lower cost.

Furthermore, we believe that the ACE framework capability of providing hardware

accessibility and controllability to the software, that weoriginally developed for running

software routines that test the hardware, is a more generic feature that can be found use-

ful in many other important applications. We believe that this extensive use of the ACE

framework adds value to the mechanism and it can ease its possible adoption in future

generation microprocessors. To demonstrate the extensiveuse of the ACE framework to

other applications, this thesis described how the ACE framework hardware resources can

be extended to three other applications: i) for the online detection of design bugs, ii) as a

post-silicon debugging tool, and iii) for improving the manufacturing testing process.

Finally, in order to quantify the microprocessor reliability requirements that need to

be addressed by defect-tolerance techniques like the BulletProof and the ACE framework,

we first need to assess the severity of the reliability threats to a microprocessor design

using a resiliency analysis tool. To this end, this thesis concludes with the development of

CrashTest, a novel FPGA-based framework for the accurate resiliency analysis of modern

microprocessor designs. The CrashTest is different from previously proposed hardware

resiliency analysis tools because it can automatically orchestrate a fault injection and anal-

ysis campaign on the gate-level netlist of the design, whileemploying FPGA-based ac-

celerated hardware emulation to enable the analysis of complex full-system designs which

can boot an operating system and run applications. Furthermore, the CrashTest framework

supports an extended collection of fault models ranging from transient faults to silicon

defects, and it can easily be upgraded with new fault models.We found that for the re-

siliency evaluation of the LEON3 system-on-chip, the use ofa prototype implementation

of CrashTest that was developed on a commercial FPGA provided a six orders of mag-

nitude speedup compared to an equivalent software-based hardware resiliency analysis

simulator.

7.2 Thesis Conclusions

This thesis provided a new thinking in the design of microprocessor defect-tolerance

solutions through the techniques described in Chapters III-V and proposed a novel ap-

proach for evaluating the resiliency of microprocessor designs in Chapter VI. Based on

the exploration of these novel techniques, this thesis draws the following conclusions:

• The BulletProof Approach - Periodic Hardware Checking: The BulletProof ap-

proach, presented in Chapter III, is notably different fromtraditional approaches to
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fault tolerance. Specifically, it shifts the traditional defect-tolerance paradigm from

continuous checking for execution errors to periodic online hardware checking. This

approach is markedly different from the traditional defect-tolerance approach and is

achieved by using a microarchitectural checkpointing mechanism that creates spec-

ulative epochs of computation and on-chip hardware checkers.

For the evaluation of BulletProof, we implemented a physical prototype of the Bul-

letProof mechanism, based on a 4-wide VLIW processor, and wefound that the

area overhead of the BulletProof mechanism is quite modest,providing transient

and hard silicon fault protection with only a 14% increase intotal area. This is

a remarkable improvement over traditional redundancy-based techniques, such as

triple-modular redundancy, which incurs overheads starting at 200%. Additionally,

it was demonstrated through gate-level fault injection studies that fault-detection

coverage is high: 95% of all hard silicon defects and 99% of all transient faults are

covered. However, although BulletProof has a significant improvement in terms of

area overhead over the traditional defect-tolerance techniques, its area overhead of

14% is still high for its adoption in mainstream cost-sensitive microprocessors, and

its defect coverage of 95% is still a drawback against the almost 100% coverage of

traditional techniques.

• The ACE Framework - Software-Based Testing:To lower the cost of the Bul-

letProof mechanism and provide more flexible hardware checking strategies with

higher defect coverage, the Access-Control Extension (ACE) Framework, presented

in Chapter IV, shifted the silicon defect detection and diagnosis process from on-

chip hardware checkers to software. This new approach, enabled the trade-off of

runtime performance overhead with lower area overhead for testing and higher de-

fect coverage.

We experimentally evaluated the ACE framework on a commercial multicore pro-

cessor design based on Sun’s Niagara and we found that ACE testing is capable

of performing high-quality hardware testing for 99.22% of the chip area. We also

found that, based on a detailed RTL implementation, the ACE framework requires a

5.8% increase in Sun Niagara’s chip area and a 4% increase in its power consump-

tion envelope. We also measured the runtime performance of ACE testing and we

found it to be around 5% for test patternd generated using thestuck-at fault model,

the industry standard fault model used for manufacturing testing.

Based on the experimental evaluation of the ACE framework, we conclude that: 1)

it can effectively remove the need for on-chip hardware checkers used in the Bullet-
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Proof approach and move this functionality to software, 2) it has ample flexibility to

be modified/upgraded in the field because it is not hardwired in the design, 3) it can

be uniformly applied to any microprocessor module with low design complexity be-

cause it does not require module-specific customizations, and 4) it can provide wide

coverage across the whole chip, including non-core modules.

Overall, based on our experimental evaluation, we concludethat with the combina-

tion of BulletProof-based periodic hardware testing with the ACE software-based

hardware checking routines, this thesis makes a strong casethat it is possible to de-

velop online defect-tolerance solutions for microprocessor designs that provide the

same reliability guarantees as traditional techniques, but at a much lower cost.

• ACE Framework Extensions - Adding Value to Resiliency Mechanisms: Chap-

ter V demonstrated that the ACE framework can be extended to other important

applications to amortize its cost and ease its adoption in future generation micropro-

cessor designs.

The first application considered as an ACE framework hardware extension was on-

line design bug detection. In that context, we provided a rigorous analysis of pro-

cessor design bugs in the RTL code of a commercial microprocessor. Based on the

insights obtained from our rigorous design bug analysis, weproposed a novel dis-

tributed online bug detection mechanism based on the ACE framework. We also

described how the ACE framework can be extended to improve the quality and re-

duce the of cost post-silicon debugging and manufacturing testing.

The cost of the extended ACE framework was evaluated on a detailed RTL pro-

totype implementation and we found that the total silicon area overhead incurred

is 15% of the whole OpenSPARC T1 chip, while the power consumption overhead

is only 6.8%.

Based on these numbers, we conclude that the ACE framework isa general frame-

work that can be used for multiple purposes to enhance the reliability and to reduce

the design/testing cost of modern microprocessors and thatit can provide additional

value for its cost, something that would make its possible adoption by future gener-

ation microprocessors easier.

• The CrashTest Framework - FPGA-Accelerated Resiliency Analysis: In Chap-

ter VI, we presented CrashTest, a novel FPGA-based framework for the accurate re-

siliency analysis of modern microprocessor designs. The CrashTest framework can

automatically orchestrate a fault injection and analysis campaign on the gate-level
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netlist of the design, while employing FPGA-based accelerated hardware emulation

to enable the analysis of complex full-system designs whichcan boot an operating

system and run applications.

We evaluated the the CrashTest framework by performing gate-level fault injection

campaigns on the netlist of a LEON3 system-on-chip while booting an unmodi-

fied version of Linux 2.6 operating system using a commercialFPGA-based plat-

form. From these experiments, we found that the use of hardware emulation, when

compared to an equivalent software-based hardware resiliency analysis simulator,

it can accelerate the fault simulation and analysis processby six orders of magni-

tude. Based on these experimental results, we conclude thatthe proposed CrashTest

framework can provide both a high-performance and a high-fidelity hardware re-

siliency analysis tool for complex modern microprocessor designs.

7.3 Future Work

The work presented in this thesis also opens the door to several future research direc-

tions. The microprocessor defect-tolerance solutions presented in this thesis rely on mi-

croarchitectural resource redundancy that is present in most modern multicore processors.

In particular, the proposed approach for repairing the underlying hardware is by disabling

any defective parts and continue operation with the remaining resources in a performance

and/or capability degraded mode. However, the extend to which this approach is effective

depends on the amount and nature of the microarchitectural resource redundancy that is

present in the processor. For example, if the microprocessor is comprised by thousands of

simple and very small processing elements, as is proposed intile architectures [128], the

performance degradation of losing some of those processingelements to silicon defects

could be insignificant or even unnoticed. On the other spectrum of the design space, if the

microprocessor is comprised by very few monolithic cores interconnected with unique ar-

chitectural components (e.g., I/O buses and memory controllers), the lost of even a single

component to silicon defects can seriously impair the microprocessor’s performance and

functionality. Although tile-style architectures provide an attractive solution to this prob-

lem, they have their own drawbacks and as of today no commercial microprocessor has

adopted this style of architecture. As a future research direction, it would be interesting to

investigate microprocessor design techniques that would make the hardware resource re-

configuration more effective and tolerant to silicon defects and explore the trade-off across

the spectrum of the architecture design space.

Furthermore, another interesting research direction it would be to investigate how de-

fect tolerance could be moved from a hardware responsibility to a software feature. Today,
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the correct execution of software relies on the assumption that the underlying hardware are

defect-free and are functionality correct virtually 100% of the time. By breaking this as-

sumption, we essentially move the correctness responsibility from the hardware to the

software. It would be interesting to investigate if it is possible to develop resilient algo-

rithms that can guarantee software correctness in the presence of an unreliable hardware

computing substrate. Such software solutions, could be a promising alternative solution

for making possible the transition into future highly unreliable silicon process technolo-

gies.

Altogether, the defect-tolerance solutions presented in this thesis provide a cost-effective

framework that enables the development of reliable microprocessors with unreliable sili-

con components. Furthermore, it was demonstrated that the hardware resources of the pro-

posed defect-tolerance solutions can be utilized by other important applications to amor-

tize their cost and ease their adoption by future generationmicroprocessor designs. We

hope, that the contributions made by the work presented in this thesis advance the research

area of microprocessor defect-tolerance design and that the techniques proposed in this

thesis will find applicability in future commercial microprocessor designs.
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[7] A. Avžienis. Arithmetic error codes: Cost and effectiveness studies for applica-
tion in digital system design.IEEE Transactions on Computers (IEEE TC), C-
20(II):1322–1331, 1971.
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