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ABSTRACT

Background and Purpose: Despite many new procedures, radical prostatectomy remains one of the common-
est methods of treating clinically localized prostate cancer. Both from the physician’s and the patient’s point
of view, it is important to have objective estimation of the likelihood of recurrence, which forms the founda-
tion for treatment selection for an individual patient. Currently, it is difficult to predict the probability of bio-
chemical recurrence (rising serum prostate specific antigen [PSA] concentration) in an individual patient, and
approximately 30% of the patients do experience recurrence. Tools predicting the recurrence will be of im-
mense practical utility in the treatment selection and planning follow up. We have utilized preoperative pa-
rameters through a computer based genetic adaptive neural network model to predict recurrence in such
patients, which can help primary care physicians and urologists in making management recommendations.

Patients and Methods: Fourteen hundred patients who underwent radical prostatectomy at participating in-
stitutions form the subjects of this study. Demographic data such as age, race, preoperative PSA, systemic
biopsy based staging and Gleason scores were used to construct a neural network model. This model simu-
lated the functioning of a trained human mind and learned from the database. Once trained, it was used to
predict the outcomes in new patients.

Results: The patients in this comprehensive database were representative of the average prostate cancer
patients as seen in USA. Their mean age was 68.4 years, the mean PSA concentration before surgery was 11.6
ng/mL, and 67 % patients had a Gleason sum of 5 to 7. The mean length of follow-up was 41.5 months. Eighty
percent of the cancers were clinical stage T2 and 5% T3. In our series, 64% of patients had pathologically
organ-confined cancer, 33% positive margins, and 14% had seminal vesicle invasion. Lymph node positive
patients were not included in this series. Progression as judged by serum PSA was noted in 30.6 %. With en-
try of a few routinely used parameters, the model could correctly predict recurrence in 76% of the patients
in the validation set. The area under the curve was 0.831. The sensitivity was 85 %, the specificity 74 %, the
positive predictive value 77 %, and the negative predictive value of 83%.

Conclusion: It was possible to predict PSA recurrence with a high accuracy (76 %). Physicians desiring ob-
jective treatment counseling can use this model, and significant cost savings are anticipated because of ap-
propriate treatment selection and patient-specific follow-up protocols. This technology can be extended to
other treatments such as watchful waiting, external-beam radiation, and brachytherapy.
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INTRODUCTION

ROSTATE CANCER IS EXTREMELY COMMON, accounting for ap-
Pproximately 29% of all cancers in men. This year 179,300
new diagnoses of prostate cancer are expected in the USA.1
Localized prostate cancer can be treated successfullyin 70% to
90% of patients with either radical prostatectomy or radiation
therapy.=> Even though the ultimate success of treatment is
measured by crude and cancer-specific survival, an important
intermediate endpointis the rise of serum prostate specific anti-
gen (PSA) (biochemical recurrence). Biochemical recurrence
usually signifies reappearance of PSA-producing cells in the
body, and it sometimes portends future appearance of bony
metastasis. It will be useful to know beforehand that the pa-
tient’s disease is likely to recur. Different treatments or follow-
up protocols may be selected on the basis of this information.
Both will result in more objective management, improved pa-
tient satisfaction (because of realistic expectations),and signif-
icant cost savings.

There have been few previous attempts to address this ques-
tion. Timing and steepness of PSA recurrence following radi-
cal prostatectomy have been used to differentiate local disease
and systemic metastasis>~!2 Recurrence after radical prostatec-
tomy can occur either in the local area from which the primary
cancer was removed (defined by biopsy-proven recurrence
within the prostatic fossa postoperatively)or elsewhere in body
(mainly bones) through systemic spread. Local recurrence is
amenable to focused radiotherapy, while systemic spread ne-
cessitates endocrine therapy &7-10-13-14 Biochemical failure (as
evidenced by rising PSA after surgery) occurs in as many as
20% to 30% of all patients by 10 years after treatment %7-10:13.14
Certain high-risk groups (positive surgical margins or extensive
extracapsular disease) may have higher rates of biochemical
failures (45%-75%) at 5 years postoperatively?—>

Prediction of PSA recurrence therefore is a useful endpoint
in patients undergoing radical prostatectomy, as it may forecast
future bony metastasis and help in differentiating local from
systematic recurrence (time of failure after surgery is longer for
local recurrence). Such knowledge also may result is cost sav-
ings by virtue of the fact that it takes about 5 to 8 years for
metastasis to appear after biochemical recurrence. Thus, pa-
tients whose disease has not recurred at 5 and 8 years are un-
likely to have recurrence at 10 and 15 years’ follow-up, re-
spectively, and can thus be followed with less frequent office
visits and laboratory investigations. Moreover, early detection
can permit salvage of few local failures by timely radiothera-
peutic interventions, and accurate prediction of early PSA re-
currence will result in more realistic outcome expectations on
the part of patients undergoing surgery.’>-22 Such predictions
are currently being done on the basis of PSA velocity, logistic
regression models, Cox regression analysis and histopathologic
features.!0-15-22

Recently, artificial intelligence-basedneural networks (ANNs)
have become available for medical predictions?3-** A neural
network predicts outcome on the basis of the integration of mul-
tiple input variables. It is constructed from a large data set with
known values of multiple input variables and outcome end-
points. The input variables are mathematically transformed into
a nonlinear equation that best classifies the data set into spe-
cific outcome groups. Computers are required to carry out such
intense mathematical calculations and can be used later to ap-
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ply these models to future data sets. Neural networks start the
computation without any bias and tend to unmask the mathe-
matical relations between various inputs and outcome, as dis-
cussed elsewhere in this issue. They do not require linearity of
data and sometimes bring out subtle and interesting relations
between various input variables, which in turn help investiga-
tors better understand the problem at hand. Traditionally,neural
networks perform better than standard statistical methods if data
are noisy (such as medical data).>3-4*

A further modification of neural network technology s called
genetic adaptive (GA) modeling 39404243 which is a novel
means of training ANNs. Network learning is based on genetic
mechanisms of evolution, which result in survival and genesis
of intelligent,self-organizing,self-repairing, self-motivatingor-
ganisms that are the strongest among the pool of individuals
and genetic patterns. The Darwinian theory of evolution depicts
biological systems as the product of the ongoing process of nat-
ural selection. Likewise, genetic algorithms allow scientists to
use a computer to evolve solutions over time, instead of de-
signing them at the outset without knowing the trend and final
outcome. These algorithms emulate the process of natural se-
lection and survival of the fittest by searching high-dimensional
spaces for superior solutions. The algorithms are simple, ro-
bust, and general; no knowledge of the search spaceis assumed.
This technology has been used in the prediction of survival in
patients with lung cancer, where it outperformed logistic re-
gression models. In genetic algorithms, selection operates on
strings of binary digits stored in the computer’s memory, and
over time, the functionality of these strings evolves in much the
same way that natural populations of individuals evolve. These
algorithms evolve individuals using principals of variation, se-
lection, inheritance, crossover, and mutation.

This technology was recently tested by our group in a pilot
study for staging prostate cancer utilizing basic input variables
such as serum PSA, biopsy Gleason score, and laterality of can-
cer. It accurately identified the stage in more than 70% of pa-
tients. 3! The preliminary results were promising and we hy-
pothesized that similar models could be constructed for the
prediction of PSA recurrence. The aim of this study was to inte-
grate the preoperative data into a unified model (ANN) to create
a tool to predict PSA progression in patients with clinically lo-
calized prostate cancer. Presented herein are the results of our
study involving 1400 patients who underwent radical prostatec-
tomy at multiple institutions and were followed closely for a min-
imum of 3 years after surgery. Involvement of multiple institu-
tions ensures that the model can recognize different types of
patients who differ significantlyin age, stage, grade and technique
of radical prostatectomy. This technology is unique in the sense
that, although it requires that training be performed using a large
database, the model resulting from that training can be applied
easily during clinical management on an individual patient basis.

MATERIALS AND METHODS

Establishment of Database

The total database consisted of 1400 patients with complete
demographic, laboratory, clinical, systematic biopsy stage, and
postoperative follow-up and PSA progression information. All
patients underwent standard pelvic lymphadenectomy and rad-
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ical prostatectomy and were followed for a minimum of 1 year
after surgery. The patients were contributed from Henry Ford
Hospital, Detroit, MI; Emory University, Atlanta, GA; Univer-
sity of Florida, Gainesville, FL; Dianon Systems, Stratford, CT;
University of South Florida, Tampa, FL; and University of
Michigan, Ann Arbor, MI. Preoperatively, all patients under-
went three or more biopsies from each lobe of the prostate un-
der ultrasound guidance in addition to lesion-directed biopsy if
any suspiciousareas were noted. Patients underwent serum PSA
estimation prior to biopsy using the TAndem-R, two-site ra-
dioimmunoassay (Hybritech, Inc., San Diego, CA). Patients
who had previous prostatic surgery such as transurethral resec-
tion or minimally invasive therapy were not included in the
study. Patients who had received preoperative hormonal ther-
apy, radiation, or cryotherapy were also excluded. Patients with
positive lymph nodes and those who had less than 3 years’ fol-
low-up were not included in the analysis.

The sample size was picked to fit the guideline suggested by
Harrell and associates that for each predictor variable, there
should be at least 10 observations in the smaller outcome cat-
egory 4547

Assessment of Clinical Extent of Cancer

According to the biopsy results, patients were classified as
having stage T,,, (B1) disease if the biopsies showed one lobe
positive, T, (B2) disease if the biopsies from both lobes were
positive, and T3 (C) disease if the seminal vesicle biopsy was
positive for prostate cancer. Biopsy findings were reported us-
ing the Gleason grading system. The highest biopsy score was
assigned to each patient if the field contained more than one
Gleason score *8

Frozen section analyses of lymph nodes were performed
based on the discretion of the operating surgeon when it was
felt that there were clinically suspect nodes intraoperatively. If
the lymph nodes were positive on frozen section biopsy, radi-
cal prostatectomy was abandoned. All lymph node samples
were subjected to permanent section. After removal, prostate
specimens were coated with India ink, weighed, and measured
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in the anteroposterior, cephalocaudal, and transverse dimen-
sions. Prostates were embedded in their entirety and fixed in
10% Formalin for 18 to 24 hours. After fixation, the distal and
proximal urethral margins were removed for histologic exami-
nation. The prostate and seminal vesicles were step sectioned
at 3- to 5-mm intervals perpendicular to the long axis of the
gland, and each section was examined histologically. Patho-
logic stage was reported as organ confined, extracapsular ex-
tension with or without positive surgical margins, and/or sem-
inal vesicle involvement, and/or involvement of lymph nodes.
The Gleason score was assigned on the basis of the area of the
most aggressive cancer.

Postoperative Follow-up

There were some differences in the PSA measurement pro-
tocols at the different institutions, but mostly, the serum PSA
concentration was measured 6 six weeks after surgery and then
every 3 months for 12 months. After the first year, PSA was
measured every 4 to 8 months. Patients with undetectable PSA
(<0.2 ng/mL) were considered to be disease free, and PSA pro-
gression was documented if there was a change from an unde-
tectable to a detectable concentration.

Statistical Methods

The data were collected in Excel® (Microsoft Corporation,
Redmond, WA) computer software for PC. A 400 MHz Pen-
tium® II (Intel Corp., Santa Clara, CA) Gateway 2000 PC
(North Sioux City, SD) with 256 MB RAM and a 14 GB hard
drive was used for statistical analysis using a SPSS® for PC
(Chicago) statistical software. The mean, median, range, stan-
dard deviation, frequency, and histogram analyses were per-
formed for serum PSA, biopsy Gleason, clinical stage, patho-
logic stage, and time to biochemical failure. Analysis of
variance (ANOVA) and logistic regression models were then
applied to these preoperative and histopathologic variables to
test their association with biochemical failure.

TABLE 1. BASELINE VALUES

Mean SD SE Median

Age (years) 68.437 8.606 0.741 69
PSA (ng/mL) 11.582 10.883 0.532 8.06
Mos of FU 41.504 25.863 1.264 38
Gleason score (%)

2-4 392 (28)

5-7 938 (67)

8-10 70 (5)
T stage (%)

Ic 210 (15)

2 1120 (80)

3 70 (5%)
Race (%)
White 1120 (80)
African American 48 (12)
Other 112 (8)
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TABLE 2. FREQUENCY DISTRIBUTION
oF PaTHoLoGIC FINDINGS?

No. (%)
Organ confined 896 (64)
Positive surgical margins 462 (33)
Seminal vesicle involvement 196 (14)

2Patients with positive nodes were not included in this series.

Neural Network Methodology

The following general steps were involved in the neural net-
work/evolutionary computational modeling:

1. Distribution of the entire database into training (N = 1000)
and validation sets (N = 400);

. Preprocessing and normalization of the training set by tak-
ing log and square roots;

. Selection of input variables;

. Coding of variables as continuous, ordinal, or nominal;

. Binary coding;

. Choosing network topology;

Choosing a learning algorithm;

. Weight assignment;

. Selection of activation function;

. Choice of transfer function;

. Calculation of root mean square (RMS) error in training
and testing sets;

. Avoidance of overtraining by real time monitoring of RMS
error;

13. Studying the interaction between various input variables

amongst themselves and on the outcome;
14. Selecting the network/method with best performance on the
test set;

15. Freezing the model’s weights;

16. Validation in a random sample of patients; and

17. Validation of the model.
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These methods have been described 3-38-42:44,49-51

Genetic Programming

The coding of the model was done using Microsoft Visual Stu-
dio® software. Our approaches to parametric learning are based
on the family of hybrid evolutionary and gradient training algo-
rithms developed by members of our group. These include evo-
lutionary algorithms applied to multilayer neural networks, radial
basis function networks, neuro-fuzzy networks (resembling fuzzy
logic inference engine), and parametric knn classifiers. The com-
bination of evolutionary and local gradient search that our algo-
rithms utilizes yields benefits in both speed of learning and avoid-
ance of local minima secondary to non-locality of evolutionary
exploration compared with backpropagationmethods. At the same
time, because of our new cooperative evolutionary network rep-
resentation (CENR), we have overcome some restrictions natu-
rally occurring in brute-force combinations of ANN and GA mod-
els. Some of these restrictions arise from the following facts:

1. Conventional evolutionary programming requires large
computational complexity while processing a population of
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ANNSs, as the number of network parameters reaches N ~
103-10° in real-world applications;

2. The GA recombination operators often have difficulty when
aneural network is directly encoded into binary strings. This
causes premature solution convergence;

3. The GA objective function is strongly dependent on the
problem domain. This dependence precludesa generalrecipe
for choosing optimal representations and operators used in
neural network training.

In our technique, evolution proceeds in a single network. A spe-
cial objective function is defined for hidden neurons to allow
the selective update of internal network weights. Further details
are available elsewhere 3-38-42,44,49,50

Training, Testing, and Validation

We used 1000 patients for training and 400 for validation of
the model. This model was tested and revalidated for accuracy
and predictability. Diagnostic performance summary statistics
(sensitivity, specificity, sample-specific positive and negative
predictive values, and overall percent of patients correctly clas-
sified) was computed for the binary predictions along with one-
tailed lower 95% confidence bounds for sensitivity and speci-
ficity. The rank correlation was used to estimate the area under
the observed receiver operating characteristic (ROC) curve.

RESULTS

The demographic, laboratory, and biopsy information such
as age, preoperative PSA, Gleason and duration of follow-up
is summarized in Table 1. The mean age was 68.4 years, and
the mean PSA concentration before surgery wasl1.6 ng/mL.
Two thirds (67%) of the patients had Gleason scores of 5 to 7,
and the mean length of follow-up was 41.5 months. Eighty per-
cent of the cancers were clinical stage T, and 5% Tj.

The pathologic stage of the disease is summarized in Table
2. In our series, 896 (64%) of the patients had organ-confined
cancer, 462 (33%) had positive margins, and 196 (14%) had
seminal vesicle invasion. Few patients had both positive mar-
gins and seminal vesicle involvement. Lymph node-positivepa-
tients were not included in this series.

Table 3 summarizes the data regarding patients who devel-
oped PSA progression. Such progression was noted in 30.6%
of the series.

Table 4 and Figure 1 summarize the accuracy of the ANN
in prediction of PSA recurrence. The preoperative data used as
input variables were age, serum PSA, systematic biopsy-based
stage, perineural infiltration, and Gleason score. Also used was
the duration of follow-up in months as input variable. In the
validation set, the overall accuracy of the model was 76%, and
the area under the curve was 0.831. The sensitivity was 85%,

TABLE 3. FREQUENCY DISTRIBUTION
oF PSA FAILURE

No. (%)
No failure 972 (69.451)
Failure 428 (30.549)
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TABLE 4. AcCURACY OF NEURAL NETWORK MODELING
IN 400 PATIENTS FROM VALIDATION SET

Sensitivity (%) 85.00
Specificity (%) 74.00
Positive predictive value (%) 77
Negative predictive value (%) 83
Accuracy (%) 76
AUC 0.831

the specificity 74%, the positive predictive value 77%, and the
negative predictive value 83%.

DISCUSSION

This study was conducted to identify those patients who are
at high risk for developing PSA recurrence after radical prosta-
tectomy. We took a predictive modeling approach utilizing pre-
operative parameters integrated through a genetic ANN to
achieve above-mentioned goal. The main findings of our study
are as follows. First, it is possible to integrate several preoper-
ative variables such as age, race, serum PSA, biopsy Gleason
score and systemic biopsy based staging in this type of model.
Second, the model can predict PSA recurrence within 5 years
with greater than 70% accuracy. The implications and short-
comings of our study are discussed below.

It is important to note that these models are not survival
curves as used in traditional statistics. There is no censoring of
patients, and the models cannot plot the survival curves. In-
stead, they are using clinically available variables and simply
providing probability estimates for recurrence at a specific fol-
low-up time after treatment. They do so by nonlinear modeling
techniques as described in Materials and Methods.

There have been other efforts to predict biochemical recur-
rence such as PSA velocity, utilization of preoperative parame-
ters and pathologic stage, and use of additional biomarkers
through biostatistical modeling.!%15-22 The most common
method is the survival curve for PSA recurrence using Kaplan
Meier’s productlimit method, which generates graphs for a group
of patients. It can also be plotted to show differences in various
groups such as by grade of cancer, race and type of treatment.
Patients’ individual data can then be used to see the probability
of survival at a specific time and median follow-up can be cal-
culated. However, simultaneous use of more than one grouping
variable is difficult to study in this technique. It does not take
into account the interplay between various input variables. One
such example is as follows. A high PSA concentration usually
signifies a biologically aggressive cancer. However with poorly
differentiated tumors, the PSA can be low and not reflect the true
aggressivenessof the disease. Also, patients can have a high PSA
value as a result of a concomitantbenign process such as benign
prostatic enlargement and prostatitis. Such relations are difficult
to study in traditional Kaplan Meier survival curves.

In order to overcome these shortcomings, Cox proportional
hazard modeling is used, which allows study of several
parameters simultaneously and can then generate survival
curves.!3-17:31.32 Cox proportional hazards regression models
are constructedin a stepwise fashion by considering previously
established pretreatment covariates alone, as well as by adding
the previously discussed new constructs. This technique also
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sheds light on the interplay between various input variables.
However, even with Cox proportional hazard modeling, it is
difficult to apply the information to a future patient, who has a
unique combination of age, race, serum PSA, biopsy Gleason
grade, volume of cancer, and clinical stage. In recent years, sev-
eral efforts have been made to create models and ultimately
provide a unified mathematical formula, which may allow cal-
culation of risk in individual patients. Very rarely are such mod-
els validated in a prospective manner.!->>

A similar preoperative nomogram was constructed by Kattan
and associates2?! Using Cox proportional hazards regression
analysis, they modeled the clinical data and disease follow-up for
983 men with clinically localized prostate cancer undergoingrad-
ical prostatectomy. Clinical data included pretreatment serum
PSA levels, biopsy Gleason scores, and clinical stage. Treatment
failure was recorded when there was clinical evidence of disease
recurrence, a rising serum PSA (two measurements of 0.4 ng/mL
or greater and rising), or initiation of adjuvant therapy. Valida-
tion was performed on a separate sample of 168 men. Treatment
failure (i.e., cancer recurrence) was noted in 196 of the 983 men,
and the patients without failure had a median follow-up of 30
months (range 1-146 months). The 5-year probability of free-
dom from failure for the cohort was 73% (95% confidence in-
terval 69%, 76%). The predictions from the nomogram had an
area under the ROC curve (AUC) (i.e., comparison of the pre-
dicted probability with the actual outcome) of 0.79 in the vali-
dation sample. The authors attempted to improve the results by
incorporating postoperative information into their model.>> The
accuracy in a validation sample improved to an AUC of 0.89.
Even though it was more accurate, this model cannot be used in
the decision-making process. Therefore, we feel that our preop-
erative model, with an AUC of 0.83, will be practically useful in
decision-making. However, it should be noted that it is difficult
to make direct comparisons between the AUCs of 0.79 (Cox pro-
portional hazard model) and 0.831 (GA model), as they have
been generated from different data sets of diverse patient popu-
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FIG. 1. Receiver operator curve for performance of model.
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lations. In fact, the authors believe that there is no best model-
ing technique. All models have different strengths, and the key
is to find best model for a specific problem. The traditional mod-
els may be better suitable for non-noisy simple datasets, while
nonlinear models may be useful for other problems. With this
view in mind, the authors always try simpler models for every
problem and believe that the final goal should be to achieve the
model that generalizesbest for a specific problem rather than get-
ting into the controversy of which modeling technique is better.

There have been published comparisons of conventional sta-
tisticalmodels and ANN technology.Ragde and associates’> com-
pared ANN models with multivariate regression analysis in 152
consecutive patients with stage T;—T3, low to high Gleason grade,
prostate carcinoma who received brachytherapy at Northwest
Hospital in Seattle, Washington. Of these 152 patients, 98 (64%)
received an iodine125 implant alone (Group 1), and the remain-
ing 54 patients (36%), who were judged to have a higher risk of
extraprostatic extension, also were treated with 45 Gy of exter-
nal-beam radiation to the pelvis (Group 2). No patient underwent
lymph node sampling, and none received androgen ablation ther-
apy. Clinical recurrence was defined as a positive biopsy, radi-
ographic evidence of metastases, or both. The PSA values
recorded in these patients were those measured at the time the
clinicalrecurrencedesignationwas made. Biochemicalfailure was
defined as PSA >0.5 ng/mL, a threshold adopted to facilitate out-
come comparisons with patients treated by radical prostatectomy.
A turboprop-variant ANN training method was used. From the
database, 16% of patients were chosen randomly and withheld as
a validation set. The remaining 84% were used to train the ANN.
When training and architecture evolution (determination of the
optimum number of hidden neurons) was complete, the network
was presented with the validation set and asked to predict the suc-
cess or failure of brachytherapy for each of these individuals. The
network results then were compared with actual outcomes, and a
set of statistics was generated. In addition, a multivariate regres-
sion analysis was developed for the training set and applied to the
validation set. Multivariate regression and Mann-Whitney rank
sum tests were used for conventional statistical analyses.

The authors noted that the ANN predicted the outcome more
accurately than did multivariate statistical models. The sensitiv-
ity was 55% for ANN and 15% for regression. The specificity
was 90% for the ANN and 94% for regression, the correspond-
ing positive predictive values were 76% and 64% and the neg-
ative predictive values were 82% and 64%. The overall accu-
racy was 76% for the ANN and 66% for regression analysis.

There have been few other comparisons for other medical
applications and these models have provided satisfactory re-
sults.3! In cancer patients, a GA model Bayes’ theorem classi-
fied the outcome with a high degree of accuracy that was 20%
better than the value obtained with the logistic regressionmodel.
These differences in accuracy could be attributable to differ-
ences in data set, length of follow-up, or a nonlinear method-
ological advantage of ANNSs in noisy medical data. An exact
comparison can be made only with an identical dataset sub-
jected to two diverse modeling techniques.

CONCLUSION

Our study suggests that genetic adaptive neural networks can
accurately predict biochemical recurrence in patients who are
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contemplating choosing surgical treatment for their prostate
cancer. This ability could prove to be of immense practical
value by allowing individualized follow-up regimens, which
would significantly reduce the cost of follow-up.
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