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Retroviral Infection Is L i m i t e d b y B r o w n i a n M o t i o n 
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ABSTRACT 

Replication-defective retroviruses are frequently used as gene carriers for gene transfer into target cells. Here 

w e show that the short half-lives of retroviruses limit the distance that they can effectively travel in solution 

by Brownian motion, and thus the possibility of successful gene transfer. This physicochemical limitation can 

be overcome, and effective contact between the retroviral gene carrier and the target cell can be obtained, by 

using net convective flow of retrovirus-containing medium through a layer of target cells. Using model cell 

lines (NIH-3T3 and CV-1), it was shown that gene transfer rates can be increased by more than an order of 

magnitude using the same concentration infection medium. High transduction rates could be obtained even 

in the absence of polycations, such as Polybrene, which heretofore have been required to achieve reasonable 

transduction rates. This development m a y play an important role in realizing h u m a n gene therapy. 

OVERVIEW SUMMARY 

Retroviruses have short half-lives and therefore can only 
travel a limited distance by random Brownian motion in in­
fection medium before deactivating. This distance is only a 
few hundred microns, and this constraint is shown to limit 
gene transfer rates. This limitation can be overcome by slow 
flow of the infection medium vertically through the target 
cell bed and gene transfer rates can be substantially in­
creased. 

into the target cell's genome. The last step of D N A integration 
is believed to require cell division (Springett et al, 1989; Miller 
et al, 1990; Roe et al, 1993). The overall success of the in­
fection, as determined by expression of the delivered gene, thus 
depends on the probability of success of each step of the series. 

In this communication, we analyze the first step of this se­
ries of events and focus on the factors that determine the fre­
quency of contact between the viras and the target cell. The ini­
tial encounter of the viras with the target cell is governed by a 
predictable physicochemical process—^random Brownian mo­
tion. 

INTRODUCTION 

The abUity to introduce DNA into human cells is the basis 
for the burgeoning field of gene therapy (for reviews, see 

Anderson, 1984; MiUer, 1990,1992a; Brenner, 1993; MuUigan, 
1993). Replication-defective reti-ovuiises have received much 
attention as vehicles to carry the foreign D N A into many hu­
man ceU types (Cepko et al, 1984; MUler and Buttimore, 1986; 
Markowitz et al, 1988; Larrick and Burck, 1991). The process 
of reti-ovnal mfection involves many steps (Dubois-Dalcq etal, 
1984): the initial step is that viras must make contact with the 
ceU; diis is foUowed by specific binding of viras onto a ceU-
surface protein; the viras is then intemalized; the viral R N A is 
reverse-transcribed into D N A ; the double-sh-anded D N A enters 
the nucleus; and finally the retroviras derived D N A is integrated 

ANALYSIS OF THE KINETICS OF 
VIRUS-CELL ENCOUNTER 

Typically, infection is carried out in a system where a liq­
uid layer containing the retroviras is placed on top of a bed of 
target cells. The physics of this infection system may be de­
scribed by three processes occurring simultaneously (Fig. 1): 
(i) Brownian motion of the retroviras, (u) decay of the retro­
viras, and (in) adsorption, or capture, of the retroviras by the 
target cell. A retroviras is a coUoidal particle with a density 
similar to that of tissue culture medium, 1.16-1.18 g/ml (Lowy, 
1985). Its root mean square displacement (0 by Brownian mo­
tion over time (f) can be described by (Einstein, 1905): 
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FIG. 1. Static transduction. The schematic shows how a retroviras' distance from the target cell bed affects the probability of 
it being adsorbed. The viras close to die bed, at di, has a high probabUity of being adsorbed, whereas the viras further away, at 
d2, decays over the same time period and carmot reach the target ceU. Each retroviras travels an average distance / by Brownian 
motion over the time period of mterest. 

(1) 

where D is the diffusion coefficient. The numerical value of 
the diffusion constant for a retroviras can be estimated from 
the Stokes-Einstein equation (e.g., see Cussler, 1984) to be 
approximately 6.5 X 10"* cm^/sec using a viral diameter of 
100 n m (Dubois-Dalcq et al, 1984), a temperamre of 37°C, 
and a medium viscosity of 0.(K)7 g/cm-sec. 

Retroviral half-lives (fo.s) are generaUy short (Levin and 
Rosenak, 1976; Sanes et al, 1986; Layne et al, 1989; Paul et 
al, 1993; Kotani et al, 1994). W e have measured the half-Ufe 
for a murine amphotropic retroviras produced by the i/CRIP 
packaguig ceU line (Danos and Mulligan, 1988) to be about 5-8 
hr at 37°C (Chuck, 1995). Usmg the appropriate numerical val­
ues for die diffusion coefficient and half-life in Equation (1), 
we estimate the distance that an average retroviral particle can 
travel widiin one half-life (/0.5) to be 480-610 fim. Since tis­
sue culmre procedures typically use liquid depths of 2-5 m m , 
the majority of retrovnuses in the mfection medium, i.e., those 
above a level of 480-610 fim, wUl not be able to reach the cell 
bed within one half-life. 

Based on the physics of the viral capture process, the prob­
abUity of capture is expected to be inversely proportional to the 
particle's distance from the surface (of capture) (Berg, 1983) 
die target ceU bed—and die time of capUire proportional to the 
square of this distance (Equation 1). Thus, only tiiose particles 
closest to the target cells wiU be captured efficiently and witiiin 
the tune span of tiie retroviral half-life. Were it not for die short 
half-life, all die retroviras particles would reach the target cell 
surface given an infinite period of time. 

The importance of distance between the viras particle and 
target is depicted in Fig. 1, which shows schematically the retro­
vuus particle's Brownian motion close to the target cell (at dis­
tance dl) and far from the target (at distance ̂ 2)- The retroviras 
close to die target bed is able to strike it many times, greatiy 
increasmg the chance of adsorbing to the target cell and bind­
ing to a target cell receptor. The retroviras initially far away 
from the target may fravel die same mean distance (I), but de­
cays before beuig adsorbed onto the target cells. 

The probabUity of a retroviras particle adsorbing to a target 
cell wUl to a first approximation follow mass action kinetics, 
where tiie rate of captare is proportional to the densities of the 
colliding entities: 

rate of adsorption = k Cy C j (2) 

where Cy is the viras density (number of virases/volume) close 
to die target cells, Ct is the target bed ceU density (number of 
cells/area), and kisa second-order rate constant characterizing 
the adsorption event. Thus, the number of cells transduced is 
expected to be proportional to botii the initial target ceU den­
sity (Cto) and initial retroviral concentration (Cyo) for fixed 
transduction times. This prediction is experimentally verified 
below. 

The importance of high target cell density and retrovnal con­
centration for obtaining greater numbers of transduced ceUs has 
been emphasized ui the literature (Behnont etal, 1988; Bodine 
et al, 1990; Lynch and MUler, 1991; Hughes et al, 1992; 
Buchschacher, 1993; Cassel etal, 1993; Rettmgerera/., 1993; 
Kotani et al, 1994). However, it remains that individual retro­
virases located at increasing distances from die target ceU bed 
have decreasing probabUity of ever reachmg die target cells, if 
then movement is due only to Brownian motion. Thus, tiie num­
ber of cells transduced is not expected to increase witii addi­
tional numbers of virases located at increasing distances. Agam, 
this prediction is experimentally verified below, where in­
creasing distances are achieved by increasing volumes of viras 
solution overiaying a target cell bed. 

H o w can the limitations of time and distance for capture 
imposed by random Brownian motion be overcome? If the 
motion of the retroviras is directed toward the target cells, the 
frequency of viras-cell encounters would increase. The viras 
can be dnected, or carried in this way, by fluid flow. Fluid 
flow is usually implemented by agitation, or mixing of the tar­
get cell culture. However, microhydrodynamics are such tiiat 
laminar hydrodynamic boundary layers form close to solid 
surfaces—such as cell growdi surfaces in standard cell cul­
ture plasticware—even in well-mixed flows. These boundary 
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layers have flows that are parallel to the solid surface, and 
dieu- tiiickness (Schlichting, 1955; Levich, 1962) will be on 
the order of the penetration distance of the viras, as defined 
above (/q.s). Thus, even with bulk fluid agitation, the final en­
counter of the viras and the target cell is governed by 
Brownian motion. 

This hydrodynamic limitation can be overcome by first 
seeding the target cells onto a porous surface and then flow­
ing a viras solution directiy through the target cell bed. In this 
way, net fluid flow can be induced over distances shorter than 
those defined by the viral penetration distance and retrovirases 
located initially far away from the target cell bed are brought 
close to the target cells within a controUable length of time. 
By using a convective fluid flow distributed down to cellular 
dimensions to drive the viras toward the target cells, we do 
not rely on Brownian motion to deliver the viras to the target 
cells, but the fluid motion itself. In the experiments pre­
sented below, two model cell lines are used, CV-1 and 
NIH-3T3, to show increases in transduction efficiencies with 
this "flow-through" gene transfer technique. Its performance 
is compared with the traditional method in which there is no 
net fluid movement, what is termed here as "static transduc­
tion." 

MATERIALS AND METHODS 

Cell culture 

Target ceU Unes, CV-1 and NIH-3T3, were seeded at 3,000 
cells/cm^ (unless otherwise stated) in either six-well plates or 
on collagen membranes 1 day prior to infection. The collagen 
membranes (Transwell-COL ceU cultare inserts from Costar, 
Cambridge, M A ) were of 0.4 p,m pore size and 24.5 m m di­
ameter. The retroviras packaging cell line (produced by trans­
fecting a p M F G vector containing a lacZ gene into i|»CRIP) was 
kindly provided by Dr. James WUson (constraction of a simi­
lar vector is described in Wilson et al, 1988). Producer ceUs 
were thawed every 6 weeks and grown in 10-ml tissue culture 
dishes (Falcon, Becton Dickinson, Franklin Lakes, NJ). Both 
the target and producer ceU lines were grown with 1 0 % calf 
seram supplement (GIBCO, Grand Island, N Y ) in D M E M and 
were cultured at 37°C and 5 % CO2. 

Retrovirus supernatant 

Medium that was conditioned for 24 hr by a confluent 
monolayer of producer cells was filtered through 0.4-fim pore-
sized filters (low protein binding Sterile Acrodisc, Gelman, 
A n n Arbor, MI). Viras medium harvested from producer cell 
cultures was assigned a relative retroviral concentration value 
of 1.0. This rather arbitrary assignment was necessary due to 
the batch-to-batch variation of retroviral titer that occurs with 
producer cell lines (MiUer, 1992b; Paul et al, 1993), where 
the viral productivity of a producer cell declines with each 
succeeding passage. Variable retroviral concentrations were 
made by dUuting the viras supematant with growth medium. 
A relative retroviral concentration of 0.1 was used for infect­
ing cultures that would later be assayed (for lacZ expression) 
by 5-bromo-4-chloro-3-indolyl-/3-D-galactoside (X-Gal) 
staining. Similarly, viral concentrations of 0.5 were used for 

infecting cultures that would be assayed by flow cytometry. 
Polybrene (Aldrich, MUwaukee, W I ) was added to 4 /xg/ml 
(unless otherwise stated). Negative controls (mock infections) 
were prepared by adding Polybrene (at the same levels as in 
the retroviras supematant) to growth medium. These controls 
were carried out using both the static and flow-through trans­
duction procedures. 

Static transductions 

Static transductions were carried out on cell culture inserts 
in parallel with flowthrough transductions, unless stated other­
wise. The substrates used in this work (i.e., tissue cultare plas­
tic or Transwell-COL) did not affect either cell growth or trans­
duction efficiency (Chuck, 1995). Static transductions were 
carried out as foUows: medium was removed from target cell 
cultures and replaced by 2 ml of vnus solution. The cultures 
were then incubated for the determined transduction time, af­
ter which the retroviras solution was removed and fresh growth 
medium was added. Cultures were assayed for lacZ expression 
gene 3-4 days later. 

Flow-through transductions 

Viras medium was gravity flowed through the seeded colla­
gen membranes at an average flowrate of ~ 1 ml/hr for the trans­
duction period (up to 10 hr) at 37°C. A schematic of this setap 
is depicted in Fig. 3A. Flow-through transductions were always 
conducted in parallel with static transductions, using the same 
preparation of viras solution and target cell seedings. After the 
transduction period, the viras medium was removed from the 
reservoir above the target cell bed and fresh growth medium 
was added. Cultures were left to incubate (without media flow) 
for 3-4 days until the time of assay. 

X-Gal staining procedure 

Each cell culture well or insert was washed twice with 2 ml 
of Hank's buffered salme solution (HBSS, GIBCO) and fixed 
with 1.5 ml of 2 % (vol/vol) formaldehyde (Sigma) and 0.2% 
(vol/vol) of glutaraldehyde (Sigma) for 5 min. Following fixa­
tion, the cells were washed once more in H B S S before adding 
1.5 ml of staining solution. The staining solution consisted of 
50 fll of [20 mg/ml X-Gal powder dissolved in N,W-dimethyl-
formamide (DMF, Sigma)] per mUUUter of 5 m M K3Fe(CN)6 
(Sigma), 5 m M K4Fe(CN)6-3H20 (Sigma), and 2 m M MgC12 
(Sigma) in phosphate-buffered saline (PBS). The samples were 
incubated for 1-4 days at 37°C to allow any blue cell color to 
develop, and numbers of colony-forming units (CFU, at 2-8 
cells/colony) in each weU were counted. 

Flow cytometry 

Each Transwell-COL was washed three times with 2 ml of 
H B S S and the cells removed by 1 ml of trypsin (GIBCO) ex­
posure. Fresh growth medium was then added to resuspend and 
wash the cells. Reagents from the FluoReporter lacZ gene de­
tection kit (Molecular Probes, Eugene, O R ) were used to pre­
pare and stain the cells. The cells were incubated in a 37°C wa­
ter bath for 5 min and then loaded with substrate by hypotonic 
shock as follows: 50 fil of 2 m M fluorescein di-j8-D-galac-
topyranoside (FDG) was added to each tube at 37°C and left to 
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incubate for 90 sec. The tabes were then immersed in ice, and 
450 fll of ice-cold P B S with human IgG (Sigma) and 1 mg/ml 
propidium iodide (PT) was added. A Coulter EPICS flow cy­
tometer was used to determine percentage of cells transduced, 
as indicated by positive green fluorescence (Chuck and Palsson, 
1991). 

RESULTS 

The bilinear dependence of number of transduced cells on 
both target cell and retroviras densities was shown experimen-
taUy. Either the initial viras density (Cyo) or target ceU density 
(Cto) was kept constant while varying the other (Fig. 2). 
Experimentally, these relationships were found to be linear, as 
shown in Fig. 2, A and B, thus confuming the expectation that 
infectivity is proportional to the likelihood of a collision be­
tween the retrovuns and the target cell, as described by Equa­
tion 2. 

The number of transduced cells did not depend on the total 
number of virases present. Experiments were performed where 
the number of transduced cells was measured over time for dif­
ferent amounts of viras supematant overlaying the target cell 
bed. Different numbers of viras were obtained by varying the 
depths of retroviras solution in seeded tissue cultore wells. 
Retroviral concentrations, CV-1 target cell densities, and trans­
duction time were held constant. Figure 2C shows that no sig­
nificant difference in the number of cells transduced was ob­
served as the depth of the solution layer exceeded the mean 
displacement distance /0.5 for all time points. Even though there 
was a higher number of retrovirases in the infection medium, 
they did not lead to an increase in the number of cells trans­
duced, confirming the diffusion limitation predicted by the 
analysis presented above. 

Vertical flow-through could substantially increase the num­
ber of cells transduced (Fig. 3). T w o target ceU lines, NIH-3T3 
and CV-1, were used to examine the flow-through method of 
retroviras delivery. Static transductions (no fluid flow) were 
carried out on collagen membranes with infection fluid over­
laying die target culture. For static transductions, the target ceUs 
were exposed to 2 ml of viras medium for the entire 10-hr pe­
riod, which should yield a maximal number of transduced cells 
(Fig. 2C plateau). Using flow-through, the degree of transduc­
tion increased linearly with the volume of retroviras solution 
flowed. The number of flow-transduced cells far exceeded the 
number of static-transduced cells (Fig. 3B,C). Thus, die num­
ber of transduced cells was proportional to the number of retro-
vnuses contacting tiie target cell bed. Visually, the increase in 
the number of transduced target ceUs was quite dramatic, as 
shown in Fig. 4. This experimental resuh is again consistent 
with the theoretical predictions made above. 

Polybrene, a polycation, has been essential to obtainuig high 
transduction efficiencies in R N A viras (static) mfection sys­
tems (Manning et al, 1971; Cometta and Anderson, 1989). 
Polybrene is believed to increase contact between the viras and 
target cell by overcoming (repulsive) electrostatic forces be­
tween the lUce-charged viras and cell (Coelen et al, 1983). O n 
the basis ofthe analysis presented above, one would expect that 
the convective force applied in the flow-through procedure wiU 
alleviate the need for Polybrene. The data in Fig. 3C confirm 
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FIG. 2. Gene transfer (as enumerated by C F U ) after static 
fransduction is shown as a function of initial refroviral con­
cenfration (relative units) with an 8-hr fransduction tune (A), 
(B) target cell density (units in thousands of CV-1 ceUs 
per/well) with an 8-hr fransduction time, and time, widi in­
creasing depths of infection solution (C): 520 ju,m (500 fil = 
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FIG. 3. Transduction in flowing medium. A schematic of the 
refroviras solution flowing through the target cell bed is shown 
in A. Transduction enhancements using viras solution flow (rel­
ative to a no-flow, or static fransduction) are shown for CV-1 
cells in B and NIH-3T3 cells in C. No Polybrene was used m 
infecting tiie NIH-3T3 cells. 

this expectation: More than 3 5 % of 3T3 target cells were frans­
fected without die use of Polybrene. Using die static metiiod, 
less than 1% of die cells could be fransduced. 

Several confrol experiments were performed to verify the 

above results. Mock infections using both the static and flow-
through methods of exposure resulted in no cells being frans­
duced, as determined by both X-gal and flow cytometry. Thus, 
the flow-through procedure did not result in a greater back­
ground of (false) gene expression. Also, various methods of 
mixing the infection cultures (continuous shaking and peri­
odic tilting) did not result in any additional cells being trans­
duced (Chuck, 1995) over those obtained by static viras ex­
posures. The enhancements from flow-through were not due 
to the collagen substrate; similar enhancements as reported 
above were observed with polyester membranes with 
Polybrene present (Chuck, 1995). In addition, the numbers of 
cells recovered (~3 days post infection, at the time of analy­
sis) and the percentages of cells transduced were the same for 
static fransductions whether the target cells grew on mem­
brane subsfrate or tissue culture plastic. Finally, no difference 
in the number of cells recovered was observed for flow-
through versus static ttansductions, or for the concentration 
of rettoviras used in either of these ttansduction methods 
(Chuck, 1995). 

D I S C U S S I O N 

In widely used methods of static fransductions using condi­
tioned medium from packaging ceU lines, die fransport of retto-
virions to target cells is, in all probabUity, limited by die slow 
delivery by Brownian motion relative to the half-life of the 
rettoviras. Thus, the viras adsorption rate is dictated by the viras 
mass ttansfer rate to the target cell bed. It has been demon­
sttated here that most of the volume of viras solution overlay­
ing a target cell bed does not contribute toward increasing the 
ttansduction rate. Under these diffusion limitations, the num­
ber of virions reaching the ceU bed can be increased by in­
creasing the number of rettovirases per unit volume in the in­
fection medium, but high rettoviral titers have proven difficult 
to obtam (Belmont et al, 1988; Bodme et al, 1990; Lynch and 
Miller, 1991). Rettoviras-mediated gene ttansfer has been 
shown to be enhanced through co-culture of the target ceUs on 
the viras-producing cell line (Hock and Miller, 1986; Bodine 
etal, 1991). The reasons for this enhancement can be explained 
by the current results: The higher rates are due to the proxim­
ity of target cells to viral source. 

The limitations imposed by Brownian motion can be man­
aged using directed convective flow. By inducing liquid (and 
thus refroviral) motion in the desired direction only, we do 
not rely on Brownian motion to deliver the viras to the target 
cells. Fluid flow through a porous cell growth surface allows 
for very effective contact between the gene carrier and the tar­
get cell. The net rate of fransport of retroviras to the target 
cell bed, and thus the net rate of adsorption, can be signifi­
cantly increased. Flow-through should be an attractive method 
of delivery of other gene fransfer vehicles (e.g., adenovirases, 
adeno-associated virases, and liposomes), which also have 
very low diffusivities. 

Selective motion of virases can be obtained by means other 
than fluid flow. Elevated gravity wUl increase the settling rate 
of the viras. Indeed, it has been shown that centrifugation does 
enhance refroviras-mediated gene fransfer into peripheral blood 
lymphocytes from humans and nonhuman primates (Bunnel et 
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FIG. 4. Photographs of ttansduced CV-1 target cells. Two mUlUiters of viras medium in static transduction (A) is compared 
to increasing volumes in flow-through fransduction: 1 ml (B), 3.5 ml (C), and 5 nd (D). 

al, 1995). The mechanism leading to this increase in gene frans­
fer rate obtained by centrifugation is outlined in this manuscript. 
This stady thus shows that eliminating the limitation of 
Brownian motion wUl also lead to increased gene fransfer into 
primary human ceUs. 

The viras can be adhered to the membrane without having 
the target cells present at the time of fluid flow. The target cells 
can be inttoduced subsequently and allowed to grow on a viras-
containing surface (Chuck and Palsson, 1996b). This approach 
allows for the separation of the process of localization of the 
viras and the exposure to the target ceU. This separation offers 
a number of advantages for gene therapy because the medium 
containing the gene carrier and the ceU cultare medium can be 
separated. Rettoviral supematants are known to contain prod­
ucts that alter the growth of the target cells (Xu et al, 1994). 
Using the flow-through approach, one can "load" the gene car­
riers onto die growth surface and then remove the infection 
medium prior to inttoducing the target cells in tiieir own growth 
medium. The same procedure can be used for a gene carrier 
that needs to be present in seram-free medium, as is the case 

with liposomes, and target ceUs that have to be in serum-con­
taining medium. Other advantages ofthe flow-through approach 
for gene therapy include insensitivity to titer (Chuck and 
Palsson, 1996a) and shortened viras exposure times (Chuck and 
Palsson, 1996b). 

In summary, we have shown that rettoviras-mediated gene 
ttansfer is limited by random Brownian motion. This limitation 
can be overcome by directing the motion of the rettoviras to­
ward the target ceUs. The flow-through approach may signifi­
cantiy help the development of gene therapy (Chuck and 
Palsson, 1996a), which is cunentiy hampered by low gene 
fransfer rates (Buchshacher, 1993; Cassel et al, 1993). 
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