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Refractory periods and climate forcing in cholera

dynamics

Katia Koelle'*, Xavier Rod6**, Mercedes Pascual', Md. Yunus® & Golam Mostafa’

Outbreaks of many infectious diseases, including cholera, malaria
and dengue, vary over characteristic periods longer than 1 year'>.
Evidence that climate variability drives these interannual cycles
has been highly controversial, chiefly because it is difficult to
isolate the contribution of environmental forcing while taking
into account nonlinear epidemiological dynamics generated
by mechanisms such as host immunity*™. Here we show that a
critical interplay of environmental forcing, specifically climate
variability, and temporary immunity explains the interannual
disease cycles present in a four-decade cholera time series from
Matlab, Bangladesh. We reconstruct the transmission rate, the key
epidemiological parameter affected by extrinsic forcing, over time
for the predominant strain (El Tor) with a nonlinear population
model that permits a contributing effect of intrinsic immunity.
Transmission shows clear interannual variability with a strong
correspondence to climate patterns at long periods (over 7 years,
for monsoon rains and Brahmaputra river discharge) and at
shorter periods (under 7years, for flood extent in Bangladesh,
sea surface temperatures in the Bay of Bengal and the El Nino-
Southern Oscillation). The importance of the interplay between
extrinsic and intrinsic factors in determining disease dynamics is
illustrated during refractory periods, when population suscepti-
bility levels are low as the result of immunity and the size of
cholera outbreaks only weakly reflects climate forcing.

Host immunity has a key role in the nonlinear dynamics of
infectious diseases. Acquired immunity and the replenishment of
susceptible individuals are capable of generating interannual disease
cycles in nonlinear mathematical models of disease lacking any
environmental forcing®. Seasonality can interact with this natural
frequency to produce oscillations of longer period or more complex
patterns, including chaos®. Thus, interannual disease cycles can either
arise intrinsically, by means of epidemiological dynamics including
seasonality, or be driven extrinsically, for instance by interannual
climate variability at frequencies similar to those of the response in
incidence levels. No evidence has yet been obtained for a role of
climate variability in interannual disease cycles with an approach
that allows for the alternative explanation that they are simply
produced intrinsically*. The few exceptions have so far been limited
to phenomenological treatments of disease dynamics”®. We use a
nonlinear population model that takes into account immunity and
disease transmission to show a strong correspondence between
cholera transmission and climate variability.

The temporal cholera data consist of monthly symptomatic cases
from the rural region of Matlab, Bangladesh, from 1966 to 2002,
obtained from a surveillance programme by the International Center
for Diarrhoeal Disease Research (Fig. 1). The study area is located
40 km southeast of the capital Dhaka, and lies in the delta region of

the Ganges and the Brahmaputra rivers. We focus the analysis on the
temporal variability of the predominant strain, El Tor, whose
dynamics exhibit clear seasonal and interannual variability, with
peaks in spring and late autumn’.

To separate the roles of intrinsic feedbacks from extrinsic
(environmental) forcing, we extended a recently proposed disease
model' to incorporate both immunity from previous El Tor infec-
tions and the likely possibility of cross-immunity from previous
infections caused by the Classical strain (see Methods). The model
contains two equations. The first one is a nonlinear transmission
equation of the form
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where I, is the number of El Tor-infected individuals, S, is the
number of individuals susceptible to El Tor, N, is the total population
size, and €, is a multiplicative noise term, all at time . The exponents
o and +y are used to incorporate deviations from the random mixing
assumption''. Pathogen transmission rate 3, is a key parameter that
we specifically let vary in time, to represent the effect of extrinsic
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Figure 1| Time series of cholera cases from 1966 to 2002, aggregated
monthly. a, Cholera cases of the El Tor biotype. b, Cholera cases of the
Classical biotype (red), and the Bengal strain (blue). Bengal cases were
excluded before analysis because this strain belongs to a different serogroup
(0139) from El Tor and Classical (01), and cross-immunity between
serogroups seems to be absent®. Population size was estimated using four
census points and monthly demographic data adjusted for net emigration,
and increased from 152,000 in 1966 to 223,000 in 2002 (not shown).

'Department of Ecology and Evolutionary Biology, 2045 Kraus Natural Science Building, University of Michigan, 830 North University Avenue, Ann Arbor, Michigan 48109-1048,
USA. ?ICREA and Climate Research Laboratory, Barcelona Science Park, University of Barcelona, ¢/Baldiri i Reixach, 4-6 08028 Barcelona, Catalunya, Spain. >International

Center for Diarrhoeal Disease Research, Dhaka 1000, Bangladesh.
*These authors contributed equally to this work.

696

© 2005 Nature Publishing Group



NATURE|Vol 436/4 August 2005

drivers on the transmission rate. This parameter corresponds to the
number of contacts per infected individual per unit time, multiplied
by the probability that a contact with an infected individual leads to
infection. For cholera, contacts reflect faecal-oral transmission
through food and water, and/or environmental transmission through
contamination of aquatic environments used by humans. 3, contains
both a seasonal component (3,5 and a longer-term component 3,
such that 3; = (.01 (ref. 10). We divide 3, into two components
to identify fluctuations in transmission rates that seasonality alone
cannot explain. In particular, this formulation allows for mechan-
isms that influence interannual variability in 8, as the result of a
modulation of the seasonality in transmission rates. A second
equation specifies the number of susceptible individuals at time t:
m m
Se=Ni=> (kil-) =Y ('L, )
i=0 i=0

where N, is the current population size at time ¢, Z?;O(K,-I +—i) is the
total number of individuals recovered from an El Tor infection and
immune to El Tor reinfection, and > ", (Kfllfl_i) is the total number
of individuals recovered from infection by the Classical biotype and
immune to El Tor reinfection. The functions k; and Kfl describe the
decay of immunity, with the subscript i indicating the number of

- i
>
o 4
2
c 4
>
E 4
£
Time since infection (years)

b c
c 6
(e} 4 m
3 2, 4
E 3 8
@ [+
g8, s 20
5 2 |
5 ® :
17} 1 Y d
d i
» 0 2

Jan. Dec. 2 0 2 4 6

Month Observed log(cases)

Figure 2| Results of the nonlinear disease model. a, The decay of immunity
functions «; and «{! for individuals having recovered from previous El Tor
(solid line) and Classical (dotted line) infections, respectively. The decay of
immunity quantifies the duration for which previously infected individuals
are expected to be immune to reinfection with cholera of the El Tor biotype.
The intercepts «; and «{' correspond to the ratio of asymptomatic to
symptomatic infections'®. This assumes that immunity is initially complete,
a reasonable assumption given results from rechallenge studies'*. The
infection-to-case ratios estimated from these intercept values correspond to
50:1 for El Tor and 22:1 for Classical. These results fall within the published
range of asymptomatic to symptomatic infection ratios for cholera® and are
in agreement with the known higher asymptomatic ratio for El Tor than
Classical®. b, The seasonal component of the transmission rate, 3 ¢cqs
anchored at its normalized December value 8 4., so that 8 4.c = 1.

¢, Logarithm of expected El Tor cases plotted against the logarithm of
observed El Tor cases (r* = 0.63). The mixing exponent « equals 0.57 with
set at 1 (Supplementary Information). The low value of o might reflect
cholera’s high degree of spatial clustering, a pattern noted empirically®.
Alternatively, because V. cholerae temporarily survives in an aquatic
reservoir, the dependence on the previous month’s infections might be lower
than for diseases with a strict direct transmission route. Dynamic
simulations of the model without noise generate strict annual cycles. When
simulated with dynamic noise, interannual variability does arise, but no
regularities in dominant frequencies are found.

LETTERS

months since infection and the values of «; and «! being the degrees
of immunity that an individual has i months after being infected.
Equations (1) and (2) are combined into a single expression relating
incidence levels in the present to those in the past. The fit of this
model to data relies on a semi-parametric approach'®” because
the long-term component of the transmission rate (f3),), which
incorporates any trends or fluctuations of periodicity longer than
seasonal, is not specified or constrained in any way. The model itself
reconstructs the patterns of time variation in transmission and
associated susceptible levels. It further provides an estimate of the
immunity and cross-immunity functions. Acquired immunity to
Vibrio cholerae is known to exist, but its duration is highly debated.

Results show that acquired immunity to reinfection with El Tor,
from previous Classical and El Tor infections, is long-lasting (Fig. 2a).
The degree of immunity from a previous El Tor infection starts to
wane 3years after infection, but partial immunity lasts for up to
10years. Classical infections confer complete cross-immunity for
more than 6 years, and full susceptibility to El Tor reinfection does
not occur until more than 10 years after infection. A shorter duration
of El Tor immunity than Classical cross-immunity agrees with
results from field studies'’, and may result from the greater
severity of Classical infections producing stronger immunological
responses. The intercepts of the immunity functions can be inter-
preted as providing estimates of ratios of asymptomatic to sympto-
matic cases (Fig. 2a). The higher ratio for El Tor than for Classical
infection agrees with previous epidemiological studies (Fig. 2,
legend). Seasonal transmission shows a clear monthly variation
(Fig. 2b) consistent with the known seasonality of cases. More
significantly, from the immunity curves, the fraction of the popu-
lation susceptible to El Tor infection (the ratio of susceptible to
total individuals; S/N) over time can be computed from equation (2)
(Fig. 3b). Concurrent changes in the long-term transmission rate
(Fig. 3a) provide evidence for the forcing of cholera by extrinsic
factors at interannual timescales. The fit of the full model accounts
for 63% of the variability in the logarithm of the El Tor cases (Fig. 2¢).
Additional effects of interannual forcing might still be contained in
the residuals of the model, a point to which we return later when
addressing specific environmental covariates.

We can now look more closely at the distinct roles of extrinsic
(environmental) drivers and intrinsic (immunity) factors in the
dynamics of cholera. Figure 3 shows the long-term transmission
rate temporally aligned with the fraction of the host population
susceptible to El Tor infection, as well as the cholera case data
aggregated monthly. In times of high transmission, the response in
El Tor cases would be expected to be large if intrinsic factors were
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Figure 3 | Cholera refractory periods. a, The long-term component of the
transmission rate, 3};. b, The fraction of the population susceptible to
cholera (S/N) over time. ¢, Time series of El Tor cases from 1976 to 2002.
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unimportant. However, the magnitude of the response is only high at
a subset of these times. Most notably, El Tor cholera cases are low for
198287, despite the favourable environmental conditions for high
transmission of pathogens. This episode was concurrent with a low
proportion of susceptible hosts after the higher incidence levels of the
late 1970s and early 1980s (including the large Classical outbreak in
1982-83). Moreover, one of the highest El Tor cholera case episodes
(1993-95) occurred when transmission rate was only moderately
high but the susceptible fraction had had significant time to replenish
itself (1988-92). These results illustrate that high transmission rates
result in high case responses only when the immunity levels of the
host population are low; that is, when the host population is not in a
refractory period from previous disease outbreaks.

We now turn to the interpretation of changes in interannual
patterns of transmission by examining associations with potential
climatic drivers. These associations provide support for the model
itself and for the assumption that the reconstructed variability in
transmission reflects extrinsic forcing. We focus on rainfall, associ-
ated river discharge, and flood extent, because of the prominent role
of water levels in the proposed mechanisms for cholera seasonality'®.
In the bimodal seasonal cycle of cholera cases (and also of trans-
mission rates; Fig. 2b) there is a marked decrease during the summer
monsoons, probably resulting from a reduction in cholera’s environ-
mental concentration and/or the decrease in salinity affecting its
survival. Cholera cases increase again and peak with a lag after this
season, as floods presumably concentrate the population on the
decreased land area available and break down sanitary conditions,
promoting secondary transmission through the more direct faecal-
oral route. These two seasonal mechanisms of opposite effect at
different lags can therefore mediate an influence of either positive or
negative rainfall anomalies at interannual timescales. Besides rainfall,
we also consider two remote drivers of interannual climate variability
in the region, the El Nino-Southern Oscillation (ENSO) and sea
surface temperatures (SSTs) in the Bay of Bengal, previously
proposed to influence cholera in Bangladesh®'". Figure 4a shows a
clear inverse relationship between the reconstructed transmission
rate B}, and both the low-frequency variation of rainfall from
northeast India'® and Brahmaputra river discharge data, providing
the first evidence for the long-standing hypothesis that rainfall and
associated water levels drive cholera patterns. A long-term decreasing
trend in transmission rate, associated with an opposite long-term
trend in the Brahmaputra’s discharge, is also evident. These environ-
mental time series components were obtained by separating signal
from noise and isolating the variability with a period longer than 7
years (see Methods). This period was chosen to focus initially on
interannual variability at scales longer than those relevant for ENSO.

A second curve is shown in Fig. 4a for the long-term component of
the transmission rate that closely matches the estimated (. This
curve was obtained by first aggregating the logarithm of the fitted
long-term transmission rate, logBy, with the residuals from the
model, loge,. This non-seasonal transmission term allows us to
consider all possible influences on incidence levels that were not
accounted for by the epidemiological dynamics and seasonal forcing.
The low-frequency component of transmission was then isolated
from this aggregated variable, by using the same procedure as for the
environmental variables. This approach produces a curve extremely
similar to that originally fitted by the model. Interestingly, additional
frequency components of this aggregated variable can now be
isolated at shorter timescales, particularly those relevant to ENSO.
Figure 4b shows the signal extracted for variability at periods less
than 7 years superimposed on the SST anomalies averaged for the
Nino3.4 region in the Pacific, and SST anomalies averaged for the Bay
of Bengal. The SST in the Bay of Bengal lags the SST anomalies for the
Nino3.4 region (Fig. 4b) by 2-3 months, establishing a connection
between ENSO events and regional climate in Bangladesh, which we
discuss below. In particular, there is a strong positive lagged corre-
lation of this faster component of transmission with the 1987-88 and
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the 1997-98 El Nifo events. Locally, extreme floods in Bangladesh
(Fig. 4b) and positive rainfall anomalies (Supplementary Fig. S3)
occur during these ENSO years. A positive association between SST
in the Bay of Bengal and this component of transmission is also
evident. The 1987-88 ENSO episode is of special relevance because,
despite the increase in transmission rate, the response in terms of
cases occurs but is a weak one (Fig. 3¢). This episode falls during the
refractory period, for which the susceptible population is small and
not yet ready to respond to increases in transmission rate. Only the
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Figure 4 | Environmental drivers and transmission. The non-seasonal
component of the transmission rate (green; plotted as log(3;) was added to
the residuals of the model, and decomposed into frequencies of low and high
variability (accounting for 27% and 57%, respectively, of the variance in this
aggregated term). a, The low-frequency variation in the non-seasonal
transmission rate (red), plotted with the low-frequency variation of
northeast (NE) India rainfall (blue) and Brahmaputra river discharge
(black). NE India rainfall covers an area of four subdivisions and

267 X 10° km®. As expected, the low-frequency variation of the NE India
rainfall is reflected in the Brahmaputra river discharge variation (r = 4 0.93,
P < 0.05, lag = 0 months). The low-frequency variation in transmission is
negatively correlated with both the NE India rainfall (r = —0.797, P < 0.05,
lag = 14 months) and Brahmaputra river discharge anomalies

(r= —0.9278, P < 0.02, lag = 7 months). b, The high-frequency variation
in the non-seasonal transmission rate (red), plotted with Nifio3.4 (grey) and
SST in the Bay of Bengal (black). SSTs in the Bay of Bengal are obtained from
a 0° to 23°N and 80° to 100° E grid, with 2° X 2° resolution from the
extended reconstructed SSTs of the National Oceanic and Atmospheric
Administration National Climate Data Center. Local correlations between
Nino3.4 and SST in the Bay of Bengal reach +0.86, with a 2-3-month lag
(P < 0.05). Local correlations between the high-frequency component of
transmission and Nino3.4 reach maximal values between +0.63 and +0.91
at 8—10-month lags (P < 0.05) for 1986-87, 1990-91, 1994 and 1997-98.
Similarly, local correlations between this transmission component and SST
in the Bay of Bengal range between +0.68 and +0.96 for 0-9-month lags
(P < 0.05) for 1982, 198687, 1988-89, 1990-91 and 1997. Bars show the
percentage of the area of Bangladesh flooded over this time period. Annual
flood area data come from the flood forecasting and warning centre (BWDB,
Dhaka, Bangladesh). An area is considered flooded if it experiences at least
one flooding event within the year’s monsoon season. Local correlations
between SST in the Bay of Bengal and NEIR (northeast India rainfall) (not
shown) are negative, exceeding — 0.85 at interannual timescales for periods
longer than 7 years (P < 0.0001).
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episode of 1982-83, for which the response is predominantly
Classical and not El Tor, shows no increase in transmission rate. A
time-series method that specifically quantifies the strength of the
association between variables locally in time (see Methods) reveals
that only one particular biotype at a time is responsible for the
response of cases to climate for a given El Nino event (Supplementary
Fig. S1).

The comparison of regional rainfall anomalies for Bangladesh
between the different ENSO events reveals that 1982—83 exhibited
drought conditions that were unique for this period in their intensity
and spatial extent (Supplementary Figs S2 and S3). This drought
provides an explanation for the major outbreak of Classical infection
in place of El Tor. Anomalously low water levels (and associated
higher salinity) have been proposed to favour this biotype relative to
El Tor in spatial observations of biotype distributions in Bangladesh,
with Classical found in more coastal regions'’.

Thus, both floods and droughts seem to promote cholera
transmission, depending on the strain and the temporal scale of
interannual variability. This finding is consistent with the two
different ways in which water levels have been postulated to influence
the seasonality of cholera. This complex nonlinear response to water
levels should be examined further with mechanistic mathematical
models that couple cholera seasonality to its interannual variation.
Our findings on SST in the Bay of Bengal (Fig. 4b) further support a
role of rainfall and clarify the regional influence of climate variability
on cholera at ENSO timescales. Two areas for SST in the Indian
Ocean appear most relevant to the variability in Bangladesh rainfall,
namely the central Indian Ocean® and the Bay of Bengal. SSTs in
these regions exert a (nonlinear) influence on the subsequent
summer monsoon>'. These areas also appear strongly linked to El
Nifo* (Fig. 4b for Bay of Bengal), although the degree of their
dependency, and that of the so-called Indian Ocean dipole mode, on
ENSO remain controversial®. In addition to rainfall, water tempera-
ture in ponds and rivers provides another local mechanism for the
remote association of cholera transmission with SST in the Bay of
Bengal and the Pacific (ENSO). Changes in cloud cover, wind stress
and evaporation modulate variations in the net heat flux entering the
system***, increasing both the SST in the Bay of Bengal and affecting
the surface temperature over land. The resulting warming of water
temperature in ponds and rivers might increase the incidence of
cholera through the faster growth rate of the pathogen in aquatic
environments.

We have shown the existence of refractory periods during which
climate-driven increases in transmission do not result in large out-
breaks. Once the interplay of climate forcing and disease dynamics is
taken into account, clear evidence emerges for a role of climate
variability in the transmission of cholera. A nonlinear population
model achieves this by explicitly taking into account epidemiological
dynamics: changes in the abundance of susceptible hosts, rates of
decay of immunity and seasonal transmission could all be recon-
structed from time series of infected individuals and total popu-
lation. The finding of a high susceptible fraction in the Matlab
population for recent times is of particular concern for the near
future. Although a prolonged period of low transmission rate has
been present since 2000, the system seems ripe for an outbreak if this
rate were to increase. Future work should explicitly compare the
predictability of models based solely on climate variables with that of
models including intrinsic disease dynamics®**. Our results suggest
that forecasting schemes will require the consideration of both
climate variability and the fraction of susceptible individuals in the
population. Given that time series on susceptible levels are rarely
available, approaches such as that presented here are crucial in the
attempt to forecast and anticipate the future size of outbreaks. Real-
time monitoring on the state of the oceanic regions we have outlined
will also be important for an effective early warning system based on
climate, but will need to be integrated with susceptibility levels in
future work.
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METHODS

Fitting the extended population model. The extended model seeks to recover
the seasonal transmission rates, the long-term transmission rates, the mixing
exponent o and the decay of immunity functions « and « ., given only time series
of cholera cases and population size. As in the original nonlinear population
model', the transmission equation is logarithmically transformed, making it a
semi-parametric additive model. Using a backfitting algorithm, the parametric
part of the model is first fitted through a combination of weighted least-squares
regressions and recursive Taylor expansions. The backfitting algorithm is
necessary to provide a progressive improvement in our estimate of the suscep-
tible fraction in the population through the adjustment of the immunity
functions. The nonparametric part of the model—that is, the long-term
transmission rate—is then obtained by smoothing the residuals of the regression
step. Two parameters (smoothing bandwidth h and spline penalty weight )
determine the flexibility of the model and are objectively selected by cross-
validation (see also Supplementary Information). Reported results shown in
Figs 2 and 3 have h = 23 and u = 10'°. The extension of the model to two strains
resides in the regression step, where the number of susceptible individuals is
expressed as equation (2) for the two-strain model and S, = N, — Z:":O(Kilt,,ﬂ)
for the one-strain model. Further details on this method are described in
Supplementary Information.

Issues pertinent to the cholera data set. Case data include all Classical and El
Tor cholera patients from the Matlab surveillance area. After 1978, this area
consisted of a maternal, child health and family planning treatment area and a
comparison area. Cholera treatment and dynamics did not differ between these
areas; we therefore aggregated these two areas in our analyses. Over the period
1966—2003, four vaccine trials were conducted in the Matlab area. To determine
whether these trials affected the results, the time series were adjusted (with
supplemented cases) to eliminate the protective effect of the vaccines. A fit of the
model to these adjusted time series showed no appreciable difference in results
(not shown). Implicit in the fit of this nonlinear disease model is the assumption
that the generation time of the disease is about 1 month. Although individuals
are usually symptomatic for less than a month, infected individuals can shed the
bacterium for up to 3 weeks. Further analyses using data aggregated twice a
month generate similar results.

Isolation of frequency components from transmission rates and climate data.
Eigendecomposition analysis was applied to the climate time series. Eigen-
decomposition partitions signals on the basis of adaptive nonparametric func-
tions®. This technique avoids the bias towards the concentration of noise in
certain frequency components. A covariance matrix is first constructed whose
entry in row 7, column j is the covariance of the data atlag i — j. The order of the
eigendecomposition (that is, the embedding dimension) corresponds to the
number of rows in the matrix. Singular value decomposition is then applied to
this matrix to extract the eigenvectors and their corresponding eigenvalues. The
eigenvalues quantify the variance associated with each eigenvector; they were
normalized to have their relative contributions rescaled to 100%. We applied a
decomposition of 40th order, which provided a good signal-to-noise separation,
and verified that results were insensitive to parameter modifications. Projection
of the signal onto the eigenmodes gives the principal components. To recon-
struct the time series, the principal components associated with the first group of
significant eigenvalues are combined. Six eigenmodes were kept here because
they maximized signal-to-noise ratios. Residuals passed all white noise tests. The
resulting reconstructed component was filtered with wavelet analysis to separate
the variance into two components, one with periods more than 7 years and the
other with periods between 1 and 7 years.

Global and local correlation coefficients. To determine the significance of
global linear correlations between two time series that share a similar range of
preselected periods, we used a bootstrap method that generates 10,000 surrogate
data sets for one of the time series by randomizing the phases while preserving
the power spectrum and autocorrelation function”. Previous work has shown
that at ENSO timescales, associations between cholera and climate variability
can be discontinuous in time'”. We therefore also used a time series method
(scale-dependent correlation analysis) that specifically quantifies the strength of
the association between variables locally in time by using correlation coefficients
computed within short, truncated time windows. See the legend to Supplemen-
tary Fig. S1 for further details and an example.
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