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ABSTRACT

One of the approaches to protein structure prediction is to obtain energy functions which
can recognize the native conformation of a given sequence among a zoo of conformations.
The discriminations can be done by assigning the lowest energy to the native conformation,
with the guarantee that the native is in the zoo. Well-adjusted functions, then, can be used
in the search for other (near-) natives. Here the aim is the discrimination at relatively high
resolution (RMSD difference between the native and the closest nonnative is around 1 Å) by
pairwise energy potentials. The potential is trained using the experimentally determined na-
tive conformation of only one protein, instead of the usual large survey over many proteins.
The novel feature is that the native structure is compared to a vastly wider and more chal-
lenging array of nonnative structures found not only by the usual threading procedure, but
by wide-ranging local minimization of the potential. Because of this extremely demanding
search, the native is very close to the apparent global minimum of the potential function.
The global minimum property holds up for one other protein having 60% sequence identity,
but its performance on completely dissimilar proteins is of course much weaker.

Key words: protein folding, potential energy function, threading, Boltzmann statistics, global
minimum.

INTRODUCTION

There have been many computational studies related to protein folding that are concerned pri-
marily with the connection between amino acid sequence and three-dimensional structure, rather than

folding kinetics, folding pathways, etc. In these studies the central feature is the potential function that
is supposed to represent the free energy of the protein/solvent system as a function of protein sequence
and conformation. Except for all-atom, explicit solvent molecular dynamics calculations, the potential is
the free energy of the system integrated over solvent degrees of freedom and minor vibrational degrees of
freedom. Of course the potential must also be compatible with the way the polypeptide chain is represented
in the calculations, which may range from isotropically interacting point residues on a square lattice to
polarizable point atoms in continuous three-dimensional Euclidean space.

One way to study the relationship between protein sequence and structure is to begin with some hy-
pothesized potential function suitable to the polypeptide chain representation and a very restricted, often
discrete conformation space. Then the sequences that fold up are those having a unique global minimum
conformation for the given potential function, and that conformation corresponds to the native structure. If
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the conformation space is small enough so that these global optimizations of the potential are feasible, one
can study the consequences of the model (e.g., Yue and Dill, 1995; Deutsch and Kurosky, 1996; Crippen
and Ohkubo, 1998) and try to extend the conclusions to the behavior of real proteins.

The opposite approach is to use experimental evidence about real proteins, primarily their crystal struc-
tures, to construct a potential function that agrees with this evidence in some sense. These studies differ in
the representation of the polypeptide chain, the functional form of the potential, the algorithm for adjusting
the parameters of the potential, the set of sequences under consideration, the types of conformations ex-
amined, and the measures of success employed. It is not surprising there is considerable disagreement and
confusion in the � eld. Ultimately one application of these potentials would be to predict the native struc-
ture of a given sequence. Here we focus on a restricted version of this problem, variously called “3DID,”
“sequence seeks structure,” or “fold recognition.” Namely, given a sequence, the potential function, and
a set of structures that includes the native, the potential should give the lowest/best value for the native
structure, compared to all the other nonnative structures. After all, this is what a real protein does when it
reversibly folds up under thermodynamic control.

Many ways have been proposed to devise potentials for fold recognition. There are comparisons of
those methods (e.g., Godzik et al., 1995; Wang et al., 1995; Park and Levitt, 1996; Park et al., 1997), and
reviews (e.g., Torda, 1997; Vajda et al., 1997; and references therein). Consider the conceptual classi� cation
illustrated schematically in Figure 1, where sequence and conformation are multidimensional, large, but
� nite axes, and the potential function axis is mathematically in� nitely dimensional. Some potentials arise
from general principles observed in protein structures and few adjustable parameters (Huang et al., 1995).
A strictly knowledge-based potential of mean force can be derived from a broad survey of the crystal
structures of many different proteins (Miyazawa and Jernigan, 1985, 1996; Hendlich et al., 1990; Nishikawa
and Matsuo, 1993), as indicated by the bar marked (a). It has been argued that such a method produces
artifacts due to the population of structures surveyed, and it does not reproduce the correct potential in
arti� cial test cases where the potential is known by construction (Thomas and Dill, 1996a). However,
a comprehensive comparison of native and nonnative folds for many folding sequences can reproduce
the correct potential, either by an iterative method (Thomas and Dill, 1996b) or by solving a large set
of inequalities (Crippen, 1996; Maiorov and Crippen, 1992). The space of possible potential functions
is large, and even in these arti� cial test cases that examine all possible sequences and structures, the
potential used in setting up the problem is only one of a diverse set of such functions that can always
favor the native conformation over all nonnatives for every sequence that folds to a unique native structure
(Crippen, 1996).

FIG. 1. A conceptual view of different potentials for fold recognition in terms of the sequences and structures used
for training, and the sorts of potential functions employed.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-000.png&w=216&h=234
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A broadly applicable potential function derived by comparing real protein native and nonnative structures
(Maiorov and Crippen, 1992) relied on generating the nonnatives by threading (Hendlich et al., 1990),
where the ungapped native sequence is applied to a contiguous piece of a larger protein structure. This
is represented in Figure 1 by bar (b) in that it used different structures for training, the functional form
of the potential was different, and the set of native sequences for training was broad but necessarily had
to exclude some proteins that were stabilized by effects outside the scope of the model, such as lipid
membranes or essential prosthetic groups. In that work, the parameters of the potential were adjusted so
as to satisfy a set of linear inequalities, namely, that the value of the potential for the native structure
should be lower than that for the (threaded) nonnative. Other ways of building in fold recognition of native
structures compared to some population of nonnatives include maximizing the Boltzmann probability of
the native conformations (Hao and Scheraga, 1996), maximizing the negative of the harmonic mean of
Z scores (Mirny and Shakhnovich, 1996), maximizing the statistical weight of the natives (Thomas and
Dill, 1996b), or using linear programming to minimize the worst violation of the recognition inequalities
(Akutsu and Tashimo, 1998). Z scores (Bowie et al., 1991) express how many standard deviations the
energy of natives is from the average energy of the nonnatives.

Threading alone, however, may be too loose a condition for training (or checking). Since the structural
templates are all good protein crystal structures, the potential is never asked to differentiate between
good packing vs. steric overlaps, or between left- and right-handed helices. The natives may not have
lower energies than all nonnatives, because the number of conformations to be checked for each native is
limited. Besides, threaded conformations may have relatively high energies, because those conformations
are expected to be stable for their own sequence (and ones with minor mutations) and not necessarily
for the threaded sequence. Potentials trained by threading might give lower energies to nonnatives around
the native conformation (“near-natives”) than the native itself. Levitt and coworkers pointed out these
shortcomings and took a challenging approach; they generated nonnatives around the native by molecular
dynamics (perturbed conformations in Figure 1) and checked whether the native conformation had a lower
energy than the low-energy nonnatives by their potential (Huang et al., 1996). This condition is much
more stringent than threading training, as nonnatives by threading are at relatively high energies (see
Figure 1 in Vendruscolo and Domany [1998]). Levitt and coworkers found their potentials worked well
but not perfectly, and consequently they proved that training by threading only is a rather loose necessary
condition for the recognition problem.

In the same way, it is quite natural to suspect that the threaded conformations may be located on the
slopes of the energy surface and that there are local minima nearby which have a lower energy than the
native. Besides, the native itself may not even be at a local minimum. Therefore, the approach we take
here is: (1) train our potential by threading, (2) generate energy-minimized nonnatives by local energy
minimizations starting from the native and randomly chosen threaded conformations, and then (3) adjust
the parameters of our potential so that the native is at a local minimum and has a lower energy than
the low-energy nonnatives. In other words, the native is apparently at the global minimum. Steps 1–3 are
repeated until eventually we � nd no conformation which has a lower energy than the native. Clearly this is
an extremely laborious process due to the numerous energy minimizations, and at the outset it was not clear
that even our relatively � exible functional form would succeed in always recognizing the native compared
to such exceptionally good nonnatives. Consequently, in this work we concentrated on a wide range of
potential functions and a single native sequence vs. the full panoply of types of nonnative conformations,
symbolized by bar (c) in Figure 1.

This procedure is similar to that of Crippen (1996). Only three things are needed: sequences and
conformations, conformational similarity metric, and potential functions which are linear in the adjustable
parameters. Here we are trying to derive a relatively simple potential energy function which depends on
interaction distance and atom types in a continuous internal coordinate space under the conditions of � xed
bond lengths and angles. The potentials are not based on the quasichemical approximation (Miyazawa
and Jernigan, 1985, 1996), empirical knowledge, or any speci� c assumption, such as setting nonnative
interactions at neutral in the Gō model (Gō, 1983). The only condition we require is that the function should
always give the lowest value to the native conformation so as to � nd it among a zoo of conformations.

We employ pairwise, continuous, and additive functions and then adjust the parameters by the procedure
outlined above. This functional form is based on the assumption that united-atom-level interaction energy
can account for solvation effects. Also, the functions are independent of temperature, assuming normal
laboratory temperatures. Since the conformations we employed are in terms of Ás and Ãs, it is not
convenient to treat disul� de bridges, ligands or multiple polypeptide chains, and we did not include the
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interaction among those. We expect, therefore, the resulting energy function should work well for globular
monomeric proteins without ligands or disul� de bonds at room temperature only. We do not expect the
function will work well for membrane proteins. Because the energy function favors the native over the
nonnatives, one can regard it as an approximation to the free energy, or one can regard such a function as
just a scoring function to � nd the native conformation.

METHODS

Continuous state model

We selected 313 X-ray-determined, monomeric proteins of no longer than 250 residues without big
chain breaks or ligands (Table 1) out of the 25% list of PDB_Select (December 1998 release, Hobohm
and Sander, 1994). To reduce the size of the conformation space, we � tted each of the PDB structures
(Bernstein et al., 1977; Berman et al., 2000) to a standard geometry polypeptide model having all trans
peptide bonds. The � tted model consists of main chain heavy atoms and C¯s (pseudo-C¯ for Gly) with
the standard values of bond lengths and angles (Ramachandran et al., 1974); the (Á; Ã ) values are any real
numbers ranging from ¡ 180:0¯ to 180:0¯. This model is a simpli� ed version of that for ECEPP (Momany
et al., 1975), or a continuous version of the model of Park and Levitt (1995), and is substantially (there
may be minor differences in � xed bond angles and lengths used) identical to the one used by Dill and
coworkers (1997). The average RMSD (Kabsch, 1978) between a PDB structure and the � tted model is
less than 0:5 Å.

Table 1. 313 PDB Entries Chosen from the 25% List of the December 1998 Release of
PDB_Select (Hobohm and Sander, 1994)

119l 153l 1a17 1a1x 1a68 1a6g 1a7i 1aa0 1ab7 1aba
1acp 1acz 1ad2 1ad6 1afp 1ag4 1agg 1ah1 1ah7 1ah9
1ahk 1aho 1aie 1ail 1aj3 1ajj 1akz 1al3 1aly 1amm
1amx 1an8 1aol 1aoo 1aoy 1ap0 1ap8 1apf 1apj 1aqb
1ark 1ash 1asx 1atg 1awd 1awj 1awo 1ax3 1b10 1bak
1bam 1baq 1bc4 1bcn 1bct 1bd8 1bdo 1be1 1bea 1bei
1beo 1bf8 1bfg 1bgf 1bkf 1ble 1bol 1bor 1br0 1brf
1bsn 1btn 1buz 1bv1 1bvh 1bw3 1bxa 1bym 1c25 1c52
1c5a 1cby 1cdb 1cdi 1cex 1cfb 1cfe 1cfh 1chd 1chl
1cid 1ctj 1cto 1cur 1cyo 1cyx 1dad 1ddf 1dec 1def
1dfx 1dhr 1div 1dun 1eal 1eca 1ehs 1erd 1erv 1exg
1fbr 1fna 1fua 1fus 1gky 1gps 1grx 1gvp 1hcd 1hev
1hfc 1hfh 1hlb 1hoe 1hqi 1ido 1ifc 1ife 1irl 1jer
1jli 1jpc 1juk 1jvr 1kbs 1kid 1knb 1kpf 1krt 1ksr
1kte 1kuh 1lba 1lbu 1lcl 1leb 1lit 1lki 1lou 1lrv
1mai 1mak 1mb1 1mbh 1mbj 1mrj 1msc 1msi 1mup 1mut
1mzm 1ngr 1nkl 1nkr 1nls 1noe 1nox 1npk 1nxb 1ocp
1ois 1opd 1opr 1orc 1pce 1pdo 1pex 1pft 1pih 1pkp
1plc 1pne 1poa 1poc 1pou 1ppn 1ppt 1put 1qyp 1ra9
1rcf 1ret 1rie 1rlw 1rmd 1rof 1rpo 1rsy 1sco 1sfe
1sfp 1skz 1spy 1sra 1sro 1std 1svr 1tam 1tbn 1tfb
1tfe 1thv 1tih 1tit 1tiv 1tle 1tpn 1tsg 1tul 1ubi
1ulo 1utg 1uxd 1vcc 1vhh 1vid 1vif 1vig 1vls 1vsd
1vtx 1wab 1whi 1who 1wiu 1wkt 1xnb 1ycc 1yua 1yub
1zaq 1zin 1zug 1zwa 1zxq 2a0b 2abd 2abk 2acy 2adx
2ayh 2baa 2bb8 2bby 2bds 2brz 2cps 2ech 2end 2eng
2erl 2ezh 2ezl 2fdn 2fha 2fn2 2fow 2fsp 2gdm 2hbg
2hfh 2hgf 2hoa 2hp8 2hqi 2i1b 2igd 2ilk 2lbd 2lfb
2mcm 2nef 2new 2pac 2phy 2pii 2pth 2ptl 2pvb 2rgf
2rn2 2sak 2sn3 2sns 2stv 2sxl 2tbd 2tgi 2ucz 2vgh
2vil 3bbg 3chy 3cla 3cyr 3lzt 3nll 3seb 3vub 4mt2
5p21 5pti 7rsa
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Fitting a PDB structure to a continuous-state model

The � tting of PDB structures to the standard-geometry continuous-state model is carried out by mini-
mizing a penalty function, P :

P 5
X

length

.d2
ij ¡ d2

0 /2

1
X

angle

.µij k ¡ µ0/2

1
X

!

.!i ¡ ¼/2 1
X

!
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i

1
X

atom

.ci ¡ ci;PDB/2

(1)

where i; j; k signify any main chain heavy atoms or C¯ of the current conformation. Therefore, dij is the
bond length between any bonded atom pair i and j ; d0 is the standard bond length of the i and j pair
(Schulz and Schirmer, 1979); µij k is the bond angle of any bonded atom triple i-j -k; µ0 is the standard
bond angle of the corresponding atoms; !i is the i-th peptide bond dihedral angle of the conformation; ¼

is set at the standard dihedral angle of ! (trans 5 180¯); ci is the coordinate of atom i; and ci;P DB is the
coordinate of the atom i in the PDB structure. The (coplanar)i term is for the i-th ! dihedral angle:
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­­­­­­­­­

(2)

where xC®
i
, for instance, signi� es the x coordinate of the i-th C® , and so on. The squared coplanar term is

0 when all the four atoms lie in the same plane and increases steeply if any atom among the four deviates
from the plane. The third term forces a cis con� guration to convert to trans, and then the fourth term holds
the ! dihedral angle at exactly 180¯. Any cis-Pro, therefore, is converted to trans-Pro.

The conjugate gradient method (Hestenes, 1980, and references therein) is used to minimize P , starting
from the PDB conformation. The minimization consists of two procedures: after 1,000 steps of minimiza-
tion, the current conformation has a near-standard geometry and near-PDB conformation. Then another
5,000 step minimization is carried out without the last term of P , which allows convergence to an almost
standard geometry conformation. The obtained (Á; Ã ) values are used to build the standard geometry con-
formation. The rebuilt standard geometry conformation and the P -minimized one are substantially identical
(RMSD between the two is around 0:01 Å or less), as P has been minimized to a pretty small value,
namely, on the order of 10 ¡ 5 or less. The average RMSD between a PDB structure and the � tted model
is less than 0:5 Å.

Native and nonnative models

In the current work, the � tted model of ubiquitin (1ubi, 76 residues) is regarded as the native, and we
used threaded conformations from all the other models (Table 1) plus 7,000 randomized ones from 1ubi
as follows:

(a) 36,646 threaded conformations of 313 � tted models concatenated in alphabetical order of the PDB
identi� ers;

(b) 1,000 conformations of the � tted 1ubi whose (Á; Ã ) pair at one randomly chosen residue is changed
to an existing pair randomly chosen among 313 � tted models;

(c) same as in (b), except two (Á; Ã ) pairs are randomized;
(d) same as in (b), except � ve pairs are randomized;
(e) same as in (b), except ten pairs are randomized;
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(f) same as in (b), except twenty pairs are randomized;
(g) same as in (b), except all pairs are randomized;
(h) same as in (g), except all pairs are randomly perturbed within a range of §10¯.

The randomized nonnatives (b)–(d) tend to keep local native conformations, but do not hold global
native topology. On the other hand, the perturbed nonnatives (h) tend to hold global native topology, but
not local native conformations. The nonnatives (e) and (f) are intermediate. Nonnatives (a) and (g) keep
neither global nor local native conformation. Also, nonnatives in those two categories tend to be totally
dissimilar to the native, while (h) tend to be near-natives. The prepared nonnatives cover various kinds of
conformations and a wide range of conformational similarity to the native. These nonnatives are used as
starting points to get energy-minimized nonnatives (see Quadratic Programming for Parameter Adjustment
Section).

Potential function

We employ a pairwise type potential energy function as an energy function which can select the native
conformation of a given sequence out of an assortment of conformations. The functions are atom-type
and atom-distance dependent, and each is expressed as a linear combination of chosen basis functions.
The total energy of a conformation, E, is the sum of the energies of any 1–4 or further atom pair, whose
distance will change when the dihedral angle is changed:

E 5
X

ji ¡ j j¶4

eti tj .rij /

5
X

ji ¡ j j¶4

3X

l5 0

xlti tj bl.rij /

(3)

where eti tj .rij / is the interaction between atoms i and j at a distance of rij . ti and tj signify the atom
types of i and j , respectively. We have tried various sets of basis functions, bl.rij /, and in this paper,

bl 5

(
..rij ¡ a/2 ¡ b2/2=b4 for a ¡ b µ rij µ a 1 b

0 otherwise
(4)

is used with a 5 0:0; b 5 4:0 for b0; a 5 4:0; b 5 4:0 for b1; a 5 6:0; b 5 4:0 for b2; a 5 8:0; b 5 4:0 for
b3. bl.rij /s reach 1.0 when rij 5 a, and 0.0 when rij 5 a § b (Figure 2). The coef� cients for b0; fx0ti tj

g,
are � xed at 10.0, while the others, fx1ti tj

g; fx2ti tj
g, and fx3ti tj

g, are to be adjusted between ¡ 10.0 and 10.0,
in order to obtain the native-discriminative energy function. That restricts each eti tj .rij / within a possible
range of ¡ 21.25 to 21.25 and forces them to gradually reach zero at long distances, making the potential
surface simple and smooth:

¡ 21:25 µ eti tj .rij / µ 21:25

eti tj .0:0/ 5 10:0

@

@rij
eti tj .rij /

­­­­
rij 5 12:0

5 eti tj .12:0/ 5 0:0

(5)

Number of parameters

As described above, there are three adjustable parameters for each atom type pair: x1ti tj ; x2ti tj , and x3ti tj .
Since the number of atom types is nineteen (main chain heavy atoms and C¯s with their residue types,
but V/L/I, S/T, D/E, and N/Q are grouped into the same type, respectively), there are 190 combinations of
atom types. The total number of the adjustable parameters, therefore, is 3 £ 190 5 570.
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FIG. 2. The basis functions used: b0.rij /; b1.rij /; b2.rij /, and b3.rij / from left to right.

Constraints

The requirement that each nonnative should have a higher energy than the native can be described as a
set of inequalities:

1E 5 Enonnat ¡ Enat > g;

g 5

(
0:3 if 0:3 µ ½

½ if 0:1 < ½ < 0:3

(6)

where Enat and Enonnat signify the energy of the native and that of a nonnative, respectively. The quantity ½

is a size-independent metric of conformational similarity (Maiorov and Crippen, 1995) between the native
and nonnative; ½ equals 0 if two conformations are identical, and ½ reaches 2 when two conformations are
totally dissimilar ( ¹ 1.8 in the case of a chain of equally spaced particles, such as these protein models).
The quantity ½ is about one tenth of RMSD in case of 1ubi. The proportionality between g and ½ is set
for smaller ½ so that the requirement is not too strict for “neighbor” nonnatives. Ordinarily, if ½ is less
than 0.3, the nonnative keeps the native’s topology. As Vendruscolo and Domany (1998) point out, the
conformations by threading tend to score a relatively high energy as they may not be located at the local
minima of the energy surface, although threading itself serves as a good source of nonnative conformations.
The inequality here, therefore, is generated not only for the nonnatives (a) through (h) but also for energy-
minimized conformations using the current potential during training (see next section for details). Any
conformation with ½ of less than 0.1 is excluded from generating an inequality, as the conformation is
very close to the native and it can be regarded as one of the “natives.”

Quadratic programming for parameter adjustment

The adjustable parameters, fx1ti tj
g, are determined by quadratic programming (for reference, see Bazaraa

et al. [1993]). Quadratic programming is a method to optimize (either minimize or maximize) a quadratic
objective function subject to a set of linear equality and/or inequality constraints. A typical quadratic
programming problem is:

Minimize
1

2
xtQx 1 ctx

subject to Ax ¶ b
(7)

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-001.png&w=291&h=224


370 OHKUBO AND CRIPPEN

where c and x are n dimensional column vectors, Q is an n £ n symmetric matrix, A is an m £ n matrix,
and b an m dimensional column vector. The domain S 5 fx 2 Rn j Ax ¶ bg is called the feasible region of
this quadratic program. Quadratic programming � nds the unique, optimal solution, the x 2 S which gives
the minimum value of 1

2 xtQx 1 ctx. If S 5 ¬, the program is called infeasible and there is no solution to
the program.

We determine fxlti tj
g by quadratic programming with a simple, suitable objective function (Q 5 I;

c 5 0),

Minimize
X

all x

x2
lti tj

(8)

subject to the constraints described in the previous section. The objective function has equal weight on
each parameter and tries to keep the parameters as small as possible without in� uencing their sign; there
is no a priori condition such as that a speci� c eti tj .rij / should be attractive or repulsive. The size and sign
of the resulting parameters are thoroughly dependent on the nonnatives generated.

Since the number of nonnatives is huge, the whole set of inequalities cannot be included all at once.
After a certain number of violated inequalities of the current parameters (or solution) are found, the system
is solved to obtain a new set of parameters. Only inequalities with small slack (i.e., the distance between
the point of the current solution and the hyperplane of the inequality in the parameter space) are kept for
the next cycle. For each cycle, we carry out several energy minimizations starting with a randomly chosen
nonnative or the native until it converges; after every 200 steps, the inequality of the current conformation
is added to the system if it is violated. The minimizations are done in the continuous state conformation
space, or in terms of Ás and Ãs. This is repeated until the current solution reaches a real solution (i.e., not
a single violated inequality is found). Please note that here the potential function itself is not the objective
to be optimized. The method is employed to � nd one of the solutions, fxlti tj

g, in the feasible region, and
the only requirement on the system is that each nonnative should have a higher energy than the native, as
described in the previous section.

RESULTS

After around 3,000 minimization trials, we have successfully determined the parameters for 1ubi (Fig-
ure 3) for the threaded, randomized, and perturbed (t/r/p) nonnative conformations (Figure 4), and the

FIG. 3. The eti tj .rij / trained for 1ubi.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-002.png&w=318&h=230
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FIG. 4. The distribution of 1ubi’s nonnatives (t/r/p) in 1E and ½ . The average of 1E is 1132:9 § 344:8, that of ½

is 1:27 § 0:24, the correlation between them is ¡ 0.100.

energy-minimized ones (minE, Figure 5), too. Since conformation space has many dimensions and the
least upper bound on j@E=@Áj is large, it is not feasible to prove that the energy of the native is truly at
the global minimum, but no inequalities of t/r/p conformations are violated by the parameters obtained,
and so far we have found no minE conformation of negative 1E .5 Enonnat ¡ Enat /. On the other hand,
the potential trained for t/r/p nonnatives only (Figures 6 and 7) does not work well. All the minE nonna-
tives have large negative 1E (Figure 7). The energy minimization starting from the native converges to
a conformation (or minE native) far away from the native (½ to the native is 0.400). Apparently, by the
t/r/p-trained potential the native is not even at a local minimum, let alone at the global minimum.

FIG. 5. The distribution of 1ubi’s nonnatives (minE) in 1E and ½ . The average of 1E is 256:5 § 92:6, that of ½

is 1:27 § 0:25, the correlation between them is 0.477.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-003.png&w=335&h=228
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FIG. 6. The distribution of 1ubi’s nonnatives (t/r/p) in 1E and ½ , by a potential trained for t/r/p nonnatives only.
The average of 1E is 379:9 § 303:4, that of ½ is 1:27 § 0:24, and the correlation between them is ¡ 0.151.

Several minimizations were observed to converge from a fairly different conformation (½ to the native
was around 0.5) to the native. It will be interesting to compare the radius of convergence for the native
and those for the nonnative minima to test the hypothesis of Shortle et al. (1998) on this continuous state
model, namely that the native minimum is broader than nonnative minima.

The parameters obtained were applied to another protein, 1bt0, which is not listed in Table 1, having
62% sequence identity, the same types of residues, and 0:7 Å RMSD to 1ubi. There are no t/r/p nonnatives
having negative 1E (Figure 8). Some minE nonnatives have negative but small 1E (Figure 9). The rest
have large negative 1E, yet all of them have higher energies than the minE native, which is so similar

FIG. 7. The distribution of 1ubi’s nonnatives (minE) in 1E and ½, by a potential trained for t/r/p nonnatives only.
The average of 1E is ¡ 339:7 § 57:0, that of ½ is 1:24 § 0:22, and the correlation between them is ¡ 0.424.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-005.png&w=331&h=228
http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-006.png&w=333&h=226
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FIG. 8. The distribution of 1bt0’s nonnatives (t/r/p) in 1E and ½. The average of 1E is 767:6 § 320:3, that of ½

is 1:27 § 0:24, and the correlation between them is ¡ 0.013.

to the native (½ 5 0:129) as to be regarded as one of the natives (although the ½ slightly violates the set
tolerance for being one of the natives, 0.10; see Constraints section). So the native 1bt0 is not exactly at,
but is close to, a local minimum. Besides, this local minimum seems to be the global minimum. Thus, the
parameters adjusted for 1ubi are also good for another similar protein, 1bt0.

There is a possibility, however, that the potentials obtained are over� tted to 1ubi and that the potential
does not show general properties of protein structures anymore. To check for over� tting, we carried out
a simple test. The potential was applied to � fteen residue, right- and left-handed helices (Table 2). The
standard geometry conformations are generated using dihedral angles of (¡ 64, ¡ 40) for the right-handed,

FIG. 9. The distribution of 1bt0’s nonnatives (minE) in 1E and ½ . The average of 1E is 177:1 § 110:6, that of ½

is 1:26 § 0:23, the correlation between them is 0.319.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-007.png&w=331&h=228
http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-008.png&w=325&h=224
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Table 2. The Energies of 15 Residue, Right- and Left-Handed
Helices. E and min E are the Energy Before and After

Minimization, Respectively. The Sequence of
polyLS is LLSSLLSLLSSLLSL

min

polyA r-handed ¡ 110.0 ¡ 118.3 0.110
l-h ¡ 56.0 ¡ 106.3 0.570

polyS r-h ¡ 314.5 ¡ 323.9 0.019
l-h ¡ 252.1 ¡ 277.2 0.131

polyLS r-h ¡ 212.6 ¡ 232.1 0.041
l-h ¡ 151.4 ¡ 178.2 0.239

and (64, 40) for the left-handed. The energies are calculated before and after the energy minimization
of each helix. In all cases, the right-handed have a lower energy both before and after minimization and
smaller conformational change than the left-handed. Thus, the potential obtained gives greater stability
to the right-handed helices than to the left-handed, as it should. While this result is certainly not revolu-
tionary, it is actually not a trivial feature of potential functions. The balance between the two helices is
actually a � ne difference in sidechain-sidechain and sidechain-backbone distances between residues that
are represented in enough detail to have the correct chirality. This has been learned over the course of
numerous conformational comparisons which were never speci� cally aimed at this distinction. If the train-
ing is carried out with only threaded nonnatives, all training helices are right-handed and the resulting
potential does not clearly favor either form. In fact, neither the right- nor the left-handed helix is near a
local minimum of that potential (data not shown).

Even though the potential has been trained with unprecedented rigor over a great range of nonnative
conformations, only a single native sequence was used. Naturally, we were curious to see whether it would
behave at all reasonably for unrelated sequences. We selected eight proteins without chain breaks, disul� de
bonds, or ligands from Table 1 and checked their energies and ranks among t/r/p conformations (Table 3).
None is ranked � rst, and while all at least have (favorable) negative Z-scores, some are not very impressive.
One problem is that ubiquitin has no Cys or Trp residues (nor does 1bt0), so all such interactions in the
potential have only a repulsive core at short distances (b0) and are otherwise zero at longer distances (see
Discussion section). Out of this test set, only 1div and 1bv1 also lack Cys and Trp; all those having native
Z-scores greater than ¡ 0.5 contain such residues. It is obvious that the potential should be trained for a
set of proteins to be more generic.

Table 3. The Energies and Z-Scores of the Natives and Conformations
Ranked First by the Potential Function Trained for 1ubi

Rank-1 conformation Native

PDB code Residues Class 1Ea Z-score Z-score Rankb

1ifc 131 ¯ ¡ 191.56 ¡ 1.64 ¡ 1.50 129
2end 137 ® ¡ 265.08 ¡ 1.70 ¡ 1.29 255
1div 149 ® 1 ¯ ¡ 366.47 ¡ 1.55 ¡ 1.05 1,439
2i1b 153 ¯ ¡ 963.01 ¡ 1.68 ¡ 0.53 14,597
1bv1 159 ® 1 ¯ ¡ 447.83 ¡ 1.70 ¡ 1.19 517
119l 162 ® 1 ¯ ¡ 473.81 ¡ 1.52 ¡ 1.01 1,426
1amm 174 ¯ ¡ 875.50 ¡ 1.57 ¡ 0.74 7,520
1akz 223 ®=¯ ¡ 974.80 ¡ 1.49 ¡ 0.82 6,361

a1E 5 E ¡ Enat .
bThere are approximately 43,000 total t/r/p nonnative conformations in each case.
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DISCUSSION

Model

We � tted PDB structures to continuous state models. The � tting was needed because the rebuilt confor-
mation would be fairly, or sometimes very, different from the PDB structure if we simply used the values
of Ás and Ãs in the PDB structure. Moderate deviation of !s from 180¯ and/or cis-Pro in the middle of a
chain mainly contribute to the difference. The deviations in other bond angles and lengths do to a certain
degree, too. Minimizing a penalty function P is a simple and complete way to solve this problem.

It should be noted that there are numerous continuous state models (or sets of dihedral angles) whose
½ to the original PDB structure is small. The � tting method will � nd just one of them that may not be
of the smallest possible ½ to a given PDB structure, just as the discrete state method of Park and Levitt
(1995) does. Different models of small ½ can be obtained by, for instance, assigning different weights to
terms in the penalty function P . However, those models are all very close to each other and to the PDB
structure. The model used here, therefore, can be safely used as the representative of the original structure
in the continuous space. The difference in ½, and hence RMSD, between the native model and the PDB
structure is small compared to the resolution of the PDB, which is ordinarily larger than 1 Å.

For the same reason, it is allowable to switch the native model during the training to an energy-minimized
one, if it is also one of the “natives.” It is often the case that energy minimization starting from the native
converges quickly to a slightly different conformation. In this case, we replace the initial native by the
energy-minimized, so as to complete the training quickly.

As the native, 1ubi was chosen in this study. Among 313 proteins used, this protein is the smallest
compact one without chain breaks, disul� de bonds, or ligands. This condition is necessary for the native,
because our simpli� ed model cannot describe the existence of these, and our simple form of potential does
not have the term of the energies for disul� de bridges or the interactions between proteins and ligands; for
nonnatives, it matters but not so much as for the native. We selected the smallest for the native simply to
save computation time. We used the same standard (except regarding the size) to choose the test proteins
for Table 3.

Potential function

We have shown that a pairwise-type potential function can identify the native conformation as the
(near-)global minimum compared to other nonnatives, including energy-minimized ones. Although our
potential is not optimized to maximize the energy gaps between the native and others (e.g., Mirny and
Shakhnovich, 1996; Klimov and Thirumalai, 1998), and therefore the Z-scores are not large ( ¡ 3.29 in Fig-
ures 4 and 5 combined; ¡ 2.40 in Figures 8 and 9 combined), the native has a lower energy than other local
minima.

We used gaplessly threaded, randomized, and perturbed (or t/r/p) conformations as starting points of
energy minimization in order to obtain low-energy nonnatives. We did not use gapped threading (e.g.,
Bryant and Lawrence, 1993; Lathrop and Smith, 1996; Akutsu and Tashimo, 1998; Crawford, 1999).
Conformations by gapped threading are expected to have a lower energy than ones by gapless threading,
but still there is no guarantee that they are at local minima. While (gapless-)t/r/p/ nonnatives distribute
widely along 1E (on the order of thousands) and have small correlation between 1E and ½ (Figures 4
and 8), minE nonnatives starting from (gapless-)t/r/p distribute along 1E on the order of hundreds and
have high correlation between 1E and ½, covering a wide range of conformation space (Figures 5 and
9). This suggests that, although the energy surface is rugged, its local minima are somewhat bounded. We
would be surprised, therefore, if minE nonnatives from gapped-threaded conformations have much lower
1E than other minE nonnatives.

Vendruscolo and Domany (1998) showed that pairwise contact potentials for contact maps were unable
to assign to all the nonnatives a higher energy than that of the native. Domany and coworkers supported that
even in a case where a contact energy is a good approximation of the real one, by using a Lennard-Jones
“true” potential and its approximation (Clementi et al., 1999). The conformational model and potentials
used by them are all-or-none or not fully distance dependent (only the amplitudes of preset distance-
dependent energy terms can be changed), while those used here are distance dependent (each eti tj .rij / can
be in various forms, attractive or repulsive). Although differences in their models and ours preclude a
direct comparison, our results are opposite to theirs, i.e., a trained potential function can assign the native
to the lowest energy.
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The potential function also does well for another protein, 1bt0; the minE native is close to the native and
has a lower energy than minE nonnatives. Moving further away from the training sequence, 1ubi produces
much more modest results, as shown in Table 3. This is a common problem with empirical potentials,
whether they are trained over a narrow range of sequences and a broad � eld of structures (Figure 1, bar
(c)), or over a broad selection of sequences and a restricted collection of structures (Figure 1, bar (a)).
For example, the simple hydrophobic potential of Huang et al. (1996) works well for many sequences
challenged by threaded nonnative structures, but it fails speci� cally on ubiquitin (1ubq, which is extremely
similar to 1ubi) when tested on perturbed structures generated by molecular dynamics.

Training method and energy surface

As described in the previous section, the energy surface by the potential trained by our method is more
or less bottom-bounded (Figure 10a). On the other hand, the energy surface by a potential trained only
by threading may be rather top-bounded (Figure 10b) or neither (Figure 10c), as, once again, threaded
conformations tend to be away from local minima; the trained potential does not satisfy the essential
requirement that the native should have a lower energy than nonnatives. In our settings, the t/r/p-trained
potential seems bottom bounded (Figures 6 and 7), but we suspect this tendency is smaller when the
t-trained potential (not trained for the randomized or perturbed conformations) is used (data not shown).

The bottom-bounded tendency along with high correlation between 1E and ½ (or any conformational
similarity metric) is a desirable feature for conformational search. A search strategy focusing on the local
minima (e.g., the CGU method by Dill and coworkers [1997]) should work well on an energy surface with

FIG. 10. The schematic diagrams of the energy surface. The bars signify the native or nonnatives used for potential
training. The curves represent the energy surface: (a) a bottom-bounded energy surface, (b) a top-bounded energy
surface, (c) a neither top- nor bottom-bounded, just rugged energy surface.

http://www.liebertonline.com/action/showImage?doi=10.1089/106652700750050835&iName=master.img-012.png&w=280&h=361
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such a feature. It is clear from Figures 4 and 5 that the energy surface by our trained potential is an instance
of such an energy surface, and that the one obtained from threading is not. Monte Carlo conformation
search is currently under way where each step is followed by energy minimization in order to hop among
local minima.

Drawbacks and conclusion

There are some limitations or inconveniences to this approach. Some potential energies in Figure 3,
especially repulsive ones, have peculiar shapes. This is a result of the choice of basis functions. It is
dif� cult to � nd a small number of basis functions which are orthogonal in the interaction range, can
span a wide range of rij , and yet in any linear combination have positive values at short distances and
gradually reach zero at long distances. This condition would be fairly easily realized if a large number
of basis functions were employed, but with an even larger number of adjustable parameters, fxlti tj

g, and
increased risk of over� tting. We have tried several basis function sets, and the one in this paper, although
not mutually orthogonal, works best so far.

As described in the Methods Section, quadratic programming � nds the unique point in the feasible
region. There is no guarantee, however, that the solution obtained is the best (or a good enough) one
unless the size of the feasible region is well restricted and small enough so that any point in the feasible
region can be a good solution. The objective function

P
all x x2

lti tj
itself does not have any physical meaning

and is not a speci� c constraint on any particular atom pair’s interaction. We need enough constraints (or
inequalities) for each atom pair to avoid loose conditioning and then we need a particular solution.

Some eti tj .rij / are untrained if the atom pairs of ti and tj do not exist in the native. Since those eti tj .rij /

have no constraints, quadratic programming automatically sets their parameters x1ti tj ; x2ti tj , and x3ti tj at 0
to minimize the objective function. So those eti tj .rij /’s are determined, but not trained, and may not work
well. It is natural and not surprising that the eti tj .rij /s trained for 1ubi works well for a similar protein, 1bt0,
but not for larger, unrelated proteins which have numerous ti tj pairs not present in 1ubi. The parameters,
therefore, should be adjusted for a couple of proteins to make the potential function more generic. For
that purpose, it seems important to � nd the smallest set of proteins with which any (or some speci� c)
potential function trained can work well for the largest possible number of other proteins. It seems the
current potential can be better and more easily trained (i.e., so that the minE native 5 the native) by adding
some constraint inequalities, without changing the general property of the current potential or resulting in
an infeasible system. It may be not so dif� cult to train for a couple of extra proteins, too. Training for
a different protein, training for multiple proteins, and comparison of those potentials are currently being
carried out in order to check for feasibility and over� t.

The successful determination of the parameters suggests that the continuous state model and potential
functions used here can be used as a realistic yet simple model of proteins. Our settings might be a little
too relaxed. For example, the functions do not have constraints among “natives,” since nonnatives with ½ of
less than 0.1 from the native are regarded as natives and are excluded from the inequality set. Although our
minimization data show that the 1E’s of those natives are small positive values and satisfy the condition
on 1E automatically, there still is a possibility that some natives have large, positive (or even negative)
1E. We are testing an additional condition that 1E’s among natives be minimized.

In summary, we have shown a new way to obtain realistic yet simple protein potential energy functions
in a continuous conformational space, which is neither Boltzmann nor knowledge based. The potential
obtained satis� es our condition; the potential so far does not ensure that many native proteins have lower
energies than a relatively small number of nonnatives. Instead, the potential guarantees that the native
conformation for one sequence has a lower energy than (almost) all the nonnatives, including low-energy
nonnatives all over the conformation space, and seems to work in the same way for another protein, too.
Besides, there seems room to train the potential for multiple proteins. Training for multiple proteins is
currently underway.
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