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Clusters of ant colonies and robust criticality in a
tropical agroecosystem
John Vandermeer1,2, Ivette Perfecto2 & Stacy M. Philpott3

Although sometimes difficult to measure at large scales, spatial
pattern is important in natural biological spaces as a determinant
of key ecological properties such as species diversity, stability,
resiliency and others1–6. Here we demonstrate, at a large spatial
scale, that a common species of tropical arboreal ant forms clusters
of nests through a combination of local satellite colony formation
and density-dependent control by natural enemies, mainly a para-
sitic fly. Cluster sizes fall off as a power law consistent with a so-
called robust critical state7. This endogenous cluster formation at a
critical state is a unique example of an insect population forming a
non-random pattern at a large spatial scale. Furthermore, because
the species is a keystone of a larger network that contributes to the
ecosystem function of pest control, this is an example of how
spatial dynamics at a large scale can affect ecosystem service at a
local level.

It has been common to assume, sometimes only implicitly, that the
patchiness of an ecosystem reflects some underlying habitat factor
(for example, marshweed occurs in marshes) even though that factor
may not be evident8,9. However, it is well known that various intrinsic
biological dynamics are capable of producing pattern even in a land-
scape that is homogeneous for the organism involved10,11. This raises
the question for any non-random spatial pattern about whether it is
caused by factors that are exogenous (broadly, underlying habitat
patchiness) or endogenous (broadly, biological aspects of the organ-
ism independent of the habitat patchiness)12,13.

In our study site in southern Mexico the underlying habitat for a
species of tropical arboreal ant, Azteca instabilis, is essentially uni-
form. It is the collection of shade trees planted in a coffee plantation,
where the original intention of the farmer was to plant the trees
uniformly. The ant species is common in the Mesoamerican tropics,
where it is frequently encountered on casual walks in the forest.
However, discerning any spatial pattern of its colonies is inevitably
obstructed by the heterogeneity of the habitat it normally occupies.
However, the species also inhabits shade trees in traditional shaded
coffee farms, a uniform habitat both by intention and as measured.
Ant nest formation is exclusively in the shade trees; consequently a
non-random pattern in the spatial distribution of ant colonies must
be a result of endogenous factors, because the underlying habitat is
uniform. We find that the colonies indeed are non-random, even
though the shade trees themselves are uniform (Fig. 1).

The basic biology of the ant is not unusual. After a queen estab-
lishes a colony in a tree, the colony may grow to the point that satellite
nests are established in neighbouring trees, presumably one part of
the mechanism whereby patchiness is generated. Although the details
of satellite formation are not completely known (see Supplementary
Information), it is evident from our data that ants within a particular
nest establish other nests in nearby trees. Unabated satellite forma-
tion would obviously result in a continuous expansion of nests

throughout all shade trees in the habitat, which means that some
force must limit this expansion. On this farm the ant has a series of
natural enemies, any one of which, or any combination thereof,
could form the basis for the control that must occur. A parasitoid
phorid fly is known to reduce ant foraging activity14, and has a
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Figure 1 | Distribution of nests of Azteca instabilis over a 45-ha plot (the
three missing hectares are on inaccessible terrain). The distributions of
colonies found in all censuses are notably clumped (the first and last
censuses are shown here) with an average of 328 trees occupied. The nests
appear to drift around, as is evident from a comparison of the two panels.
Note the dynamic nature of the system over time: the two small rectangles
illustrate both the complete disappearance of a cluster and the appearance of
another cluster where only a single nest had been before.
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density-dependent response to clusters of ant nests (Fig. 2), in
addition to a qualitative behavioural response to the ants (see
Supplementary Information).

Based on this natural history, we propose a three part dynamic.
First, nuptial flights produce founding queens that disperse as pro-
pagule rain over a large area. Second, successful colonies occupy
neighbouring trees with satellite colonies. Third, phorid parasitoids
concentrate on clusters of ant nests, causing a dramatic behavioural
response and possibly direct mortality, thus dramatically reducing
ant survivorship in dense clusters of nests. The cellular automata
model developed here (see Methods and Supplementary
Information) is based on these three features, where a central cell
becomes occupied or dies depending on the Moore neighbourhood,
N, with the probability of satellite expansion being a linear function
of N (ps 5 s0 1 s1N), as is the probability of mortality
(pm 5 m0 1 m1N).

The range of parameter values to instantiate the cellular automata
model (see Methods and Supplementary Information) obtained
from the field censuses were: for satellite expansion, s0 5 0.0–0.8,
s1 5 0.0133–0.035; and for mortality, m0 5 0–0.45, m1 5 0.031–
0.097. A systematic search of this range of parameter space produced
the following parameters: s0 5 0.0035, s1 5 0.035, m0 5 0.116,
m1 5 0.036, as those producing the best approximation to both the
population densities of nests over time and the cluster size distri-
bution (as measured by the mean/variance ratio). Output from the
model and observed data from the field are shown in Fig. 3.

The overall population densities in the simulations are concen-
trated between 200 and 500, and the mean variance ratios between 0.4
and 0.5, both close to the range of our observations in nature (repre-
sented as horizontal lines in Fig. 3). The model output reflects the
erratic nature of cellular automata models, with the same parameters
generating a dramatic variability both of population densities and
mean variance ratios. However, because the possible range could be
from 0 to 10,800 for population density and from 0 to 1infinity for
mean variance ratios, the ability of the model, with parameter values
within our empirical envelope, to generate population densities and
patterns so close to those we observed in the field suggests that the
basic interpretation of the spatial dynamics is probably correct.

Although our modelling approach is distinct, the underlying bio-
logical interactions are similar to those studied by Pascual and col-
leagues, suggesting that we should expect a power law relation
between cluster size and frequency. Indeed, as expected, the distri-
bution of cluster sizes in our plot does follow a power function
(Fig. 4a). Furthermore, calculating the frequency of cluster sizes, as
generated by the model, produces a similar power relation (Fig. 4b) as
would be suggested if the system is near criticality15. Further studies
of the model show that there is a broad region of parameter space in
which the power law holds, suggesting that this may be a case of
robust criticality16.
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Figure 2 | Attack rates of phorid fly parasites as a function of nest-cluster
density. Density of nests based on a 20 m circle surrounding the point at
which phorid attack trials were done. Error bars, s.e.m. The attacks were
highly variable, but the relation with the density of the local clusters of ant
nests is statistically significant (P 5 0.042; see also Supplementary
Information).
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Figure 3 | Time (in six month intervals) series for population density (top)
and mean variance ratios (bottom) for the parameters s0 5 0.0035,
s1 5 0.035, m0 5 0.116 and m1 5 0.036. In both cases two separate runs are
pictured: one in black, the other in grey (hardly noticeable in the bottom
panel because the two runs are so similar). Horizontal lines are the values of
the six field samples (two samples are so close as to appear the same).
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Figure 4 | Log of cumulative frequency of log cluster sizes. a, From field
samples, based on a minimum distance of 20 m between nests that are judged
to be in the same cluster. b, From field-parameterized cellular automata
stochastic model, based on a 90 3 120 lattice, where each lattice point is
intended to model a single shade tree. Clusters are defined based on
individual lattice points in contact with any other lattice point in the Moore
neighbourhood.
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The importance of these results lies in the fact that strong spatial
pattern is formed in the face of habitat homogeneity, connecting with
the well-known consequences of spatial pattern on topics such as
species diversity, ecosystem stability or resiliency and others.
Furthermore, it is likely that this pattern formation also is related
to biological control of several important coffee pests such as the
coffee berry borer (Hypthenemus hampei)17, the green coffee scale
(Coccus viridis)18 and coffee rust (Hemileia vastatrix)19. All of these
controls are effected through the spatial patterning of this system, as
discussed in detail elsewhere20.

METHODS SUMMARY
All trees in a 45-ha plot in a shaded coffee plantation were located and the

presence of ant colonies therein noted, a process repeated at 6-month intervals

for 2 years. Non-randomness of nests was established through quadrat-based

computation of mean and variance of number of nests per quadrat. Attack rates

of phorid flies were determined in locations that varied in the local number of ant

nests, by placing a small amount of ant-nest carton with a few ants in a container

and counting the number of phorid attacks over a 20 min period. The stochastic

cellular automata was constructed based on the natural history observations of

the ants forming satellite nests on nearby trees plus the phorid flies encountering

nests in proportion to their local density. The model was parameterized with

field data and compared with actual distributions in the field. Both the distri-

bution of nests in the field and the distribution generated by the cellular auto-

mata were examined for the distribution of cluster sizes.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
The system. The site is located at Finca Irlanda, a 300-ha organic coffee farm in

the Soconusco region of Chiapas, Mexico (15u 119 N, 92u 209 W), established

over 100 years ago (see Supplementary Information for a more detailed site

description).

Field surveys of ant nests. A 600 m 3 800 m plot (45 ha) was established within

which all shade trees were located and mapped to the nearest 2 m (usually to the

nearest 1 m, but at times the terrain became too difficult to manoeuvre so we

relaxed the precision in those areas). The first census was during the summer

(May–September) of 2004; there were five subsequent censuses in May and

December 2004, 2005, and December 2006. Only 45 of the 48 ha (from a

600 m 3 800 m plot) were surveyed because three of the hectares in one corner

were located next to a cliff that was inaccessible. Note that our definition of a

‘colony’ or ‘nest’ in a tree is based on the behaviour of the ant. Upon disturbance,

many workers swarm out of the tree in an obvious collective defence, and it is

never questionable whether there is a nest. The second to sixth censuses used the

coordinates from the first census to locate every tree in the 45-ha plot and,

rapping the tree sharply with a stick, evidence of disturbed workers of A. instabilis

was recorded.

Field surveys of phorid attack rates. Artificial ant nests, consisting of small

pieces of carton from a natural nest plus about 50 individual ants, were placed

in small plastic containers with fluon painted on the upper margins and taken

into the field with a tight-fitting cover in place to avoid odour release on the trip

to the field. Phorid density was assessed by opening the top of the container and

recording each parasitoid attack on a worker ant, during a period of 5 minutes.

Because other species of phorids and small flies are common in the area, only an

actual attack was registered if an individual of Pseudacteon sp. attacked A. insta-

bilis. Eighteen sites were selected from the 45-ha plot, covering a range of local

cluster sizes (see Supplementary Information), and phorid attacks were recorded

at four locations within the general area of the cluster of ant nests. This sampling

was done in August 2006.

The model. A 120 m 3 90 m grid was established on a torus. Each point in the
grid was meant to be a single shade tree and was either occupied (1) or not (0) by

a colony. A cellular automata approach was used with the Moore neighbourhood

(eight surrounding cells) acting as the ‘clump size’. This established the satellite

colonies. The probability of extinction was tied to the expected likelihood that

phorid flies would attack, which, in turn, is taken to be linearly related to the local

population density of colonies (as supported by our phorid census). Finally,

because the field surveys revealed new occupancies always associated with pre-

viously occupied nests, we assumed that the probability of a new nest from a

nuptial queen was close to zero, and thus was ignored in the model.

Formally, let x(i, j) be a binary variable located at the grid point {i, j}. We

define the local population density at that grid point as N(i, j), the sum of the

binary variables in the Moore neighbourhood of that grid point. The overall

population density is NT 5
P

i

P
j x(i, j). At each iteration of the model, if

x(i, j) 5 0 and N(i, j) . 0, a random number, R1, is drawn between 0 and 1;

and if R1 , s0 1 s1 N(i, j), then, x(i, j) 5 1, otherwise x(i, j) 5 0. Note that because

R1 is assessed only if x(i, j) 5 0 and N(i, j) . 0, the possibility of an isolated

colonization is excluded. Thus s0 and s1 are the parameters of ‘clump expansion

through the creation of a satellite nest’ referred to henceforth as simply ‘satellite
expansion’. Also at each iteration, to calculate the probability of phorid attack, a

random number, R2, is drawn between 0 and 1, and if, for all x(i, j) 5 1,

R2 , m0 1 m1N(i, j), then x(i, j) 5 0, otherwise x(i, j) 5 1. Thus, m0 and m1 are

the parameters of phorid attack.

Updating of x is cell by cell, and final population densities were calculated at

the end of the iteration. In all simulations the system was evidently in a relatively

stable state, in terms of total population density and qualitative pattern of nests

on the grid, after about 400 iterations. Thus all simulations reported are of the

system after discarding the first 450 iterations. Further analytical details of this

model are currently under study and will be reported elsewhere. Here we only

seek to demonstrate its consistency with field data.

Parameters for the model were estimated from the field data, with a process

explained in detail in the Supplementary Information.
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