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PREFACE

One of the major driving forces of the semiconductor induistthe continuous scaling
of the silicon process technology. Over the last four deggaithe scaling into a new silicon
technology every few years offered to the computer arctsitemaller, faster, and cheaper
transistors that made possible the development of higfoqeance microprocessors. This
technological achievement also fueled the widespreadtamiopf microprocessor-based
products in applications that touch every aspect of our IH®wever, the challenges in
producing reliable devices in extremely dense siliconietbgies are growing, with many
device experts warning that continued scaling will inéviyaresult in silicon technology
generations that are much less reliable than the currerst dvigroprocessors manufac-
tured in future silicon technologies will likely experientailures in the field due to silicon
defects occurring during system operation. In the absehaayviable alternative tech-
nology, the success of the semiconductor industry in theéuwill depend on the creation
of cost-effective mechanisms to tolerate silicon defatthe field while the microproces-
sor is in operation.

This thesis is focused on the exploration and evaluatioreof alternative defect toler-
ance techniques that will provide low-cost online mechasito protect a microprocessor
design from silicon defects. The approach of these novaa¢blerance solutions rep-
resents a new thinking in the field of defect-tolerant desigrparticular, traditional ap-
proaches to defect-tolerant design saddle a system wittyeedundant components that
continuously verify the integrity of all computation. Inmwast, the BulletProof approach,
presented in this thesis, provides very low cost defeerawice through periodic online
hardware checking by combining area-frugal hardware darsclith microarchitectural
checkpointing. The use of checkpointing and recovery mmaishas provides computa-
tional epochs and a substrate for speculative uncheckemigaml. At the end of each
epoch, the epoch’s speculative computation is validatedhegking the integrity of the
underlying hardware using on-chip hardware checkers. 8iadbles a low overhead solu-
tion that only needs to periodically check the integrity loé tunderlying hardware rather
than continuously validate the execution using redundamipuitation.



To further lower the cost of the BulletProof mechanism anovigle more flexible
hardware checking strategies a new defect-tolerance agipris developed, called the
Access-Control Extension (ACE) Framework, that shiftsghieon defect detection and
diagnosis process from hardware to software. This new agproallows special ISA
instructions to access and control virtually any part offilecessor’s internal state. Based
on this framework, special firmware periodically susperasgrocessor’'s execution and
performs high-quality testing of the underlying hardwarelétect defects.

This thesis, also makes the case that the hardware used lememp defect tolerance
solutions, like the hardware resources of the ACE framewcak also be used for other
applications to amortize their cost and ease the adoptiaiefeict-tolerance mechanisms
in future generation microprocessor designs. Specifidallydemonstrated that the ACE
framework hardware resources can also be used for (i) theeotbtection of design bugs,
(i) as a post-silicon debugging tool, and (iii) for impraog the manufacturing testing
process.

Finally, this thesis presents CrashTest, a novel FPGAebramework used to assess
the threats and the reliability requirements of a micropssor design. The CrashTest
framework differs from other resiliency analysis toolswotways. First, it can automati-
cally orchestrate a fault injection and analysis campaigthe gate-level netlist of a mi-
croprocessor design using an extensive collection of kwellfault models, and second, it
employs FPGA-based accelerated hardware emulation tdecaaletailed low-level fail-
ure analysis of complex full-system designs that can boad@erating system and run
applications.

Altogether, the defect tolerance solutions presentedsrthiesis provide to a micropro-
cessor design the same reliability guarantees as tradititefiect tolerance techniques, but
at a much lower cost and with higher flexibility and online itlaty. This cost-effective
defect-tolerance framework makes possible the developaferliable microprocessors
using unreliable silicon technologies. The ability to usealiable silicon technologies
to manufacture reliable microprocessors will enable theinaed silicon process scaling
into smaller but less reliable transistors, a key requirgrfa the development of the next
generation microprocessors and the extension of micregem-based products into new
applications.

Vi
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CHAPTER|

Introduction

For the last four decades, the semiconductor industryvi@tba trend known as the
Moore’s law [92]. Specifically, the Moore’s law states thabat every two years the
transistor density of integrated circuits doubles. Thisnsethat about every two years, a
microprocessor can have double the number of transisttine isame chip area. Since the
release of the first commercial silicon-based micropramesdmost forty years ago, the
semiconductor industry was able to follow Moore’s law dudhe continued scaling of
the silicon process technology that enables the fabricaifdransistors with smaller di-
mensions. The major benefit of following the Moore’s law iatttvith each scaling into a
new silicon technology, every couple of years, the compatehmitects are offered smaller,
faster, and cheaper transistors that makes possible tledopevent of high-performance
modern microprocessors. This technological achievenoset, the last few decades, fu-
eled the widespread adoption of microprocessor-basedipt®th applications that touch
every aspect of our life.

Currently, most mainstream consumer electronic devicedeing produced with 65
and 45 nm silicon technology processes (that is the sizeeofthaller dimension in a
transistor), and most microprocessor vendors are movingrtds the adoption of the 32
nm silicon process technology. However, challenges inyciod) reliable components in
these extremely dense technologies are growing, with mawicel experts warning that
continued scaling will inevitably result in silicon tecHogy generations that are much
less reliable than the current ones [15, 123].

The cost due to the reliability challenges of future siligsacess technologies is qual-
itatively illustrated in Figure 1.1. As shown in the graphe tprimary benefit of technol-
ogy scaling is the reduction in the cost per transistor wébhenew technology genera-
tion [44]. This trend makes the transition to newer techgglgenerations more profitable
to microprocessor vendors and it also enables the develaprhbigher-performance mi-
croprocessors with more transistors. However, as the emheeliability of new silicon
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Figure 1.1: The Cost of Silicon Reliability: The graph shows the cost per transistor and
the reliability cost for producing reliable microprocessas the silicon process technology
scales into future less reliable generations.

technologies wanes, we observe an increase in the retyatilst. The increase of the re-
liability cost can be due to either (i) the cost of shieldihg microprocessors with built-in
defect-tolerance techniques, or (ii) the cost of reseanchdevelopment (R&D) needed
to develop new silicon process technologies that wouldaatite scaling to smaller fea-
ture sizes, but maintain the device reliability charastess of the previous silicon pro-
cess technologies. This reliability cost is contributiogthe projected overall product
cost. Experts warn that if this trend continues, eventugiéysilicon process technology
scaling will reach a point where the reliability cost will@vake any benefits offered by
smaller/cheaper transistors and any further scaling willibyprofitable for microprocessor
manufacturing companies. This point is the minimum on tlugguted product cost curve
shown in Figure 1.1.

To postpone or even eliminate this technology advancenamieb the rate at which
the reliability cost is increasing must be constrained hietogy experts suggest that this
can be achieved by (i) building silicon-based semiconduptoducts out of unreliable
components/technologies, and (ii) providing reliabilitythese products through online
very low cost defect-tolerance techniques [17, 4]. The gb#iis thesis is the exploration
and evaluation of new, alternative, low-cost defect-tmhee solutions for microproces-
sor designs that will reduce the reliability cost inducedsbgling into smaller and more
unreliable silicon process technologies.

1.1 Why Does Silicon Fail?
1.1.1 The Bathtub Curve

Since the dawn of silicon processing, it has been recognimgdhe failure probabil-
ity distribution function of silicon-based semiconducebectronic products over time is
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Figure 1.2: The Bathtub Curve: The bathtub curve indicates the qualitative trend of
device failure rates for the population of a silicon-basemisonductor electronic product
over time. The initial operational phase and the “ageaili phase are characterized by
much higher failure rates. The bathtub curves of futureailiprocess technologies are
expected to shrink and exhibit higher device failure rates.

shaped like a bathtub. The bathtub-curve failure probghdistribution function is char-
acterized by three distinct phases as illustrated in FigLze

e Infant Period: The beginning of the product’s lifetime is characterizedabyinitial
high rate of device failures. These high failure rates aetduatent manufacturing
defects that escape the initial product testing. Thesar&slsurface quickly when
the manufacture-impaired devices are stressed as thegisoget into operation.
However, the initial high failure rate declines rapidly s temaining devices that
pass the initial operating stress are more robust and ledy to fail.

e Grace Period: When early device failures are eliminated, the failure falis to a
constant value where device failures occur sporadicakytduhe occasional break-
down of weak transistors or interconnect. It is highly deisie that the grace period
will dominate a product’s lifetime since this is the perioteve the product exhibits
the lowest failure rates and the highest reliability.

e Breakdown Period: After the grace period, device failures start to occur with |
creasing frequency over time due to age-related wearounhyMavices will enter
this phase at roughly the same time, creating an avalantdet ahd a quick rise in
device failure rates. However, since not all devices willdaonce, it is likely that
a short graceful degradation period exists over which a fetial device failures
begin to signal the onset of the device breakdown period.



As the silicon process technology scales into smaller istmrSeature sizes, the bath-
tub curve of electronic products fabricated with theseasiliprocess technologies is ex-
pected to shrink and exhibit higher failure rates. This Vvafid to products with shorter
expected lifetimes. Furthermore, during their grace pktibese products would be char-
acterized by more frequent device failures.

The low-cost defect-tolerance solutions explored in thests are addressing the de-
vice failures that occur in the first two phases of the batldutve, namely, the infant
period and the grace period. The objective of these meamansto protect the micro-
processor from occasional device failures that might oeedly in its lifetime and tolerate
the first device failures through the graceful degradatennopl. This strategy, offers to the
user a time window to replace the defective part before ttad fireakdown.

1.1.2 Silicon Failure Mechanisms

Throughout the lifetime of a silicon-based semiconductecteonic product, its sil-
icon fabric is subject to a variety of failure mechanismg tten cause device failures
(leading to the previously mentioned bathtub curve). Adthesistor dimensions scale to
smaller sizes, these silicon failure mechanisms get agtgdy The following discussion
highlights the types of device failures that are expectezhtyacterize future silicon tech-
nologies. Each of these failure mechanisms has receivadisant attention in the silicon
process technology literature, and each has been iderdagiadyrowing concern for deep-
submicron silicon technologies. The interested readerefen to [32, 103, 115, 125, 57]
for a detailed treatment of these mechanisms.

Transistor Infant Mortality: Extreme device scaling exacerbates early transistor fail-
ures. Early transistor failures are caused by weak trasittat escape post-manufacturing
validation tests. These weak transistors work initially, they have dimensional and dop-
ing deficiencies that subject them to much higher stress riblaunst transistors. Quickly
(within days to months) they will break down from stress aedder the device unus-
able. Traditionally, early transistor failures have beetuced through aggressive burn-in
testing, where, before being placed in the field, devicesabgected to high voltage and
temperature testing, to accelerate the failure of wealsistors [23]. Those that survive
the burn-in testing are likely to be robust devices, therebguring a long product life-
time. However, in the deep-submicron silicon technologiesn-in becomes less effective
as devices are subject to thermal run-away effects, whereased temperature leads to
increased leakage current, which in turn leads to even higineperatures [87]. The end
result is that aggressive burn-in of deep submicron sil@ndestroy even robust devices.
Manufacturers are forced to either sacrifice yield by deiplgpwnggressive burn-in testing,



or experience more frequent early failures in the field byhgidess aggressive burn-in
testing.

Manufacturing Defects that Escape TestingOptical proximity effects, airborne im-
purities, and processing material defects can all leadaotanufacturing of faulty transis-
tors and interconnect [103]. Moreover, deep-submicroe gaides have become so thin
that manufacturing variation can lead to currents periegdhe gate, rendering it unus-
able [115]. Even small amounts of manufacturing variatiothe gate oxide could render
the device unusable. The manufacturing defect problemngpoonded by the immense
complexity of current microprocessor designs. Design derity makes it more difficult
to test for defects during manufacturing. Vendors are friceeither spend more time
with parts on the tester, which reduces profits by increasimg-to-market, or risk the
possibility of untested defects escaping to the field. Meegain highly complex micro-
processor designs, many defects are not testable withditicaghl hardware support. As
a result, even in today’s manufacturing environment, uatde defects can escape test-
ing and manifest themselves later on in the field during dpmra All these problems
are expected to worsen for future technologies and desighswmaller transistor feature
sizes.

Time-Dependent Wearout: Technology scaling has adverse effects on the lifetime of
transistor devices and interconnect, due to time-depénagsarout. There are three major
failure modes for time-dependent wearout:

e Electromigration Due to the momentum transfer between the current-carsie
trons and the host metal lattice, ions in the conductor cavenmothe direction of
the electron current. This ion movement is called electgvation [32]. Gradually,
this ion movement can cause clustered vacancies that canigio voids. These
voids can eventually grow until they block the current flowtle conductor. This
leads to increased resistance and propagation delay, whtam leads to possible
device failure. Other effects of electromigration are fuaes and shorts in the inter-
connect. The trend of increasing current densities in &tachnologies increases
the severity of electromigration, leading to a higher ptolig of observing open
and short-circuit nodes over time [41].

e Gate Oxide Wear-oufThin gate oxides lead to additional failure modes as desvice
become subject to gate oxide wear-auty( Time Dependent Dielectric Breakdown,
TDDB) [32]. Over time, gate oxides can break down and becoomelactive. If
enough material in the gate breaks down, a conduction patfocan from the tran-
sistor gate to the substrate, essentially shorting theistor and rendering it useless



[41, 57]. Fast clocks, high temperatures, and voltage ragdimitations are well-
established architectural trends that aggravate thigréarhode [125].

e Hot Carrier Degradation (HCD) As carriers move along the channel of a MOS-
FET and experience impact ionization near the drain endeofiéivice, it is possible
to gain sufficient kinetic energy to be injected into the gatade [32]. This phe-
nomenon is called Hot Carrier Injection. Hot carriers cagrdde the gate dielectric,
causing shifts in threshold voltage and eventually dewadere. HCD is predicted
to worsen for future thinner oxide and shorter channel les\{7].

Single-Event Upsets (SEU)There is also a growing concern about providing pro-
tection from single-event upsets (also known as transieatsor soft errors) caused by
charged particles, such as neutrons and alpha particlssttike the bulk silicon portion
of a die [151]. Although SEUs do not break the silicon, théfe& is a logic glitch that
can potentially corrupt combinational logic computatiarstate bits. While a variety of
studies have been performed that demonstrate the unissliof such events [144, 142],
concerns remain in the architecture and circuit commumifidis concern is fueled by the
trends of reduced supply voltage and increased transiatigdis, both of which exacer-
bate a design’s vulnerability to SEU.

Process Variation: Another reliability challenge designers are expected te fi
future silicon technologies is the design uncertainty thareated by increasing process
variations. Process variations result from device din@mand doping concentration vari-
ation that occur during silicon fabrication. These vada$ are of particular concern be-
cause their effects on devices are amplified as device dior@ishrink [104], resulting
in structurally weak and poor performing devices. Desigraee forced to deal with these
variations by assuming worst-case device character{stseglly, a 3-sigma variation from
typical conditions), which leads to overly conservativsigas.

In many systems today, these silicon failure mechanismassessed, and the nec-
essary margins and guards are placed into the design toeeibsuitl meet the intended
level of reliability, essentially employing a fault-avaidce design strategy. For example,
most transistor failurese(g, gate-oxide breakdown) can be reduced by limiting voltage,
temperature, and frequency [59]. While these approachesdeved manufacturers well
for many technology generations, many device experts atedesilicon reliability will
begin to wane as silicon processing scales in deep-submieahnologies. As devices
become subject to extreme process variation, particleeed transient errors, and tran-
sistor wearout, it will likely no longer be possible to avdigese faults. Instead, computer
designers will have to begin to directly address systenabéity through fault-tolerant
design techniques.



1.2 Defect-Tolerant Microarchitectures

To address the concerns of silicon reliability, in this tkege turn toward the devel-
opment and application of defect-tolerant microarchitezs. In addition to their base
functionality, defect-tolerant microarchitectures msgpport extra capabilities that will
let the microprocessor to continue providing its intended/ise under the presence of
silicon defects. A defect-tolerant microarchitecturec®it becomes aware of a defective
part in the design, it needs to invoke a process that willmégare and repair the underly-
ing hardware. After a silicon defect manifestation, theesysalso needs to be recovered
from the defect’s effects, including the restoration of aoyrupted data or machine state.
In order to address wearout-related silicon defects, oruf@aturing defects that escape
manufacturing testing, these capabilities need to be geavonline while the product is
operating in the field. Online defect tolerance is usuallyd#id into the following four
basic phases:

e Error Detection: Error detection is a vital capability for a defect-toleramtroar-
chitecture. Without error detection the system is unawatkeopresence of any de-
fects in the design and can lead to incorrect functionaliat violates the system’s
specifications. Error detection can be accomplished byn@aiot computation, by
error detection codes.€., parity and error correction codes), or by checking the
hardware for correct functionality. Unlike soft error detien, silicon defect detec-
tion through redundant computation requires the compriat be done on different
hardware to avoid common mode failures.

Error detection can be performed either at the macro-levelt ahe micro-level.
Macro-level error detection is usually applied at the mpcozessor scope by tech-
niques like dual-modular redundancy and execution loegysng [118] that moni-
tor the output of the microprocessor for errors. Micro-lereor detection is usually
applied at microprocessor subcomponeatg,(functional units, or the register file)
by techniques like on-line built-in-self-test (BIST), idse checkers, or error detec-
tion codes.

Since execution errors can be caused by both silicon defactdransients faults
(due to neutron strikes, electrical noiste), error detection mechanisms are often
required to distinguish the source of the error in order (ke the necessary re-
pair/recovery process. For example, restoring the procssstate and restarting
execution is often adequate to recover from the effects odmstent fault. How-
ever, recovering from a permanent silicon defect is a matetes process involving



defect diagnosis and hardware repair/reconfiguration.abiéy of an error detec-
tion mechanism to accurately distinguish the source of atwion error is very
important, since incorrect decision could disable or réigoine functionally correct
hardware resources that have been victims of transiertsfandl lead to impaired
system functionality and/or performance.

e Online Defect Diagnosis:After an execution error detection, if a permanent sili-
con defect is indicated as the source of the error, an onkfectidiagnosis process
is triggered in order to identify the defective componenthia microprocessor de-
sign [20, 111]. During this process, the system needs tb estatution making
online defect diagnosis a performance-critical operation

e Hardware Repair & Reconfiguration: The reconfiguration and repair of hard-
ware resources is an essential phase of defect tolerancegdairing a defective
microprocessor and enabling the proper system functignafiardware repair can
be handled in many ways, including disabling, ignoring,eplacing the defective
hardware component. When there is enough hardware resmdgeadancy in the
system, the hardware repair process can exploit this resoedundancy and simply
disable the defective component. Alternatively, if theremough redundant compu-
tation in the system (like there is in systems that emplg@drmodular redundancy)
the hardware repair may just be the ignorance of the detectmponent. Finally,
when the system employs hardware sparing, the repair moepkces the defective
component with a spare one.

e System Recovery:The final phase of online defect tolerance is the system recov
ery. After hardware repair, the system needs to restore atayahd machine state
that possibly got corrupted by the failure. System recowssentially makes the
manifestation of a silicon defect or a transient fault tparent to the application
execution and provides correct system functionality touber.

1.3 The Reliable System Design Space

When designing a defect-tolerant microarchitecture,elee two important design
factors that need to be taken into consideration. The fgsthe type of device failures
that will be covered by the defect-tolerant microarchiteet As discussed in the previous
section, the types of device failures range from transeauit$ (SEUs) due to energetic par-
ticle strikes [151] and electrical noise [138], to permarsiicon wearout-related defects
caused by electro-migration [50], stress-migration [Z9]d dielectric breakdown [147].
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Figure 1.3: Reliable System Design Spacé&he diagram shows a map of device-level
fault types in a digital system (horizontal axis) vs. prdit@t techniques against these
faults (vertical axis). This thesis addresses the probleshgions in the dash bordered
area of the map.

The second design consideration, is the degree to whiclyttera will be protected from

those device failures. Design solutions range from igrgpeiny possible device failures
(as is done in many systems today), to detecting and repgat@wice failures, to detecting
and correcting device failures, and finally failure cori@ctwith repair capabilities. This

results to a rich design space to be considered, as illadtiatFigure 1.3. Specifically,

Figure 1.3 illustrates the current fault-tolerant desigace with the horizontal axis list-
ing the type of device failure that systems might experiesnog the vertical axis listing

the design solutions to deal with these device failures. eNbat in this design space,
the final two design solutions are the only solutions that address permanent silicon
defects, with the final solution being the only approach thaintains efficient operation
after encountering a silicon defect.

In recent years, industry designers and academics havesfaidicant attention to
building resistance to transient faults into their desighs\umber of recent publications
have suggested that transient faults, due to energeticlparin particular, will grow in
future technologies [15, 93]. A variety of techniques haveegged to provide a capability
to detect and correct these type of faults in storage, imatugdarity or error correction
codes (ECC) [117], and logic, including dual or triple-mtadwspatial redundancy [117]
or time-redundant computation [31, 118] or checkers [68].14



In contrast, little attention has been paid into incorpoatesign tolerance for per-
manent silicon defects, such as transistor and interconvesrout. The typical approach
used today is to reduce the likelihood of encountering peentsilicon defects through
post-manufacturing burn-in, a process that acceleratesadgmg process as devices are
subjected to elevated temperature and voltage [147]. Theibyrocess accelerates the
failure of weak transistors, ensuring that, after burndayices still working are com-
posed of robust transistors. Additionally, many computandors provide the ability to
repair faulty memory and cache cells, via the inclusion @fregstorage cells [121]. Re-
cently, academics have begun to extend these techniquaeppors sparing for additional
on-chip memory resources such as branch predictors [19emisters [114].

Currently, in the reliable system design space there ar@wecbst defect-tolerance
techniques that can provide effective mechanisms to omplingect a microprocessor de-
sign from silicon defects, either those that occur duringnafiacturing or those that occur
when the device is in operation in the field. This thesis wtikapt to bridge this gap in
the reliable system design space and explore defect-tmersolutions that would cover
the dash bordered area of the reliable system design spacefrRayure 1.3.

1.4 Contributions of This Thesis

Traditional approaches to defect-tolerant design saddigstem with costly redun-
dant components that continuously verify the integrity bbitamputation. Examples of
such techniques are Dual Modular Redundancy (DMR) [1174,lackstep systems [64].
These techniques detect silicon defects by validating Xeewgion through independent
redundant computation. However, independent redundanpatation requires signifi-
cant hardware cost in terms of silicon area (100% extra harehm the case of DMR and
lockstep systems). Furthermore, continuous checkinguwuoas significant energy and
requires part of the microprocessor’s power budget to becdeat to it.

A major contribution of this thesis is a paradigm shift in thay that silicon defects
can be detected in defect-tolerant microarchitectureshdR@ahancontinuouslychecking
computation for execution errors, the new approagteisodically checking the integrity
of the underlying hardware without the need of redundant@en. This periodic hard-
ware checking can be done through area-frugal, distribuietine checkers. This new
defect-tolerance paradigm is relying on checkpointing r@edvery mechanisms that pro-
vide computational epochs and a substrate for speculativ@acked execution. At the end
of each computational epoch, the hardware is checked bygrtesters. If the hardware
tests succeed, the results produced during the epoch amittechand execution proceeds
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to the next computational epoch. Otherwise, the systemamdd defective and system
repair and recovery are required. A detailed prototype é@mantation of this approach,
calledBulletProof is described and evaluated in Chapter III.

Another key requirement for a successful defect-toleraobation is to have an ultra-
low overhead in terms of silicon area, thus driving the olg@raduct reliability cost low.
Even though periodic hardware checking eliminates the hrgh cost of hardware repli-
cation required for redundant computation, it still reg@sia way to periodically check the
underlying hardware. This could mean the addition of orpafieckers and the bearing
of their extra hardware cost, as we will observe later in @mapl in the BulletProof
prototype.

The amount of adaptivity and flexibility that defect-toleca solutions provide, once
the microprocessor is shipped and operating at the custsid®ris also a central concern
in their design. Flexible defect-tolerance solutions ttet be modified, upgraded, and
tuned in the field are very desirable. Today, many defeetrémice techniques bind specific
testing approaches into silicon, making it impossible targe the testing strategy after
the microprocessor in deployed in the field.

To address both of these requirements and (i) offer low}oean hardware checkers for
periodic checking, and (ii) provide a flexible defect-talece mechanism that can be modi-
fied, adapted, and tuned to the needs of the microprocesderitvk operating in the field,
we developed a new software-based defect-tolerance agprddne novelty of this new
defect-tolerance approach is that it shifts the silicoredetietection and diagnosis pro-
cess from on-chip hardware checkers to software. In thisveoé-based defect-tolerance
technique, called the Access-Control Extension (ACE) &raark, the hardware provides
the necessary substrate to facilitate hardware checkidghensoftware makes use of this
substrate to perform the hardware checking. The softwareeaf this approach offers
a low area overhead mechanism for periodic hardware chgekid inherently provides a
flexible way for upgrading, modifying, and tuning the medkamin the field. The ACE
framework is described and evaluated in detail in Chapter IV

Another challenge in the domain of defect tolerance for oponcessor designs is to
overcome the expense of defect-tolerance mechanismshwdhicecessary before they
can be deployed in commercial mainstream microprocessigmie One solution to this
challenge is to add value to the defect-tolerance mechangnutilizing their hardware
resources for more than just defect tolerance. To this extérs thesis makes the case that
the hardware resources used to implement a defect-toleswiation can also be utilized
for other applications. Specifically, as it will be demoastd in Chapter V, the hardware
resources of the ACE framework can be extended to other itaupoapplications such
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as online design bug detection, a post-silicon debugging tond improving hardware
manufacturing testing. This approach, adds value to débdetance solutions and it can
ease their early adoption in future generation micropremes

The last major contribution of this thesis is the developt@nCrashTesta high-
fidelity hardware resiliency analysis infrastructure orF®GA-based emulation platform.
Hardware resiliency analysis tools are used to assessrdegtand the reliability require-
ments of a hardware design. During this process, faultsgeted in the design and their
impact on the behavior of the design is analyzed. After th#t fajection and analysis
process, the hardware design can be characterized foligbiliey standards. However,
the accurate assessment of the robustness of a hardwaga desiot a trivial process.
Accurately modeling the effects of low-level silicon fakumechanisms and monitoring
their impact up to the software level places conflicting iezgaents to the resiliency anal-
ysis tools. On the one hand, if low-level detail models ofllaedware design are used to
faithfully model the silicon failure mechanisms, the siatidn performance is very poor
and it limits the fault analysis from observing the impacfailts at the software level.
On the other hand, if high-level architectural models of laedware design are used to
improve the simulation performance of the tool, the fidebtyhe tool is in jeopardy since
the effects of silicon failure mechanisms cannot be acelyrahodeled in high-level ar-
chitectural models. In Chapter VI, the CrashTest hardweséiency analysis tool makes
an attempt to solve this conundrum by performing fault itigtcampaigns at the gate-
level and accelerating the fault analysis process usingP&¥-based hardware emulation
platform to achieve both accuracy and performance.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter Il gives an overview of previous work done in the arfedefect-tolerant mi-
croarchitecture design. It first highlights the traditibdefect-tolerance techniques, fol-
lowed by a discussion of their shortcomings. Chapter Il alseers recent related work
presented in the research literature.

Chapter Il presents thBulletProofpipeline, a microprocessor defect-tolerance solu-
tion that employs periodic hardware checking coupled wiitroarchitectural checkpoint-
ing to provide low-cost protection from silicon defects. Asdription of the BulletProof
physical-level prototype is provided, as well as a coveeageperformance analysis in the
context of a low-cost embedded VLIW microprocessor.

Chapter 1V introduces the Access-Control Extension (AQ&jniework, a software-
based technique for online low-cost defect detection aagribsis. The ACE framework
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effectively moves the hardware checking process from tihévere to the software level.
The ACE framework is evaluated on a commercial chip-muligesssor system and exper-
imental results and analysis are presented.

Chapter V extends the ACE framework to other applicationsec8ically, it demon-
strates that the ACE framework hardware resources can baded and used for online
design bug detection, as a post-silicon debugging tool fanisnproving hardware man-
ufacturing testing. Chapter V also provides an RTL-levedige bug analysis of a mod-
ern commercial microprocessor that motivates the potdmtiaefit of extending the ACE
framework into an online design bug analysis mechanism.chiapter concludes with the
experimental evaluation of the extended ACE framework.

Chapter VI present€rashTestan FPGA-based hardware resiliency analysis frame-
work. The chapter starts with a high level overview of thedbigest framework. Then,
the gate-level fault injection methodology employed by filaenework is described. The
chapter continuous with the details on how CrashTest isemphted using a commer-
cial FPGA. The chapter concludes with the experimentaluatain of the framework’s
performance and its effectiveness.

Finally, Chapter VII gives conclusions and discusses tiwas for future work.
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CHAPTER I

Traditional Techniques and Recent Research Approaches
for Defect-Tolerant Design

From the early adoption of computer systems, reliabilitywand still is, one of the
most important requirements in the design of computer syste€Computer applications
ranging from life-critical aviation/ground transportati systems and medical systems, to
business-critical applications found in the financial sedb mission-critical applications
like outer space exploration programs, they all place haylavare reliability demands to
the computing systems. Furthermore, in applications saauger space exploration, the
computing systems are expected to operate in adversampanwents and conditions that
are very different from the ones here at Earth, such as v@ly fdtes of neutron strikes
that cause transient faults.

These reliability requirements and challenges throttléigh research interest in re-
liable computer system design. This chapter, providesed bvierview of the traditional
defect-tolerance techniques employed in high-end comguiystems today and discusses
their shortcomings. It also highlights the related workt thvas recently published in the
research literature.

The scope of this chapter is to present the previous workishabre relevant to the
general topic of this thesis. Other previous work that iatezl with the specific techniques
described in each of the remaining chapters of this thegsdsented in each chapter
respectively.

2.1 Traditional Defect-Tolerance Techniques

One of the first defect-tolerance approaches used to ptutgeiend computer systems
is dual modular redundancy. Dual modular redundancy, eysgpatial redundancy in the
form of two microprocessors operating in lockstep. The oughthe two microprocessors
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Figure 2.1: Traditional Defect-Tolerance Techniques:Part (a) shows a dual redun-
dancy system where two identical processors are operatilogkstep and checked by an
external checker. Part (b) shows a triple modular redundsystem where errors are both
detected and corrected. Part (c) shows a 2-version redapdgatem where two different
processors, with the same specifications, are running kstep. This approach avoids
common mode failures and also detects design bugs.

is checked by an external checker, as shown in Figure 2 I @)y deviation at the output
of the two microprocessors is detected, a system error igdthgAn early example of a
system that employed this approach was Tandem’s NonStognsy64].

One shortcoming of dual modular redundancy is that althoucgm effectively detect
single defects in the design, once a defect is detectednitataletect which of the two
microprocessors is the defective one and continue opgratitn the other one. There-
fore, once a defect is detected, the system halts operatobit eequires repair. A way to
address this limitation is by adding more hardware reduogitmthe system, in the form
of triple modular redundancy [117]. In triple modular redancy, three identical micro-
processors are used with an additional majority voter, awshn Figure 2.1(b). If one of
the microprocessors fail, its output is outvoted by the otlwe microprocessors providing
forward system recovery. The system then downgrades intahrdodular redundancy
system with the remaining two defect-free microprocessors

Another similar approach to dual and triple modular redunegtas N-version redun-
dancy. With N-version redundancy, instead of just repiingathe microprocessors N times
as in modular redundancy, N different microprocessord) thié same specifications, are
designed by N different design teams or companies. An examipa 2-version redun-
dancy system is shown in Figure 2.1(c). The N-version redoog has the additional
advantage over modular redundancy of detecting not onlgvee failures, but also de-
sign bugs and avoiding common mode failures.
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The advantage of these hardware redundancy techniquest ihdy are not intrusive
in the microprocessor design and they can be applied to bieilelict-tolerant computer
systems using over-the-shelf processors. Also, thesaitpads cover uniformly the whole
microprocessor and can detect errors caused by any defesttivcture in the processor.
However, the major shortcoming of these techniques is tieat 4dd extra hardware into
the system leading to significant area and power overheads.

Another traditional defect-tolerance technique used twgmt memories, buses, or
other microprocessor array structuresg( register file) are parity and error correction
codes (ECC) [117]. ECC and parity bits provide a lower ovachsolution for data-
holding hardware structures than modular redundancy. tyPhitis are more similar to
dual modular redundancy where errors can only be detecteddiwcorrected. On the
other hand, ECC resembles triple modular redundancy prayiabth error detection and
forward recovery as the ECC computation masks and correetgatlty value of a bit.
The overhead of parity and ECC bits is relatively low compaiee modular redundancy
techniques and it comes from the extra storage overheadhaneltra logic needed for
their computation. However, ECC and parity bits are intreisin the design of the micro-
processdrand protect only a limited part of the processor.

In the context of online testing of processors, various aomnt error detection schemes
have been proposed [89]. Most schemes incorporate a chibelt@ompares the expected
behavior with that of the unit under test. Another solutisogmsed in the direction of
online testing are Berger codes [12] which can detect atlivectional errors, and Bose-
Lin codes [16] which can detectunidirectional errors (known aseC). These codes are
suitable for the protection of circuits that are skewed talsane of the two logic values
(logic 0 or 1). However, the use of these codes for onlinertgsif datapaths is not trivial
as they impose constraints on the way the logic block is a@esiguch that only unidirec-
tional faults occur. As with the parity and ECC bits, coneuatrerror detection schemes
and the Berger codes are intrusive in the design of the micogssor and protect only
some parts of the processor design.

2.2 Fault Avoidance Strategies

Today, the defect-tolerance techniques presented in gwegus section are only used
in high-end systems running critical applications. In cast, the microprocessors used
in most mainstream desktop and laptop computers and emthegideems employ a fault-

1This means that they need changes at the design phase ofottesgor, unlike modular redundancy
techniques that can be applied to over-the-shelf processor
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avoidance design strategy to achieve their projectedréailate targets. Microprocessor
manufacturing companies assess the sources of possible&iand they place in the de-
sign the necessary guards and preventive measures to émsuitieeir exposure to failing
scenarios does not compromise the overall reliabilitygarghe incident of silicon failure
mechanism, such as wearout-related silicon defects ansi¢ra faults, is proportional to
supply voltage, circuit temperature, and transistor #gtfactors [59], thus, reliability in
these microprocessors is typically ensured through thetusafety margins inserted into
the clock period and limits on the maximum supply voltage.

If the microprocessor failure rate resulting from ignorithg occurrence of the faults
falls within the targeted reliability standards, the sode of fault avoidance techniques is
adequate to provide a relatively reliable population ofduais. Although previous and
current generations of silicon process technologies éxsiffficiently low device failure
rates that silicon defect could be completely ignored, dpisroach is expected to be inef-
fective for future silicon technologies where device weat; untestable defects, and early
transistor failures will increase the in-the-fielde(, during operation) microprocessor de-
fect rates and necessitate stronger measures of protection

2.3 Defect-Tolerance Techniques in Research Literature

To date, only a few efforts have explored techniques to pielow-cost defect toler-
ance to microprocessor designs. This section, providegadwerview of the previous
research work that is more generic to the subject of micrmgssor defect tolerance. Pre-
vious research works that are more relevant to the speatfiimiques explored in the re-
maining chapters of this thesis are described and discussledse chapters respectively.
Also, some of the research work discussed in this sectiorcaasurrently developed with
the work presented in this thesis.

Defect Tolerance Through Continuous Execution Checking:DIVA, is an online
checker component inserted into the retirement stage ofcaopriocessor pipeline that
continuously validates the computation, communicatiow, @ontrol exercised in a com-
plex microprocessor core [6, 143]. The approach unifiesathé of permanent and tran-
sient faults, making it capable of detecting computatiomeredue to design bugs, soft
errors, and permanent silicon defects. However, a linoitatif DIVA is that it does not
diagnose the root problem in order to repair the underlyargitvare and prevent the errors
from occurring again.

To address this limitation, Bowet al., in [20], propose a fault-tolerant microprocessor
design that uses DIVA checkers for system-level error dietecoupled with a mechanism
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for diagnosing silicon defects by tracking the instructimecupancy through the micropro-
cessor’s pipeline. After diagnosing a silicon defect, theroprocessor reconfiguress(,
disables) the defective part and continues operation a@e@rlly degraded level of per-
formance.

More recently, Meixneet al. presented Argus [85], an error detection technique for
simple processor cores. The Argus technique continuousgks invariants to detect
execution errors. Specifically, Argus, uses run-time imrdrchecking to detect errors in
four fundamental tasks: the control flow, the dataflow, cotapon, and memory access.
The Argus technique provides error detection for errorsediy both permanent silicon
defects and transient faults and offers an alternativedost-defect-tolerance approach
when compared to the traditional defect-tolerance apjesc

Hardware Testing and Built-In-Self-Test: After chip fabrication, microprocessor
chips are tested in order to screen out parts with defectiveeak devices. Today, most
complex microprocessor designs use scan chains as thetiend design for test (DFT)
methodology. During hardware testing, the design’s scainshare driven by external
automatic test equipment (ATE) that applies pre-generasidoatterns to check the chip
under test [23]. Every single microprocessor chip has tohgough this testing process
multiple times at different voltage, temperature, and diesepy levels. This makes the
manufacturing testing cost for each chip to be as high as026-& the total microproces-
sor manufacturing cost [45]. An alternative approach thatieates the need of external
equipment to drive the hardware testing is Built-In-Sed&T(BIST) techniques [23]. BIST
techniques use specialized circuitry to generate testqpattind validate the test responses
on the chip without the need of any communication with exdedevices. The way BIST
techniques generate test patterns on the chip is eitherebygé of pseudo-random test
pattern generators, or by storing previously generatad/géesors in on-chip memories.

Silicon Defect Prediction: Blome et al. [14], proposed an online technique that de-
tects the performance degradation caused by wearout ovetitiiorder to anticipate fail-
ures. In particular, the proposed technique leveragesrtigrgssion of wearout over time
and provides a low-overhead self-calibrating hardwangctire that identifies increasing
propagation delay, which is symptomatic of many forms ofwweg to forecast the failure
of microarchitectural structures. Specifically, they pe@ the implementation of an on-
line latency sampling unit that is capable of sampling artdrfilg by statistical analysis
the propagation latencies of signals to identify signiftedranges in the latency of a given
microarchitectural structure and predict a device failure

In [129], Sylvesteet al. propose in the context of the ElastIC architecture the use of
in-situ sensors in combination with reliability and poweodels to predict the lifetime
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and wearout of the underlying hardware. This enables thamyjntradeoff of perfor-
mance with longer lifetime and reliability using dynamidtage scaling techniques. A
similar approach was employed by Srinivasgral. in [124] where microarchitectural
components are swapped by spare ones based on the predidinair failure. The fail-
ure time of microarchitectural components is predicted byitoring the dynamic activity
and temperature of the microarchitectural componentsmmbteation with the analytical
reliability models proposed in [122].

Resource Redundancy for Hardware Repair & Reconfiguration: Shivakumaret
al. [114], proposed the use of hardware redundancy and recoafiign to improve the
yield and increase the defect tolerance of future micraggsors. They also suggest that
the use of hardware redundancy should not be limited onlygmaries but that inherent
resource redundancy, that is abundant in modern micropsocg, should be exploited in
both single-core and multi-core processors. Three prirhgrgs of inherent redundancy
that can potentially be used in a microprocessor were ifietiticomponent level redun-
dancy (replicated functional unittc), array redundancy (spare rows and columns in bit
arrays), and dynamic queue redundancy (spare queue gntries

In [42], Guptaet al. presented StageNet, a highly reconfigurable multicoreitawch
ture. StageNet is a reconfigurable multicore computingtsatesdesigned as a network
of pipeline stages, rather than isolated cores in a chigiooué processor. The StageNet
network is formed by replacing the direct connections ahgapeline stage boundary by
a crossbar switch. Within the StageNet network, pipeliages can be selected dynam-
ically from the pool of available stages to form logical pgesing cores, thus permanent
silicon failures can be easily isolated by adaptively nogitaround defective stages. In
essence, the StageNet substrate can effectively expihaktural resource redundancy
of moder multicore processors and reconfigure the hardves@irces around a defective
component to repair a microprocessor design.

Aggarwalet al. [3] introduced the notion of configurable isolation for |Idexel fault
containment and component reconfiguration through cdsttafe modifications to com-
modity designs. Specifically, the proposed mechanism eysgnamic repartitioning of
a chip-multiprocessor’s hardware resources into mulfigldt zones. Silicon defects are
detected at the fault-zone granularity and once a defedtected, the defective compo-
nent is disabled and the remaining hardware resources agrdgally repartitioned into
new fault zones. Furthermore, the power budget of the deéedtsabled components is
re-assigned to the remaining operating components. Tlabkles the voltage/frequency
upscaling of the remaining hardware resources in an attempitigate the performance
loss due to the disabled components.
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Bower et al.[19] proposed a hardware mechanism for self-repairingyastauctures
to provide defect detection and repair capabilities forropecocessor array structures such
as the reorder buffer and branch history table. The propossthanism detects silicon
defects by employing dedicated “check rows”. Every time @aimyeis written to the array
structure, the same data is also written into a check row.n;Theth locations are read
out and their values are compared to detect defective roovsefair defective arrays, the
mechanism exploits the inherent resource redundancy sé tfteuctures and redirects any
accesses to defective rows to other functionally corregsro

Finally, an algorithmic approach for dynamic hardware reéiguration and system
repair from silicon defects was proposed recently by feicél. in [34]. Specifically, the
work presented in [34] proposes a distributed routing aligor for networks on chip that
allows a network to reconfigure around defective compondriis proposed algorithm is
able to overcome large number of silicon defects by runninigckstep at each network
router and collectively reconfiguring the network’s rogtitables. It was demonstrated
that due to the high hardware resource redundancy of nesaamkchip, the dynamic
reconfiguration algorithm could provide a 99.99% relidpito the on-chip network even
after 10% of its interconnect links were defective.
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CHAPTER I

Defect Tolerance Through Periodic Hardware Checking -
The BulletProof Pipeline

This chapter introduceBulletProof an ultra low-cost defect-tolerance mechanism to
protect a microprocessor pipeline and on-chip memory syftem permanent silicon de-
fects. The traditional approach to defect tolerance saddéystem with redundant compo-
nents that continuously monitor the microprocessor’s etten for errors through redun-
dant computation. This redundant computation leads tafgignt area and power over-
heads and constraints the microprocessor’s resource budbe BulletProof technique
shifts the traditional defect-tolerance paradigm fromtoarous checking for execution
errors (through redundant computation) to periodic onhaedware checking. Specif-
ically, it combines area-frugal periodic online hardwaesting with microarchitectural
checkpointing to provide the same guarantees of religlabttraditional defect-tolerance
techniques, but at a much lower cost.

This approach, utilizes a microarchitectural checkpampthechanism to create coarse-
grained epochs of execution, during which a distributednenhardware testing mecha-
nisms verify the integrity of the underlying hardware. lethardware is deemed unbroken
at the end of a computation epoch, the epoch’s speculatimpatation is allowed to retire
to a non-speculative system state, otherwise, the systeatiésl back to the beginning
of the epoch, and the last known-good system state is relstéterecovery, the system
is reconfigured to disable any defective components. Thimigue relies on the natural
resource redundancy that is abundant in ILP-style micrcgssors combined with a small
amount of carefully-placed control logic redundancy toaiephe system such that it can
operate in a degraded performance mode. Once repairedséhean decide whether to
replace the system or tolerate the degraded performan@&BiltetProof technique also
employs a double-sampling flip-flop design to protect theelmg from transient faults
and latch defects.
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Section 3.1, describes in detail the implementation of thkkeProof defect-tolerance
technique, including a detailed coverage of the distrithutieeckers used to perform the
periodic hardware testing. It also explains how the teammigmploys microarchitectural
checkpointing to provide speculative computational egaaid system recovery, how the
BulletProof pipeline is repaired, and how input/output@gens are handled by the Bul-
letProof mechanism. Next, Section 3.2 describes in ddiaildouble-sampling flip-flop
design used to protect the BulletProof pipeline from transfaults. Section 3.3 evaluates
the BulletProof mechanism using both detailed circuitleand architectural simulation.
The simulation testbed used for the evaluation of the BRitedf mechanism is based on
a low-cost embedded VLIW processor. Finally, Section 3stuses previous research
work that is related to the BulletProof technique, and ®&c8.5 summarizes the work
presented in this chapter.

3.1 Online Periodic Hardware Checking

Figure 3.1 illustrates the high-level system architectofe¢he BulletProof defect-
tolerance approach, and it shows a timeline of executidrdraonstrates its operation. At
the base of the proposed approach is a microarchitectueakploint and recovery mech-
anism that createsomputational epochsA computational epoch is a protected region
of computation, typically at least 1000’s of cycles in ldmgduring which the creation of
any errant computation, in this case due to the encountefiaglefective device, can be
undone by rolling the computation back to the beginning efdbmputational epoch.

During a computational epoch, online checkers perform ward built-in-self-test
routines in the background, checking the integrity of ateyn hardware components.
Ideally, this hardware checking will occur while functidneits, decoders, and other mi-
croprocessor components are idle, as is often the case incagsor with parallel re-
sources.

By the end of a computational epoch, there are three possiblerios that the Bullet-
Proof mechanism will need to handle. The first scenario (shiowthe first computational
epoch of Figure 3.1(b) is when the checking completes béfi@end of the computational
epoch. In this scenario, the hardware is known to be freefetctls thus, the results of the
computational epoch are known to be free of defect-inducext® and it can be safely
retired to non-speculative system storage.

In the second scenario (shown in the second epoch of Figlife)3the computational
epoch ends before the online testing infrastructure hagEied testing all of the un-
derlying hardware components. This scenario can occurugecthe microarchitectural
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Figure 3.1: High-level System Architecture of the BulletPoof Microprocessor: The
schematic in part (a) shows an overview of the BulletProofguted microprocessor. Part
(b) shows three possible execution scenarios within a ctatipnal epoch.

checkpointing mechanism has only a finite amount of stonagewhich speculative state
can be stored — once this space is exhausted, the compatapmoch must end. Addition-
ally, 1/0 requests can force early termination of a compaoretl epoch. In the event the
computational epoch completes before testing is finishextinty will continue with the
processor pipeline stalled. If at the end of testing theWward is deemed free of defects,
the epoch’s speculative state can safely retire to nontsgiee system storage.

Finally, the third scenario, depicted in the third epochigiufe 3.1(b), is when the on-
line testing infrastructure encounters a defect in an Uyithgrcomponent, due to a transis-
tor wearout, early transistor failure, or manifestatiomnfuntested manufacturing defect.
In this event, the execution from the start of the computetiepoch to the point where the
defect was detected cannot be trusted as correct, becasisathecked computation may
have used the defective component. Consequently, theésesumhputed during the epoch
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are discarded, and the underlying hardware must be repaliieid is done by disabling
the defective component. In a processor with instructewel parallelism (ILP), there are
typically multiple copies of virtually all hardware compamts. Once a component is dis-
abled the processor will continue to run in a performanagraided mode. Additionally, a
software interrupt is generated which notifies the systeatttie underlying hardware has
been degraded, so the user can optionally replace the iatpaiocessor.

3.1.1 Online Hardware Testing Techniques

The online hardware testing infrastructure is respondiefully verifying the in-
tegrity of the underlying hardware components. The tegtiegniques are adopted from
built-in self-test (BIST) [22], although they are tailoremlminimize the area of the test-
ing hardware, and hence the area of the defect-protectfaastructure. For each of the
pipeline components, a high quality input vector set isestan an on-chip ROM, which is
fed into the modules during idle cycles. A checker is alsoeissed with each component
to detect any defect in the system. The primary techniquézadt to verify the integrity
of the underlying hardware are illustrated in Figure 3.2 described below.

Decoder Checker The decoders are validated by sending the same test vectarlt
tiple decoders, and then comparing their outputs. The dededt harness is illustrated
in Figure 3.2(a). In the event that the outputs do not matok, af the decoders has ex-
perienced a defect-related failure. In addition, it is impot to determine which of the
decoders has failed. Consequently, three decoders aréhsdestst vector, and a majority
operator is used to identify which of the decoders has failethe case that the architec-
ture has more than three decoders, each can be tested bgimgitin a battery of tests
with any two other decoders.

Register File Checker Register file integrity is checked using a four phase split-
transaction test procedure, as illustrated in Figure 3.Z{lhe register file is unchanged
from the original design, except that it has two address diexso(one for read and one for
write), which allows the testing of address decoder fauittshe first phase, a register file
entry is read from the register file and stored in tbplacement registerTesting of that
register may now proceed whenever free read/write porsaiéable. If the register under
test is read or written by the processor, the value is sugjyethe replacement register.
This same register is used to repair a broken entry, as desdater. In the second phase,
a random vector (generated with a linear feedback shifstegiLFSR) is written into the
register being tested, and in the third phase it is read bac&ral compared to the original
vector. Finally, in the last phase the register entry (qresiy copied into the replacement
register during the first phase) is written back into the appate register.
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Figure 3.2: Component-Specific Online Hardware Testing Teeniques: The decoders
use a majority vote, as shown in part (a). In part (b) the tegidle tests one register at
a time, by swapping to a replacement register. Part (c) stiwometional units exploiting
arithmetic checkers. In part (d) caches are equipped witardypbit, a "volatile” bit to
indicate the speculative state of the data stored in a linkeb#s to track a faulty cache
line. Part (e) shows the early clock edge for checker logic.

This process effectively tests both the register storageetisas the address decoders
in the register file. The register storage is tested by wgitind reading a value from the
register. The address decoders are tested by virtue of théhat the value written and
read is fairly uniquei(e., it is randomly generated), thus if either the read or writdrass
decoder incurs a defect, some other (likely another ragistieie) value will incorrectly
appear during the read phase of the register file testingauiecthe value stored in the
register entry under test is available at all times from #y@acement register, the test-
ing process can be implemented as a series of split traoeactConsequently, different
phases can be executed in non-subsequent cycles, wherfexepart is available on the
register file. This facet of the approach greatly contaiegigrformance impact, as shown
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in Section 3.3. The register file testing procedure is regzeantil all of the registers have
been validated. For a processor with 32 registers, thetegdile can be fully tested within
128 cycles, spread out over an entire computational epocicies when the register file
is not in use.

ALU and Multiplier Checker : The ALU is checked using a 9-bit mini-ALU, as
shown in Figure 3.2(c). During each cycle a test vector fromBIST unit is given to
the ALU and compared with the output of the mini-ALU. It takesr cycles for the mini-
ALU to test the full output of the main ALU. A 9-bit ALU is used walidate the carry out
of each 8th bit in the 32-bit output. The same type of ALU clezdk also used to verify
the output of the address generation logic. Using the midiA&hecker, it is possible to
fully verify that the ALU circuitry is free of stuck-at-O angtuck-at-1 faults with only 20
carefully selected test vectorsA similar approach is used to validate the multiplier, which
employs arithmetic residue checks [7]. Givenrabit operandr, the residuer, with re-
spect tor is the result of the operatiorVor. When applied to multiplication, residue codes
adhere to the following propertyix, * y.) = (z * y),.. When the value of = 2% — 1
for somea, the residue operations are much simpler to implement idwene [7]. The
resulting multiplication checker requires only a shiftadaimple custom logic.

Residue codes can detect most of the faults in a multiplieegixthose that manifest
as multiples of the residue, a small class of faults wheragleifault at an internal node
could manifest as a multiple of the correct value on the dutfthe errors missed by
the residue checker are caught by a few additional carefeligcted test vectors, against
which the exact output is matched.

Cache Line Checker:Cache line integrity is maintained, as illustrated in Feg8r2(d),
through the use of cache line parity. A single parity bit iss$ated with each line, holding
the parity of the entire cache line plus the tag, valid bi BRU state for the line. When
cache lines are written to the cache, the parity for the kngeinerated and stored. Sub-
sequently, when the cache line is read, the parity is rectedo verify the contents. In
the event that the parity is correct, notwithstanding a rhittfailure, which is beyond the
scope of the single bit failure model, the cache line is kntae correct. In the event that
a cache line parity check fails, a defect has been detect&ihviine storage of the cache,
consequently, the line must be disabled from further useexedution is rolled back to
the last checkpointed epoch. Cache lines are disabled taygsattwo bit field in the LRU
state table, which indicates which line in the current setlbeen disabled. The disable

LIt should be noted that this testing approach is in contmstaditional BIST-style testing techniques
that store both the input and output vectors, with the outgators being compared to the output of the
ALU. By computing the output vector on a smaller adder, aetestat was significantly smaller could be
produced.
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Figure 3.3: Control Logic Checker Network: The figure shows the checker mecha-
nisms deployed for protecting the control logic in the mpmacessor pipeline.

bits in the LRU table are periodically reset to avoid sofbesrin caches being interpreted
as hard errors and rendering the cache lines unusable foeshef the design’s lifetime.
Furthermore, at the end of each computational epoch, dathe lines are checked and
written back to the next level of the memory hierarchy to gnéee recoverability in the
presence of cache silicon defects. This approach is afiegerf, but it can only support
a single failed line per set of a cache. Additional failec$rcould be supported within a
single set if more disable bits were to be included in the LBgld.

The Test Clock: An important consideration in the testing of hardware congas
is the timing of the test vector samples. Since many tramsigearout-related failures
manifest as progressively slower devices [41], the failfréhe device may occur in a
way where timing is no longer met for the component’s critmath. Figure 3.2(e) shows
how this issue is addressed by utilizing a slightly shortecl cycle for sampling test
vector outputs. The clock frequency safety margins in eurneicroprocessorse(g, to
mitigate process variation) permits the use of this sligbklorter cycle testing clock with
a negligible amount of false positives. This ensures thatdévice is failing by showing
slower response, it can be detected long before it affegtpatessor computation, which
operates on the main clock cycle that is longer than thengsiicle.

Protecting Control Logic: To achieve high fault coverage it is critical to protect the
control logic, since this logic constitutes a non-triviehdtion of the area in most mi-
croprocessor designs. For the protection of the pipelioergrol logic, a dual-modular
redundancy based approach is employed, as illustratedyurd-B.3. Two copies of the
pipeline control logic run in parallel, each with the samedfenputs. Every cycle, the
outputs of the control blocks are compared and if any diffeeeoccurs, a fault is flagged.
To localize the fault, built-in-self-test is used to deterenwhich of the two control block

27



copies is defective. Once identified, the defective cortrgic block is permanently dis-
abled. Note that this approach can only tolerate defectsetextent that they occur in only
one of the two control logic blocks. This technique has a@st-advantages over triple-
modular redundancy because checker and built-in-sdlfegs are typically smaller than
a third copy of control logic as required to implement triph@dular redundancy. Note
also that each control logic block is protected individydiading to smaller overhead in
the interconnect and higher resiliency.

Checker, Check Thyself: The checkers constitute a non-trivial portion of the micro-
processor’s areaConsequently, if the checkers themselves were not chetikegyould
severely limit overall design fault coverage. To keep awest tow, checkers are checked
using the same component they monitor, a technique cadlibekive self-testIn other
words, the online checkers are designed such that they geadoorrect result only when
both the unit-under-test and the checker are free of siliconaiefend other faults. For
example, a built-in-self-test vector generator and a @iter is used to check the proces-
sor’'s adder. At the same time, the processor’s adder is ogedttthe functional integrity
of the built-in-self-test vector generator and the 9-bdexd

In traditional testing the built-in-self-test vectors aedected so that they have a high
probability to detect defects in the unit under test. In sefletesting, there is an additional
constraint that the test vectors must also expose defeatsrioken checker (assuming that
the unit under test is still working). Consequently, asswgra single-defect fault model,
a built-in-self-test routine will fail if there is a defecitleer in the unit-under-test or in the
checker. If the defect is in the checker, the end result wlthe disabling of the working
unit and its broken checker, hence the desired result obliigpthe defective checker
component is achieved as a byproduct.

3.1.2 Microarchitectural Checkpointing

The BulletProof technique relies on a microarchitectuslback mechanism to restore
correct program state in the event of a defect detection. érhployed mechanism is
similar to the one described in [80]. During the executiomaomputational epoch, the
processor generates register and memory updates whictd weal to be discarded if a
fault is detected. To prevent any memory updates with coedigata, such updates are
buffered in speculative state within the processor, urttikéwthe hardware is checked and
certified to be functionally correct. It is worth noting thlaé same level of fault coverage is
not feasible by simply stopping the computation and runtiegouilt-in tests on a regular
basis, without any checkpointing, and reconfiguring thelue if a fault is found. In fact,

2More than 10% of the area of our prototype design.
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with this approach it would not be possible to ensure thateotied fault had not corrupted
earlier computation. In contrast, with the microarchiteat checkpointing facility, the
state of the machine can always be rolled back to the poinbwelast completed online
test passed successfully (a point in the computation knowe torrect). In addition, once
the hardware is repaired, the program can safely restamt tihés checkpoint.

As shown in Figure 3.4, register state is preserved by bgakmthe register file into
a dedicated single-port SRAM at the beginning of each coatfmrtal epoch. The register
backup can be done lazily by tagging the registers and cgpfiem only before they get
overwritten, so that there is no associated performancaliyen

To support long epochs, memory updates are buffered witleitoical cache hierarchy.
To implement in-cache speculative state, each cache limegsented with &olatile bit
At the beginning of an epoch, all volatile bits are reset. Wa®alue is stored to the cache,
the volatile bit of the target cache line is set to indicatat tihe contents are speculative
in the current epoch. The end of an epoch is determined bytiieyaf the local cache
hierarchy to buffer the memory updates issued during thelepd@herefore, the end of
an epoch is triggered by a cache miss on a cache set with alddtse lines already been
marked as volatile. In this event, all speculative stateusses have been exhausted and
the processor must stall until the testing sweep is comp@tee the underlying hardware
is determined to be defect-free, an epoch may end. At thigtpali volatile bits from the
cache lines are cleared, changing all formerly speculatat to non-speculative state.

To minimize the performance cost of starting a new epael) copying the register file
and clearing volatile bits), each epoch is extended as lemgssible, until when specula-
tive state resources are exhausted or a high-priority I{Dest is generated, as discussed
in Section 3.1.6. To provide even longer epochs, a smail Adkociative victim cache for
volatile cache lines is introduced, so that the end of anleponow triggered by a cache
miss on a cache set with all its lines been marked as volatiléwhile the victim cache is
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Figure 3.5: Incorrect System Recovery Scenario: During the execution of epoch A,

a fault manifests after the testing sweep is complete. Tk auses memory updates
with corrupted data, which are committed at the end of thelepin epoch B, the fault

is detected and recovery occurs. However, this happensatedd revert the corrupted
memory updates of epoch A.

full of volatile lines. This work assumes a uni-processai@mment; hence, delaying the
commit of stores to non-speculative storage has no effecth® system’s performance.
Similar microarchitectural checkpointing techniqued eddress the performance penalty
of delayed stores in shared-memory multi-processor enmemnts are described in [58].

3.1.3 Checkpointing with Two-Phase Commit

Unfortunately, if only one checkpoint of the microprocessarchitectural state is
preserved, there is a chance that errant computation frolc@nsdefect could be missed.
The potential problem is illustrated in Figure 3.5: If a haade check completes before
a fault manifests, it becomes possible for an errant contipatéo be generatelhter in
the same computational epoch. In this event, corrupted sfatates would be committed
to non-speculative state at the end of the epoch. The mgeifdault will eventually
be detected in the next epoch, but not before erroneous datigpuhad a chance to be
committed to non-speculative storage. This conundrum easolved by adopting a two-
phase commit procedure, which maintains two checkpointiseoprocessor’s state.

To implement this two-phase commit, an additional bit isdufse each L1 data cache
line. An extra backup register file is also used so that thegs®or’s architectural state
can be stored alternatively to one or the other of the two lyac&gister files. This enables
to keep backups of the microprocessor’s state for the lasepochs. Lines in the L1 data
cache will be marked (using the two volatile bits) as beirtbesi non-speculative, in the
previous epoch, or in the current epoch. At the end of eachblhepbe volatile bits of the
previous epoch are cleared, and the tags of the current epedlpdated to indicate that
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they refer to the previous epoch. During the new epoch, aogsscto the previous epoch’s
state must be first copied into the current epoch before beiiiten, so that the previous
epoch’s state does not get corrupted. A similar techniqueraviding a sliding rollback
window is described in [134].

3.1.4 System Fault Recovery

In presence of a fault, recovery to a correct microprocemsiritectural state is accom-
plished by flushing the pipeline and copying the architedtuegisters from the backup
register file. The memory system is protected against plessdrupted updates issued
after the fault manifestation by invalidating all the cathes marked as volatile in the lo-
cal cache hierarchy. Therefore, the presence of the fatstinsparent to the application’s
correct execution. To provide forward progress the defectiodule must be disabled via
hardware reconfiguration.

3.1.5 Repairing the BulletProof Pipeline

In the event of a fault manifestation, the microarchitegteheckpointing mechanism
will restore correct program state. However, before exenwtan safely continue, the un-
derlying hardware must be repaired. The proposed technédjes on the natural hardware
resource redundancy of ILP processors to reduce the cospairr Faulty components are
removed from future operations, and the pipeline can keeping in a performance-
degraded mode. To implement pipeline repair, the followaulities are included in the
design:

1. Faulty functional units, such as ALUs, multipliers andtaigers are disabled from
further use. Consequently, further execution must limé éxtent of parallelism
allowed.

2. Faulty register file entries are repaired using the rephant register, as shown in
Figure 3.2(b). The replacement register overrides a siagliey of the register file,
thus, any value read or written to the defective registerois serviced by the re-
placement register.

3. Faulty cache lines are excluded using a two-bit registehé LRU logic. Upon
detecting a faulty line, the LRU state register is updataddccate that the defective
line is no longer eligible as a candidate line during repiaest.

If the microprocessor is already impaired by many silicofedss, it may be no longer
possible to tolerate an additional defect in a particulacsmponent. The degree to which
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silicon defects can be tolerated is dictated by the numbegdiindant hardware compo-
nents available. In general, withcomponents, it is possible to tolerdel defects. Once
theN-1-th component fails, the hardware should generate a sigrihktoperating system
to indicate that the system is no longer protected agairisttie Finally, it should be noted
that if the failure is the result of a transistor slowdowty, due to gate oxide wearout or
to a negative-bias temperature instability (NBTI), it maydossible to recover the failing
component by slowing down the system clock or increasingtimeponent’s voltage.

3.1.6 Handling Input/Output Requests

Instructions that perform input and output requests reggpecial handling in the Bul-
letProof defect tolerant microprocessor design. Sinceodp@rations are typically non-
speculative, they can only be executed at the end of a conqmahepoch. To accom-
modate them efficiently, three flavors of 1/0 requests am@thiced into the design: high-
priority, low-priority, and speculative (the type of I/Oqeest is associated with the mem-
ory address, and it is specified in the corresponding pade ¢altry).

e High priority /0 requestsare deemed extremely time sensitive, thus, they force the
end of a computational epoch, which may force the processstall to complete
the testing sweep. After this, the I/O request executesysated another epoch can
start immediately after it.

e Low priority I/O requestsare less time sensitive. Hence, they are held in a small
gueue where they age until the end of the current epoch, aihwidint they are all
serviced. To prevent I/O starvation in programs with longhpatational epochs,
low-priority 1/0 requests are only allowed to age for a sniixkd period of time
(about oneusec in this design). In addition, the computational epoclstnend
when any attempt is made to insert a low-priority request &full I/O queue.

e Speculative I/O requestwe I/O requests that are either insufficiently important to
care about the impacts of unlikely defectsq(, writes to video RAM, which could
be fixed in the next frame update), or they are idempotent, (the reading of a
data packet from a network interface buffer). Such requeegtgllowed to execute
speculatively before the end of a computational epoch. léfeat is encountered
during the epoch in which they execute, they will just bexeesited in the following
epoch, once the defective component has been disabled.
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3.1.7 Assumptions and Limitations

While the BulletProof approach provides defect protectiora microprocessor pipeline
and on-chip memory system at low cost with very limited perfance impact, it does have
a number of error model assumptions and usage limitationshware detailed below in
this subsection.

In the presented BulletProof approach, a fairly treache®wor model is assumed.
Specifically, it is assumed that devices can suffer fromstedphic failures at any time,
which can be successfully detected with the proposed ohkméware tests. In addition,
transistors can suffer gradual slowdown, for example frate @xide wearout or negative-
bias temperature instability (NBTI), in which case tratwis gradually slow down until
they do not meet frequency requirements. In this case, theeagjve online testing clock
will detect this condition before it affects computation.

Another limitation of the BulletProof technique is thatiapes a few restrictions on the
pipeline and on-chip cache organizations. In particuler gpproach of disabling defective
functional units requires multiple units of each classeothise, a single defect in a critical
non-replicated unit could render the processor brokenewitie abundance of resources
in most modern ILP processors, this limitation is not a digant drawback for most
designs. Additionally, the cache organization must beasstciative to accommodate
both speculative and non-speculative state.

3.2 BulletProof Protection from Transient Faults

The BulletProof techniques described so far in the prevsaaesion provide micropro-
cessor protection only to permanent silicon defects. Téisian, extents the BulletProof
capabilities and presents a novel circuit for transienttfeatection that is based on a
double-sampling scan flip-flop.

Figure 3.6 depicts the proposed fault-tolerant scan catlithcapable of detecting soft
errors in both sequential and combinational logic. In additit can also detect permanent
silicon defects in sequential elements. Figure 3.6 aldse tigferent operating modes of
the cell and their corresponding input configurations.

The BulletProof SER-tolerant flip-flop is composed of a mapfilop block and a scan
flip-flop block where each block includes a master and a skted ! In addition, the scan
flip-flop block contains an XOR gate detecting when the twoteraslave flip-flops have
latched different values (as it is the case when a transaeitittits) and an additional latch
storing this information permanently. The two blocks amiéth two distinct clocks, the
main clock and a skewed clock. In this design the skewed abotiie inverse of the main
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Figure 3.6: BulletProof SER-Tolerant Flip-Flop Design: The BulletProof SER-
tolerant flip-flop design is based on double-sampling scailtip. The flip-flop operates
under five different operating modes depending on its inpafiguration.

clock and isindicated in Figure 3.6 ek _b. The main flip-flop latches the incoming data
signal on the positive edge of the clock, while the scan fiiyp-Bamples the same signal
on the skewed clock’s positive edge. The assumption is niedéransient faults manifest
as glitches of less than half clock cycle duration (which saife assumption up to designs
operating at several GHz) [88, 150]. Hence, if an incorredt® is latched in the main
flip-flop due to a transient fault, the glitch will subdue befahe signal is latched again
half a clock cycle later by the scan block. When this situatiocurs the XOR gate outputs
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Figure 3.7: Timing Diagram of a Transient Fault Detection: The timing diagram
illustrates the detection of a glitch caused by a transiguit.f Once the glitch is detected,
the error signal is trapped until the end of the computatfmoth when all error signals are
scanned out and checked.

a 1, which is stored in th®utput Latch right away. In addition, the output sign@D
is fed back to th&XOR1gate, which forces the input of the scan flip-flop to alwayseobs
the complement of the data signal, continuously forcingSiBR-detected” situation.

Figure 3.7 shows a timing diagram of the situation just dbsd:. Theprotect ,
scandata _en andmaindata _en are enabling signals which are always active during
the normal protected operation. Note that in order for thsffop design to work, a
minimum path delay constraint of 50% of the clock cycle mwesehforced.

At the end of each computation epoch all error signals (S©3hifted out through the
scan chain (using thehift out configuration). The latches are partitioned into zones
to speed up this process. If an error is detected, each aslinthe zone is evaluated to
discern between a transient fault or a permanent silica I&ilure. This is done using
thesi , scan _clk andaux _clk signals. If the error does not repeat, it is assumed that
a transient fault had occurred, and the rollback mecharasradtore the previous known
correct state is triggered. Otherwise, the cause of the @ae a permanent silicon defect
and hardware resource reconfiguration is triggered.
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The bottom of Figure 3.6 shows the results of timing and posumulations on the
error trapping cell with the skewed input clock. The out@ith and the extra gates used
for implementing the correct functionality account for tinerease in power, area and
delay in the new design, compared to a simple scan cell.

3.3 Experimental Evaluation

In this section, we evaluate the Bulletproof architectuyeesbhhancing physical-level
prototype of a 4-wide VLIW processor including instructiand data caches with the
proposed BulletProof technology. The performance of tregieis analyzed using both
circuit timing simulation as well as architectural simiudat This enables to gauge the
impacts of defect protection, both during normal operato after a microprocessor
component has been disabled. Finally, the cost of the defetection technology is
examined by measuring the area overhead of the testing (egjcvector generation and
checkers). The defect coverage provided by the BulletPappfoachj.e., what fraction
of randomly placed defects are detected and successfalbyeeed, is also evaluated by
carefully measuring the portion of the design’s protecigdos area.

3.3.1 Experimental Framework

Circuit-Level Evaluation: The 4-wide VLIW prototype was specified in Verilog, and
synthesized for minimum delay using the Synopsys Designllem This produced a
structural Verilog netlist of the processor mapped to thisaAn standard cell logic library
using the TSMC 0.18um fabrication technology. The desigsa than placed and routed
using Cadence Sedsm, which in turn yields a physical desitinwire capacitances and
individual component areas. Finally, the design was baclotated to obtain a more
accurate delay profile, and simulated with Synposys’ PrimeTto verify its timing and
functional correctness.

For each hardware component and test vector set it is vetifegdall stuck-at-0O and
stuck-at-1 faults are detected. In general, test vectarwete identified using carefully
hand-selected vectors, or by randomly cycling through eamgector sets until a small
group of effective vectors was located. Test vector coveragerified by inserting a hard
fault at each net of the design and then determining if a ahamthe output is observable
for the current input test vector set. For a test vector s@rowide full coverage, there
must be at least one vector that identifies a hard fault inet8 of the design. Once the
test vector set is identified, it is encoded into an on-chigVR§dorage unit, created using
Synopsys design tools.
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Figure 3.8: The BulletProof Baseline Processor:The 4-wide 32-bit VLIW micropro-
cessor used for the evaluation of the BulletProof defderémce technique.

Architectural Evaluation: The architectural evaluation was done using the Trimaran
toolset, a re-targetable compiler framework for VLIW/EPp@cessors [135], and the
Dinero IV cache simulator [47]. The simulator was configutednhodel the VLIW base-
line configuration and memory hierarchy as detailed in ttleiong section. The system
was evaluated using benchmarks from SPECint2000, Med@Bé&9] and MiBench [43]
benchmark suites. These benchmarks cover a wide rangessft@dapplications, includ-
ing desktop applications, server workloads, and embedoeelsc

Coverage Analysis: Coverage analysis is measured by injecting faults into &log
timing-level simulation of the detailed VLIW processor gigal design. Since characteri-
zation of silicon defects in nanometer-sized technologissill an open research problem
the stuck-at-0 and stuck-at-1 fault models were used. Defge injected into a placed-
and-routed implementation of the design. Faults are asdigmgates and wires so that the
probability of a deviceX becoming defective,. ... iS equal to:pge rect @ A, * A, Where
A, is the area of the device ang is the average estimated activity of the device. As such,
large devices with high activity rates are most apt to faijwhile small components or
components with little activity are at lower risk.
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Component | Number of Test Vectorg
ALU 20
MUL 55
Decoder 63
Register File 128
Pipeline Control 12
Memory Control 13

Table 3.1: Online Test Vectors: Number of test vectors to achieve 100% coverage for
stuck-at-0 and stuck-at-1 faults.

Baseline Architecture: The baseline architecture, which is enhanced with the pre-
sented BulletProof defect protection technology, is a deaWLIW architecture, with a
32-KByte instruction and data caches. This architecture etesen for the evaluation of
the proposed technique because it represents a mainstrebadded target, often used
in applications where cost and reliability are paramoumiceons. An overview of the ar-
chitecture and details of its components are shown in inréi§B. The baseline pipeline
is a 4-wide VLIW processor with 32-bit fixed-point datapatfi$ie instruction set of the
processor is loosely based on the Alpha instruction seth EdW instruction bundle
is 128-bit long, consisting of 4 independent 32-bit instiarts. The processor pipeline
has five stages. The instruction fetch (IF) stage is respt$or fetching the 128-bit
VLIW instruction from the 32-KByte instruction cache. Thestruction decode (ID) stage
decodes 4 independent instructions per cycle and fetclgesteeoperands from a regis-
ter file with 8 read ports and 4 write ports. The execute (EXystperforms arithmetic
operations, multiplications, and address generation. riimory (MEM) stage accesses
the 32-KByte data cache and main memory. Finally, the waitgh(WB) stage retires
instruction results to the register file.

3.3.2 Testing Performance and Design Coverage

In this section, the cost of the online testing infrastruetis examined. In particular,
the number of vectors required to fully test each hardwarepmment and the area cost
of the hardware checkers are examined, and the overalltdedgerage of the design is
computed.

Online Testing Vectors: Table 3.1 lists the number of vectors needed to fully tedh eac
hardware component for stuck-at-O and stuck-at-1 faultee table shows that only few
vectors are required to test each unit. Considering thdetigth of a computational epoch
will typically be 1000’s of cycles, it is quite promising thiesting can be completed using
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Design Total Area| Checker Area % of Protected % of
Block (mnf) (mnf) Total Area | Area (nnf) | Total Area
IF 0.127 0.008 6.6 0.114 89.8
ID 0.278 0.023 8.2 0.261 96.3
RF 2.698 0.133 4.9 2.635 97.7
EX 2.993 1.166 39.0 2.896 96.8
WB 0.171 0.007 4.2 0.158 92.7
Flip-Flops 0.164 0.122 1.4 0.164 99.9
Overall Core 6.431 1.459 22.7 6.228 96.8
I-cache 32KB 2.033 0.009 0.5 1.881 92.5
D-cache 32KB 2.044 0.009 0.5 1.892 92.6
Overall System | 10.508 1.477 14.1 10.001 95.2

Table 3.2: Area Overhead of the BulletProof Technique: The table reports the total
area of each design block, the area dedicated to checketshamportion of the overall
area that is protected as a result of the BulletProof techmiq

only occasional idle cycles. The caches are not listed iheTai because the use of parity
bits allow for the continuous detection of defects. Cledthe time required to fully test
the hardware is quite small, only 128 cycles, with the regiBte taking the longest time
to complete its test.

Area Overhead and Design CoverageThe addition of test vector ROMs, where test
vectors are stored, plus the checkers and checkpointingstnficture bears a cost on the
overall size of the design. Table 3.2 lists the total aredhefdefect tolerant component
(Total Area), the defect protection infrastructure arebg€ker Area), and the area that is
covered by the test harness (Protected Area).

As shown in Table 3.2, the area overhead for defect protediguite modest, with
most overheads less than 10%. The overheads within thesacheven lower, less than
1% for the prototype. Consequently, the overall area oatli@r defect protection is quite
low. Adding support for defect and transient fault protestincreased the total area of the
design by only 14%.

The fault coverage of the BulletProof mechanism is examinetheasuring the frac-
tion of faults covered through fault injection experimenighis fraction represents the
overall design defect coverage. Table 3.2 lists the coeecdghe overall design, as well
as the coverage of individual processor components. Qytraldesign coverage is 95%,

meaning that 95 out of 100 defects randomly placed into theoprocessor are covered
in the BulletProof fault-tolerant design.

3.3.3 Run-time Performance

This section examines the impact of the BulletProof defeatgztion mechanism on
the performance of programs running on the defect tolenanofype design. The primary
source of potential slowdown occurs when a computationatleps too small (or the
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Benchmark Avg. epoch | Loads |Stores D_ata L1 Avg. ALU Avg. LSM Av_g. Dec. | Avg. reg.
size (cycles) (%) | (%) |miss rate| util. (%) | util. (%) | util. (%) | rw/cycle
175.vpr 50499 17.745.61 3.10 69.71 18.41 59.00 4.72
181.mcf 120936 | 21.683.68| 3.54 36.89 10.70 67.00 5.36
197.parser 106380 22.343.69] 2.10 54.22 19.71 52.25 4.18
256.bzip2 162508 18.786.39| 8.88 55.91 33.93 73.50 5.88
unepic 33604 10.986.70| 17.16 68.70 14.29 55.50 4.44
epic 196211 9.70 1.1b 6.60 72.8 8.28 29.25 2.3
mpeg2dec| 1135142| 26.038.54| 0.59 55.81 54.55 46.25 3.70
pegwitdec 169617 18.793.78| 10.42 62.15 45.06 62.50 5.0(
pegwitenc 304310 16.623.26| 12.81 69.09 42.19 63.75 5.1(
FFT 23145 19.1817.89] 1.49 56.88 43.95 33.50 2.68
patricia 139952 | 25.8112.83] 1.19 55.20 37.69 57.75 4.62
gsort 1184756 | 33.2027.44) 2.55 20.08 18.74 32.25 2.58
Average 302254 20.07 9.25 5.87 56.45 28.96 52.71 4.22
Table 3.3: Epoch Statistics for the Baseline Configuration: The table lists epoch

statistics such as the average epoch size in cycles, aldhd tvidata cache miss rates, and
statistics regarding the utilization of ALUs, L1 data cacmemory ports (LSM), decoders,
and register file ports.

testing requirements too great) to allow testing to conepleithin the time speculative
state resources are exhausted.

Performance Impact of Defect Testing:Table 3.3 lists statistics about computational
epochs for a variety of programs while running on the baséliblW processor with a 32
KByte 4-way set-associate data cache and an eight entgydafiociative volatile victim
cache. Listed is the average epoch size in cycles along héth 1 data cache miss rate.
Also shown are statistics regarding the utilization of AL U4 data cache memory ports
(LSM), decoders, and register file ports. It is clear frons ttaible that the performance
overhead of defect testing is quite low. For the program withshortest average epoch
length (FFT), the number of test cycles is at most 0.5% ofdked humber of cycles within
the epoch. For this program, even if the testing during igides could not be completed,
the performance impact would be negligible.

It should be noted that there is an interesting correlatatwben the epoch length and
the average component utilization. For many of the prograitis short epoch lengths
(e.g, FFT and unepic), there is also a low functional unit uttii@a. This is to be expected
because a program with a short epoch length would have adargeant of cache turnover,
which in turn would lead to many pipeline stalls and low fuactl unit utilization — and
plenty of time for defect testing. While programs with longpehs tend to have higher
component utilization, they do provide more time for the tegness to complete its task.
In addition, the effect of different cache geometries orrage epoch size is examined,
and found that there is little performance impact for detesting for a wide range of
cache geometries.
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Figure 3.9: Performance Degradation of a Reconfigured Bullgroof Processor: The
graph shows the performance of a variety of prototype psmrgsipelines that have been
impaired through reconfiguration. A configuration wittALU/m-LSMindicates that the
prototype processor pipeline ha®ALUs andm address generation/multiplier units.

Performance Impact of Degraded Mode ExecutionOnce a defect has been located,
the microprocessor must be reconfigured by disabling thectieé component. This re-
configuration will not allow as much parallelism as previgusfforded in the unbroken
pipeline, resulting in a performance degradation. FigugegBaphs the performance of a
variety of prototype processor pipelines that have beerairagd through reconfiguration.
In the experimentsn-ALU/m-LSMindicates that the experiment was run withALUS
andm address generation units/multipliers. The number of nessus varied from one to
four. As shown in Figure 3.9, losing an ALU in a 2ALU/2LSM maweé configuration ren-
ders an average of 18% performance degradation. The ayaedgemance degradation is
limited to only 4% when losing an address generation/miigtipinit in the same machine
configuration. Machine configurations with more resour@sexhibit even lower perfor-
mance degradation after being impaired through resoucmnfiguration. For example,
machine configurations with four and three ALUs loosing oéJAesults in an average
performance degradation of 3% and 8% respectively.
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3.4 Related Work

Defect-Tolerance SolutionsTable 3.4 compares qualitatively the BulletProof mecha-
nism with traditional defect-tolerance solutions and nreent solutions proposed in the
research literature. As discussed in Section 2.1, tecksitjke dual and triple modular
redundancy are full-scope techniques that can providetedserage to the whole design
with very limited intrusion to the original design. Howeyéhnese hardware replication
techniques lead to very high area overheads. An approadtasim hardware redun-
dancy is N-version redundancy where the protected compamdasigned by different
groups. This approach avoids common failure modes, howesaffers from very high
design cost since the replicated components are desigdedendently. Another tradi-
tional approach is error correction codes (ECC) that is deedetecting and correcting
data corruption in memory structures and data buses. Adth@&@CC has been proven a
low overhead and effective technique to provide data ptiotecit is limited only to the
data structures of a microprocessor design, most commbalynemory caches and the
register file.

The lower part of Table 3.4, compares the BulletProof apgrd&16, 83] with more
recent mechanisms found in the research literature, listetironological order with the
less recent at the top. The first work that proposed a compsaheapproach for micropro-
cessor tolerance to silicon defects was DIVA, proposed bstiiun [6]. DIVA is a simple
online checker component inserted into the retirementestdga complex out-of-order
microprocessor pipeline that continuously validates timagutation, communication, and
control exercised in the microprocessor core [6, 143]. Tp@@ach unifies all forms of
permanent and transient faults, making it capable of detgcomputations error due to
design bugs, soft errors, and permanent silicon defecesh@ldware overhead of a DIVA
checker is estimated to be around 6% of a full complex outrder microprocessor, which
compared to the traditional hardware replication techesois extremely low. However,
augmenting a complex microprocessor design with a DIVA kbebas a higher design
complexity and it is more intrusive than the traditionaldwaare replication techniques.
Furthermore, a limitation of the DIVA approach is that it do®t diagnose the root cause
of an error in order to repair the underlying hardware anggaethe error from occurring
again.

Next, Boweret al.[19] proposed a hardware mechanism for self-repairingyastiaic-
tures to provide defect detection and repair capabilibestficroprocessor array structures
such as the reorder buffer and branch history table. Theogsexbmechanism detects sil-
icon defects by employing dedicated “check rows”. Everyetiam entry is written to the
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Traditional Solutions
Dual Modular Very High | Very High | Very Low

Provides only error detection.

Redundancy (DMR) | (~99%) (>100%) (<5%) Low Easy to cover the whole design.
. . . Provides both error detection an
Triple Modular Very High | Ultra High | Very Low Low forward recovery. Easy to cover

Redundancy (TMR) (~99%) (>200%) (<5%) the whole design

N different versions of the

N-Version Very High | Very High | Very Low .
Redundancy (~gg%% (>1y00°/go) (<)é%) Very High component have to be
implemented.
Error Correction Memory Medium Very Low Low Limited only to memory structure
Codes (ECC) Structures| (~15%) (<5%) or data buses.
Research-Stage Solutions

DIVA Not Low Not Medium Uses an online checker at the
Austin [6] Available (~6%) Available pipeline’s retirement stage.

Only Limited to array structures.
SRAS Array Not Not Medium | Requires hardware changes in th

Available Available
Structures array structures.

Uses DIVA checkers and pipelin

Boweret al.[19]

Boweret al.[20] Avgliﬁatble '}"ffi.)'},g Avgliloatble High additio_ns that truck in_structio_n
execution for defect diagnosis.
High Medium Ultra Low 8 Uses BIST-like on-chip hardware
BulletProof [116, 83] (~95%) (~14%) (<1%) Medium checkers.
ElastiC _ _ Uses on-chip _se_nsors,_silicon
S Under Development/Evaluation High | wear-out prediction units, and on:
ylvesteret al.[129] .
chip testers.
Uses runtime checkers for the
Argus High Medium Low Medium validation of control flow,
Meixneret al.[85] (~98%) (~11%) (~4%) computation, dataflow, and
memory operations.
Pipeline stages need to be isolat]
StageNet Not Medium Medium High and connected through crossbar
Guptaet al.[42] Available | (~15%) (~10%) switches. No error detection
support.

Table 3.4: Comparing BulletProof To Related Work: Comparison of BulletProof
to traditional defect-tolerance solutions and more retectiniques found in the research
literature. The techniques are compared in respect todleésct coverage, area overhead,
runtime performance overhead, and the degree they intruithe ioriginal design and they
are presented in chronological order with the less recehieaop.

array structure, the same data is also written into a cheek Tden, both locations are
read out and their values are compared to detect defectise o repair defective arrays,
the mechanism exploits the inherent resource redundarttysé structures and redirects
any accesses to defective rows to other functionally coroees. Although the area over-
head of the technique is expected to be low, its implementagquires hardware design
changes to the protected array structures. Furthermagdetihnique is limited only to
array structures and it does not cover the other resourdée ohicroprocessor.

To address this limitation, Bowest al. extended their work in [20], where they pro-
posed a fault-tolerant microprocessor design that use#\[Bhéckers for system-level
error detection coupled with a mechanism for diagnosirigasil defects by tracking the
instruction occupancy through the microprocessor’s jpigelThis mechanism covers the
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whole microprocessor pipeline and after diagnosing amsildefect in one of the pipeline
components, the microprocessor reconfigures (lisables) the defective part and contin-
ues operation at a gracefully degraded level of performanie estimated area overhead
of this solution is around 15% of the pipeline area.

In [129], Sylvesteeet al. proposed the ElastIC architecture which uses in-situ $8nso
in combination with reliability and power models to prediut lifetime and wearout of the
underlying hardware. This approach enables the dynande-o#f of performance with
longer lifetime and reliability using dynamic voltage sogltechniques. The prototype
and evaluation process for this approach is currently irgmass and there are not yet
known estimates for its coverage, area, or performanceheael.

More recently, Meixneet al., in [85], presented Argus, an error detection technique
for simple processor cores. The Argus technique continyaisecks invariants to de-
tect execution errors, without the need for redundant cdatjmn. Specifically, Argus,
uses run-time invariant checking in four fundamental ta#iis control flow, the dataflow,
computation, and memory access. An implementation of tlypig\system, the Argus-1,
that illustrates the engineering trade-offs between obrecists and error coverage was
presented in [85]. The Argus-1 prototype implementatios Wased on a single-issue,
4-stage, in-order processor and is characterized by a 1é&aserhead and around 4%
runtime performance overhead. The Argus approach, lik8thketProof approach, pro-
vides error detection for errors caused by both permanéobisidefects and transient
faults and offers an alternative low-cost defect-toleeaapproach compared to the tra-
ditional defect-tolerance approaches. However, Argusrsi@a slightly higher runtime
performance overhead than the BulletProof approach.

Finally, in [42], Guptaet al. presented StageNet, a highly reconfigurable multicore
architecture. StageNet is a reconfigurable multicore caimgsubstrate designed as a
network of pipeline stages, rather than isolated cores im@multicore processor. The
StageNet network is formed by replacing the direct conpastiat each pipeline stage
boundary by a crossbar switch. Within the StageNet netwaigeline stages can be se-
lected dynamically from the pool of available stages to féwgical processing cores, thus
permanent silicon failures can be easily isolated by adelytirouting around defective
stages. The StageNet and the BulletProof approaches cambelered complementary
techniques, since the BulletProof framework can efficied#tect and diagnose silicon
defects in the microprocessor, and the StageNet subsaateftectively reconfigure the
microprocessor’s hardware resources and repair the nimrepsor design.

From Table 3.4, we observe that the BulletProof mechanisohasacterized by ex-
tremely low runtime performance overhead, but the providefitct coverage is lower
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than some of the most recently proposed techniques and djiasrtdrea overhead. Based
on this observation, we considered to trade-off runtimégperance overhead with higher
defect coverage and lower area cost. To make this tradessSHiple, we found that we
could move the defect detection and diagnosis process foenBtilletProof’s on-chip
hardware checkers to software testing routines. The mowneaie¢he hardware checking
process from hardware to software is the topic of the nexptemaChapter V.

Transient Fault Tolerance Solutions: Several approaches for providing transient
fault tolerance have been proposed in the past few years.cdineept of using time re-
dundancy methods for mitigating soft errors has been egglor [5], [97] and [81]. In
particular, in [81], three samples of the input are takenitf¢nént clock edges and the
final output is determined using a majority voter.

An approach closer to the technique used by BulletProofleyate transient faults is
presented in [90]. In [90], Mitrat al. propose reusing scan chain resources for transient
fault detection in flip-flops. They introduce two differerdas cell designs which are
based on blocking and trapping transient faults at the autpeach flip-flop. While
their approach is efficient in terms of area, power and deleyhead, it does not detect
transient faults in combinational logic. The solution il]®roposes a time-redundancy
based scheme with scan-path reuse in which a time-shiftstbweof the input is given to
the scan flip-flop. The C-element which was introduced in [8@hen used to block the
error at the flip-flop’s output.

3.5 Chapter Summary

This chapter presented BulletProof, a low cost technigagdiotects a microprocessor
pipeline and caches against transient faults and permaiiieoin defects. The approach
taken by BulletProof is notably different from traditioregproaches to fault tolerance. A
microarchitectural checkpointing mechanism createswgptee epochs of computation
after which distributed, domain-specific on-line checkews BIST-like tests to verify the
integrity of the underlying hardware. Additionally, a déedsampling latch design is used
to detect transient fault logic glitches which have coreaithe pipeline state. If, at the end
of an epoch, the hardware is fault-free, the epoch compuntaiallowed to retire to non-
speculative state. In the event that a fault is exposed, ribgrgm state is rolled back to
the last known good program state at the beginning of theefasth. If the fault is due to
a transient fault, the epoch is re-executed, otherwisejéfective component is disabled,
thereby allowing the processor to continue correct exenut a degraded-performance
mode.
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A 4-wide VLIW physical-level prototype processor enhaneeth the BulletProof
low-cost solution for fault tolerance was implemented. s of this design indicates
that area overhead of the BulletProof mechanism is quiteastpgroviding transient and
hard silicon fault protection with only a 14% increase inatadarea. This is a remark-
able improvement over traditional redundancy-based igaes, such as triple-modular
redundancy, which incurs overheads starting at 200%. Axiditly, it was demonstrated
through gate-level fault injection studies that faultes®ion coverage is very high: 95% of
all hard silicon defects and 99% of all transient faults areeced. Additional simulation
studies confirmed that periodic online testing has nedbginpact on the overall system
performance. Additionally, we examine the performancerofqiype processors running
with disabled components in a degraded mode. When a 4-widé/\last only one re-
source, performance impacts were limited to only a 6% slewdd_arger impacts were
seen by the loss of a single resource in 2-wide VLIW processsulting in an overall
slowdown of 26%.

The BulletProof techniqgue makes a strong case for the usalofeoperiodic hard-
ware checking coupled with microarchitectural checkpgogto implement future defect
tolerant microprocessors. The approach is both efficieiti, igh coverage and low per-
formance impacts, and also inexpensive, with small aregheael.
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CHAPTER IV

A Software-Based Periodic Hardware Checking Solution -
The ACE Framework

The BulletProof approach, presented in the previous chagémmonstrated that pe-
riodic hardware checking techniques can provide the sahiabildy guarantees as tradi-
tional defect-tolerance solutions that continuously narthe execution for errors through
redundant computation, but at a much lower cost. Howeven avthe BulletProof ap-
proach, there is a need for some additional hardware res®ueeded to perform the peri-
odic hardware checking. This need, leads to some additi@rdivare overhead which in
the case of the BulletProof prototype examined in the presmhapter, it was observed to
reach a 14% area overhead over the whole processor desigheifoore, in BulletProof,
in order to lower the silicon cost, the testers were custethio the tested modules, a
design decision that lead to increased design complexigyspeecialized tester needed to
be designed for each module covered by BulletProof. In addithe majority of the Bul-
letProof online hardware checkers used BIST-like testeupniques that bind a specific
testing approache(g, fault model) into silicon and cannot be modified or adaptethe
field while the processor is operating.

To address the limitations observed in the BulletProof raa@dm, this chapter intro-
duces theAccess-Control Extension (ACE) Framewoaksoftware-based technique that
shifts the silicon defect detection and diagnosis process bn-chip hardware checkers
into software. In the ACE framework, the hardware provides necessary substrate to
facilitate the hardware testing, and the software makesotiseis substrate to perform
the hardware testing. The ACE framework addresses thealiimits of the BulletProof
approach by: 1) it effectively removes the need for on-clapivare checkers and moves
this functionality to software, 2) it is not hardwired in tdesign and therefore has am-
ple flexibility to be modified/upgraded in the field, 3) it caa bniformly applied to any
microprocessor module with low design complexity becatsi®és not require module-
specific customizations, and 4) it provides wider coveragess the whole chip, including
non-core modules.
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Figure 4.1: ACE Framework Overview: The ACE framework fits in the hard-
ware/software stack below the operating system.

The ACE framework introduces specialized Access-Contrbéision (ACE) instruc-
tions that are capable of accessing and controlling vist@ady portion of the microproces-
sor’s internal state. Special firmware periodically susisemicroprocessor execution and
uses the ACE instructions to run directed tests on the hasdaad detect if any compo-
nent has become defective. To provide faster and more fegditware access to different
microarchitectural components at low hardware overhds ACE framework leverages
the pre-existing scan-chain infrastructure [67] that isvamtionally integrated in existing
microprocessor designs and used during manufacturinggest

Figure 4.1 shows how the ACE framework fits in the hardwafeisoe stack below
the operating system layer. The ACE framework providesqadrly wide coverage, as
it not only tests the internal processor control and ingibncsequencing mechanisms
through software functional testing, but it can also chekkldatapaths, routers, inter-
connect and microarchitectural components by issuing A@uction test sequences.
Additionally, the ACE framework provides a complete defeaterance solution by incor-
porating its defect detection and diagnosis capabilities coarse-grained checkpointing
and recovery environment.

In the remainder of this chapter, Section 4.1 introduces\elnget of instructions,
called Access-Control Extension (ACE), that can accessanttol the microprocessor’s
internal state. This set of instructions can be used by apftnware that periodically sus-
pend microprocessor execution to run directed tests ondtonare. Section 4.2 provides
the methodology used to experimentally evaluate the ACEdraork, and Section 4.3
presents an analysis of the results of the ACE frameworlkeemental evaluation on a
commercial chip-multiprocessor based on Sun’s Niagarati@e4.4 provides previous
research work that is related with the ACE framework, andctiegoter is summarized in
Section VII.
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4.1 Software-Based Periodic Defect Detection and Diagnasi

A key challenge in implementing a software-based defeedlien and diagnosis tech-
nique is the development of effective software routinediec& the underlying hardware.
Commonly, software routines for this task suffer from thiedrent inability of the soft-
ware layer to observe and control the underlying hardwasjlting in either excessively
long test sequences or poor defect coverage. Current namegsor designs allow only
minimal access to their internal state by the software tayien all that software can ac-
cess consists of the register file and a few control regigsersh as the program counter
(PC), status registersfc). Although this separation provides protection from malis
software, it also largely limits the degree to which stockdwaare can utilize software to
test for silicon defects.

An example scenario where the lack of observability compsemthe efficiency of
software testing routines is a defective reorder bufferyerin this scenario, a software-
based solution can detect such a situation only when thetdedeses an error that propa-
gates to an accessible state, such as the register file, mesnarprimary output. More-
over, without specific knowledge as to how the architectstiatie was corrupted, tlikag-
nosisof the source cause of the erroneous result is very chatigigi

To overcome this limited accessibility, the software-lsasamework presented in this
chapter employs architectural support through an extersithe processor’s ISA. Specif-
ically, the ISA extension adds a set of special instructtbasenable full observability and
control of the hardware’s internal state. These AccessiGbExtension (ACE) instruc-
tions are capable of reading/writing from/to any part ofrtieroprocessor’s internal state.
ACE instructions make it possible to probe underlying hamwand systematically and
efficiently assess if any hardware component is defective.

4.1.1 An ACE-Enhanced Architecture

A microprocessor’s state can be partitioned into two pasessible from the software
layer (.9, register file, PCetc), or not €.g, reorder buffer, load/store queuesg). An
ACE-enhanced microarchitecture allows the software l&ayaccess and control (almost)
all of the microprocessor’s state. This is done by us\@ instructionghat copy a value
from an architectural register to any other part of the npoogessor’s state, amite versa

This approach inherently requires the architecture tosecttee underlying microarchi-
tectural state. To provide this accessibility without g@&hardware overhead, we leverage

The sole fact that a hardware fault had propagated to an\aisleroutput does not provide information
on where the defect originated.
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Figure 4.2: A Typical Scan Flip-Flop: The presented scan flip-flop is adapted from
[90]. The system flip-flop is used during the normal operatitthe microprocessor, while
the scan portion is used during testing to shift in and outgaterns and test responses.
The ACE framework leverages the microprocessor’s scartaothre to facilitate online
testing.

the existing scan chain infrastructure. Most modern pmmedesigns employ full hold-
scan techniques to aid and automate the manufacturingdgstbcess [67, 146]. In a full
scan design, each flip-flop of the processor state is sutestiwith a scan flip-flop and
connected to form one or more shift registers (scan chak®) Figure 4.2 shows a typi-
cal scan flip-flop design [90, 67]. The system flip-flop is usedrd) the normal operating
mode, while the scan portion is used during testing to loadsgstem with test patterns
and to read out the test responses. The ACE framework extbadsisting scan-chain
using a hierarchical, tree-structured organization twidefast software access to differ-
ent microarchitectural components. The scan chain is tgebet-speed,e., at the same
frequency as the processor clock, to facilitate onlinarigsais in some modern micropro-
cessors [75].

ACE Domains and Segmentsin the ACE extension implementation, the micropro-
cessor design is logically partitioned into sevek@E domainsAn ACE domain consists
of the state elements and combinational logic associatéd avspecific part of the mi-
croprocessor. Each ACE domain is further subdivided ABE segmentsas shown in
Figure 4.3(a). Each ACE segment includes only a fixed numbstooage bits, which is
the same as the width of an architectural register.

ACE Instructions: Using this hierarchical structure, ACE instructions caadrer
write any part of the microprocessor’s state. Table 4.1 shawlescription of the ACE
instruction set extensions.
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ACE_set $src, <ACE Donmi n#>, <ACE Segment #>
Copy sr c register to the scan state (scan portion)

ACE _get $dst, <ACE Donai n#>, <ACE Segnent #>
Load scan state to register dst

ACE_swap <ACE Domai n#>, <ACE Segnent #>
Swap scan state with processor state (system FFs)

ACE t est : Three cycle atomic operation.
Cycle 1 :Load test pattern, Cycle 2 : Execute for
one cycle, Cycle 3 : Capture test response

ACE test <ACE Domai n#>: Same as ACE_test but local
to the specified ACE domain

Table 4.1: The ACE Instruction Set Extensions: The ACE instructions can copy a
value from an architectural register to any other part ofrtheroprocessor’s state, and
vice versa

ACEset copies a value from an architectural register to the scae ¢s@an por-
tion in Figure 4.2) of the specified ACE segment at-speed @t the processor’s clock
frequency). SimilarlyACEget loads a value from the scan state of the specified ACE
segment to an architectural register at-speed. These struations can be used for ma-
nipulating the scan state through software-accessibldtaotural state. ThACEswap
instruction is used for swapping the scan state with thegasar state (system flip-flops)
of the ACE segment by asserting both the UPDATE and the CAFH SiBnals (see Fig-
ure 4.2).

Finally, ACEtest is a test-specific instruction that performs a three-cytteni
operation for orchestrating the actual testing of the uiydey hardware (see Section 4.1.2
for an example) ACEtest is used after the scan state is loaded with a test vector using
the ACEset instruction. In the first cycle, the scan state is swappet thié processor
state. The second cycle is the actual test cycle in which tbeegsor executes for one
clock cycle? In the third cycle, the processor state is swapped againthitlscan state.
The last swap restores the processor state in order to centiormal execution and moves
the test response back to the scan state where it can betedlidaing theACEget
instruction. Another version oACEtest takes as argument an ACE domain index,
which allows testing to be performed locally only in the sfied domain®

ACE Tree: During the execution of an ACE instruction, data needs tadesferred
from the register filéto any part of the chip that contains microarchitecturaksti order

°Note that this is analogous to single-stepping in softwatsudging.

SACEtest is logically the same as an atomic combinationA@Eswap, followed by a single test
cycle, followed by anotheACEswap.

4Either from general-purpose architectural registersamfspecial-purpose architectural registers.
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Figure 4.3: The ACE Architecture: In part (a), the chip is logically partitioned into
multiple ACE domains. Each ACE domain includes several A€gnsents. The union

of all ACE segments comprises the full chip’s state (exelgdBRAM structures).

part (b), data is transferred from/to the register file toffran ACE segment through the
bidirectional ACE tree.

to avoid long interconnect, which would require extra répessand buffering circuitry, the
data transfer between the register file and the ACE segneepigelined through thACE
treg as shown in Figure 4.3(b). At the root of the ACE tree is thgaster file while the
ACE segments are its leaves. At each intermediate tree fleget is anACE nodethat

is responsible for buffering and routing the data based enrettecuted operation. The
ACE tree is a bidirectional tree allowing data transfersrirthe register file to the ACE
segments and back. By designing the ACE tree as a balanee@lrpaths have the same
length), each ACE instruction that reads/writes any seg@rkthe microprocessor state
takes the same number of clock cycles.(the tree’s depth). Note that ACE instructions
can be executed in a pipelined fashion over the ACE tree.
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In a uniprocessor system the ACE topology is the simplestiples since it consists of
a single ACE tree rooted at the processor’s register file. éd@wy CMP systems consisting
of several cores, on-chip caches, and supporting modudésasimemory controllers and
cross-barsi(e., non-coremodules), might require more complex ACE topologies. In CMP
systems it is possible to design multiple ACE trees, eadfirating from a distinct reg-
ister file of the multiple cores in the system. Since non-eooelules usually do not have
instruction execution capabilities, they cannot includeALE tree of their own. There-
fore, in the ACE framework implementation, each core’s A@tetspans over the core’s
resources as well as over non-core modules.

In order to avoid any malicious use of the ACE infrastruct€E instructions are
privileged instructions that can be used only AZE firmware ACE firmware routines
are special applications running between the operatingsykyer and the hardware in
a trusted mode, similarly to other firmware, such as devioeds. Each microprocessor
vendor can keep the specific mapping between the micromocestate and the ACE
domains/segments as classified information for securégals. Therefore, it is expected
that ACE firmware will be developed by microprocessor vesdind distributed to the
customers.

Design Complexity: Since the ACE Tree is a regular structure that routes data fro
the register file to the scan chains and vice versa, its imgheation and insertion into
the microprocessor implementation can be automated by @&I3,tsimilar to the way
that scan chains are automatically implemented and irgs@rteurrent microprocessors
today. The main intrusive portion of the ACE Tree that needsraction with existing
processor components are the additional read/write pedded to connect the root of the
ACE Tree to the processor register file. Similarly, the ACE&tiinction set extensions are
likely not intrusive to the microarchitecture since thgieoations are relatively simple and
their implementation does not affect the implementatioatbér instructions in the ISA.

4.1.2 ACE-Based Online Testing

ACE instruction set extensions make it possible to crafgpams that can efficiently
and accurately detect underlying hardware defects. Theoapp taken in building test
programs, however, must have high-coverage, even in tleepce of defects that might
affect the correctness of ACE instruction execution antlgesgrams. This section de-
scribes how test programs are designed.

ACE Testing and Diagnosis: Special firmware periodically suspends normal pro-
cessor execution and uses the ACE infrastructure to perfogim-quality testing of the
underlying hardware. A test program exercises the unagylgardware with previously
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Step 1. Test Pattern Loading

/1 load test pattern to scan state
for(i=0;i<#_of ACE_Domains;i++){
for(j=0;j<#_of_ACE_Segments;j++){
load $rl,pattern_mem_loc
ACE_set %r1, i, ]
pattern_mem_loc++

Step 2: Testing

/'l Three cycle operation

/1 1)l oad test pattern

/! to processor state

/1 2)execute for one cycle
/'l 3)capture test response &
/'l restore processor state
ACE_test

Step 3: Test Response Validation

/1 validate test response
for(i=0;i<#_of_ACE_Domains;i++){
for(j=0;j<#_of ACE_Segments;j++){
load $rl,test resp_mem_loc
ACE_get $r2, i, j
if ($r1!=$r2) then ERROR else
test_resp_mem_loc++

}

Figure 4.4: ACE Firmware: Pseudo-code for 1) loading a test pattern, 2) testing, and
3) validating the test response.

generated test patterns and validates the test resporsbghB test patterns and the asso-
ciated test responses are stored in physical memory. Thelpsmde of a firmware code
segment that applies a test pattern and validates the sgginee is shown in Figure 4.4.
First, the test program stops normal execution and use8@teset instruction to load
the scan state with a test pattern (Step 1). Once the testrpadtloaded into the scan
state, a three-cycle atonWCEtest instruction is executed (Step 2). In the first cycle,
the processor state is loaded with the test pattern by swgplpé processor state with the
scan state (as described in the previous section). The geld i the actual test cycle
where the combinational logic generates the test respém#iee third cycle, by swapping
again the processor state with the scan state, the procgaselis restored while the test
response is copied to the scan state for further validafite. final phase (Step 3) of the
test routine uses th&CEget instruction to read and validate the test response from the
scan state. If a test pattern fails to produce the correpbrese at the end of Step 3, the test
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program indicates which part of the hardware is defeetaral disables it through system
reconfiguration [114, 29]. If necessary, the test programraa additional test patterns to
narrow down the defective part to a finer granularity.

Given this software-based testing approach, the firmwasegder can easily change
the level of defect coverage by varying the number of tesiepat. As a test program
executes more patterns, coverage increases. Automatipatsrn generation (ATPG)
tools [23] can be used to generate compact test patterndiegsiiag to specific fault mod-
els.

Basic Core Functional Testing: When performing ACE testing, there is one initial
challenge to overcome: ACE testing firmware relies on theeobness of a set of basic
core functionalities which load test patterns, execute ASEuctions, and validate the test
response. If the core has a defect that prevents the coxentitton of the ACE firmware,
then ACE testing cannot be performed reliably. To bypassgtoblem, specific programs
to test the basic functionalities of a core before running AGE testing firmware are
employed. If these programs do not report success in a timalyner to an independent
auditor €.g, the operating system running on the other cores), then wenas that an
irrecoverable defect has occurred on the core and it is pegnily disabled. If the basic
core functionalities are found to be intact, finer-graingcEAtesting can begin. Although
these basic functionality tests do not provide high-qudésting coverage, they provide
enough coverage to determine if the core can execute theteard\CE testing firmware
with a very high probability. A similar technique employisgftware-based functional
testing was used for the manufacturing testing of Pentiu@d4 [

Testing Frequency: Device experts suggest that the majority of wearout-rdlae
fects manifest themselves as progressively slow devidesébeventually leading to a per-
manent breakdown [15, 71]. Therefore, the initial obselevalpmptoms of most wearout-
related defects are timing violations. To detect such waarelated defects early, we
employ a test clock frequency that is slightly faster thamaperating frequency. Specif-
ically, the existing dynamic voltage/frequency scalingcireisms employed in modern
processors [79] can be extended to support a frequencysiglightly higher than the
fastest used during normal operatfon.

5By interpreting the correspondence between erroneousmesbits and ACE domains.
5The safeguard margins used in modern microprocessorsiétate process variation) allow the use of
a slightly faster testing frequency with a negligible numbkfalse positives [33].
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4.1.3 ACE Testing in a Checkpointing and Recovery Environmset

The ACE testing framework is incorporated within a multipgesor checkpointing
and recovery mechanisne.¢, SafetyNet [120] or ReVive [101]) to provide support for
system-level recovery. When a defect is detected, thersysti@te is recovered to the last
checkpoint ((e., correct state) after the system is repaired.

In a checkpoint/recovery system, the release of a checkpgoan irreversible action.
Therefore, the system must execute the ACE testing firmwadihe &nd of each checkpoint
interval to test the integrity of the whole chip. A checkgagreleased only if ACE testing
finds no defects. With this policy, the performance overhiaddced by running the ACE
testing firmware depends directly on the length of the cheitikpnterval, that is, longer
intervals lead to lower performance overhead. The trafleaifveen checkpoint interval
size and ACE testing performance overhead is explored iddet.3.5.

To achieve long checkpoint intervals, 1/0O operations nedaethandled carefully. 1/0
operations such as filesystem/monitor writes or networlk@atransmissions are irre-
versible actions and can force an early checkpoint ternoinaPremature checkpoint ter-
minations can be avoided by buffering I/O operations asrdsesat in [95]. Alternatively,
the operating system can be modified to allow speculativeol@rations as described
in [98]. Section 4.3.7 evaluates the effect of frequent Ifi@rations on the performance
overhead of our technique.

4.1.4 Putting it Together: Algorithmic Flow of ACE-Based Testing

Table 4.2 shows the flow of ACE-Based Online testing in a chetcking and recovery
environment with single-threaded execution. Other exenuhodels are examined in the
next section. Two points are worth noting in the algorithnirst- a lightweight context
switch is performed from the application thread to the ACEite) thread at the beginning
of the test and vice versa at the end of the test. Lightweightext switching [2, 65]
in a single cycle is supported by many simultaneously-riuttaded processors today,
including Sun’s UltraSPARC T1. If lightweight context selit support is not available,
then a pipeline flush is required. Our results show that cost@itch penalty, even if it
is hundreds of cycles, only negligibly increases the ovadhef ACE testing. Second, if
either the basic core functional test or the ACE firmware fidtst, ACE testing firmware
disables the tested core and traps to system softivdrtne ACE firmware test fails, the

"Note that if a certain test takes longer than an unreasomhaimytime interval i .e., greater than 10 times
the maximum latency of the performed test), a watchdog tidedects this and repeats the test. If the test
fails or times out twice, then an irrecoverable core defeaessumed and the microprocessor traps to system
software.
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St ep Acti on

1 Run regular application thread until the
checkpointing interval is reached

Lightweight context switch to ACE testing mode

Run basic core functional test (described in
Sections 4.1.2 and 4.3.1)

3-Fail Ifithe functional test fails twice, declare
fault, disable core, and trap to system
software for analysis and recovery

4 Run the ACE firmware (shown in Figure 4.4)

4-Fail IffACE firmware results in ERROR, declare
fault, disable core, and trap to system
software for analysis and recovery

5 Discard old checkpoint, create new checkpoint,
context switch back to regular application
thread; go to Step 1

Table 4.2: Algorithmic Flow of ACE-Based Testing: During ACE-based testing, a
lightweight context switch is performed from the applicatithread to the ACE testing
thread at the beginning of the test and vice versa at the etitedést. If either the basic
core functional test or the ACE firmware test fails, ACE tegtfirmware disables the
tested core and traps to system software.

system software performs defect diagnosis to localize #fead. To do so, the system
software maps the ACE segments that fail to match the exgpéest response to specific
hardware componentgd., the combinational logic driving the flip-flops of the ACE seg
ments). If reconfigurability support is provided within #®hardware components, the
ACE firmware can pinpoint these components to be disabled.

4.1.5 ACE Testing Execution Models

Single-Threaded Sequential ACE Testing:The simplest execution model for ACE
testing is to invoke the ACE testing process at the end of eaelckpoint interval. In
this execution model, the application runs normally on thecpssor until the buffering
resources dedicated to the checkpoint are full and a nevkpbet needs to be taken. At
this point, a context switch between the application pre@xl the ACE testing process
happens. If the ACE testing routine deems the underlyingvaire defect-free, a new
checkpoint of the processor state is taken and the execotitihe application process is
resumed. Otherwise, system repair and recovery are tedgdfigure 4.5(a) illustrates
this single-threaded sequential execution model.
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Interleaved ACE Testing in the
shadow of L2 misses
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Figure 4.5: Different ACE Testing Execution Models: Part (a) illustrates ACE testing
in a single-threaded sequential execution model where @& #&sting thread is executed
exclusively after application execution. In part (b) theEA@sting thread runs simultane-
ously with the application in a 2-way SMT execution enviramh In part (c) ACE testing
is interleaved with application execution and runs in thedstw of L2 cache misses.

SMT-Based ACE Testing: In processors that support simultaneous multithreading
(SMT) execution [112, 48, 136], it is possible for the ACE fivare to run simultaneously
with the application threads running on separate execabatexts. This execution model
is illustrated in Figure 4.5(b) and could be higher perfanoesince it overlaps the latency
of ACE testing with actual application execution.

Fortunately, the majority of the instructions used by theEA€sting firmware do not
entail any synchronization requirements between the AGEnig thread and the other
threads running on the processor. For example, the ACEurtgins used to load a test
pattern into the scan statACEset ) or read and validate a test respon8€Eget ) do
not affect the execution of other threads running on thegssar. The work performed by
these instructions can be fully overlapped with applicagsecution.

However, theACEtest instruction momentarily changes the microarchitectutiates
of the entire processor and thus affects the normal execofi@ll running threads. To
avoid the incorrect execution of other running threads,ménr@ACEtest instruction is
executed by the ACE testing thread, all other threads ne@dise execution. This is
implemented by using simple synchronization hardwarepbases execution of all other
threadsice., stalls their pipelines) when akCEtest instruction starts execution and re-
sumes their execution once the test instruction is comghl@®etice that during testing, the
processor’s microarchitectural state is stored in the state. The microarchitectural state
gets restored right after the test cycle (see Section 4ehdhling the seamless resumption
of normal processor execution.

The advantage of the SMT-based ACE testing model is its |p@gormance overhead
compared to single-threaded sequential ACE testing. Téadgiantage is that this model
requires a separate SMT context to be present in the undegnyobcessor.

Interleaved ACE Testing in the Shadow of L2 MissesWhen the ACE testing thread
is sharing the processor resources with other criticaliegipbns, it is important to avoid
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penalizing the performance of these critical applicatidns to hardware testing. Perfor-
mance penalties can be reduced by allowing the ACE testiegquthto execute only when
the processor resources are not utilized by the performenitoeal threads. An example
scenario is to execute the ACE testing thread when the psocesstalled waiting for an
L2 cache miss to completeg., in the shadow of L2 cache misses. This execution sce-
nario is illustrated in Figure 4.5(c). In this execution regdhe processor suspends the
execution of the application and context switches into ti@dEAesting thread when the
application incurs an L2 cache miss due to its oldest insbac This context switch is
similar to the lightweight context switches used in switoirevent multithreading [2, 65].
When the L2 miss is fully serviced, the processor contextches back to the applica-
tion and suspends the execution of the ACE thread. Undeexeisution policy, the ACE
testing thread utilizes resources that would otherwise dieutilized and does not use
the processor resources when these are needed by othenpmrte critical applications.
However, it is possible that the full ACE testing might notdmmpleted in the shadow
of L2 misses because the application might not incur enoybdche misses. If that is
the case, the remaining portion of the ACE testing threackéx@ed at the end of the
checkpoint interval.

The advantage of this ACE testing model is that it does natireca separate SMT
context and can possibly provide lower performance overhiean sequential ACE test-
ing. On the other hand, if L2 misses are not common in an agipdic, this model can
degenerate into single-threaded sequential ACE testing.

4.1.6 Flexibility of ACE Testing

The software nature of ACE testing inherently provides aenftaxible solution than
hardwired solutions. The major advantages offered by teisiflity are:

Dynamic tuning of the performance-reliability trade-off: The software nature of
ACE testing provides the ability to dynamically trade-odfrformance with reliability (de-
fect coverage). For example, when the system is runningiaeatrapplication demanding
high system reliability, ACE testing firmware can be run mioeguently with higher qual-
ity and higher coverage targeis(, use of different fault models and more test patterns).
On the other hand, when running a performance critical apgptin with relatively low re-
liability requirementsé€.g, video decompression), ACE testing frequency can be retduce

Utilization-oriented testing: ACE testing allows the system to selectively test only
those resources utilized by the running applications. kamgple, if the system is running
integer-intensive applications, there might be no needgbrton-utilized FPU resources.
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Upgradability: Both fault models and ATPG tools are active research areas. R
searchers continuously improve the quality and coveragbefjenerated test patterns.
Therefore, during the lifetime of a processor, numerousades will improve the qual-
ity and test coverage of the ATPG patterns. The softwareraalACE testing allows
processor vendors to periodically issue ACE firmware upsdtitat can incorporate these
advances, and thus improve the defect detection qualiingltine processor’s lifetime.

Adaptability: ACE testing allows vendors to adapt the testing method bardd-
the-field analysis of likely defect scenarios. For examfle, vendor observes that the
failure of a specific processor is usually originating frompaticular module, they can
adapt the ACE testing firmware to prioritize efforts on thattigular module.

4.2 Experimental Methodology

The OpenSPARC T1 architecture, the open source versioreatdmmercial Ultra-
SPARC T1 (Niagara) processor from Sun [127], is used as thergrental testbed for the
evaluation of the ACE framework.

The OpenSPARC T1 processor implements the 64-bit SPARC &f8itacture and tar-
gets commercial applications such as application servetslatabase servers. It contains
eight SPARC processor cores, each with full hardware suppofour threads. The eight
cores are connected through a crossbar to a unified L2 cakt®) (Fhe chip also includes
four memory controllers and a shared FPU unit [127].

First, using the processor’'s RTL code, the processor wadathinto ACE domains.
This partition was made based on functionality, where eamain comprises a basic
functionality module in the RTL code. When dividing the pessor into ACE domains,
the modules that are dominated by SRAM structures (suchdmesawere excluded be-
cause such modules are already protected with error-céeampiques such as ECC. Fig-
ure 4.6 shows the processor modules covered by the ACE frarkgwote that the L1
caches within each core are also excluded). Overall, theiRiplementation of the ACE
framework consists of 79 ACE domains, each domain includimgverage 45 64-bit ACE
segments. The whole chip comprises roughly 235K ACE-aduedsits.

Next, each ACE was synthesized using the Synopsys Desigpiwith the Artisan
IBM 0.13um standard cell library. The test patterns wereegated using the Synopsys
TetraMAX ATPG tool. TetraMAX takes as input the gate-lewatthesized design, a fault
model, and a test coverage target and tries to generate tiuom set of test patterns that
meet the test coverage target.
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Figure 4.6: ACE Coverage of the OpenSPARC T1 Processor: Modules that are
dominated by SRAM structures, such as on-chip caches, amomered by ACE testing
since they are already protected by ECC.

Fault Models: In the evaluation of the ACE framework, three single-fautidels were
used: stuck-at, N-detect and path-delay. The stuck-at faodlel is the industry standard
model for test pattern generation. It assumes that a cidedéct behaves as a node stuck
at 0 or 1. However, previous research has shown that theddéstp sets generated using
the N-detect fault model are more effective for both timimgl &ard failures, and present
higher correlation to actual circuit defects [82, 40]. le th-detect test pattern sets, each
single stuck-at fault is detected by at lebstifferent test patterns. As expected, the benefit
of more effective testing by using the N-detect model comis the overhead of larger
test pattern set sizes and longer testing times. To prowiddléxibility of dynamically
trading off between reliability and performance, test @attsets using both fault models
were generated.

In addition to the stuck-at and N-detect fault models, testgons were also generated
using the path-delay fault model [23]. The path-delay fanitdel tests the design for
delay faults that can cause timing violations. The testgpast generated using the path-
delay fault model exercise the circuit’'s paths at-speecdeteat whether a path is too slow
due to manufacturing defects, wearout-related defectpraress variation. A detailed
description of the path-delay fault model used is avail@btee Synopsis TetraMAX user
guide [130].
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Benchmarks: A set of benchmarks from the SPEC CPU2000 suite were use@to ev
uate the performance overhead and memory logging requirsnoé ACE testing. All
benchmarks were ran with the reference input set.

Microarchitectural Simulation: To evaluate the performance overhead of ACE test-
ing, the SESC simulator [106] was modified to simulate a SPAB®@ enhanced with the
ACE framework. The simulated SPARC core is a 6-stage, irfocdre (with 16KB IL1
and 8KB DL1 caches) running at 1GHz [127For each simulation run, the first billion
instructions were skipped and then cycle-accurate simouldr different checkpoint in-
terval lengths (10M, 100M and 1B dynamic instructions) waggrmed. To obtain the
number of clock cycles needed for ACE testing, a processwiaatemulating the ACE
testing functionality was also simulated. For the SMT ekpents, a separate thread that
runs the ACE testing software was used with a round-robigetthfetch policy. For these
experiments, the simulation terminates when the ACE thfieéghes testing and at least
one of the other threads executes 100M instructions.Tleathcombinations simulated
for these experiments were determined randomly. Unlessotbe stated, the presented
experimental results were obtained using the single-tle@aequential execution model
of ACE testing.

Experiments to Determine Memory Logging Requirements: The Pin x86 binary
instrumentation tool [77] was used to evaluate the memayyilty storage requirements
of coarse-grained checkpointing. A Pin tool that measuresmount of storage needed to
buffer the cache lines written back from the L2 cache to mamory during a checkpoint
interval, based on the ReVive checkpointing scheme [10&§ implemented. Note that
only the first L2 writeback to a memory address during the kpeint interval causes the
old value of the cache line to be logged in the buffer. 64 bysesne as our cache line
size) are logged for each L2 writeback. Benchmarks were eurompletion for these
experiments. Section 4.3.4 presents the memory loggindnead of the ACE framework.

Performance Overhead of I/O-intensive Applications:An irreversible 1/0O operation
(e.g, sending a packet to a network interface or writing to th&)disquires the termina-
tion of a checkpoint before it is executed. If such operaioocur frequently, they can
lead to consistently short checkpoint intervals and tloeechigh performance overhead
for our proposal. To investigate the performance overhesdtd such frequent 1/0 op-
erations, some I/O-intensive file-system and network msiog benchmarks were also
simulated. Specifically, the microbenchmarks Bonnie arzbl@ were used to exercise

8Results from some SPEC CPU2000 benchmarks that we were ledbalort to the simulation frame-
work are not presented.

9SESC provides a configuration file for the OpenSPARC T1 psmeshich was used in the evaluation
experiments.
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the file system by performing frequent disk read/write operns. The NetPerf bench-
marks [46] were also used to exercise the network interfggeebforming very frequent
packet send/receive operations. In addition to the Netpeté, three other benchmarks,
NetlO, NetPIPE, and ttcp, that are commonly used to measiveonk performance were
evaluated. In these experiments, the execution of an wexable 1/0 operation is pre-
ceded by a checkpoint termination and the new checkpoiatvat begins right after the
execution of the I/O operation. Section 4.3.7 presentsesults.

RTL Implementation: The ACE tree structure was implemented in RTL using Verilog
in order to obtain a detailed and accurate estimate of thee amnel power consumption
overheads of the ACE framework. The ACE tree design was sgi#bd using the same
tools, cell library and methodology that was used for sysittieg the OpenSPARC T1
modules, as described earlier in this section. SectioB é\&luates and quantifies the area
overhead of the ACE framework while Section 4.3.9 evaludsgsower consumption.

4.3 Experimental Evaluation

4.3.1 Basic Core Functional Testing

Before running the ACE testing firmware, a software fundaiotest is performed
first to check the core for defects that would prevent theembrexecution of the test-
ing firmware. If this test does not report success in a timesynner to an independent
auditor {.e., the OS running on other cores), the test is repeated toyvbiat the failing
cause was not transient. If the test fails again, then acamnerable core defect is assumed,
the core is disabled, and the targeted tests are canceled.

The software functional test used to check the core congistsree self-validating
phases. The first phase runs a basic control flow check wheyasid blocks are executed
in a non-sequential control flow and each of the 64 basic Islgeits the value of a bit in
a 64-bit architectural register. At the end of the phase,rarobflow assertion checks the
value of the register to determine whether or not the exeoutias correct. The second
phase checks the core’s capability to access the regigterTiilis phase consists of a se-
guence of data-dependent ALU instructions that eventuae#ig and write all architectural
registers. At the end of this phase, the final result of tharclf computation is checked
by an assertion. The final phase of the basic core test cemdiatsequence of dependent
instructions that uses each of the instructions in the ISk adt once. The final result of
the functional test is checked by an assertion that vakdidite last generated value. The
total size of the software functional test is approxima#®)9® dynamic instructions.
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Control Flow Assertion Incorrect execution during tiomtrol flow test.

Register Access Assertion Incorrect execution duttiegregister access test.

Incorrect Execution Assertion  The final result of thset is incorrect.

Early Terminatio The execution terminated withcexecuting all the
instructions (wrong control flow)

Execution Timeout The test executed for more thamehaired clock
cycles (wrong control flow, e.g., infinite loop)

Illegal Execution The test executed an illegal instion (e.g., an
instruction with an invalid opcode)

Memory Error Memory request for an invalid memory s

Undetected Fault The test executed correctly

Figure 4.7: Fault Coverage of Basic Core Functional Testing The pie chart shows
the distribution of the outcomes of a fault injection cangpaon a 5-stage in-order core
running the purely software-based preliminary functideats.

A stuck-at fault injection campaign on the gate-level sétlif a synthesized 5-stage
in-order core (similar to the SPARC core with the exceptibmaltithreading support)
was performed to evaluate the effectiveness of the basetest. Figure 4.7 shows the
distribution of the outcomes of the fault injection campaid@verall, the basic core test
successfully detected 62.14% of the injected faults. Theameing 37.86% of the injected
faults lied in parts of the core’s logic that do not affect tiwge’s capability of executing
simple programs such as the basic core test and the ACEgdstmvare. ACE testing
firmware will subsequently test these untested areas of ¢y to provide full core
coverage.

These results also demonstrate that software-based doattiests that, unlike the
ACE testing firmware, do not have access/control on the sanéernal state, are inade-
guate to provide a high-quality, high-coverage test of théeulying hardware. Similar
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Module Areg ACE Accessible | Stuck-at| Test (%) [Path-DelayN-Detect Test Inst
(mm®) Bits Test InstgCoveragg Test Insts| N =2 N=4

SPARC CPU Core 8x17=138x19772=15817¢ 152370 100.00] 110985| 234900 434382
CPU-Cache Crossbar 14.0 27645 67788 100.00 10122 117648 200664
Floating Point Unit 4.6 4620] 88530 99.95 31374| 126222 212160
e-Fuse Cluster 0R 292| 11460 94.70 4305 33000 68160
Clock and Test Unit 2.3 4205] 68904 92.88 10626| 126720| 240768
I/O Bridge 4.9 10775| 110274 100.00 31479| 171528 316194
DRAM Controller 2x6.9=13.8 2x14201=2840% 122760 91.44] 126238 204312 365364
Total 175.8 234115 99.22

Table 4.3: Test Instructions Needed to Test Each Major Moduts: The table shows
the number of test instructions needed by the ACE framewmtiest each of the major
modules in the OpenSPARC T1 design.

software functional testing techniques were used for theufaeturing testing of the Intel
Pentium 4 [99]. The coverage of these tests as reported Jnd@9the range of 60-70%,
which corroborates the results observed from our fauéietipn campaign on a simpler
Niagara-based core.

4.3.2 ACE Testing Latency, Coverage, and Storage Requiremts

An important metric for measuring the efficiency of the ACErfrework is how long
it takes to fully check the underlying hardware for defedtise latency of testing an ACE
domain depends on (1) the number of ACE segments it congistsdo(2) the number of
test patterns that need to be applied. In this experimesttpgterns for each individual
ACE domain in the design were generated using three diffdeart models (stuck-at,
path-delay and N-detect) and the methodology describeddtiéh 4.2. Table 4.3 lists the
number of test instructions needed to test each of the mapdutas in the design (based
on the ACE firmware code shown in Figure 4.4).

For the stuck-at fault model, the most demanding moduleasStRARC core, requir-
ing about 150K dynamic test instructions to complete thé t&odules dominated by
combinational logic, such as the SPARC core, the DRAM cdietrdhe FPU, and the I/O
bridge are more demanding in terms of test instructions.h@mwther hand, the CPU-cache
crossbar, which consists mainly of buffer queues and ioterect, requires much fewer
instructions to complete the tests.

For the path-delay fault model, test pattern sets for thealipaths that are within 5%
of the clock period were generated. The required numbersbiristructions to complete
the path-delay tests is usually less than or similar to tbquired by the stuck-at model.
Note that, with these path-delay test patterns, a defediwéce can cause undetected
timing violations only if it is not in any of the selected dc&l paths and it causes extra
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Design Storage Requirements of Test Patterns/Responses (YIB
Module Stuck-at | Path-Delay | N-Detect (N=2) | N-Detect (N=4) | All Models
SPARC CPU Core (spac) 0.36 0.33 0.56 1.03 2.28
CPU-Cache Crossbar (ccx) 0.17 0.03 0.30 0.51 1.01
Floating-Point Unit (fpu) 0.22 0.10 0.30 0.50 1.13
e-Fuse Unit (efc) 0.03 0.01 0.08 0.16 0.27
Clock and Test Unit (ctu) 0.17 0.03 0.32 0.61 1.14
/0 Bridge (iobdg) 0.28 0.10 0.43 0.79 1.60
DRAM Controller (dram_ctl) 0.59 0.72 0.93 1.44 3.69
Total 1.83 1.34 291 5.04 11.11
Table 4.4: Storage Requirements for Test Patterns and Respees: Test pat-

tern/response storage requirements per fault model anghde®dule.

delays greater than 5% of the clock period. This probabiditgxpected to be very low;
however, stricter path selection strategies can provigledricoverage if deemed necessary
(with a higher testing latency). For the specific experiragittwas found that the path
selection strategy used does not lead to a large number exftedl paths. However, in
designs where delays of the majority of paths are within 5%hefclock period, more
sophisticated path selection strategies can keep the nunhlselected paths low while
maintaining high test coverage [94].

For the N-detect fault model, the number of test instrudisrsignificantly more than
that needed for the stuck-at model. This is because many tesirpatterns are needed to
satisfy the N-detect requirement. For valuedldfigher than four, it was observed that the
number of test patterns generated increases almost nedh N, an observation that is
aligned with previous studies [82, 40].

Full Test Coverage: The overall chip test coverage for the stuck-at fault model i
99.22% (shown in Table 4.3). The only modules that exhilst tmverage lower than
99.9% are the e-Fuse cluster, the clock and test unit, anDR#M controllers, which
exhibit the lowest test coverage at 91.44%. The relativalytest coverage in these mod-
ules is due to ATPG untestability of some portions of the crational logic. In other
words, no test patterns exist that can set a combinatiort twa specific value (lack of
controllability), or propagate a combinational node’sieato an observable node (lack of
observability). If necessary, a designer can eliminate shortcoming by adding dummy
intermediate state elements in the circuit to enable ctahitity and observability of the
ATPG untestable nodes. The test coverage for the two caresidé-detect fault models
is slightly less than that of the stuck-at model, at 98.88% 98.65%, respectively (not
shown in Table 4.3 for simplicity).

Storage Requirements for ATPG Test Patterns/Responseslable 4.4 shows the
storage requirements for the ATPG test patterns and theiasso test responses. The
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Cores [0,1] Cores [2,4] Cores [3,5] Cores [6,7]
Module Test Insts Test Insts Test Insts Test Insts
Stuck-at| Path-delayStuck-at|Path-delay|Stuck-at|Path-delay|Stuck-at|Path-delay
IXSPARC CPU Core] 152370 110985[152370] 110985152370, 110985 152370, 110985
1/8xCrossbar 8474 1265| 8474 1265| 8474 1265 8474 1265
[1/2xFPU 44265 15687
1/2xe-Fuse Cluster 5730 2153
1/2xClock & Test Unif 34452 5313
[1/2x1/0O Bridge 55137 15740
1/2xDRAM Ctrl (pair) 61380 63119 61380 63119
Total 195296| 117563| 277361 191109| 227954 177522205109 127937
Stucl-at + Path-delayf 312859 468470 405476 333046

Table 4.5: Full-Chip Distributed ACE Testing: The testing process is distributed over
the chip’s eight SPARC cores. Each core is assigned to sagtdburces and some parts of
the surrounding non-core modules. The table shows the nuohtest instructions needed
by each core pair to perform the distributed testing.

storage requirements are shown separately for each majdulenan the OpenSPARC
T1 chip and for each fault model considered in this work. bitihat since there is re-
source replication in the OpenSPARC T1 chey, there are eight SPARC cores and four
DRAM controllers on the chip), only one set of test pattaesonses is required to be
stored per resource. The least amount of test pattern stesagquired by the path-delay
fault model (1.34 MB) while the most demanding fault modédNisletect, whereV = 4,
which requires about 5 MB. The overall test pattern/respatsrage requirement for all
modules and all fault models is 11.11 MB, which is similar tbhatis reported in previ-
ous work [74]. In ACE framework, the test patterns and respsrare stored in physical
memory and loaded into the register file during the testirmsph Therefore, for physical
memories of several gigabytes in modern processors, theggoequirements of 11 MB
is considered negligible.

4.3.3 Full-Chip Distributed Testing

In the OpenSPARC T1 architecture, the hardware testingegsocan be distributed
over the chip’s eight SPARC cores. Each core has an ACE tegespians over the core’s
resources and over parts of the surrounding non-core me@utg the CPU-cache cross-
bar, the DRAM controllergtc). Therefore, each core is assigned to test its resources and
some parts of the surrounding non-core modules.

The testing responsibilities of the non-core modules westeiduted to the eight SPARC
cores based on the physical location of the modules on tipg(shown in Figure 4.6). Ta-
ble 4.5 shows the resulting distribution. For example, ezdhe corezeroandoneare
responsible for testing a full SPARC core, one eighth of tRé&J&ache crossbar and one
half of the clock and test unit. Therefore, comoandoneneed 195K dynamic test
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Figure 4.8: Memory Logging Storage Requirements: Average and maximum memory
log size requirements for checkpoint intervals of 10 miilid00 million, and 1 billion
executed instructions.

instructions to test for stuck-at faults and 117K instroict to test for path-delay faults in
the parts of the chip they are responsible for. Note that {G& &ee of a core is designed
such that it covers all the non-core areas that the core pensgble for testing.

The most heavily loaded pair of cores are cdvesandfour. Each of these two cores
is responsible for testing its own resources, one eightth@fG@PU-cache crossbar, one
half of the DRAM controller and one half of the 1/0 bridge, fatotal of 468K dynamic
test instructions (for both stuck-at and path-delay tgdtimhe overall latency required to
complete the testing of the entire chip is driven by thesekd@égamic test instructions,
since all the other cores have shorter test sequences drilaxdfore complete their tests
sooner.

4.3.4 Memory Logging in Coarse-grained Checkpointing

The performance overhead induced by running the ACE tefitimgvare depends on
the testing firmware’s execution time and execution freguewhen ACE testing is cou-
pled with a checkpointing and recovery mechanism, in ordeetiuce its execution fre-
guency, and therefore its performance overhead, coasseegr checkpointing intervals
are required.

Figure 4.8 explores the memory logging storage requiresfenisuch coarse-grained
checkpointing intervals on the examined SPEC CPU2000 lmeadts. The memory log
size requirements are shown for a system with a 2MB L2 dathec@ecall that memory
logging is performed only for the first L2 writeback of a cadime to main memory in
a checkpoint interval [101]). For each benchmark, the @ernd maximum required
memory log size for intervals of 10 million, 100 million, afudillion executed instructions
are shown. The maximum metric keeps track of the maximum mgiag size required
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Figure 4.9: Performance Overhead of Single-Threaded Sequéal ACE Testing:
Performance overhead of ACE testing for a 100M-instructioeckpoint interval.

in any of the checkpoint intervals during the benchmark'eceion, while the average
metric averages the memory log size requirement over althieekpoint intervals (note
that the benchmarks were ran to completion with the referemauts).

We observe that when considering checkpoint intervals dhatin the order of 100
million executed instructions, the average memory logegeirements are in the range of
a few kilobytes to 10MB. The most demanding benchmaswisn on average it requires
1.8MB, 10MB and 91.4MB respectively for checkpoint intdsvaf 10M, 100M and 1B
instructions. Since the memory log will be maintained atdpstem’s physical memory,
the results of this experiment suggest that checkpointvale of hundreds of millions of
executed instructions are sustainable with insignificaetory storage overheafl.

4.3.5 Performance Overhead of ACE Testing

This section evaluates the performance overhead of ACHa¢dstr the execution mod-
els described in Section 4.1.5. For all experiments, thelgh@nt interval is set to 100M
instructions.

Single-Threaded Sequential ACE TestingWith this execution model, at the end of
each checkpoint interval normal execution is suspended\@tdtesting is performed. In
these experiments, the ACE testing firmware executes wméhches the maximum test
coverage. The four bars in the graph of Figure 4.9 show thiempeance overhead when
the fault model used in ACE testing is i) stuck-at, ii) stuatkand path-delay, iii) N-detect
(N=2) and path-delay, and iv) N-detect (N=4) and path-delay

1ONote that most current systems are equipped with severabgigs of physical memory.
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Checkpoint| Average Memory | Perf. Overhead (%) Perf. Overhead (%)
Interval Log Size (MB) (Stuck-at) (Stuck-at + Path Delay

10M Instr. 0.48 53.74 96.91

100M Instr. 2.59 5.46 9.85

1B Instr. 14.94 0.55 0.99

Table 4.6: Performance and Memory Log Size Tradeoffs: The Tables shows the
memory log size and ACE testing performance overhead faréifit checkpoint intervals.

The minimum average performance overhead of ACE testingpBand is observed
when only the industry-standard stuck-at fault model isdusé/hen the stuck-at fault
model is combined with the path-delay fault model to achieigher testing quality, the
average performance overhead increases to 9.8%. As edpedten test pattern sets are
generated using the higher-quality N-detect fault moded, dverage performance over-
head increases, to 15.2% and 25.4%, for N=2 and N=4 resp#ctiv

Table 4.6 shows the trade-off between memory logging seraguirements and per-
formance overhead for checkpoint intervals of 10M, 100M &Bddynamic instructions.
Both log size and performance overhead are averaged oweradllated benchmarks. As
the checkpoint interval size increases, the required logiscreases, but the performance
overhead of ACE testing decreases. This experiment denadesthat checkpoint inter-
vals in the order of hundreds of millions of instructions atsstainable with reasonable
storage overhead, while providing an efficient substraggetdorm ACE testing with low
performance overhead.

SMT-Based ACE Testing: Figure 4.10 shows the performance overhead when ACE
testing is used in a 2-way SMT processor with several SPEC20BWbenchmarks. The
ACE testing thread runs concurrently, on a separate SMTeggnwith the benchmark
that is evaluated. In this execution model, when ACE testimecks for stuck-at failures
the average performance overhead is 2.6%, which is 53% ltwerthe 5.5% overhead
observed when testing is performed in a single-threadedesgigl execution environ-
ment. For other fault models, the observed results followrdlar trend: the performance
overhead of SMT-based ACE testing is lower than the perfaneaverhead of single-
threaded sequential ACE testing. The performance oveneeattion observed under the
SMT-based execution model stems from better processounnasatilization between the
ACE testing thread and the running application. This is asegnence of the ACE testing
thread simultaneously sharing the processor resourctsath®f sequentially executing
exclusively on the processor. The latency of major portioh&CE testing (loading and
checking of test patterns) is hidden by application executi
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Figure 4.10: Performance Overhead of SMT-Based ACE Testing Performance
overhead of SMT-based ACE testing for a 100M-instructiosaipoint interval.

Note that, even with the SMT-based execution model, ACHEtgstuses performance
overhead. This is due to two reasons. First, the ACE testireptl shares the processing
(e.g, functional units, instruction scheduler entries) and rmgnsystem resourceg.q,
the L1/L2 caches, buses, and DRAM memory) with the normalieguon thread. This
resource sharing leads to interference between the twadbkrend delays the execution
of the application thread. Second, when the ACE testingathexecutes aACE testin-
struction, the execution of the application thread is sodpd for one cycle, which also
delays the application thread’s execution. Even so, th&acted experiments have shown
that SMT-based ACE testing results in a relatively low perfance overhead for the ap-
plication thread.

In SMT-based ACE testing, the testing thread occupies an &bfitext. Although per-
forming ACE-based testing in an SMT environment can redbegbtential performance
overhead of testing, it is important to also evaluate théesyshroughput loss due to the
testing thread since the extra SMT context utilized by tk&rg thread could otherwise be
utilized by another application thread. Figure 4.11 shdwséduction in system through-
put when the testing thread competes for processor resowitteother threads in a 2-way
and a 4-way SMT configuration. In these experiments, systeoughput is defined as the
number of instructions per cycle executed by applicatiorats (excluding the testing
thread). Also, for these experiments, ACE testing is pentad for only one thread in the
application mix, the leftmost thread for each mix shown igufe 4.11, which is assumed
to be the only application thread with high reliability réguments. We observe that, for
stuck-at testing, the system throughput reduction in a 2-8MT configuration is limited
to 3%. The highest throughput reduction, 24%, is observedZrway SMT configuration
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Figure 4.11: Throughput Reduction Due to SMT-Based ACE Teshg: The ACE
testing thread occupies an extra SMT context which leadgsies throughput reduction.
The graph shows the system throughput reduction due to ACE-sded ACE testing
for a 2-way and a 4-way SMT configurations.

when high quality testing is performed (N-Detect, N=4, inmtmnation with the path-
delay fault model). We also observe that when the number of 8dhtexts increases to
4, the throughput reduction due to software-based testgmgficantly reduces. This is
because ACE testing occupies only a single thread contéx€iSMT processor and other
thread contexts can still contribute to system throughguwXecuting application threads.

Interleaved ACE Testing in the Shadow of L2 Misses:Figure 4.12 shows the per-
formance overhead when ACE testing is run in the shadow ofdche misses. With this
execution model, whenever there is an L2 cache miss on tHeapn thread there is a
lightweight context switch with the ACE testing thread. Tdggplication thread resumes
execution after the L2 cache miss is served. In the caseltbathteckpoint buffering re-
sources are full (signaling the end of the checkpoint irgBrand the ACE testing is not
completed, the ACE testing thread starts running excllysiwe the processor resources
and executes the remaining of the ACE testing routine to ¢etiop. The dark part of
each bar in Figure 4.12 shows the fraction of ACE testing loead that is due to testing
performed in the shadow of L2 cache misses, while the gralygbenws the fraction of
ACE testing overheads that is due to testing performed atikdeof the checkpoint inter-
val. The overhead of testing that is performed in the shaddw? @ache misses is caused
by the additional time taken to switch between the applicatihread and the ACE testing
thread, and vice versa.
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Figure 4.12: Performance Overhead of Interleaved ACE Testig: The graph shows
the performance overhead of interleaved ACE testing in iaelew of L2 cache misses
for a 100M-instruction checkpoint interval.

We observe that for some memory intensive benchmarks tiabiea high L2 cache
miss-rate, such aammpandmcf, the ACE testing routine was able to run in its entirety in
the shadow of L2 cache misses. For these benchmarks, wevelasesiverage performance
overhead reduction of 57% and 43% respectively comparethgtesthreaded sequential
ACE testing. However, for the rest of the benchmarks we edtibat due to the low L2
cache miss-rate there were very few opportunities to erdbigt ACE testing thread in the
shadow of L2 cache misses. These benchmarks, depending amtbunt of ACE testing
performed in the shadow of L2 cache misses, exhibit the saisiegbtly less performance
overhead when compared to single-threaded sequential A€HRg.

Based on these experimental results, we conclude that tedeiaved ACE testing
execution model benefits only benchmarks that exhibit a leighugh L2 cache miss-
rate and provide enough opportunities for interleaved A€Xig to utilize the processor
resources more efficiently. Different thread interleawsritgria other than L2 cache misses
could lead to higher benefits and affect more uniformly aldienarks. However, the
overhead of switching between the application thread aadAE testing thread should
be kept low.

4.3.6 Performance-Reliability Trade-off

The test coverage achieved by the testing firmware increasesre test instructions
are executed (and therefore more test patterns are appli¢olvever, the relation be-
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Figure 4.13: Performance Overhead of ACE Testing VS. Test Geerage: Part (a)
shows the number of executed test instructions versus thewa test coverage for each
of the major modules, while part (b) shows the test coverageus performance overhead
for each core pair in full-chip distributed testing.

tween the number of executed test instructions and the testrage level is not linear.
Figure 4.13(a) shows the number of executed test instngt@rsus the test coverage
obtained for each of the major modules (using the stuck4dt faodel along with the
single-threaded sequential execution model for ACE tgktiWe observe that for some of
the modules there is an exponential increase in the numbesiofictions needed to earn
the last few percentage points of coverage. For examplayuheer of dynamic instruc-
tions required to achieve 100% test coverage for the SPAREis@pproximately 152K,
almost twice the number of instructions required to ach@84 coverage.

This observation suggests that there is plenty of oppdstiaidynamically tune the
performance-reliability trade-off in the ACE testing framork. Figure 4.13(b) shows the
test coverage (for the stuck-at model) versus the perfocenaxerhead for each core pair
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(based on the testing partition described in Section 4.3[8k results demonstrate that
test coverage can dynamically be trade-off for reductiorthé performance overhead of
testing. For example, the performance overhead for deresindfour to reach 89% test
coverage is only 3%. This is a 46% reduction from the perforteaoverhead of 5.5% to
reach 98.7% test coverage. This experiment demonstratthh software-based nature
of the ACE testing provides a flexible framework to tradefmdtween test coverage, test
guality, and performance overhead.

4.3.7 Overhead of ACE Testing in I/O-intensive Applicatiors

In I/O-intensive applications, frequent 1/0O operationgngiicantly affect the perfor-
mance overhead of checkpoint-based system rollback awmdesc Several system 1/O
operations are not reversible.g, sending a packet to a network interface, writing to the
display, or writing to the disk), and thus cause early cheakigermination. Consequently,
frequent I/O operations lead to shorter checkpoint interaad more frequent hardware
testing that can have a negative impact on system perfoenanhis section evaluates
the performance overhead of ACE testing under a heavy I/@Qeusavironment using
I/O-intensive file-system and network processing benckmar

Figure 4.14 shows the execution time overhead of ACE testinghe stuck-at fault
model and the stuck-at combined with the path-delay faultl@ho Except for three of
the Netperfbenchmarks, all benchmarks exhibit an execution time @aatthhat ranges
from 4% to 10% for the stuck at fault model and from 6% to 17% mvhembined with
the path-delay fault model. Note that the overheads are gty (greater than 25%) in
someNetperfbenchmarks because these benchmarks are intentionaliynddgo stress-
test the network interface, by executing a very tight loogt ttontinuously sends and
receives packets to/from the network interface. Even widsé adversarial benchmarks,
the performance overhead of ACE testing is at most 27% waélsthck-at fault model and
48% with the combined stuck-at and path-delay fault models.

In this experiment, a checkpoint terminates whenever tisemienrite operation to the
file-system or a send/receive operation to the networkfenter.e., an irrecoverable 1/0
operation). This assumption is pessimistic. The execuiioa overhead observed in this
experiment can be significantly reduced with more aggresand intelligent 1/0O handling
techniques like 1/0 buffering [95] or I/O speculation [98hich we do not consider in
these experiments. Furthermore, we note that heavilynt@asive applications, such as
theNetperfbenchmarks, constitute an unfavorable running environfioerthe ACE test-
ing technique due to two reasons. First, if high performaadesired when running such
I/O intensive applications, the system can alternativeljuce the test quality require-
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Figure 4.14: ACE Testing on I/O-Intensive Applications: The graph shows the
execution time overhead of ACE testing on I/O-intensivediystem and networking ap-
plications

ments of ACE testing (or even completely switch it off) arati-off testing quality with
performance. Second, we note that such I/O intensive agiits have very low CPU uti-

lization; therefore there might be little need for high-ttyahigh-coverage ACE testing
of the CPU during their execution.

4.3.8 ACE Tree Implementation and Area Overhead

The area overhead of the ACE framework is dominated by the A€& In order
to evaluate this overhead, the ACE tree for the OpenSPARCrdHitacture was imple-
mented in Verilog and synthesized with the Synopsys Desigmgiler. The ACE tree
implementation consists of data movement nodes that #adata from the tree root (the
register file) to the tree leaves (ACE segments)wnd versa In this specific implemen-
tation, each node has four children and therefore in an A€E& tinat accesses 32K bits
(about 1/8 of the OpenSPARC T1 architecture), there are #2nal tree nodes and 128
leaf nodes, where each leaf node has four 64-bit ACE segrasmtsildren. Figure 4.15(a)
shows the topology of this ACE tree configuration, which Heesability to directly access
any of the 32K bits. To cover the whole OpenSPARC T1 chip with ACE framework,
eight such ACE trees were used, one for each SPARC core. Eralbarea overhead of
this ACE framework configuration (for all eight trees) is 1% of the chip area.

In order to contain the area overhead of the ACE frameworkpaith ACE tree design
was implemented that combines the direct processor statssibility of the previous
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Figure 4.15: ACE Tree Implementation: Part (a) shows the topology of a direct-access
ACE tree. Part (b) shows the topology of a hybrid (partiaédiraccess, partial scan-chain)
ACE tree.

implementation with the existing scan-chain structurethis hybrid approach, the 32K
ACE-accessible bits are divided into 64 512-bit scan chdiach scan chain has 64 bits
that can be directly accessed through the ACE tree. Thengéditing to the rest of the
bits in the scan chain is done by shifting the bits to/from @dedirectly accessible bits.
Figure 4.15(b) shows the topology of the hybrid ACE tree @prftion. The overall area
overhead of the ACE framework when using the hybrid ACE tmdiguration is 5.8% of
the chip area!

Notice that although the hybrid ACE tree is a less flexible A#e configuration,
it does not affect the latency of the ACE testing firmware. R@E testing firmware
accesses the 64 scan chains sequentially. Since there iseaval of at least 64 cycles
between two consecutive accesses to the same scan chaicadate shifted from/to the

1t was found that the ACE tree’s impact on the processorskciycle time is negligible in both direct-
access and hybrid implementations.
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direct access portion of the chain to/from the rest of the stein without producing any
stall cycles. For example, during test pattern loadinghe&tbit parallel load to a scan
chain is followed by 64 cycles of scan chain shifting. Whhe farallel loaded data is
shifted into the rest of the scan chain in an ACE segment,asigng firmware loads the
rest of the scan chains in the other 63 ACE segments. By the ttim testing firmware

loads the next 64 bits to the scan chain, the previous 64 &its already been shifted into
the scan chain. Similarly, during test response reading); earallel 64-bit data read is
followed by shifting cycles that move the next 64 bits frone ftan chain to the direct
access portion.

4.3.9 Power Consumption Overhead of the ACE Framework

An important consideration in evaluating the ACE framewisrkhe degree to which
the extra hardware increases the baseline design’s powsungption envelope. To eval-
uate this power consumption overhead for our design on SDpsnSPARC T1 chip-
multiprocessor, we first estimated the power consumptidghebaseline design that lacks
the ACE framework capabilities. We calibrated the estim@i@ver consumption with ac-
tual power consumption numbers provided by Sun for each earfuhe chip [72]. After
we validated our power estimates for the baseline OpenSPRR@esign, we estimated
the additional power required by the ACE framework.

Power Estimation Methodology: Figure 4.16(a) shows the major design components
of the OpenSPARC T1 and the methodology/tools we used tmatditheir power con-
sumption. We estimated the power consumption of the mgjofiOpenSPARC T1 mod-
ules using the Synopsys Power Compiler (part of the Syndpsgigyn Compiler package)
and the available RTL code for the design. Each module’s Rideds synthesized us-
ing the Design Compiler. The resulting gate-level netkssubsequently analyzed by the
Power Compiler to estimate the module’s power consumpfi@perform the synthesis
and power consumption analysis, we used the Artisan IBM @B86tandard cell library,
characterized at typical conditions of 1.2V (Vdd) and 25€rage temperature. The aver-
age transistor switching activity factor was set to 0.5.

For modules dominated by SRAM structures, such as the gneathes, where logic
synthesis and power analysis using the RTL code is ineffi¢fewe used existing tools
designed specifically to characterize SRAM modules. Torege the power consumption
of the L1 and L2 caches, we used the CACTI 4.2 tool [132], avath integrated cache
performance, area, and power models.

2In logic synthesis memory elements are synthesized inbe@eiatches or flip-flops. Therefore, SRAM
macro cells are implemented using memory compilers instéasing the conventional logic synthesis flow.

78



Design Component Methodology/Tools Used
SPARC Core Synopsys Power Compile
L1 Inst. & Data Cache CACTI14.2
L2 Cache CACTI 4.2
Crossbar Synopsys Power Compile
FPU Synopsys Power Compilet
Misc. Units (iobdg, dram_ctrl,ctu) Synopsys Power Compjl
I/O Pads Taken from [72]

Wires & Repeaters Taken from [72]
ACE Framework Synopsys Power Compile
(a)
C(():res r;& L1 58.5W
acnes IBM 130nm
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L2 Cache
8.97W
15%

2.26W \

4%

Wires & /

Repeaters
10.71W
18%

Leakage

/O Pads 13.71W

24%
.93wW . o
61?2?% Misc Units (iobdg, Crossbar
dram_ctrl,ctu) 0.13W 0.63W
0.67W 0% 1%
1%
(b)

Figure 4.16: Power Consumption Overhead of the ACE Framewd«: Part (a)
shows all the major design components and the methodotmgg/tised to estimate the

associated power consumption. Part (b) shows the powelogrevef the OpenSPARC T1
design enhanced with the ACE framework.

This methodology is sufficient enough to estimate the powasamption of most of
the chip’s logic modules. However, there are parts of thegdeshose power consumption
cannot be accurately estimated with these tools. Thesedad) numerous buses, wires,
and repeaters distributed all over the design, which arnehend to model accurately using
the Design and Power Compilers, unless the design is fudlgga and routed, 2) I/O pads
of the chip. In order to estimate the power consumption cfettevo parts, we used values
from the reported power envelope of the commercial Sun BRARC T1 design [72].
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Results: The estimated power envelope for the whole OpenSPARC T1withmut
the addition of the ACE framework is 56.3%/Figure 4.16(b) shows the power consump-
tion for our enhanced OpenSPARC T1 design including the A@méwork. The power
envelope of the ACE-enhanced design is 58.5W, where thepmwsumption of the ACE
framework is estimated to be 2.2W. Thus, the ACE frameworksames 4% of the de-
sign’s total power. Our estimation assumes that the ACEdrmonk is enabled all the time
while the chip is in operation. However, as illustrated ie firevious sections, the ACE
framework is actually used during very short testing pesiatithe end of each checkpoint
interval. Therefore, we expect the actual power consumgiinal power envelope overhead
of the ACE framework to be significantly lower than 4%, depgegdn the frequency and
length of testingi(e., checkpoint interval size and time spent in testing).

4.4 Related Work

Hardware-Based Reliability Techniques: A traditional defect detection technique
that is predominantly used for manufacturing testing iSddgiST [23]. Logic BIST
incorporates pseudo-random pattern generation and resp@tidation circuitry on the
chip. Although on-chip pseudo-random pattern generagomoves any need for pattern
storage, such designs require a large number of randonrmtad often provide lower
fault coverage than ATPG patterns [23].

The ACE framework improves on this traditional defect detectechnique due to
the following major reasons: 1) it effectively removes theed for on-chip test pattern
generation and validation circuitry and moves this funwdiity to software, 2) it is not
hardwired in the design and therefore has ample flexibititlye modified/upgraded in the
field (as described in Section 4.1.6), and 3) it has higherctserage and shorter testing
time because it uses ATPG instead of pseudo-randomly gexdgpatterns.

A more recent work, CASP [74], proposes the use of ATPG tedéempes, stored in
non-volatile memory€.g, hard disk), as a system self-test technique that runs concu
rently with normal operation. Hardware testing in CASP ish&strated by an on-chip
hardware controller. To initiate the CASP self-test pre¢ése controller suspends normal
execution on a core and isolates the core from the rest ofdtes dy disabling its inter-
connect links with other cores. This enables the applioatibtest patterns to exercise
and test the core’s integrity while preserving correctnddse hardware controller loads
the test patterns from non-volatile storage into the sedah chain of the core, observes

130ur estimate of the OpenSPARC T1 power is within 12% of therig power consumption of the
commercial Sun Niagara design [72].
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the scan response generated by the core, and checks if gensesmatches the correct
response that is also stored in non-volatile storage. Alfieiself-test process is finished,
normal execution resumes on the core. In [74], CASP is eteduanly for testing single
cores and it does not cover non-core moddfeBhe major differences between CASP and
the ACE framework are: 1) in CASP the self-test process isestrated by an on-chip test
controller whereas ACE framework exposes the microarchite to software so that soft-
ware/firmware test programs can perform self test, 2) CA&Bdthe test patterns through
the slow, serial scan chain structure whereas in ACE tes#isigpatterns are loaded into
the scan state through the very fast, parallel-loadable ik@&structure. As a result, ACE
testing results in a lower area/power overhead (no neechfonechip test controller) and
orders of magnitude faster testing time (CASP testing tsne the order of seconds [74].
In contrast, the testing time for the ACE framework is in tihéey of milliseconds).

Smolenset al. [119] proposed a detection technique for emerging wearetgatis
that periodically runs functional tests that check the haré@ under reduced frequency
guardbands. Their technique leverages the existing scain tlardware for generating
hashed signatures of the processor’s microarchitecttasd summarizing the hardware’s
response to periodic functional tests. This techniquenalithe software to observe a sig-
nature of the microarchitectural state, but it does notatlte software to directly control
(i.e., modify) the microarchitectural state. In contrast, theEAltamework approach pro-
vides the software with direct and fastcess and contralf the scan state using the ACE
infrastructure. This direct access and control capakdlitgws the software to run online
directed hardware tests on any part of the microarchitacttate using high-quality test
vectors (as opposed to functional tests that do not directhtrol the microarchitectural
state and do not adhere to any fault model). Furthermoregyriby@osed direct fast access
to the scan state enables the validation of each test resgepsarately (instead of hashing
and validating all the test responses together), therebyiging finer-grained defect diag-
nosis capabilities and higher flexibility for dynamic tugibetween performance overhead
(i.e. test length) and test coverage.

Finally, in Table 4.7, we compare the ACE framework mecharj&83] to other defect-
tolerance solutions, both traditional techniques andriegles that were proposed more
recently in the research literature. Table 4.7 is an updatezion of Table 3.4 presented in
Section 3.4. The research-stage solutions presented ia Zabare listed in chronological
order with the less recent at the top. A detailed descripgifdhese techniques is provided
in Section 3.4. From Table 4.7 we observe that among the n&@sstage solutions, the
ACE framework provides the highest defect coverage (99%) the lowest area over-

However, CASP can be extended to test non-core modules.
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Traditional Solutions

Dual Modular Very High | Very High | Very Low Low Provides only error detection.

Redundancy (DMR) | (~99%) (>100%) (<5%) Easy to cover the whole design.
. . . Provides both error detection an

Triple Modular Very High | Ultra High | Very Low Low forward recovery. Easy to cover

Redundancy (TMR) | (~99%) (>200%) (<5%) the whole design

N different versions of the

N-Version Very High | Very High | Very Low .
Redundancy (~23/9%§; (>1yOO°/go) (<)£/3%) Very High component have to be
implemented.
Error Correction Memory | Medium Very Low Low Limited only to memory structure!
Codes (ECC) Structures| (~15%) (<5%) or data buses.
Research-Stage Solutions
DIVA Not Low Not Medium Uses an online checker at the
Austin [6] Available (~6%) Available pipeline’s retirement stage.
SRAS Only Not Not _ Limite_d to array structures.
Boweret al.[19] Array Available | Available Medium | Requires hardware changes in th
Structures array structures.
Not Medium Not Uses DIVA checkers and pipelin

Boweret al.[20] High additions that truck instruction
execution for defect diagnosis.

Uses BIST-like on-chip hardware

Available | (>15%) Available
High Medium Ultra Low

Medium

BulletProof [116, 83]

(~95%) (~14%) (<1%) checkers.
ElastiC Uses on-chip sensors, silicon
Under Development/Evaluation High | wear-out prediction units, and ont

Sylvesteret al.[129] .

chip testers.

Uses runtime checkers for the
Argus High Medium Low Medium validation of control flow,
Meixneret al.[85] (~98%) (~11%) (~4%) computation, dataflow, and

memory operations.
Add architectural support for

ACE Framework [28] Veggl—:/lgh Eg‘g I:g\(;/ Low ACE-based testing: ACE Tree
( 4 ) =50 (CAD tools) + ISA Extensions
Pipeline stages need to be isolat
StageNet Not Medium Medium High and connected through crossbar
Guptaet al.[42] Available | (~15%) (~10%) 9 switches. No error detection

support.

Table 4.7: Comparing The ACE Framework To Related Work: Comparison of
the ACE Framework to traditional defect-tolerance solgiand more recent techniques
found in the research literature. The techniques are cagdparrespect to their defect
coverage, area overhead, performance overhead, and tteedlegy intrude in the original
design and they are presented in chronological order withetbs recent at the top.

head (6%), for a very low runtime performance overhead (5%hen compared to the
traditional defect-tolerance solutions, the ACE framdwmmovides the same defect cov-
erage as the traditional techniques, but at a much loweroserhead. The only drawback
of ACE framework when compared to traditional defect-talere solutions is the higher
degree of intrusion in the original design and its higheigiesomplexity.
Software-based Reliability Techniques: A very recent approach proposes the de-

tection of silicon defects by employing low overhead detecstrategies that monitor
for simple software symptoms at the operating system |&&). [These software-based
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detection techniques rely on the premise that silicon def@anifested in some microar-
chitectural structures have a high probability96%) to propagate detectable symptoms
through the software stack to the operating system [73].

The main differences between [73] and the ACE framework &yeinlike the proba-
bilistic software symptom-based defect detection, the A@Eework checks the under-
lying hardware in a deterministic process through a strectinigh-quality test method-
ology with very high fault coverage (99%) and can be execotedemand, 2) software
symptom-based defect detection techniques can flag théjmszgistence of a hardware
failure, but they do not have the capability to diagnose Wigart of the underline hard-
ware is defective. In ACE framework, by employing ATPG teatterns, it is trivial to
diagnose the defective device at a very fine granularity.

There are numerous previous works, such as [105, 113, 1&] ptioposed the use
of software-based techniques for online detection of swéire. However, none of them
addresses the problem of online defect detection.

Instruction-based Functional Testing: A large amount of work has been performed
in functional testing [21, 63, 70] of microprocessors. Thesbrelevant of these to the ACE
framework are the instruction-based functional selftesiniques. In general, these tech-
niques apply randomly-generated or automatically-setkctstruction sequences and/or
combinations of instruction sequences and randomly- @raatically-generated operands
to test for hardware defects. If the result of the test seggi€ioes not match the expected
output of the instruction sequence, then a hardware fadkctared. We briefly describe
the state-of-the-art approaches that work in this manndfi33], a self-test program writ-
ten in processor assembly language and the expected rektlits program are stored in
on-chip ROM memory. When invoked, the self-test progranfiquers at-speed functional
testing of the processor. The proposed scheme requiresitdergdditional hardware cost.
It requires an LFSR for generating randomized operandsfrnstructions and a MISR
for generating the result signature. Also, a minor modiiacadf the ISA is required for
the test instructions to read/write from the LFSR/MISR. fanty, [66] uses the knowledge
of the ISA and the RTL-level model of a processor to selech li@glt-coverage instruc-
tions and their operands to include in self-test softwatdines. Batcher and Papachris-
tou [11] employ instruction randomization hardware to gateerandomized instructions
to be used in self-test software routines for functionaings Brahme and Abraham [21]
describe how to generate randomized instruction sequénbesused in self-test software
routines. Building upon these works, Chen and Dey [26] psep@ mechanism that gen-
erates instruction sequences to exercise structural atstrps designed to test processor
components and applies such instruction sequences in ftvease-based self-test rou-

83



tines to achieve higher coverage than other approachesatiddmly generate instruction
sequences.

The ACE framework is fundamentally different from thesetinstion-based func-
tional testing techniques in that it is a structural teséipgroach that uses software routines
to apply test patterns. We introduce new instructions thatcapable of applying high-
quality ATPG-generated structural test patterns to eveoggssor segment by exposing
the scan chain to the instruction set architecture. Soéwalf-test routines that use these
instructions can therefore directly apply test patterngrazessor structures and read test
responses, which results in the fast and high-coveragetstal testing of each proces-
sor component. In contrast, none of the previously-propassruction-based functional
testing techniques are capable of directly applying teepas to processor components.
Instead, they execute existing ISA instruction sequeneesdirectly (functionally) test
the hardware for faults. As such, previous instructionelddsinctional test approaches in
general lead to higher testing times or lower fault covesagee they rely on (randomized)
functional testing.

One recent previous work [99], employed purely softwarsedafunctional testing
techniques during the manufacturing testing of the Inteitiden 4 processor (see Sec-
tion 4.1.2 for a discussion of this work). In the ACE framelgorve use a similar func-
tional testing technique (the “basic core functional tggtigram) to check the basic core
functionality before running the ACE firmware to performatited, high-quality testing.
In fact, any of the previously proposed instruction-basettfional testing approaches can
be used as the basic core functional test within the ACE fveorie

Checkpointing Mechanisms: There is also a large body of work proposing various
versions of checkpointing and recovery techniques [12Q, 83]. Specifically, Safe-
tyNet [120] provides a unified, lightweight checkpointiogery mechanism. Conceptu-
ally, the SafetyNet mechanism maintains multiple systeigeywconsistent checkpoints of
the state of a shared memory multiprocessor. After a detdatdt, SafetyNet is capable
of recovering the processor state to a pre-fault, erra@-flgeckpoint. To enable system
recovery, SafetyNet adds on-chip checkpoint buffers tat@gmemory and architectural
changes across checkpointing intervals. Therefore, tree &fi checkpoint intervals in
SafetyNet is limited by the size of the on-chip log buffers.

To address this limitation and offer longer checkpoint ina¢s, ReViVE [101] pro-
poses the use of main memory to maintain the checkpoint Id¢e drawback of this
approach is that due to the memory-based checkpoint log&ayiVE can cause more
network and memory traffic that might result to larger parfance overheads than Safe-
tyNet.
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Another limitation of both ReViVe and SafetyNet is the handlof I/O operations. In
both schemes, system recovery cannot undo/redo I/O opesaind therefore checkpoints
cannot cross I/O operation. This limitation results toeitthelaying all I/0O operations until
the end of the current checkpoint interval, which leads tmaificant performance over-
head, or to the termination of the current checkpoint whenew I/O operation occurs.
In the latter case, applications with frequent I/O operaioan cause shorter checkpoint
intervals that in our mechanism can result to more frequésEMdased hardware testing
and higher runtime performance overhead. To address thigation, ReViVel/O [95]
proposes a checkpoint and recovery mechanism based on &bwuiWith the additional
capability of undoing and redoing 1/O operations, thus éngltheckpoint intervals that
can cross I/0O operations. Another work that addresses tuweey of 1/0O operations in
checkpoint and recovery mechanisms is [98] that proposesritplementation of specula-
tive I/O operations at the operating system level.

Although no real system today employs similar checkpogqtmd recovery tech-
niques, the simulation-based results from these worksledac¢hat coarse-grained check-
point intervals are feasible for complex commercial desighhe coarse-grained check-
point/recovery substrate provided by such techniqueslesaificient ACE testing with
low performance overhead.

4.5 Chapter Summary

This chapter introduced a novel, flexible software-basetirtigiue, ISA extensions,
and microarchitecture support to detect and diagnose laaeddefects during online op-
eration of a chip-multiprocessor. The technique uses tleegss Control Extension (ACE)
framework that allows special ISA instructions to access eontrol virtually any part
of the processor’s internal state. Based on this framevapé&cial firmware periodically
suspends the processor’s execution and performs higliygtedting of the underlying
hardware to detect defects. Several execution models &mtleraction of the special
testing firmware with the applications running on the preoesvere described, for both
single-threaded and simultaneously-multithreaded @sing cores.

Using a commercial ATPG tool and three different fault medéte ACE framework
was experimentally evaluated on a commercial chip-mwtpssor design based on Sun’s
Niagara. The experimental results showed that ACE tessingpable of performing high-
guality hardware testing for 99.22% of the chip area. Based detailed RTL implemen-
tation, implementing the ACE framework requires a 5.8%aease in Sun Niagara’'s chip
area and a 4% increase in its power consumption envelope.
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Finally, it was demonstrated how ACE testing can be seatylesapled with a coarse-
grained checkpointing and recovery mechanism to providemaptete defect-tolerance
solution. The evaluation showed that, with coarse-graotextkpoint intervals, the aver-
age performance overhead of ACE testing is only 5.5%. Thdteealso showed that the
software-based nature of ACE testing provides ample fleiho dynamically tune the
performance-reliability trade-off at runtime based ontegsrequirements.

86



CHAPTER YV

ACE Framework Extensions - Adding Value
to Resiliency Mechanisms

The previous chapters introduced the BulletProof appr@echthe ACE framework
that, compared to traditional techniques, provide a vewy dost defect-tolerance solu-
tion for microprocessor designs. Although the hardwarerlmad of these techniques
is estimated to be around 5-10% of the chip’s area, todayd#sggners of mainstream
microprocessors still consider this hardware cost highetaédicated solely for defect
tolerance. Instead, due to the very low failure rate of aursdicon process technologies,
microprocessor designers prefer to use that part of theopriccessor’s hardware budget
for performance improvement modules like bigger memonheaand on-chip memory
controllers, and limit defect-tolerance mechanisms oalthe most unreliable micropro-
cessor components like memory caches, in the form of ermoeciion codes (ECC).

However, as devices scale into smaller sizes and the faiieeof future silicon pro-
cess technologies is rising, at some point, even mainstremnoprocessor designs will
require to protect the whole processor design with def@etdnce mechanisms in order
to provide adequate reliability standards to the user. ffarssition, can be made smoother
and easier to adopt if the hardware resources used for edefecance mechanism could
also be used for other important applications.(adding value to the resiliency mecha-
nisms).

This chapter, describes how the ACE framework defect-#olee mechanism can be
extended in such a way that its hardware resources can bebysbdee other applica-
tions. Specifically, Section 5.1 describes how the ACE fraork can be extended to
provide online design bug detection and Section 5.2 conspidue proposed mechanism
with previous research approaches. Next, Section 5.3idesdnow the ACE framework
can be extended to improve two important phases of the migcegsor design cycle;
the post-silicon debugging process and the manufactuesting. Finally, the chapter is
summarized in Section 5.4.
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5.1 ACE Framework for Online Design Bug Detection

This Section, describes how the ACE framework hardware eaxtended to perform
online design bug detection. First, Section 5.1.1 provalbgef overview of the problem
of design bugs in microprocessor designs and motivatesdbd of online design bug
detection mechanisms for future generation microprogessdext, Section 5.1.2 high-
lights previous design bug analysis studies and discubsésshortcomings, followed by
a rigorous RTL level design bug analysis on a commercial-ohmifitiprocessor. Based on
the insights drawn from the RTL design bug analysis, Sedi@r8 describes how design
bugs can be detected at runtime while the microprocessgpasating at the customer
side. Section 5.1.4 demonstrates how this online designdbtertion technique can be
implemented by extending the ACE framework hardware. Thlp@sed mechanism is
experimentally evaluated in Section 5.1.6.

5.1.1 The Problem of Design Bugs in Modern Microprocessors

The Challenges of Correct Design -The advent of chip-multiprocessing has led to
unprecedented levels of chip integration. Today, mostig¢parpose processor chips are
equipped with multiple cores, multiple levels of cohereimory, on-chip interconnection
networks, and memory and 1/O controllers. At the same timeggssors are augmented
with new technologies such as virtualization, dynamic powanagement, and 64-bit ex-
tensions. Complex interactions between these modulesgbhssvthe complexity of the
modules themselves, put a tremendous pressure in the agafiof the system. Although
the verification phase of modern processors can consumegeapartion of the design cy-
cle [9], require significant amount of resources [39], anlizetstate-of-the-art verification
techniquesgdesign buggalso known as errata, design defects, or design errotis}Igii
into the final products antbuggy” processors find their way into the field.

This trend is clearly shown in Figure 5.1. We studied thetard@cumentation of five
recent Intel processors and found that the rate of desigs disgovered after product
release has more than doubled in the latest generation cégsors. The graph shows the
number of discovered design bugs over the lifetime of fivellptocessors. The Pentium
4, Pentium M, and the Xeon 1.4-3.2 processors exhibit a aimtiend with an average
of 1.2 design bugs discovered per month during their lifetinOn the other hand, the
higher chip-level integration of resources and the addidionew features in the Core Duo

1The data is extracted from the processors’ errata docuriem{a5, 54, 51, 53, 52].
2We suspect that the reason why the Pentium M processor hadléssgn bugs than the other two
processors is because it was based on the matured Intel lii&atare.
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Figure 5.1: Design Bugs in Modern Microprocessors: Timeline of discovered design
bugs over the lifetime of five Intel processors.

and Core 2 Duo processors resulted in more design bugs. Romze, although the Core
Duo dual-core processor was derived from the Pentium M singte processor and had
the same architecture, it exhibited a much higher rate afjddsugs than its predecessor.
Specifically, the design bug discovery rate of the two mediie processors is 3.5 design
bugs per month, almost triple that of their single-core poadsors. This trend is expected
to worsen in the future as technology scaling will allow foomna diverse resources to be
integrated into a single chip.

Why is Online Bug Detection Needed?Today, design bugs are treated wat-hoc
heuristic techniques that seek to avoid the occurrencesigddugs through software and
hardware configuration changes [78]. A common approach@&meglby such techniques
to avoid the occurrence of design bugs is disabling someepgsmr features that trigger
the design bugs(g, support for cache prefetching [78], dynamic power manaagei],
etc). However, this often leads to reduced product qualityfparance and lower cus-
tomer satisfaction. Furthermore, when such workaroundsat possible, design bugs
can lead to expensive product recalls [145] and a poteytithinishing brand/company
reputation.

Augmenting a design with a mechanism that enables a systeapgroach to detect
and avoid design bugs after the product release and whilsystem is operating in the
field can offer the following benefits:
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Figure 5.2: Overview of Online Design Bug Detection and Avaiance: An in-
the-field design bug and avoidance framework requires 1)xébféefield-programmable
substrate for signal monitoring, 2) a field-programmabkagiebug detection mechanism,
3) a system recovery mechanism, and 4) design bug avoidacbeitues. The ACE
framework hardware will be extended to provide the first teyeks.

1. Faster design cycle and time to market. Today, a signiffcaction of the verifica-
tion phase is spent to discover a very small number of desigs [88]. This time
can be saved by discovering and fixing that small number a§ddxsigs in the field
after product release.

2. Reduce the risk of expensive product recalls (and patintlamaged company
reputation) due tad-hocheuristic techniques that might not be able to avoid a dis-
covered design bug. A systematic online design bug detettichnique increases
the probability of successfully dealing with the design laungl avoiding expensive
recalls.

3. Avoid potential impact to product quality and customeissaction due to the use of
conventional techniques that disable design featuresdial @lesign bugs. Instead,
online design bug detection allows the system to operateailliits features enabled
and recover the system only when the design bug occurs. foheyeuring bug-free
execution the system is operating under its original spEtitns.

Online Design Bug Detection and Avoidance A high-level overview of an online
design bug detection and avoidance framework is shown ur€ig.2. The framework has
four layers: 1) The bottom layer that provides a field-progreable substrate for flexible
signal monitoring. This substrate is programmed by spdicralvare at system startup to
select the set of signals that are required to be monitoneddsign bug detection. 2) A
field-programmable design bug detection mechanism thakshéthe monitored signals
match with a bug triggering condition. The mechanism is pgogned by special firmware
at system startup with the bug triggering conditions. 3) Ategn recovery mechanism
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that rolls back the system state to the last correct statenvahdesign bug occurrence
is detected. 4) Design bug avoidance techniques that aratact after a design bug
detection to guide execution around the bug triggering tmms$ and avert the design
bug. This chapter, will demonstrate how the ACE framewornklivare can be extended to
provide the first two layers of the online design bug dete&ctieechanism.

5.1.2 Design Bug Analysis

We first analyze design bugs in a real processor to obtaightsinto their character-
istics and to develop a mechanism that can flexibly and efisieletect the occurrence of
design bugs while the system is in operation.

Previous Design Bug Analysis Studies

The potential of augmenting future microprocessors witlnerdesign bug detection
has led to a number of studies that analyzed the known deaggithat slipped into recent
commercial microprocessors. The objective of these studlées to better understand and
gain insights into the characteristics of the known desiggshn existing microprocessors,
and extrapolate the expected characteristics of the désigs of future microprocessors.

Specifically, Avzieniset al. [8] analyzed the known design bugs in the Intel Pentium
Il since its initial release. More recently, Saramgial. [110] analyzed the design bugs
in ten modern commercial microprocessors from Intel, AMBMI and Motorola, and
Narayanasamgt al. [96] analyzed the design bugs in two microprocessorsi$rgen-
tium 4 and AMD’s Athlon 64. Another study by Wagnetr al. [141] analyzed the design
bugs in Intel StrongARM SA1100 and IBM PowerPC 750GX. Theysiain all of these
studies was based on information extracted from the avaitalcroprocessor errata sheets
e.g.[56, 1, 36]. An errata sheet is a document published and aiagd by the micropro-
cessor manufacturer to provide its customers with det&itgiaknown microprocessor
design bugs. The document provides an assessment of edagh deg’s severity, the
degree to which it can affect the system, a possible set alittons that can trigger the
design bug, any possible workarounds, and sometimes thpatoyis intention to provide
a fix in a future version of the microprocessor.

A major drawback of using the errata sheets to extrapolatessts about design bugs
is that the errata sheets commonly provide very high-legstdptions of the design bugs.
Such descriptions provide little or no insight into the Itavel details of the underlying
hardware problem. An example description of a design bugdis the Intel Pentium 4
errata sheet [56] is shown in Figure 5.3(a). This design buglated to complex interac-
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Probl em Complex interactions within the instruction fetch/decode
unit may make it possible for the processor to execute instructions
from an internal streaming buffer containing stale or incorrect
information.

I mpl i cati on: When this erratum occurs, an incorrect instruction
stream may be executed resulting in unpredictable software behavior.
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63 - TLB Flush Filter Causes Coherency Problemin Miltiprocessor
Syst ens

Descri ption: |If the TLB flush filter is enabled in a multiprocessor
configuration, coherency problems may arise between the page tables
in memory and the translations stored in the on-chip TLBs. This can
result in the possible use of stale translations even after software

has performed a TLB flush.

Potential Effect on System Unpredictable system failure.

(b)
Figure 5.3: Design Bugs Documented in Microprocessor Erra Sheets: Examples
of design bugs from (a) the Pentium 4 errata sheet, and (l)pberon errata sheet.

tions between the processor’s instruction translatiokdsale buffer and the instruction
streaming buffer that can result in the execution of an irerinstruction stream with
unpredictable software behavior. Using this descriptibig very hard to accurately re-
late this design bug to the actual hardware implementatidir@ason about, for example,
exactly what hardware signalse(, wires) need to be monitored by an online design bug
detection mechanism to effectively detect the occurrefitkeodesign bug. Figure 5.3(b)
shows another example design bug description, from AMD®@m errata sheet [1]. This
bug is related to the translation lookaside buffer flushrféted can lead to unpredictable
system behavior. Again, from this high-level descriptibig very difficult to infer the set
of hardware signals that should be examined to dynamicatiyd its occurrence. Without
knowing the set of hardware signals that needed to be meulitiar detect the bug, it is
very difficult to design a mechanism that would detect the &g to accurately estimate
the hardware cost of such a mechanism.

In order to design a hardware mechanism that detects desgg) the signals that af-
fect the occurrence of each bug need to be known. Our goaldrs#iction is to perform
a more rigorous, lower-level (RTL) analysis of design bugar purpose is to understand
design bug characteristics at the register transfer lev@l)tdesign a flexible mechanism
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that can detect known design bugs during online operatin tfe chip is manufactured,
and (2) more accurately estimate the hardware cost of suekigrdbug detection mecha-
nism. To this end, we first draw insights from our analysisedign bugs found and fixed
in an existing commercial processor, Sun’s OpenSPARC T1.

RTL Design Bug Analysis

In this Section, we perform a design bug analysis at the Ragisansfer Level (RTL)
in an attempt to bridge the gap between the high-level ddsigndescriptions provided
by the microprocessor errata sheets and the low-level fmedwnplementation details
needed to devise effective online design bug detection amesims. At the RTL level,
the microprocessor design behavior is described in a haedaescription language @,
Verilog or VHDL). This level is considered to be very closeth® actual hardware im-
plementation. The only design phases separating the R'HL Vath the actual hardware
implementation are 1) logic synthesis, which generatesli#isggn’s gate-level netlist and
2) place-and-route, which creates the transistor-leyeuaof the netlist. Therefore, the
direct relation between the RTL level and the underlyinglanentation provides an ad-
equate level of detail that allows the extraction of lowdlkdesign bug characteristics.

Our study focuses on the Verilog RTL source code of the OpaREPT1 chip-
multiprocessor [127], the open source version of Sun’s cersial UltraSPARC T1 (Ni-
agara) chip-multiprocessor. Since no errata documentadigublicly available for the
UltraSPARC T1 microprocessor, we focus on the actual desigys found during the de-
velopment of the OpenSPARC T1 and documented in the RTL sagde. Specifically,
when the designers corrected a design bug, they left thenatiguggy code in the RTL
source file as a comment. Therefore, both the original ecosmé@nplementation as well
as the fixed implementation are available in the source chglsuch, by examining these
two implementations, it is straightforward to discover whardware signals are involved
in each design bug. Although these design bugs did not dlgpthe final product, we
believe they share similar characteristics with the debigys that eventually slipped into
the released version of the microprocessor with the exaeati some differences which
we discuss in the next section.

Methodology: We analyzed 296 design bugs that were documented in theoyeril
source files of two OpenSPARC core units. These bugs accourabiout 99% of all
documented and commented-out bugs in the OpenSPARC T1 RéLcl&gsified these
bugs into three major classes: llggic design bugs, 2Qlgorithmicdesign bugs, and 3)
Timingdesign bugs. Later, in Section 5.1.3, we analyze the logitcads that need to be
monitored to detect these bugs.
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Exanmple 1 from Verilog file tlu_tcl.v

line 1089: assign intrpt_taken = Buggy Code

line 1090: rstint_taken | hwint_taken | sirint_taken;
Correct Codg
line 1105: /1 nodified for bug 3919
line 1106: /1 assign trap_to_redmode = trp_Ivl_at_naxtllessl & l
~intrpt taken;:
line 1107: assign trap_to_redmode = trp_Ivl_at_m axtlless1 & ~(rstint_taken
| sirint_taken);

Figure 5.4: Logic Design Bug: Example of a logic design bug at the RTL level.

Exanmple from Verilog file Isu_qgctll.v
Buggy Code
line 2993: /1bug4814 - change rrobin_pickerl to rrobin_picker2
line 2993: /1 Choose one anong 4 | oads.
line 2994: /11su_rrobin_pickerl Id4_rrobin (
line 2995: I .events ({1d3_pcx_rqg_vld, |1 d2_pcx_rq_vld,
line 2996: I 1dl_pecx_rqg_vld,|1d0_pcx_rqg_vld}),
line 3007: I .se(se),
line 3008: I .so()
line 3009: 1),
line 3010: Correct Code
line 3011: Isu_rrobin_picker2 1d4_rrobin (
line 3012: .events ({ld3_pex_rg_vld,Id2_pcx_r q_vld,
line 3013: Id1_pcx_rg_vid,IdO _pex_rg_vid}),
line 3020: .se(se),
line 3021: .so()
line 3022: );

Figure 5.5: Algorithmic Design Bug: Example of an algorithmic design bug at the
RTL level.

Classification of Design Bugs

Logic Design Bugs: This class of design bugs is characterized by erroneous ingi
combinational circuits. A logic bug occurs because thegiesiformed an erroneous logic
block; for example an AND gate could be used instead of an Q& gaan inverted signal
rather than the non-inverted one. The code segment prelsenkegure 5.4, taken from
the OpenSPARC T1 Verilog source files, illustrates an exangpla logic design bug.
The design bug is located in the core’s trap logic unit (TLUY & associated with the
combinational logic that computes the control sigmap _to _-redmode . The incorrect
combinational circuit implementation is commented ouime1106. The corrected com-
binational circuit implementation is shown in line 1107. yamining lines 1089-1090,
we notice that the signal replaced in the correct cadiept _taken ) is computed by
ORing three other signals. One of the three sigrialdgrit _taken ) is no longer a source
signal in the correct implementation. We observed that nbagig design bugs cannot be
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Exanmpl e fromVerilog file | su_qdpl.v
Correct Code
line 1228: /1 Begin - Bug3487.
line 1239: dff #(48)ifu_std_d1(
line 1240: .din  (tlb_st_data[47:0]),
line 1241 .q  (Isu_ifu_stxa_data[47: 0)]),
line 1242: .clk (asi_data_clk),
line 1243: .se (1'b0), .si (), .50 ()
line 1244 );
line 1245: Buggy Code
line 1246: /] select is now a stage earlier, which should be
line 1247: //fine as selects stay constant.
line 1248: /lassign |lsu_ifu_stxa data[47:0] = tlb_st_data di[47:0] ;
line 1249:
line 1250: /1 End - Bug3487.

Figure 5.6: Timing Design Bug: Example of a timing design bug at the RTL level.

fixed by simply redefining the logic between the source sgimathe buggy implemen-
tation. Instead, it is very common that fixing the bug requitee addition or removal of
signals to/from the buggy implementation (more than 95%ogfd design bugs had this
requirement).

This example demonstrates the amount of low-level infolongbrovided in the RTL
code that is missing from the design bug descriptions in theta documentation. For
instance, by observing the code segment associated witteign bug, it is very easy to
find the set of hardware signals that activate the hgg (rp _Ivl _at _maxtllessl
rstint _taken , hwint _taken , andsirint _taken ). In analyses solely based on
errata sheets, this low-level information is abstractedcagmn the high-level design bug
description and has to be inferred, a process that involveggh amount of uncertainty
and inaccuracy.

Algorithmic Design Bugs: This class covers major design bugs related to the algo-
rithmic implementation of the design. These design bugsbéxhigorithmic deviations
from the design specification and they usually require majodifications to be fixed.
Figure 5.5 illustrates an example algorithmic design bugted in the load queue control
logic at the core’s load/store unit. This bug is due to an irest implementation of the
round robin algorithm for selecting one of the four loadséxgd in the load queue. To fix
the incorrect round robin implementation described in ni@tiu _rrobin  _pickerl
a new module had to be implementésu( _rrobin _picker2 ). Unlike fixes for logic
design bugs, fixes for algorithmic design bugs are not lichite combinational circuit
modifications, rather they sometimes require multiple majodifications that can span
the whole module.

Timing Design Bugs: This third class of design bugs is associated with the timing
correctness of the implementation. We have observed that aidhese design bugs are
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Figure 5.7: Design Bugs inthe OpenSPARC T1 CoreAfter studying the OpenSPARC
T1 Verilog source files we found that almost all of the docutedmesign bugs are located
in two units, the load/store unit (LSU) and the trap logictymiU).

cases where a signal needed to be latched a cycle earlieryotealater in order to keep
the timing of signals correct in the design. An example ofhsaadesign bug is shown
in Figure 5.6. This timing design bug is located in the queatagath of the core’s
load/store unit. As shown in the Verilog source code, therirect implementation in line
1248 assigns the value of the 48fit _st data _d1 bustothdsu _ifu _stxa _data
bus in the same cycle. However, as shown in lines 1239-12é4cdrrect timing of the
data movement between the two buses requires the data ttcheddor one clock cycle.
We found that the most common fix for this class of design bsi¢fsa addition or removal
of flip-flops to adhere to the timing constraints requiredeejixthe design correct.

Design Bug Type Distribution

After studying the OpenSPARC T1 Verilog source files [126]faeend that almost all
(~99%) of the documented design bugs are located in two uhadpad/store unit (LSU)
and the trap logic unit (TLU) [127], shown in Figure 5.7. Th8U processes all data
memory access instructions. It interfaces with all the fiomal units and it serves as the
gateway between the SPARC core and the core-cache croegharmemory subsystem.
The LSU also includes the core’s data TLB and L1 cache. The Thplements the
SPARC core’s trap and software interrupt handling logisufiports six trap levels ranging
from hypervisor and supervisor mode traps to user mode &agss capable of handling
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Figure 5.8: Design Bug Distribution: The graphs show the design bug distribution for
the Load/Store Unit (LSU) and the Trap Logic Unit (TLU).

up to 64 pending software interrupts per thread. In our stuelyanalyzed a total of 296
design bugs documented in these two units.

Figure 5.8 shows the design bug type distribution. A largetfon of the documented
design bugs in the two units belong to the logic design busschahich accounts for 59%
and 49% of the total design bugs for the LSU and the TLU, respdyg. The second
most frequent design bug class is algorithmic design buggeviming design bugs are
less frequent and account for onyb% of all bugs. The dominance of logic design bugs
over the other two bug classes might imply that the procegmpfementing complex
combinational logic is more prone to human error than imgetimg the algorithmic or
timing specifications of the design.

As mentioned earlier in this section, these design bugs Wesvered, fixed, and
documented before the final tape-out of the design. As suelexpect them to have some
differences with the design bugs that escape the verifitgtiase and slip into the final
product. We suspect that the algorithmic and timing desigsihave a more severe impact
on the design’s correctness and therefore they might havghehprobability of being
discovered during the design verification phase. In coptb@sause logic design bugs are
isolated and localized to small combinational logic parigthey could be less likely to be
discovered during the verification of the chip. This is besgathe erroneous effects of the
logic design bugs either might not be exercised or might bskexd before propagating
to observable outputs during testing. For example, in ofdiethe logic bug illustrated
in Figure 5.4 to be active, the source combinational cirouist be set to specific values
(which might be a rare combination of values). Based on #asoning, the distribution
of design bugs that actually slip into the final product migatve fewer algorithmic and
timing design bugs than the distribution shown in Figure 5.8
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Figure 5.9: Design Bug Triggering and Source Signals: In part (a), the shaded
column shows the values that source signals need to takigdetithe logic bug shown in
Figure 5.4. Part (b) shows the source-level and first-lagelads for the same logic bug.

5.1.3 Detecting Logic Design Bugs at Runtime

Although logic design bugs might be harder to discover thawther two design bug
classes, we believe that once they have been discovered)itdh easier to detect their oc
currence while the “buggy” microprocessor is in operatiothie field. Their characteristic
of being isolated in a combinational logic circuit portiomkes it possible to deterministi-
cally detect their occurrence by monitoring the values efrtiource signals. To illustrate
this concept, we consider the logic bug example shown inrEi§u4. By computing the
truth table of the buggy circuit (line 1106) and the correatut (line 1107), as shown in
Figure 5.9(a), we can infer that the design bug occurs whesdhrce signals are setto a
specific combination of values (shown in the shaded colunthetable). Therefore, by
monitoring the values of the bug’s source signals it is gidesb deterministically detect
the occurrence of the specific design bug. In this work, wieleial set of signal$irst-level
monitor signals(i.e., signals that directly determine the occurrence of thegiebug).
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Figure 5.10: Design Bugs Source Signal StatisticsCumulative distribution of logic
bugs versus the first-level and source-level monitor sigaasizes for the LSU and TLU.

For this specific bug, the size of the first-level monitor siigset is 4 because there are 4
signals whose values directly determine the bug’s occaeen

Although it is easy to find the set of first-level monitor sitgia the RTL model, these
signals unfortunately might not exist in the lower trarmidevel implementation due to
the logic synthesis process and optimizations employehgltine process of translating
the RTL implementation to gate-level and then to transikEeel implementation [131].
Thus, there is not a guaranteed one-to-one mapping betuggealsin the RTL and signals
in the transistor-level implementations. However, theéd@ynthesis process maintains a
one-to-one mapping of the state-holding elemeatg,(flip-flops) and module-level pri-
mary inputs/outpusbetween the RTL and transistor-level implementations [13Mo
effectively detect the occurrence of a logic design bug éntthnsistor-level hardware im-
plementation, we need only to trace back the combinatiagat that feeds the first-level
monitor signals to a set of signals that are directly coragbtd either 1) state-holding
elements or 2) primary inputs of the module. We call this $etignals thesource-level
monitor signals Figure 5.9(b) illustrates this process. Monitoring tharse-level mon-
itor signal set of a design bug allows the detection of the ugte that it is simple to
construct a truth table using the source-level monitoragimstead of the first-level mon-
itor signals to understand which combination of the valisssgmed to source-level signals
would exercise the bug.

To determine the number of signals required to be monitaretktect the occurrence
of logic design bugs, we measured the first-level and solesed-signals of the 162 logic
design bugs located in the LSU and the TLU units. Figure 5Hdws the cumulative

3In this work we consider a module to be a Verilog design modutae RTL code.
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Metrics LSU TLU

Min./Average/Max. number of first-level
monitor signals per logic design bug

2/8/43 | 2/12/44

Mln./Avergge/I\_/Iax. number (_)f source- | 517197| 2/24/84
level monitor signals per logic design bug

Source-level monitor signal sharing
among different design bugs

68% 64%

Average number of unigue source-level
monitor signals per logic design bug

Unique source-level monitor signals (fof

all logic design bugs) 516 602

Table 5.1: Logic Design Bug Statistics: The table lists several statistics regarding the
first-level and source-level design bug signals.

distribution of the logic design bugs versus the first-levsdl source-level monitor signal
set sizes in the LSU and the TLU units. We observe that 97%eolathic bugs located in
the LSU and 92% of those located in the TLU have a source-tawgiitor signal set size
that is smaller than 64 signals. This means that for detgetinysinglebug that is within
the aforementioned percentage, at most 64 signals neednoii¢ored.

Table 5.1 focuses on the number of first-level and source-kEgnals needed to be
monitored to detect logic design bugs. An interesting olzgén is that the average set
size of source-level monitor signals per logic bug is abautide the size of the first-level
monitor signal set. Notice that the size of the first-levehiar signal set determines the
minimum number of RTL signals required to be monitored taciz@y detect the occur-
rence of a certain bug, given that those signals exist indhebhardware implementation,
and can be probed. On the other hand, the size of the sowelestenitor signal set de-
termines the number of transistor-level signals requiodatttapped to detect a bug, given
that design flip-flops and module inputs can be probed. Furibes, the average num-
ber of source-level monitor signals per logic design bug7satd 24 for the LSU and
the TLU units respectively (The minimum and maximum setsee presented as well).
Hence, the detection of an average design bug requires W trarsistor-level signals to
be monitored.

The total amount of tapped signals can be small if there iggh begree of source
signal sharing between multiple design bugs. To quantiiy, twe studied the amount
of sharing between the 162 logic bugs covered by our studyfoived that the sharing
between the source-level monitor signal sets is about 65%verage (68% in LSU and
64% in TLU). This means that 65% of the signals that belondpéosource-level monitor
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signal set of a logic design bug also belong to the sourcg-lewnitor signal set of at

least one other logic design bug. Furthermore, each logigdéoug has on average 6-9
signals in its source-level monitor signal set that are u@jge., they do not belong to

the source-level monitor signal set of any other logic desigg. This result implies that

the discovery of a new design bug requires the monitoringnafdditional 6-9 signals, on

average, that have not been previously monitored for angrdihg, thus increasing the
total number of tapped signals.

In order to detect all the 162 studied logic design bugs, 516602 unique source-
level monitor signals need to be monitored in the LSU and thid modules, respectively.
Note that these numbers are much higher than previous wonkagss that used high-level
errata documentation to analyze design bugs. Specifith#ystudy in [110] reports that
on average, for the ten processors studied, only 210 sigeal$ to be monitored to detect
all design bugs in all modules of a processor, with the marimequirement out of the
ten microprocessors being 260 signals. The study in [9Gjrteghat monitoring only 41
signals is adequate to detect the occurrence of 43 out of3lk@@nvn design bugs in the
AMD Athlon 64 and AMD Opteron microprocessors. In contramtr study shows that
1118 signals need to be monitored to detect 162 bugs in twalesdf the SPARC core.
We believe this discrepancy stems from the attempt in pusvgtudies to infer low-level
hardware implementation information from the high-lewadstract information provided
in the microprocessor errata documents. By studying themeated design bugs at the
lower RTL level, we found that the signal monitoring requaents of online design bug
detection are significantly higher than the estimates falprevious studies. As a result,
the problem of detecting design bugs is more difficult and gbkition is likely more
hardware intensive than estimated by previous work.

Insights from RTL Design Bug Analysis

In summary, our RTL design bug analysis provides the foll@néonclusions and in-
sights:

1. The design bugs documented in the Verilog source fileseddipenSPARC T1 chip-
multiprocessor can be classified into three major classssdban their characteris-
tics: logic, algorithmic, and timing design bugs (Sectioh.3).

2. Logic design bugs outnumber the documented design buide aither two design
bug classes. Furthermore, they might dominate the distoibwf design bugs that
escape the verification phase and slip into the final prockextt{on 5.1.2).
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3. Because they only affect combinational logic, the o@nre of logic design bugs
is more readily detectable while the system is in operafidns can be done deter-
ministically by monitoring a set of source-level signals.

4. The number of signals that need to be monitored to deteav¢hurrence of logic
design bugs is significantly higher than estimates provimegdrevious work. The
discovery of a new design bug requires the monitoring oftamtthl 6-9 signals, on
average, that have not been previously monitored for argr dig.

These conclusions and insights call for a mechanism capdldencurrently moni-
toring a large number of different signals scattered in tesigh and thus providing an
effective and efficient substrate to perform online detectf the occurrence of logic de-
sign bugs. In the rest of this section we describe how the A@Eéwork can be extended
to provide such a mechanism.

5.1.4 ACE-Based Distributed Online Bug Detection

Figure 5.11 illustrates the high-level architecture of A@&E-based online design bug
detection mechanism. The mechanism is characterized bphases: 1) the initial setup
of the mechanism and 2) the cycle-by-cycle operation whesega bugs are detected
while the system is operating in the field.

Initial Setup Process

The first step of the mechanism’s setup process is the detation of the triggering
conditions for each design bug in the system. The design figgeting conditions are
characterized by (1) the bug’s source-level monitor siggaald (2) their values that would
activate the bug. The design bug triggering conditions @hdaug are determined by
system engineers after performing the bug analysis prguesgnted in Section 5.1.3.

Bug Signatures: Once bug triggering conditions are determined, they anessmted
by a structure called bug signaturdgstep 1 in Fig. 5.11). Conceptually, the bug signature
is a list of all the signals in the system. From that list, theg's source-level monitor
signals are marked with the value they need to take to trifgeebug, while non-source
signals are marked with@don’'t care  value (X) indicating that their values are irrele-
vant to the bug activation. The bug signature can be coresices a representation of the
system state that would activate the design bug. Each desigican have multiple bug
signatures due to multiple possible combinations of triggeconditions.

System Bug Signature: The next step in setting up the design bug detection mech-
anism is the generation of tlsystem bug signaturelhe collection of bug signatures of
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Figure 5.11: Overview of ACE-Based Online Design Bug Deteicn: The ACE-Based
online design bug detection is partitioned in the initialupephase (steps 1-4) and the
online bug detection phase (steps 5-7).

all design bugs are merged together to formdpgtem bug signatufstep 2 in Fig. 5.11).
The system bug signature constitutes a representatiohtbeatonditions that can trigger
any individual design bug in the system. The process of mgrgiultiple bug signatures
into the system bug signature is detailed in Section 5.1.4.

Bug Detection SegmentsThe system bug signature is subsequently encoded into a
binary representation, partitioned into segments, andddanto the mechanismfsig de-
tection segmentstep 3 in Fig. 5.11). The bug detection segments are fielgraromable
structures each associated with a part of the system statéhe system’s flip-flops). Each
bug detection segment is loaded with the part of the systensigmature corresponding to
its part of the system state. The loading of the bug detesggments is done by firmware
that has access to the segments’ field programmable resoubaeing system operation,
the bug detection segments compare the system state tostieenslyug signature and gen-
erate match/mismatch signals.

Segment Match Detection TablesThe source-level signals of a design bug might be
located only in some of the bug detection segments. Thergdaich bug is associated with
asegment match detection enthat indicates which lower-level segments need to match
the system bug signature with the system state for the bug tletected. In essence, the
system bug signature summarizes all the triggering candstirom all bugs whereas each
segment match detection entry demultiplexes them to eribbléetection of individual
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bugs. The segment match detection entries are loaded iateetiment match detection
tables by firmware (step 4 in Fig. 5.11).

Cycle-by-cycle Operation and Design Bug Detection

Flip-Flop Level Checking: Once the initial setup of the mechanism is done by the
firmware, the remaining task of the mechanism is to checkefsystem steps into a bug
triggering state while it is operating. To check this, eaalj Hetection segment compares
its portion of the system bug signature to the system stateganerates a segment-wide
match/mismatch signal (step 5 in Fig. 5.11).

Segment Checking TreeThe detection of each individual bug usually requires only a
subset of all the bug detection segments in the design tantiaear portion of system bug
signature with the system state. For each bug, this infoomat encoded into a segment
match detection entry. However, the set of segments thategrgred for the detection
of an individual bug might be scattered in different areashef chip. To aggregate the
match/mismatch signals of all the segments on the chip, @ahamism employs a dis-
tributedsegment checking tre@he structure of the checking tree is identical to the ACE
tree presented in the previous chapter, only with some nmraatifications. Specifically,
each node in the segment checking tree hsagaent match detection tatbet is popu-
lated with the segment match detection entries of each aidts bug-detection required
segments connected to the tree node. These entries aral ldadeg the initial setup
phase by firmware (step 4 in Fig. 5.11). During system opamatf the match/mismatch
signals of the underlying segments match with one of the 's@@gment match detection
entries, this indicates that the local triggering condisi@f a design bug within that node
are met. In a similar fashion, each level of nodes in the texgerates a match/mismatch
signal and feeds the upper level of nodes (step 6 in Fig. 5lfld match signal propagates
all the way from the bug detection segment level to the topllef/the tree, this indicates
that the triggering conditions of a specific design bug ar¢ forethe whole chip and a
global bug detection signa$ asserted. This process is illustrated in detail with aamex
ple in Section 5.1.5. The bug is subsequently flagged tttigerecovery handlefstep 7
in Fig 5.11).

Design Bug Recovery Handler:If a bug is flagged by the global bug detection signal,
the design bug recovery handler recovers the system int@ashealidated system state.
Execution is then restarted and guided by design bug avoedgethniques so that the
design bug is averted, if possible. Since our focus is on letigation, we leave the design
of the bug recovery handler to future work.
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Figure 5.12: Bug Detection Flip-Flop: Modified scan flip-flop with bug detection
capabilities.

Hardware Implementation

Bug Detection Flip-Flops: In the ACE-based online design bug detection mecha-
nism, the system bug signature and its comparison with systate is distributed to the
flip-flop level. This is achieved by augmenting the systemtflyps with extra logic for
storing the system bug signature and comparing it to thesystate. Figure 5.12 shows
a system flip-flop augmented with these extensions. The hadesl logic comprises a
scan flip-flop, the common type of flip-flop used in modern pssoces to enable scan-in
and scan-out functionality to facilitate manufacturingtieg using Automatic Test Pattern
Generation [67, 146]. The system portion is used for holdmegsystem state, while the
scan portion is used to scan-in test patterns and scan-stutetgponses. In current de-
signs, the scan portion is utilized only during the manufang testing phase and stays
idle during normal operation. Also, notice that the nonesgthlogic is identical with the
ACE flip-flop used in the ACE framework for online defect deic and diagnosis, thus
the hardware extension of the ACE flip flop to perform onlinsige bug detection, as
illustrated in Figure 5.12, is straightforward.

Specifically, during normal operation, the ACE-based anldesign bug detection
mechanism uses the scan portion in combination with an éxtgadetection portiorno
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Figure 5.13: Bug Detection Example: Example of an 8-bit bug signature encoding and
checking.

store the system bug signature. The scan portion is usedlitwaie whether the specific
flip-flop belongs to any bug’s source-level monitor signal He¢he scan portion is setto 1
the flip-flop is indicated as a bug source signal, otherwiedlip-flop’s value is irrelevant

to the activation of a design bug. In the former case, theeviat will activate the design
bug is stored in the bug detection portion.

The box at the top of Figure 5.13 illustrates the three emgpdiles used to binary
map the system bug signature to the bug detection porti@dé&thbox) and the scan por-
tion (white box). If the scan portion is set, the value of tlgstem flip-flop is compared
to the value of the bug detection portion to check if there imsadch between the system
state and the system bug signature. In our mechanism, flys-fice grouped intbug de-
tection segment® simplify checking; the comparison resuli@fkedwith the comparison
result of the previous flip-flop to generate a segment-widechdmismatch signal. The
signal is propagated to the next flip-flop (O indicates a segmmatch and 1 indicates a
segment mismatch). A bug detection segment consists ofpteuttiug detection flip-flops
connected together in a serial fashion (this is analogoasdn segments in scan chains).
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Figure 5.13 demonstrates the system bug signature binandaty process with an
example 8-bit system bug signature. The system bug signetencoded and loaded into
the bug detection and scan portions, and the checking igipaed into two 4-bit bug
detection segments. Figure 5.13 also demonstrates howtheédtection segment signals
are generated for two different scenarios. In the first stentne system state matches
with the system bug signature and the segment bug detedgioals are both set twero
indicating that the bug is activated. In the second scentdresecond bit of the system
state does not match with that of the system bug signaturéhaneffore the bug detection
signal of the particular segment is seiwe indicating that the bug is not activated.

Merging Bug Signatures into the System Signature:In this section we describe
the technique we employ to merge multiple bug signaturet®ate the single system
bug signature. First, we merge all the bug signatures klatex single design bug into
an intermediate bug signature. To do so, for each bit looatie check the values of all
bug signatures. If the bit takes the valuezaffo in some signatures and the value of
one in others, then don’'t care  (X) value is assigned to the merged intermediate bug
signature since for that signal either value can lead to athiggering combination. If
the value of the bit is constant for all signatures then tladueris assigned to the merged
intermediate bug signature. This technique is illustrateBligure 5.14 for two example
design bugs.

When merging the intermediate bug signatures of multiplgskato the system bug
signature, we employ a slightly different technique. Agé#ia bit location takes both val-
ues pne andzero ) among different intermediate signatures, it is markedh\aidon’t
care . The difference from the previous technique is that now giassible for a bit lo-
cation to have aero or aone in the intermediate signature of one bug andoa’t
care in the intermediate signature of another. This case isdadedifferently depending
on the status of the remaining signals in the bug detectigmeat:

e CASE 1:Consider the two rightmost bits of the middle bug detectiegnsent of
Figure 5.14. They both have the valueasfe in one of the intermediate bug sig-
natures and don’t care value in the other. Since the whole bug detection seg-
ment needs to match to trigger a bug and both bugs have otbesessignals in
this bug detection segment (the second source signal vatxatuezero ), the spe-
cific source signal is assigneddan’t care  value so that it will not prevent the
detection of any of these two particular design bugs.

e CASE 2:Now, consider the third bits of the leftmost and the righttimgy detection
segments. Again, in one of the intermediate signatureshibeg the value obne
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while in the other they havedon’'t care  value. However, in this case no other
source signal in the bug detection segments is shared betivedwo bugs. This
means that the segments are associated with only one dasiygnTinerefore, the
source signals can be setdoe in the system bug signature because only a single
bug requires the particular segment to match its portioystesn bug signature with
the system state to detect the bug activation.

False Positives Notice that our mechanism usesn’t care  values to merge mul-
tiple bug triggering conditions and multiple bug signaturelhis approach relaxes the
bug triggering conditions and can resultfalse positivesthat is, non-errant conditions
which initiate an innocuous recovery sequence. Howeuvaredine technique only relaxes
the triggering conditions, it cannot exhilfitlse negativeshat is, discovered design bugs
with installed signatures that do not successfully inii@covery. This is a very important
property, since it guarantees that the system will not egpee the effects of a specific
design bug once the bug is covered by the mechanism.

However, the presence of false positives can adverselydntpa performance of the
system if too many false recovery alarms are issued. Sirecéathe positive rate highly
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changing the set of covered design bugs to regulate thegdalsve rate and performance
overhead

depends on the dynamic system conditions and workload, egope a dynamic scheme
for trading off design bug coverage with system performarkigure 5.15 gives a high-

level overview of this scheme. At system start-up, firmwaiedk into the mechanism the
initial system bug signature that covers all design bugsigyéred design bug detection
is followed by a diagnosis process that determines if thegddsig detection is correct or
if it is a false positive. If the detection is correct, the tgys execution is recovered and
the design bug is averted using design bug avoidance tagksidf the detection is a false
positive, then the false positive rate of the specific debigg is logged using the bug’s
ID tag and the system’s false positive rate is calculatece §ystem’s false positive rate
is then compared with a predefined threshold. If the systéaise positive rate is larger

than the threshold, the design bug with the highest falsiip®sate is removed from the

set of covered design bugs and firmware regenerates andildadfie mechanism the

new system bug signature. On the other hand, if the systeiss positive rate is smaller
than the threshold, the design bug with the lowest falsetipesiate is added to the set of
covered design bugs.
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Figure 5.16: ACE-Based Distributed Bug Detection: Example of online design bug
detection on an ACE-based distributed segment checkieg tre

The predefined threshold can be adapted dynamically basth@ eaquirements of the
running applications. For example, a performance-ctitipglication with low depend-
ability requirements can set the threshold low, while a dépéility-critical application
can set it high. Furthermore, this scheme can be optimizadh@ve the optimum trade-
off between design bug coverage and performance overheatbdalse positives.

5.1.5 ACE-Based Segment Checking Tree Implementation

In the ACE-based online design bug detection mechanisnpugealetection segment
signals are aggregated to generate one global bug detaggioal through a hierarchical
tree structure, the ACE-based segment checking tree. Tiilemnentation of this structure
is shown in Figure 5.16 and is similar to the implementatibthe ACE tree presented
in Chapter IV. Each leaf node of the structure is connected set of bug detection
segments. For each bug that has source signals located debegion segments assigned
to a leaf node, aegment match detection entsyallocated in that node. Each segment
match detection entry indicates which subset of the nodajsletection segments need to
match the system bug signature to trigger the given bug girtheMatch-bitvector
field. Each entry also hasBuglD and aFlag field. TheBugID field indicates the bug
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associated with the specific entry, while thlag field indicates whether the specific bug
has source signals that are mapped on a different leaf node.

For example, the design bug with the ID tag 12, has sourcalsidpoth in the leftmost
and in the rightmost leaf nodes of the tree. Therefore, iflecated a segment match
detection entry in each of those nodes with Fag field set tozero . On the other
hand, the design bugs with ID tags 7 and 9 have source sigmatsd only to one leaf
node and this is indicated by having thElag field set. A bug that has iSlag field set
means that if thélatch-bitvector field of that particular bug matches with the values
of the underlying bug detection segments, then no furthecking is required (since the
bug’s signals are limited only to that node) and the bug isgial along with its ID tag,
through the tree to the top levglobal bug detection signalNotice that if two bugs are
flagged in the same cycle.@, bugs 7 and 9), only one of them will be flagged to the top
level and the decision will be arbitrary based on the impletatgon. However, due to the
rare occurrence of design bugs, we don’t expect two desigs bu be triggered in the
same cycle.

Figure 5.16 illustrates the detection of the bug with the g 2. In the specific
example, the values generated by the underlying bug deteségments match with the
Match-bitvector fields of bug 12 in both leaf nodes. Since Hag field is set to
zero , the bug is not flagged and the hit/miss signal from the ledesare passed to the
upper level. When the node hit/miss signals reach the tag teade of the tree, the values
match with the bug’atch-bitvector entry and therefore the global bug detection
signal is set taone, triggering the design bug recovery process, and the bugdDs
passed to the bug recovery handler.

System-Level Integration

In order to provide a complete online design bug detectidutiom, the ACE frame-
work presented in the previous chapter offers two additibmeactionalities:

1. In-the-Field Programmability: The system bug signature and the data that need
to be stored in segment match detection entries are dynamliclaange as new
design bugs are discovered or old bugs get fixed. This pahnead¢sign needs to be
field-programmable and upgradable by special firmware deeel and distributed
by microprocessor vendors. Since the ACE framework cannedd to any of the
tree nodes and any scan flip-flop in the design, it can also & tasprogram the
segment match detection entries in the distributed bugkehgtree and load the bug
signature at the flip-flop level. Specifically, this functadity is already available in
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Figure 5.17: ACE Framework for Online Design Bug and Defect [tection: Unifying
online design bug detection and silicon defect detectiateuthe ACE framework.

the ACE framework in the form of the ACE instructions, ACE fimare, and ACE
tree as described in Chapter IV.

2. Recovery Support: The detection of the occurrence of a design bug is only thee firs
step in providing a solution to the problem. Further actiomeiquired to avert the
design bug and avoid corrupting the execution. This is conmiynachieved through
recovery support where the system state recovers to thedkgated/correct state
and execution is guided from there in a way that the designib@ayerted. The
system state recovery can be provided by the ACE framewordesias described
in Chapter IV, it employs coarse-grained checkpoint anawery techniques to
provide system recovery from hardware defects. By rolliagkithe system state to
the last validated and correct system state, execution eagjuioled by design bug
avoidance techniques in a way to avert the design bug. Selesign bug avoidance
techniques have already been proposed in the resear@iditef109, 141, 96] and
any further advancement toward this direction is not in tegos of this work.

System-Level Operation: The two applications, online design bug detection and on-
line defect detection, can use the ACE framework hardwamergystically and provide a
collective solution for reliable and dependable computkigure 5.17 shows the synergis-
tic execution timeline of the two applications. At systemrgip, special firmware uses the
ACE framework to load the bug signature and the segment nalgtietttion entries needed
for online design bug detection. During a checkpoint irdérexecution is guarded from
the effects of design bugs by the online bug detection mestma(phase 1). If no de-
sign bug is detected, at the end of the checkpoint intenatigpfirmware uses the ACE
framework to test the underlying hardware for defects asrde=d in Chapter IV. If the
test succeeds, a new checkpoint is taken. If, during thekgogat interval, a design bug is
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detected, the system state is rolled back to the last chedli(phase 2) and bug avoidance
techniques are employed to avoid the design bug (phase@hdfdware defect manifests
during a checkpoint (phase 4), the defect is detected antthefethe checkpoint and, after

system repair, the system state is rolled back to the laskploént for re-execution as de-

scribed in Chapter IV. Notice that the use of the ACE treeuwesss and the scan state is
mutually exclusive by the two mechanisms. The online debigndetection mechanism

utilizes these resources during a checkpoint intervalleathie hardware defect detection
mechanism utilizes the resources at the end of a checkpuerval. Hence, the cost of

the ACE framework is amortized between bug detection anelatielietection.

5.1.6 Experimental Evaluation

Experimental Methodology

The case study design used for the experimental evaluationranechanism is the
OpenSPARC T1 chip-multiprocessor, the open-source versidun’s Niagara (Ultra-
SPARC T1) [126]. We choose this design because the OpenSFARBIp-multiprocessor
targets commercial applications such as database and wedyse/here system correct-
ness is of paramount importance. We believe such systenssittiie ideal candidates to
employ our mechanism to provide the required correctneasagtees. The OpenSPARC
T1 is a full-system multiprocessor design implementing @4ebit SPARC V9 architec-
ture. It contains eight 6-stage pipelined in-order coreshewith 8KB L1 data-cache,
16KB L1 instruction-cache and full hardware support forrftreads. The eight cores are
connected through a crossbar to a unified 3MB L2 cache andradsfiaating-point unit.
The chip also includes four memory controllers and an irquiput bridge [127].

RTL Implementation: To make an accurate assessment of our mechanism'’s require-
ments in silicon area and power consumption, we developetaleld RTL model of our
mechanism in Verilog. Specifically, in our prototype we ieplented 1) the bug detection
flip-flops that hold the bug signature and compare it with tfstesn state, 2) the segment
checking tree with a parameterized number of segment matidction entries per tree
node, and 3) the ACE-based field programmable frameworkidhalts through firmware
the bug signature and the segment match detection entriesin@lementation covers
all modules in OpenSPARC T1 except the memory cache dataagndrtays (we don't
expect logic design bugs to be located in regular and metisly optimized arrays).

Logic Synthesis and ToolsMWe used the Synopsys Design Compiler to perform logic
synthesis on the RTL code of the OpenSPARC T1 and our mecharisgic synthesis
mapping is done using the Artisan IBM 0.13um standard defaly. The resulting gate-
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Methodology/Tools Used Design Components

1) SPARC Cores, 2) Crossbar, 3) FPU,
4) Misc. Units (I/0O Bridge, DRAM
Synopsys Power CompilerControllers, Control & Test Unit)

5) ACE Framework, 6) Online Design
Bug Detection Mechanism

CACTI 4.2 1) L1 Inst. & Data Caches, 2) L2 Cachd
Taken from [72] 1) I/0O Pads, 2) Wires & Repeaters

Table 5.2: Power Consumption Estimation Methodology: The table lists the method-
ology/tools used to estimate the power consumption of tHem@penSPARC T1 compo-
nents.

level netlists of the OpenSPARC design and our mechanismided a common substrate
to accurately estimate the silicon area and power consomptverhead on the whole
OpenSPARC design.

Power Consumption Estimation Methodology:To evaluate the power consumption
overhead of our mechanism, we first estimated the power ogpison of the baseline
OpenSPARC T1 design without the extra hardware requiredubymechanism. We cal-
ibrated the estimated power consumption with actual powasgmption numbers pro-
vided by Sun for each module of the chip [72]. After we valathour power estimates for
the baseline OpenSPARC T1 design, we estimated the adaliffanver required by our
mechanism. Table 5.2 shows the major design componente @penSPARC T1 and
the methodology/tools we used to estimate their power copson. We estimated the
power consumption of the majority of the OpenSPARC T1 masluking the Synopsys
Power Compiler (part of the Synopsys Design Compiler pagkatp estimate the power
consumption of the L1 and L2 caches, we used the CACTI 4.2[t®#], a tool with
integrated performance, area, and power models for menaatyecstructures.

This methodology is sufficient to estimate the power condionwf most of the chip’s
logic modules. However, there are parts of the design whosepconsumption cannot
be accurately estimated with these tools. These includaitenous buses, wires, and
repeaters distributed all over the design, which are verg bkamodel accurately using
the Power Compiler, unless the design is fully placed antedy2) 1/0 pads of the chip.
In order to estimate the power consumption of these two passused values from the
reported power envelope of the commercial Sun UltraSPAR@éeEIgn [72].

Area Overhead and Design Bug Coverage

Control vs. Data Signals -After synthesizing the OpenSPARC T1 chip we found that
there are about 262K flip-flops in the design. We also fountgtaviding monitoring and
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Chip Submodule Data Signals | Control Signalg

SPARC Core (x8) 15632 (79.06%) 4140 (20.94
CPU-Cache Crossbar 27283 (98.69%) 362 (1.319
Floating-Point Unit 4054 (87.75%) 566 (12.25%
Control & Test Unit 2325 (55.29%) 1880 (44.71¢%

Input/Output Bridge 10251 (95.14%) 524 (4.86%
DRAM Controller (x4) | 13449 (94.70% 752 (5.30%
Total 222765 (84.95%) 39460 (15.05¢

Table 5.3: Data and Control Signals in OpenSPARC T1: The table shows the
percentage of data and control signals in the OpenSPARCAckepsor.

bug detection capabilities for all these signals resulgahibitive area overhead69%).
However, we observed that the majority of these flip-flopsesais buffers to data buses
or data registers, and only a small fraction of them are cbstgnals. Furthermore, after
analyzing the source signals of the logic design bugs siudi&ection 5.1.3, we found
that all of the bug source signals were control signals, andgic design bug had a source
signal that was part of a data bus or a data register. Afterabservation, we partitioned
the flip-flops of the OpenSPARC T1 design imtataandcontrol signals. Table 5.3 shows
the fraction of data and control signals for all modules ie @penSPARC T1. For the
whole chip, only 39K flip-flops drive control signals, accting for 15% of all flip-flops
in the design.

Our prototype implementation taps all 39K control signalshe OpenSPARC T1
design. This means that each of these flip-flops is augmenthdhe extra bug detection
logic shown in Figure 5.12. The area overhead of this flip-dagmentation is estimated
to be 3%. Flip-flops are grouped into 8-bit bug detection sagsiand connected to a
four-level segment checking tree structure (shown in Fdufi6). The area overhead of
the tree structure depends on the number of segment matattidatentries per tree node.
The number of design bugs that can be covered by our mechatésndepends on the
number of segment match detection entries per tree nod&gain engineering trade-off
between area overhead and bug coverage.

Area Overhead vs. Coverage Figure 5.18 illustrates this trade-off based on the
162 logic design bugs located in the SPARC core’s LSU and Thlisistudied in Sec-
tion 5.1.3. The figure depicts the percentage of design bogsred (left Y-axis) and the
area overhead (right Y-axis) versus the number of segmetctndatection entries per tree
node. When the tree nodes are equipped with 32 entries, atlranesm can cover all the
162 design bugs with an overall area overhead of 17%. Fadlyhaot all design bugs
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Figure 5.18: Area Overhead Versus Design Bug Coverage:The graph illustrates
the trade-off between area overhead and design bug covekaghe number of segment
much detection entries per tree node is increasing, so tieedesign bug coverage and
the area overhead.

are critical to functional correctness and need to be cove®arangi et al. [110] studied
the errata documentation of ten modern microprocessorsoand that, on average for all
the studied processors, 64% of the design bugs are critidahttional correctness. The
remaining 36% of the design bugs were found to be non-ckiticthe correctness of the
system and commonly located in modules such as performangoeers, error reporting
registers, or breakpoint support [110]. In Figure 5.18, \&e observe that 16 segment
match detection entries per tree node provide a design bregage of 80% that is much
higher than the typical fraction of critical design bugs.isTtlesign configuration leads to
a silicon area overhead of 10% of the whole OpenSPARC T1 desig

Power Consumption Overhead

Employing the methodology described in Section 6.5.1, wenesed the power en-
velope of the baseline OpenSPARC T1 chip, without the aoitti hardware required by
our mechanism, to be 56.3W. Our estimate of the OpenSPAR®@W& s within 12% of
the reported power consumption of the commercial Sun Neéadasign [72]. Figure 5.19
shows the power consumption for our enhanced OpenSPARC Figjrdancluding our
online design bug detection mechanism. The power envelbffeeeenhanced design is
58.3W. From this, a total of 3.4% (1.96W) is devoted to thesekardware required by our

mechanism. The overall power consumption overhead of ooharésm over the baseline
is therefore about 3.5%.
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Figure 5.19: Power Consumption Overhead: The pie chart shows the power con-
sumption of the OpenSPARC T1 processor augmented with theB&€3ed online design
bug detection mechanism.

Flip-Flops Area Power

HEERERIEm Covered | Overhead Overhead

Online Design
Bug Detection
(16 seg. comparator
entries per tree node)

39K Flip-Flops | 10.26%|  3.5%

Online Hardware

in- 0, 0,
Defect Detection 262K Flip-Flops 5.8% 4%
Online Design 39K Flip-Flops
Bug Detection (bug detection)
+ 15.15% 6.8%

Online Hardware 262K Flip-Flops
Defect Detection (defect detection

Table 5.4: Overhead of the Extended ACE Framework: The table shows the total
overhead of the combined design bug and defect detectionfreadiework.

Unified Design Bug & Defect Detection Overhead

Table 5.4 presents the silicon area and power consumptiernead of the extended
ACE framework. The estimated silicon area overhead of thengbed framework is
15.15%, and its power consumption overhead is 6.8%. Bas#tesa numbers, we believe
that the extension of the ACE framework hardware to providae design bug detection,
in addition to Online defect detection and diagnosis, is @ractive and relatively low
overhead solution for high-dependability computing.
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5.2 Related Work

Design Bug Analyses:Our online design bug detection mechanism is based on in-
sights from this work and previous design bug analyses tratcterize the known design
bugs of existing processors. Section 5.1.2 provides a stson on previous design bug
analyses and how our RTL design bug analysis differs froradhmevious works.

Online Design Bug Detection:Recently, several works proposed the use of online,
in-the-field design bug detection and avoidance as a mexinatioi mitigate the negative
effects of design bugs [110, 96, 141].

Specifically, Saranget al. [110] propose the Phoenix, a field-programmable mecha-
nism that continuously taps key logic signals to detect tteaoence of design bugs while
the processor is operating in the field. In particular, Phoases a software structure at
the supervisor level, called the signature buffer, to hbédttiggering conditions of design
bugs. The supervisor uses the triggering conditions stordte signature buffer to pro-
gram the field-programmable portion of the Phoenix mecimanighe field-programmable
portion of Phoenix consists of two components: i) the Sighelection Unit (SSU), a
switch that is made out of programmable pass transistor @edts the logic signals that
need to be monitored for the detection of the occurrence pkaiic design bug, and ii)
the Bug Detection Unit (BDU), a logic array that combinesnsig selected by the SSU
into logic expressions that flag the occurrence of a design Bine input signals to the
SSU are a set of control signals selected at designs timeatliae designers’ judgment
could possibly help the detection of any yet unknown desigysb

The Phoenix mechanism is partitioned into several subsysteach with a local
SSU and BDU, that are distributed to the different microdedtural components. Each
Phoenix subsystem uses a hub to collect monitored sigrats the local SSU and pass
them over to the hubs of other neighboring subsystems, abidrtg in signals from other
hubs to the local BDU.

Wagneret al. in [141] proposed FRCL, a field-programmable mechanism tier t
online detection and recovery of design bugs. In FRCL, tHemerdetection of design
bugs is performed by routing a set of signals that are selettgesign time to a centralized
state matcher, a fully-associative field-programmablayatinat holds the bit-patterns that
represent the triggering conditions of design bugs. Inmiakémit the number of the state
matcher entries, the state matcher is structured in wayldavdahe use of “don’t care”
values in the bit-patterns. This extension, enables opétians like the combination of
similar design bug bit-patterns into a single bit-patt@rhese optimizations were used for
the development of a pattern-compression algorithm wighgibel of reducing the number
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of entries required for the state matcher. In the same wodgnafret al. also developed a
software tool for the automatic selection of the set of sigitmbe monitored. Specifically,
in order to find the more critical set of signals to monitor tiool considers the RTL
description of the design and it ranks signhals based on tt#hwi the cone of logic that a
signal drives and the number of submodules that they feed irtte proposed tool helps
the designers to choose the set of critical signals to be toraai for the online detection
of design bugs and can potentially improve the effectiverné$RCL by predicting which

design signals would be involved in the triggering condis@f future, yet undiscovered,
design bugs.

A field-programmable approach for online design bug detaactias also proposed by
Narayanasamgt al. in [96]. The approach proposed in [96] differs from the otbeline
design bug detection techniques and the technique proposbis thesis because of its
capability of detecting design bugs with triggering coiudis that span across multiple
clock cycles. Specifically, in [96], the triggering conditis of each design bug are rep-
resented as a combination of set of events that happen incdispene interval, where
events are signals with a particular value. As design bugéring events occur, they
are reported to a monitoring unit that is programmed withtadl combinations of events
and the time interval that these events need to occur for partitular design bug to be
triggered. Each event is reported to the monitoring unihwitimestamp and if the mon-
itoring unit determines that all the triggering events ofaatjgular design bugs occurred
in the specified time interval, the occurrence of the designib effectively detected and
recovery is initiated.

Contribution Over Previous Work: In all these previously proposed mechanisms,
the online design bug detection is facilitated by a signahitooing substrate. However, in
all these works the signal monitoring substrate is limited small set of signals selected
at design time when the design bugs are still unknown. Withapproach, if a design bug
is discovered after the final release of a microprocessoitarmig triggering conditions
involve signals not included in the original set of signalattwas selected to be monitored
by the substrate, the occurrence of the design bug cannatbetdd. In some cases, such
design bugs can be detected by over-approximating the lgggeting conditions using the
the original set of signals that was selected to be monitdngicthis can lead to a high rate
of false positives and high runtime performance overheatdthe false recoveries. This
means that the effectiveness of these online design bugtaetenechanisms depends
on decisions made at design time based on assumptions iregénd set of signals that
would be involved in yet unknown design bug triggering caiodis. This constitutes a
major limitation for the effectiveness of these previoysigposed mechanisms. The ACE
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framework hardware extensions used for the online detecti@esign bugs address this
limitation and improve on these previous works with a nowatfiprogrammable substrate
that is capable of monitoringll control signals in the desigthat can trigger a design bug.

This capability waives the requirement of selecting thea$etignals to be monitored at

design time and allows this decision to be made after theymtaglease and the discovery
of design bugs, when the design bugs and their triggerinditions are known.

Bug Avoidance Techniques:After the occurrence of a design bug has been detected,
the next action that needs to be taken is to avoid any effect®wmect execution. Since the
design bug is detected a few cycles after its occurrencesytbiem state first needs to be
rolled back to the last correct state before the design bagroence, and then execution
has to be repeated. The goal during this second executratiate is to employ techniques
that avoid exercising the “buggy” part of the design and @sabther occurrence of the
design bug. In the research literature, there are alreagyraledesign bug avoidance
techniques proposed [109, 141, 96, 110]. Below we provideed @hescription of some of
these techniques:

Degradation to a formally-verified modeNagneret al. in [141], proposed that
once the execution has been rolled back and the system stateeken recovered,
execution switches to a simpler (lower-performance), ftynverified safe-mode
thatis free of design bugs. The execution is resumed to tireadanode of operation
once it passes the point where the design bug occurrenceetested.

Replay after pipeline flusHf the design bug can be detected before its effects cor-
rupt the architectural state, then a pipeline flush might degaate to change the
order of execution events that triggered the design bug][188veral techniques
have been proposed on how to change the order of executiaotsegeach as adding
extra NOPs between instructions [109].

Replay after checkpoint recoverZonceptually, this technique is the same as the
replay after pipeline flush technique, but this techniqs® aécovers the architec-
tural state in case that the design bug was detected lateasarffacts could have
corrupted the architectural state [109].

Instruction-stream editing This technique overrides the BIOS microcode of spe-
cific instructions with a new sequence of micro-operatidrad void exercising the
“buggy” part of the design [109, 141].

Hypervisor-guided executionn this technique, after the system state has been re-
covered, execution traps to the hypervisor. In many caBed)ypervisor is capable
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of intercepting and interrupting the control flow of exeoutiand taking sophisti-
cated corrective actions in a way to guide execution pastiteeoint where the
design bug was detected without triggering the detecteigulésig [109].

Dynamic Validation: Another approach to deal with the design bugs found in modern
microprocessors is the dynamic validation of the executiile the microprocessor is
operating in the field by adding some extra on-chip checHerparticular, these on-chip
checkers continuously monitor the microprocessor execwind check if the execution
steps into a non-validated state, or detect executionsetinat were caused by design bugs.
An example of a dynamic validation checker is DIVA, an onlaoteecker component, in
the form of a very simple core, that is inserted into the eatient stage of a micropro-
cessor pipeline that continuously validates the computatommunication, and control
exercised in a complex out-of-order microprocessor coré4a].

In this context, more recently, Wagredral. proposed the concept of semantic guardians
in [139] to guarantee bug-free and functional correct etienun microprocessor designs.
A semantic guardian is a hardware component that is autoaflgtisynthesized based
on the microprocessor’s functional validation coverage @dad it is included in the mi-
croprocessor design. At runtime, the guardian monitorsbaeduof the design’s internal
signals. If the guardian detects that the system steps imavaladated configuration, it
switches execution into a lower-performance but forma#yified safe-mode version of
the microprocessor to guarantee functionally correct @bea.

Another on-chip checker is Chico, presented by De@@tial. in [30]. Chico focuses
on the dynamic validation of control logic by monitoring th&wv of instructions executed
by the processor. Specifically, Chico is targeting to deggetution errors that manifest in
the control aspects of the execution like data forwardindjlzianching selection. Similar
to the semantic guardians approach, when Chico detectseautéon error, it switches
execution into a formally verified, lower-performance ex@mn mode until the offending
instruction that caused the error is committed.

Other dynamic validation solutions proposed in the reseliterature include the work
by Meixneret al.[86] that detects execution errors caused by design budeidataflow
circuitry by dynamically verifying high-level invariantbat error-free executions are guar-
anteed to maintain, and the work by Chetral. [25] that uses constraint graph models to
dynamically validate the end-to-end correctness of a &etienal memory system.

One of the drawbacks of dynamic validation when comparedhlio® design bug de-
tection is that specific on-chip checkers need to be desifprethe validation of each
functional task of the microprocessor, which results intoigher complexity and more
intrusive solution to address design bugs. In contrasinerdesign bug detection can
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provide a comprehensive solution that addresses the desggof a microprocessor de-
sign as a whole. Another limitation of dynamic validatioctaiques like the semantic
guardians [139] is that they treat all non-validated systemfigurations as potential de-
sign bugs and trigger system recovery and a switch into arlp@dormance safe-mode
execution. In a complex system with a lot of non-validatestaegn configurations, this can
result to significant performance overhead. On the othed hdynamic validation solu-

tions can provide functional correctness against desigs bhat are not yet discovered.

5.3 Other Applications of the ACE Framework

We believe that the ACE framework is a general frameworkc¢hatbe extended to sev-
eral other applications to amortize its hardware cost. palty, its capability to provide
hardware accessibility and controllability to the softevaan find use in many applica-
tions. In this section, we describe how the ACE framework loarextended to improve
two important phases of the microprocessor design cyclecisgally, Section 5.3.1 de-
scribes how the ACE framework hardware can be extended atassa tool to ease the
post-silicon debugging process, while Section 5.3.2 dessrhow the ACE framework
can improve the microprocessor manufacturing testing.

Notice that today, for none of these two applications the areerhead of the ACE
framework would be justifiable. However, if the area overthe&the ACE framework
can be justified by the need to provide defect tolerance torticeoprocessor design (as
it was proposed in Chapter 1V), and for the additional calitgtodof online design bug
detection (as it was proposed in Section 5.1), then the siterof the ACE framework
to these applications comes for free as an additional featnd adds value to the ACE
framework. This additional value and extra capabilities ease the potential adoption of
the ACE framework in future generation microprocessorst a®uld be possible to use
the framework’s hardware resources to address multiple!@nos.

5.3.1 ACE Framework Extensions for Post-silicon Debugging

Post-silicon debugging is an essential and highly resedereanding phase that is on
the critical path of the microprocessor development cyetglowing product tape-out.g.,
the fabrication of the microprocessor into a silicon digg post-silicon debugging phase
checks if the physical design of the product meets all théopmance and functionality
specifications as they were defined in the design phase. Eiefuost-silicon debugging
isto find all design errors, also known as design bugs, anétoate them through design
changes or other means before selling the product to theroest60, 49, 61].
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The first phase of post-silicon debugging is to run extendststto validate the func-
tional and electrical operation of the design. The valmtatontent commonly consists of
focused software test programs written to exercise spdaifictionalities of the design or
randomly generated tests that exercise different partseofiesign. We refer to these test
programs as thealidation test suiteThese tests are applied under different operating con-
ditions (.e., voltage, clock frequency, and temperature) in order totatally characterize
the product. When the observed behavior diverges from thea&d pre-specified correct
behavior {.e., when a failure is found), further investigation is reqdit®y the post-silicon
debugging team. During a failure investigation the pottesi debug engineer tries to i)
isolate the failure, ii) find the root cause of the failureg &) fix the failure, using features
hardwired into the design to support debugging as well ds dernal to the design [60].

Motivation: The trends of higher device integration into a single chmg ¢e high
complexity of modern processor designs make the posbsililebugging phase a signif-
icantly costly process, both in terms of resources and tif@. modern processors, the
post-silicon debugging phase can easily cost $15 to $20omiind take six months to
complete [39]. The post-silicon debugging phase is esath&d take up to 35% of the
chip design cycle [24], resulting in a lengthy time-to-metrkAs the level of device inte-
gration continues to rise and the complexity of modern msoedesigns increases [35],
this problem will be exacerbated leading to either i) verpensive and long post-silicon
debugging phases, which would adversely affect processost and/or time-to-market
or ii) more buggy designs being released to the customersodueor post-silicon debug-
ging [140, 109], which would likely increase the fractionabfips that fail in the field.

There are two major challenges in the post-silicon debuggincess of modern highly-
integrated processors. First, because the internal sigriahe microarchitecture have
limited observability to the testing software, it is difflcto isolate a failure and find its
root cause. Second, because the hardware design is ngt@aiidxibly alterable by the
post-silicon debug engineer, it is difficult to evaluate tee or not a potential fix to the
design eliminates the cause of the failure [61]. Existirdpteques that are used to address
these two challenges are not adequate, as briefly explagied.b

Traditional techniques used to address the limited sighakrvability problem are
built-in scan chains [146, 61] and optical probing toolsgL4Unfortunately, both have
significant shortcomings. The use of built-in scan chainswtmitor internal signals is
very slow due to the serial nature of external scan testib Mhich is part of the rea-
son why post-silicon debugging takes a significant fractibthe processor design cycle.
The effectiveness of optical probing tools reduces witthgéachnology generation as di-
rect probing becomes very difficult, if not impossible, wititore metal layers and smaller
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devices [137]. Furthermore, it is very hard to integrates¢éhevo techniques into an auto-
mated post-silicon debugging environment [137].

The traditional technique used to evaluate design fixesigttused lon Beam (FIB)
technique [60], which temporarily alters the design by ptsity changing the metal layers
of the chip. Unfortunately, FIB is limited in two ways. FirdEIB typically can only
change metal layers of the chip and cannot create any negidtars. Therefore, some
potential design fixes are not possible to make or evaluaig tisis technology. Second,
FIB's effectiveness is projected to diminish with furthechnology scaling as the access
to lower metal layers is becoming increasingly difficult doethe introduction of more
metal layers in modern designs [24, 60].

Recently proposed mechanisms try to address the limigtbthese traditional tech-
niques. Specifically, recently proposed solutions sugtiesuse of reconfigurable pro-
grammable logic cores and flexible on-chip networks that wiprove both signal ob-
servability and the ability to temporally alter the desid®2]. However, these solutions
have considerable area overheads [102] and still do noigg@omplete accessibility to
all of the processor’s internal state [102].

Solution - ACE Framework Extensions for Post-silicon Debuging: The ACE frame-
work can be an effective low-overhead framework that presithe post-silicon debug
engineers with full accessibility and controllability ¢fe processor’s internal microarchi-
tectural state at runtime. This capability can be helpfyddst-silicon debug engineers in
isolating design bugs and finding their root causes. Furtbez, once a design bug is iso-
lated and its causes have been identified, the ACE frameveorlbe used to dynamically
overwrite the microarchitectural state and thus emulatetarpial hardware fix. This al-
lows the debug engineer to quickly observe the effects otantial design fix and verify
its correctness without any physical hardware modification

Specifically, the event that triggers a failure investigatby a post-silicon debug en-
gineer is an incorrect design output during the executicheialidation test suite. How-
ever, by just observing the incorrect output it is very harginpoint the root cause of
the failure?* Therefore, further debugging of the failure is requirede Tinst step in this
process is the reproduction of the conditions under whighriaoccurred. Once the fail-
ure is reproduced, debugging tools can be used to analyzietign’s internal state and
pinpoint the design bug. This is where the ACE firmware co@d/éry useful to a post-
silicon debug engineer. The debug engineer can run the A@&vére as an independent
thread (called the ACE debugging thread) that runs in caijan with the validation test
thread to identify the root cause of the failure and evalagtetential design fix. We first

4As is also the case for buggy software.
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Post - si |l i con Debuggi ng ACE Instructions

ACE_pause <# of clock cycl es>

Pauses the execution of the running validation test thread after it is
executed for a given number of clock cycles, and sw itches execution into
the ACE debugging thread.

ACE return

Returns execution from the ACE debugging thread to the validation test
thread and swaps the scan state with the processor state in order to
restore the microarchitectural state of the validat ion test thread.

Table 5.5: ACE Instruction Extensions for Post-Silicon Deligging: Additional ACE
instruction set extensions for post-silicon debugging.

describe the required extensions to the ACE framework tpaupost-silicon debugging
using the ACE firmware, then provide a detailed example of ttmxdebug engineer uses
the ACE framework.

ACE Instructions for Post-Silicon Debugging: Table 5.5 shows the ACE instruction
set extensions that enable the synchronization betweevatttation test thread and the
ACE debugging thread.

The ACEpause instruction pauses the execution of the running validateshthread
after it is executed for a given number of clock cycles, andches execution to the ACE
debugging thread. The execution switch between the vadidaest thread and the ACE
debugging thread is scheduled by setting an interrupt entothe parameter value of the
ACEpause instruction. This interrupt counter decrements everylclogle during the
execution of the validation test thread. Once the counteotnes zero, the processor state
and scan state get swapped, thus taking a snapshot of theagunitroarchitectural state
of the validation testing thread into the scan state. In #mesclock cycle, execution is
switched to the ACE debugging thread.

The ACEreturn instruction returns execution from the ACE debugging ttrea
the validation testing thread and swaps the scan state ngtpriocessor state in order to
restore the microarchitectural state of the validatiohttagad.

Post-Silicon Debugging Example using the ACE Framework:Figure 5.20 shows
an example of a possible ACE firmware written to perform iston debugging. The
example firmware is written by the post-silicon debug engin&uppose that the debug
engineer runs a validation test program that fails afterth@usand cycles of execution,
and the validation engineer suspects that the bug is in e ACE domain of the core.
Figure 5.20 shows the pseudo-code of the ACE firmware writi@malyze such a failure.
The first portion of the code (Figure 5.20-top left) pauseseakecution of the validation
test program at the desired clock cycle; the second porkmu(e 5.20-top right) allows
the debug engineer to single-step the execution by one tyabdserve state changes.
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Based on the information obtained by running these portairtbie code, the engineer
devises a possible fix. The third portion of the code (Figug®Hottom center) is used
by the engineer to evaluate whether or not the design fix wadgdlt in correct execution.
We describe each code portion of the ACE firmware in detaduwel

The debugging process starts with the execution of the A@Eglgng firmware thread
(Figure 5.20-top left). In this thread, the first instructis anACEpause instruction that
sets the interrupt counter to the clock cycle in which dethdebugging is desired by the
post-silicon debug engineer. In the example shown in Fi§u26, the validation test is
set to be interrupted at clock cycle ten thousand (assurhiaigthis is the phase of the
validation test where the post-silicon debug engineeresttsghat the first error occurs).
The ACEpause instruction is followed by aMCEreturn instruction. ACEreturn
switches execution from the ACE debugging thread to thela#ibn test thread and thus
the validation test program’s execution begins.

After ten thousand cycles into the execution of the valatatest thread, the validation
test thread is interrupted. At this point, 1) processoresimswapped with the scan state,
and 2) execution is switched from the validation test thiteeitie ACE debugging thread.
Once execution is transferred to the ACE debugging thré&dpost-silicon engineer uses
the ACE framework to investigate the microarchitecturatesof the validation test thread
during clock cycle ten thousand (which is stored in the s¢ates The example scenario
in Figure 5.20 assumes that the suspected bug is in the tl@iE domain of the core.
ACEget instruction reads the third ACE domain’s microarchiteatstate and prints it
to the debugging console. We assume that the domain’s matnivectural state is checked
by the debug engineer and is found to be error-free. Thezgefioe debug engineer decides
to check the domain’s state in the next clock cycle. In ordestep the execution of the
validation test thread for one clock cycle, the interruptiter is set to one using the
ACEpause instruction, and the validation test thread’s executionresumed with the
execution of theACEreturn instruction (Figure 5.20-top right).

After one clock cycle of validation test execution, conti®transferred again to the
ACE debugging thread and the domain’s new microarchitatstate is checked by the
debug engineer. After inspecting the domain’s microaechitral state, the debug engineer
finds that the third bit of the domain’s sixth segment is a aargignal that should be a
zero but instead it has the value of one. Thus, the enginapojits the root cause of the
failure. In order to verify that this is the only design bugtlaffects the execution of the
validation test thread, and that fixing the specific contighal does not cause any other
erroneous side effects, the debug engineer modifies theidismacroarchitectural state
and sets the control signal to its correct value usingh@& set instruction (Figure 5.20-
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1. Pause Execution
Read Processor State

ACE_pause 10000

ACE_return

// Continue running the validation
/I test for 10000 cycles

// 10000 cycles later the processor
/I state and scan state are swapped
/I and the ACE thread is resumed

/I The bug is suspected to be in
// domain#3. Read and print
/I domain’s state for cycle 10000
for(j=0;j<#_of ACE_Segments;j++){
ACE_get $r1, 3,]j
print $rl
}

2. Step for one cycle
Read Processor State

/I Set the interrupt counter

I to step for one cycle
ACE_pause 1

/I Swap processor state with
/I scan state and resume the
I/ validation test execution
ACE_return

/I After one cycle of validation
/I test execution the ACE
/l debugging thread is resumed

/l Read and print domain’s
/I state for cycle 10001
for(j=0;j<#_of ACE_Segments;j++)

ACE_get $r1, 3,j
print $rl
}

3. Fix Buggy State
Conti nue Execution

// Bug found by debug engineer at the state of cycle 10001.
/I A control signal should be 0 instead of 1 in segment#6 bit 3.

/ Modify processor state to check if bug is fixed.

ACE_get $r1,3,6
and $r1,$r1,FFFFFFF7
ACE_set $r1,3,6

/ Run the rest of the validation test
ACE_pause 90000

/I Swap processor state with scan state and resume execution

ACE_return

/I At the end of validation test check if bug is fixed

Figure 5.20: ACE Firmware for Post-Silicon Debugging: Example ACE firmware
pseudo-code used for post-silicon debugging.

bottom center). Assuming that the whole validation test$atne hundred thousand clock
cycles to execute, the debug engineer sets the next delgugtgnrupt to occur after ninety
thousand clock cycles, which is right after the completibthe validation test. At this
point, the execution is transferred to the validation testad, which runs uninterrupted
to completion. After completion, the debug engineer chelkdinal output to verify that
the potential design bug fix led to the correct output andethweare not any erroneous side
effects due to the introduction of the bug fix. In the casetimafinal output is incorrect, a
new failure investigation starts from the beginning anddébug engineer writes another
piece of firmware to investigate the failure.




We would like to note the analogy between ACE framework bgsest-silicon de-
bugging and conventional software debuggifgCEpause instruction is analogous to
setting a breakpoint in software debuggirCEreturn is analogous to the low-level
mechanism that allows switching from the debugger to thenmpeogram code. Examin-
ing the state of the processor and stepping hardware egadotione cycle are analogous
to examining the state of program variables and single stgpp software debugging. Fi-
nally, ACE framework’s ability to modify the state of the pessor while the test program
is running is analogous to a software debugger’s ability ¢alify memory state during the
execution of a software program that is debugged. We note ghmilarly to a software
debugging program, a graphical interface can be designeddapsulate the post-silicon
debugging commands to ease the use of ACE firmware for pastrstebugging.

Advantages: The results of this detailed debugging process, demoassitiay the
above example, are sometimes achievable using traditposdtsilicon debugging tech-
niques that were described previously. However, the uskeeoACE framework provides
a promising post-silicon debugging tool that can ease,tshpand reduce the cost of the
post-silicon design process. The main advantages of AGkenaork based post-silicon
debugging are:

1. It eases the debugging process: ACE framework based gelou very similar
to the software debugging process, and therefore is trigiainderstand and use
by the debug engineer. This ease in debugging is achievedawydpg complete
accessibility and controllability of the hardware staté¢fte debug engineer.

2. It can test potential design bug fixes without physicatighpermanently modifying
the underlying hardware. This reduces both the cost anduliffi of post-silicon
debugging by reducing the manual labor involved in fixingdlesign bugs.

3. It can accelerate the post-silicon debugging procesausedt does not require very
slow procedures such as scan-out of the whole microart¢hrscstate or manual
modification of the underlying hardware using the aforenosretd FIB technique to
evaluate potential design fixes.

5.3.2 ACE Framework Extensions for Manufacturing Testing

Manufacturing testing is the phase that follows chip fadtimn and screens out parts
with defective or weak devices. Today, most complex miavopssor designs use scan
chains as the fundamental design for test (DFT) methodolbgying the manufacturing
testing phase, the design’s scan chains are driven by ektaamtomatic test equipment
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(ATE) that applies pre-generated test patterns to checklilpeunder test [23]. The test
pattern set size depends on several factors, such as thym dé&ze, the fault models used,
and the capabilities of the automatic test pattern germeréfTPG) tool used [45]. During
the manufacturing testing phase, every single chip has thrgoigh this testing process
multiple times, at different voltage, temperature anddeaty levels. Therefore, the man-
ufacturing testing cost for each chip can be as high as 25-&0#e total manufacturing
cost [45].

Motivation: Although this testing methodology served the semicormuictdustry
well for the last few decades, it has started to face an isarganumber of challenges due
to the exponential increase in the complexity of modern agoocessors [35], a product
of the continuous silicon process technology scaling.

Specifically, the external ATE testers have a limited nunmdderhannels to drive the
design’s scan chains due to package pin limitations [45]tHeumore, the speed of test
pattern loading is limited by the maximum scan frequency thaisually much lower
than the chip’s operating frequency [45, 23]. The limitecbtlghput of the scan interface
between the external tester and the design under testittestihe main bottleneck. These
limitations, in combination with the larger set of test patis required for testing modern
multi-million gate designs leads to longer time spent ontdster per chip. Even today,
the amount of time a chip spends on a tester can be severaldsefpthb]. Considering
that the amortized testing cost of high-end test equipnseestimated to be at thousands
of dollars per hour [18, 45], the conventional manufactyii@sting process can be very
cost-ineffective for microprocessor vendors.

Alternative Solutions: Logic built-in self-test (BIST) is a testing methodologgded
on pseudo-random test pattern generation and test responggaction. To speed up
manufacturing testing, logic BIST techniques use the seaastructure to apply the on-
chip pseudo-randomly generated test patterns and empoiediged hardware to compact
the test responses [23]. Furthermore, the control sigrsad tor testing are driven by an
on-chip test controller. Therefore, a clear advantage @icl®8IST over the traditional
manufacturing testing methodology is that it significaméyluces the amount of data that
is communicated between the tester and the chip. This lead®tter testing times and, as
aresult, lower testing cost. Logic BIST also allows the nfaoturing test to be performed
at-speedi(e., at the chip’s normal operating frequency rather than tequency of the
automatic test equipment), which improves both the speddjaality of testing.

Although logic BIST addresses major challenges of the ti@thl manufacturing test-
ing methodology, it also imposes some new challenges. , Fagic BIST requires the
on-chip storage of a very large amount of pseudo-randonmgigged test patterns. Sec-
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ond, because logic BIST uses pseudo-randomly generategattsrns, it often provides
significantly lower fault coverage than that provided by actnemaller number of high-
quality, ATPG pre-generated test patterns [23]. Third,ube of the logic BIST method-
ology requires significantly more stringent design rulemtbhonventional manufacturing
testing [45]. For example, bus conflicts must be eliminatedi the circuit must be made
random-pattern testable [45]. Therefore, logic BIST téghes significantly increase both
the hardware cost and the design complexity, while regultinower test coverage.

Proposed Solution - Use of the ACE Framework for Manufacturng Testing The
ACE infrastructure incorporates the advantages of botrstam-based and logic BIST
testing methodologies, while it also can effectively addrtheir limitations. Specifically,
the ACE infrastructure provides two capabilities that anetogether present in previous
manufacturing testing techniques. First, the ACE framévi®a built-in solution for fast
loading of high-quality pre-generated ATPG test patteme the scan-chain structures
through software. This capability can eliminate the needigpensive and slow external
equipment, currently needed for test pattern loading. s&che ACE framework allows
the test patterns to be loaded and applied at-speed at fhie chimal operating frequency
rather than the much slower operating frequency of the aatiortest equipment, which
results in higher quality testing.

With these two capabilities, the ACE framework provides biest of both existing
manufacturing testing techniques: 1) fast loading of tatigons to reduce testing time, 2)
at-speed testing of the chip to improve testing quality alsageto reduce testing time, and
3) testing with ATPG pre-generated test patterns rather the use of pseudo-randomly
generated test patterns, to improve testing quality. ThHuemployed by the future in-
tegrated circuit manufacturing testing methodologiegait greatly improve the speed,
cost, and test coverage of the costly manufacturing tegtivage of the microprocessor
development cycle.

5.4 Chapter Summary

This chapter demonstrated that the ACE framework, predent€hapter IV as a low-
cost solution for online design bug detection and diagnasis be extended to other im-
portant applications to amortize its cost and ease its amtopt future generation micro-
processor designs.

The first application that we considered as an ACE framewarkl\ware extension is
online design bug detection. We first described the probléstesign bugs in modern
microprocessors and motivated the need for the adoptiomlofeodesign bug detection
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mechanisms in future generation microprocessor desigest, Me provided a rigorous
analysis of processor design bugs in the RTL code of a comatenroprocessor, Sun’s
OpenSPARC T1 chip. Our low-level analysis of design bugschated that the signal

monitoring requirements of online design bug detectionsigaificantly higher than the
estimates of previous studies. We believe that this disgrepstems from the attempt in
previous studies to infer low-level hardware implemewotainformation from the high-

level, abstract information provided in the microprocessoata documents.

Based on the insights obtained from our rigorous design Imadysais, we proposed
a novel distributed online bug detection mechanism baseiti@ACE framework. The
proposed mechanism is able to flexibly monidircontrol signals This approach enables
flexibility in bug detection because, unlike previous pregls, it does not rely on the suc-
cessful selection of relevant signals at design time. &ustany signal that can participate
in the exercising of a bug can be monitored as needed.

In this chapter, we also described how the ACE framework eagxtended to improve
the quality and reduce the cost of two critical phases of opicessor development: post-
silicon debugging and manufacturing testing. Our desomgtshowed that the flexibility
provided by the ACE framework can significantly ease and lacate the post-silicon
debugging process by making the microarchitecture stat/@@cessible and controllable
by the post-silicon debug engineers. Similarly, the fldijpoof the ACE framework can
eliminate the need for expensive automatic test equipmenbstly yet lower-coverage
hardware changeg g, logic BIST) needed for manufacturing testing.

Finally, we evaluated the cost of the extended ACE framewoaork detailed RTL pro-
totype implementation and we found that the total silicogaaoverhead incurred is 15%
of the whole OpenSPARC T1 chip, while the power consumpti@rioead is only 6.8%.
Based on these numbers, it was demonstrated that the ACErark is a general frame-
work that can be used for multiple purposes to enhance trebiigly and to reduce the
design/testing cost of modern microprocessors and thahipcovide additional value for
its cost, something that would make its possible adoptidnture generation micropro-
cessors easier.
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CHAPTER VI

FPGA-Based Accelerated Hardware Resiliency Analysis -
The CrashTest Framework

A critical early stage in the development of a defect-taléraicroarchitecture is the
assessment of the threats and the reliability requiren@nise microprocessor design.
During this process, system engineers employ hardwaréeresi analysis tools to gauge
the robustness of the microprocessor design and check getsithe specified reliability
targets. Hardware resiliency analysis tools are also Usefasearchers for evaluating the
effectiveness of existing and newly proposed micropramedsfect-tolerance techniques.
The common approach followed by hardware resiliency amalymls is to first inject
faults in the microprocessor design and then analyze thgact on its behavior. After
the fault injection and analysis process, the micropramedssign can be characterized
for its reliability standards.

Today, simulation-based hardware resiliency analysitstare limited by the use of
high-level models of microarchitectural components tleaders them incapable of faith-
fully modeling the silicon failure mechanisms. Furtherman order for current simulation-
based resiliency analysis tools to gain statistical confideover the generated results, the
fault injection and analysis experiments need to be regesggeral times in a Monte
Carlo-like simulation environment that results in verydamintimes.

In order for hardware resiliency analysis tools to acculyajauge detailed circuit-level
reliability phenomena and faithfully model silicon faikimechanisms, they need to use
a detailed circuit-level model of the microprocessor. Baanodels that are capable of
providing such a detailed circuit-level representatiorina microprocessor are register-
transfer level (RTL) models synthesized to gate-leveliststl However, the simulation of
synthesized gate-level netlists in software is extremiely,shus exacerbating the already
long simulation runtimes.
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This chapter presents CrashTest, a novel hardware resilemalysis framework that
addresses the challenges discussed above. SpecificalhTast automatically orches-
trates a fault injection campaign and performs a detailell faonitoring and analysis on
the synthesized gate-level netlist of the design. Furtbeenthe CrashTest framework is
capable of accurately assessing the impact of run-timetijefaults on the operation of
large complex systems. In particular, in the CrsahTest éwaonk the faults are injected
into the design using novel gate-level logic transformagithat instrument the design’s
netlist with fault emulation logic. The CrashTest framekisralso augmented with a rich
collection of fault models that encompass all variants aftfadesigners would expect to
encounter at run time, ranging from soft faults to permaséition defects. The different
fault models are defined by logic netlist transformatioret ttan be easily modified and
adapted by the user to model new failure mechanisms. Anathesl characteristic of the
CrashTest framework is that it employs FPGA-based acdekbf@ardware emulation to
enable the analysis of complex full-system designs thabcah an operating system and
run applications.

The remaining of this chapter is organized as follows: $edf.1 discusses the chal-
lenges of accurate microprocessor resiliency analysist, I$ection 6.2 gives a high-level
overview of the CrashTest framework, while Sections 6.3 @ddexplain in detail the
gate-level fault injection methodology and the FPGA-bafsedt emulation techniques
used by the CrashTest framework. Section 6.5 evaluatesettiermance of CrashTest
and presents experimental results that demonstrate iisatppn and effectiveness, while
Section 6.6 briefly describes related previous work. Fnale work presented in this
chapter is summarized in Section 6.7.

6.1 The Challenges of Hardware Resiliency Analysis

The process of accurately assessing the robustness ofwadrardesign or evaluating
the effectiveness of a fault-tolerant technique, placeseschallenging set of requirements
on the hardware resiliency analysis infrastructure.

e Low-level Fault Analysis. High fidelity is a very important aspect of a hardware
resiliency analysis framework. Using high-level modelsroéroarchitectural com-
ponents with limited knowledge of the underlying circuitngdequate to perform
high-fidelity resiliency analysis. In order to correctly de the introduction, prop-
agation, and possible masking of the faults, the hardwaiBeecy analysis frame-
work must accurately gauge circuit-level phenomena ustaegailed low-level model
of the design under analysis.§, gate-level netlist).
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e Flexible Fault Modeling: Due to the existence of multiple silicon reliability thtea
the resiliency analysis framework needs to support an siktercollection of low-
level fault models to cover silicon failure mechanisms ttatge from transient
faults, to manufacturing faults, process variation indlLieilts, and silicon wear-out
related faults. Moreover, fault modeling is an open are@séarch with continuous
advancements [23, 40]. Often, new fault models are devargeting emerging sili-
con failure modes or more accurately modeling existingifailmechanisms. There-
fore, it is crucial that the fault model collection of a haahe resiliency analysis
framework can be easily upgraded with new fault models.

e Fast Design Smulation: The simulation of the design must deliver sufficient per-
formance to enable the analysis of complex systems, inofuolboting an operating
system and running applications. This will enable userssgess the impact of
faults at the full system and application level and still &éavquick turnaround for
the evaluation.

e Flexible Smulation Interface: It is critical for the usability of the hardware re-
siliency analysis framework to provide an intuitive way ttalyze a wide range of
hardware designs and fault-tolerant techniques. To thils #re resiliency analy-
sis framework demands a flexible interface and proper stlast¢ommodate the
evaluation of different systems.

Given the challenging set of requirements for hardwardieesy analysis, the CrashT-
est framework is focused toward the use of fault injectiomgaigns performed at the
gate-level model, accelerated by FPGA-based hardwareagiotuln order to achieve both
accuracy and performance.

6.2 Overview of the CrashTest Framework

The goal of the CrashTest hardware resiliency analysisdvaork is to provide a fast,
high-fidelity, and comprehensive analysis of the effectsevkral different fault models on
the applications running on the design under analysis ¢thigd be either an unprotected
design or a fault-tolerant design). Given the specificatbthe design under analysis
in a hardware description language (HDL), CrashTest auiicaily orchestrates a fault
injection/analysis campaign. This process is composewvofstages: (i) the front-end
translation that generates the fault-injection ready -tgtel netlist of the design under
analysis, and (ii) the back-end fault simulation and analifsat performs the actual fault
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injection and fault monitoring and evaluates the effecthefinjected faults. The overview
of this process is illustrated in Figure 6.1.

Framework Front-End: First, the HDL model of the design under analysis is pro-
vided by the user (either in Verilog or VHDL). Subsequerttiy HDL model of the design
is synthesized by the front-end stage of the framework uaibgchnology-independent
standard cells library to get gchnology-independent gate-level netli$tthe design.
For each standard cell in the libranye(, a combinational gate or a sequential element),
CrashTest is enhanced withgate-level logic transformatiothat can modify the netlist
and insert extra fault injection logic. This extra logic damactivated at runtime to emu-
late the effects of a fault injected into the cell. We develdp wide range of fault models
and gate-level logic transformations to provide the cdpgilof emulating different failure
mechanisms. The collection of all logic transformationsteed in the frameworkault
library. Based on thénjection parameterselected by the user€., the fault models and
the injection locations), the framework automatically gextes thdault injection-ready
netlist of the design using the logic transformations in the librafhis netlist is then
delivered to the fault analysis simulator at the back-eadest

Framework Back-End: At the framework back end, the fault injection-ready rsttli
is re-synthesized and mapped on an FPGA. At this point thi¢ ifgaction and analysis
campaign is ready to begin. Based onféngt simulation parametergiven by the user, the
fault injection/analysis emulator injects faults at diéfet sites in the netlist and monitors
their propagation and impact on the design and the runnipgcapions. During fault
emulation, the design under analysis is exercised withafication stimuli To gain
statistical confidence on the provided results, the exparimare repeated in a Monte
Carlo simulation model by altering the fault sites and/a¥ #pplication stimuli. After
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running a sufficient number of experiments to gain staastwonfidence, the results are
aggregated into thesiliency analysis reposthich is the final deliverable of the CrashTest
framework.

In the following sections, we describe each step and eactepsoof the CrashTest
framework in more detail.

6.3 Gate-Level Fault Injection Methodology

Technology Independent Logic SynthesisThe first step in the front-end stage of the
CrashTest framework is to convert the user-provided haylellHDL model of the design
under analysis into a common format that the framework catyaa and get an accurate
list of candidate circuit locations to perform gate-levalit injection. This is achieved
by performing logic synthesis with Synopsys Design Conmpié&geting a technology-
independent standard cell library (GTECH). The resultiatpgevel netlist is composed
of simple logic gatesg.g, AND, OR, NOT, Flip-Flops,etc) and it is free from any
fabrication technology related characteristics and pitogse This gate-level netlist is sub-
sequently parsed to generate a list of all possible fawdtingn locations in the circuit.g.,

a list of all logic gates and flip-flops in the design). Thi¢ issused by the user to specify
the fault injection locations. Alternatively, if randoneid fault injection is desired, random
selection of fault sites can be performed by the framework.

Netlist Fault Injection Instrumentation - Once fault locations are selected, the gate-
level netlist is instrumented with extra fault injectiorglo that, when enabled, emulates
the effects of the injected faults. Each fault model supgzbhlly the framework is associ-
ated with a gate-level logic transformation that modifiesrltlist and instruments it with
the extra fault injection logic. The collection of gate4¢logic transformations composes
the framework’s fault library. This modular design makeitly easy to upgrade the
framework with new fault models by simply implementing arttlimg new netlist logic
transformations into the fault library.

Fault Models - The CrashTest hardware resiliency analysis frameworkréadl en-
hanced with a collection of fault models and their corresjiog netlist logic transforma-
tions. This fault model collection covers an extensive sp@c of silicon failure mecha-
nisms ranging from transient faults due to cosmic rays tonpeent faults due to silicon
wearout:

e Stuck-at: The stuck-at fault model is the industry standard modelifoud testing.
It assumes that a circuit defect behaves as a node stuckellOgr 1. The stuck-at
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fault model is most commonly used to mimic permanent manufaigy or wearout-
related silicon defects.

Stuck-open: The stuck-open fault model assumes that a single physieini the
circuit is broken. The unconnected node is not tied to eitfar or Gnd and its
behavior is rather unpredictable (logical O or 1 or high ichgece). The stuck-open
fault model is commonly used to mimic permanent defectsdhaiot covered by
the stuck-at fault model.

Bridge: The bridge fault model assumes that two nodes of a circuishoeted
together. The behavior of the two shorted nodes dependseomalnes and the
strength of their driving nodes. The bridge fault model es\a&large percentage of
permanent manufacturing or wearout-related defects.

Path-delay: The path-delay fault model assumes that the logic functfichecir-
cuitis correct, however, the total delay in a path from ifsuts to outputs exceeds the
predefined threshold and it causes incorrect behavior. atregelay fault model is
most commonly used to mimic the effects of process variairatevice degradation
due to age-related wearout.

Single Event Upset: The single event upset (SEU) fault model assumes that the
value of a node in the circuit if flipped for one cycle. Afterglone cycle upset, the
node behaves as expected. The SEU fault model is used to rmangient faults
that are most commonly used by cosmic radiation or alphacpest

Gate-Level Logic Transformations - Some fault models require trivial gate-level

logic transformations. For example, the instrumentatieeded to emulate a stuck-at fault
is just a multiplexer that controls the output of the faulteggand has one of its inputs
connected to logic zero/one. However, there are fault nsoithelt are more complex and
affect the design at the transistor level. For example, tidgb fault model assumes that
two nodes in the design are shorted together. To emulatdféat ef a bridge fault model
with high fidelity, we simulated the faulty gates at the CM@8sistor level and generated
the correspondintault symptom tablesTo illustrate this process, Figure 6.2(a) shows the
CMOS transistor level representation of a NAND2 logic gatbile Figure 6.2(b) shows
the respective fault symptom table of the bridge fault model

By observing the fault symptom table we notice that for sonpeiis the effects of the

fault are masked, thus the faulty gate behaves exactly liel&free gate. However, for
other input combinations the fault’s effects propagatehtodate’s output and result into
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Transistor-level Fault Symptom Table Instrumentation logic for Bridge-A-B
NAND2 gate

A o|l1|of 1
B o|lo] 1] 1
vdd
H H Fault-Free 1 1 1 0
A—d B—l
W_H_L c Bridge-AB | 1| X | X | 0
B A
ni Bridge-A-C X1 1| X] X
A | Bridge-A-n1 | 1| 1| 1| X
Gnd BridgeBn1 | 1| x| 1| X
Bridge-B-C X 1| X 1 X
Bridge-C-n1 | 1| 1| X| O

(@) (b) (©)

Figure 6.2: Logic Transformations - Bridge Fault: The CMOS transistor-level design
of a gate in (a) is used to generate the gate’s fault symptbla tar the bridge fault model

that is shown in (b). Part (c) shows the instrumentationddgi emulating the effects of

the Bridge-A-B fault.
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Figure 6.3: Fault Injection Scan Chain: The netlist is instrumented with fault injection
logic for multiple faults. The scan chain controls the emapbf the injected faults during
emulation.

an unstable output signal that could be either a logic zemmner(Random Value in Fig-
ure 6.2(c)). The framework’s fault library is populatedhvi fault symptom table for each
combination of a standard cell library gate and a suppodett model. Given the gate
type and the fault model, the netlist instrumentation moeiticcesses the fault library and
applies the respective logic transformation that woul@itthe necessary instrumentation
logic to emulate the fault effects. Figure 6.2(c) shows tisgrumentation logic heeded
to emulate the effects of a bridge fault between the cirooitas A and B of the NAND2
gate.

Fault Injection Scan Chain - To avoid re-instrumenting the netlist each time a new
fault is injected and simulated, the netlist can be instmtee for multiple faults at mul-
tiple locations. This accelerates the fault emulation atitack-end of the framework, but
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Figure 6.4: Logic Transformation for the Path-Delay Fault Model: If the output
of the faulty gate changes in a given cycle, all affectedfftyps miss latching the newly
computed value and hold the previous cycle’s value.

it also increases the instrumented circuit size. The ifedf each fault into the netlist
also adds an extra control signal used for enabling and lchggthe inserted fault at run-

time (for instance, signdfault Injectand Random Valuen 6.2(c)). During emulation,

these signals are accessible by Haalilt Injection Manager(see Section 6.4) through a
fault injection scan chain. This scan chain is automatidalterted during the netlist in-
strumentation phase and it greatly simplifies the interfast@veen the injection interface
and the emulated faulty design. The number of faults thateaimstrumented using this
method is arbitrary and it is limited only by the size of theyt FPGA device. The design
of the fault injection scan chain is illustrated in Figur8.6.

The Path-Delay Fault Model - The gate-level logic transformations employed for the
rest of the supported fault models are similar to the oneenmtesl at Figure 6.2(c) for
the bridge fault. One exception is the path-delay fault nhadech has slightly different
characteristics. Path-delay faults are characterizeddwes combinational logic gates
that cause longer path delays than the ones expected andesg Whenever these
slower gates get exercised, they can increase the pathlieyaynd the critical path delay
and cause timing violationg €., the flip-flops at the end of the path miss to latch the newly
computed value). In our framework, the effects of the patagfault model are emulated
by the gate-level logic transformation shown at Figure &alfind out the set of flip-flops
that are affected by the slow&ulty gate we trace forward the combinational logic and
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Figure 6.5: FPGA-Based Fault Injection and Simulation: The FPGA-mapped netlist
is wrapped by a standard interface providing a seamlessection to the fault injection
manager that is running on an on-chip processor core. Akexpent data and results are
stored on an off-chip memory.

find all those flip-flops that have a path that includes thetyaghte. From that set of
flip-flops we choose only those that have a path delay with agralack smaller than a
predefined threshold specified by the user,(the expected delay due to the faulty gate).

6.4 FPGA-Based Fault Emulation

CrashTest employs an FPGA platform to emulate the faultiapehardware and accel-
erate the fault simulation and analysis process. The fegtistthis process it to synthesize
and map the fault injection-ready netlist to the target FPEAprovide a standard simu-
lation interface that is independent of the design undelyaisa we add an automatically
generatednterface wrappeto the fault injected-ready netlist. This interface wrapp®-
vides a seamless connection with faelt injection managerwhich is an automatically
generated software program responsible for orchestrétmdault injection and analysis
process. The interface wrapper and the fault injection manare connected through an
on-chip interconnect bug-igure 6.5 shows the major components and the data-floweof th
fault injection, simulation and analysis process.

Fault Injection Manager - During the emulation and analysis process, the FPGA-
mapped design is exercised and controlled by the faulttiojeenanager. In our experi-
ments we used a Xilinx Virtex-1l Pro FPGA, which has two ornipcRowerPC processors,
with the fault injection manager software running on onehafm. Alternatively, the fault
injection manager can also run on a soft-cagay( Microblaze). Specifically, the fault
injection manager is responsible for the following tasks:

e Feed the instrumented injection scan chain with all thercbsignals required to
perform the fault injection campaign. This is done througkilBO queue updated
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whenever a new fault is injected into the design. The fajdition parameters.¢.,
fault location and time) are stored on an off-chip memoryeasible by the fault
injection manager.

e Stimulate the FPGA-mapped design through the input regist€he applications
stimulus is either provided by the user or automaticallyagated, and it is stored in
the off-chip memory.

e Monitor the output of the FPGA-mapped design for errorsulgtothe output regis-
ters. The output is compared to a golden output that is delleibhirough a fault-free
version of the same design and it is stored in the off-chip orgm

e Maintain fault analysis statistics and store the resulttheooff-chip memory for
later processing.

e Synchronize the FPGA-mapped design with the fault injecéind analysis process
through the interrupt counter.

6.5 Framework Evaluation

In this section, we evaluate our FPGA-based resiliencyyaisinfrastructure and
compare its performance to an equivalent software-baseteimentation. In addition,
we perform an initial study by using the CrashTest infrastrce to examine the effects of
design resiliency as the underlying fault models are change

6.5.1 Experimental Methodology

Benchmark Designs -For the evaluation of CrashTest we used three benchmark de-
signs. These benchmark designs and their characterisgcshawn at Table 6.1. The
chip-multiprocessor (CMP) interconnect router implensemivormhole router pipelined
at the flit level with credit-based flow control functionglifor a two-dimensional torus
network topology [100]. We used SPEC CPU2000 communicataces derived from
the TRIPS architecture [108] to provide application stintalthe router. The DLX core
is a 32-bit 5-stage in-order single-issue pipeline runriirgMIPS-Lite ISA. Finally, the
LEONS3 is a system-on-chip including a 32-bit 7-stage pipedi processor running the
SPARC V8 architecture, an on-chip interconnect, basicpperials and a memory con-
troller [37] able of booting an unmodified version of Linux62The LEON processor was
configured without on-chip caches and faults were injectdd io the core component.

141



Benchmark | Logic Gates| Flip
Name (GTECH) | Flops

CMP Router| 16,544 1,705

Description

chip-multiprocessor interconnect router for &
2D mesh network with 32-bit flits

5-stage in-order DLX pipeline running
MIPS-Lite ISA

System-on-chip with a 7-stage pipeline 32-1

DLX Core 15,015 2,030

LEON3 ; .
) processor compliant with the SPARC V8
S%’Séﬁln; 66,312 6,925 architecture, an on-chip interconnect, basic

peripherals and a memory controller.

Table 6.1: Benchmark Designs: Characteristics of the benchmark designs used to
evaluate the CrashTest framework.

Netlist Fault-Injection Instrumentation - The HDL model of the design under anal-
ysis is synthesized using the Synopsys Design Compiler leedTECH standard cell
library. The resulting netlist is a technology-independ8MECH gate-level netlist. The
gate-level netlist is subsequently parsed by Perl scripksdate all the possible injection
sites in the circuit. Once the sites and fault types are saddasing a uniform random dis-
tribution for these experiments), a Perl script implemeyaite-level logic transformations
to instrument the netlist with the necessary fault injettmyic.

Software-Based Analysis Methodology The software-based fault simulation and
analysis is performed using the Synopsys VCS logic simufatdhe CMP router and the
DLX core. For the simulation of the LEON3 system-on-chip veed ModelSim since it
required the simulation of both Verilog and VHDL modules.eTault simulations using
VCS were run on an Intel Core 2 Duo running at 2.13GHz with a AMRache and 2GB
of RAM, while the ModelSim simulations were run on a P4 at 3#&nd 2GB RAM.

FPGA-Based Analysis Methodology For the FPGA-based fault emulation and anal-
ysis we used the XUP V2P Development Board [148]. The boaetjispped with a
Virtex-2 Pro XC2VP30 FPGA with 13,696 slices (each with twngut LUTs and two
flip-flops), and two PowerPC 405 processors. At the time ofimgj this FPGA repre-
sented a mid-sized device; devices with up to 10X as manyress are currently avail-
able. For off-chip memory we used one 256MB module of DRAMe Thain tools used
to develop the CrashTest framework are the Xilinx Platfotond® (XPS) version 9.1i in
combination with Xilinx Integrated Software Environment&(ISE). We also used Syn-
plicity’s Synplify 9.0.1 for the FPGA-based synthesis. HRGA synthesis and mapping
process was ran on a P4 CPU at 3.0Ghz and 1GB RAM. The syntresimiapping pro-
cess for the LEONS system took about 45 minutes, while theratto benchmark designs
required significantly less time.
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Confidence Level = 95% Confidence Interval
Number of Fault CMP Router | DLX Core LEON3
Injections (Sample Size)| (18249 gates) (17045 gates) (73237 gates
256 +6.08 +6.08 +6.11
512 +4.27 +4.27 +4.32
1024 +2.98 +2.96 +3.04
2048 +2.04 +2.03 +2.14
4096 +1.35 +1.33 +1.49
8192 +0.8 +0.78 +1.02

Table 6.2: Statistical Confidence: The Table shows the confidence level of the results
obtained when different number of faults are injected dyitiee injection campaigns for
our benchmark designs.

6.5.2 Monte Carlo Simulation & Statistical Confidence

Performing gate-level fault injection campaigns in comptesigns and observing
their impact at the application level is a fairly computaadly intensive process. The
propagation of fault effects from the gate level to the aggilon level requires a signif-
icant amount of gate-level simulation of the design undexyais. A common practice
used to reduce the number of fault injections and make thbkeresy analysis process
more computationally tractable is the use of Monte Carlousation methods. Through
Monte Carlo simulation, fault injection experiments arpaated by randomly changing
the fault injection location and time.¢., the clock cycle that the fault will be enabled).
The number of times that the Monte Carlo experiments aretedalepends on the desired
statistical confidence that will characterize the obtairesdilts.

Table 6.2 shows the confidence intervals for different nusibéfault injection exper-
iments for the three benchmark designs. These figures wiendat@d using the statistical
sample size formulas from [10]. For most applications, afidence level of 95% and
a confidence interval of 3% are acceptable. From Table 6.2 atieenthat this degree
of statistical confidence can be achieved by 1024 fault figes for all three benchmark
designs.

6.5.3 Framework Performance

Fault Injection Logic Overhead - Table 6.3 shows the allocated FPGA resources
when the baseline (fault-free) benchmark designs werehsegited and mapped on the
FPGA. When the designs are augmented with the fault sinomlatiterface wrapper the
utilization of the FPGA slices is increased from 15% to 31%s ghown in the fourth
and fifth columns of Table 6.3, not all of the flip-flops and LUifiseach utilized slice
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Bench.| Injected Slices Sl;flip':;'p 4 Input LUTs
Design| Faults | (out of 13696) (out of 27392) (out of 27392)
0 (baseline) 2968 (21%) 3021 (11%) 3705 (13%

0 (wrapper) 6679 (48%) 4731 (17%) 10840 (399

8| 6718 (49%) 4745 (17%) 10781 (399

CMP 64| 6912 (50%) 4857 (17%) 11192 (409
Router 128| 7161 (52%) 4985 (18%) 11408 (419
256| 7279 (53%) 5241 (19%) 11425 (419

512| 7854 (57%) 5753 (21%) 12020 (439

1024| 8903 (65%) 6778 (24%) 13059 (479
DLX 0 (baseline) 2499 (18%) 2520 (9%) 2386 (8%)
Core 0 (wrapper) 6820 (49%) 8202 (29%) 4573 (1694
1024 9593 (70%) 6700 (24%) 9948 (36%
LEON3| 0 (baseline) 10281 (75%)| 10178 (37% 20562 (759
System{ O (wrapper) 11057 (80%)| 11103 (40% 22113 (809
on-chip 1024| 11785 (86%)| 13146 (47% 23570 (869

Table 6.3: FaultInjection Logic Overhead: Utilization of the FPGA resources compar-
ing the baseline (fault-free) designs and the fault inpgtinstrumented designs mapped
on the FPGA.

are used. The table also shows the overhead of the instratieentogic for designs in-
jected with different numbers of stuck-at faults. The caligtof injecting several faults
into the design is very important since it significantly decates the fault simulation pro-
cess by avoiding time-consuming iterations of netlistrunstentation and FPGA synthe-
sis/mapping.

Fault Simulation/Analysis Speed -Table 6.4 compares the speed of the software-
based and the FPGA-based fault emulation and analysis engiRor the CMP router
design we noticed that the speed of the software-based schaned for different fault
models. This difference stems from the different logic ctexjpy required to emulate the
behavior of each fault model. On average, for the CMP rolesbftware-based scheme
provides a simulation speed that is in the order of 10 KHz. \Aehobserved similar
results for the DLX core design (not shown in the table fovtiyg. On the other hand, the
speed of the FPGA-based scheme is not affected by the fgadtion logic. Therefore, all
fault models are emulated with the same clock frequency ahize the same emulation
speed. For the CMP router, the speed of the emulation framke&@20 KHz, leading to
an average speed up &20X for simple fault models anet85X for the more complex
fault models.

The simulation speed achieved by the software-based schdrae analyzing the
LEONS3 system-on-chip is much lower than the one observedhi®other two simpler
designs i(e., the CMP router and the DLX core). Specifically, the simalatspeed is
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Ben_ch. Fault Soﬁware-_Based Fault FRGA-B_ased Fault Speed U

Design Model Simulation Speed Simulation Speed P P
Stuck-at-0 9.75 KHz 22X
Stuck-at-1 8.09 KHz 27X

CMP | Stuck-open 2.42 KHz 90X

Router | Bridge 2.63KHz 220 KHz 83X
Path-delay 11.34 KHz 19X
SEU 13.04 KHz 16X

LEON3

System-| Stuck-at-0 28 Hz 25 Mhz ~900 000

on-chip

Table 6.4: Fault Simulation Speed: Performance comparison of the software- and
FPGA-based fault simulation engines.

limited to 28 Hz, due to the much higher complexity of the-gyistem LEON3 design. In
contrast, the emulation speed of the LEON3 system on the FP&&&d scheme is faster
than the other two simpler designs. This is due to how theiegtpmn stimulus is ap-
plied to different designs by the fault injection managemcg the LEONS full-system
design includes a memory controller, the interaction whihéxternal environment is lim-
ited to memory read/write requests, which are serviced byoffichip DRAM module.
Therefore in the LEON3 analysis there is very little inteéi@c between the fault injection
manager and the design under analysis in feeding the apphicgtimulus. On the other
hand, when emulating the other two designs, the fault ilgeainanager must provide
input stimuli cycle-by-cycle in order to drive the emulatjghus limiting the overall per-
formance. The emulation speed of the LEON3 design on the FB&s&d scheme is 25
MHz, which leads to a six orders of magnitude speedup cordparéhe corresponding
simulation speed achieved by the software-based scheme.

6.5.4 Experimental Results

Fault Effects per Fault Model - The graph in Figure 6.6 shows the percentage of
injected faults that caused a failure, grouped by fault rhodibe fault injection experi-
ments were run on the CMP router stimulated with commuroodtiaces of several SPEC
CPU2000 benchmarks and a synthetic high-traffic communpicétace bi_util). We ob-
serve that the effects of the injected faults on the desigy f@ different fault mod-
els. Specifically, fault models of permanent silicon fagif.e., stuck-at, stuck-open, and
bridge) have more adverse effects on the design, and 70-80%ra cause an error that is
observable at the primary outputs of the design during thel&ion. On the other hand,
the path delay fault model has less adverse effects, andevageronly 40% of these faults

145



O Stuck-at0 @ Stuck-at1 @ Path-Open B Bridge B Path-Delay B SEU

I
1 |

I I

I
= i

Injected Faults that
Caused Failure (%)

(&)

o
—_— &

1
|
|
|
|
|
|
!

I | I
I | I
I | I
| | |

—
1

[ | |
| | |
| | |
| | |

| I I [ ||

router_artI router_bzip% router_equIake router_rImcf ro_mmrserI router_swi+ router_vortIex router_hi_|

Figure 6.6: Design Resiliency vs. Underlying Fault Model: Percentage of injected
faults that were exposed for each fault model. Experimergsian on the CMP router
using SPEC2000 traces.

manifest an error. Finally, the SEU faults have the leastichpn the correct functionality
of the design and on average less than 10% of them cause an erro

Failure Observation Latency - The graph in Figure 6.7 shows the average latency of
an injected fault to propagate an error to the primary oustjpdithe design. The results
shown are for different fault models for the CMP router anal tEON3 system-on-chip.
The failure observation latency is a very important metritew assessing the resiliency
of a design because it provides insight on whether specifar eletection and recovery
techniques can provide a detection and recovery windowwbald allow a successful
recovery from the fault’s effects. We notice that the falobservation latency varies de-
pending on the fault model. Specifically, we observe thatlierCMP router the injected
path-delay faults have the highest failure manifestataricy, while fault models associ-
ated with permanent failure mechanisms usually have sirf@ilre manifestation laten-
cies. Furthermore, we notice that the error manifesta@benicy for SEU faults is very
small. When this observation is combined with the resulthefprevious experiment, we
conclude that SEU transient faults either cause an errdrardesign immediately after
they occur, or they do not cause an error at all, as would bea&g due to their transient
nature.

We also notice that the measured failure observation lasifior the LEON3 system-
on-chip are orders of magnitude larger than the ones obddéovehe CMP router. This
difference stems from the higher complexity of the LEON3tegson-chip which leads
to more cycles required for a fault to propagate to the désigutput (the output of the
running application). To give more insights regarding th#ufe observation latency of
the faults injected in the LEON3 system, the graph of FiguBshows the cumulative
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Figure 6.8: Application-Level Detection Latency: Latency (in cycles) for a stuck-at
fault to propagate to the application results in the LEON8So

distribution of the injected faults over the failure obssien latency in clock cycles. An
interesting observation is that more than half of the irgddaults propagate a failure to the
application output almost immediately, but the remaining®require billions of cycles
for the failure to manifest. This observation supports tlgument that if a fault hits a
critical part of the design, then its effect are immediata.tke other hand, if it hits a less
critical/exercised part of the design, then its effectsdmiayed by long latencies.

147



6.6 Related Work

Fault Simulation vs. Resiliency Analysis: Fault simulators are software tools that
can determine the set of faults that can be exposed by a gigeundctor. They are mainly
used for ATPG (Automatic Test Pattern Generation) with thgctive of measuring the
fault coverage of a given set of test vectors [23]. On therotiaad, resiliency analysis
tools employ fault injection campaigns on a design exegutypical workloads to mea-
sure the impact that the injected faults have on the desap€sation and on the running
applications. Although both methodologies use fault medelsimulate the effects of
faults on the circuit under test, their goals and requiresiare fundamentally different.

For example, fault simulators need to simulate the desigieutest only for a limited
number of clock cycles to grade the test vectors. Furthezmoorder to measure the fault
coverage of the test vectors, fault simulators need toatetia fault in every single node in
the design. In contrast, resiliency analysis tools needtalate the design under analysis
for a significant amount of clock cycles in order to obsenefiult effects at the appli-
cation level. Moreover, resiliency analysis tools usualhgploy Monte Carlo simulation
methodologies and inject only the number of faults requicedrovide adequate statisti-
cal confidence for the results obtained. Due to these kegrdift characteristics of the
two methodologies, ATPG fault simulators cannot be effitjensed as a fault injection
substrate to perform design resiliency analysis.

Several works in the literature have proposed resilien@jyars frameworks that are
based on fault injection campaigns. These works can betipa#dd into software-based
and hardware-based resiliency analysis, based on the dutlyy used to perform the
fault simulation and analysis [84].

Software-Based Resiliency Analysis:Often, software-based fault injection is pre-
ferred to hardware-based solutions due to its low costefasid less complex develop-
ment cycle, flexibility of customization, or simply because low-level hardware model
of the design is available. There are several softwareeb@sdiency analysis frameworks
presented in the literature [62, 107, 142]. Although theyehmany advantages, the ma-
jor limitation of software-based fault injection is thatisttoo slow to perform low-level
(e.g, gate-level) fault simulation and analysis on complexgiesior full systems running
software applications. One way to address this issue is ing usgh-level models of a
design {.e., microarchitectural models), but this higher level of abstion and the lack of
circuit-level information jeopardizes the fidelity of thesiliency analysis results. Another
workaround is to limit the complexity of the design under Igaes down to blocks of a
few thousands gates, but this greatly limits the usabilityhe approach.
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Hardware-Based Resiliency Analysis:The performance limitation of the software-
based fault injection approach can be addressed by empléyrdware-based fault in-
jection. Hardware-based resiliency analysis frameworksally employ FPGAs (Field
Programmable Gate Arrays) that are capable of emulatinfathieinjected design orders
of magnitude faster than software-based approachesfdahesgnificantly speeding up
the fault simulation and analysis process. Although theodi$®GA emulation platforms
addresses the limited performance of the software frameydrintroduces some other
major challenges. Specifically, by employing FPGA platferta emulate the fault in-
jected design, the automation of the fault injection andyais process becomes more
challenging. Furthermore, FPGA-based resiliency ansliyaimeworks are characterized
by the difficulty of mapping complex fault models into hardevavhich greatly limits
the range of supported fault models. Hence, the previouslggsed hardware-based re-
siliency analysis frameworks were limited to simple transiand stuck-at faults [27, 76].

6.7 Chapter Summary

This chapter presented CrashTest, a novel FGPA-base@neyilanalysis framework
capable of automatically orchestrating a fault injectiod analysis campaign on the gate-
level netlist of the design. To accelerate the fault in@ttprocess, multiple faults are
injected into the design simultaneously by instrumentimg netlist with fault injection
logic through gate-level logic transformations. The Ciiastt framework supports an ex-
tended collection of fault models ranging from transienititito silicon defects, and it
can easily be upgraded with new fault models. In additioe, @mashTest framework
employs FPGA-based accelerated hardware emulation tdestiebanalysis of complex
full-system designs that can boot an operating system andpplications.

The CrashTest hardware resiliency analysis framework welsi@ed on a commercial
FPGA-based platform and we found that the use of hardwardagion, when compared
to an equivalent software-based hardware resiliency aisagymulator, it can accelerate
the fault simulation and analysis process by 16-90x for &ndesigns and six orders of
magnitude for a more complex system-on-chip design.
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CHAPTER VI

Conclusions and Future Work

Silicon process technology scaling has been one of the ndaping forces in the
impressive growth of the semiconductor industry for sevdegcades. The continuous
silicon process technology scaling over these decadeedffanaller, faster, and cheaper
transistors to the microprocessor manufacturers thatletdhe development of more
powerful and cheaper microprocessors. The concurrentaf@went of more capable and
cheaper microprocessors with that of more advanced andrdasiise software, flooded
our society with microprocessor-based electronic praxlwgth applications that touch
every aspect of our life.

However, as silicon process technology scales into exigesreall transistor sizes,
with dimensions that measure in just few atoms, new chadletgve developed in main-
taining transistor reliability and offering a reliable fadation substrate that will guarantee
durable microprocessor designs. As argued in Chapter lyeanology experts today
warn that we are reaching the limits of what traditionalcsiii scaling can achieve and
that we are entering an era where any further silicon praeessology scaling will have
major effects on transistor reliability. This has a stromglication on the design of future
generation microprocessors: indeed, the durability amggpread use of microprocessors
relies on highly reliable silicon processes exhibitingyiaw failure rates. However, as
the reliability wanes, new design paradigms will need to eeetbped and adopted that
allow to fabricate reliable systems out of unreliable desicThis will entail adopting new
design techniques to tolerate silicon defects that migbtioduring the lifetime of the
microprocessor design and still present high reliabiligngards to the end user.

As discussed in Chapter Il, although today high-end comgusiystems for criti-
cal applications demanding high reliability standardsadready augmented with defect-
tolerance techniques, these techniques incur high ovasheaad account for a significant
fraction of the microprocessor’s area and power consumifimlgets. To this extent, this
thesis makes the case that novel and clever defect-toketanhniques can offer to future
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generation microprocessor designs the same reliabildyaniees at a much lower cost, so
to enable the adoption of reliability solutions in mainatre cost-sensitive microprocessor
designs.

7.1 Thesis Summary

This thesis developed low-cost defect-tolerance solstibat can provide to micropro-
cessor designs the same reliability guarantees as thoestbf raditional defect-tolerance
techniques that today are deployed only in high-end syst@msnake this possible, this
thesis suggested a paradigm shift in the way the defecttuteris provided to micropro-
cessor designs. Specifically, traditional defect-toleeatechniques saddle the micropro-
cessor design with extra hardware components that contghyiononitor the execution
for errors through redundant computation. These reduniamiware resources lead to
extremely high area and power overhead that in some casdsastriple modular redun-
dancy, can reach up to 200%. Consequently, this is not ardatite approach to provide
defect tolerance to mainstream cost-sensitive microgsmralesigns. To this end, this the-
sis suggests that the same degree of defect tolerance caovi#epl at a much lower cost
by periodically checking the integrity of the underlyingtiaare rather than continuously
monitoring the execution for errors.

To demonstrate the feasibility and effectiveness of theoder hardware checking
defect-tolerance paradigm, this thesis proposed the tBublef approach. The Bullet-
Proof approach augments the processor with a microarthitéaheckpointing and re-
covery mechanism that provides a substrate for speculativgutation epochs. After
each speculative computation epoch, distributed comgespacific on-chip checkers run
BIST-like tests to verify the integrity of the underlyingrdavare components. Addition-
ally, a double-sampling flip-flop design is used to detectdient fault logic glitches that
can corrupt the pipeline state. If, at the end of an epochh#rdware is fault-free, the
epoch computation is allowed to retire to non-speculatiages In the event that a fault
is exposed, the program state is rolled back to the last krgmaal program state at the
beginning of the last epoch.

To evaluate the effectiveness of the BulletProof approaehdeveloped a physical-
level prototype of a 4-wide VLIW processor augmented withchip component-specific
hardware checkers. Based on the prototype implementatmfgund that the BulletProof
technique can provide about 95% defect coverage to therdesigan area overhead of
14%, and a runtime performance overhead of less than 1%.oddth the runtime per-
formance overhead of BulletProof is negligible, and itsaapgerhead is extremely low
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compared to that of traditional defect-tolerance techesgthe area overhead is still high
for its adoption in cost-sensitive designs. Furthermdre,defect coverage is lower than
the almost 100% coverage provided by traditional defeletrémce techniques. However,
the negligible runtime performance overhead of BulletPallmwed us to trade-off per-
formance overhead with higher defect coverage and lowar@rerhead in order to reach
our goal of very high defect coverage for very low area ovadado enable that trade-off,
this thesis proposed another novel approach by moving teetdgetection and diagnosis
from the on-chip hardware checkers to software routinegsaigsable to test the underlying
hardware for defects.

We called this new novel software-based hardware testipgaph the Access-Control
Extension (ACE) Framework. The ACE framework allows spe@a instructions to ac-
cess and control virtually any part of the processor’s mdestate. Based on this frame-
work, special firmware periodically suspends the procéssgecution and performs high-
guality testing of the underlying hardware to detect defdmt exercising the hardware
with pre-generated high-quality ATPG test patterns. The afsthese software testing
routines eliminates the need for the on-chip hardware @saksed in the BulletProof ap-
proach. However, the other techniques employed by the Butbef approach, such as mi-
croarchitectural checkpointing and recovery that enathleperiodic hardware checking,
the online hardware reconfiguration techniques used falvirme repair, and the double-
latching flip-flops to provide transient-fault tolerances atill used in combination with the
hardware testing capabilities of the ACE framework to pdeva comprehensive defect-
tolerance solution.

The experimental evaluation of the ACE framework was dona commercial multi-
core processor design that is based on Sun’s Niagara. Basear @xperimental evalua-
tion, we found that the ACE testing is capable of performimgikguality hardware testing
for 99.22% of the chip area. We also found that, based on adetRTL implementation
of the ACE framework, augmenting the Sun Niagara procesgbrtive ACE framework
results in a 5.8% increase in chip area and a 4% increase iargmwmsumption. We also
found that the runtime performance overhead of the ACE freonle is around 5% when
the underlying hardware is tested for stuck-at faults, hideistry standard fault model used
for manufacturing testing. These experimental resultsatetmate that by combining the
periodic hardware checking approach of BulletProof witd #oftware-based hardware
checking of the ACE framework, we can develop defect-toleeasolutions that can pro-
vide very high defect coverage that is close to 100%, for & l@w area cost of around
6%, and a low runtime performance slowdown of 5%. This makestse for this the-
sis, that is, it is indeed possible to develop defect-toleeasolutions for microprocessor
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designs that can provide the same reliability guarantediseatsaditional defect-tolerance
solutions, but at a much lower cost.

Furthermore, we believe that the ACE framework capabilitypviding hardware
accessibility and controllability to the software, that argginally developed for running
software routines that test the hardware, is a more gereaicife that can be found use-
ful in many other important applications. We believe thas #xtensive use of the ACE
framework adds value to the mechanism and it can ease it#possloption in future
generation microprocessors. To demonstrate the extense/ef the ACE framework to
other applications, this thesis described how the ACE fraonk hardware resources can
be extended to three other applications: i) for the onlirtecten of design bugs, ii) as a
post-silicon debugging tool, and iii) for improving the méacturing testing process.

Finally, in order to quantify the microprocessor reliayilifequirements that need to
be addressed by defect-tolerance techniques like thetButlef and the ACE framework,
we first need to assess the severity of the reliability tlsréata microprocessor design
using a resiliency analysis tool. To this end, this thesigcties with the development of
CrashTest, a novel FPGA-based framework for the accursiieereey analysis of modern
microprocessor designs. The CrashTest is different froewipusly proposed hardware
resiliency analysis tools because it can automaticalljestrate a fault injection and anal-
ysis campaign on the gate-level netlist of the design, wégloying FPGA-based ac-
celerated hardware emulation to enable the analysis of lesrfydl-system designs which
can boot an operating system and run applications. Furthresrthe CrashTest framework
supports an extended collection of fault models rangingnftoansient faults to silicon
defects, and it can easily be upgraded with new fault modé#s.found that for the re-
siliency evaluation of the LEON3 system-on-chip, the usa pfototype implementation
of CrashTest that was developed on a commercial FPGA prdwad&x orders of mag-
nitude speedup compared to an equivalent software-bagsedvéuz resiliency analysis
simulator.

7.2 Thesis Conclusions

This thesis provided a new thinking in the design of micraessor defect-tolerance
solutions through the techniques described in Chapter¢ Hhd proposed a novel ap-
proach for evaluating the resiliency of microprocessotigiesin Chapter VI. Based on
the exploration of these novel techniques, this thesis sltae following conclusions:

e The BulletProof Approach - Periodic Hardware Checking: The BulletProof ap-
proach, presented in Chapter Ill, is notably different frivaditional approaches to
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fault tolerance. Specifically, it shifts the traditionafelet-tolerance paradigm from
continuous checking for execution errors to periodic anhardware checking. This
approach is markedly different from the traditional deflexterance approach and is
achieved by using a microarchitectural checkpointing raa@m that creates spec-
ulative epochs of computation and on-chip hardware checker

For the evaluation of BulletProof, we implemented a phyigicatotype of the Bul-
letProof mechanism, based on a 4-wide VLIW processor, andowed that the
area overhead of the BulletProof mechanism is quite mogesviding transient
and hard silicon fault protection with only a 14% increasddtal area. This is
a remarkable improvement over traditional redundancethdschniques, such as
triple-modular redundancy, which incurs overheads stguit 200%. Additionally,
it was demonstrated through gate-level fault injectiordigs that fault-detection
coverage is high: 95% of all hard silicon defects and 99% Ilafahsient faults are
covered. However, although BulletProof has a significamrowement in terms of
area overhead over the traditional defect-tolerance tqabs, its area overhead of
14% is still high for its adoption in mainstream cost-seusimicroprocessors, and
its defect coverage of 95% is still a drawback against theoatrhi00% coverage of
traditional techniques.

The ACE Framework - Software-Based Testing: To lower the cost of the Bul-

letProof mechanism and provide more flexible hardware dhgcktrategies with

higher defect coverage, the Access-Control Extension (A2&mnework, presented
in Chapter 1V, shifted the silicon defect detection and digjs process from on-
chip hardware checkers to software. This new approach,|emabe trade-off of

runtime performance overhead with lower area overheace&imyg and higher de-
fect coverage.

We experimentally evaluated the ACE framework on a comrakraulticore pro-
cessor design based on Sun’s Niagara and we found that AGEgtés capable
of performing high-quality hardware testing for 99.22% lo¢ tchip area. We also
found that, based on a detailed RTL implementation, the AGEméwork requires a
5.8% increase in Sun Niagara’s chip area and a 4% increatepower consump-
tion envelope. We also measured the runtime performanceCaf #sting and we
found it to be around 5% for test patternd generated usingttiek-at fault model,
the industry standard fault model used for manufacturistirig.

Based on the experimental evaluation of the ACE framewogkcanclude that: 1)
it can effectively remove the need for on-chip hardware kbescused in the Bullet-
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Proof approach and move this functionality to softwaref Bas ample flexibility to
be modified/upgraded in the field because it is not hardwmmébe design, 3) it can
be uniformly applied to any microprocessor module with l@gign complexity be-
cause it does not require module-specific customizatiors4ait can provide wide
coverage across the whole chip, including non-core modules

Overall, based on our experimental evaluation, we condliaewith the combina-

tion of BulletProof-based periodic hardware testing whike ACE software-based
hardware checking routines, this thesis makes a strongtleasi is possible to de-

velop online defect-tolerance solutions for microprooeskesigns that provide the
same reliability guarantees as traditional techniquesata much lower cost.

ACE Framework Extensions - Adding Value to Resiliency Mechaisms: Chap-
ter V demonstrated that the ACE framework can be extendedhier emportant
applications to amortize its cost and ease its adoptionturdéugeneration micropro-
cessor designs.

The first application considered as an ACE framework hardwatension was on-
line design bug detection. In that context, we provided arngs analysis of pro-
cessor design bugs in the RTL code of a commercial microgsme Based on the
insights obtained from our rigorous design bug analysispreposed a novel dis-
tributed online bug detection mechanism based on the AQBdwnrk. We also

described how the ACE framework can be extended to improxetiality and re-

duce the of cost post-silicon debugging and manufactuasttg.

The cost of the extended ACE framework was evaluated on alettaTL pro-
totype implementation and we found that the total silicomaaoverhead incurred
is 15% of the whole OpenSPARC T1 chip, while the power congionpverhead
is only 6.8%.

Based on these numbers, we conclude that the ACE framewargeésieral frame-
work that can be used for multiple purposes to enhance tlabiigly and to reduce
the design/testing cost of modern microprocessors andk tet provide additional
value for its cost, something that would make its possibtgpéidn by future gener-
ation microprocessors easier.

The CrashTest Framework - FPGA-Accelerated Resiliency Anlysis: In Chap-

ter VI, we presented CrashTest, a novel FPGA-based frankdwothe accurate re-
siliency analysis of modern microprocessor designs. ThslCrest framework can
automatically orchestrate a fault injection and analyaimgaign on the gate-level
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netlist of the design, while employing FPGA-based accéterhardware emulation
to enable the analysis of complex full-system designs whahboot an operating
system and run applications.

We evaluated the the CrashTest framework by performinglgat fault injection
campaigns on the netlist of a LEON3 system-on-chip whiletibgoan unmodi-
fied version of Linux 2.6 operating system using a commel€RGA-based plat-
form. From these experiments, we found that the use of haedermulation, when
compared to an equivalent software-based hardware regilignalysis simulator,
it can accelerate the fault simulation and analysis probgssix orders of magni-
tude. Based on these experimental results, we concludththptoposed CrashTest
framework can provide both a high-performance and a higtlifidhardware re-
siliency analysis tool for complex modern microprocess®igns.

7.3 Future Work

The work presented in this thesis also opens the door toadwture research direc-
tions. The microprocessor defect-tolerance solutionsemied in this thesis rely on mi-
croarchitectural resource redundancy that is present 8t modern multicore processors.
In particular, the proposed approach for repairing the g hardware is by disabling
any defective parts and continue operation with the remgirgsources in a performance
and/or capability degraded mode. However, the extend totwihis approach is effective
depends on the amount and nature of the microarchitectesalrce redundancy that is
present in the processor. For example, if the microprocessomprised by thousands of
simple and very small processing elements, as is proposid architectures [128], the
performance degradation of losing some of those processdérgents to silicon defects
could be insignificant or even unnoticed. On the other spectf the design space, if the
microprocessor is comprised by very few monolithic corg@sritonnected with unique ar-
chitectural component®(g, 1/0 buses and memory controllers), the lost of even a single
component to silicon defects can seriously impair the npioessor’s performance and
functionality. Although tile-style architectures proeidn attractive solution to this prob-
lem, they have their own drawbacks and as of today no comaiericroprocessor has
adopted this style of architecture. As a future researatton, it would be interesting to
investigate microprocessor design techniques that woualkknthe hardware resource re-
configuration more effective and tolerant to silicon deseantd explore the trade-off across
the spectrum of the architecture design space.

Furthermore, another interesting research direction itld/be to investigate how de-
fect tolerance could be moved from a hardware respongikdli& software feature. Today,
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the correct execution of software relies on the assumptiatthe underlying hardware are
defect-free and are functionality correct virtually 100¥itte time. By breaking this as-

sumption, we essentially move the correctness respoitgibibm the hardware to the

software. It would be interesting to investigate if it is pide to develop resilient algo-

rithms that can guarantee software correctness in therpress an unreliable hardware
computing substrate. Such software solutions, could bemiging alternative solution

for making possible the transition into future highly umable silicon process technolo-
gies.

Altogether, the defect-tolerance solutions presenteuigthesis provide a cost-effective
framework that enables the development of reliable miaogssors with unreliable sili-
con components. Furthermore, it was demonstrated thattigsare resources of the pro-
posed defect-tolerance solutions can be utilized by othportant applications to amor-
tize their cost and ease their adoption by future generatimmnoprocessor designs. We
hope, that the contributions made by the work presentedsritiesis advance the research
area of microprocessor defect-tolerance design and teatetthniques proposed in this
thesis will find applicability in future commercial micragpressor designs.
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