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Abstract 

 
 
Computational Reaction-Diffusion Analysis of Cellular Systems for Tissue 

Engineering and Quantitative Microscopy 
 

by 
 

Khamir H. Mehta 
 

Chair: Jennifer J. Linderman 

 
 
 
 

Reaction-diffusion mechanisms underlie communication of cells within and 

among themselves and also with their environment. In this thesis, I have developed 

computational approaches to better understand these mechanisms in the context of tissue 

engineering and quantitative microscopy.  

       In the first part of my thesis I use an agent-based formalism to describe the 

interactions of the hematopoietic stem cells in the bone marrow niche and their role in 

hematopoiesis. Using a mathematical representation of the interactions, I create a 

framework that can be used to question the role and relative importance of cellular 

interactions inside the niche in the context of hematopoiesis. In the second part, I apply 

deterministic models to identify general principles for design and operation of 
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microfluidics-based perfusion bioreactors for cell cultures. I use model-based analysis to 

arrive at optimal strategies for designing bioreactor geometry, media perfusion and 

recirculation, initial cell seeding composition for co-cultures, and retaining cell-secreted 

autocrine factors. I further demonstrate the utility of these models to infer the cellular 

properties from data on experimental measurements by inferring oxygen uptake 

parameters of HepG2 (human hepatocellular carcinoma) cells.  In the final part of my 

thesis, I turn my attention to the reaction systems inside the cell and present 

computational algorithms to infer the local protein binding dissociation constant (Kd) 

from 3-dimensional Fluorescence Resonance Energy Transfer (FRET) microscopy data 

on live cells. I analyze the performance of the algorithm using synthetic test data, both in 

the absence and presence of endogenous (unlabeled) proteins, and show that 

deconvolution is essential for quantitative inference of local Kd, I test the algorithm to 

quantify the interaction between YFP (yellow fluorescent protein)-Rac and CFP (cyan 

fluorescent protein)-PBD in mammalian cells.    

 Taken together, the results offer novel insights into model-based design of in vitro 

biological systems for target applications in tissue engineering, microfluidic bioanalytical 

devices and quantitative microscopy and also present new approaches for quantitative 

inference from the associated experimental data.  



1 
 

 

Chapter 1 

 

1.Introduction   

 

1.1. Reaction-Diffusion Processes in Tissue Engineering & Quantitative 

Microscopy  

 

Complex networks of reactions occurring at various scales form the fundamental 

machinery by which any living organism can perform essential functions to maintain and 

propagate itself. For example, the process of metabolism is but a series of chemical 

reactions which result in breakdown of large complex molecules resulting in the 

generation of energy or making building blocks for cellular function. Similarly, the 

biological signaling transduction occurs via series of reactions occurring within/among 

cells by which the cells can respond to the changes in the environment. The 

understanding of biological reaction networks, therefore, occupies a significant position 

in the area of biological engineering, and many efforts have been made to get a better 

understanding of cellular metabolic and signaling networks both from an experimental as 

well as modeling standpoint (e.g Crampin, et al. 2004 ; Kholodenko 2006 ; 
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Mullassery, et al. 2008a ; Papin, et al. 2005 ; Rangamani and Iyengar 2008 ; Ross 2008 ; 

Wolkenhauer, et al. 2005 ). Further, the effect of spatial arrangement and diffusion in 

such systems is also a subject of active research, and the role of spatial dimensional and 

diffusion is shown to be important for signaling systems (Brinkerhoff and Linderman 

2005 ; Brinkerhoff, et al. 2008 ).  

As in usual chemical systems, the characterization of the equilibrium and dynamic 

reaction parameters remain crucial to the success of any modeling approach for 

biochemical reaction networks. Along with the usual methods of determination of 

reaction parameters, quantitative fluorescent microscopy imaging of live cells offers the 

promise to measure the reaction parameters in its native environment and hence is the 

center of attention of various research groups (Benninger, et al. 2008 ; Day and Schaufele 

2008 ; Kherlopian, et al. 2008 ; Mullassery, et al. 2008b ).  Among them, visualization of 

protein-protein binding by Fluorescence resonance energy transfer (FRET) is a effective 

way to gather data on cellular protein reactions (Chen, et al. 2007 ; Hoppe 2003 ; Hoppe 

2007 ; Kenworthy 2001 ; Lippincott-Schwartz, et al. 2001 ; You, et al. 2006 ). However, 

the process of inferring information about cellular reactions from the imaging data is far 

from understood.  

Recently, there has been a focus on developing in vitro systems that can mimic 

the native cellular conditions. Such systems can be of vital importance, as they can offer 

the possibility of probing the cells to characterize their behavior under controlled 

environmental conditions and also quantitatively measure the associated responses. From 

a medical perspective, they can be used to grow functional tissues that can be further used 

for transplantation. This research area, termed ‘tissue engineering’, aims at developing 
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replacement organs in a laboratory (in vitro organs) starting from a small population of 

donor cells and providing them with appropriate microenvironment for development of 

target tissues (Langer and Vacanti 1993 ; Vacanti and Langer 1999 ). The development of 

such tissue engineering methods will involve extensive experimentation for screening, 

optimization, and implementation of the final tissue. Considering that most of these 

systems have an underlying reaction-diffusion mechanism, mathematical analysis and 

predictive models can play a crucial role in reducing the expensive experimentation and 

successful application of tissue engineered therapy.  

 In particular, the development of in vitro culture systems to maintain and expand 

stem cells (both, adult as well as embryonic) has great therapeutic potential, considering 

that, in principle, the stem cells are mulipotent and can be made to proliferate and 

differentiate into almost any tissue. Research efforts in engineering stem cells for 

developing functional tissues like bone and blood have been fairly successful and well 

understood (Mauney, et al. 2005 ; Mukhopadhyay, et al. 2004 ; Zandstra and Nagy 2001). 

However, optimal strategies to maintain and expand stem cells still remain elusive. 

Microfabricated perfusion based bioreactors have emerged as strong candidates for 

developing in vitro cell culture systems for both tissue engineering as well as developing 

new platforms to be used as biosensors (Ainslie and Desai 2008 ; Andersson and van den 

Berg 2004 ; Khademhosseini, et al. 2006 ; Park and Shuler 2003a ). Compared to 

traditional static cell culture methods, the media for such new bioreactors is continuously 

perfused, to provide a dynamically controlled microenvironment for the cells in the 

culture. Considering the basic mechanisms involved in the growth and culture of cells in 

such bioreactors would be based on diffusional and convective transport coupled with the 
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reactive uptake/secretion, a mathematical analysis of these systems can help with 

improving the design without expensive experimentation. 

 

1.2. Motivation 

 

The initial work for this thesis was a part of modeling support for the 

multidisciplinary university research initiative (MURI) project aimed at growing 

functional bone marrow in laboratory. The bony organ was envisaged to have 

mineralized tissue, marrow and microcirculatory compartments, and can be useful for 

variety of potential applications including tissue-replacement therapy and also for use as 

novel and life-saving biosensors. It was proposed to use the multipotent stem cells 

isolated from the adult bone marrow, provide them with appropriate environment (e.g. 

growth factors, nutrients etc), and have them form the bony organ in a microfluidics 

based bioreactor. It was hypothesized that it is possible to recreate the various 

components of the bone from the mesenchymal and hematopoietic stem cells of bone 

marrow, by providing the required environment at appropriate location and time in the 

bioreactor. It was proposed to use mesenchymal stem cells (MSCs) to form mineralized 

tissue and marrow stroma, and hematopoietic stems cells (HSCs) will be introduced into 

this engineered bone tissue to form the blood tissue by establishing hematopoiesis, or the 

process of blood formation.  Figure 1.1 shows the schematic diagram of the overall 

project strategy, and how this work was expected to fit in.  

The cell behavior is governed by the microenvironment within which it resides. 

The environment in turn is regulated by the collection of cells residing in it through a 
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complex network of paracrine and autocrine soluble signals as well as cell-cell and cell-

ECM signaling mediated by reactions and transport of signals to the cell surface. Further 

physicochemical parameters such as pH, temperature, nutrient concentration and 

mechanical stimuli etc also seem to affect the cell phenotype (Khademhosseini & 

Zandstra, 2002). Species transport models to predict the spatial distribution of such 

factors along with soluble signaling molecules like bone morphogenetic proteins, 

ascorbic acid, dexamethasone etc inside the bioreactor, hence can be especially useful to 

obtain a defined and controllable microenvironment which can support the stem cell 

differentiation into the desired phenotype. The models should incorporate the effect of 

cellular uptake and secretion rates, most of which are non-linearly related to the 

distribution and state of the cells and associated signaling molecules.  

 

 The specific aims of my thesis were hence motivated in part, by the MURI 

project, and involved  building computational models for better understanding the 

hematopoietic stem cell systems, design and optimization of growth and culture of cells 

in microfabricated bioreactors, and using the experimental data therein to infer and 

characterize the reaction parameters in these systems.   

 

1.3. Specific Aims   

 

The preliminary objective of my research was to construct quantitative models of 

cell behavior as a function of microenvironmental variables, for the particular case of 

hematopoietic bone marrow cells, and help in design of the microfabricated device to 
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grow the aforementioned functionalized bone marrow tissue. An associated objective of 

modeling was to develop an inference strategy that can take the measurements from such 

experiments as input, and characterize the biophysical parameters of the cells as an 

output.   

It was further seen that understanding the native interactions and regulatory 

mechanisms governing the hematopoietic stem cells inside the bone marrow is a key 

component to developing successful methods for maintenance and ex vivo expansion of 

the hematopoietic stem cells. My thesis work, hence, also included the theoretical 

analysis of interactions and regulatory mechanisms governing hematopoiesis inside the 

bone marrow. Finally, as mentioned earlier, the behavior of stem cells is governed by 

reactions and interactions at internal levels as well. While little is known definitively 

about the molecular control of hematopoiesis, it was envisaged that the future 

developments, especially in the field of fluorescent imaging can help us identify the 

important protein-protein interactions forming the molecular basis of hematopoiesis. 

Quantification of such interactions hence can aid in developing further analysis tools 

which are useful for developing a successful strategy to realize the therapeutic potential 

of the hematopoietic stem cells. In this context, as a first step, my thesis focuses on 

inferring equilibrium binding of proteins in live cells from three dimensional FRET 

imaging experiments. 

In this thesis I have explored the application of computational modeling with the 

following specific aims.  
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1. Develop a theoretical and computational framework to analyze the relative 

importance of various known interactions regulating the differentiation and self 

renewal of hematopoietic stem cells inside the bone marrow niche. 

2. Develop mathematical models of transport of nutrients and soluble growth factors 

and its effect on the growth of cell cultures in a microfluidics based bioreactor 

systems. Using these models, analyze, and prescribe the optimal design and 

operational strategies to culture given cell type(s) with target specifications. 

3. Develop a methodology to quantitatively infer the biophysical parameters from 

experimental measurements from microfluidics based cell cultures. Demonstrate 

its applicability by inferring the oxygen uptake rate of cell cultures from the 

measurement of oxygen concentrations. 

4. Develop and validate computational strategy to infer reaction parameters from 

quantitative FRET imaging. 

 

1.4. Background   

 

In this thesis I investigate the application of computational modeling in three 

areas:  1) Modeling hematopoietic interactions in bone marrow, 2) Modeling and analysis 

of microfluidics based perfusion bioreactors and 3) Analysis of FRET imaging data for 

inferring protein binding in live cells. I present below a brief background and previous 

modeling work on each of these areas, details of which can be found in the subsequent 

chapters wherein details of my work is also presented.  
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1.4.1. Bone Marrow Biology 
 

The bone marrow consists primarily of two kinds of cell types a) the 

hematopoietic cells associated with blood cells and b) bone marrow stromal cells 

(BMSCs) related to the marrow stroma. The bone marrow forms the principal site for 

hematopoiesis: the process of formation of blood cells from the progenitor cells. The 

bone marrow produces approximately 2.5 billion erythrocytes (red blood cells), 2.5 

billion platelets, and 1 billion white cells per kilogram of body weight each day 

(Mantalaris, et al, 1998), which clearly indicates high level of activity of the 

hematopoietic cells.  The terminally differentiated blood cells are incapable of 

proliferation, and the replacement of these cell types is accomplished by differentiation 

and proliferation of single pluripotent cell type called the Hematopoietic stem cell (HSC) 

through the process of hematopoiesis. The hematopoiesis process is a subject of extensive 

research, and the multiple hierarchical steps through which the HSC goes through to give 

rise to terminally differentiated cells is known. Figure 1.2 outlines the hematopoiesis 

differentiation pathway for HSC. 

The marrow stromal cells and their secretions in the form of extracellular matrices 

(ECMs) form the microenvironment (niche) within which the hematopoietic cells reside, 

proliferate and differentiate. The complex interplay between the hematopoietic cells, the 

stromal cells and the ECM regulate the process of hematopoiesis through various 

signaling molecules, cell-cell and cell-ECM interactions (Calvi et al, 2003, Attar & 

Scadden, 2004). Traditional culture techniques however cannot provide the appropriate 

environment to support and differentiate the hematopoietic progenitors and hence the 

idea of cultivating the hematopoietic cells along with the stromal cells was suggested by 
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Dexter in late 1970s. It was hypothesized that the stromal cells would provide the 

appropriate growth and signaling molecules for the hematopoietic cells survival. The first 

stromal cell mediated long-term bone marrow cultures were developed for the murine 

system by Dexter and co-workers, and is referred to as Dexter cultures. Further 

refinement of cell cultures used the knowledge of cell biology and the availability of 

various cytokines known to promote growth and differentiation of hematopoietic cells 

(Cabrita et al, 2003). The most important drawback in most systems is the lack of long 

term culture maintenance and multi-lineage differentiation which can be associated with 

the lack of maintenance of undifferentiated stem cells.  The identification of culture 

conditions and bioreactor system design which can achieve HSC expansion hence, 

remains one of the major research topics of experimental hematology. I intend to 

contribute to this area by developing a modeling framework to better understand the 

interactions and mechanisms behind the functioning of hematopoietic stem cells in the 

bone marrow. 

1.4.2. Microfluidics based bioreactors for cell culture 
 

 

Traditional static cell culture systems cannot provide the three dimensional 

microenvironment with and all the interactions for cells as their native sites, and hence it 

is often thought that they alter the cellular properties, especially those related to growth 

and differentiation. Alternatively, the newly developed microfluidics based cell culture 

methods can offer controlled supply of media, buffers, and also real time analysis by 

integration with analytical techniques including imaging. Recent advances in 

microfabrication technology also can now allow us to create an microenvironment which 
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is very similar to in vivo (Li, et al. 2003 ; Paguirigan and Beebe 2008 ; Park and Shuler 

2003 ; Weibel, et al. 2005 ).  

 Typically such devices consist of a microfabricated device where micron size cell 

culture channels are etched out of a chip with a suitable substrate. Poly(dimethylsiloxane) 

(PDMS) forms a favored substrate for most cell culture applications owing to its 

biocompatibility, the ease of fabrication, and also due to its high gas permeability. Figure 

1.3 shows a typical picture of PDMS fabricated microfluidic device. The media flow in 

such devices is controlled by either standard peristaltic or syringe pumps, or with 

sophisticated techniques like Braille displays (Gu, et al. 2004 ). 

Micofabricated bioreactor chips are integrated with microfluidics based perfusion 

systems, and have been reported for various applications involving the measurement of 

cellular responses to changes in the environment and tissue engineering (Ainslie and 

Desai 2008 ; Baudoin, et al. 2007 ; Park and Shuler 2003b ; Yang, et al. 2008 ). While the 

ability to provide temporally and spatially varying environment for the cell culture offers 

a large experimental design space, it also makes the job of optimizing the experimental 

conditions more difficult and time consuming. Therefore,  there have been a lot of efforts 

in computational modeling, especially in the reaction/diffusion, transport and cell growth 

processes associated with the growth of cells in the artificial support materials (scaffolds) 

or in bioreactors (Hutmacher and Singh 2008 ; Nichols and Cortiella 2008 ; Pancrazio, et 

al. 2007 ; Semple, et al. 2005 ; Sengers, et al. 2007 ). These efforts have been able to 

contribute in developing and optimization functional tissues like liver, cartilage, etc 

(Chung and Burdick 2008 ; Fiegel, et al. 2008 ; Pryor and Vacanti 2008 ; Schoenfeld, et 

al. 2007 ). However, a using the model to identify design guidelines for developing new 
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bioreactors and their operational strategy, as with usual chemical reactor systems is not 

yet studied. I intend to bridge this gap with my research in this thesis.  

1.4.3. Quantitative Fluorescence Resonance Energy Transfer (FRET) imaging 
 

  

The introduction of green fluorescent proteins and its variants have opened up 

new and exciting avenues in fluorescent microscopy imaging. The FRET process is a 

distance-dependent physical process by which energy is transferred non-radiatively from 

an excited molecular fluorophore (the donor) to another fluorophore (the acceptor) 

(Lakowicz 1999 ).  FRET microscopy can measure the proximity of two previously 

tagged fluorescent biomolecules inside live cells, and hence give a measure of their 

interaction. The amount of energy transfer of mostly depends on the distance between the 

two fluorophores (~ d-6) and the spectral properties of the two fluorophores. Quantitative 

measurement of energy transfer in FRET entails the estimation of the efficiency of 

energy transfer, also known as the FRET efficiency.  

A typical intensity based FRET experiment would involve the imaging of cell at 

two wavelengths corresponds to the donor and acceptor fluorophores. If there are real 

interactions of the two molecules with which the fluorophores are attached, an increase in 

acceptor emission is seen along with a decreased donor emission. If we know the fret 

efficiency, we can estimate the relative amounts of the donor, acceptor and the donor 

acceptor complex respectively. There are excellent reviews describing the applicability 

and experimental features of FRET microscopy, and recent advances have enabled 

considerable degree of quantification. (Berney and Danuser 2003 ; Garini, et al. 2006 ; 

Gordon, et al. 1998 ; Hoppe, et al. 2002 ; Hoppe 2007 ; Sekar and Periasamy 2003).   
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Currently FRET experiments are mostly qualitative and the data are in the form of 

complex data sets with large numbers of images of a single cell, highlighting the need for 

data analysis and abstraction. Such imaging information can be potentially used to 

determine various biophysical parameters. In particular steady state measurements of 

protein concentration distributions might be used to determine the apparent protein 

disassociation constant (Kd) for a protein pair which can be further used in reconstruction 

of cellular signaling networks. Recent developments in quantitative fluorescence 

microscopy techniques have allowed the measurement of the local concentration of 

proteins genetically altered for fluorescent activity (Wu and Pollard, 2005). There have 

also been efforts to employ the quantitative understanding of FRET to estimate the 

relative concentrations of donor and acceptor molecules (Chen et al., 2006, Thaler et al., 

2005, Hoppe et al., 2002).  

A key problem associated with quantifying these FRET measurements via 

microscopy is blurring. Any microscope imaging an object suffers from optical image 

blurring associated with the light from out-of focus planes as characterized by the point 

spread function (PSF) of the microscope. This blurring limits the use of the intensity-

concentration correlation for dissimilar objects and can compromise the local nature of 

information of protein interactions by spatially averaging the intensity. The direct use of 

images after spectral overlap correction to estimate the local concentrations of the 

molecules through calibration hence can be erroneous. The inaccuracy in the estimate 

would be severe for a ‘more diffused’ PSF, where the intensity of the unit pixel is more 

spread out spatially. Efforts have been made to reduce the optical blurring at the 

instrument level and hence preserve the local information. Confocal microscopes 
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minimize such blurring by having a ‘less diffused’ PSF compared to the conventional 

wide-field microscopes. It has been also proposed to use efficient image-deconvolution 

algorithms to increase the local accuracy of the images, making it possible to estimate the 

local protein concentrations with less error (Hoppe et al, 2006). Deconvolution or image 

reconstruction involves using information on the instrument PSF to estimate the intensity 

of the original object voxel and thereby calculate the actual number of molecules in it. 

While it is understood that spatial blurring will affect the inference of biophysical 

parameters from images via the calibration, a systematic study of its impact and the 

extent to which deconvolution can alleviate the problem is still unavailable. In this thesis, 

I contribute to this are by investigating the feasibility of inferring equilibrium binding 

affinity from image data using a computational algorithm. 

 

1.5. Thesis Outline 

 
 

In this thesis, I present the results of my research as per the specific aims outlined 

in the section 1.3.  

In Chapter 2, I describe the development of a computational model describing the 

self-renewal and differentiation of adult hematopoietic stem cell inside an bone marrow 

niche. I also present the results of this first generation model, in context of the 

hematopoiesis process.  

Chapter 3 and 4 deal with the computational model and its applications in design 

and inference from microfluidic cultures respectively. Specifically, in chapter 3, I 

describe the development of a partial differential equation model of nutrient and soluble 
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growth factor transport inside a microfabricated bioreactor, and apply it for prescribing 

optimal design and operating conditions. In chapter 4, I apply the inverse form of the 

model to infer the oxygen uptake rates of cell culture from experimental data on oxygen 

uptake rates. 

In Chapter 5 I present an algorithm to infer the protein binding affinities from a 

intensity based FRET experimental data. I demonstrate the applicability of my algorithm 

by using a synthetic, in-silico system as well as binding of Rac-PBD in mammalian cells.  

Finally, I present my overall conclusions and future directions in chapter 6. 
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Figure 1.1: MURI project to grow functional bone marrow in laboratory. The HSCs 
and MSCs will be isolated using flow cytometry (FACS), and a bone tissue will be grown 
in a dynamic bioreactor device using polymeric scaffolds to encapsulate the MSCs and 
introducing HSCs in the bioreactor. The research described in this thesis was associated 
with creating mathematical models for design and optimization of culture conditions in 
the microfabricated device, the site of growth and development of bone marrow tissue.  

FACS 
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Figure 1.2: The hematopoiesis differentiation pathway. The pluripotent HSC is 
believed to be of two types: Long term culture initiating cell with unlimited self-renewal, 
and short-term with limited self renewal capacity. (Reproduced from 
http://www.bloodlines.stemcells.com/img/Metcalf_Fig3_2.gif ).  
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Figure 1.3: A typical microfluidic device. A typical microfluidic device etched in 
PDMS is shown on the top. The channels are highlighted by green food dye. A schematic 
of the channel organization and the Braille pumps along with valves is shown below. 
(Reproduced from G Mehta, PhD Thesis, 2008) 
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Chapter 2 

 

2.Development of an Agent Based Model of Adult 

Hematopoietic Stem Cell Interactions in Bone Marrow Niche      

 

Chapter Summary 

 

Realization of the vast therapeutic potential of adult hematopoietic stem cells 

requires technologies and strategies for in vitro maintenance and expansion of 

hematopoietic stem cells in cell cultures and remains an outstanding challenge. The 

development of successful stem cell expansion protocols can greatly be aided by 

understanding the fundamental interactions of these cells in their native niches. In 

particular, in this chapter I investigate the role of various known interaction types in 

regulating adult hematopoietic stem cell (HSC) maintenance and proliferation in bone 

marrow niches using a computational model.  I present the modeling framework to 

handle experimental observations with varying degree of quantification and its 
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implementation. The multi-agent based computational model is built using the 

experimental observations of HSC-niche interactions, and it simulates the regulation of 

activation, self renewal and differentiation of HSCs via cell-cell, cell-local 

microenvironment and cell-systemic environment interactions. I also present the results 

of the model in response to hypothetical experiments simulating 

pathological/experimental conditions. My results are significant in developing a 

comprehensive computational model to investigate critical regulatory mechanisms 

governing the stem cell behavior. 

 

2.1. Introduction 

 

Adult stem cell systems offer a relatively easy procurable alternative to using 

embryonic stem cell for next generation cell based therapy (Gordon 2008 ; Kuehnle and 

Goodell 2002 ; Nagy, et al. 2005 ; Rafii and Lyden 2003 ; Tataria, et al. 2006 ).  In 

particular the clinical applications of the adult hematopoietic stem cell have generated 

enormous interest both in the medical as well as science community (Burt, et al. 2008 ; 

Chan and Yoder 2004 ; Devine, et al. 2003 ; Tateno, et al. 2006 ).  

The hematopoietic stem cell is by far the most researched of the adult stem cells 

(Chan and Yoder 2004 ; Huang, et al. 2007 ; Murray, et al. 1994 ; Orlic, et al. 1994 ; 

Ratajczak 2008 ). The bone marrow (BM) forms the principal source of adult 

hematopoietic stem cells and is the primary site for hematopoiesis, producing 

approximately 2.5 billion erythrocytes (red blood cells), 2.5 billion platelets, and 1 billion 

white cells per kilogram of body weight each day (Mantalaris, et al. 1998).  The 
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terminally differentiated blood cells are incapable of proliferation, and the replacement of 

these cell types is accomplished by differentiation and proliferation of a single pluripotent 

cell type, the hematopoietic stem cell (HSC), through the process of hematopoiesis.  

HSCs have the capability for both long term and short term self renewal and differentiate 

into other blood cell types (figure 1.2) and are very few in number (< 0.001% of BM 

cells) in the bone marrow (Wilson, et al. 2007 ). While BM remains the primary site of 

adult HSC residence they are also known to migrate to other sites ( marrow regions of 

other bones) BM sites via the peripheral blood flow, and hence HSCs can also be 

harvested from circulating blood flow in adults. 

BM is also home to various other cell types, including mesenchymal stem cells 

and associated stromal cells. These cells and their secretions in the form of extracellular 

matrices (ECMs) form the microenvironment (niche) within which the hematopoietic 

cells reside, proliferate and differentiate. BM hence is a important site for hematopoiesis. 

The complex interplay between the hematopoietic cells, the stromal cells and the ECM 

regulate the process of hematopoiesis through various signaling molecules, cell-cell and 

cell-ECM interactions (Calvi, et al. 2003, Attar & Scadden, 2004) and by systemic 

secretion of stimulatory hormones. In other words, the self renewal, differentiation and 

proliferation of the hematopoietic progenitors are tightly regulated by the stem cell niche 

(Kopp, et al. 2005 ; Spradling, et al. 2001 ; Suda, et al. 2005a ; Suda, et al. 2005b ; 

Taichman 2005 ; Wilson and Trumpp 2006 ; Yin and Li 2006 ; Zhu and Emerson 2004 ). 

Understanding the behavior of HSC in its native microenvironment (niche) of the bone 

marrow is of fundamental interest to biologists as well as for applied biomedical 

engineers, as it can give vital information about the microenvironment required for 
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maintenance and expansion of HSC in vitro. The role of niche is hence the center of 

multitude of research efforts, and many important features of HSC-niche interactions 

have been unraveled (Arai, et al. 2005b ; Arai and Suda 2007 ; Crocker, et al. 1988 ; Kiel, 

et al. 2005 ; Wilson, et al. 2007 ). However, a complete understanding of the relative 

importance of these interactions and the role of niche still remains a point of speculation. 

Furthermore, experimental investigation of individual interactions remains a difficult and 

time consuming task, considering that it is seldom possible to study the interaction in 

isolation or at controlled level. Mathematical models of these systems can help 

understand the various mechanisms behind the HSC regulation, and can also reduce 

experimentation for effective hypothesis testing. 

  

2.2. Background and Previous Work 

2.2.1. HSC-Niche interactions in Bone Marrow 
 
 

The concept of niches and their role is still evolving (Adams and Scadden 2006 ; 

Adams 2008 ; Arai, et al. 2005a ; Frisch, et al. 2008 ; Kiel and Morrison 2006 ; Kiel and 

Morrison 2008 ; Kopp, et al. 2005 ; Li and Li 2006 ; Martinez-Agosto, et al. 2007 ; 

Moore 2004 ; Moore and Lemischka 2006 ; Morrison and Spradling 2008 ; Porter and 

Calvi 2008 ; Raaijmakers and Scadden 2008 ).  However, it is generally accepted that the 

two primary types of niche supporting the HSC are the osteoblastic niche and the 

vascular niche (Suda, et al. 2005a ; Wilson, et al. 2007 ). It is further understood that the 

HSC remains in a predominantly a quiescent state and is periodically activated to give 

rise to the activated cell, which undergoes further changes (self renewal, differentiation, 
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migration) to give rise to a stable pool of committed progenitors which are the source of 

blood cells via the process of rapid proliferation and differentiation.  

The exact set of mechanisms and interactions of the cells inside the niche remain 

a subject of speculation; however, a study of known pathways and interactions governing 

hematopoiesis can help us systematically categorize the interaction into subsets enabling 

easier comprehension. For the purpose of this research, I have classified the interactions 

into three broad categories. 

The first kind of interaction constitutes the direct adhesion of cells to HSCs and  

is referred to as direct cell-cell interaction in this work. Regulatory mechanisms 

involving special osteoblasts, the spindle-shaped N-cadherin+CD45– osteoblastic (SNO) 

cells in the BM niche, are of this kind. For example, it is shown that stromal cells like 

osteoblasts, or the CXC chemokine ligand 12 (CXCL12) expressing reticular cells, are 

important regulatory components of the HSC supportive niche which act via direct cell 

adhesion receptors (Calvi, et al. 2003 ; Calvi 2006 ; Stier, et al. 2005 ; Sugiyama, et al. 

2006 ; Taichman 2005 ; Zhang, et al. 2003 ; Zhu and Emerson 2004 ). Macrophages can 

also interact with hematopoietic cells via cell surface adhesion receptors (Conrad and 

Emerson 1998 ). The exact mechanisms by which the cellular adhesion regulates the HSC 

state, and hence hematopoiesis is still a matter of speculation; it is conceivable that the 

the bound adhesion receptor could trigger further intracellular pathways, or the regulation 

could be via simple mechanical support that the adhesive cell can offer the HSC.  

However, it is established that the role of such cells with direct contact with the HSC is 

critical to the hematopoietic process.  
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The second type of mechanisms by which stromal cells affect the behavior of 

HSCs? is via secretion of molecular signals which affect the HSCs via signaling 

pathways through cell surface receptors. This is the indirect cell-cell interaction. It can be 

surmised that the common property of these pathways would be their localized effect, and 

the importance of spatial location for these interactions. There are multitude of known 

chemokines, or molecular signals, secreted by multiple cell types that are known to affect 

the HSC (Li and Li 2006 ; Nemeth and Bodine 2007 ; Porter and Calvi 2008 ; Ross and 

Li 2006 ). For example, Angiopoietin-1 is known to affect the quiescent nature of HSC. 

Wnt protein, which is secreted by osteoblasts as well, plays a central role in the Wnt 

pathway known to be important in maintenance of stem cells in the niche (Nemeth and 

Bodine 2007).   

The process of hematopoiesis and the HSC self renewal can also be controlled by 

systemic signals via their existence in the blood capillaries in the bone marrow niche 

(Olofsson 1991 ; Trey and Kushner 1995). These mechanisms constitute the third 

interaction category, systemic interaction. A spatial concentration gradient of such factors 

is created in the niche owing to the diffusion of the molecules from the blood capillary 

(sinusoid) towards the bone side of the marrow. An example of such a regulation would 

be the systemic circulation of the cytokine factor erythropoietin (EPO) and granulocyte-

colony stimulating factor (G-CSF), which is known to elevate the red blood cell count by 

presumably changing the rates of hematopoiesis process. Oxygen too is known to play a 

role in the state of the HSC. Experimental correlations of HSC state and oxygen tension 

have been reported in literature; e.g Parmar and coworkers found that quiescent HSCs 

tend to favor hypoxic conditions (Parmar, et al. 2007). Oxygen supply is regulated by the 
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red blood cells themselves, so oxygen regulation can provide a feedback mechanism that 

can contribute to the robustness of the hematopoiesis process.  

Figure 2.1 shows a summary of the three categories of interactions defined here. 

Any given cell can interact with HSC via any of these three mechanisms. The three 

subsets identified here may not be comprehensive, e.g., it does not take into account the 

intrinsic regulatory mechanisms inside HSCs that may be active, especially in 

homeostasis. Again, while each of these interactions is known to affect the behavior of 

the hematopoietic stem cell in the BM niche, the relative importance of each remains 

unknown.  

2.2.2.  Mathematical models of hematopoiesis process 
 

Several mathematical and theoretical models have been proposed to understand 

the dynamics of hematopoietic stem cells. Various approaches have been taken to 

describe the stem cell renewal and differentiation process, including deterministic and 

stochastic differential equations, delay differential equations and structured model 

described by integro-differential equations (Abkowitz, et al. 2000 ; Belair, et al. 1995 ; 

Colijn and Mackey 2005a ; Colijn and Mackey 2005b ; Dingli and Pacheco 2008 ; 

Haurie, et al. 1999 ; Mackey and Dormer 1982 ; Mahaffy, et al. 1998 ; Schofield 1983 ; 

Talibi Alaoui and Yafia 2007 ; Troncale, et al. 2006 ; Wichmann, et al. 1988 ). Analysis 

of these models have been done to study specific propertyies of HSCs in isolation; 

however, a comprehensive model describing the interplay of the HSC and niche remains 

elusive. Recently the focus also has been on understanding the stem cell organization and 

its role in stem cell behavior (Loeffler and Roeder 2002 ; Loeffler and Roeder 2004 ; 
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Roeder, et al. 2005 ; Roeder, et al. 2007 ). Furthermore, it can be hypothesized that as 

localized interactions play an important role in the regulation of HSC behavior, the niche 

organization could be of significance. Models have to be constructed to understand the 

role of cellular organization in the niche and the effect of spatial dimension on the 

behavior of hematopoietic cells. Again, most models mentioned above target a specific 

aspect of hematopoietic process, and it is seldom that the mathematical realization 

incorporates most of the available experimental observations in the model construction or 

prediction states.  

Most of the information on HSC interactions with the niche exist in qualitative 

form, which makes it difficult to use a deterministic modeling approach. Furthermore, 

small number of HSCs in the BM niche warrants a discrete modeling approach for such 

systems. Discrete models have been successfully used before to explain variety of 

properties of stem cells (Agur, et al. 2002 ; Roeder and Lorenz 2006 ; Schroeder 2005 ).  

A purely stochastic/statistical approach like that reported by Abkowitz and coworkers 

(Abkowitz, et al. 2000) on the other hand cannot incorporate the salient features of the 

niche and its regulatory interactions explicitly. An agent based modeling framework, on 

the other hand, can simultaneously incorporate experimental information with varying 

degrees of quantification. It is hence hypothesized here that an agent based model (ABM) 

is the most suited for developing a model for HSC behavior in the niche, and it can be 

easily extended in the future when novel experimental information and more quantitative 

measurement data are available.  
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The objective of the current work is to develop a mathematical framework to 

incorporate the spatial and discrete aspects of the hematopoietic cell system in the BM 

niche.  A model describing the individual interactions of the stem cells with each other 

and with the environment could provide useful insights into the dynamics of stem cell 

regulation by the various mechanisms that result in the known global properties of such 

systems. In this chapter, I describe the development of the agent based framework, 

wherein I attempt to bring together the various experimental observations and formulate a 

simple model describing the interactions of the HSC with its niche.  

 

2.3. Formulating agent based model of HSC dynamics in the BM niche 

2.3.1. Progression of Hematopoietic Stem Cell States 
 

The stem cell pool is responsible for continuous production of differentiated cells 

also maintain a steady number of their own populations, as defined by its self renewal 

potential. There have been conceptual schemes of self renewal, asymmetric cell divisions 

proposed in the literature to explain the progression of stem cells from a quiescent state to 

committed progenitors to terminally differentiated blood cells. Here we assume the 

following model to describe the sequence of events which give rise to the committed 

multipotent blood cell progenitors, which can further differentiate to give rise to all blood 

cell type. Our scheme is shown in figure 2.2. We assume that the stem cell activation is 

reversible, which is consistent with recent observations (Roeder and Loeffler 2002 ; 

Wilson, et al. 2008 ). Figure 2.1 shows the model of progression for the HSC 

differentiation in the niche. This model is based on what is a generally accepted model of 

transition of HSC states (Ho, et al. 2005).  The quiescent stem cells (Q) can be activated 
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in response to the signals from the niche to produce activated cells (A). The activated 

cells can then be further differentiated to mulitpotent, committed progenitor cells (D). 

The progenitors can eventually migrate into the blood sinusoids where they further 

differentiate/proliferate giving rise to different blood cell types. B denotes the population 

of D which is moved into blood cells. It is assumed that the activation of stem cells is 

reversible, and both activated and differentiated cells can proliferate as indicated by the 

reversible arrow for transition from Q to A, and the looped arrows for both A and D. 

 

2.3.2. Preliminary differential equation model 
 

To get a better idea of the behavior of the system shown in figure 2.2, an ordinary 

differential equation model (ODE) was constructed from the accepted model of HSC 

state transitions. This prelimininary model can help us understand the fundamental nature 

of the ‘reaction’ system, and the roles and importance of the spatial interactions in the 

BM governing the HSC dynamics . In the ODE model, the probabilities indicated in the 

figure 2.1 are replaced by their continuum equivalent, rate constants.  The relevant model 

equations for this case are  

[ ] [ ] [ ]act deact
d Q k Q k A

dt
= − +        (2.1) 

,
[ ] [ ] ( )[ ]act deact diff div A

d A k Q k k k A
dt

= − + −      (2.2) 

,
[ ] [ ] ( )[ ]diff mov div D

d D k A k k D
dt

= − −       (2.3) 

[ ] [ ]mov
d B k D

dt
=         (2.4) 
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Here [ I ] denotes the number of total cells of type I, and all rate constants have the units 

of inverse time. The primary motivation for analyzing the ODE model was to inspect the 

stability and steady states of the system, and the stability of the system for various 

instances of the parameter matrix. Clearly, the system shown in equations (2.1 –2.4) 

cannot have a non trivial steady state solution of interest, as equation 2.4 represents a 

monotonically growing entity and the system matrix is non singular. We are looking for a 

steady solution to the first three variables ([Q], [A] and [D]), while we would expect B to 

have a continuously increasing solution, corresponding to steady blood production. 

Equation 2.4 hence can be decoupled for the steady state analysis, and in that case, the 

steady solutions are governed by the following matrix M 

 

,

,

0
0

0

act deact

act deact diff div A

diff div D mov

k k
M k k k k

k k k

⎛ ⎞−
⎜ ⎟

= − − +⎜ ⎟
⎜ ⎟−⎝ ⎠

    (2.5) 

 

 Non trivial steady state solutions to these ODE system can exist only if kdiff = 

kdiv,A; however, addition of an inhibitory mechanism by allowing a negative feedback 

from the cell population D on the activation of Q cells can allow greater degree of 

freedom and can give variety of steady state solutions. Assuming that this model of 

progression is valid, any  departure from the results observed by this model to the 

experimental observations can be in part due to the effect of the spatial dimension.  

Analysis of these equations hence points out the fact that the spatial influence of the 

regulatory mechanisms might really matter, and play an important role in making the 
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hematopoietic system more robust as opposed to the system of equations as indicated by 

the equations above.  

2.4. Agent based Model of HSC dynamics in the Niche  

 
The analysis of the simple ODE model hinted about the significant role of spatial 

dimension and the cellular interactions in the bone marrow. We have developed an agent 

based model on a two dimensional square lattice which is representative of the bone 

marrow niche. The stem cells located on the lattice evolve in time as per the 

predetermined rules which are formulated based on experimental observations. The ABM 

environment, agents and rules used in this model are described below. 

2.4.1. Agents and Environment 
 

We model the bone marrow niche as a two dimensional square lattice. While 3D 

model would be more realistic, considering the preliminary stage of the modeling 

process, the symmetric BM geometry, and the fact that the key interactions would just 

add up in the extra spatial dimension, we restrict ourselves to 2D here. Briefly, cells are 

assumed to occupy a single node in the lattice. The lattice approximately corresponds to 

about 150 μm of linear distance of the bone marrow as mentioned in the recent images of 

the bone marrow niche (Xie, et al. 2009) and the left side (x = 0) of the BM lattice is 

assumed to be the endosteal niche, while the right end of the niche is assumed to the 

sinusoid, where the cells can be exchanged via flow to the blood stream. Figure 2.3 

shows a schematic representation of the 2-D lattice conceptualization of the BM for the 

purpose of the ABM. 
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The agents in this model are the cells in the bone marrow niche. Currently we 

keep the model simple, and hence do not distinguish among the cells that do not directly 

influence the hematopoietic process. The primary set of agents are the hematopoietic 

cells, which can be in one of the three stages, quiescent (Q), active (A) or committed 

multipotent progenitor (D) as per the progression model outlined earlier. The secondary 

agents are the cells that interact with the hematopoietic cells, which can be further 

classified into the adhesive interaction cells ( e.g Osteoblast, CAR cells) that have direct 

interaction with the hematopoietic cells and the signal-secreting cells which interact 

indirectly with the hematopoietic cells via the soluble signaling molecules.  These cells 

can be of two types: the first type can induce quiescent cell activation/ cell differentiation 

via their secretions while the second type inhibits the activation/differentiation process. In 

all, there are 8 types of such cells as outlined in the figure 2.3. The location ([x,y]) of all 

the cells is stored as an attribute  allowing us to ensure that there are no two cells 

occupying a single node. The age is an additional attribute which is tracked for the 

hematopoietic cell type. 

2.4.2. Rules 
 

 Rules for an agent based models are constructed based on the 

observed/hypothesized behavior of the individual agents. There is wide literature 

describing specific molecules/cells/systemic hormones which have been suspected to 

play a role in the hematopoietic process. A model describing each of those 

interactions/regulatory mechanisms would be prohibitively large; it is hence imperative to 
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coarse-grain the model and use an abstraction which can reasonably retain the essential 

features of each of these mechanisms, without adding the complexity of individual 

mechanisms. Earlier we outlined strategy to classify the interactions of HSCs in the niche 

into three broad categories. The rules of simulations for the HSC agents are based on that 

classification and are summarized as follows. 

a. Quiescent Cells 

In absence of any signal, quiescent HSC can be activated with probability Pact 

provided it has achieved the age of maturity, denoted by the variable (Nact). The actual 

probability Pact is influenced by the three mechanisms which depend on the local 

environment, viz., the cell-cell interaction determined the nearest neighbors, the 

concentration of the local cell secreted factors, and the external concentration field of 

systemic regulatory molecule.  The resulting probability of activation is assumed to be a 

linear combination of the three individual mechanisms described earlier.  The individual 

contribution of the mechanisms are computed as follows. 

Mechanism – 1: Systemic regulation 

We assume that the concentration of the regulatory molecule falls exponentially 

as we move from the blood side of the BM niche towards the endosteal (from x = 1 to x = 

0). This is consistent with a diffusive mass transfer solution with a non-zero finite 

degradation/consumption rate of the signaling molecule. Furthermore we assume that the 

effect of the concentration of the molecule on the probability of activation is similar i.e., 

the probability of activation as governed by this mechanism will also decay exponentially 

from x = 1 to x = 0. Based on these assumptions, the probability for activation for this 

mechanism is given by 



35 
 

 

max
1

max

( )

,

x xk
x

act extf e
⎛ ⎞−

−⎜ ⎟
⎝ ⎠=         (2.6) 

 

where k1 = - ln(Po) and Po is the base probability of activation at the endosteal surface 

normalized such that the probability of activation at the blood surface ( x = xmax) is unity. 

Mechanism - 2 : Indirect cell-cell interaction 

This mechanism is a proxy for the regulatory mechanisms governed by secretion 

of signaling molecules local to the BM niche. We assume that there is a small sphere of 

influence for each of the cells with the function to secrete chemokines or signaling 

molecules  influencing the fate of the HSC. On a 2-dimensional square lattice it 

corresponds to a rectangular area of 8 squares around the secreting cell. As a result, a 

stem cell can be surrounded by at the most 8 different types of cells, which can secrete 

regulatory molecules. As mentioned earlier, secreting cells can be classified into two 

types, those that secrete Pro–activation/differentiation factors and those that secrete Anti 

activation/differentiation factors.  We define the contribution of this indirect cell-cell 

interaction as  

8/])[]([
2,

AntiPro
indact ekf −=        (2.7) 

Where [Anti] and [Pro] are the numbers of cells secreting the anti activation and 

pro activation factors within whose sphere of influence the stem cell in question lies. The 

factor fact,ind increases from a base value of k2 ( = 1 for this work)  if there are more anti 

activation factor secreting cells and decreases if there are more pro activation factor 

secreting cells present.  
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Mechanism – 3: Direct cell-cell interaction 

This mechanism is a proxy for regulatory mechanisms governed by direct cell-cell 

contact in the BM niche. As with the earlier rule, we use the nearest neighbor interactions 

usually used in statistical physics to model the cell adhesion/contact, resulting in 

maximum four cells in contact with the quiescent cell of interest. It has been 

experimentally observed that the number of quiescent and active cells is tightly regulated 

with possible feedback from the surrounding quiescent and active cells.  The probability 

of activation of a quiescent stem cell is increased from its basal value if it is surrounded 

by more quiescent cells, or can decrease if more active cells surround it. The contribution 

of this indirect cell-cell interaction is hence quantified as  

 4/])[]([
3,

AQ
diract ekf −=         (2.8) 

where [Q] and [A] represent the numbers of quiescent and active HSCs in the nearest 

neighbor positions respectively. The factor fact,dir assumes a larger value from the base 

value of k3 ( = 1 for this work)  if there are more anti activation factor secreting cells and 

is lowered if there are more pro activation factor secreting cells present.  

The three factors described above can be combined in a linear fashion with 

assigned weights to give the resulting net probability of activation for any given 

quiescent cell 

 
3

,
1

act act b i i
i

P P w f
=

= ∑        (2.9) 

where wi are the weights and the fi are the individual contributions from each of the 

mechanisms computed from the equations (2.6 – 2.8). Pact,b denotes the base probability 

of activation.  
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For the current model, we assume that quiescent cells are adherent to the support 

cells via the direct cell-cell interaction and hence have no movement capability in 

quiescent state. They however can move once they are active.  

 
b. Active Cells 

Active cells can undergo multiple events depending on their age and location inside 

the niche as per figure 2.2. The transition probabilities for each of the events can be 

calculated based on rules similar to the quiescent cell. For example, the net probability of 

deactivation Pdeact can be calculated using equation similar to 2.8: 

3

,
1

deact deact b i i
i

P P w f
=

= ∑         (2.10) 

where the individual factors for the three mechanisms are in a complementary manner to 

those for the quiescent cells.  

max
1

max

( )

, 1
x xk

x
deact extf e

⎛ ⎞−
−⎜ ⎟

⎝ ⎠= −        (2.11) 

8/])[]([
2,

ProAnti
inddeact ekf −=        (2.12) 

 4/])[]([
3,

QA
dirdeact ekf −=         (2.13) 

The transition probability for differentiation is computed from the following equations, 

where variables have usual notations defined earlier: 

3

,
1

diff diff b i i
i

P P w f
=

= ∑         (2.14) 

max
1

max

( )

,

x xk
x

diff extf e
⎛ ⎞−

−⎜ ⎟
⎝ ⎠=         (2.15) 

8/])[]([
2,

AntiPro
inddeact ekf −=        (2.16) 
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 4/])[]([
3,

DA
diract ekf −=         (2.17) 

An active HSC can also undergo self renewal, provided it has an empty neighboring site, 

and also if is ready to divide, as indicated by the age being more than the minimum 

threshold (NdivA). The probability for proliferation (PdivA) is computed from: 

3

,
1

divA divA b i i
i

P P w f
=

= ∑         (2.18) 

max
1

max

( )

,

x xk
x

div extf e
⎛ ⎞−

−⎜ ⎟
⎝ ⎠=         (2.19) 

8/])[]([
2,

AntiPro
inddiv ekf −=        (2.20) 

 4/])[]([
3,

DA
dirdiv ekf −=         (2.21) 

  Active HSC can also choose to move with a probability PmovA, the precondition 

for a successful move being the existence of empty neighboring sites. The movement of 

HSCs in the BM is known to be directed by chemical signals secreted by the cells close 

to sinusoid. The movement hence is gently biased towards the sinusoid, especially for the 

active and the committed multipotent progenitor cells. We implement the movement bias 

by using a vector Pbias to direct the movement of the active cell.  

 

c. Committed Multipotent Progenitor Cells 

Cells in the committed state (D) can undergo similar events as the active cells 

excluding  deactivation to the quiescent HSC state or differentiation. We assume that the 

further differentiation process happens once the cell leaves the niche via moving into the 

sinusoid. The transition probabilities for each of the events can be calculated based on 
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rules similar to the active cell, albeit with different values of the base parameters, and the 

equations are omitted for brevity.  

2.4.3. Implementation 

The model was implemented in MATLAB ®, using a 100 x 100 lattice size. At each 

Monte Carlo time step, each of the HSC cells was updated in a random order. The steps 

of the algorithm are outlined in figure 2.4.  

To initialize the simulation, support cells and HSCs (D and A) were randomly placed 

on the lattice; however, the quiescent stem cells were placed close to the endosteal niche, 

at x = 2 (x =1 represents the bone/osteoblast surface). A snapshot of the initial 

distribution of the cells is shown in the figure 2.5, along with some considerations for the 

initial placement of cells. Then for each time step, the likely event that can occur for each 

HSC was determined by generating a random number and comparing it with the net 

probability defined as per the earlier sections. The HSCs were allowed to undergo 

activation, differentiation, proliferation and movement based on their current state, 

location and age. The step was repeated to observe the evolution of the system in Monte 

Carlo time. 

The parameters used for the simulations are shown in Table 2-A. To check the 

robustness of the results each run was performed at least 5 (max 15) times ( repeating the 

simulations further did not significantly alter the standard deviation for the base case) and 

the results are reported as average and SEM values of 10 runs.  
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2.4.4. Results and discussion 

 
Considering the uncertainty in most parameter values, the current state of the 

predictions of the model results would have to be ascertained from qualitative 

comparisons of the emergent property of the model with experimental observations. For 

this model, we take into account the read out on the number of different HSCs (Q, A & 

D) in the niche along with the production rate of the mulitpotent progenitor (B).  The 

primary indicator of the model being is the ability to predict the steady production of 

multipotent progenitors while maintaining the number of HSCs (Q, A & D cells) inside 

the niche. Furthermore the robust nature of the biological system would also point out the 

fact the model should have consistent results for a considerably wide range of parameter 

space.  

Figure 2.6 indicates a representative solution for the base case simulation. As seen 

in the figure, there is a sustained production of blood indicated by constant supply of 

multipotent progenitors to the blood stream. Furthermore, a near steady population of the 

HSCs (Q, A & D cells) is found in the bone marrow niche. The solution was found to be 

stable with respect to the parameter values when tested for 25% variation in the 

parameter space. We can take this as a preliminary indication of the model functioning 

well.  

In order to test the model further, we simulated the case of reconstitution of the 

blood tissue following high dosage of chemotherapy. It is experimentally observed that 

high dosages of chemotherapy can kill the actively proliferating HSCs (A and D), while 

leaving the quiescent cells intact. From the modeling standpoint this would mean setting 

the number of A and D cells to be zero once the model reaches steady state, and then 
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simulating the model for a long enough time to see the reconstitution of the 

hematopoietic tissue indicated by buildup of A and D cells also sustained production of 

B. Figure 2.7 shows the results of the model for such a case. As seen in the figure, there 

is a sustained production of blood indicated by constant supply of multipotent progenitors 

to the blood stream. The parameter set used for this simulation was the same one as with 

the earlier case (Table 2-A), and hence we can say that the model can successfully be 

compared with both homeostasis as well as trauma conditions.  

Although the model was in qualitative agreement with previous observations 

(Trey and Kushner, 1995, Dingli and Pacheco, 2008) for the two different conditions, the 

uncertainty and unavailability of information on the parameter space limits its analysis in 

making any inference about the mechanisms and interactions. A systematic study of 

parameter space can give information on relative importance of each mechanism, once 

there is some idea on the bounds of the design space.  

2.5. Conclusions  

 

An agent based model is constructed on basis of individual experimental 

observations, which incorporates the various interactions of the HSC with the niche and 

its spatial components in an explicit fashion.  

This framework is a significant development for theoretical studies on the 

regulatory mechanisms affecting the behavior of HSC. At this point, the model can be 

used to ask key questions to get insights of the functioning of the HSC system. For 

example, we can infer the relative magnitude of the interactions and their affect on the 

dynamics of hematopoiesis process given the knowledge of other parameters like 
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frequency of the interactions as indicated by the relative number of occurrence of 

different cell types, the size and the time frame of cell division, differentiation etc. 

However, any information coming from the current state of the model would be of a 

relative, theoretical nature; this is because of the ambiguity surrounding the parameter 

values used in the model. As a result I have refrained from doing an elaborate sensitivity 

analysis, and using the models in a predictive mode to draw inferences on the dynamical 

behavior of HSC in the niche. Instead I turn my attention towards the in vitro systems 

where such important cells can be cultured, and measurements can be made to 

characterize models such as the one presented in this chapter. Going forward, 

sophisticated experiments including two photon microscopy of the HSC in the BM niche 

can provide us with accurate information on the individual cell parameters e.g. their 

motility, doubling times, and also the overall spatial dimensions of the niche.   

 

Finally, while we have limited ourselves to the development of a novel model to 

describe the dynamics of HSC in the native BM environment in vivo, it should be noted 

that the model in its present form can be easily extended to analyze in vitro co-culture 

systems containing HSCs. In fact, as mentioned in the earlier chapter, the successful 

maintenance and expansion of HSCs, and successful production of blood tissue in the in 

vitro bioreactors can pave the way for efficient cell based therapeutics. In addition, such 

in vitro systems can be useful in characterizing the model described here facilitating 

further analysis both from the theoretical standpoint as well as drawing qualitative 

comparisons with the available experimental data. In the next chapter of my thesis I 

hence shift focus to model based study of in vitro systems.  
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Table 2-A: List of variables and parameters for the HSC ABM 
 
  Symbol Name/Description Base Value 
Lattice Size and Initial conditions   

1 szgrid Grid Size 100 x 100 
2 totcells Total Cells 150 
3 prcell Individual cell composition varies  
4 totmciter Total MC time  1000 (typical) 

Quiescent cell activation     
1 Nact Age before activation 15
2 Po Base activation by mechanism 1 0.05
3 k1 decay constant 2.99
4 Pact,b Base activation probability 0.05

Active Cell properties     
1 NdivA Age before division 10
2 PdivA Base probability of division 0.25
3 PmoveA Probability of movement 0.5
4 Pdeact,b Base probability of deactivation 0.25
5 Pdiff,b Base probability of differentiation 0.3

Committed Cell properties 
1 NdivD Age before division 5
2 PdivD Base probability of division 0.35
3 PmoveD Probability of movement 0.5
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Figure 2.1: Classification of HSC interaction mechanisms in the BM niche. The 
various known regulatory mechanisms affecting the dynamics of HSCs inside the bone 
marrow are divided into three broad categories. 1. Direct Cell-Cell interaction 
symbolizing the interaction of the HSC with other cells like osteoblasts, CAR cells, etc. 
via direct adhesive contact. 2. Indirect cell-cell interaction wherein the cell influencing 
the HSC dynamics affect it via secretion of signaling molecules which act on the HSC 
through binding with cell surface receptors. 3. Systemic interactions, which include the 
regulatory mechanisms which act through systemic molecules circulated in the blood, eg. 
Oxygen, Granulocyte Colony Stimulating Factor (GCSF) etc.  
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Figure 2.2: Progression of hematopoietic stem cell states. Q, A and D stand for 
quiescent, active and committed progenitor (differentiated) stem cell state respectively. B 
denotes the migrated stem cell from the bone tissue to the blood via sinusoid. Single 
sided arrows denote irreversible change, while two sided arrows indicate reversible 
change. Self renewal is shown by an arrow pointing onto itself.  Dashed arrow shows the 
movement of the committed progenitor from the BM tissue to blood.  The probabilities of 
the transition used for the ABM are indicated on the arrows. Pact – Activation rate, or 
probability of transition from Q to A, Pdeact – probability of deactivation  (A  Q), Pdiff – 
probability of differentiation (A  D). The probability Pmov represents the overall rate of 
movement of HSC type D into the blood stream. The probabilities are replaced by 
corresponding rate constants for the ODE model.  

 

  

Q A D B 
Pact 

Pdeact 

Pdiv,
Pdiv,

Pdiff [ Pmov] 
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Figure 2.3: 2-D Lattice model of Bone marrow for the agent based model. The left 
side of the lattice is assumed to be the endosteal surface, or the inner surface of the bone 
marrow, while the right side is assumed to be the sinusoid. The ‘agents’ as identified by 
the HSCs and support cells are initially randomly assigned to the grid points from which 
they evolve via the rules defined in the text. The color coded lattice points surrounding 
the support cells indicate the ‘sphere of influence’, (8 lattice points neighboring the cell)  
neighborhood  of the cells wherein the secreted signaling molecule is assumed to act. The 
external growth factor has a concentration gradient, with decreasing concentration 
towards the bone side (left, shown in grey) and is depicted in the triangle with gradient 
shading.  
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Figure 2.4: Implementation procedure for the ABM.  
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Figure 2.5: Initial placement of cells in the ABM lattice.  The 2-D lattice of 100 x 100 
is used for the simulation, where prescribed number of cells is placed randomly with the 
following constraints. 1. Quiescent HSCs or Q cells can only be close to the endosteal 
niche in proximity with the SNO cells (spindle shaped N cadherin osteoblast cells). 2) 
Active  HSCs, or A cells can be at either endosteal niche or close to the sinusoid. 3) The 
multipotent progenitors favor a location close to the sinusoid. All other cells are placed 
randomly on the grid, with no overlap. ‘*’ indicates cells are representative of the stromal 
cells which do not directly interact with HSCs. The composition vector for different cell 
types (prcell) used here was [0.0005, 0.0027, 0.0027, 0.0171, 0.0171, 0.0800, 0.0800,   
0.8000] corresponding to the 8 cell types shown in the figure legend.   

 

Towards sinusoid (Increasing x) 
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Figure 2.6: Sample results for base case model.  The model was simulated for a 
representative case with parameters corresponding to homeostasis. The initial conditions 
for the case were taken as per Wilson, et al. 2007. The steady state composition of the 
cell types were found to be slightly different from the reported values of relative 
abundance as reported in the paper, however the above result was found to be consistent 
for a wide range of parameters, indicative of a robust solution. The parameters used in the 
above simulation are as per table 2-A, and the initial composition is as per figure 2.5.  
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Figure 2.7: Simulating high dose chemotherapy.  The model was simulated for a 
representative case of high dose chemotherapy by setting the population of the active and 
multipotent HSCs to zero, but retaining the stem cell. While it takes longer compared to 
the base case (fig. 2.6) to regenerate all the blood population from just the quiescent cell 
type, and the total blood production decreases, the model can predict reconstitution of the 
blood system as indicated by repopulation of the BM niche with HSCs of type A and D, 
along with the sustained production of multipotent progenitors. Note that the initial point 
for the system is not shown -- the first sample point in the system is for MC time = 10. 
The parameters used in the above simulation are as per table 2-A, and the initial 
composition is as per figure 2.5 but with zero probability of active or committed stem 
cells.  
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Chapter 3 

 

3.Model-Based Analysis and Design of a Microchannel Reactor for 

Tissue Engineering 

 

Chapter Summary 
 

Recently developed perfusion micro-bioreactors offer the promise of more 

physiologic in vitro systems for tissue engineering. Successful application of such 

bioreactors will require a method to characterize the bioreactor environment required to 

elicit desired cell function. In this chapter, I present a mathematical model to describe 

nutrient/growth factor transport and cell growth inside a microchannel bioreactor. Using 

the model I first show that the nature of spatial gradients in nutrient gradients can be 

controlled by both design and operating conditions and are a strong function of cell 

uptake rates. Next I extend the model to investigate the spatial distributions of cell-

secreted soluble autocrine/paracrine growth factors in the bioreactor.  Results show that 

the convective transport associated with the continuous cell culture and possible media 
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recirculation can significantly alter the concentration distribution of the soluble signaling 

molecules as compared to static culture experiments and hence needs special attention 

when adapting static culture protocols for the bioreactor. Further, using an unsteady state 

model, I find that spatial gradients in nutrient/growth factor concentrations can bring 

about spatial variations in the cell density distribution inside the bioreactor which can 

result in lowered working volume of the bioreactor. Finally, I show that the spatial and 

nutrient limitations can dramatically affect the composition of a co-cultured cell 

population. The results are significant for the development, design and optimization of 

novel micro-channel systems for tissue engineering.    

 

0.1. Introduction 

 

Continuous cell culture protocols offer the promise of sufficient nutrient supply 

along with continuous waste removal and hence are often preferred for culturing cells to 

higher density or for developing tissue/organs in vitro. Perfusion systems are an 

important class of continuous culture systems and are widely used to culture cells for 

tissue engineering. Microchannel bioreactors have been developed to overcome the 

difficulty associated with design and operation of large complex perfusion systems and to 

have a larger and physiologically relevant surface to volume ratio. Advances in micro and 

nanofabrication techniques have enabled the development of novel designs of 

microchannel bioreactors to culture cells and create viable tissues like bone and cartilage 

in the field of tissue engineering (Andersson & van den Berg, 2004).  Micro-scale 

perfusion systems have been reported for long term culture of hepatocytes, hematopoietic 
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cells, fibroblasts, muscle cell lines and osteoblasts (Allen, et al. 2005; Gu, et al. 2004; 

Horner, et al. 1998; Koller, et al. 1993; Leclerc, et al. 2004; Leclerc, et al. 2006). Most of 

the present approaches to develop such micro-scale systems for cell culture rely on 

previous observations and large number of experimentation to optimize the bioreactor 

and cell culture protocol in such systems. An important research topic in this field hence 

relates to the ability to reproducibly control the cell behavior inside the bioreactor by 

affecting the system design and operating variables. 

A cell’s behavior is governed in part by the microenvironment within which the 

cell resides. Apart from the physicochemical parameters such as pH, temperature, 

nutrient concentration and mechanical stimuli, the bioreactor environment is also 

regulated by the collection of cells residing in it through a complex network of cell-

secreted paracrine and autocrine soluble signals. For example, the epidermal growth 

factor–receptor system in epithelial cells and fibroblasts plays a significant role in cell 

expansion (Lauffenburger & Cozens, 1989) and the bone morphogenetic protein 

signaling system is important in mesenchymal stem cell and chondrocyte differentiation 

(Locker, et al. 2004; Rawadi, et al. 2003).  A key factor to successful and reproducible 

operation of microchannel bioreactors for clinical or fundamental studies hence involves 

characterization of the microenvironment of the bioreactor.  

Mathematical transport models can help to understand the relationships between 

the bioreactor design and operating variables and the microenvironment inside the 

bioreactor and can be especially useful to reduce the expensive and time consuming 

experimentation.  In particular, mathematical models hold promise for defining operating 

windows, hypothesis testing, data interpretation, and optimization of these reactors. 
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Transport in perfusion bioreactors has been studied in various contexts and mathematical 

transport models at various levels of complexity have been developed to characterize the 

microenvironment for wide variety of bioreactor designs (Botchwey, et al. 2003; Ghanem 

& Shuler, 2000; Galban & Locke, 1999; Horner, et al. 1998; Netti, et al. 2003; Williams, 

et al. 2002). Transport of nutrients like oxygen has been extensively studied for various 

reactor geometry and cell types (Allen & Bhatia, 2003; Horner, et al. 1998; Obradovic, et 

al. 2000; Pathi & Locke, 2005; Roy, et al. 2001). Here, I build on the excellent 

background of the available models and develop a generic model based design 

framework for a perfusion-based microchannel bioreactor.  I illustrate the utility of the 

model by considering the example of cell proliferation inside a standard rectangular 

channel bioreactor. I begin by presenting a generic, coupled nutrient transport and cell 

proliferation model and analyze the model for various scenarios. First I present the results 

of the steady state nutrient transport model with constant cell density and interpret them 

to better understand the nature and existence of spatial gradients of nutrients and cell-

secreted autocrine/paracrine molecules inside the bioreactor.  I consider also these 

gradients when recirculation of used media is incorporated.  Next I study the impact of 

the nutrient gradients on the evolution of the cell population inside the bioreactor. 

Subsequently I also investigate the implication of nutrient and spatial limitations on the 

sustained viability and proliferation of a heterogeneous population of cells.  
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3.2. Methods 

3.2.1. Model Formulation 

 

The spatial and temporal changes in the concentration of various species of 

interest (nutrients, metabolites, soluble exogenous and endogenous growth factors) inside 

the bioreactor can be modeled using the reaction diffusion equation. The general mass 

balance equation of soluble component i in the microenvironment of the bioreactor in 

terms of concentration of soluble species (ci) in the media take the form  

netiieii
i RcDc
t
c

,).(. +∇∇=∇+
∂
∂

u      (3.1) 

where Dei is the effective diffusivity of species i, u  is the velocity profile of media inside 

the bioreactor, and Ri,net represents the net volumetric uptake, secretion and degradation 

rate for the species i and is dependent on the cell population density. In cases where the 

cells are adherent and form a domain segregated from the flow layer, the volumetric 

uptake vanishes in the species balance equation in the media domain.  

 The concentration distribution of various species given the reactor geometry, cell-

species interactions in terms of uptake and secretion rate, and also the cell population 

distribution is the model output. It is important to note that the concentrations of nutrients 

can affect the cell population dynamics and the cell population density in turn can affect 

the distribution of nutrient. Quantitative models of cell behavior are, therefore, coupled to 

the nutrient transport models. Furthermore, cell proliferation and differentiation behavior 

is known to be affected by concentration levels of growth factors in various cell types 

including hematopoietic cells and stem cells (e.g. Zandstra, et al. 1997). In such cases, 



61 
 

information on the spatial distribution of growth factors as given by the transport model 

can help to identify the differentiation patterns in the bioreactor. For the current work, I 

consider the case of cell proliferation inside the bioreactor and use the following 

continuous cell growth model to describe the dynamics of proliferating cell population in 

terms of cell density of cell type j (φj)  

jdjjg
j k

t
φφμ

φ
−=

∂

∂
,      (3.2) 

Here μg,j represents the specific growth rate of cell type j, and kd represents the death rate.  

The growth rate μg,j is a function of the nutrient concentration(s) and also the cell density 

(e.g logistic dependence), making equation (3.2) non-linear. I refrain from using a 

complex cell death/loss model that includes, for example, the effects of toxic substances 

or shear stress at the cell surface, or flow induced cell wash out so that I can focus on the 

general design rules coming from a generic model analysis. Furthermore, I know that the 

operating flows fixed based on avoiding cell wash out, would be at low Reynolds number 

(Re ~ 0.001) leading to lower shear stresses. However for application to a particular 

problem, such analysis might be important to add in the model.  

 Equation (3.2) does not have an explicit dependence on the space, but is 

dependent on the spatial dimensions through the nutrient concentration dependence of the 

cell growth rate. The model accounts for heterogeneous co-existing cell populations and 

also for the competition for space and nutrients among them. The model in the present 

form does not account for transition of cell type j to any other cell type through 

differentiation or maturation; however, the formulation does permit the incorporation of 

continuous kinetics based models of cell differentiation (e.g. da Silva, et al. 2003, for 

hematopoietic stem cell differentiation) for a more complete evaluation of the bioreactor 
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performance in advanced tissue engineering applications. Also, in the current study I 

limit our model to non-motile cells, though one could include terms in the cell balance 

equations to account for cell migration (Lauffenburger & Linderman, 1993).  

 In principle the solution of the above equations ((3.1)-(3.2)) can be obtained 

numerically for any given ‘reaction rate’ Ri,net, μg,j , and kd and any reactor geometry. The 

flow profile u can be obtained by using information on geometry and solving the relevant 

fluid dynamics equations. However, information on the system can help us make some 

vital simplifications in the model equations and hence make the solution process more 

manageable. For the current work, I solve the model for the simple case of rectangular 

microchannel reactor geometry as per figure 3.1, which shows the schematic of a 

rectangular microchannel fabricated in PDMS using soft lithography technology or in 

polycarbonate substrate by polymer micromachining. The media flows inside the channel 

using a pumping device from a reservoir whose volume is usually much larger than the 

channel volume (not shown). Although the current study is restricted to the geometry 

shown in figure 3.1, the present simplification should hold for most microchannel 

bioreactors culturing adherent cells, with no or minimal modifications. Also, it should be 

noted that the model formulation and the subsequent development and coupling of the 

transport equations with the cellular proliferation dynamics described here is general and 

can be extended to other reactor geometries and co-ordinate systems.  

 I first consider a once through media flow without recirculation. We can simplify 

the model for the rectangular microchannel based on the channel dimensions which 

usually ensure that we can neglect the changes along the width (W), (W >> H) and hence 

analyze the problem in 2-D.  Further, due to the geometry we can adopt the Cartesian co-
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ordinate system as shown in figure 3.1. Mammalian cells are likely to be adherent and be 

selectively at the bottom of the channel either by themselves or encapsulated in 

polymeric carriers dividing the channel into two domains. In the top domain, there are no 

cells and the nutrients are transferred to the bottom cell domain by diffusion. We hence 

hypothesize a geometry model where the cell domain of relatively small thickness δ is 

adjacent to the unidirectional flow domain. With this assumption the mass balance 

equation (3.1) in the flow domain is coupled to the cellular uptake/secretion through a 

boundary condition at the interface and the volumetric uptake rate (Ri) vanishes.  Further, 

we can neglect the diffusion in the axial direction compared to the convective flux and 

the volumetric degradation term to arrive at the following simplified equation for species 

conservation in the flow domain: 
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The flow profile in the reactor shown in figure 3.1 can be solved explicitly using the 

Navier-Stokes equation with the incompressible assumption using a computational fluid 

dynamics approach. However for the current work, considering the small conduit volume, 

it is sufficient to assume a laminar flow profile in the flow domain. We assume a 

unidirectional flow in the axial direction, and use the steady state velocity profile for 

pressure driven flow between two plates for low Reynolds number given by  

( )H
y

H
y

x uyu −= 16)(      (3.4) 

where <u> is the average velocity and H is the height of the flow domain, which is 

approximately equal to the height of the microchannel for a cell mono-layer (δ<< H).  
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The general initial (equation (3.5) & (3.6)) and boundary conditions (equation (3.7)-(3.9)) 

for the set of equations ((3.2)-(3.4)) are 

0)0,,( =yxci       (3.5) 
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where φj0 denotes the initial (cell seeding) density of cell type j. The flux boundary 

condition at the upper surface of the media flow layer (FU) is determined by the 

permeability of the material in which the microchannel is etched out. PDMS (poly 

dimethyl siloxane) can allow significant fluxes of gases across into the media due to its 

high permeability, while diffusivity of gases in polycarbonate is not significant. For 

specific consideration of gaseous components like oxygen, we can use a mass transfer co-

efficient (kl,a) to characterize the diffusion of gaseous nutrients from the PDMS layer, 

where ci
sat denotes the solubility of component i in PDMS. 

)(,, i
sat

ialiU cckF −=      (3.10) 

 

 For other nutrients and growth factors we assume FU is negligible. The flux 

boundary condition at the lower surface (equation (2.8)) of the flow layer (FL) is 

determined by the uptake rate of cells and the cell density, and hence is coupled with the 
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cell population balance equation. The axial boundary condition at the inlet is the Dirichlet 

type (equation (3.9)), with specified concentration. 

Recirculation of media in the bioreactor offers the promise to retain the cell-

secreted growth factors, and can be achieved in two possible manners as shown in the 

figure 3.2. In either case, we need to modify the boundary condition at the reactor inlet 

(equation (3.9)) to account for the recirculation, which can be done by using the mass 

balance equations for the recycle loop. For example in case of scheme B for constant inlet 

velocity, defining  the recirculation ratio r as the fraction of the outlet flow which is 

recycled back, the inlet concentration (c*) can be calculated from the media 

concentration (cin) and the reactor outlet concentration (cout) for species i 

outiinii rccrc ,,
* )1( +−=         (3.11) 

3.2.2. Constitutive Relationships for uptake/secretion and cell proliferation rates 

 

 The chemical species under consideration could be essential growth factors, 

nutrients, or the products of cell metabolic activities. Most nutrient or metabolite uptake 

rates are known to follow saturation kinetics and modeled  as Michaelis-Menten (MM) 

kinetics for a wide variety of cells and nutrients (Allen & Bhatia, 2003; Ben-Abraham, et 

al. 2003; Obradovic, et al. 2000), and the values of the MM parameters can be measured 

from experiments done on static culture protocols.  The mathematical expression of the 

specific uptake rate for species i by cell type j (Rup,ij) would thus take the form 
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Vmax,ij and Km,ij are the MM parameters. The actual uptake rate depends on the specific 

uptake rate and the local cell density and it can be assumed that the actual uptake rate is 

directly proportional to the cell density (Jorjani & Ozturk, 1999). The corresponding flux 

boundary condition at the cell-media interface for a general case with N cell types hence 

would be ∑∑
==
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 The model in its present form can also be extended for cell-secreted molecules, 

e.g. growth factors and other chemical signaling molecules which may act in an autocrine 

or paracrine manner and play an important role in governing cell viability and function. 

The mathematical modeling of autocrine growth factor secretion and their regulation has 

been studied using various mathematical approaches to understand the associated 

signaling pathways (Bhalla & Iyengar, 1999; Shavartsman, et al. 2001), particularly for 

the EGF system (Wiley, et al. 2003). However, for the present study we consider an 

autocrine growth factor affecting the cell growth rate, and consider the case where the 

secretion of the growth factor is constant for each cell (i.e the secretion is not regulated), 

and is taken up by the cells in a dose dependent manner described by MM kinetics. We 

use this simplistic set-up to understand the general guiding principles for bioreactor 

design and optimization, particularly for reactors with recirculation. For the case of a 

soluble growth factor described above, the flux conditions at the domain bottom (y = H) 

for homogenous population of a single cell type would be  
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The subscripts on the cell density φ have been dropped as we consider just a single cell 

type for this case. qgf represents the specific rate of secretion of the autocrine growth 
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factor while Vmax,gf and Km,gf are the uptake parameters. Important simplifying 

assumptions in the above model for cell secreted soluble growth factor are that within the 

cell domain the uptake of the species is spontaneous and without any further diffusive 

resistance and that the secretion rate (qgf) is constant.   

We use a logistic cell growth model with substrate inhibition kinetics for growth rate 

dependency on nutrient concentration (Pathi, et al. 2005).  The later is chosen to reflect 

the impact of nutrients like oxygen on cell growth as it is known that conditions with high 

concentration of oxygen can be detrimental for cell growth, while lower concentrations 

can decrease the growth rate. The general expression for cell growth for cell type j, 

assuming limiting nutrient species i, hence can be taken as: 
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where, φmax is the maximum cell density or carrying capacity of the system, and ci 

represents the concentration of limiting nutrient species. The growth model parameters 

k1,ij  k2,ij and k3,ij represent the impact of concentration of nutrient species i on the growth 

of cell type j. A value of parameter k,3,ij close to zero indicates the standard Monod type 

kinetics, while a larger value indicates detrimental effect of the nutrient on cell growth at 

higher concentrations. The summation is carried over all the cell types, and the product is 

over all the limiting nutrient/growth factor species. 

3.2.3. Solution to model equations 

 We solve the system of equations (equation (3.2) - (3.9)) in a non-dimensional 

framework as a convenient way to explore the large number of parameters in a systematic 
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manner. Table 3-A gives the non-dimensionalization scheme for variables and the key 

dimensionless groups involved. The model can be solved for various cases of interest, 

making appropriate changes in the general model equations. The model equations in its 

working/non-dimensional form for the general case as well as the specific cases described 

below are tabulated in Table-3B.  

 The partial differential equation ((3.1) or (3.3)) governing the nutrient/growth 

factor distribution can be decoupled from the cell proliferation dynamics equation (2.2) 

by assuming constant cell density for results which are valid for short times. Further, the 

model equations can be solved at steady state to arrive at the steady state spatial 

distribution of nutrient and/or growth factor inside the reactor for a given cell population 

density. Solving the fully coupled unsteady state model in its full form (equations (2.2)- 

(2.9)) is computationally expensive, as the time step required to solve the species 

conservation equation is much smaller than that required by the cell proliferation 

equation. The cell proliferation time scale characterized by the doubling time (td) is of the 

order of hours while the residence time (tr) of the media inside the reactor is of the order 

of minutes (tr = L/<u>). However, this knowledge leads to a useful approximation of the 

model equations where we can assume that while considering the dynamics of cell 

proliferation, the concentration field is always at the steady state. This pseudo steady 

state analysis is valid for small values of λ (defined as the ratio of two time scales, λ = = 

tr/td = L/ (td<u>)) and enables us to solve the cell population balance equation in its 

unsteady form, while the species conservation equation can be solved at steady state. We 

use these results to analyze the effect of nutrient gradients on cell density distribution and 

vice-versa.  
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 The dimensionless analysis broadens the applicability of the model results and 

undermines the need to get the actual parameter values for all possible experiments for 

the present study. Nevertheless, the model parameters for simulation are chosen to reflect 

literature data whenever available. We use the published data for reactor geometry and 

oxygen consumption of hepatocytes (Allen & Bhatia, 2003; Roy, et al. 2001) for our 

calculations. Further, the oxygen uptake is reported to vary up to 2 orders of magnitude 

for wide variety of cell types (Guarino, et al. 2004) and hence we vary the parameter Da 

to simulate the condition corresponding to different cell types. Similarly, the uptake of 

the cell secreted autocrine factor is varied based on estimation of the range of autocrine 

ligand secretion rates as reported earlier (Oehrtman, et al. 1998). The base case values of 

the parameters as estimated from literature cited above are tabulated in Table3-C. 

 Model equations were solved numerically using finite element software FEMLAB 

(v. 3, Consol AB Inc).  Model equations in their non-dimensional form (Table 3-B) were 

solved for a representative set of parameters (Table 3-C). We study the effect of 

recirculation by simultaneously solving the species balance partial differential  (equations 

(3.3)-(3.9)) and the mass balance equations in the recycle loop (equation (3.10)) in an 

iterative manner. Analytical solutions for the given set of equations can be found for a 

uniform velocity profile and zero order oxygen flux and constant cell density, and these 

were compared to the numerical solutions to confirm the sanctity of the numerical 

solution procedure.  Furthermore, steady state model results for the case of constant cell 

density and without recirculation (case (b) of table 3-B, with Sh = 0) were compared and 
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were found to be in agreement with the published numerical solutions for the outlet 

concentration of oxygen in a flat bed culture of rat hepatocytes (Allen & Bhatia, 2003). 

 

0.3. Results and discussion 

3.3.1. Steady state model analysis at constant cell density: nutrient distribution 

 

 A good measure of the performance of the bioreactor is the ability of the 

bioreactor to sustain a cell population and provide it with the required nutrients to ensure 

desired cell function and viability. The depletion of nutrient from the media by cell 

uptake as it flows downstream of the reactor creates axial nutrient gradients on the cell-

media interface which may not be desirable.  Non-dimensionalization of the model 

equations (Table 3-B) shows that two dimensionless groups are important in determining 

the concentration distribution of the species inside the bioreactor, Pe/α (= <u>H2/(DeL)) 

and the Damkohler number (Da=VmaxφH/Decin). The dimensionless group Pe signifies the 

Peclet number ( Pe = <u>H/De), and it represents the ratio of convective transfer of 

species in the axial direction to the diffusive flux within the channel directed towards the 

lower end of the channel, i.e towards the cell domain. The Damkohler number is a 

measure of relative rates of the total cellular uptake and the diffusive flux from the bulk 

media. The value of Da is largely dependent on the cell type and its metabolic state, and 

also includes the cell density.  For example here, the value of Da = 0.21 for oxygen 

transport corresponds to the rat hepatocytes (Vmax=3.8 × 10-16 molcell-1s-1) cultured at a 

cell density of 2.1× 109 cells/m2. 
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 We first simulate the condition of the reactor for a constant cell density.  Figure 

3.3 shows the effect of the parameters Pe/α and Da on the non dimensional outlet 

concentration (Cout) of the nutrient species at the cell-media interface (X =1, Y=1). The 

outlet concentration is scaled to the inlet concentration, and hence the dimensionless 

concentration (C) of nutrient at the inlet is equal to unity, making (1- Cout) the effective 

concentration drop or axial gradient inside the bioreactor. For a given cell density and 

cellular uptake rate (fixed Da), as we increase the parameter Pe/α, the convective flux 

dominates and the outlet concentration of the nutrient increases.  The diffusive flux of 

nutrient across to the cell domain is also higher due to higher concentrations in the media 

domain (not shown). Increased convective flux signifies higher influx rates, and also the 

fact that nutrients are pushed through the reactor faster than they can diffuse and be 

consumed by the cells. We hence conclude that increasing flow rate or changing the 

operating parameters so as to selectively increase Pe/α can lead to decreasing the axial 

gradients inside the bioreactor. Further, for a given Pe/α, an increase in Da is reflective of 

the increased rates of consumption by cells, and hence a corresponding decrease in the 

outlet concentration or increased nutrient gradient is observed.  

 Further useful conclusions regarding the design and operation of the bioreactor 

can be drawn from figure 3.3.  Of the variables included in the two dimensionless groups, 

we can roughly classify the media flow rate and the inlet concentration of the nutrient 

(<u>, and cin) as operational variables. For example, during the operation of the 

bioreactor, the media flow rate can be used for controlling the concentration gradients of 

the nutrient so that the concentration of a particular nutrient does not fall below a certain 
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threshold value inside the reactor. However, the choice of the media flow rate is usually 

limited by the fact that cells cannot be subjected to high levels of flow associated shear 

stress, and hence the media flow rate can only be used as a fine control. Nevertheless, the 

graph clearly also gives the options of designing the reactor geometry variables (L, H) 

which can have similar effect on the concentration gradient. At the design stage, we can 

determine, from the graph, the design variables for culturing cells to a given cell density 

so that the concentration of the nutrient is always above the prescribed minimum value. 

Conversely, for a given reactor geometry and maximum flow rate (e.g. determined by the 

reactor limitations and shear stress considerations), the model results can be used to 

estimate the maximum value of the cell density the bioreactor can support by estimating 

the value of Da for the desired outlet concentration of nutrient , given the value of Pe/α.  

 The results of figure 3.3 can also be used to quickly answer non-trivial design 

questions. For example, the effect of length on the axial gradients is fairly intuitive, as 

increasing the length will increase the gradients by decreasing the parameter Pe/α, but the 

effect of channel height cannot be readily predicted. The group Pe/α has a quadratic 

dependence on the height, while the Da is directly proportional to height. Hence 

increasing the height of the channel will increase Pe/α, shifting the operating point on the 

curve on figure 3.3 towards the right, and increase Da, shifting the operating point down, 

but more to the right than down. Thus depending on the location of the original operating 

point, increase in height can decrease, increase or have negligible effect on the outlet 

concentration of the nutrient. For example, as per figure 3.3, if we were to double the 

height when operating at a value of Da=1.05, and Pe/α value less than 1, the new 

operating point will be shifted to the curve with Da = 2.1, and a Pe/α value of about 4, 
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increasing the outlet concentration. If, however, the original operating point was close to 

Pe/α =2, we would see an effective decrease in the outlet concentration, or increased 

axial gradient. In general, the channel height can be used to adjust the nutrient 

distribution in the reactor and the effect of changing the height on the cell culture can 

give us useful insights on the operating point of the bioreactor.   

 In addition to the supply of nutrients by the media flow, important nutrients like 

oxygen can be supplied by surface aerators or membrane oxygenators (Roy, et al. 2001). 

We extend the results presented by Roy, et al. in the context of operation of the bioreactor 

as done. Figure 3.4 shows the dimensionless outlet concentration of gaseous nutrient for 

the case of non-zero flux from the PDMS layer. The magnitude of diffusion from the 

PDMS is governed by the value of the Sherwood number (Sh) defined as the ratio of the 

diffusive transfer rate from the PDMS to the diffusion rate in the media. (Sh = kl,aH/De). 

The results indicate that the diffusive flux from the membrane or PDMS layers is 

important for low values of Pe/α, while at higher values of Pe/α convective flux 

dominates and diffusion from boundary does not affect the concentration of the species at 

the cell interface. The above results can be interpreted as follows:  For the case of slow 

diffusion of the species across the media, and/or large channel heights, the molecules of 

the species are driven out by the media flow faster than they then diffuse to the cell layer, 

and hence for higher values of Pe/α (= <u>H2/(DeL)) we see a corresponding saturating 

behavior of the concentration variable for various values of Sh. Clearly the use of highly 

permeable material or external supply using membranes cannot help in such cases, and a 

significant alteration in the design or operation of the bioreactor is warranted. 

Specifically, the results indicate that the model can be used to infer the optimal design to 
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balance the nutrient delivery using the flow and surface transfer and keep a desired level 

of nutrient inside the bioreactor. 

3.3.2. Steady state model analysis at constant cell density: Transport of cell-secreted 

growth factors 

 

We illustrate the use of model analysis for soluble cell-secreted growth factors by 

considering a simple case of a single representative growth factor which acts in an 

autocrine manner in a homogeneous cell population. Non-dimensionalization of the 

model (Table 3-B) gives two relevant Damkohler number groups: Dain (qgf φH/(DKm)), 

associated with the influx of the soluble growth factor to the flow domain by the cells, 

and Daup (Vmax,gfφH/(DKm)), associated with the uptake as described above. Both 

dimensionless groups represent the ratio of rates of secretion/uptake to the diffusive flux 

from the flow domain. Importantly, we define the parameter γ as the ratio of the influx to 

uptake Damkohler numbers (γ=Dain/Daup). Larger values of γ are indicative of ample 

secretion of the growth factor and therefore the growth factor receptors are most likely 

saturated and loss of growth factor due to convective transfer may not be important. 

However, when γ is closer to unity, the loss of growth factor by media flow can affect the 

cell culture. Also, even when γ is large, the convective losses might dominate the 

secretion rates at high Peclet numbers, and the growth factor concentration can drop 

considerably.  
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Figure 3.5 shows the effect of the operating variable group Pe/α on the outlet 

concentration of the cell secreted autocrine growth factor. As we increase the media flow, 

or change other parameters in the group (see Table I) so as to increase the value of Pe/α, 

we are effectively pushing larger volumes of the media in the given time, thereby 

decreasing the concentration of the autocrine growth factor. This argument is valid 

irrespective of the value of γ or Da; however, the magnitude of the decrease depends on 

the values of γ and Da. Also, increasing the value of γ increases the rate of secretion 

compared to the uptake, and hence the outlet concentration of the growth factor increases 

as γ is increased. Similarly, an increase in the value of Da is indicative of an increased 

uptake/secretion rate compared to diffusive flux, and hence increased Da increases the 

outlet concentration of the growth factor.  

The results can be interpreted in a slightly different manner by comparing the 

continuous culture experiment modeled here with a static culture protocol. For a static 

culture all of the growth factor is retained inside the media until the media is changed, 

typically every 2-3 days. For the continuous culture the media is continually replaced, 

and there is loss of the cell-secreted soluble growth factor through the media outflow.  

One way to compare these two protocols is by analyzing the fraction of autocrine growth 

factor lost. We can calculate the fraction of autocrine growth factor lost in the continuous 

culture experiment by dividing the integrated convective flux at the outlet to the total rate 

of production of the growth factor inside the reactor.  Mathematically it is equivalent to 

the following equation 
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  This is valid as we do not explicitly consider the degradation of growth factor in 

the model, and as per mass balance, the fraction retained inside the reactor is consumed 

by the cells, or in other words binds to the receptors and is functional.   

Figure 3.5 shows the model results for the fraction of growth factor lost due to 

convective transport for different values of γ and Da. There is a significant loss of growth 

factor even for higher values of  γ at the lower values of Da. Physically this implies that 

in the case of low density cell cultures, or with small molecules (greater diffusivity) 

which are loosely bound to the cell receptors, there is a high probability of the growth 

factor being lost in the media outflow. This result is especially relevant for the initial 

times during the cell culture, and hints that  a possible strategy to retain the growth 

factors would be to start with a lower flow rate initially, and then ramping up the flow as 

the cells proliferate inside the reactor.   

3.3.3. Steady state model analysis at constant cell density: Effect of media recirculation 

 

One way to increase growth factor retention inside the bioreactor is to recycle a 

fraction of the outlet stream. For example, advances in the microfluidic Braille valve 

controls for microchannel reactors (Gu, et al. 2004) can be used to design microchannels 

with flow recirculation. Such a system can be designed based on two possible schemes as 

shown earlier in figure 3.2. For most real systems the situation is much closer to the 

scheme (B). For recirculation scheme (A) the effective concentration of the growth factor 
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inside the reactor would be a balance of the increasing effect brought about by 

recirculation and the decreasing effect due to the increased flow as per figure 3.5. 

Alternatively, scheme (B) would tend to increase the concentration without any flow 

effect.  Furthermore, model analysis of scheme (B) can give a clear understanding of the 

effect of recirculation without the confounding effects of a changing effective flow rate 

inside the reactor, and so we study the effect of recirculation as per scheme (B).  

Figure 3.7a shows the effect of the recirculation ratio r on the axial distribution of 

the growth factor concentration at the cell-media interface for scheme (B) for the case of 

γ=1. As expected, an increased recirculation ratio increases the concentration of the 

autocrine growth factor inside the reactor and also it is seen that the concentration of the 

autocrine growth factor builds up as we move downstream. However it should be 

considered that recycling the exit fluid will also, however, mean that effective 

concentration of the nutrient in the bioreactor is lowered. Figure 3.7b shows the spatial 

distribution of the nutrient concentration for different recirculation ratios for same 

operating conditions. Clearly, the larger the recirculation ratio, the lower is the nutrient 

concentration inside the reactor. While we gain in terms of growth factor retention by 

recirculation, a key nutrient may be depleted. The choice of the fraction to recycle hence 

will have to be optimized for adequate retention of growth factor and also adequate 

nutrient availability. Figure 3.8 shows the effect of recirculation on both the growth 

factor retained inside the reactor and the nutrient outlet concentration for a conservative 

case of γ=1 and a constant Pe/α. The optimal recirculation ratio can be determined by 

predefined thresholds of nutrient/growth factor concentrations that are required for 

functioning of the cells. Clearly when both the criteria are not met with one operating 
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condition, it would be required to supplement the media with extra growth factor or 

nutrient. Furthermore, 3.8 shows the effect of the Damkohler number on the location of 

the optimal recirculation ratio. Clearly with larger values of Da, the depletion of the 

nutrient is more significant, and so the optimal recirculation ratio would tend to be lower 

than when operating at higher cell densities. Physically, it can be argued from the results 

that cell culture processes with larger cell density can be controlled more effectively with 

small amounts of recirculation for cases where the value of  γ is close to unity.   

Cell growth and differentiation is mostly governed by cell secreted molecules, for 

example the role of BMP in osteoblast differentiation is well known. Furthermore 

experiments with osteoblastic cell lines in microfluidic environment have revealed the 

influence of media flow on the cell growth and differentiation (Leclerc et al, 2005). 

Although the actual effect of growth factor washout cannot be interpreted from such 

experiments due to confounding of various processes including cell-wash out, regulation 

of growth factor secretion etc, we believe that going forward model based recirculation 

strategies can help to efficiently cue the cells towards the desired behavior.  

3.3.4. Unsteady state model analysis: Long term cell proliferation 

 
 The long term performance of the bioreactor can be studied by understanding the 

cell response to the nutrient gradients inside the bioreactor.  Figure 3.9 depicts the results 

of the solution of the coupled model with cell proliferation and the nutrient mass balance. 

The model results indicate that the nutrient gradients inside the bioreactor can affect the 

cell density distribution as cells proliferate inside the reactor. The higher concentration of 

the nutrient at the inlet favors rapid proliferation of the cells near upstream, which acts to 
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deplete the nutrient and thus the nutrient concentration decreases along the axial 

dimension of the reactor. The cells downstream hence proliferate slowly, and in extreme 

cases can also suffer from starvation resulting in cell death. Clearly, then, gradients in 

nutrient concentration can limit the working volume of the reactor channel by selectively 

proliferating only upstream sections of the channel. From figure 3.3, we know that the 

nutrient gradients can be minimized by for example, increasing the inlet concentration 

(decreasing Da), or increasing the flow rate (increasing Pe/α). More interestingly, it may 

be sometimes desirable to have gradients of chemical signaling molecules inside the 

channel; for example in applications involving tissue engineering of liver, the gradients 

of oxygen inside the reactor can simulate an in vitro model of zonation which is 

important in developing bio-artificial liver and also for studying drug metabolism in liver 

(Allen & Bhatia, 2003). In this scenario, the model could also be used to develop an 

operating strategy to ensure that all cells proliferate equally during the initial proliferation 

stage, while appropriate environments can be provided at a later stage of development by 

changing the operating conditions inside the reactor. 

Experimental observations (Gu, et al. 2004) indicate that even when initially the 

cells are seeded uniformly inside the channel, the cell density distribution evolves a 

dependence on the axial dimension, presumably in response to the gradients of nutrient 

concentrations inside the reactor as indicated by the model results presented here. Using 

the information on cell characteristics and the model results as shown in 3.3, one could 

design and operate the reactor to avoid cell density gradients in the reactor for such 

systems. The model results can also provide useful diagnostic tools to better understand 

the performance of the bioreactor.  A difference in the immobilized cell density at the 
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upstream and downstream of the reactor could be indicative of the fact that there are 

significant gradients in essential nutrients or growth factors (or possibly toxic metabolic 

products) inside the reactor. Furthermore, higher upstream cell density probably means 

that there are nutrient(s) limitations inside the reactor and hence the operating point 

should be shifted so as to minimize the gradients inside the reactor.  Alternatively, if the 

cell density is higher downstream in the reactor, it could mean that an autocrine growth 

factor is limiting or that there is a possible toxic effect of higher concentration of any 

nutrient at the inlet, and hence a model based recirculation strategy based on figure 3.8 

could be devised.   

3.3.5. Effect of cell type heterogeneity 

 

 Novel tissue engineering applications involve the co-culturing of different cell 

types to achieve a functional tissue or organ. The introduction of different cell types 

inside the bioreactor can introduce several levels of complexities in the design and 

operation of the bioreactor in terms of sustained viability, growth and function of all the 

cell types.  We demonstrate the use of the model by considering the case of cell 

proliferation in a co-culture with two cell types with doubling times td1 and td2, and we 

assume that there is a maximum carrying capacity of the reactor (Φ1 + Φ2)max.  

 Both nutrient and spatial limitations govern the time evolution of the individual 

cell densities, and in general the composition of the cell co-culture will change over time.  

As shown in figure 3.9 for the case of td1=16 h and t d2=32 h, when the initial cell 

population is an equal mix of cell types 1 and 2 (Φ2/Φ1=1), the conditions favor the 

proliferation of cell type 1 and the cell population becomes largely of cell type 1 over 
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time.  Thus to achieve a long term co-culture of a specified composition, one must 

determine the appropriate initial mix to seed the reactor.  The model can be used to 

calculate the initial cell densities of the individual cell type required to achieve the 

specified target composition at confluence. For example, in the case described above in 

figure 3.10, if we want equal proportion of both cell types, starting with initial cell 

compositions of Φ2/Φ1~5, one can achieve a target composition of Φ2/Φ1~1.      

 Although the full set of model equations must be solved to arrive at the plots 

shown in figure 3.9, one can obtain a useful estimate of the required initial densities of 

cells to achieve a final target composition by considering spatial, but not nutrient, 

limitations in the reactor (Table 3-B, case (e)). Indeed, assuming negligible cell death, we 

can simplify the ODE to arrive at the following relationship between the cell densities of 

the two types.  
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Φ
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Φ
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d
d

     (3.17) 

where a is the ratio of the doubling times of the two cells types given by td2/td1. We have 

used the fact that the growth rate in the exponential regime follows the simple 

relationship μg,max = ln(2)/td. Equation (3.15) can be used to estimate the initial 

composition required to achieve a target final composition in a simple manner without 

going through the full model solution. For the present case, we can back calculate the 

initial conditions required to achieve the final target composition (~ Φ1 = Φ2 = 5) for the 

given value of parameter a (=2) which gives the value of Φ1,0 = 0.15, and Φ2,0 = 0.85 

resulting in the ratio (Φ2/Φ1)τ=0 = 5.67. Hence, it can be seen that even in the presence of 
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the nutrient gradients (figure 3.9b), the estimate from the ODE model using the analysis 

described above remains reasonable.  

 The ability to maintain a composition of cells in proliferating cell cultures can 

prove to be crucial in some important tissue engineering applications, e.g. in culturing 

primary cells consisting of adult stem cells (Koller, et al. 1997). Primary cells are 

inherently heterogeneous and adult stem cells form a very small percentage (< 0.001%) 

of the cell population. The survival and controlled differentiation of these stem cells may 

require the presence of multiple cell types in a reactor. Model based analysis as described 

here can help to understand and overcome some of the problems encountered in such 

culture processes.  

 
 

0.4. Conclusion 

 

Microchannel reactors for tissue engineering are associated with a vast and 

largely uncharacterized design space and the design and operation of these bioreactors 

can be aided by mathematical modeling. We present here a coupled model for 

nutrient/growth factor distribution and cell proliferation in the microchannel bioreactor 

and use it to show how operating parameters (e.g. flow rate, recirculation) and design 

parameters (e.g. channel height) can influence the cell growth in the bioreactor. We 

believe that models formulated on the basis of known qualitative or quantitative 

information on the systems of interest can be used to narrow the experimental design 

space, and can help in design and optimization of the bioreactors along with offering an 

insight into the fundamental functioning of such systems. 
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Table 3-A: Non-dimensional variables and groups 

 

Dimensional 
variable/parameter Description Dimensionless 

variable/parameter Definition 

c Concentration C 

C = c/cin OR  

C = c/Km 

x Axial distance X X = x/L 

y Height dimension Y Y = y/H 

ux Velocity U U = ux/<u> 

t Time τ  τ = t/td 

φ Cell density Φ Φ = φ/φ0 

k1 
Cell growth model 
parameter K1 K1 = k1*cin 

k2 
Cell growth model 
parameter K2 K2 = k2*cin 

k3 
Cell growth model 
parameter K3 K3 = k3*(cin)2 

Dimensionless 
groups Description Definition 

α Geometric ratio α  = L/H 

Pe Peclet number Pe = <u>H/De 

Da 

Damkohler Number 

Da = VmaxφH/(Decin) (Nutrient) OR  

Daup = VmaxφH/(DeKm) (Growth factor, uptake) OR 

Dain = qφH/(DeKm) (Growth factor, secretion) 

Sh Sherwood Number Sh = kl,aH/De 

γ 
Ratio of influx to 

uptake of growth factor γ = Dain/Daup = q/Vmax 

λ Ratio of time scales λ = L/ (td<u>) 



84 
 

Table 3-B: Model equations and boundary conditions 
 
 

# Case Working/Dimensionless Equations Initial and boundary conditions 
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1 c* is the concentration scaling variable. It is equal to the inlet concentration cin for nutrients, and equal to 
MM parameter Km for the autocrine growth factor. 
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Table 3-C: Model parameters 
 

Parameter Value Units 
General parameters  

L 5.5 cm 

H 100 μm 

W 2.8 cm 

<u> 2.0× 10-3 m/s 

φ0 2.1× 109 cells/m2 
Parameters for nutrient distribution simulation (Allen & Bhatia, 2003) 

Vmax 3.8 × 10-16 mol/s/cell 

De 2.0 × 10-9 m2/s 

cin 0.19 mol/m3 

Km 0.006975 mol/m3 
Parameters for autocrine factor distribution simulation2 

Vmax 1.66× 10-22 mol/s/cell 

Q 1.66× 10-2 mol/cell/s 

De 1× 10-10 m2/s 

cin 0 mol/m3 

Km 1 μmol/m3 
Parameters for cell growth simulation3 

K1 6 - 

K2 2 - 

K3 5 - 

(tdμmax) 0.693  

(tdkd) 0.0693  

φmax 4.2× 109 cells/m2 

φ0 4.2× 108 cells/m2 
 

 

 

                                                 
2 Estimated values based on Oehrtman, et al. 1998 
3 The parameters for the cell proliferation model (K1, K2, K3) were estimated roughly from the data on the 
doubling times of cells in media of different glucose/serum concentrations as reported by Guarino, et al 
(2004) and were chosen so as to have the maximum growth rate at dimensionless concentration value C = 
0.5.  
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Figure 3.1: Schematic representation of rectangular microchannel bioreactor 
geometry model (side view). The media flows in the x direction and the cell population 
is assumed to be selectively located at the bottom of the channel (shown as shaded 
region) at y = H dividing the microchannel into two domains: the flow domain and the 
cell domain.  Usually for monolayer cultures δ<<H, and the width of the channel (W) is 
large enough so that the model can be analyzed in two dimensions.  
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Figure 3.2: Two possible schemes for recirculation. Q denotes the volumetric flow 
rate, c denotes the concentration and r is the recirculation ratio defined as per the figure. 
In scheme (A) the inlet flow rate is kept constant, so that the flow inside the channel is 
changed when the recycle fraction is changed, while in scheme (B), the flow across the 
microchannel is kept constant and the inlet flow is adjusted based on the recycle fraction.  
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Figure 3.3: Steady state non dimensional exit concentration Cout at the cell-media 
interface (at X = 1, Y = 1) as a function of the non dimensional group Pe/α for 
constant cell density. The curves are shown for various values of Damkohler number 
(Da) shown in the figure. The base case parameter values (for Da = 0.21) are as per Table 
3-C. The concentration is scaled w.r.t the inlet concentration set at cin = 190 μM. 
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Figure 3.4: Steady state non dimensional exit concentration Cout of gaseous 
nutrients at the cell-media interface (at X = 1, Y = 1) as a function of the non 
dimensional group Pe/α for constant cell density and for non zero values of diffusive 
flux from the upper boundary. The curves are shown for various values of Sherwood 
number (Sh) shown in the figure. The base case parameter values  are set at are as per 
Table 3-C and set at Da = 0.21. The concentration is scaled w.r.t the inlet concentration 
set at cin = 190 μM. 
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Figure 3.5: The dimensionless outlet concentration Cout of the cell secreted autocrine 
growth factor at the cell-media interface (at X = 1, Y = 1) as a function of the 
operating variable group Pe/α for various values of ratio γ and Da. The concentration 
variable is scaled by the uptake parameter Km,gf , set at 1 nM. The base case parameters 
values (for Da = 0.349) are as per Table 3-C. It can be seen that the dependence of 
dimensionless concentration of the autocrine growth factor on the value of Da is 
approximately linear for constant γ in the range of Pe/α described in the figure.  
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Figure 3.6: The fraction of the cell secreted autocrine growth factor lost as a 
function of the operating variable group Pe/α for various values of ratio γ and Da. 
The fraction is calculated from the results of the model using the relationship 
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domain. qgf is the rate of secretion of the growth factor. The fraction lost varies over a 
very small range (0.95 -0.99) for  values of Pe/α  in the range 1.5-35 for Da = 0.0349 (not 
shown). 
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Figure 3.7: Effect of recirculation ratio r on the dimensionless concentration (C)  of 
the autocrine growth (a) and nutrient concentration (b) along the dimensionless 
axial distance (X) at the cell media interface (Y =1). The results are shown for the base 
case parameters for both the nutrient and the autocrine growth factor concentrations as 
per Table 3-C. 
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Figure 3.8: Optimization of the recirculation ratio for adequate growth factor 
retention and nutrient availability inside the reactor. The fraction of autocrine growth 
factor retained (f1, f2) and the non dimensional outlet concentration of the nutrient at the 
cell-media interface (C1, C2) are plotted as a function of the recirculation ratio. Results 
for two different values of Da based on the nutrient uptake rates are shown. Da = 0.105 
corresponding to c1, f1 and Da = 0.0525 corresponding to c2, f2.  The parameter γ is set 
to unity and other parameter values are as per Table 3-C, while cell density value is 
changed to set the value of Da as indicated. 
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Figure 3.9: Effect of nutrient gradients on the cell density distribution inside the 
bioreactor. We show the impact of nutrient gradients using two example cases; case-1 
(solid lines) with significant axial gradients, and case-2 (broken lines) with negligible 
depletion of the nutrient. The dimensionless concentration of nutrient at the cell-media 
interface along the non dimensional axial distance of the reactor is shown in figure (a), 
for various times (τ = 6, 12, 15) for both the cases. (b) shows the time evolution of cell 
density as a function of the non dimensional axial distance of reactor. Initially the cell 
density is assumed to be uniform (Φ = 1).  Cell growth, reactor operation, and nutrient 
uptake parameters are as per Table 3-C.  
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Figure 3.10: Effect of cell heterogeneity on the proliferation of cell co-culture of two 
cell types, with doubling times of td1=16 and td2=32 hours and with dimensionless 
bioreactor carrying capacity (Φ1 + Φ2)max= 10. (a) Both, the composition of the cell 
population represented by Φ2/Φ1 and the total cell density (Φ2 + Φ1) are shown as a 
function of dimensionless time τ ( = t/td1) for two different initial conditions. The cell 
density shown is averaged over the length of the reactor. Broken lines represent the 
dynamics of the culture starting at initial composition of by Φ2/Φ1=1, which also is the 
target composition (shown as the line Φ2/Φ1 = 1 in the figure). Solid lines are model 
results starting with an initial composition as estimated by model based on the doubling 
times. (Φ2=0.15, Φ1=0.85). (b) Dimensionless outlet concentration of the nutrient species 
at the cell-media interface for both the initial conditions.  The maximum carrying 
capacity of the reactor by space considerations is 10 times the initial cell density and 
signifies confluence shown as the line Φ1+ Φ2 = 10 in the figure.  The uptake parameters 
for the two cell types are Vmax,1= 1.9e-16 mol/s/cell, Vmax,2 = 9.5 e-17 mol/s/cell. The 
other parameters are as per Table 3-C. 
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Chapter 4 

 

4.Quantitative Inference of Cellular Parameters from 

Microfluidic Cell Culture Systems 

 

Chapter Summary 

 

Microfluidic cell culture systems offer a convenient way to measure cell 

biophysical parameters in conditions close to the physiological environment. In this 

chapter, I demonstrate the application of a mathematical model describing the spatio-

temporal distribution of nutrient and growth factor concentrations in inferring cellular 

oxygen uptake parameters from experimental measurements. I use experimental 

measurements of oxygen concentrations in a poly(dimethylsiloxane) (PDMS) 

microreactor culturing a human liver carcinoma cell line (HepG2) to infer quantitative 

information on cellular uptake rates. Based on my model analysis, we have used a novel 

microchannel design to avoid the parameter correlation problem associated with 
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simultaneous cellular uptake and diffusion of oxygen through the PDMS surface. It was 

found that the cellular uptake of oxygen is dependent on the cell density and can be 

modeled using a logistic equation. These results are significant not only for the 

development of novel assays to quantitatively infer cell response to stimuli, but also for 

the development, design, and optimization of novel in vitro systems for tissue 

engineering.     

4.1. Introduction 

 

Microfluidics-based cell culture systems offer an inexpensive and attractive 

option for culturing cells in conditions closer to physiological than static cultures (e.g. 

small ratio of fluid volume to cell volume, fluid flow) and hence are favored for various 

applications in biomedicine (Andersson and van den Berg 2004 ; Fisher and Peattie 2007 

; Puleo, et al. 2007; Mehta et al.2008 ).  Recent advances in microchannel cell culture 

bioreactors have increased our ability to accurately characterize the microenvironment in 

such systems by enabling control over the perfusion rate and measurement of molecular 

concentrations in small samples. (Gu, et al. 2004 ; Situma, et al. 2006 ). These advances 

have resulted in application of microfluidics-based systems to, for example, liver tissue 

engineering and drug discovery (Kang, et al. 2008 ; Nahmias, et al. 2007 ; Viravaidya, et 

al. 2004 ). However, the use of such systems for quantitative characterization of cellular 

behavior remains limited. An inference procedure that can combine the mathematical 

description (model) of processes occurring in microchannels with relevant experimental 

measurements and subsequently extract quantitative information on key cellular 

parameters would be of great significance in deciphering signaling pathways, optimizing 
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microfluidic devices for tissue engineering applications, and designing assays for 

pharmacological applications.  In this work, I focus on obtaining cellular parameters 

describing oxygen uptake. 

 

Oxygen is a metabolic and signaling molecule in cell culture systems, and the 

oxygen consumption rate is an important metric to ascertain culture viability (Hynes, et 

al. 2006 ). Information on the oxygen uptake rate of a cell culture is useful for designing 

microchannel cell culture systems and also in development of various biomedical devices 

including Bio-artificial liver (Balis, et al. 1999 ; Ostrovidov, et al. 2004 ; Park, et al. 

2005). Typically, oxygen consumption rates in static cell cultures are measured by 

tracking the oxygen concentration in the culture media for a regulated external oxygen 

partial pressure (Foy, et al. 1994 ; Guarino, et al. 2004 ; Rotem, et al. 1992 ).  The 

applicability of the uptake rates measured in standard static cultures to physiological 

conditions remains unknown. Recently, experimental techniques have been developed to 

measure oxygen concentrations within microfluidic devices (Mehta, et al. 2007 ; Sin, et 

al. 2004 ; Sud, et al. 2006 ). Mathematical models have also been constructed to analyze 

the oxygen transfer and requirements for such perfusion based cell culture systems {{78 

Roy,P. 2001; 77 Ghanem,A. 2000; 23 Mehta,K. 2006}}.   However, there has been little 

effort in using these models in their inverse form and developing quantitative inference 

strategies to allow determination of cellular oxygen uptake parameters from experimental 

data. Here, I demonstrate model-based inference of cellular uptake parameters; in the 

future the pairing of quantitative assays with inference may allow the study of other 

cellular responses. 
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Microfluidics-based cell culture systems are typically made from poly-dimethyl 

siloxane (PDMS) in part due to its high oxygen permeability. However, the inference of 

oxygen uptake rates from the experimental measurements in PDMS devices is made 

difficult due to the intrinsic correlation of the model parameters characterizing the 

diffusion of oxygen from PDMS surface and uptake of oxygen by cells. In the current 

work, we have developed a simple experimental and computational procedure to 

determine the oxygen uptake rate of a cellular culture in PDMS microchannels. I 

demonstrate the performance of our method using measurements of oxygen uptake rate in 

a PDMS microchannel culturing HepG2 liver cells.  

4.2. Methods 

4.2.1. Experimental Methods 
 

Most of the the experimental work was performed in the research laboratory of 

Prof. Shuichi Takayama by Dr. Geeta Mehta and her undergraduate associates. I am 

including a brief description of the experimental methods for the sake of completion. 

Microdevice Fabrication and Assembly 

The microbioreactor was comprised of two compartments, a channel layer and a 

PDMS-parylene C-PDMS membrane. The device was fabricated as previously described 

(Mehta, et al. 2007 ).  The microdevice design used for the experiments is shown in 

Figure 4.1 and has a slanted channel connecting two parallel channels at the center of the 

device. The cells are seeded in the slanted channel region, which is 200 μm high and 300 

μm wide, while the remaining microchannels measure 30 μm high and 300 μm wide.  

Fluid Flow by Braille Actuation 
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An array of 48 pin actuators adapted from a Braille display module (SC9, KGS, 

Saitama, Japan) was used for fluid actuation(Futai, et al. 2006 ). The pin actuator module 

was controlled with a computer via Universal Serial Bus (USB) through a finger-sized 

stand alone custom controller circuit board (Olimex, Plovdiv, Bulgaria) (Futai, et al. 

2006). The microfluidic bioreactor chip interfaces with the pin actuator module by simply 

holding the chip in place such that the channels align with pins which push upward 

closing the channel. The pin movements for valving and pumping were controlled with a 

custom computer program written in C sharp. The average flow rates used for these 

experiments were in the range of 0.09 to 31. 5 μm/sec. The flow rates were measured by 

tracking 6 μm diameter fluorescent beads (Carnine, polystyrene microspheres, Molecular 

Probes, Eugene, OR) using a digital CCD camera (Orca-ER, Hamamatsu Photonics, 

Japan) and a fluorescence stereomicroscope (Nikon SMZ1500), as described in Mehta et 

al. 2007. The image sequences were acquired at ~18 frames/sec to determine the velocity 

of the microspheres at the center of the microchannels, which are representative of the 

fluid velocity and were used to determine the average fluid flow rate. An entire pumping 

cycle was used to measure each flow rate in order to compensate for backflow during 

certain steps of a pumping cycle. 

Cell culture 

HepG2 cells (human hepatocellular carcinoma, ATCC, HB-8065) were cultured 

in Dulbecco’s Modified Eagle’s Medium (DMEM, 11960, Gibco) with 15% Fetal bovine 

serum (FBS, 10082, Gibco), 1%v/v antibiotic–antimicotic (15240, Gibco) and 1%v/v 

GlutaMAX2-I Supplement (35050, Gibco) in a humidified 5% CO2 incubator.  

Cell seeding in microdevices 



104 
 

Fibronectin (100 mg/ml, F2006, Sigma) was pipetted into the microdevices to 

increase cell attachment and followed by a 30 minute absorption period. Media was then 

introduced to the device and the chip was placed on an array of pin actuators adapted 

from Braille displays for at least one hour to peristaltically pump fluid through the 

channels. Cells (in DMEM) were seeded onto the chip through the cell seeding ports and 

directed into the desired location by using Braille pumping and valving as previously 

described (Mehta, et al. 2007 ).  Cells were given 2-4 hours to attach under a no flow 

condition and then the chip was perfused with media for 12-14 hours.  The device was 

maintained at 37 oC and 5% CO2.  

Oxygen measurement 

Dissolved oxygen concentration in microdevices was measured in real time using 

an optics-based lifetime detection technique (Mehta, et al. 2007 ). An oxygen sensitive 

dye, ruthenium tris(2,2’-dipyridyl) dichloride hexahydrate (RTDP) dissolved in the media 

was excited by a blue LED in frequency domain by square waves generated by a function 

generator. The emission signal was captured by a silicon PIN photodiode with 

preamplifier and the data was acquired on a LabVIEW graphic user interface. 

Oxygen concentration was determined at four points in the reactor as indicated in 

4.1. We refer to the region where cells are cultured as section A of the channel (3 oxygen 

measurement points) and the region downstream of the cell as section B (one oxygen 

measurement point).  Oxygen measurements made in section B are used to estimate the 

mass transfer coefficient for oxygen diffusion through PDMS.  

4.2.2. Mathematical model formulation 
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Figure 4.1 (C) shows the simplified rectangular geometry used for the model. As 

in the previous chapter, the steady state concentration of oxygen (c) in the media in the 

microchannel is described by the reaction-diffusion equation  

 

ux
∂c
∂x

= De
∂2c
∂x 2 +

∂2c
∂y 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

        
(4.1) 

where De is the effective diffusivity of oxygen in the media and ux is the velocity. We 

assume a low Reynolds number laminar unidirectional flow approximation, and the 

velocity profile is estimated as (Bird, et al. 2001)  

( )H
y

H
y

x uyu −= 16)(          (4.2) 

where, <u> is the average velocity, and H is the microchannel height. We restrict the 

problem to two dimensions by neglecting the variation of oxygen concentration along the 

width. We include the diffusive term in the direction of the flow (axial diffusion) because 

we consider low media flow rates, although it can be neglected for relatively large flow 

rates (<u> >> De/L). The inclusion of axial diffusion in the model improves the fit to 

experimental data and is a significant addition to the previous model (Mehta and 

Linderman 2006 ) as outlined in the earlier chapter.  

The boundary conditions for  (3.1) in Section A of the device (cell region) are  
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−         (4.6) 

       

where cin is the inlet oxygen concentration and c* is the saturation oxygen concentration 

at the solid (PDMS) – liquid (media) interface.  We use a simple film model for the 

diffusion process and the supply of oxygen from the top PDMS surface is modeled based 

on an overall mass transfer co-efficient denoted by kla. We assume that there is negligible 

diffusion from the bottom surface due to the presence of impermeable layer of parylene 

C. F is the flux of oxygen (moles/m2-s) corresponding to the cellular uptake and is be 

given by   

φSOURF =           (4.7) 

where OURS is the specific oxygen uptake rate (uptake rate per cell) and φ represents the 

cell density (cells/cm2)  

In Section B there are no cells at the bottom of the microchannel, and hence that 

boundary condition (Eqn. 3.5) is modified to the no flux condition 

−De
∂c
∂y

(x,0) = 0          (4.8) 

All other boundary and initial conditions (Eqns., 3, 4, and 6) remain as in Section A, with 

the corresponding inlet concentration for section B equal to the concentration at the outlet 
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of the section A. The partial differential equation with non-linear boundary conditions 

was solved using FEMLAB® (v3.3 & v3.4, COMSOL Inc), finite element-based 

software. We verified the solution of the software by comparison with the analytical 

solution of the simpler linear boundary condition problem. 

Two possible relationships for the specific uptake rate (OURS) are considered 

here.  First, we consider the usual assumption that the specific uptake rate of oxygen  

follows Michaelis-Menten kinetics with parameters Vmax and Km and is independent of 

cell density (Jorjani and Ozturk 1999 ; Mehta and Linderman 2006 ). The total uptake 

flux of oxygen for the cell culture is assumed to be a sum of the individual uptake rates, 

e.g. a linear function of the total cell density φ (number of cells per unit area of the 

channel bottom).  This simplest relationship we consider is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
cK
cV

OUR
m

S
max          (4.9a) 

We also consider the following alternative relationship.  Because the uptake of 

oxygen by cells is directly related to their growth and cell growth in spatially limited 

conditions can be affected by the total cell density, the specific uptake rate of oxygen 

may also depend on cell culture density. To describe this case, we incorporate a logistic 

term to model the changes in the overall oxygen consumption based on the changes in the 

growth rate via the total cell density. We hence propose a modified, cell density-

dependent specific uptake rate of oxygen as given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=
max

max 1
φ

φ
cK
cV

OUR
m

S        (4.9b) 

The parameter φmax represents the maximal cell density that can be cultured in the 

reactor assuming no nutrient limitations. The inclusion of the logistic growth term was 
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motivated in part by the observed dependence of oxygen consumption on cell density 

(Cho, et al. 2007 ; Rotem, et al. 1992 ). We use the Bayesian information criteria (BIC) to 

justify the additional parameter in the model, 

 ( )nk
n

RSSnBIC lnln  +⎟
⎠
⎞

⎜
⎝
⎛=         (4.10) 

where n represents the number of observations and RSS is the residual sum of squares 

(Burnham and Anderson 2002 ). 

 

4.2.3. Inferring parameter values from experimental data 
 

As described above, we measured oxygen concentrations in the media at 4 

locations inside the bioreactor. The cellular uptake parameters and the mass transfer 

coefficient (Vmax, Km, φmax and kla) are parameters to be learned from this data. The 

parameter estimation is formulated in terms of a non-linear least square problem with the 

objective function f defined as 

 ) (   2
,, mesipredi

i
i ccwf −= ∑         (4.11) 

where ci,mes and ci,pred are the measured values of concentration of oxygen and the model 

predicted values of corresponding concentrations for the ith measurement, respectively. 

The weight parameter wi for each data point can be used to incorporate the relative 

confidence on the measurement i. Parameters values are learned based on minimization 

of the objective function using a non-linear least square optimization technique using the 

Levenberg-Marquardt technique in a MATLAB® (v. 7.4, 2007, Mathworks Inc) 

platform. 



109 
 

In principle the measurements of oxygen concentrations in section A are 

sufficient to learn the parameters (Vmax, Km, φmax and kla) characterizing the system. 

However, these parameters are usually highly correlated and it would require 

modification of the inference procedure and a large number of measurements to learn 

these parameters with a significant degree of confidence. It is hence advisable to have an 

independent estimate of at least one of the two parameters Vmax and kla, as they have 

highest degree of correlation.  Thus we designed our reactor and experiments to allow 

measurement of oxygen concentrations in a region containing no cells (section B).  We 

use the concentration measurements in section B of the reactor to determine kla and then 

use this value and the concentration measurements in section A to learn Vmax, Km and 

φmax.  

The goodness of the fit was computed using the standard regression coefficient method 

calculated as 

∑
∑

−

−
−=

i

i
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cc

cc
R 2
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,
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1

expi,

mesi,

        (4.12) 

where c  is the mean experimental concentration, and the summation in Eqn. 3.11 is on 

the experimental dataset under consideration. The correlation matrix (Cor) is used to 

identify parameter values and its elements are computed from the covariance matrix 

(Cov) given by  
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Cov=σe
2(JTJ)−1         (4.13) 

Cori, j =
Covi, j

(Covi,iCov j , j )
1/ 2         (4.14) 

where n is the total number of data points (Bates and Watts 1988 ; Sadegh Zadeh, et al. 

2006 ). σe is the standard deviation in the residual normalized by the total degrees of 

freedom of the regression calculated as n minus the number of parameters regressed (n–

p) (Donaldson and Schnabel 1987 ). 

4.2.4. Inferring confidence intervals for parameter values  
 

The standard errors for this regression problem can be computed using the 

covariance of parameters in the Cov matrix (Eqn. 3.12); however, considering that we 

have errors in measurement in both dependent (c) and independent variables (chiefly <u> 

and φ,), such a calculation can be inaccurate. Because the functional dependence is not 

explicit, a Monte-Carlo approach should be used to compute the standard errors in 

regression (Alper and Gelb 1991 ; Donaldson and Schnabel 1987 ; Motulsky and 

Christopoulos 2004 ). The procedure for the simulations is followed as per Alber and 

Gelb (Alper and Gelb 1991 ). New datasets are constructed by sampling the independent 

variables from their individual distributions constructed from their measured variance, 

and each of these datasets is used for regression to infer the parameters. The inferred set 

of parameters can be used to estimate their distributions and also their confidence 

intervals. Here, we sample the velocity values from a normal distribution with means and 

the standard deviations estimated from our data. The value of the mass transfer 

coefficient (kla) is estimated for each case using the measured oxygen concentrations in 
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section B, and subsequently the remaining parameters (Vmax, Km and/or φmax) are inferred 

for each case of velocity and the kla value.  The confidence interval of the inferred 

parameters is reported as the standard deviations of the estimates.  

4.3. Results and Discussion 

4.3.1. Experimental measurements  
 

Our experimental data on oxygen concentrations in the microdevice culturing 

HepG2 cells is shown in Fig.4. 2. There is a drop in the oxygen concentration as we move 

downstream, corresponding to the uptake of oxygen by cells, and this drop increases with 

increasing cell density. Increasing the media flow rate (<u>) increases the overall 

concentration of oxygen inside the channel as expected.  

 

The increase in oxygen concentration in section B of the device (measurement at 

x = 22.5 mm), a region in which cells are absent, provides direct evidence of the diffusive 

flux of oxygen due to the permeability of the PDMS. Interestingly, the diffusion of 

oxygen from the ambient air through the highly permeable PDMS devices, although 

significant, is not sufficient to avoid gradients inside the microchannel. 

4.3.2. Quantification of diffusion  
 

Cells inside the microchannel are supplied oxygen by two modes – continuous 

circulation of fresh media and diffusion from the ambient air via the PDMS surface. 

Quantification of the specific oxygen uptake parameters (Vmax, Km and/or Φmax) by the 

cells will entail the characterization of both these modes. The convective supply of 
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oxygen by the media can be calculated from the measured media flow rate and the 

oxygen solubility, while the diffusion of oxygen from air is calculated based on the 

estimation of the overall mass transfer coefficient kla. 

The measurement of the oxygen concentration in section B (Fig. 4.2) can give an 

independent estimate of the diffusive flux in the device as in that section there is no 

uptake of oxygen by cells. Hence, we used the partial differential equation model and the 

experimental data and formulated the optimization problem to estimate the overall mass 

transfer coefficient (kla) from the experimental measurements from section B.  The 

agreement of the model and data is indicated in figure 4.3 and shows that the single 

parameter (kla) film model of diffusive mass transfer of oxygen from PDMS surface is 

sufficient to explain the diffusion process in the microdevice.  

 

The mean value of the overall mass transfer coefficient was found to be 5.98 x 10-

8 m/s with standard deviation of 1.6 x 10-8. The standard deviation for the measurement 

was estimated using the montecarlo procedure outlined earlier. Assuming normally 

distributed errors in the measured variable (velocity, <u>), the fitting procedure was 

repeated to estimate the standard deviation in kla and a plot of the probability distribution 

of kla is shown in the inset (Fig. 4.3). We saw that the probability distribution for kla is 

similar to the imposed distribution of <u>, and the measurement uncertainty of <u> is 

directly reflected in the inference accuracy of kla. Interestingly, this approach can be used 

to develop experimental protocols where the measurement accuracy for particular 

variable is designed to achieve desired accuracy in the inferred parameter.  
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The estimated value of kla is lower than from what one would expect from virgin 

PDMS, and we attribute it to the fact that the PDMS used for our experiments is plasma-

treated, which is known to lower the oxygen permeability (Houston, et al. 2002 ; Shiku, 

et al. 2006 ). The dataset consists of multiple measurements with different devices and 

cell cultures of different cell densities and hence the standard deviation is also indicative 

of the good reproducibility of the device-making process.  

4.3.3. Quantification of cellular uptake rates for experimental cell densities 
 

We inferred the oxygen uptake rate parameters (Vmax and Km) for three different 

values of cell density individually as per the uptake model described by Eqn. (3.9a) using 

measured data (Fig. 4.1) from section A of the device. The goodness of the fit, as 

indicated by the comparison of model and experimental results. is shown in Fig. 4.4. The 

model is in good agreement of the experimental data (regression coefficients > 92%).  

Table 4-A shows the inferred values of Km and Vmax for the three different cell 

densities. The standard deviations in Km and Vmax for each of the three cell densities as 

determined by the Monte Carlo procedure.  We found that the values of Vmax vary 

systematically with cell density. While the values of Km also vary for all the cell densities, 

but the large standard deviations for this parameter suggests uncertainty in its values. 

However, for the current experimental data, the concentrations of oxygen are much larger 

than the Km values, (Km < c), and hence the specific oxygen uptake rate is largely 

determined by Vmax (Eqn. 3.9a).  

We found that the OURS for HepG2 cells vary between 1 x 10-17 to 9 x 10-17 

mol/cell/s depending on the cell density. This rate is similar to that reported by other 
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researchers for HepG2 cell type via other measurement methods (Chin, et al. 2008 ; Liu, 

et al. 1991 ). Furthermore, we found that the dependence of Vmax and hence the specific 

oxygen uptake of cells on the cell density is in qualitative agreement with observations of 

other researchers (Cho, et al. 2007 ; Rotem, et al. 1992 ).  

4.3.4. Quantification of cellular uptake rates for unified model of oxygen uptake 
 

The results in the previous section indicated that the specific oxygen uptake rate is 

a function of cell culture density, and is lower for higher cell densities. At higher cell 

densities, cells tend to grow more slowly and thus have lower metabolic activity; we 

found a lower specific oxygen consumption rate.  Similarly, at low cell density, when 

cells tend to grow quickly and thus have a higher metabolic activity, we found higher 

specific oxygen consumption. A logistic growth term, which is generally used to model 

the dependence of the cell proliferation/growth rate on the instantaneous cell density, 

hence should explain the dependence of our inferred cell uptake parameter on the cell 

culture density. We, therefore, repeated the inference procedure with the unified model 

described by Eqn. 3.9b. 

The results for the fit with the new model are shown in Fig. 4.5. The inferred 

values for the parameters are shown in Table 4-A. Again, as mentioned earlier, the value 

of Vmax , which dominates the specific oxygen uptake rate (OURs) is in accordance with 

the range of values found previously in literature, while the value of maximum cell 

density Φmax is in agreement with experimentally observed maximum cell density in the 

microchannel. 
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While there is an additional parameter (Φmax) for the model, we can now 

simultaneously fit the data for all three cell densities (Fig. 4.5).  The regression 

coefficient for the new model is lower than the earlier model; however a direct 

comparison of the two models is not possible by just considering the regression 

coefficient, as they fit different number of datapoints, and also have different number of 

parameters.  Hence to verify that the additional parameter is justified, we used the 

Bayesian information criterion and found the BIC score for our model (-55) is lower than 

the scores of the model for three individual cell densities (-20, -27 and -25) justifying the 

addition of the new parameter.  The results of this analysis indicate that indeed, the 

cellular uptake of oxygen is dependent on the total cell density, and hence it should be 

considered while designing the oxygenation for a device meant to culture cells.  

 

4.4. Conclusion 

The motivation of this work was to develop a methodology to quantitatively 

measure key cellular parameters in a specified media environment. We developed a 

microfluidic device-based assay and accompanying model and inference procedure to 

determine the cellular uptake rate of oxygen. By avoiding the simultaneous inference of 

both the uptake and the diffusion parameters, the method used here minimizes errors 

arising due to the correlation of the parameters. The independent inference of the mass 

transfer coefficient is critical to the accurate inference of the cellular uptake parameters. 

We also demonstrated a dependence of oxygen uptake on cell density and characterized a 

new uptake model that accounts for this.  Our model and associated parameter values can 

be used for the design or optimization of microfluidic cell culture reactors. The method 
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and the device can be readily adapted to measure uptake rates of other soluble factors (e.g 

nutrients, cell secreted signaling molecules) and also can be extended to other 

systems/geometries. Furthermore, the use of model-based sensitivity studies as the Monte 

Carlo simulations described here can enable the identification of variables that need to be 

measured with specified accuracy to target a certain accuracy of the inferred parameter of 

interest. We believe that the combination of models with new experimental devices can 

help us develop novel, more accurate assays to measure the cellular properties of interest. 
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Table 4-A: Inferred parameter values and Regression Statistics4 

 
Model - I 
Cell Density (φ) Vmax Km R2 BIC  
(x 103 cells/cm2) ( x 1017 mol/cell/s) (mol/m3)    

167 1.12 
[0.32]

0.12 
[0.10] 95% -20  

52.1 1.83 
[0.57]

0.07 
[0.09] 98% -27  

9.9 5.74 
[1.6]

0.11 
[0.11] 94% -25  

Model - II 
Cell Density Vmax Km φmax R2 BIC 

(x 103 cells/cm2) ( x 1017 mol/cell/s) (mol/m3) (x 103 cells/cm2)   

ALL 6.62 
[1.2]

0.154 
[0.087]

254 
[3.4] 87% -55 

 

 
  

                                                 
4 The values inside the brackets [ ] below the reported value indicate the standard deviations in the base 
value ascertained by Monte Carlo simulations with 3 sets of 50 simulations each. 
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Figure 4.1: Microfabricated PDMS microreactor.  (A)  Photograph of the device, with 
food dye in the channels. (B) Device schematic with rectangles indicating regions for 
oxygen measurement.  Filled circles indicate the location of the Braille valve pumps. 
Cells are present only in the portion of the channel highlighted. This channel is 200 μm 
high and 300 μm wide. The downstream portion is denoted as section B. Section B and 
other regions of channel without cells are 30 μm high and 300 μm wide. (C)  Model 
geometry for the PDMS device (side view). The device is divided into two sections, 
section A where the cells are cultured and (downstream) section B where there are no 
cells. The empty rectangles indicate the oxygen measurement points. The length LA is 
17.5 mm, LB is 5 mm and the height HA is 200 μm and HB is 30 μm.  
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Figure 4.2: Oxygen concentrations in the microdevice during culture of HepG2 cells. 
The plots show the oxygen concentration measured in mg/L as a function of distance 
from the inlet. Experiments were performed at three cell densities: high (1.67 x 105 

cells/cm2),  medium (5.2 x 104 cells/cm2),  and  low (9.9 x 103 cells/cm2). Four flow rates 
were tested and the average fluid velocity <u> is indicated. The origin or inlet is defined 
as the point at which the media first contacts cells as seen in Figure 4.1. 
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Figure 4.3: Determination of the mass transfer coefficient kla from oxygen 
concentration measurements and the model. A) shows the comparison of model and 
experimental data for three levels of cell density as indicated earlier. The experimentally 
measured  scaled concentration of oxygen at the outlet of the reactor ( x = 22.5 mm ; 
scaled w.r.t inlet concentration) is plotted as a function of the predicted values for three 
cell densities circles - high (1.67 x 105 cells/cm2),  squares - medium (5.2 x 104 
cells/cm2), and stars - low (9.9 x 103 cells/cm2). The experimental and the predicted 
values for all velocities are plotted with the agreement line (y=x).  The best fit value for 
kla was 5.98 x 10-8 m/s. Three sets of 50 Monte-Carlo simulations was performed to 
ascertain the variation of kla for measurement uncertainty in the velocity assuming 
normally distributed errors with standard deviation equal to 30% of the mean.  The 
standard deviation of the best fit kla values was found to be 1.5 x 10-8 m/s.  Inset shows 
the cumulative probability distribution for the best fit kla values for all simulations. Note 
that the mean value of kla is centered, i.e has a probability of 50%. The mean regression 
coefficient for all the runs was 88%. All the experimental data taken in section B was 
used for the regression, with the inlet concentration as the concentration measured at x = 
17.5 mm. 
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Figure 4.4: Comparison of predicted and observed oxygen concentrations for 
oxygen uptake model independent of cell density.  A)  Comparison of model and 
experimental data for three levels of cell density (circles, squares and stars for high, 
medium and low cell densities respectively) and for both locations (filled markers for x = 
10 mm and hollow markers for x = 17.5 mm). The experimentally measured scaled 
concentration (scaled w.r.t inlet concentration) of oxygen at is plotted as a function of the 
predicted values. The experimental and the predicted values for all velocities are plotted 
with the agreement line (y=x). B) and C) show the comparison of the model predicted 
(lines) and experimental (points) scaled oxygen concentrations in the device as a function 
of the media velocity at locations x = 10 mm  and x = 17.5 mm respectively. The 
experimental data in section A at three locations, x = 10 mm and x = 17.5 mm and the 
inlet, was used for the regression. The data for each cell density was fitted individually, 
hence a total of 8 points were used to infer 2 parameters. Inferred values of Vmax and Km  
along with the statistics for regression can be found in Table 4-A. 
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Figure 4.5: Model results with logistic growth factor densities for the proposed 
oxygen uptake model. A) shows the comparison of model and experimental data for 
three levels of cell density; High (circles), Medium (squares), and Low (stars) and for 
both locations (filled markers for x = 10 mm and hollow markers for x = 17.5 mm). The 
experimental data in section A at three locations, x = 10 mm and x = 17.5 mm and the 
inlet, was used for the regression. The data for all cell density was fitted simulatenously, 
hence a total of 32 points were used to infer 3 parameters. Inferred values of Vmax and Km  
along with the statistics for regression can be found in Table 4-A. B) and C) show the 
model (lines) and experimental results (points) as a function of the velocity for location x 
= 10 mm and x = 17.5 mm respectively.  
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Chapter 5 

 

5.A computational approach to inferring cellular protein binding 

affinities from quantitative FRET imaging 

 

Chapter Summary 

 

Recently Fluorescence Resonance Energy Transfer (FRET) microscopy can 

measure the spatial distribution of protein interactions inside live cells. Such experiments 

give rise to complex data sets with many images of single cells, motivating data reduction 

and abstraction.  In particular, determination of the value of the equilibrium dissociation 

constant (Kd) will provide a quantitative measure of protein-protein interactions that is 

essential to reconstructing cellular signaling networks.  In this chapter, I investigate the 

feasibility of using quantitative FRET imaging of live cells to estimate the local value of 

Kd for two interacting labeled molecules. An algorithm is developed to infer the values of 
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Kd using the intensity of individual voxels of three dimensional FRET microscopy 

images. The performance of our algorithm is investigated using synthetic test data, both 

in the absence and presence of endogenous (unlabeled) proteins. The influence of optical 

blurring caused by the microscope (confocal or wide-field) and detection noise on the 

accuracy of Kd inference is studied. I show that deconvolution of images followed by 

analysis of intensity data at local level can improve the estimate of Kd. Finally, the 

performance of this algorithm using cellular data on the interaction between YFP (yellow 

fluorescent protein)-Rac and CFP (cyan fluorescent protein)-PBD in mammalian cells is 

shown.    

5.1. Introduction 
 

Protein-protein interaction networks form a fundamental regulatory mechanism 

controlling the behavior of living cells. Characterization of these interactions, in 

particular the measurement of protein affinities, is of interest for various applications 

including tissue engineering, drug discovery and development of predictive models of 

cell behavior. While many methods have been developed to measure the binding 

affinities of interacting proteins, including in vitro assays (Chen, et al. 2007 ; Kerppola 

2006 ; Piehler 2005 ; Selbach and Mann 2006 ; Shoemaker and Panchenko 2007 ; You, et 

al. 2006 ), methods for quantitative local characterization of protein-protein binding in 

live cells still require improvement. 

Fluorescence microscopy is the method of choice for direct visualization of 

proteins in native cellular environments (Fernandez-Gonzalez, et al. 2006 ; Fricker, et al. 

2006 ; Lippincott-Schwartz, et al. 2001 ; Thaler, et al. 2005 ), and recent developments in 
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imaging techniques promise measurement of protein interactions with improved spatial 

and temporal resolution (Fernandez-Gonzalez, et al. 2006 ; Piehler 2005 ; Sako 2006 ). 

Protein-protein binding inside live cells can be visualized by Fluorescence Resonance 

Energy Transfer (FRET)(Kenworthy 2001 ).  FRET is the non-radiative transfer of 

fluorescence energy from an excited fluorescent donor to a nearby lower energy 

fluorescent acceptor via dipole-dipole interactions.  This process results in decreased 

emission of the donor and increased emission from the acceptor.  The range over which 

FRET can occur is less than 10 nm and thus the appearance of FRET is indicative of 

spatial proximity of the two interacting proteins. The spatial proximity can be used to 

infer the association of donor and acceptor labeled proteins (Lakowicz 1999 ); however, 

independent verification of the interaction may be required.  In cellular systems, FRET 

can be used to ascertain the binding of specific protein pairs by fluorescently labeling 

them with different variants of fluorescent proteins.  Typical experimental data in form of 

large numbers of images of multiple cells make analyses difficult and time consuming. 

While qualitative information on the binding affinity has been routinely inferred from the 

images, methods for quantitative characterization of protein interactions are needed.  

Determining the values of key physical parameters characterizing protein-protein 

binding, e.g. the equilibrium dissociation constant Kd, from FRET experiments will 

require additional steps beyond image acquisition. Microscope images are blurred by the 

optical imaging process such that points within an image plane contain light from out-of 

focus planes and adjacent points. Microscope blurring is characterized by the Point 

Spread Function of the microscope (PSF), which is the image of a single point source. 

This optical blurring limits the accuracy of intensity-based calculations. Confocal 
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microscopes reduce blurring as compared to conventional wide-field microscopes; but 

significant optical distortion is still present.  Image deconvolution algorithms can deblurr 

data from both confocal and wide-field microscopes (McNally, et al. 1999 ; Swedlow 

2007 ); however, their impact on the estimation of concentrations from image intensities 

and hence Kd is not well understood. Further quantification of fluorescent images will 

need a calibration function to map image intensities to molecular concentrations (Wu and 

Pollard 2005 ). In the case of FRET microscopy, image intensities need to be corrected 

for spectral overlap of the donor and acceptor emissions and possible direct excitation of 

the acceptor at the donor excitation wavelength. Also, an independent estimate of FRET 

efficiency (E) is needed to characterize protein binding. There are a number of algorithms 

available for measurement of FRET as well as estimation of apparent FRET efficiencies 

(Berney and Danuser 2003 ; Chen, et al. 2006 ; Chen and Periasamy 2006 ; Gordon, et al. 

1998 ; Hoppe, et al. 2002 ; Hoppe 2007 ; Raicu, et al. 2005 ; van Rheenen, et al. 2004 ).  

The presence of unlabelled proteins (endogenous, photobleached, or misfolded) which 

can compete with labeled species for binding introduces an additional complication; there 

have been efforts to estimate the FRET efficiency in this case (Wlodarczyk, et al. 2008 ) 

but the impact of such unlabelled proteins in inferring Kd remains unknown.  

In this chapter, I describe my results which demonstrate the feasibility of inferring 

local values of the apparent equilibrium disassociation constant (Kd) within a cell from 

FRET images using a synthetic data set.  I use a simultaneous image deconvolution and 

spectral unmixing algorithm to accurately recover the concentration distribution of 

proteins (Hoppe, et al. 2008 ) and study how the accuracy of the algorithm can aid in 

estimation of local values of Kd.  I investigate the impact of noise of the detection 
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systems and the presence of unlabelled (e.g. endogenous) species or multiple binding 

affinities on the accuracy of Kd inference for both the wide-field microscope and also 

confocal microscope. Finally, I apply this algorithm to infer Kd from image data on 

binding of YFP (yellow fluorescent protein)-Rac and CFP (cyan fluorescent protein)-

PBD in mammalian cells. 

5.2. Methods 

5.2.1. Reaction System 
 

We consider the case of a bimolecular elementary reaction of labeled acceptor 

protein (A*) and donor-labeled protein (D*) tagged with variants of fluorescence protein 

appropriate for FRET to occur:  

**** DA          DA ⎯⎯ →←+
dK

        

where A*D* is the acceptor-donor complex. Binding is quantified by the equilibrium 

dissociation constant (Kd) defined for a volume element v as  

]D[A
][D][A

**

**

=dK         (5.1)  

where [A*], [D*], and [A* D*] denote the concentrations of the labeled acceptor, donor 

and complexes in the volume under consideration.  We assume that the continuum 

approximation holds within the volume, and hence Kd can be described by a mean value 

rather than its probabilistic equivalent. 

In a general case where there are significant amounts of unlabelled acceptor (A) 

and/or donor (D) proteins present, binding reactions between labeled and unlabelled 

species or between two unlabelled species can also occur: 
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A + D    
Kd

← → ⎯ ⎯      AD

A* + D    
Kd

← → ⎯ ⎯    A*D

A + D*  
Kd

← → ⎯ ⎯     AD*

 

All reactions between A and D species, whether labeled or not, are assumed to have the 

same value of Kd and equilibrium relationships analogous to Eqn. (1) can be written for 

each of these reactions.   

5.2.2. FRET Imaging Experiment 
 

The cell with tagged proteins is imaged using fluorescence microscopy to obtain 

images with intensities corresponding to the concentrations of the acceptor, donor and 

acceptor-donor complex proteins. In accordance with the nomenclature of Hoppe et al. 

(Hoppe, et al. 2002 )[2], the following images of cellular contents are taken in a FRET 

experiment: 

IA: Image at acceptor excitation and acceptor emission (Acceptor image) 

ID: Image at donor excitation and donor emission (Donor image) 

IF: Image at donor excitation and acceptor emission (FRET image) 

The images IA, ID and IF can be acquired on a conventional wide-field microscope or a 

confocal microscope and they need to be analyzed further to gather information on the 

concentrations of the individual species. 

5.2.3. 3D-FRET Stoichiometry Reconstruction for Improved Local Concentration 
Estimates 
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We use the recently developed method termed 3D-FRET Stoichiometry (3DFSR)  

to take 3D images corresponding to IA, ID and IF  and, by accounting for optical blurring 

due to the imaging process and donor-acceptor spectral overlap, obtain improved 

estimates for the concentrations of acceptor [A*], donor [D*] and donor-acceptor complex 

[A*D*] in individual 3-D image pixels (voxels). Briefly, iterative maximum likelihood 

estimation is used for image deconvolution. An initial guess is convolved with the known 

point spread function (PSF) of the microscope and mixed as per the spectral overlap of 

donor-acceptor fluorophores to generate an estimate of the image which is then compared 

with the measured image to generate the next iterate. The optimization is allowed to 

proceed until a specified number (25) of iterations, the value of which is guided by our 

previous work. The algorithm corrects for spectral overlap using the spectral mixing 

model for FRET, which can be represented as  
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      (5.2) 

 

This equation relates the images (IA, ID and IF) to the concentrations of total (unbound + 

bound) labeled acceptor and donor ([A*]tot and [D*]tot) and the concentration of the 

acceptor-donor complex times the FRET efficiency E (E[A*D*]). In absence of any 

spectral overlap, the matrix in Eqn. (2) would be an identity matrix. The constants in the 

matrix are the characteristics of the microscope and fluorescent probes (Hoppe 2007 ). 

The matrix operation and parameters are equivalent to FRET stoichiometry (Hoppe, et al. 

2002 ), with the exception that ξ/γ as been replaced with ξ.  The parameters used for our 

computations are in accordance with Hoppe et al. (Hoppe 2007 )and are ξ = 0.2298, α = 
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0.025, β = 0.7275, γ = 0.0514. There are number of ways to independently estimate the 

FRET efficiency with individual merits and demerits [3]. For the current work, we 

assume that E is known. The factor c is the calibration constant necessary to obtain 

absolute concentration values.  Various approaches can be used to obtain c; however, the 

estimation of c for local cellular sub compartments remains challenging (e.g. see 

(Lippincott-Schwartz, et al. 2001 ), (Wu and Pollard 2005 ), (Fink, et al. 1998 )).  For the 

in silico imaging described here we assume that c = 1, while for the data on Rac-CFP 

binding with PBD-YFP, we estimated the value of c from experiments as described 

section 2.6.  

 

5.2.4. Computing Kd from image data 
 
 

For a general case when both labeled and unlabeled molecules are present, the 

measured total labeled acceptor and donor concentrations include additional species:  

]D[AD][A][A][A ****
tot

* ++=        (5.3) 

]D[A][AD][D][D ****
tot

* ++=        (5.4) 

  Similarly, unlabelled total acceptor and donor concentrations can be expressed as 

[AD]][AD[A][A] *
tot ++=         (5.5) 

[AD]D][A[D][D] *
tot ++=         (5.6) 

We define the variables rA and rD as the ratio of total labeled to unlabelled protein 

concentrations for acceptor and donor inside the cell respectively:  

tot

tot
*

[A]
][A

=Ar           (5.7) 
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tot

tot
*

[D]
][D

=Dr           (5.8) 

 

We assume that estimates of rA and rD are available from independent population-level 

experiments (e.g western blot analysis) or single cell experiments. Local values of rA and 

rD within particular 3-D volume elements (voxels) can vary due to the uncertainty in the 

measurement as well as fluctuations in the spatial distributions of the labeled and 

unlabeled species. 

 Algebraic manipulation of Eqn. 4.1 (and analogous relationships with unlabeled 

species) along with Eqns. 3-8 gives 

( ) ( )
][

][])[]([][])[]([
**

**********

DArr
DADAArDADADrK

DA

totDtotA
d

−−−−
=   (5.9) 

 

which allows a value for Kd  to be calculated for each individual voxel. Individual voxel 

data can be combined to generate a probability distribution of inferred Kd (normalized by 

the total number of voxels in the original object) from the experimental data. The 

probability that the calculated value of Kd falls within a fraction f of a given value Kd*, is 

given by the area under the probability density distribution: 

∫
+

−

=+−∈
**

**

)(]),[Pr( ****
dd

dd

fKK

fKK
ddddddd dKKpfKKfKKK     (5.10) 

If the signal intensity in individual voxels is low, neighboring voxels may be binned to 

form elementary volume compartments before calculation of Kd.  Only those voxels (or 

compartments) where both labeled proteins A* and D* are present are useful in 

calculation of Kd and hence it is most efficient to perform calculations for only those 
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compartments. Furthermore, blurring redistributes light to empty voxels, resulting in 

spurious estimates of Kd which are amplified by the non-linear form of Eqn. 9. Thus we 

pre-select voxels for calculation of Kd based on the intensity/concentration of molecules 

by using a threshold criteria to identify compartments i with useful data: 

([A*],i> Γ*Max[A*]) AND ([D*]i > Γ*Max[D*])     (5.11) 

Γ is the threshold parameter and defines the minimum intensity value as a fraction of the 

maximum intensity value that should be present in the compartment for it to be used for 

estimation of Kd. The intensity of the acceptor-donor complex is not included in the 

criteria to avoid selection biases based on the value of Kd.  

5.2.5.  Generation of synthetic test data 
 

We generate synthetic images to test our methods for inferring Kd. Synthetic data 

generation consists of creating a cell object containing fluorescent molecules and 

complexes and then simulating the imaging process by convoluting the object with the 

PSF of a wide-field or confocal microscope.  

 First, a spherical cell object is generated using cubic 3D volume pixels (voxels).  

Each voxel is randomly assigned discrete counts of labeled and unlabeled (if also present) 

acceptor and donor proteins chosen from a uniform distribution over a specified interval. 

The total numbers of labeled and unlabeled proteins in the object are determined from 

assumed values of the ratios rA and rD. As rA and rD are parameters which can be 

determined at best only on a whole cell averaged basis, for individual voxels we assume 

that the ratio of labeled and unlabeled proteins is normally distributed with coefficient of 

variation σr.  Using these sampled values of rA and rD and the total numbers of acceptor 
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and donor proteins (A + A* and D+ D*) together with an assumed value of Kd, we 

calculate the numbers of complexes (AD, A*D, AD*, A*D*) in each voxel so as to 

satisfy Eqns. (3) - (8). 

 

To simulate the imaging process, we mix the intensities on a voxel by voxel basis 

to simulate spectral bleed-through, using information on the spectral overlap of CFP and 

YFP to determine the mixed image as per the scheme outlined by Hoppe et al.(Hoppe et 

al., 2008).  In addition, we convolve this object with theoretical PSFs for either a wide-

field or confocal microscope. PSFs were generated in MATLAB 7.3 (MathWorks, Inc., 

USA) (Fig. 5.1). To simulate the spatial arrangement of multiple cells or compartments 

within a single cell, images of 2 or 4 spheres with smaller radii were created.  Their radii 

were adjusted to keep the total volume constant.  Each image is set to be equal to 

100x100x100 voxels with each voxel a cube of 60 nm side.  

Any imaging process with a detection device has associated inherent noise; the 

presence of shot noise is unavoidable (Garini, et al. 2006 ).  We simulate the shot noise in 

our images by using a Poisson distributed detection noise model with variance and mean 

equal to the original intensity of the object. The signal to noise ratio (SNR) is here 

defined as the square root of the mean original intensity of the object, and we simulate 

various noise levels by changing the intensity of the original object. 

5.2.6. Live cell FRET imaging 
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The live cell image data was obtained by Dr. Adam Hoppe in the department of 

microbiology and immunology at the university of Michigan. For the sake of completion 

I am outlining a brief description of experimental procedure and the cell system. 

COS7 cells were transfected as in (Hoppe, et al. 2008) with previously described 

plasmids (Hoppe 2004) encoding YFP-Rac2(V12), CFP-PBD, CFP, YFP and YFP-CFP. 

The cells with linked YFP-CFP were used as positive control, and cells expressing free 

CFP and YFP molecules were used as negative control. All YFP molecules were actually 

monomeric citrine, containing the Q69M (pH desensitizing) and A206K (monomeric) 

mutations. PBD is the (p21 binding domain) from human PAK1.  This domain provides 

an excellent test system because it has been demonstrated numerous times to interact 

exclusively with the small GTPases, Cdc42, Rac1 and Rac2 (Bokoch 2003 ; 

DerMardirossian, et al. 2004 ). 

Imaging was performed as described in (Hoppe, et al. 2008 )[4].  Briefly, a novel 

high speed microscope was used to collect 3D-FRET microscopy data by acquiring IA, ID 

and IF images at each z-plane of a living cell.  Acquisition of each 3D dataset took 

approximately 2.5 seconds.  Estimates of [D*], [A*] and [DA*] were obtained by 

reconstruction of these data with 3DFSR. The photobleaching correction, as estimated 

from a representative experiment by the photon flux in each images IA, ID and IF 

measured in successive Z-planes, was found to be less than 2% in each signal, resulting 

in at the most 6% correction in the final value of Kd, and hence was neglected for the 

current study. 

To estimate the value of the calibration constant c, we imaged yeast cells expressing 

a chromosomal YFP fusion to Arf1 (Arf1-YFP) present at 20,000 copies/cell 
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(Ghaemmaghami, et al. 2003 ; Huh, et al. 2003 ). Assuming that the cell is a 5 micron 

diameter sphere we can estimate an average number of 0.636 molecules per image voxel. 

Further, summing the 3D intensity for whole yeast cells the intensity of a voxel on 

average was found to be about 0.2 units, and hence c is approximately 0.31 intensity 

units/molecule. The concentration of any species ([s]i) in  voxel i can then be computed 

from  

av

is
i vcN

I
s ,][ =           (5.12) 

where Is,i is the intensity corresponding to species s in the voxel, Nav is the Avogadro 

constant, and v is the volume of the voxel. 

5.3. Results and Discussion 
 

5.3.1. Impact of Optical Blurring in estimating protein concentrations 
 

Synthetic images of a single sphere of uniform unit intensity were generated and 

then convolved with the PSF of either a wide-field or confocal microscope to mimic 

imaging.  In the absence of optical distortion, we expect the image intensity distribution 

to be a single spike at unit intensity. Blurring, or optical distortion caused by optical 

imaging, disperses the intensity distribution and is more significant for the wide-field 

than the confocal microscope (Fig. 5.2, A and B). Deconvolution of the measured images 

improves estimation of the local intensities (Fig. 5.2 C, D), returning a peak intensity 

closer to the true intensity of the object, albeit with some distortions arising from the loss 

of information during imaging (these distortions can be seen by the shift in intensity for 
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the reconstructed wide-field histogram (Fig. 5.2D) and multiple peaks in the 

reconstructed confocal histogram (Fig. 5.2C)).   

Recovery of true voxel intensities is also affected by the shape and spatial 

arrangement of fluorophores.  To investigate this, we repeated the convolution (imaging) 

and deconvolution steps above with a 2 or 4 sphere arrangement (Fig. 5.1C) while 

conserving the total volume of objects imaged.  Fig. 5.2E shows the fraction of pixels 

having intensity within 20% of the original object for the 1, 2 and 4 sphere systems. 

Because spatial heterogeneity is increased, the intensity histogram is more dispersed for 

multiple spheres than for a single larger sphere.  This effect cannot be eliminated by 

deconvolution; however, the deconvolved images are significantly more accurate than the 

raw images. Deconvolution of acquired images can therefore improve the accuracy of 

measurement of local molecular concentrations by estimating the true intensity of the 

individual voxels. Deconvolution hence will be essential for estimation of Kd. 

5.3.2. Inferring Kd from the image data 
 

We next investigate the feasibility and accuracy of inferring Kd from measured 

image data. First we considered a simple case in which all proteins under investigation 

are labeled and there is no measurement noise. We assumed uniform concentrations of 

acceptor, donor and acceptor-donor complex inside the 3D volume of the test object.  The 

test object is imaged by simulation using the 3D-FRET microscopy model (Hoppe, et al. 

2008 )[4] and these images are reconstructed by 3DFSR to produce the corrected images 

shown in Figs. 5.3A and 5.4A for wide-field and confocal microscopes, respectively.  

Appropriate voxels were selected using the threshold criterion (Eqn. 5.11) and the 
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corresponding Kd probability distribution is calculated using Eqn. 5.9 (Figs. 5.3B and 

5.4B). The fraction of voxels returning values of Kd within a specified fraction of the true 

value are shown in Figs. 5.3C and 5.4C. The dispersion in the probability distribution is a 

direct result of the optical distortion brought about by the imaging process.  The 

distributions have a maximum near the true Kd for both the confocal and the wide-field 

microscopes, indicating that the proposed method is useful for identifying the local 

binding affinity from image data, although optical distortion can limit its accuracy.  The 

effect of optical distortion on estimation of Kd increases with spatial heterogeneity (2 and 

4 sphere system; Figs. 5.3 C and 5.4 C).  In all cases, the confocal microscope allows 

greater accuracy in measurement of Kd than the wide-field microscope. 

Biological values of Kd are likely to vary widely.  We repeated our inference 

procedure for various values of Kd and found that the shape of the probability distribution 

is unchanged. This is expected since the magnitude of intensities of the donor, acceptor, 

and donor-acceptor complex images have no impact on deconvolution, and hence, in 

absence of detection noise, while the absolute distortion does get scaled, the shape of the 

curve does not change (data not shown). 

To investigate the effect of detection noise on inference of Kd, we modeled the 

image detection process with Poisson noise.  The Kd probability distribution was 

calculated from 3DFSR-reconstructed data with various noise levels Fig. 5.5 (A-C).  As 

expected, increasing noise disperses the probability distribution and limits the accuracy of 

our inference. To quantify the accuracy we plot the probability of recovering the Kd 

within a specified fraction of the true value (Fig. 5.5D). As shown in the figure, even at 

low SNR, the algorithm can recover information on the true value of Kd. 
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5.3.3. Using thresholds to counter optical distortion and noise  
 

Optical blurring can result in the assignment of low but non-zero intensity values 

to voxels which originally have no source of fluorescence.  Low voxel intensities may 

also be the result of background noise.  We use threshold criteria to exclude from 

calculations any voxels that have intensities lower than a fraction Γ of the maximum 

intensity of the acceptor and donor species in the deconvolved image data (Eqn. 11). Fig. 

5.6 shows the effect of using thresholds on the Kd probability distribution for both 

confocal and wide-field microscopes. Comparing the distributions obtained using 

different threshold values (Fig. 5.6A, B), we can see that by limiting the calculations of 

Kd to voxels/compartments with a sufficient number of acceptor and donor proteins, one 

can improve the accuracy of Kd inference. This improvement is seen irrespective of the 

type of microscope and also for the case with larger spatial heterogeneity (multiple 

sphere system; data not shown).  

Increasing the value of threshold parameter (Γ) will result in fewer compartments 

used for computation, and hence the possible loss of meaningful data. On the other hand, 

keeping the threshold to a lower value will result in a broader distribution owing to the 

contribution of low intensity voxels. Fig. 5.6D shows the effect of increasing Γ on the 

mean value of the Kd probability distribution. The results indicate that there is a 

saturating effect of the threshold parameter above a critical value of the threshold. The 

optimal value of the threshold parameter will depend on the microscope and cellular 

system under investigation and could be found empirically e.g., by constructing the curve 

similar to Fig. 5.6D. 
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5.3.4. Inferring Kd  in the presence of multiple protein binding states  
 

Multiple values of Kd for a particular protein-protein pair within a single cell may 

be possible due to multiple protein states or cellular environments. To investigate the 

performance of our Kd inference algorithm for such a case, we generated synthetic data 

for a hypothetical case with two distinct binding constants occurring at different 

concentration ratios (1:1 and 3:1) and used our algorithm to obtain the Kd probability 

distribution  (Fig. 5.7). To quantify the relative concentrations of each binding state, we 

determined the fraction of the total voxels with a particular value of Kd. This will entail 

the calculation of area under the probability distribution. However, since the spread of the 

probability distribution depends on the absolute value of Kd, the correct approach is to 

normalize the area under the curve by the value of Kd. Mathematically, it is equivalent to 

calculating the area under the curve from a semi-log probability density distribution  

A =
p dKd

Kd
∫ = pd log(Kd )∫        (5.13) 

Fig. 5.7 shows that our algorithm can distinguish and correctly identify the 

existence of the two different binding states as indicated by the two distinct peaks for 

both confocal and wide-field microscopes. For the case where both the states are in equal 

concentrations, the ratio of the area under the first peak to the area under the second peak 

in the Kd probability distribution is 1.17 for the confocal (Fig. 5.7A) and 1.27 for the 

wide-field image (Fig. 5.7B)5, reasonably close to the true value of unity. For the case 

where the concentration ratios were adjusted to 3:1 in the original image, we found the 

ratios of 3.22 for confocal (Fig. 5.7C) and 3.17 for wide-field image (Fig. 5.7D), again in 

                                                 
5 Area was computed from the semilog plot of the probability distribution with f = 0.1, 0.2 and 0.3 (see 
Eqn. 10) and averaging the three results for each case. 
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agreement with the true number (3.33).  Thus, our algorithm can successfully identify the 

relative concentrations of the two binding states. We note that the ability to distinguish 

two values of Kd increases as they become more different from each other, and if they are 

more spatially segregated. 

 

5.3.5. Inferring Kd when unlabelled proteins are present 
 

We extend our analysis to the case in which unlabelled proteins A and/or D are 

present and compete with labeled species A* and D* for binding.  We now need 

independent measurements of the ratio of labeled to unlabelled proteins, rA and rD. (Eqns. 

7 and 8), to infer binding affinity. In the limit where rA and rD are very large, there are 

few unlabelled species present, and the system corresponds to the cases described in the 

earlier sections.   

Fig. 5.8 shows the performance of the inference procedure when unlabelled 

proteins are present. A random variation of the parameters rA and rD based on a normal 

distribution is superimposed to account for voxel-to-voxel variation  in the number of 

labeled and unlabeled molecules arising from diffusion. While the algorithm cannot 

recover the true value of Kd for the case when rA and rD are small (< 0.05; data not 

shown), the spread of the distribution is not affected when unlabeled proteins are present 

and the distribution is similar to the case of no unlabelled species (Figs. 5.3, 5.4).  Fig. 

5.8 also shows the effect of these voxel-to-voxel variations on the inferred probability 

distribution of Kd. Variations in parameters rA and rD will affect the accuracy of the 
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inferred Kd as per Eqn. 9, and hence we expect the probability distribution to be broader 

for larger variation in rA and rD.   

5.3.6. Application to cellular data on Rac-PBD binding 
 

We applied our algorithm to FRET images obtained from imaging COS7 cells 

expressing the constitutively active mutant YFP-Rac2(V12) which binds to co-expressed 

CFP-PBD.  Two negative controls, cells expressing free CFP and YFP-Rac2(V12) and 

cells with free over-expressed CFP and YFP, were used.  Linked CFP and YFP molecules 

(CFP-YFP) was used as a positive control.  Representative donor, acceptor, and FRET 

images for all the four cases are shown in Fig. 5.9.  We expect high affinity binding of 

CFP-PBD with YFP-Rac2, (Fig. 5.9-A), approaching the positive control case where CFP 

and YFP are linked and expressed in the cell (Fig. 5.9-D). In contrast, free CFP binds 

poorly to YFP-Rac2(V12) (Fig. 5.9-B) or to free YFP (Fig. 5.9-C).  

Next, we calculated Kd probability distributions from the images, neglecting 

competition from unlabelled species under the assumption that the ectopically expressed 

proteins were in excess. Figure 5.10 shows the computed probability distribution for all 

four cases. Increasing the value of the threshold parameter Γ from 0.1 to 0.3 did not 

significantly alter the location of the peak of the distribution (data not shown).  We see a 

single, sharp peak in the probability density distribution curve corresponding to the real 

binding event of Rac-CFP with PBD-YFP (Fig 5.10A) at Kd ~ 6 μm, and a similar sharp 

peak (at higher affinity) for the linked YFP and GFP case (Fig. 5.10D) at Kd ~ 1.4 μm . In 

contrast, in the case of free CFP (Fig. 5.10B and C), we see a broad probability 

distribution with a long tail. We attribute the small but non-zero affinity seen in the 
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negative controls (Fig. 5.10 B, C) to non-specific binding of the two molecules; the small 

peak at very low affinity (Kd ~ 107μm) is partly due to the logarithmic binning used to 

construct the probability distributions. We note that computational errors associated with 

low intensity FRET images can make the accurate detection of low affinity binding 

difficult.  It is necessary to increase the number of iterations and the tolerance of the 

deconvolution algorithm, as done here, to prevent the appearance of spurious peaks in the 

probability distribution for the negative controls.  

 

The probability distribution for the binding of Rac-CFP with PBD-YFP  (Fig. 

5.10A) can be used to compute a mean or cell-averaged value of Kd.  The mean value of 

Kd as measured by our algorithm is ~ 6 μM, somewhat higher than the reported in vitro 

value of 0.2 μM (Hoppe 2003 ). The difference is likely at least in part real and due to 

significant differences between a cellular and in vitro environment.  Inaccuracies in 

calibration and/or imaging and image processing may also contribute. However, our 

results clearly indicate at least 3-5 orders of magnitude difference between the binding 

affinities of the positive and negative control, confirming that the algorithm can identify 

and also quantitatively distinguish the binding of Rac to PBD.   

 

5.4. Conclusion 
 

We have presented a method for inferring the local value of protein-protein 

equilibrium dissociation constant Kd from FRET microscopy imaging of cells. We have 

shown that deconvolution of both wide-field and confocal microscope image data is 
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essential to inferring local molecular concentrations, and hence the value of Kd, and our 

algorithm can identify the existence of multiple binding states and their relative 

abundance. Using synthetic test data, we show that our algorithm can provide accurate 

values of Kd despite reasonable levels of noise and the presence of unlabelled proteins.  

Our method builds on research done in the area of image deconvolution and 

spectral unmixing for measuring FRET efficiency (Hoppe, et al. 2008 ) and the effect of 

free donors and acceptors (Wlodarczyk, et al. 2008 ) by quantifying the protein 

interactions via measurement of Kd. Our inference procedure utilizes the information 

from small volume elements of the cell (voxels), providing a distribution probability 

distribution for Kd and avoiding potential inaccuracies from averaging the signal from the 

whole cell (Chen, et al. 2007 ). A key strength of our algorithm is the ability to quantify 

local protein interactions, and thus it can also be applied when there is protein 

sequestration or with non-cytosolic proteins. As imaging is conducted in a time frame 

which is much smaller than typical protein turnover times, the algorithm will not be 

affected by turnover. We have focused on intensity-based FRET measurements since they 

allow measurement of [D], [A] and E[DA], which are not readily accessible by FLIM.  

However, one can imagine ways in which the analysis could be extended to other types of 

FRET experiments including FRET-FLIM based measurements of protein interactions 

(Buranachai, et al. 2008 ; Lleres, et al. 2007 ).  

The efficiency and accuracy of our approach can be affected by a number of 

factors, apart from the usual parameters affecting FRET microscopy.  Difficulty in 

measuring the value of the calibration factor c is the primary limiting step in accurate 

determination of the local value of Kd. The presence of a significant number of unlabelled 
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proteins adds the variances associated with the estimation of the local values of the ratio 

parameters rA and rD to the prediction of the Kd value. Finally, our procedure involves 

considerable computation as compared to the use of cell-averaging methods.  

While FRET imaging is not a direct measure of the molecular interaction, it is one 

of the better means of visualizing protein interactions in the native environment of the 

cell and hence the ability to use FRET data to quantify the protein-protein interactions at 

the subcellular scale is significant. Obtaining values of protein-protein binding affinities 

may allow meaningful comparisons between the effects of different drugs or inhibitors, 

giving useful insights into the mechanisms of their action.  In addition, quantitative 

values of protein-protein binding affinities are important for reconstructing protein 

networks inside the cell. Analysis of FRET imaging data with the methods described here 

might be further extended to analyze time course image data for the kinetic parameters of 

protein-protein interactions. 

Finally, FRET imaging can be performed with high three dimensional resolution 

over time inside living cells. The terabytes of image data produced by these technologies 

will far outstrip human capacity to interpret, digest, or analyze biochemical pathways. 

Thus, the development of analysis tools to infer key biophysical quantities from these 

image data, such as protein binding affinities described here, will be essential.  
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Figure 5.1: Point spread functions and synthetic test data.   3D Point Spread 
Functions (PSFs) for a wide-field (A) and confocal microscope (B) were used to 
generate model data. The 3D space had dimensions of 100x100x100. The x-y 
slice is at midplane along z (z = 50), and the x-z slice is shown at y = 50. The 
theoretical PSFs were generated for emission wavelength = 530 nm. NA = 1.2 and 
voxel size  = 60x60x60 nm. Figures show color mapped images with a color map 
scale of [0 - 0.001] corresponding to [blue  red].  (C) Synthetic spherical cells 
contained acceptor-donor interactions.  The diameter of the single large sphere 
(left) was 50 pixels, equivalent to 3 µm diameter. For images containing 2 and 4 
spheres, the cell diameter was adjusted to conserve total volume. The spheres 
were centered in z plane and were symmetrically arranged in the x-y plane.  
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Figure 5.2: Deconvolution is essential for quantitative measurement of protein 
concentrations.  The imaging process was simulated using a sphere of unit intensity and 
assuming a PSF for a confocal or wide-field microscope (Fig. 5.1).  3DFSR was used to 
deconvolve images.  Confocal image and intensity histogram are shown prior to (A) and 
subsequent to (C) deconvolution. The intensity colormap is set to [0, 1.5] for all images 
for comparison. Wide-field image and intensity histogram for the intensity interval [0.1, 
1.5] are shown prior to (B) and subsequent to (D) deconvolution. Solid line indicates the 
true intensity distribution. (E) The fraction of voxels within +/- 20% of the true value 
([0.8, 1.2]) are plotted for both the confocal and wide-field microscope images, both 
before (blurred) and after deconvolution.  The wide-field raw image before deconvolution 
has negligible voxels in the range, and hence don’t appear in the histogram. Results for 
the 2 and 4 sphere case (see Fig. 5.1) are also shown.  
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Figure 5.3: Inferring Kd from wide-field image data: Effect of optical distortion. (A) 
Acceptor [A], donor [D], and FRET image, [DA] following imaging (convolution) by a 
wide-field microscope, spectral un-mixing, and deconvolution of synthetic images.  The 
calculated Kd image is also shown. (B) The Kd probability distribution for the sphere in 
(A) was calculated.  The solid vertical line indicates the true value of Kd and the dotted 
vertical lines indicates the interval +/- 10%. (C) To investigate the effect of spatial 
arrangement, calculations were also repeated for the 2 and 4 sphere arrangements of Fig. 
5.1.  The fraction of voxels with Kd within 10-40% of the true value are plotted for the 1, 
2 and 4 sphere arrangements. The colormap is set to [0, 2] for all images, except the Kd 
image, where the colormap is set to [0, 7.5]. 
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Figure 5.4: Inferring Kd from confocal image data: Effect of optical distortion. (A) 
Acceptor, donor, and FRET images following imaging (convolution) by a confocal 
microscope, spectral un-mixing, and deconvolution of synthetic images.  The calculated 
Kd image is also shown. (B) The Kd probability distribution for the sphere in (A) was 
calculated.  The solid vertical line indicates the true value of Kd and the dotted vertical 
lines indicates the interval +/- 10%.  (C) To investigate the effect of spatial arrangement, 
calculations were also repeated for the 2 and 4 sphere arrangements of Fig. 5.1.  The 
fraction of voxels with Kd within 10-40% of the true value are plotted for the 1, 2 and 4 
sphere arrangements. The colormap is set to [0, 2] for all images, except the Kd image, 
where the colormap is set to [0, 7.5]. 
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Figure 5.5: The effect of detection noise on inference of Kd.  Poisson noise was 
superimposed on the convolved object to simulate detection noise. (A-C) The probability 
density distribution of Kd is plotted for various levels of noise: (A) SNR2 = 5, B) SNR2 = 
20, C) SNR2 = 50.  (D) Area under the probability density distribution curve within 
fraction f of the true value, where f is varied from 10% to 40%. Solid vertical lines in the 
plot (A-C) indicate the true value of Kd  
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Figure 5.6: Using thresholding to improve Kd inference.  The Kd probability 
distribution for confocal microscope for a single sphere was calculated using selected 
voxels according to a threshold  criteria (Eqn. 11). Γ = 0.0 (solid line), 0.1 (dashed line) 
and 0.3 (dotted line) for various levels of noise: (A) SNR2 = 5 , B) SNR2 = 20, C) SNR2 = 
50. ). The right portion of the curve is identical for all cases. The true Kd of the system is 
5 units and is shown by the solid vertical line. (D) Calculated mean of the Kd probability 
distribution for various values of the threshold parameter Γ. Similar results are obtained 
with a wide-field microscope (not shown). 
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Figure 5.7: Inferring multiple values of Kd. Inferred Kd probability distributions are 
derived from synthetic data when the protein can bind with two possible values of Kd (Kd 
= 5 and Kd = 10). The 4 sphere system shown in Fig. 5.1C is used for the computations. 
Distributions are shown for confocal (A) and wide-field (B) microscopes with synthetic 
data generated so that 2 of the 4 spheres have acceptors and donors binding with affinity 
Kd = 5, and in the remaining 2 spheres proteins bind with affinity Kd = 10. (C) and (D) 
show the corresponding distributions derived from confocal and wide-field microscopes 
respectively, when the 3 of the 4 spheres have data corresponding to high affinity binding 
state (Kd = 5) and remaining 1 sphere has data corresponding to binding state  Kd = 10. 
True values of Kd are shown by solid vertical lines. 
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Figure 5.8 : Effect of partial labeling of interacting proteins.  The probability 
distribution of the inferred Kd is shown for  rA = rD = 1.  In the individual voxel the ratios 
were allowed to vary according to normal distribution with standard deviation 10% (A) 
and 30% (B). For low values of rA and rD (few labeled molecules), the algorithm will fail 
to recover the true values of Kd. (not shown). The figures were simulated for a confocal 
microscope PSF, and the true value of Kd was set at 5 units as shown by solid vertical 
lines. 
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Figure 5.9 : 3DFSR imaging of mammalian cells. Representative images of total donor 
[D*]tot, total acceptor [A*]tot and donor acceptor complex E[D*A*] after deconvolution 
and reconstruction from cells expressing different YFP and CFP constructs. A) Images of 
cell expressing YFP-Rac2(V12)  and CFP-PBD.  B) Images of cell expressing YFP-
Rac2(V12)  and free CFP (negative control).  C) Images of cell expressing free CFP and 
free YFP (negative control).  D) Images of cell expressing fused CFP-YFP (positive 
control).  Images shown are x-y plane images at a representative  z-plane and are 
grayscale with the same intensity map for the three images on the same row ([A*]tot, 
[D*A*]tot and E[D*A*])  to enable visual evaluation of binding affinity.   
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Figure 5.10 : Inferring Kd from 3DFSR images of mammalian cells. Inferred Kd 
probability distributions calculated for all four cases (Fig. 5.9A - D) are shown. A) YFP-
Rac2(V12) + CFP-PBD,  B) YFP-Rac2(V12) + CFP. C) YFP + CFP. D) CFP-YFP 
Probability distributions were constructed using a histogram method with bins of size 0.5 
(μM) on the log scale.  The curves shown for A) and B) are constructed from the values 
of 3 different experiments. The threshold value was fixed at Γ = 0.1.  The mean value of 
Kd calculated from the distribution above based on calculations from individual pixels are 
6.4 μM, 1720 μM, 129 μM and 1.19 μM, for the four cases respectively. It should be 
noted that the distributions for A-D are not normal, and hence the mean values are not 
representative of the distribution. 
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Chapter 6 

 

6.Conclusions and Future Directions   

 

6.1. Summary of results  

 

In this thesis I explored the application of computational modeling of the reaction-

diffusion systems governing the behavior of cellular systems. I have shown the utility of 

my work in three distinct areas; first, microfluidics based cellular systems, second, 

probing protein interactions in single cells using microscopy, and third in understanding 

the mechanisms of stem cell proliferation in the context of the hematopoietic stem cell of 

the bone marrow. I have applied my computational approach for both understanding the 

fundamental mechanisms affecting the cellular systems and using them for novel designs, 

as well as using inverse modeling to quantitatively infer properties of the cells and their 

response to the microenvironment.  

In chapter 2 of my thesis I have demonstrated the application of an agent based 

model of adult hematopoietic system of the bone marrow. The model was formulated 
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based on the experimental observations of the hematopoietic cell behavior, and based on 

the theoretical investigations I showed the relative importance of different mechanisms 

which are known to play a role in the process of hematopoiesis.  

In chapters 3 and 4 of the thesis I used the continuum reaction diffusion model to 

characterize the microchannel devices that are preferred for culturing cells for 

applications like tissue engineering and building biosensors.  Using the model I identified 

design criteria for developing new devices with target specifications. The model 

investigated the impact of the perfusion associated ‘wash-out’ of cell secreted growth 

factors and also applied the chemical engineering concept of recycle stream as a method 

to retain the growth factors and outlines the optimization of recycle ratio. The model was 

also investigated in its unsteady state form to arrive at useful rules of thumb governing 

long-term culture of cells inside the bioreactor and also the strategy to optimize the 

innoculum cell density for a specified final composition of the cells inside the bioreactor. 

Next, using the inverse form of the model I outlined the method to quantitatively infer the 

cellular uptake of oxygen in the culture using measurement data on oxygen concentration 

in the culture. The model and the inference procedure were instrumental in identification 

of dependency of the uptake rate on the cell density, and a novel model for uptake rate 

was proposed.   

In the penultimate chapter of my thesis, the focus was on sub cellular events, 

specifically towards developing computational algorithms to infer protein binding 

affinities from the live cell FRET imaging data. I showed, using the 3DFSR algorithm to 

reconstruct the FRET images coupled with my computational algorithm, that the FRET 

image data could be used to infer the local protein binding affinities.  Further the key 
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finding of the investigation was the importance of image deconvolution in inferring the 

local concentration from the fluorescence intensities, and the impact of unlabelled species 

on the inferring protein binding. The feasibility of the procedure was finally showed by 

analysis of preliminary image data of PBD-Rac binding in mammalian cells.  

 

6.2. Future directions 

The computational approaches used in this thesis can have potential extensions in 

multiple directions within the central theme of developing quantitative tools for 

biological reaction-diffusion systems.  In this section I highlight a few of the natural 

extensions to the work described in the thesis, and for the sake of clarity and conformity 

with the division of chapters in this thesis, I classify them into three major areas. Finally I 

mention some other extensions of this work in the broader area of computational biology. 

6.2.1. Theoretical investigations into cell-cell interactions and the role of niche 
organization in adult stem cell systems 

 

The agent based model described in chapter 2 is a novel effort to bring together 

the experimental observations with varying degrees of quantification. I used it to probe 

the fundamental mechanisms governing the stem cell systems. Although the model is 

based on experimental observations, it is but preliminary; it does not attempt a direct 

comparison with experimental results. The natural extension of the work for the adult 

hematopoietic system, hence can take two directions. Firstly, the model output can be 

tuned to more closely reflect the physiological system, thereby enabling model 

verification using the existing experimental data. Secondly, more details can be added to 
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the model by accounting for known interactions/reactions and increasing the granularity 

by explicitly accounting for different cells in the bone marrow. Recent sophisticated 

experiments like e.g., the use of two photon microscopy to track the homing of the adult 

human stem cells, can be used to provide useful information on the spatial dimensions 

and the motility of the stem cells in the niche which can be used to accurately map the 

monte-carlo time step to real time (Lo Celso, et al. 2009 ; Xie, et al. 2009 ). Addition of 

the above two details would make it possible to compare the model predictions with the 

experimental data in a quantitative fashion, and hence the model can be deployed in a 

more predictive mode. Furthermore, the creation of such a model can be of importance in 

devising in vitro systems for stem cell expansion. 

The role of spatial organization in the control and regulation of hematopoietic 

stem cell is but studied tacitly in the model as described in the thesis. One can think of an 

equilibrium based explicit model of spatial organization of cells inside the niche upstream 

of the current dynamic model to probe the role of the cellular organization in 

hematopoiesis. The upstream model can be based on a modified cellular Potts model, 

which has been extensively used by researchers in the chemotaxis or developmental 

biology area (Chen, et al. 2007 ; Dan, et al. 2005 ; Lushnikov, et al. 2008 ). The 

Hamiltonian for the cellular Potts model can be constructed using the experimentally 

observed location, adhesion and proliferation behavior of the stem cells.  

Another possible extension for the model is for applications involving the neural 

stem cells and/or embryonic stem cells. Review of current literature on adult neural stem 

cells reveals a striking similarity with the adult hematopoietic stem cell systems (Jackson, 

et al. 2008 ; Jordan, et al. 2007 ; Moyse,  et al. 2008). Further, the enormous therapeutic 
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potential of the embryonic stem cells and neural stem cells warrants  reproducible and 

robust methods for engineering these cells outside of the body to enable transplants 

(Robertson, et al. 2008). The difficulty associated with experimental investigations in 

such systems hence makes a strong case for development of mathematical models similar 

to the ones described in this thesis which can help reduce the extensive experimentation 

required to develop and optimize such stem cell engineering techniques.  My work here 

can be used as a good starting point, and also provides a framework from which these 

models can be built .  

6.2.2. Developing novel microfluidics-based devices for cell-based assays and tissue 
engineering  

  

The current work has highlighted the use of models for designing and operating 

microdevices for cell culture systems in from a general standpoint. Simplifying 

assumptions were made to increase the applicability of the model results to most 

microfluidics-based cell cultures. The ability to grow particular functional tissue systems 

inside these devices, however, would require further considerations and extensions of the 

model, both from the experimental as well as computational perspective.  

 Tissues are complex cellular systems with multiple cell types with multitude of 

interactions among them, as well as with the microenvironment. Models for specific 

types of tissues would require either relaxation of some of the assumptions used here, or 

incorporation of newer physico-chemical mechanisms for a complete formulation. For 

example, recent studies show that in developing functional bone tissue, it is known that 

the flow characteristics can play a important role; the pulsatile/osciallatory nature of the 

flow and the flow associated shear stress can significantly impact the growth and function 
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of the bone tissue (Du, et al. 2009a ; Du, et al. 2009b ; Jungreuthmayer, et al. 2008 ; 

Kavlock and Goldstein 2008 ; Sharp, et al. 2009 ). Also, tissue engineering applications 

require the use of scaffolds onto which the cells are seeded and grown. The interaction of 

scaffolds with the cells adds a new dimension affecting the cell culture system 

(Jungreuthmayer, et al. 2008 ; Yang, et al. 2009, Comisar, et al. 2007 ), and the 

mechanisms of these interactions have to be incorporated into the model described in this 

thesis.  The flow pattern and shear stress can be considerably altered due to the presence 

of the scaffold. While models have been developed to understand the flow and associated 

stress (Maes, et al. 2009 ), such models have to be used in conjunction with the ones 

described in this paper to arrive at predictive tools for building the optimal device for 

bone tissue engineering.  In a similar way the models and the analysis outlined in the 

thesis can be extended to build novel systems for growing other functional tissues or 

optimize the existing devices, e.g devices for liver tissue engineering (Altmann, et al. 

2008 ; De Bartolo, et al. 2009 ; Provin, et al. 2008 ; Wen, et al. 2008 ).  

 The current model is built assuming a rectangular geometry of the perfusion 

bioreactor. However advanced devices can have different geometries including 

membrane separated ones to address specific issues of the tissue culture (e.g see 

Marsano, et al. 2008 for cardiac tissue engineering; Mehta et al., 2009 for erythropoiesis 

on a chip etc.) and hence another possible set of extensions to the model would be based 

on relaxing the assumptions of the rectangular geometry.  Further, as mentioned earlier, 

the simplified laminar flow assumption would not hold with newer geometries, and hence 

the model equations would have to be solved along with the equations for fluid flow.  
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Another application of the work described in the thesis involved using the inverse 

form of the model to infer cellular properties. These properties can in turn be used to 

characterize a more detailed model, or just to probe the fundamental behavior of the 

system under consideration. In all, a new assay to quantitatively probe the cellular 

function and response can be developed using a combined experimental and modeling 

approach. Advances in the experimental techniques have already helped integrate 

measurement techniques to dynamically monitor the cell culture in microfluidic devices, 

e.g Vickerman and coworkers (Vickerman, et al. 2008 ) report a combined microfluidic 

based device with real time imaging capabilities.  Extending the models as described in 

chapter 3-5 for such a system can enable quantifying the experimental observations.  

6.2.3. Inferring biophysical parameters for cellular reactions from imaging data 
 

 The algorithm described in chapter 5 to infer sub-cellular protein binding 

affinities was applied for Rac-PBD binding in mammalian cells. While we analyzed 

equilibrium data for a simple bimolecular reaction, our analysis and development was by 

no means restrictive, and can be easily be extended to systems with other reactions 

schemes, and with multiple interacting protein pairs. Further, the analysis can be used for 

time course image data to infer kinetic parameter of reactions occurring inside the cells. 

A preliminary theoretical analysis of this work was done in this context for an example 

system of quantifying the localization of protein in nucleus (results shown in appendix). 

The next part of the work can involve extending the algorithm to infer the reaction 

kinetics from the 4D image data. Such an extension can be made starting with a simpler 

reaction system, and then a more detailed analysis of a small signaling pathway can be 
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done, which can be compared against available models to validate and understand our 

ability to rightly model the reaction pathways inside the cell. Finally, this work can be 

taken further to formulate an inverse problem strategy to infer and characterize the 

reaction pathways inside the cell. 

A possible extension for this project would be to use it to measure the binding 

affinities of other binding systems, starting from protein-pairs that have known binding 

affinities to understand the differences in the in vitro binding and the binding in cellular 

environment. Further, this can be compared against a computational model to understand, 

formulate, and validate the basic theory of reaction and diffusion in the cell. The model 

can be developed based on the experimental system under consideration, based on any of 

the excellent available models in the literature (Bhalla 2004a ; Bhalla 2004b ; Grima and 

Schnell 2008 ; Wilkinson 2009 ). 

 Another direction to take this work to the next level would be from an 

experimental perspective. As mentioned in chapter 5, calibration remains a critical step in 

getting accurate quantitative information from the image data. Calibration using live cells 

is a tough proposition from an experimental standpoint, as it is difficult to ascertain the 

local concentrations of proteins in live cells (Wu and Pollard 2005 ), and the alternative 

way of  building small, microscopic entities with countable number of fluorescent 

proteins is also a complicated task.  Making small scale microfluidic-based designs can 

be useful here as the small ‘wells’ can be etched out reproducibly in a device, and 

microfluidics can be used to fill them with solutions with known concentrations of 

fluorescently tagged proteins, making them ideal standards for generating calibration 

data. The work done as a part of this thesis paves a way for such a system, as it can be 
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used to optimize the size and shape of the wells to give an optimal calibration system as 

indicated by results in chapter 5. 

6.3. Significance of current work 

 
The work done as apart of this thesis falls under the broader, interdisciplinary 

research area of computational biology. One of the major goals of the research in this 

area is to fundamentally characterize the mechanisms underlying the behavior of cellular 

systems and then use the knowledge to formulate a theoretical understanding. As 

mentioned earlier, considering that reactions form the basic mechanisms by which the 

cells communicate applications of standard chemical engineering principles to these 

research problems and can offer a fresh and useful perspective.  

More particularly, this thesis (Chapter 3, 4) shows how application of models 

developed can reduce the time consuming and expensive experimentation required to 

devise an optimal strategy to design novel systems for in vitro tissue engineering. I 

believe that such a combined experimental-computational approach can be of critical 

importance for generating next generation designs for growing functional biological 

tissues. Furthermore, models developed in chapter 2, can help us identify and develop a 

better understanding of difficult biological systems, which are not accessible from an 

experimental standpoint. Similarly, the work presented in chapter 3 and 4 can be of 

significance in developing next generation microfabricated systems for tissue 

engineering.  In chapter 5 of this thesis, I have shown the proof of concept analysis of 

direct inference of protein binding affinities (Kd) from the experimental images captured 

in course of FRET experiments. To the best of my knowledge, this is the first algorithm 
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attempting to quantitatively characterize the protein binding at a local, sub-cellular scale.  

This work brings to light an important question: Is it possible to directly quantify the 

rates of reactions occurring inside the cells from the spatio-temporal information of 

molecules inside the cells? Are the reactions occurring in the cells reaction-limited, or are 

they in a diffusion-controlled regime? While advances in microscopic techniques can 

help us identify the spatial and temporal localization of molecules inside live cells, using 

these data to characterize mathematical models of cellular signaling/reaction pathways is 

not straightforward. This work, in terms of characterizing a simple equilibrium model, is 

possibly the first step in answering these important questions.  

The broad objective of my thesis is to develop a framework which applies 

fundamental theoretical principles in conjunction with experimental observations to help 

device better biomedical technologies. By developing this unified approach, I believe that 

my work helps to answer existing outstanding questions in bio-chemical sciences as well 

as open up newer exciting avenues of research. 
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