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INTRODUCTION 

Background 

Increasing numbers of systems for in-vehicle tasks secondary to driving are being 

installed in motor vehicles.  Examples include music players, GPS systems, 

communication systems, and e-mail readers.  The visual, cognitive, and physical 

requirements of using these systems can result in driver distraction, especially when the 

displays are placed in non-ideal locations.  Driver attention problems are causal factors in 

many traffic accidents (Blanco et al., 2006).  Allocation of the driver’s visual resources to 

in-vehicle tasks and displays is a factor in many crashes (Wierwille & Tijerina, 1996).   

Previous studies have examined the effects of display and button position on 

driving performance.  However, most have not studied the combined visual, cognitive, 

and physical aspects of operating in-vehicle equipment and driving, and no study has 

adequately addressed the difference between visual difficulty, represented by visual 

distance from the road scene ahead to the display, and physical difficulty, represented by 

reach distance from the driver’s resting position to the task interface, in terms of the 

interference between driving and a secondary task.  This report discusses the glance 

behavior of drivers performing in-vehicle tasks using a touch-screen monitor placed in 

one of four positions with differing levels of visual and physical difficulty. 

Goals 

The objective of this study was to examine the effect of the position an in-vehicle 

touch-screen monitor on glance timing while driving.  Special emphasis was given to the 

physical difficulty of the in-vehicle task by adding a significant motor component and 

manipulating the physical configuration of the touch screen.  Previous studies examined 

primarily the visual characteristics of in-vehicle tasks. 

The difficulty of the in-vehicle task was varied by placing the monitor in one of 

four fixed positions in the area of the center console: near-high, near-low, far-high, and 

far-low.  The near positions were within easy physical reach of the steering wheel, while 

the far positions required a more difficult physical reach.  Shorter subjects had to lean 
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with their torsos to complete the reach.  The high positions were at a smaller visual angle 

from the road ahead, while the low positions were at a greater visual angle. 

In this experiment, the difficulty of the driving task was varied by using two 

simulated weights for the subject’s vehicle.  In a driving simulator, subjects drove a 

normal weight vehicle, which responded quickly to desired speed changes, and a heavier 

vehicle, which was slower to respond. 

 

The following hypotheses were tested: 

 

1. The total task time will be greater when the display is farther from the subject 

because of increased reach distance and increased time looking away from the 

task.  The total task time and the increase in total task time will be greater for 

shorter subjects, because the total glance time and the time between glances 

will be greater. 

2. The total glance time will be greater when the display is farther from the 

subject because of increased reach distance and increased visual distance.  The 

total glance time will be greater for shorter subjects because the reach required 

to perform the task will be more challenging for them.  The increase in total 

glance time between near and far monitor positions will be greater for shorter 

subjects because the subjects will need to use more complicated movements 

that may involve more body parts in order to reach the far monitor positions. 

3. The durations of individual glances will increase when the display is farther 

from the subject because of the increase in movement time needed to reach 

the monitor. 

4. The durations of individual glances will decrease when the subject is driving 

the heavy vehicle, because this is a more difficult driving task. 

5. The time between glances will increase when the display is farther from the 

subject.  The increase in the time between glances between near and far 

monitor positions will be greater for shorter subjects because the more 

complicated movements that they must make will require additional motor 

planning. 
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6. The number of glances will increase when the display is farther from the 

subject.  There will be a greater cost associated with performing a reach to the 

monitor in when it is in the far positions, so subjects are likely to perform the 

reach only when they have plenty of time.  However, subjects will want to 

maintain awareness of the current state of the in-vehicle task, so they will 

make additional glances, not accompanied by reaches, to the monitor. 

 

Previous Work 

This report describes primarily the analysis of the glance data.  Detailed analysis 

of driving performance and task performance is provided in Fuller, Tsimhoni, and Reed 

(2008).  The primary driving performance data from that report are reproduced in Figure 

1.  The RMS error for the difference between the subject’s speed and the lead vehicle’s 

speed was larger for all four monitor positions compared to the condition in which the 

secondary task was not required.  The RMS error was also always greater for the heavy 

vehicle compared to the light vehicle.  However, driving performance did not differ 

substantially among the four monitor positions.  Thus, the requirement to perform the 

secondary task had a negative effect on driving performance, but that effect was not 

greater for the farther monitor positions. 

 

Figure 1.  Average RMS error in the speed signals of the lead and subject vehicles for 
each condition. 
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METHOD 

In this study, subjects drove in the UMTRI driving simulator while performing a 

secondary in-vehicle task using a touch screen monitor.  Independent variables were 

monitor position and vehicle weight.  Dependent variables were delay in following speed 

changes, error in matching desired speed, secondary task time, and metrics of glance 

behavior, including average glance duration and time between glances. 

Subjects 

Fourteen licensed drivers (seven male, seven female) between the ages of 19 and 

30 (mean=24.1, SD=4) participated in this study.  Written informed consent was 

obtained, and the study was approved by the University of Michigan’s Behavioral 

Sciences and Health Sciences Institutional Review Boards.  Subjects received financial 

compensation for their time. 

Subjects were recruited from the University of Michigan and Ann Arbor 

communities via newspaper advertisements and flyers.  The age range was chosen to be 

similar to that of military drivers exposed to convoy driving situations.  Five of the male 

subjects were members of the Reserve Officers' Training Corps (ROTC), and one female 

subject had been discharged from the Army recently.  Subjects were required to have a 

far visual acuity of 20/40 or better and no history of motion sickness.  Subjects were 

selected so that three to four subjects were included in each of four height groups: four 

short females (59-61 inches, 150-155 cm), three midsize females (63-64 inches, 160-

162.5 cm), four midsize males (68-70 inches, 172.7-177.8 cm), and three tall males (72-

74 inches, 182.9-188 cm).  These heights were chosen to give a range of heights 

representative of approximately 5th percentile female, 50th percentile female, 50th 

percentile male, and 95th percentile male, respectively. 

Apparatus 

Driving Simulator 

The study was conducted in UMTRI’s driver-interface research simulator.  This 

fixed-based driving simulator consists of a full-size vehicle cab with a projected 
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instrument panel, a torque motor connected to the steering wheel, six video projectors 

and projection screens (200° forward field of view, 40° rear field of view), and a sound 

system, including a sub-bass sound system for vertical vibration.  The forward screen was 

16 to 17 feet (4.9 to 5.2 meters) from the driver’s eyes, depending on seat adjustment, 

requiring drivers to accommodate from the in-vehicle display (at 1-2 diopters) to 

approximately infinity (<0.25 diopters) whenever they looked at the screen straight 

ahead.  The main simulation functions were controlled by hardware and software 

provided by DriveSafety (Vection and HyperDrive Authoring Suite, version 1.6.2). 

Two vehicle dynamics settings were used.  The first setting (normal-weight 

condition) simulated a typical passenger car, and the second (heavy-weight condition) 

simulated a vehicle that was 35% heavier and as a result accelerated and decelerated 

more sluggishly.  Subjects drove on a four-lane divided highway as the fourth vehicle in a 

simulated convoy.  There was no other traffic on the road. 

Video Collection 

Video of the subjects was recorded in the frontal (forward and rear views) and 

sagittal planes using low light cameras.  A quad splitter was used to combine the three 

camera views with the video from the front screen into a single video file. 

In-Vehicle Task Equipment 

The experiment used a tablet personal computer with a touch-screen monitor 

(Lenovo, ThinkPad X60).  The monitor was mounted in four different positions within 

the vehicle (Figure 2).  The four display positions were chosen so that they differed in 

difficulty of physical reach and visual angle.  The near-high position was in the center 

console and had a short reach distance and small visual angle from the road ahead.  The 

near-low position also had a short reach distance, but the visual angle was greater.  The 

far-high position had a large reach distance and a moderate visual angle.  The far-low 

position had a large reach distance and a large visual angle.   
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Figure 2.  The four monitor positions are shown along with the distances (cm) from the 
driver’s centerline. 

To complete the in-vehicle task, the user interacted with a menu-based interface 

with fixed-location buttons on the touch-screen monitor.  The task required the subject to 

conduct a visual search to locate and match three pairs of “scout” and “target” icons 

(Figure 3).  In each trial, the six icons appeared in different positions on the screen.  The 

program for the in-vehicle task was written using Visual Basic for Applications 

(Microsoft, 2007). 

 

Figure 3.  The front screen of the in-vehicle task is shown.  The subjects were required to 
match the correctly numbered “scout” (gray vehicle) and “target” (orange person) icons.  
For example, the subject first selected Scout 1 and Target 1, then pressed a button to 
complete the assignment.  This sequence was repeated for the remaining icon pairs. 

Procedure 

Subjects were instructed to remain in the lane and maintain a constant headway to 

the vehicle directly in front.  This lead vehicle changed speed following a sinusoidal 

pattern with random frequency and amplitude. 
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This study used a modified version of the coherence technique (Brookhuis, de 

Waard, & Mulder, 1994; Ward et al., 2003).  The lead vehicle changed between a low 

speed and a high speed at a frequency that ranged between 0.02 and 0.04 Hz.  The 

minimum speed of the lead vehicle ranged between 55 and 60 mph (88 to 97 km/h), 

while the maximum speed ranged between 70 and 75 mph (112 to 121 km/h).  This 

variation in frequency and amplitude was introduced to make it difficult for the subjects 

to predict the lead vehicle speed.  The speed change trajectory was smoothed by basing 

the signal profile on a sinusoidal function. 

The subject was taught how to perform the in-vehicle task and then practiced the 

task with the monitor in two of the four positions for a minimum of five minutes.  Next, 

the subject practiced driving in the simulator without performing the in-vehicle task.  

After at least five minutes, and when the subject reported he or she was comfortable with 

the driving task, the subject was instructed to add the concurrent in-vehicle task while 

continuing to maintain a constant distance to the lead vehicle.  After the practice drives, 

the subject completed a total of ten drives.  Each drive consisted of multiple interactions 

with the in-vehicle system.  Subject were instructed to complete the in-vehicle task well 

as they could while feeling comfortable with their driving performance.  Consequently, 

the number of completed trials per drive was not fixed and ranged from 0 to 14, with an 

average value of 7.5±3.1 trials per drive.  Subjects were given sufficient rest between 

drives to reduce fatigue. 

Subjects were instructed to maintain a constant distance to the lead vehicle during 

each drive.  They were told that distance keeping was their primary task and that they 

should complete the in-vehicle task at a comfortable rate.  Subjects were instructed as 

follows: “Your primary job is to maintain a constant distance between yourself and the 

lead vehicle, so do not rush to complete the task.  You may complete the task in as many 

stages as you like.  You may push several buttons each time you reach to the screen or 

only one.”  To encourage subjects to comply with the instructions and to maintain a 

reasonable distance from the lead vehicle, if the subject was more than 660 feet (200 

meters) behind the lead vehicle, the experimental task was paused until the driver caught 

up and the headway distance was below that threshold. 
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Task Metrics and Glance Evaluation 

Glance data were collected from face video of subjects during the experiment.  

Glance data were taken from the first two repetitions of the in-vehicle task for each 

condition.  The glance metrics considered were the total glance time, the median glance 

duration, and the median time between glances. 

The start of a glance was defined as the moment a subject’s eyes started to move 

away from the road toward the touch screen monitor, or when the eyelids closed during a 

preparatory blink.  The end of the glance was defined as the moment a subject’s eyes 

started to move away from the monitor and back to the road.  The glance duration was 

defined as the time between the start of a glance and the end of a glance.  The median 

glance duration was the median of the glance durations for each repetition of the task.  

The total glance time was the sum of all glance durations during one repetition. 

The time between glances was defined as the time from the end of one glance to 

the start of the next glance.  The median time between glances was the median of the 

times between glances for each repetition. 

In addition to the glance metrics, another metric used was the total time required 

to complete the in-vehicle task, from the first touch on the screen to the final touch on the 

screen.  This is referred to as the total task time.  The median total task time for each 

drive was used for the analysis. 

Experimental Design and Data Analysis 

After the practice drives, each subject completed ten drives for the experiment.  

The two within-subject factors that were varied were monitor position for in-vehicle task 

(four levels: near-high, near-low, far-high, and far-low) and vehicle weight (two levels: 

normal and heavy).  Each subject also completed two drives with no in-vehicle task (the 

baseline condition). 

Monitor position order was blocked by vehicle weight so that subjects would have 

fewer adjustments to make to vehicle performance, but was counterbalanced across 

subjects.  Half of the subjects were assigned to perform all the light vehicle trials first, 

and the other half were assigned to perform all the heavy vehicle trials first.  The monitor 

position order was determined using a Latin square design.  For each subject, the same 
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order was used for both vehicle weights.  The baseline condition was the third trial for 

each weight block.  This was done to ensure that all subjects had equal amounts of 

experience with driving and the in-vehicle task when the baseline data were collected. 

Data analyses were performed using linear mixed-effects models.  Linear mixed 

models (LMM) is a maximum-likelihood analysis method that can be used to estimate 

any number of random and fixed effects (McLean, Sanders, Stroup, 1991).  For 

unbalanced within-subject designs, such as this one, LMM allows for proper estimation 

of random effects for within-subject F-tests without case-wise deletion of data, as is 

necessary for general linear models. 

Analysis was performed in SAS 9.1.3 (SAS Institute Inc., Cary, NC, USA) using 

the Satterthwaite method for estimating denominator degrees of freedom.  Backwards 

selection was used to identify effects in the final model.  All main effects and interactions 

were initially included.  Random effects included the main effect of subject as well as 

interactions between subject and each of the included fixed effects. 

To examine the effects of reach distance and visual distance from the road ahead, 

the four-level monitor position variable was reformatted in SAS.  The near-high and near-

low monitor positions, which both had short reach distances, were grouped and compared 

to the far-high and far-low positions.  Also, the near-high and far-high monitor positions, 

which were located at a short visual distance from the road ahead, were grouped and 

compared to the near-low and far-low monitor positions. 

Glance Strategies 

The median time between glances for each subject and each monitor position was 

plotted against the median glance duration in order to illustrate and examine how glance 

strategies varied based on the location of the monitor for the in-vehicle task.  This is 

similar to a technique used by Donmez, Boyle, and Lee (submitted) to examine risk-

taking behavior in young drivers. 
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RESULTS 

Total Task Time 

Subjects took significantly longer overall to perform the in-vehicle task when the 

monitor was in the farther positions, F(3,28.5) = 13.3, p < 0.0001 (Figure 4).  The task 

time increased by 79.0% from the near-high monitor position to the far-low position.  

Shorter subjects took significantly longer than taller subjects to complete the in-vehicle 

task, F(3,9.83) = 5.44, p < 0.05.  Vehicle weight did not significantly affect task 

completion time, F(1,52.1) = 1.61.  The increase in in-vehicle task time for far and low 

monitor positions was significantly greater for short females and midsize females 

compared to midsize males and tall males,  F(9,28.5) = 2.46, p < 0.05 (Figure 5). 

 

 
Figure 4.  Mean total task time (seconds) for all subjects for each monitor position. 
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Figure 5.  Mean total task time (seconds) for each monitor position and each stature 
group. 

 

Further analysis of monitor position showed a significant increase in total task 

time from near to far monitor positions, F(1,9.96) = 38.2, p < 0.0001, but no significant 

change from high to low positions, F(1,92.8) = 1.08.  The interaction between stature and 

monitor reach distance was also significant, F(3,9.97) = 6.57, p < 0.01, with the drivers in 

the two shorter stature groups displaying a larger increase in total task time between near 

and far monitor locations than the drivers in the two tall stature groups. 

Total Glance Time 

The total glance time for a trial increased significantly with far and low monitor 

positions, F(3,15.7) = 10.1, p < 0.001 (Figure 6).  The total glance time was 11.0 seconds 

for the near-high monitor position, 12.9 seconds for the near-low position, 14.4 seconds 

for the far-high position, and 15.7 seconds for the far-low position. 
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Figure 6.  Average total glance time (seconds) for each monitor position. 

 

Total glance time decreased significantly with increasing subject stature, 

F(3,3.81) = 6.14, p < 0.1 (Figure 7).  The average total glance time was 16.6 seconds for 

short females, 13.2 seconds for midsize females, 12.2 seconds for midsize males, and 

11.6 seconds for tall males.  No interactions were significant. 

 

 
Figure 7.  Average total glance time (seconds) for each stature group. 
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Dividing monitor position into reach distance and visual distance provided 

additional information about the effects of monitor location.  Total glance time to the far 

monitor position was 26.0% longer than to the near position, F(1,214) = 34.7, p < 0.0001.  

Placing the monitors in the low positions resulted in a 12.8% increase in total glance time 

compared to the high positions, F(1,214) = 7.91, p < 0.01. 

Median Glance Duration 

The median glance duration was affected by the combination of subject gender 

and stature, with the female subjects generally making shorter glances to the monitor 

(Figure 8).  Although the effect was very small, it was significant, F(3,118) = 7.74, 

p < 0.0001.  The median glance duration was 1.50 seconds for short females, 1.33 

seconds for midsize females, 1.64 seconds for midsize males, and 1.47 seconds for tall 

males.  The median glance duration was not affected by monitor position, 

F(3,211) = 1.64, or vehicle weight, F(1,211) = 0.02. 

 

 
Figure 8.  Median glance duration (seconds) for each stature group. 
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Time Between Glances 

The effect of monitor position on the time between glances was significant, 

F(3,2.31) = 7.49, p < 0.1 (Figure 9).  The median time between glances increased from 

0.526 seconds for the near-high monitor position to 0.670 seconds for the near-low 

position to 1.16 seconds for the far-high position.  It decreased slightly to 0.885 seconds 

for the far-low position. 

 

   
Figure 9.  Median time between glances (seconds) for each monitor position. 
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Figure 10.  Median time between glances (seconds) for each monitor position. 

 

The effect of vehicle weight was not quite significant effect, F(1,4.46) = 3.61, 
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on time between glances, F(1,216) = 0.54. 
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Figure 11.  The median time between glances for each subject is plotted against the 
median glance duration for each monitor position, with a distinction made between trials 
involving normal-weight and heavy vehicles. 
 

Number of Glances 

Shorter subjects made significantly more glances to the monitor for the in-vehicle 

task than did tall subjects, F(3,175) = 10.00, p < 0.0001 (Figure 12).  The mean number 

of glances was 11.8 for short females, 9.98 for midsize females, 8.19 for midsize males, 

and 7.81 for tall males. 
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Figure 12.  Average number of glances per trial for each stature group. 
 

 

The number of glances also increased as the monitor was moved farther from the 

subject and the road, F(3,214) = 5.00, p < 0.005 (Figure 13).  No interactions were 

significant. 

 

 
Figure 13.  Number of glances per in-vehicle task iteration for each monitor position. 
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When the effect of the reach distance to the monitor was considered separately 

from the visual distance, reach distance had a significant effect on the number of glances, 

F(1,215) = 12.28, p < 0.001, with subjects making an average of 1.76 additional glances 

per trial to the far monitor positions, but visual distance did not, F(1,216) = 2.75.  In 

addition, the interaction between reach distance and vehicle weight was significant, 

F(1,215) = 3.04, p < 0.1, with a greater increase in number of glances to far monitor 

positions for the normal-weight vehicle, compared to the heavy vehicle. 
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DISCUSSION 

Monitor Position 

It was predicted that total task time would be greater when the display was farther 

away from the driver because of increased reach distance and increased time looking 

away from the task to the road.  The results show that task time increased for far monitor 

locations compared to near, though there was no significant difference between low and 

high monitor positions. 

It would be tempting to conclude that reach distance from the steering wheel is a 

more important factor in the design of in-vehicle systems than the visual angle from the 

road.  However, this finding may not extend to monitor positions that are very different 

from those that were tested here.  It is more conservative to state that a horizontal 

increase in reach distance of 35 to 55 cm (the distances between the near and far monitors 

for the low and high positions, respectively) has a greater effect on glance behavior than a 

vertical increase in visual distance of 20 cm. 

The total glance time and number of glances also increased for far monitor 

positions compared to near, as was predicted.  In addition, total glance time and number 

of glances increased for low monitor positions compared to high positions.  There are at 

least two possible explanations for these findings.  First, the glance time includes the time 

to move the eyes from the road to the monitor.  Sometimes, it also included the time to 

reach from the steering wheel to the monitor, because the reach usually was made while 

the subject was looking at the monitor.  Therefore, the increase in total glance time may 

reflect, in part, the greater time required for the eye and hand movements needed to 

complete the in-vehicle task.  Second, it may have been more difficult for the subjects to 

perform the in-vehicle task when the monitor was in the far and low positions because of 

greater difficulty in seeing the icons on the screen and greater difficulty in achieving the 

manual precision required to press the icons correctly.  This greater difficulty could have 

resulted in the subjects spending more time on the in-vehicle task. 

It was hypothesized that glance duration might increase for far monitor positions 

because of increased movement time, but in fact, monitor position had no effect on the 

duration of individual glances.  The increase in the total glance time was a result of more 
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glances of the same duration rather than longer glances.  It is possible that in some cases 

subjects started to move their hands towards the monitor prior to starting a glance.  In the 

video from the experiment, subjects sometimes left their hands near the monitor between 

glances rather than withdrawing them to the steering wheel.  In addition, subjects could 

have broken the in-vehicle task into more subtasks in order to avoid an increase in glance 

duration.  Therefore, even though the inclusion of eye and hand movements in the 

glances would have resulted in longer glances, subjects instead decided to complete a 

smaller portion of the task during each glance so that the duration of each glance away 

from the road remained approximately the same. 

The far monitor locations also resulted in an increase in time between glances, as 

was predicted.  Performing the in-vehicle task with the monitor in the far locations was 

more difficult than with the monitor in the near locations, so more attention was likely 

diverted from the concurrent driving task.  The greater time between glances for the far 

monitor positions could reflect the need for more recovery time between working on the 

in-vehicle task (perhaps to regain the desired headway or to center the vehicle in the lane) 

and more preparation time before each glance away from the road (perhaps to stabilize 

the vehicle before moving the hand, head, and in some cases torso). 

The number of glances subjects needed to complete the in-vehicle task increased 

for far monitor positions, as was expected.  This, together with the increase in total glance 

time and no change in glance duration suggests that most subjects were making similar 

glances regardless of monitor position, but they required more glances and more time to 

complete the in-vehicle task when the monitor was in the far positions. 

Stature 

The total task time, the total glance time, and the time between glances were 

longest for the short females and midsize females, and shortest for the midsize males and 

tall males.  This could indicate that the shorter subjects performed the reach using more 

complicated movements.  The videos show some subjects in the shorter stature groups 

leaning with their torsos in order to reach some of the monitor positions, while the 

subjects in the taller stature groups could generally perform the reach using arm 

movements alone.  The motor control literature suggests that more complicated motor 
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actions require additional time for planning (Schmidt & Lee, 1999).  Thus, the greater 

time between glances for short subjects could be attributable to the need for a longer 

planning stage during which the subjects began to prepare for the movement while still 

looking at the road.  The greater total glance time for short subjects could include 

additional preparation time for the movement, when the subjects are looking at the 

monitor prior to making a reaching movement, as well as the greater time required to 

perform the more complicated movement. 

Female subjects also made shorter glances to the monitor and more of them.  This 

suggests that these subjects did not feel comfortable taking their eyes off the road for 

very long.  It is possible that these subjects were grouping the button presses into smaller 

chunks when performing the task, which required them to look at and reach to the 

monitor more times.  Alternatively, they may have completed the same number of 

reaches to the monitor, but with longer periods of time between reaches to prepare or 

recover.  In order to keep track of where they were in the task, they may have made 

additional glances to the monitor, unaccompanied by reaches. 

All the subjects in the two shorter stature groups were female and all the subjects 

in the two taller stature groups were male.  Therefore, it was impossible to distinguish 

between gender effect and stature effect.  This confounding represents the reality of 

stature differences between the genders, so the observations from this study are likely 

representative of what would be found in a larger population. 

Vehicle Weight 

Vehicle weight had little if any effect on glance behavior.  It was thought that 

glance duration would decrease for the heavy vehicle, because driving the heavy vehicle 

should be more difficult than driving the normal-weight vehicle, similar to driving on 

sharp curves in Tsimhoni and Green (2003).  Thus, subjects should feel constrained to 

take their eyes off the road for shorter amounts of time.  However, there was no change in 

glance duration.  The cost of short glances while trying to maintain lane position on a 

sharp curve is critical and immediate.  In contrast, the cost of short glances while trying 

to maintain headway to a lead vehicle in a heavy vehicle is cumulative.  Furthermore, the 

heavy vehicle was perhaps more predictable, thus requiring shorter glances to the road. 
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The time between glances was actually shorter for the heavy vehicle compared to 

the normal-weight vehicle, and subjects made slightly fewer glances to the monitor.  This 

could indicate that subjects were rushing through the in-vehicle task in order to return to 

the driving task and perhaps caring less about their driving performance when the driving 

task was more difficult. 

Interactions 

The increase in total task time from near to far monitor locations was greater for 

shorter subjects, as was predicted.  This is likely because the shorter subjects had more 

trouble than the taller subjects in reaching to the far monitor locations.  It was 

hypothesized that shorter subjects would show a greater increase in total glance time and 

time between glances with the far monitor positions, but there were no significant 

interactions.  It is possible that the short subjects were using different glance strategies to 

compensate for the greater difficulty they had in performing the task with the monitor in 

the far positions. 

Strategies 

The dual task scenario created in this experiment required subjects to decide how 

to share resources such as vision and information processing between two tasks: driving 

and the in-vehicle matching task.  This research makes it possible to investigate whether 

glance strategies used by drivers vary as a function of the monitor position.  This 

information could aid in the design of future in-vehicle systems, especially with regard to 

the need for adjustability. 

The plots of time between glances against glance duration show some possible 

differences in glance strategy based on the monitor location.  The plots for the two near 

monitor locations are very similar, with a wide range of glance duration and a narrow 

range of time between glances across subjects.  Based on these plots, subjects can be 

divided into two behavioral categories: short time between glances with short glance 

duration and short time between glances with long glance duration.  The second strategy 

is the more risky of these two, because long glances away from the road may increase the 

likelihood of collision.  Long glance durations could indicate that the subject is engaged 
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in cognitive tunneling, in which a subject presented with a secondary task in a simulator 

concentrates on this task to the exclusion of the primary driving task. 

The two far monitor locations have glance duration spreads that are similar to 

those of the near monitors, but the range of values for time between glances is much 

larger.  Thus, the far monitor locations show four categories of glance behavior: the two 

identified for the near monitor locations, long time between glances with moderate glance 

duration, and long time between glances with long glance duration.  The third strategy 

indicates more time is being spent on the driving task than on the secondary task.  The 

last strategy shows that equal time is spent on the two tasks, but the subject switched 

between the tasks infrequently.  This strategy could be displayed by a subject who forgets 

to shift attention between the tasks or whose attention is captured by one of the tasks.  

Cognitive capture can cause a driver to focus on a secondary task to the exclusion of the 

more important driving task (Weintraub, 1987). 

In the exit interviews, subjects were asked about how they chose to perform the 

dual tasks assigned in the experiment.  Many subjects indicated that they avoided 

performing the in-vehicle task when driving around a curve, especially for the far monitor 

positions.  This is consistent with the findings from Tsimhoni and Green (2003) that 

showed subjects made shorter glances to the display and longer glances to the road with 

increased road curvature. 

All the subjects agreed that the far monitor positions were more difficult, but 

subjects varied in how they chose to manage the tasks.  Some stated that they tried to 

complete the in-vehicle task as quickly as possible, while others felt that they took more 

breaks from the in-vehicle task while performing the task with the far monitor positions 

than when the monitor was at a shorter reach distance.  Future work could examine how 

subject characteristics such as age, risk-taking behavior, and motivation contribute to 

changes in glance strategy. 
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CONCLUSIONS 

The results of this study demonstrate both strengths and limitations of drivers’ 

abilities to cope with secondary tasks while driving.  The instructions that subjects were 

given emphasized that they should assign the most priority to the simulated driving task 

and perform the secondary task as well as possible within that context.  In terms of 

overall performance of both tasks, they were partly successful in following those 

instructions.  On the positive side, the effect of far (difficult) monitor positions was 

limited to performance on the secondary task, while performance on the driving task was 

virtually unchanged.  However, driving performance for all monitor positions was 

somewhat reduced relative to the control condition in which the secondary task was not 

required.  It is not immediately obvious how to explain the fact that, although driving 

performance was not entirely independent of the secondary task, it was unaffected by 

substantial changes in the difficulty of the secondary task (as influenced by monitor 

position).  One possibility is that the mere presence of the secondary task interfered with 

some general, executive-level process.  Alternatively, the results could be explained in 

terms of the internal performance criteria that were adopted by the subjects.  It may be 

that the reduced level of driving performance that was observed for all monitor positions 

corresponded to what the subjects considered a minimum (but nevertheless acceptable) 

level.  The higher driving performance that they achieved when they were not performing 

the secondary task may thus have been considered, in their explicit or implicit strategic 

calculations, higher than actually required. 

At a more detailed level, it appears that the coping strategies used by these 

subjects involved performing the secondary task in discrete subtasks.  Thus, the increased 

difficulty caused by more distant monitor positions resulted in more glances to the 

monitor rather than longer glances.  Secondary tasks presumably vary in how easily they 

can be divided into manageable subtasks.  The secondary task used here may have been 

particularly easy to divide, since it consisted of a series of similar components involving 

locating and identifying icons and matching them by pressing the corresponding locations 

on the touch screen. 
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In order to make practical recommendations for equipment and procedures to be 

used in a range of secondary tasks, it is necessary to consider various aspects of the 

demands of the secondary tasks.  Among these are the extent to which various secondary 

tasks can be divided into subtasks, as well as the fundamental perceptual, cognitive, and 

motor requirements of the tasks.  Ideally, a comprehensive model should be developed to 

integrate information about the demands of secondary tasks from this study and from 

various possible extensions.  Important ways in which the current results could be 

extended include: (1) Use of other measures of driving performance.  For example, even 

within the context of a vehicle-following task, the frequency and abruptness of changes in 

lead-vehicle speed could be continuously varied so that the task could range from being a 

relatively predictable tracking task to one in which subjects had to detect unpredictable, 

heavy braking events.  (2) The effects of monitor location on perceptual and motor 

demands could be separated by varying the monitor’s visual characteristics (e.g., size or 

level of detail in the icons) and motor characteristics (e.g., size of touch-sensitive areas, 

level of force, or duration of continuous contact required for a response).  (3) Instructions 

to the subject about the strategic importance of the secondary task relative to driving 

could be varied. 
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