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No Apparent Damage in the Thyroid of Transgenic Mice
Expressing Antiapoptotic FLIP

Su He Wang, Patricia Arscott, Peiging Wu, and James R. Baker, Jr.

FLIP is an antiapoptotic protein that has been demonstrated to play an important role in inflammation, cancer,
and autoimmune diseases. However, it is not known whether increased expression of FLIP (FLICE inhibitory
protein) in thyrocytes would alter the development of the thyroid and/or pathogenesis of thyroiditis. To ex-
amine the effects of overexpression of this antiapoptotic molecule on the thyroid, we have developed trans-
genic mouse lines that specifically express FLIP in thyrocytes. A DNA construct designed with an in-frame cod-
ing sequence for the E8 protein, a viral FLIP, was put under the control of the thyroglobulin (Tg) promoter (the
Tg-FLIP transgene). In 8 of 12 resultant transgenic mouse lines, FLIP expression in thyrocytes driven by the Tg
promoter was documented, and confirmed at RNA and protein levels. These Tg-FLIP transgenic mice were
monitored for 1 year. Throughout the entire observation period, the transgenic mice remained alive and healthy
without evidence of thyroid dysfunction. Adult mice were able to breed. Histologic examination of thyroids
obtained at various time points did not reveal significant differences between transgenic mice and their con-
trol littermates. Therefore, transgenic mice with thyrocyte-specific expression of FLIP have normal thyroid de-
velopment with no significant changes in thyroid cell death or proliferation.

Introduction diseases, including rheumatoid arthritis and experimental au-
toimmune thyroiditis (5-9). A study by Wei et al. (8) demon-
ISRUPTION OF THE NORMAL REGULATION of cell death path- ~ strated that the upregulation of FLIP by inflammatory cells
ways has been implicated in a number of pathologic ~blocks Fas-mediated apoptosis, contributing to chronic in-
conditions such as autoimmunity and cancer. There is in- flammation. In contrast, increased FLIP expression by thyro-
creasing evidence showing that signal transduction through  cytes in resolving granulomatous experimental autoimmune
death receptors, such as Fas or TRAIL, contributes to the de-  thyroiditis (G-EAT) protects thyrocytes from apoptosis. This
velopment of autoimmune thyroiditis. Recent studies have study further suggests that increased FLIP and decreased Fas
attempted to define the regulation of receptor-mediated cell ~ligand expression by inflammatory cells might block apopto-
death pathways in both normal and diseased thyroid in vitro; ~ sis of CD4* T cells, resulting in chronic granulomatous thy-
however the function of these pathways in vivo is more com-  roiditis (9). Overexpression of FLIP has also been found to ex-
plex. acerbate experimental autoimmune encephalomyelitis and
Thyroid cells are known to express Fas (1), but the ex- multiple sclerosis (10-13). This suggests an important im-
pression of Fas does not necessarily render thyrocytes sus- munoregulatory role for FLIP in autoimmunity.
ceptible to Fas ligand-induced apoptosis because of the To determine whether the overexpression of FLIP in thy-
existence of certain cellular inhibitors (2). One of these reg- rocytes would have any impact on thyroid development or
ulators of death receptor-mediated apoptosis is FLIP (FLICE  the pathogenesis of thyroid diseases, we developed trans-
inhibitory protein) (3,4). Cross-linking of Fas ligand induces ~ genic mice that specifically expressed FLIP in the thyroid.
apoptosis through procaspase-8 recruitment to the Fas-me-  This was accomplished by a transgene in which the promoter
diated death-inducing signaling complex (DISC), where pro-  for thyroglobulin (Tg), a thyroid-specific protein, drove the
caspase-8 is then cleaved to initiate apoptosis. The recruit- expression of the E8 protein, a viral FLIP. The expression of
ment of the caspase-8 inhibitor FLIP into the DISC prevents E8 has been shown to block apoptosis induced through sev-
the cleavage of procaspase-8, resulting in reduced apoptotic ~ eral death domain-containing receptors, including TNF-R,
activity (3,4). Fas, and TRAIL receptors (14,15). In this report we describe
There are several publications indicating that altered FLIP  the construction of this transgene and the initial characteri-
concentrations are found in inflammation and autoimmune zation of Tg-FLIP transgenic mice.
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Materials and Methods
The transgene construct

The plasmid Tg-FLIP-myc was constructed from a CMV-
FLIP plasmid containing a 519-bp insert of the viral FLIP in
pCDNA3.1(-)/Myc-HisA (16) as a generous gift from Dr.
Claudius Vincenz (University of Michigan, Ann Arbor, MI).
The rat Tg promoter region (17) was generated by poly-
merase chain reaction (PCR) from rat tail DNA to include
Xbal and Xhol restriction enzyme sites: the 5 primer: 5'-
ATATAC TTATCT AGACTG CAGACA AGCAGG CATGC-
3" and the 3’ primer: 5-TTAACT ATACTC GAGTAC
TCAAAT GATGGG GTAGGA G-3'. The resulting 889-bp
PCR product was cut with Xbal and Xhol to create an 869-
bp insert. The insert was then purified and cloned in-frame
at the 5" end of the open reading frame of the FLIP sequence
in CMV-FLIP. The distance between the start of the TATA
box and the start of transcription (+1) is 30 bp, and between
+1 and the ATG of FLIP is 39 bp. Both intervals are the same
distances as those in the natural rat Tg gene (Fig. 1). The cor-
rect sequence of the Tg promoter and its insertion site were
verified with DNA sequencing by the Core Facility at the
University of Michigan.

Transgenic mice and breeding

To generate Tg-FLIP transgenic mice, the plasmid Tg-FLIP
was digested with Xbal and Dralll to create a 2014-bp frag-
ment of transgene, which was gel purified for microinjection
(Fig. 1). Microinjection of the Tg-FLIP transgene into eggs
from (C57BL/6 X SJL)F; X (C57BL/6 X SJL)F; females was
performed by the University of Michigan Transgenic Ani-
mal Core. Of 81 resultant pups, 12 were identified as posi-
tive for Tg-FLIP by PCR (described below). These founder
lines were housed in SPF facilities at the University of Michi-
gan and maintained according to UCUCA protocols. Trans-
gene positive mice are currently being crossed into a CBA /]
(Jackson Laboratory, Bar Harbor, ME) background for use in
mouse models of thyroiditis. Tg-FLIP-positive and Tg-
FLIP-negative mice produced from these crosses were used
to characterize expression of the transgene further in these
lines.

PCR screening

DNA for transgene screening was performed on tail bi-
opsies of 3-week-old mice. Tail sections were digested
overnight with proteinase K, and DNA was then extracted
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with phenol and chloroform followed by precipitation with
ethanol and reconstitution in 200 uL of TE buffer. DNA sam-
ples from transgenic mice were screened for the presence of
the Tg-FLIP transgene by PCR using primers that amplify a
1285bp sequence between position —660 in the Tg promoter
and the myc tag (Fig. 1): TGP1: 5-ATATTC TTGCCA
CTTCCT GCCC-3" and TGP4: 5'-ATGGTC GACGGC GC-
TATT CAG-3'. Two microliters of tail DNA were used in a
PCR reaction with 1X Amplitaq buffer containing 1.5 mM
MgCl,, 0.2 mM dNTPs, 0.3 mM each primer, and 2.5 units
Amplitaqg DNA polymerase in a volume of 50 uL. PCR was
performed using a Perkin-Elmer 2400 thermocycler with the
following program: 94°C for 5 minutes; first 10 cycles of de-
naturation at 94°C for 30 seconds, annealing at 64°C for 30
seconds, and extension at 72°C for 90 seconds; then 25 sim-
ilar cycles with an extension time of 120 seconds; followed
by 72°C for 7 minutes and finishing at 4°C. PCR reaction
products were analyzed by electrophoresis on 1.5% agarose
gel. DNA quality was confirmed using primers for rat 3-actin
or mouse B-globin: B-actin forward: 5'-CACGGC ATTGTA
ACCAAC TG-3', B-actin reverse: 5'-TCTCAG CTGTGG TG-
GTGA AG-3', B-globin 1: 5'-CCAATC TGCTCA CACAGG
ATAGAG AGGGCA GG-3', and B-globin 2: 5'-CCTTGA
GGCTGT CCAAGT GATTCA GGCCAT CG-3'. PCR for B-
actin yielded a 402-bp product that was obtained using the
same protocol as PCR using the Tg-FLIP primers except for
annealing at 62°C and extension times of 75 seconds in the
first 10 cycles followed by 90 seconds during the final 25 cy-
cles. PCR for B-globin yielded a 494-bp fragment and was
run at 94°C for 5 minutes, 35 cycles of 94°C for 30 seconds,
62°C for 30 seconds, and 72°C for 90 seconds. This was fol-
lowed by 72°C for 7 minutes and the process was finishing
at 4°C.

Southern blot

Ten micrograms of tail DNA of transgenic mice was di-
gested with 30 units of Sall for 6 hours at 37°C. Tail DNA of
negative mouse and tail DNA of negative mouse spiked with
100 copies of the transgene Tg-FLIP plasmid were also in-
cluded as controls. Digested DNA was run on a 0.8%
agarose/0.5X TBE gel overnight at 25 mA. Before transfer,
the DNA in the gel was denatured with 0.5 M NaOH/1.5 M
NaCl for 1 hour and neutralized with two changes of 3 M
NaCl/0.5 M Tris, pH 7.5 for 45 minutes. DNA was trans-
ferred to nitrocellulose membrane by upward capillary elec-
trophoresis in 10X SSC buffer overnight. After overnight
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FIG.1. Schematic diagram of the Tg-FLIP plasmid. The Tg-FLIP transgene in pCDNA3.1(-)/Myc-HisA is depicted show-
ing the relative positions of the rat thyroglobulin (Tg) promoter, the FLIP sequence including the tag sequences for a c-myc
peptide and a 6 histidine peptide. Restriction enzyme sites (Xbal and Dralll) used for constructing the transgene as well as
those used for Southern blot are shown. The relative positions for annealing of polymerase chain reaction (PCR) primers

(TGP1, TGP4 and E8 forward) are also shown.
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transfer, the membrane was rinsed with 2X SSC. DNA was
cross-linked to the membrane using a Stratalinker (Strata-
gene, La Jolla, CA) at 120,000 uJ/cm?.

Southern blotting was conducted by first incubating the
membrane with 1X prehybridization solution (6X SSC, 10X
Denhardt’s, 0.1% sodium dodecyl sulfate [SDS], 0.5 ug/mL
salmon sperm DNA) in a roller bottle for 30 minutes at 65°C.
Tg-FLIP plasmid digested with Xbal and Dralll was gel pu-
rified for use as a probe. Twenty-five nanograms of probe
was labeled with [—y32P]dATP using a Random Primers
DNA Labeling System (Invitrogen Life Technologies, (Carls-
bad, CA) according to the manufacturer’s instructions. The
labeled probe was purified using G-50 Sephadex Quick Spin
Columns (Roche, Alameda, CA) for radiolabeled DNA pu-
rification following manufacturer’s instructions. The probe
was added to 20 mL 1X prehybridization solution and boiled
for 5 minutes. The prehybridization solution was replaced
with the boiled probe solution and incubated overnight at
65°C. This solution was then removed and the blot washed
3 times in 6 X SSC for 10 minutes at 65°C, followed by a wash
with 2X §5C/0.5% SDS for 10 minutes at 65°C. Bands were
visualized by exposing the blot to x-ray film.

Thyroid recovery and morphologic evaluation

Transgene-positive and transgene-negative mice were hu-
manely sacrificed by an overdose of anesthetic using a pro-
tocol approved by our animal use committee. The thyroids
from these animals were then dissected and the tissue used
in subsequent analyses. For histology, the thyroid glands
were removed with part of the trachea still attached. For
cryosections tissue was snap-frozen in OCT (Sakura, Finetek,
USA, Inc., Torrance, CA) on dry ice, and stored at —70°C.
For paraffin-embedded sections tissue was fixed in 10%
buffered formalin (Fisher, Middletown, VA). Sections were
cut to 5 um and stained with hematoxylin and eosin (H&E)
to examine thyroid structure. For analysis of RNA and pro-
teins, the thyroid glands were separated from the trachea
and removed.

RNA isolation and RT-PCR

Mouse thyroid tissue was added directly to TriZol (Invit-
rogen Life Technologies), then stored at —70°C. Excised thy-
roid tissue equaled approximately 1-3 mg in weight, so when
necessary thyroids from DNA-positive or DNA-negative lit-
termates were combined to provide adequate amounts of
RNA for analysis. Small pieces of 7-12 mg of liver tissue or
submandibular gland were also collected as control tissue
and RNA was isolated in a similar manner. To obtain RNA,
the tissue was thawed and homogenized using a micropes-
tle, then RNA isolation was completed according to the ven-
dor’s protocol. One microgram of RNA was used in a re-
verse transcription (RT) reaction with 12.5 ng/uL oligo
(dT)1g primer in 1X first strand buffer, 10 mM DTT, 0.5 mM
dNTPs, 0.5 U/ uL RNase inhibitor (Roche), and with or with-
out 10 U/ uL Superscript II reverse transcriptase (Gibco Life
Technologies, Gaithersburg, MD) for 1 hour at 42°C. A du-
plicate reaction without RT was also run as a negative con-
trol. Two microliters of each RT or no RT sample was then
used in a PCR reaction with a primer that annealed to the 5’
end of the FLIP transcript (E8 forward) and the TGP4 primer
(5'-TGGACG AGGATG AGACCG AG-3') using the same re-
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action conditions used to screen tail DNA. Amplification of
the B-actin (or B-globin) sequence was also performed as de-
scribed above to confirm that the RT reactions had produced
good cDNA for PCR. RT-PCR reaction products were visu-
alized on a 1.5% agarose gel containing ethidium bromide.

Protein isolation and Western blot

Mouse tissue protein was isolated from TriZol homoge-
nized tissue after extraction of RNA, using the manufac-
turer’s protocol (Invitrogen, Carlsbad, CA). Protein was sus-
pended in 1% SDS and insoluble material pelleted at 13,000
for 10 minutes. Protein concentrations were determined us-
ing the BCA Protein Assay Kit (Pierce, Rockford, IL) and at
least 10 ug of each sample was separated by 15% sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) followed by electrophoretic transfer to nitrocellulose
membrane. The membrane was subsequently blocked in 5%
milk in phosphate-buffered saline (PBS) with 0.05% Tween-
20 (PBS-T). Protein bands corresponding to FLIP-myc/His
were identified by Western blot using a mouse monoclonal
antibody (mAb) to the c-myc peptide, clone 9E10 (Roche or
BACo) at 2 ug/mL diluted in 5% milk/PBS-T followed by a
peroxidase-conjugated anti-mouse immunoglobulin G (IgG),
Fe-specific Ab (Jackson Laboratory) and detected using a
chemiluminescent substrate, ECL-Plus (Amersham, Piscat-
away, NJ). Lysates from COS-1 cells stably transfected with
the CMV-FLIP plasmid were used as a positive control for
FLIP expression.
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FIG.2. Expression of Tg-FLIP plasmid in the TNT T7 Quick
Coupled transcription/translation system (Promega, Madi-
son, WI). One microgram of Tg-FLIP, Tg-Fas, or CMV-FLIP
were added to the TNT T7 quick reaction. After the tran-
scription/translation was complete, a 3-uL aliquot of each
reaction was separated on a 12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) gel. The
dried gel was exposed on an X-film at —70°C for 16 hours.
The film then was developed.
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Results
In vitro transcription and translation of Tg-FLIP

The Tg-FLIP plasmid was confirmed to have the correct
sequence of the Tg promoter and insertion site in the vector
with sequence analysis. In order to verify the Tg-FLIP con-
struct further, the TNT-coupled transcription/translation
system was applied according to manufacturer’s protocol
(Promega, Madison, WI). Under in vitro transcription/trans-
lation conditions, the Tg-FLIP construct expressed the FLIP
protein of the predicted size (22.8 kd), which was the same
size produced by the CMV-FLIP (Fig. 2). It is obvious that
CMYV promoter is much more potent than the Tg promoter.
As a negative control, the Tg-Fas construct did not express
the same size band.
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Screening of Tg-FLIP X CBA/J mice for transgene

A total of 81 mice were produced from the Tg-FLIP trans-
gene microinjection. Of these, 12 Tg-FLIP-positive founder
mice were identified (designated numbers 811, 813, 814, 826,
827, 828, 833, 837, 840, 842, 857, and 984). The founder mice
were bred and crossed with the CBA /] strain to produce Tg-
FLIP transgenic mice. Eleven of the 12 founder mice pro-
duced positive progeny, as demonstrated by PCR of tail
DNA from litters of founders 826 and 857 (Fig. 3).

Confirmation of transgene insertion by Southern blot

Southern blots confirmed the presence of the Tg-FLIP
transgene in 8 of the founder lines. The number of transgene
copies detected in each founder mouse varied (Fig. 4). Four

neg
L 1]
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Tg-ES8

#826 litter

#857 litter

FIG. 3. Polymerase chain reaction (PCR) of mouse tail DNA for Tg-FLIP (Tg-E8) in litters using TGP1 and TGP4 primers.
PCR amplification of two different founder lines is shown. An expected band of 1278 bp identified positive and negative
littermates. Negative controls included a sample without DNA and a sample with DNA from a negative mouse. Diluted
Tg-FLIP plasmid was used as a positive control.
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FIG. 4. A Southern blot with DNA from the 12 Tg-FLIP founder mice probed with radiolabeled transgene sequence. The
Tg-FLIP transgene is cut twice by Sall producing a major fragment of 1291 bp and two end fragments of 579 bp and 148 bp.
A 1291-bp band was detected in 8 mice (*). A 727-bp band was also present in 4 mice indicating tandem insertion. The Tg-
FLIP plasmid was included as a positive control and yielded expected bands of 2287, 1291, and 1031 bp.

founder lines contained a Southern fragment of 727 bp,
which indicated the insertion of multiple gene copies into
the genome in tandem (numbers 826, 833, 840, and 857). Of
these, two lines appeared to contain significantly more
copies of the Tg-FLIP transgene as demonstrated by the in-
tensity of both the 1291bp and the 727-bp fragments (num-
bers 826 and 857).

Detection of mRNA for transgenic FLIP in the thyroids of
Tg-FLIP mice

RT-PCR of RNA extracted from the mouse thyroids dem-
onstrated message for FLIP-myc/His in Tg-FLIP—positive
mice, but not in DNA-negative mice, nor in other tissues in
the transgene positive mice. A PCR product of 538 bp was

A 840-medium 857-high
o & thyroid  liver thyroid
£ 2 -+ -4 -+ -

E8-myc
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828-very low
liver B positive negative
¥ o @ liver thyroid liver thyroid
T2 - s -+ - -

E8-myc
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FIG.5. Reverse transcriptase-polymerase chain reaction (RT-PCR) products from mouse thyroid and liver tissues obtained
from mouse lines containing relatively high, medium (A) and very low (B) transgene copy number. A negative control of
no cDNA and a positive control of Tg-FLIP (Tg-E8) plasmid were included in each set. RNA treated with RT (+) and with-
out RT (—) are shown for each sample. RNA from a transgene negative littermate is also shown (B).
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amplified from RT reactions from thyroid RNA (Fig. 5). The
same RNA from a RT reaction without enzyme did not pro-
duce a band, indicating that genomic DNA was not present
or did not produce the band seen in these samples. FLIP mes-
sage was clearly produced in thyroids from 8 out of the 12
lines, which were originally identified as positive for the
transgene by PCR of tail DNA (numbers 811, 813, 826, 828,
833, 840, 842, and 857). Message was detectable in all mice
confirmed as positive for DNA by Southern blot, even in the
lines demonstrating very low copy number.

Detection of FLIP-Myc/His protein in thyroids of Tg-FLIP
mice

Western blot analyses detected Myc-tagged FLIP protein in
the thyroids of some of the Tg-FLIP mRNA-positive mice (Fig.
6). In contrast, FLIP-myc/his was uniformly not expressed in
the liver tissues of these mice, nor in transgene-negative ani-
mals (Fig. 5). FLIP-Myc/His protein was detected in thyroid
samples from four FLIP-positive mouse lines (numbers 811,
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826, 842, and 857). The level of FLIP-Myc/His expression dif-
fered between the mouse lines. Furthermore, the level of pro-
tein expression for each line was correlated to the relative copy
number of the transgene identified by Southern blot. Tg-FLIP
line 857 demonstrated the greatest amount of FLIP protein by
Western blot and also the heaviest Tg-FLIP DNA bands by
Southern blot. However, some mouse lines that had fewer
copies of Tg-FLIP DNA while still producing detectable
amounts of mRNA failed to produce detectable amounts of
FLIP-Myc/His protein in the thyroid (numbers 828 and 833),
suggesting that a certain number of Tg-FLIP DNA copies is
necessary to generate sufficient amounts of FLIP protein de-
tectable by Western blot.

FLIP protein expression in the thyroid is not detrimental to
the development of mice or their thyroid glands

We observed Tg-FLIP transgenic mice for more than a
year, and during this period these animals remained ap-
parently healthy. Adult mice were able to breed and

Thyroid tissue Liver tissue
’ * * * * * s * * * *
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FIG. 6. Western blot of mouse tissue proteins detected FLIP-myc/his (E8-myc/his) using an anti-c-myc monoclonal anti-
body (mAb). Thyroid and liver tissues from several positive and one negative mouse from different founder lines are shown.
The expected size of the FLIP-myc/his protein is 22.8 kd, shown clearly in the lysate from an FLIP-expressing COS-1 trans-

fectant (pFLIP) (pES).
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showed no obvious differences in appearance and activity
compared with their control littermates. Histologic exami-
nation on H&E-stained sections of thyroids from transgenic
animals obtained at various time points did not reveal any
gross differences between transgenic mice and their gen-
der- and age-matched control littermates (data not shown).
In addition, no difference in thyroid morphology was ob-
served.

Discussion

Our studies demonstrated that transgenic mice overex-
pressing FLIP in their thyrocytes had no thyroid or devel-
opmental abnormalities. The FLIP (E8) transgene has been
previously transfected into multiple types of cells and doc-
umented to inhibit apoptosis induced by death receptors,
such as CD95 and FLICE (14-6). In our study, FLIP expres-
sion on thyrocytes of transgenic mice was driven by the Tg
promoter, which has been previously shown to specifically
express target molecules in thyrocytes (18,19). Using South-
ern blotting techniques we have clearly shown that the FLIP
transgene was present in the thyrocytes of 8 transgenic lines
(of a total of 12 generated), and it was not found in any thy-
roids of control mice. The expression of FLIP in thyrocytes
from these transgenic mice was further confirmed at RNA
and protein levels, as demonstrated by RT-PCR and West-
ern blot analysis, respectively. To confirm that the FLIP mol-
ecule under the control of Tg was specifically expressed in
the thyroid, we screened for FLIP mRNA and protein in non-
thyroid tissues. The result demonstrated that the FLIP trans-
gene was only expressed in thyroid tissue, documenting the
specificity of the Tg promoter. Therefore, we created trans-
genic animal in which FLIP protein was specifically pro-
duced in thyrocytes.

Although some of the mouse lines with low copies of the
FLIP transgene failed to produce detectable FLIP protein by
Western blot, the transcription of the FLIP transgene was still
demonstrable with RT-PCR. The reason for this is not en-
tirely clear, however, there are several possible explanations.
One of them is that the detection of mRNA with RT-PCR is
more sensitive than detecting protein with Western blots.
Another possible explanation is that low levels of protein
may be related to the insertion sites in the genome or trans-
elements that interfere with transcription and/or translation
(20). This could also be the reason for the negative mRNA
results in the 3 founder lines that produced transgene posi-
tive progeny as detected by PCR. Furthermore, it also is pos-
sible that post transcriptional modifications and/or mRNA
degradation may also contribute to the low levels of FLIP
protein below the threshold of Western blot in some of these
animals.

Several studies have shown that FLIP can act not only as
a tumor-progression factor (21,22), but also as a contributing
factor to the development of autoimmune disease (23). For
example, FLIP expression has been shown to correlate with
resistance against death receptor-induced apoptosis in B-cell
lymphomas, and FLIP-transfected tumor cell lines develop
more aggressive tumors in vivo (21,22). Conversely, admin-
istering chemotherapeutic drugs to sensitized cells that are
resistant to death receptor-induced apoptosis often correlates
with decreased expression of FLIP (24). Several reports have
also tied FLIP expression to thyroid diseases. Thyrocytes of
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Graves disease have been reported to be associated with an
increased FLIP level, which makes thyrocytes resistant to
Fas-mediated apoptosis. It has been suggested that Fas-FLIP
signaling in thyrocytes may stimulate the proliferation of
thyrocytes in Graves disease (23). However, there also have
been reports showing that FLIP fails to function as an anti-
apoptotic molecule in some cell death pathways (25-8).
There is also a study indicating that binding of FLIP to FADD
and caspase-8 is insufficient to block apoptosis induced by
the death receptors, suggesting that other mechanisms may
be required (26). In our transgenic mice, FLIP apparently ex-
erts neither antiapoptotic nor proapoptotic effects sufficient
to change the phenotype of these animals. Significant lym-
phocyte infiltration or other evidence of inflammation was
also not observed.

This report is the first to describe the thyroid-specific ex-
pression of FLIP in a transgenic mouse model. Our results
demonstrate that the presence of FLIP in thyrocytes does not
appear to interfere with the development of thyroid and in-
duce thyroiditis in an unchallenging environment. It would
be interesting to know whether expression of FLIP in thyro-
cytes would contribute to the pathogenesis of thyroiditis fol-
lowing insults, such as infection, radiation, or chemical ad-
ministration.

In conclusion, transgenic mice with thyroid-specific ex-
pression of FLIP do not show apparent alterations in the de-
velopment and dysfunction of the thyroid. Although these
results show that FLIP-producing thyrocytes lack the patho-
logic features such as malignancy or autoimmunity, addi-
tional factors may be necessary for them to appear. Future
studies where interventions such as the administration of au-
toantigen (TSHR, Tg, thyroid peroxidase) through various
immunization protocols will make this transgenic model
useful for better understanding how death pathways influ-
ence thyroid diseases.
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