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CHAPTER I

Introduction

Missing data are a pervasive problem in large-scale surveys, arising when a sam-

pled unit does not respond to a particular question (item nonresponse) or to the entire

survey (unit nonresponse). This dissertation addresses two major topics under the

umbrella of survey nonresponse: hot deck imputation and evaluation of nonresponse

bias. Chapter II contains an extensive review of hot deck imputation, which despite

being used extensively in practice has theory that is not as well developed as that of

other imputation methods. One of the understudied areas discovered in this review

is the topic for the subsequent chapter: Chapter III addresses the use of sample

weights in the hot deck. These first chapters concern methods for imputing missing

data in the case where (at worst) missingness is at random (MAR) (Rubin, 1976);

the final two chapters (IV, V) focus instead on a method for estimating and cor-

recting nonresponse bias when missingness may not be at random (NMAR). Since

sample surveys are ubiquitous, not just in the health sciences but far beyond, the

work in this dissertation has broad and immediate application to a wide range of

survey practitioners.

A common technique for handling item nonresponse is imputation, whereby the

missing values are filled in to create a complete data set that can then be analyzed

1
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with traditional analysis methods. Chapter II provides an extensive review of a

specific type of imputation known as hot deck imputation, which involves replacing

missing values with values from a “similar” responding unit. This method is used

extensively in practice, but the theory behind the hot deck is not as well developed

as that of other imputation methods, leaving researchers and analysts with no clear

“correct” way to apply the hot deck and obtain inference from the completed data

set. This paper describes various forms of the hot deck, including both random

and deterministic versions, reviews existing research on statistical properties, and

suggests some areas for future work.

One of the highlighted areas in the review is the appropriate incorporation of

sample weights in the hot deck, and this is the topic of Chapter III. A key feature

of complex sample surveys is that the way in which units are selected to participate

leads to individual units carrying different weights in subsequent analyses. There

is extensive literature on how to use these sample weights when analyzing data;

despite this, there is no consensus on the incorporation of these weights when using

the hot deck for imputation. The two main approaches that have been recommended,

the weighted sequential hot deck (Cox, 1980) and selecting donors with probability

proportional to their sample weight (Rao and Shao, 1992), require alteration of the

typical hot deck implementation. This makes them either unfeasible or unattractive

to users, and for this reason they are uncommon in practice, and users tend to

ignore the sample weights in the imputation step. In this part of the dissertation we

propose an approach to using the sample weights that does not require any alterations

to software and can be easily implemented. We show through simulation that our

method performs at least as well as the previously suggested methods, and in fact

is superior in certain scenarios. We also demonstrate the method on data from the
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third National Health and Nutrition Examination Survey (NHANES III).

The final two chapters of the dissertation focus not on a particular type of imputa-

tion but on a particular type of missing data mechanism, nonignorable missingness.

Chapter IV describes a novel method for assessment of nonresponse bias for the

mean of a continuous survey variable Y subject to nonresponse that we call proxy

pattern-mixture analysis. We assume that there are a set of covariates Z observed

for nonrespondents and respondents, but instead of using these auxiliary data for

imputation as Chapters II and III, here we use the data to estimate the potential for

nonresponse bias in Y . To reduce dimensionality and for simplicity we reduce the

covariates Z to a proxy variable X that has the highest correlation with Y , estimated

from a regression analysis of respondent data. We consider adjusted estimators of

the mean of Y that are maximum likelihood for a pattern-mixture model with dif-

ferent mean and covariance matrix of Y and X for respondents and nonrespondents,

assuming missingness is an arbitrary function of a known linear combination of X

and Y . This allows insight into whether missingness may be not at random (NMAR).

We propose a taxonomy for the evidence concerning bias based on the strength of

the proxy and the deviation of the mean of X for respondents from its overall mean,

propose a sensitivity analysis, and describe Bayesian versions of this approach. We

propose using the fraction of missing information from multiple imputation under the

pattern-mixture model as a measure of nonresponse bias. Methods are demonstrated

through simulation and data from the NHANES III.

The proxy pattern-mixture analysis developed in Chapter IV strictly only applies

to continuous survey variables, where normality is reasonable. However, categorical

outcomes are ubiquitous in sample surveys. In Chapter V we propose an extension

of the PPM to binary survey outcomes using probit models. The method is also
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extended to ordinal outcomes. In addition, the important issue of model misspeci-

fication is discussed. The methods are illustrated first through simulation and then

by application to NHANES III data.



CHAPTER II

A Review of Hot Deck Imputation

2.1 Introduction

Missing data are often a problem in large-scale surveys, arising when a sampled

unit does not respond to the entire survey (unit nonresponse) or to a particular

question (item nonresponse). A common technique for handling item nonresponse

is imputation, whereby the missing values are filled in to create a complete data

set that can then be analyzed with traditional analysis methods. It is important to

note at the outset that the objective of imputation is not to get the best possible

predictions of the missing values, but to replace them by plausible values in order

to exploit the information in the recorded variables for the incomplete cases (Little

and Rubin, 2002). We consider here hot deck imputation, which involves replacing

missing values with values from a “similar” responding unit. This method is used

extensively in practice, but the theory behind the hot deck is not as well developed

as that of other imputation methods, leaving researchers and analysts with no clear

“correct” way to apply the hot deck and obtain inference from the completed data

set. This paper describes various forms of the hot deck, reviews existing research on

statistical properties, and highlights some areas for future work.

Hot deck imputation involves replacing missing values of one or more variables

5
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for a nonrespondent (called the recipient) with observed values from a respondent

(the donor) that is similar to the nonrespondent with respect to characteristics ob-

served by both cases. In some versions, the donor is selected randomly from a set of

potential donors, which we call the donor pool; we call these methods random hot

deck methods. In other versions a single donor is identified and values are imputed

from that case, usually the “nearest neighbor” based on some metric; we call these

methods deterministic hot deck methods, since there is no randomness involved in

the selection of the donor. Other methods impute summaries of values for a set of

donors, such as the mean, rather than individual values; we do not consider these as

hot deck methods, although they share some common features. We note that our use

of “deterministic” describes the way in which a donor is selected in the hot deck, and

differs from the use of “deterministic” to describe imputation methods that impute

the mean or other non-random value.

There are several reasons for the popularity of the hot deck method among survey

practitioners. As with all imputation methods, the result is a rectangular data

set that can be used by secondary data analysts employing simple complete-data

methods. It avoids the issue of cross-user inconsistency that can occur when analysts

use their own missing-data adjustments. The hot deck method does not rely on

model fitting for the variable to be imputed, and thus is potentially less sensitive

to model misspecification than an imputation method based on a parametric model,

such as regression imputation, though implicit assumptions do exist. Additionally,

only plausible values can be imputed, since values come from observed responses in

the donor pool. There may be a gain in efficiency relative to complete-case analysis,

since information in the incomplete cases is being retained. There is also a reduction

in nonresponse bias, to the extent that there is an association between the variables
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defining imputation classes and both the propensity to respond and the variable to

be imputed.

Section 2.2 describes some applications of the hot deck in real surveys, includ-

ing the original application to the Current Population Survey (CPS). Section 2.3

discusses methods for finding “similar” units and creating donor pools. Section 2.4

consider methods for incorporating sampling weights, including weighted hot decks.

Section 2.5 discusses hot decks for imputing multivariate incomplete data with mono-

tone and more complex “swiss cheese” patterns of missingness. Theoretical proper-

ties of hot deck estimates, such as unbiasedness and consistency, are the focus of

Section 2.6. Section 2.7 discusses variance estimation, including resampling methods

and multiple imputation. Section 2.8 illustrates different forms of the hot deck on

data from the third National Health and Nutrition Examination Survey (NHANES

III), drawing comparisons between the methods by simulation. Some concluding

remarks and suggestions for future research are provided in Section 2.9.

2.2 Examples of the Hot Deck

Historically, the term “hot deck” comes from the use of computer punch cards for

data storage, and refers to the deck of cards for donors available for a nonrespondent.

The deck was “hot” since it was currently being processed, as opposed to the “cold

deck” which refers to using pre-processed data as the donors, i.e. data from a previous

data collection or a different data set. At the U.S. Census Bureau, the classic hot

deck procedure was developed for item nonresponse in the Income Supplement of

the Current Population Survey (CPS), which was initiated in 1947 and has evolved

since then (Ono and Miller, 1969; U.S. Bureau of the Census, 2002).

The CPS uses a sequential adjustment cell method to fill in missing items (U.S.
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Bureau of the Census, 2002). The main item requiring imputation is the earnings

question, but a small fraction (1-4%) missing values of other items relating to de-

mographics, employment status, and occupation are also imputed. Each variable

has its own hot deck, and imputation proceeds in a pre-specified order so that items

imputed previously may be used to define adjustment cells for later variables. For

example, cells to impute labor force items (e.g. employed/not employed) are defined

by age, sex, and race. Then industry and occupation is imputed with cells based on

age, sex, race, and employment status. Earnings can then be imputed based on age,

sex, race, employment status, and industry/occupation. The number of adjustment

cells ranges from approximately 100 for employment status to many thousands for

earnings estimates. The records within adjustment cell sorted based on geographic

location and primary sampling unit, and then values from respondents are used se-

quentially to impute missing values.

The hot deck is commonly used by other government statistics agencies and survey

organizations to provide rectangular data sets for users. For example, the National

Center for Education Statistics (NCES) uses different forms of the hot deck and

alternative imputation methods even within a survey. Out of twenty recent surveys,

eleven used a form of adjustment cell hot deck (sequential or random) while the

remaining nine used a form of deterministic imputation (e.g. mean imputation), cold

deck imputation, or a Bayesian method for MI. Within the surveys that used the hot

deck, many used both random within class imputation and sequential imputation

(National Center for Education Statistics, 2002).

The hot deck has been applied in epidemiologic and medical settings, although

here parametric imputation methods are more common. Applications of the hot deck

and comparisons with other imputation methods include Barzi and Woodward (2004)
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and Perez, Dennis, Gil, and Rondon (2002) in cross-sectional studies, and Twisk and

de Vente (2002) and Tang, Song, Belin, and Unutzer (2005) in longitudinal studies.

The lack of software in commonly used statistical packages such as SAS may deter

applications of the hot deck in these settings.

Sequential hot deck methods are the most prevalent in applications, but some re-

cent implementations have used more complex matching metrics and better methods

for handling multivariate missingness; these methods are described in the following

sections.

2.3 Methods for Creating the Donor Pool

Hot deck imputation methods share one basic property: each missing value is

replaced with an observed response from a “similar” unit (Kalton and Kasprzyk,

1986). Donor pools, also referred to as imputation classes or adjustment cells, are

formed based on auxiliary variables that are observed for donors and recipients. We

now review the various ways in which donors can be identified. For clarity we initially

focus on the use of covariate information x for imputing a single variable Y ; the case

of multivariate Y is discussed in Section 2.5.

2.3.1 Adjustment Cell Methods

The simplest method is to classify responding and nonresponding units into im-

putation classes, also known as adjustment cells, based on x (Brick and Kalton,

1996). To create cells, any continuous covariates are categorized before proceeding.

Imputation is then carried out by randomly picking a donor for each nonrespondent

within each cell. Cross-classification by a number of covariates can lead to many

adjustment cells. An example is imputation of income in the Current Population

Survey Outgoing Rotation Group (CPS-ORG), which uses seven variables leading
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to 11,520 adjustment cells (Bollinger and Hirsch, 2006), some of which contain non-

respondents but no matching respondents. The usual remedy is to drop or coarsen

variables until a suitable donor is found. The choice of variables for creating ad-

justment cells often relies on subjective knowledge of which variables are associated

with the item being imputed, and predictive of nonresponse. Groups of “similar”

donors could also be created empirically using branching algorithms such as CHAID

or CART (Kass, 1980; Breiman and Friedman, 1993), though these methods do not

seem to be widely used.

Sparseness of donors can lead to the over-usage of a single donor, so some hot

decks limit the number of times d any donor is used to impute a recipient. The

optimal choice of d is an interesting topic for research – presumably it depends on

the size of the sample, and the interplay between gain in precision from limiting d

and increased bias from reduced quality of the matches.

The two key properties of a variable used to create adjustment cells are (a) whether

it is associated with the missing variable Y , and (b) whether it is associated with the

binary variable indicating whether or not Y is missing. Table 2.1, from Little and

Vartivarian (2005), summarizes the effect of high or low levels of these associations on

bias and variance of the estimated mean of Y . Table 2.1 was presented for the case of

nonresponse weighting, but it also applies for hot deck imputation. In order to see a

reduction in bias for the mean of Y , the variables x that define the donor pools must

be associated both with Y and with the propensity to respond, as in the bottom

right cell of the table. If x is associated with the propensity to respond but not with

the outcome Y , there is an increase in variance with no compensating reduction in

bias, as in the bottom left cell of the table. Using adjustment cells associated with Y

leads to an increase in precision, and also reduces bias if the adjustment cell variable
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is related to nonresponse. Attempts should thus be made to create cells that are

homogeneous with respect to the item or items being imputed, and, if propensity is

associated with the outcome, also with the propensity to respond.

Creating adjustment cells is not the only way of defining groups of “similar” units.

A more general principle is to choose donor units that are close to the nonrespondent

with respect to some distance metric. We now review these methods.

2.3.2 Metrics for Matching Donors to Recipients

Let xi = (xi1, . . . , xiq) be the values for subject i of q covariates that are used

to create adjustment cells, and let C(xi) denote the cell in the cross-classification

in which subject i falls. Then matching the recipients i to donors j in the same

adjustment cell is the same as matching based on the metric

d(i, j) =

 0 j ∈ C(xi)

1 j /∈ C(xi)

.

Other measures of the “closeness” of potential donors to recipients can be defined that

avoid the need to categorize continuous variables, such as the maximum deviation,

d(i, j) = max
k
|xik − xjk|,

the Mahalanobis distance,

d(i, j) = (xi − xj)T V̂ ar(xi)−1(xi − xj),

where V̂ ar(xi) is an estimate of the covariance matrix of xi, or the predictive mean,

(2.1) d(i, j) =
(
Ŷ (xi)− Ŷ (xj)

)2

,

where Ŷ (xi) is the predicted value of Y for nonrespondent i from the regression of

Y on x using only the respondents’ data. Inclusion of nominal variables using these

metrics requires conversion to a set of dummy variables.
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If all adjustment variables are categorical and main effects plus all interactions

between adjustment variables are included in the regression model, predictive mean

matching reduces to the adjustment cell method. Subjects with the same x vector will

have the same Ŷ , creating identical donor pools as for the cross-tabulation method.

One advantage to defining neighborhoods via the predictive mean is that the variables

x that are predictive of Y will dominate the metric, while the Mahalanobis metric

may be unduly influenced by variables with little predictive power (Little, 1988).

Using generalized linear models such as logistic regression to model the predictive

means allow this metric to be used for discrete outcomes as well as continuous ones.

The predictive mean neighborhood method has also been proposed in the context of

statistical matching (Rubin, 1986).

One a metric is chosen there are several ways to define the set of donors for

each recipient. One method defines the donor set for nonrespondent j as the set of

respondents i with d(i, j) < δ, for a pre-specified maximum distance δ. A donor is

then selected by a random draw from the respondents in the donor set. Alternatively,

if the closest respondent to j is selected, the method is called a deterministic or

nearest neighbor hot deck. The widely used Generalized Edit and Imputation System

uses the nearest neighbor approach, with the maximum deviation metric applied to

standardized ranks to find donors (Cotton, 1991; Fay, 1999; Rancourt, 1999). A third

method for selecting a donor is developed in Siddique and Belin (2008), where all

respondents are eligible as donors but random selection of a donor is with probability

inversely proportional to their distance from the recipient, which is defined as a

monotonic function of the difference in predictive means.

As previously noted, information about the propensity to respond may help in

creating the best adjustment cells. One method is to perform response propensity
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stratification, whereby the probability of response for a subject p(x) is estimated by

the regression of the response indicator on the covariates x, using both respondent

and nonrespondent data (Little, 1986). As with the predictive mean metric, the

predicted probability of response (propensity score, p̂(x)) can be calculated for all

subjects, and is itself a type of distance metric. Stratification via predictive means

and response propensities are compared in the context of the hot deck in Haziza and

Beaumont (2007). They show that either metric can be used to reduce nonresponse

bias; however only the predictive mean metric has the potential to also reduce vari-

ance. Similar results were previously described for cell mean imputation in Little

(1986). Thus, for a single variable Y , creating cells that are homogeneous with re-

spect to the predictive mean is likely close to optimal; additional stratification by

the propensity to respond simply adds to the variance without reducing bias. For a

set of Y ’s with the same pattern and differing predictive means, a single stratifier

compromises over the set of predictive means for each variable in the set, as discussed

in Section 2.5. Additional stratification by the propensity to respond may reduce

bias in this setting.

2.3.3 Redefining the Variables to be Imputed

The natural implementation of the hot deck imputes a missing value yi of a vari-

able Y with the value yj of Y from a case j in the donor set. This imputation has the

attractive property of being invariant to transformations of the marginal distribution

of Y ; for example imputing Y yields the same imputations as imputing log Y and

exponentiating those values. Improvements may result from imputing a function of

Y and x, rather than Y itself. For example, if Y is strongly correlated with an auxil-

iary variable S measuring size of the unit, then it may be advantageous to treat the

missing variable as the ratio R = Y/S. Imputing r̂i = rj from a donor j, with the
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implied imputation ŷi = sirj for Y , might be preferable to imputing ŷi = yj directly

from a donor, particularly if donors are chosen within adjustment cells that do not

involve S or are based on a crude categorization of S.

2.4 Role of Sampling Weights

We now discuss proposals for explicitly incorporating the survey design weights

into donor selection.

2.4.1 Weighted Sequential Hot Deck

The weighted sequential hot deck procedure (Cox, 1980; Cox and Folsom, 1981)

was motivated by two issues: the unweighted sequential hot deck is potentially biased

if the weights are related to the imputed variable, and respondent values can be used

several times as donors if the sorting of the file results in multiple nonrespondents

occurring in a row. This tends to lead to estimates with excessive variance. The

weighted sequential hot deck preserves the sorting methodology of the unweighted

procedure, but allows all respondents the chance to be a donor and uses sampling

weights to restrict the number of times a respondent value can be used for imputation.

Respondents and nonrespondents are first separated into two files and sorted (ran-

domly, or by auxiliary variables). Sample weights of the nonrespondents are rescaled

to sum to the total of the respondent weights. The algorithm can be thought of as

aligning both these rescaled weights and the donors’ weights along a line segment,

and determining which donors overlap each nonrespondent along the line (Williams

and Folsom, 1981). Thus the set of potential donors for a given nonrespondent is

determined by the sort order, the nonrespondent’s sample weight, and the sample

weights of all the donors. The algorithm is designed so that, over repeated imputa-

tions, the weighted mean obtained from the imputed values is equal in expectation to
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the weighted mean of the respondents alone within imputation strata. “Similarity”

of donor to recipient is still controlled by the choice of sorting variables.

The weighted sequential hot deck does not appear to have been widely imple-

mented. For example, the National Survey on Drug Use and Health (NSDUH) used

it sparingly in the 2002 survey but has since switched to exclusive use of imputa-

tion via predictive mean neighborhoods (Grau, Frechtel, and Odom, 2004; Bowman,

Chromy, Hunter, Martin, and Odom, 2005).

2.4.2 Weighted Random Hot Decks

If donors are selected by simple random sampling from the donor pool, estimators

are subject to bias if their sampling weight is ignored. One approach, which removes

the bias if the probability of response is constant within an adjustment cell, is to

inflate the donated value by the ratio of the sample weight of the donor to that

of the recipient (Platek and Gray, 1983). However, this adjustment has drawbacks,

particularly in the case of integer-valued imputed value Y , since the imputations may

no longer be plausible values. An alternative method is to select donors via random

draw with probability of selection proportional to the potential donor’s sample weight

(Rao and Shao, 1992; Rao, 1996). Assuming the response probability is constant

within an adjustment cell, this method yields an asymptotically unbiased estimator

for Y . Note that in contrast to the weighted sequential hot deck, the sample weights

of nonrespondents are not used in determining the selection probabilities of donors.

If the values of Y for donors and recipients within an adjustment cell have the

same expected value, then the weighted draw is unnecessary, since unweighted draws

will yield unbiased estimates. A similar situation arises in weighting adjustments

for unit nonresponse, where a common approach is to compute nonresponse weights

as the inverse of response rates computed with units weighted by their sampling
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weights. Little and Vartivarian (2003) argues that this can lead to inefficient and

even biased estimates, and suggests instead computing nonresponse weights within

adjustment cells that condition on the design weights and other covariates. The

analogous approach to incorporating design weights in the hot deck is to use the de-

sign weight variable alongside auxiliary variables to define donor pools. Simulations

suggest that that unweighted draws from these donor pools yield better imputations

than weighted draws based on donor pools that are defined without including the

design weights as a covariate (Andridge and Little, 2009). The caveat in utilizing

weights in this manner is that if weights are not related to the outcome, an increase

in variance may occur without a corresponding decrease in bias; simulations in An-

dridge and Little (2009) show only a modest increase, though more investigation is

warranted.

2.5 Hot Decks for Multivariate Missing Data

Often more than one variable has missing values. Let X = (X1, . . . , Xq) denote

the fully observed items, including design variables, and let Y = (Y1, . . . , Yp) denote

the items with missing values. If the components of Y are missing for the same set of

cases, the data have just two missing-data patterns, complete and incomplete cases;

we call this the “two-pattern case”. A more general case is “monotone missing data”,

where the variables can be arranged in a sequence (Y1, . . . , Yp) so that Y1, . . . , Yj−1

are observed whenever Yj is observed, for j = 2, . . . , p. This pattern results in

longitudinal survey data where missing data arise from attrition from the sample.

Alternatively, the missing values may occur in a general pattern – Judkins (1997) calls

this a “swiss cheese pattern”. We discuss hot deck methods for all three situations,

moving from the simplest to the most complex.



17

2.5.1 The Two-Pattern Case

Suppose there are just two patterns of data, complete and incomplete cases. The

same set of covariate information X is available to create donor sets for all the

missing items. One possibility is to develop distinct univariate hot decks for each

variable, with different donor pools and donors for each item. This approach has the

advantage that the donor pools can tailored for each missing item, for example by

estimating a different predictive mean for each item and creating the donor pools

for each incomplete variable using the predictive mean matching metric. However,

a consequence of this method is that associations between the imputed variables are

not preserved. For example, imputation may result in a former smoker with a current

2-pack per day habit, or an unemployed person with a substantial earned income.

This may be acceptable if analyses of interest are univariate and do not involve these

associations, but otherwise the approach is flawed.

An alternative method, which Marker, Judkins, and Winglee (2002) calls the

single-partition, common-donor hot deck is to create a single donor pool for each

nonrespondent, using for example the multivariate analog of the predictive mean

metric (2.1):

(2.2) d(i, j) = (Ŷ (xi)− Ŷ (xj))
T V̂ ar(y · xi)−1(Ŷ (xi)− Ŷ (xj)),

where V̂ ar(y · xi) is the estimated residual covariance matrix of Yi given xi. A

donor from this pool is used to impute all the missing items for a recipient, thereby

preserving associations within the set. This approach clearly preserves associations

between imputed variables, but since the same metric is used for all the variables,

the metric is not tailored to each variable.



18

Another approach that preserves associations between p variables, which we refer

to as the p-partition hot deck, is to create the donor pool for Yj using adjustment cells

(or more generally, a metric) that conditions onX and (Y1, . . . , Yj−1), for j = 2, . . . , p,

using the recipient’s previously imputed values of (Y1, . . . , Yj−1), when matching

donors to recipients. Marker et al. (2002) calls this method the n-partition hot deck,

here we replace n by p for consistency of notation. This approach allows the metric

to be tailored for each item, and the conditioning on previously-imputed variables in

the metric provides some preservation of associations, although the degree of success

depends on whether the distance metrics for each variable Yj capture associations

with X and (Y1, . . . , Yj−1), and the extent to which “close” matches can be found.

The single-partition and p-partition hot deck can be combined by dividing the

variables Y into sets, and applying a single partition and shared donors for variables

within each set, but different partitions and donors across sets. Intuitively, the vari-

ables within each set should be chosen to be homogeneous with respect to potential

predictors, but specifics of implementation are a topic for future research.

2.5.2 Monotone Patterns

Now suppose we have a monotone pattern of missing data, such that Y1, . . . , Yj−1

are observed whenever Yj is observed, for j = 2, . . . , n, and let Sj denote the set of

cases with X, Y1, . . . , Yj observed. More generally, we allow each Yj to represent a

vector of variables with the same pattern. The p-partition hot deck can be applied

to fill in Y1, ...Yn sequentially, with the added feature that the set Sj can be used

as the pool of donors when imputing Yj. The single-partition hot deck based on a

metric that conditions on X has the problem that it fails to preserve associations

between observed and imputed components of Y for each pattern. Such associations

are preserved if the p-partition method is applied across the sets of variables Yj, but
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variables within each each set are imputed using a single partition. Again, various

elaborations of these two schemes could be envisaged.

2.5.3 General Patterns

For a general pattern of missing data, it is more challenging to develop a hot deck

that preserves associations and conditions on the available information. The cyclic

p-partition hot deck attempts to do this by iterative cycling through p-partition

hot decks, in the manner of a Gibbs’ sampler (Judkins, Hubbell, and England,

1993; England, Hubbell, Judkins, and Ryaboy, 1994). This approach is a semi-

parametric analog of the parametric conditional imputation methods in the software

packages IVEWare (Raghunathan, Lepkowski, Van Hoewyk, and Solenberger, 2001)

and MICE (Van Buuren and Oudshoorn, 1999). In the first pass, a simple method

is used to fill in starting values for all missing items. Second and later passes de-

fine partitions based on the best set of adjustment variables for each item to be

re-imputed. Each variable is then imputed sequentially, and the procedure continues

until convergence. Convergence in this setting is uncertain, and deciding when to

stop is difficult; England et al. (1994) suggest stopping the algorithm when estimates

stabilize rather than individual imputations, based on the philosophy that the goal

of imputation is good inferences, rather than optimal imputations. The properties

of this method remain largely unexplored.

Other approaches to general patterns have been proposed. The full-information

common-donor hot deck uses a different single-partition common-donor hot deck for

each distinct pattern of missingness in the target vector (Marker et al., 2002). An-

other method is that of Grau et al. (2004), who extend the idea of neighborhoods

defined by predictive means to multivariate missingness. First, variables to be im-

puted are placed in a hierarchy, such that items higher in the hierarchy can be used
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for imputation of items lower in the list. Second, predictive means are determined

for each item, using models built using complete cases only. For subjects with mul-

tiple missing values, the nearest neighbors are determined using the Mahalanobis

distance based on the vector of predictive means for the missing items, and all val-

ues are copied from the selected donor to the recipient. All donors within a preset

distance ∆ are considered to be in the donor pool. Many multivariate methods seem

relatively ad hoc, and more theoretical and empirical comparisons with alternative

approaches would be of interest.

A slightly different approach is the joint regression imputation method of Srivas-

tava and Carter (1986), which was extended to complex survey data by Shao and

Wang (2002). Joint regression aims to preserve correlations by drawing correlated

residuals. Srivastava and Carter (1986) suggest drawing residuals from fully observed

respondents, and so with the appropriate regression model this becomes a hot deck

procedure. Shao and Wang (2002) extend the method to allow flexible choice of dis-

tribution for the residuals and to incorporate survey weights. In the case of two items

being imputed, if both items are to be imputed the residuals are drawn so they have

correlation consistent with what is estimated from cases with all items observed. If

only one item is imputed the residual is drawn conditional on the residual for the

observed item. This differs from a marginal regression approach where all residuals

are drawn independently, and produces unbiased estimates of correlation coefficients

as well as marginal totals.

2.6 Properties of Hot Deck Estimates

We now review the (somewhat limited) literature on theoretical and empirical

properties of the hot deck. The simplest hot deck procedure – using the entire sample
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of respondents as a single donor pool – produces consistent estimates only when data

are missing completely at random (MCAR) (Rubin, 1976; Little and Rubin, 2002).

The hot deck estimate of the mean equals the respondent mean in expectation,

and the respondent mean is an unbiased estimate of the overall mean when data

are MCAR. When data are not MCAR, two general frameworks for determining

properties of estimates from imputed data have been developed: the imputation

model approach (IM) and the nonresponse model approach (NM) (Shao and Steel,

1999; Haziza and Rao, 2006). Conditions for consistency of hot deck estimates depend

on which of these two approaches is adopted.

The IM approach explicitly assumes a superpopulation model for the item to

be imputed, termed the “imputation model”; inference is with respect to repeated

sampling and this assumed data-generating model. The response mechanism is not

specified except to assume that data are missing at random (MAR). In the case of

the random hot deck this implies that the response probability is allowed to depend

on auxiliary variables that create the donor pools but not on the value of the miss-

ing item itself. Brick, Kalton, and Kim (2004) show using this framework that the

(weighted or unweighted) hot deck applied within adjustment cells leads to an un-

biased estimator under a cell mean model; within each cell elements are realizations

of independently and identically distributed random variables. For nearest neighbor

imputation, Rancourt, Särndal, and Lee (1994) claim that estimates of sample means

are asymptotically unbiased assuming a linear relationship between the item to be

imputed and the auxiliary information, but no theoretical support is offered. Chen

and Shao (2000) extend the approach of Rancourt et al. (1994) to show that the

relationship between the imputed variable and the auxiliary information need not be

linear for asymptotic unbiasedness to hold, with suitable regularity conditions.



22

Perhaps the most crucial requirement for the hot deck to yield consistent estimates

is the existence of at least some donors for a nonrespondent at every value of the

set of covariates that are related to missingness. To see why, consider the extreme

case where missingness of Y depends on a continuous covariate x, such that Y is

observed when x < x0 and Y is missing when x ≥ x0. A hot deck method that

matches donors to recipients using x clearly cannot be consistent when Y has a

non-null linear regression on x, since donors close to recipients are not available,

even asymptotically as the sample size increases. In contrast, parametric regression

imputation would work in this setting, but depends strongly on the assumption that

the parametric form of the mean function is correctly specified.

In lieu of making an explicit assumption about the distribution of item values,

the NM approach makes explicit assumptions about the response mechanism. Also

called the quasirandomization approach (Oh and Scheuren, 1983), the NM approach

assumes that the response probability is constant within an imputation cell. Infer-

ence is with respect to repeated sampling and the assumed uniform response mech-

anism within cells. Thus for the random hot deck to lead to unbiased estimates, the

within-adjustment-cell response probability must be constant. If sample selection is

with equal probability, selection of donors may be by simple random sampling to

achieve unbiasedness. For unequal probabilities of selection, selection of donors with

probability of selection proportional to the potential donor’s sample weight leads to

asymptotically unbiased and consistent mean estimates (Rao and Shao, 1992; Rao,

1996; Chen and Shao, 1999). Applications of both of these approaches to variance

estimation can be found in Section 2.7.

Suppose now that the interest is in estimating either domain means, where a

domain is a collection of adjustment cells, or cross-class means, defined as a sub-
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set of the population that cuts across adjustment cells (Little, 1986). The hot deck

produces consistent estimates of domain and cross-class means if stratification on x

produces cells in which Y is independent of response. Since one cannot observe the

distribution of Y for the nonrespondents, using all auxiliary variables to define the

cells would be the best strategy. Often the dimension of x is too large for full strat-

ification, and alternative distance metrics such as the predictive mean, Ŷ (x), or the

response propensity, p̂(x), can be useful. Using these metrics to define adjustment

cells was discussed by Little (1986). For domain means, predictive mean stratifi-

cation and response propensity stratification both yield consistent estimates. For

estimating cross-class means, predictive mean stratification produces estimates with

zero large-sample bias, but response propensity stratification gives nonzero bias. In

this case adjustment cells must be formed based on the joint distribution of response

propensity and the cross-class variable in order to produce consistent estimates.

An alternative approach to the hot deck is to generate imputations as draws from

the distribution of the missing values based on a parametric model. Examples of this

approach include the popular regression imputation, Bayesian MI methods in SAS

PROC MI (SAS Institute, Cary, NC) or the sequential MI algorithms implemented

in IVEware and MICE (Raghunathan et al., 2001; Van Buuren and Oudshoorn,

1999). Little (1988) points out that the adjustment cell method is in effect the same

as imputing based on a regression model that includes all high-order interactions

between the covariates, and then adding an empirical residual to the predictions;

imputation based on a more parsimonious regression model potentially allows more

main effects and low-order interactions to be included (Lillard, Smith, and Welch,

1982; Little, 1988).

Several studies have compared parametric methods to the non-parametric hot



24

deck David, Little, Samuhel, and Triest (1986) compared the hot deck used by the

U.S. Census Bureau to impute income in the CPS to imputation using parametric

models for income (both on the log scale and as a ratio) and found that the meth-

ods performed similarly. Several authors have compared hot deck imputation using

predictive mean matching to parametric methods that impute predicted means plus

random residuals (Lazzeroni, Schenker, and Taylor, 1990; Heitjan and Little, 1991;

Schenker and Taylor, 1996). The relative performance of the methods depends on the

validity of the parametric model and the sample size. When the population model

matches the parametric imputation model, hot deck methods generally have larger

bias and are less precise. However, the hot deck is less vlunerable to model misspec-

ification. If a model is used to define matches, as in hot deck with predictive mean

matching, it is less sensitive to misspecification than models used to impute values

directly. The hot deck tends to break down when the sample size is small, since when

the pool of potential donors is limited, good matches for nonrespondents are hard

to find. Also, in small samples the bias from misspecification of parametric models

is a smaller component of the mean squared error. Thus, parametric imputation

methods become increasingly attractive as the sample size diminishes.

2.7 Variance Estimation

Data sets imputed using a hot deck method are often analyzed as if they had no

missing values (Marker et al., 2002). In particular, variance estimates in the Current

Population Survey continue to be based on replication methods appropriate for com-

pletely observed data (U.S. Bureau of the Census, 2002). Such approaches clearly

understate uncertainty, as they ignore the added variability due to nonresponse.

There are three main approaches to obtaining valid variance estimates from data
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imputed by a hot deck: (1) Explicit variance formulae that incorporate nonresponse;

(2) Resampling methods such as the jackknife and the bootstrap, tailored to account

for the imputed data; and (3) hot deck multiple imputation (HDMI), where multiple

sets of imputations are created, and imputation uncertainty is propagated via MI

combining rules (Rubin, 1987; Little, 1988). We now review these three approaches.

2.7.1 Explicit Variance Formulae

Explicit variance formulae for hot deck estimates can be derived in simple cases;

see for example Ford (1983) for simple random sampling from the donor pool and

Bailar and Bailar (1978) for the sequential hot deck. These methods make the

strong and often unrealistic assumption that the data are missing completely at

random (MCAR). Creating adjustment cells, applying one method separately within

cells, and pooling the results eliminates bias attributable to differences in response

across the cells. Alternatively, if one is willing to make some assumptions about the

distribution of Y in the population, several methods have been developed that lead

to explicit variance formulae.

The model-assisted estimation approach of Särndal (1992) allows variance estima-

tion under the more realistic assumption that data are missing at random (MAR).

By assuming a model for the distribution of Y in the population, the variance of an

estimator in the presence of missingness is decomposed into a sampling variance and

an imputation variance. Estimators are obtained using information in the sampling

design, observed näıve values, and imputation scheme. Brick et al. (2004) extend

Särndal’s method to the hot deck, using the assumption that within adjustment

cells (g = 1, . . . , G) values of Y are independent and identically distributed with

mean µg and variance σ2
g . They derive a variance estimator that is conditionally

unbiased, given the sampling, response, and imputation indicators, and argue that
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conditioning on the actual number of times responding units are used as donors is

more relevant than the unconditional variance which averages over all possible im-

putation outcomes. Cell means and variances are the only unknown quantities that

need estimation to use the variance formula. The authors note that their method

covers many forms of hot deck imputation, including both weighted and unweighted

imputation and selection with and without replacement from the donor pool.

Chen and Shao (2000) consider variance estimation for nearest neighbor hot deck

imputation and derive the asymptotic variance of the mean in the case of a single

continuous outcome (Y ) subject to missingness and a single continuous auxiliary

variable (x). Their formula requires specification of the conditional expectation of

Y given x. In practice, one has to assume a model for the mean, such as E(Y |x) =

α + βx, fit the model to the observed data, and use the estimates α̂ and β̂ in their

variance formulas. This method produces a consistent estimate of the variance,

assuming the model is correct. Of note, they show that the empirical distribution

function obtained from nearest neighbor imputation is asymptotically unbiased, and

so quantile estimators are also unbiased.

2.7.2 Resampling Methods for Single Imputation

Model-assisted methods for variance estimation are vulnerable to violations of

model assumptions. A popular alternative is resampling methods. One such method

is the jackknife, where estimates are based on dropping a single observation at a time

from the data set. Performing a näıve jackknife estimation procedure to the imputed

data underestimates the variance of the mean estimate, particularly if the proportion

of nonrespondents is high. To correct this, Burns (1990) proposed imputing the full

sample and then imputing again for each delete-one data set. However, this leads

to overestimation when n is large and requires repeating the imputation procedure
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n + 1 times. To combat this, Rao and Shao (1992) proposed an adjusted jackknife

procedure that produces a consistent variance estimate.

Rao and Shao’s jackknife method can be applied to random hot deck imputation of

complex stratified multistage surveys; the more straightforward application to infer-

ence about means from a simple random sample with replacement is discussed here.

Suppose that r units respond out of a sample of size n, and the simple unweighted

hot deck is applied, yielding the usual estimate ȳHD. First, the hot deck procedure

is applied to create a complete data set. The estimator for each jackknife sample is

calculated each time a nonrespondent value is deleted, but with a slight adjustment

when respondents are deleted. Specifically, each time a respondent value is dropped

the imputed nonrespondent values are each adjusted by E(ỹ
(−j)
i ) − E(ỹi), where ỹi

is the imputed value for nonrespondent i using the entire donor pool and ỹ
(−j)
i is

the hypothetical imputed value with the jth respondent dropped, and expectation is

with respect to the random imputation. For the random hot deck this reduces to an

adjustment of ȳ
(−j)
R − ȳR, where ȳ

(−j)
R is the mean of the remaining (r−1) respondents

after deleting the jth respondent. This adjustment introduces additional variation

among the pseudoreplicates to capture the uncertainty in the imputed values that

would otherwise be ignored by the naive jackknife. The adjusted jackknife variance

estimate is approximately unbiased for the variance of ȳHD, assuming a uniform

response mechanism and assuming the finite population correction can be ignored.

Extensions of this method to stratified multistage surveys and weighted hot deck

imputation involve a similar adjustment to the jackknife estimators formed by delet-

ing clusters; see Rao and Shao (1992) for details. Kim and Fuller (2004) describe

application of the jackknife variance estimator to fractional hot deck imputation,

first described by Fay (1993). A similar jackknife procedure for imputation in a
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without-replacement sampling scheme and for situations where sampling fractions

may be non-negligable is discussed in Berger and Rao (2006). Chen and Shao (2001)

show that for nearest neighbor hot deck imputation the adjusted jackknife produces

overestimates of the variance since the adjustment term will be zero or near zero,

similar to the difficulty in applying the jackknife to the sample median. They sug-

gest alternative “partially adjusted” and “partially reimputed” methods that are

asymptotically unbiased. Other popular resampling techniques for variance estima-

tion include the balanced half sample method and the random repeated replication

method. These methods require adjustments similar to those for the jackknife in

the presence of imputed data; details are given in Shao, Chen, and Chen (1998) and

Shao and Chen (1999).

Though the adjusted jackknife and its variants require only a singly-imputed data

set, they are not without limitation. There must be accompanying information that

indicates which values were initially nonrespondents, a feature that is not often

found with public-use data sets imputed via the hot deck (or any other procedure).

Additionally, the step of adjusting imputed values for each jackknife replicate requires

the user to know the precise details of the hot deck method used for the imputation,

including how the adjustment cells were formed and how donors were selected. In

practice this means that either the end user carries out the imputation himself, or

that the end user can be trusted to correctly recreate the original imputation.

The jackknife cannot be applied to estimate the variance of a non-smooth statistic,

e.g. a sample quantile. A resampling method that allows for estimation of smooth or

non-smooth statistics is the bootstrap (Efron, 1994), and its application to the hot

deck was discussed by Shao and Sitter (1996) and Saigo, Shao, and Sitter (2001).

As with the jackknife, applying a naive bootstrap procedure to a singly-imputed
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data set leads to underestimation. However, a simple alteration leads to a bootstrap

procedure that yields consistent variance estimates. First, the hot deck is used to

generate a complete data set. From this a bootstrap sample of size n is drawn with

replacement from the imputed sample. Instead of calculating a bootstrap estimate

of ȳ at this point, the hot deck must be reapplied and the sampled respondent values

used as the donor pool for the sampled nonrespondents. Then the usual estimate

ȳ(b) can be calculated for this bth bootstrap sample. Bootstrap samples are drawn

and the imputation repeated B times, and the usual bootstrap mean and variance

formulae can be applied. The extra step of imputing at each bootstrap sample

propagates the uncertainty, and thus yields a consistent estimate of variance. In

addition, bootstrap estimates can be developed for multistage survey designs, for

example by bootstrapping primary sampling units rather than individual units. As

with the adjusted jackknife, the bootstrap requires knowledge of which values were

imputed, which may not be available in public-use data sets. Chen and Shao (1999)

consider variance estimation for singly-imputed data sets when the nonrespondents

are nonidentifiable and derive design-consistent variance estimators for sample means

and quantiles. The method only requires a consistent estimator of the response

probability, which may be available when more detailed subject-specific response

information is not, and produces an adjustment to the usual complete data variance

formula (e.g. Cochran, 1977) to account for the uncertainty in imputation.

2.7.3 Multiple Imputation

First proposed by Rubin (1978), MI involves performing K ≥ 2 independent

imputations to create K complete data sets. As before, assume that the mean of

the variable y subject to nonresponse is of interest. Let θ̂k, Wk denote the estimated

mean and variance of ȳ from the kth complete data set. Then the MI estimator of ȳ
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is simply the average of the estimators obtained from each of the K completed data

sets:

(2.3) θ̄K =
1

K

K∑
k=1

θ̂k

The averaging over the imputed data sets improves the precision of the estimate,

since the added randomness from drawing imputations from an empirical distribution

(rather than imputing a conditional mean) is reduced by a factor of 1/K. The

variance of θ̄K is the sum of the average within-imputation variance and the between-

imputation variance. Ignoring the finite population correction, the average within-

imputation variance is

W̄K =
1

K

K∑
k=1

Wk

and the between-imputation variance is

BK =
1

K − 1

K∑
k=1

(
θ̂k − θ̄K

)2

.

The total variance of θ̄K is the sum of these expressions, with a bias correction for

the finite number of multiply imputed data sets,

(2.4) Var
(
θ̄K
)

= W̄K +
K + 1

K
BK .

When the hot deck procedure is used to create the MI data sets, and the same donor

pool is used for a respondent for all K data sets, the method is not a proper MI

procedure (Rubin, 1978). The method produces consistent estimates of ȳ as K →∞

but since the predictive distribution does not properly propagate the uncertainty,
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its variance is an underestimate, even with an infinite number of imputed data sets.

The degree of underestimation becomes important if a lot of information is being

imputed.

Adjustments to the basic hot deck procedure that make it “proper” for MI have

been suggested, though not widely implemented by practitioners. One such proce-

dure is the Bayesian Bootstrap (BB) (Rubin, 1981). Suppose there are M unique

values, d = (d1, d2, . . . , dM) of Y observed among the respondents, with associated

probabilities φ = (φ1, φ2, . . . , φM). Imposing an noninformative Dirichlet prior on

φ yields a Dirichlet posterior distribution with mean vector φ̂ =
(
φ̂1, . . . , φ̂M

)
with

φ̂m = rm/r, where rm denotes the number of times that dm is observed among the

respondents. Imputation proceeds by first drawing φ∗ from the posterior distribu-

tion and then imputing values for each nonrespondent by drawing from d with vector

of probabilities φ∗. Repeating the entire procedure K times gives proper multiple

imputations.

The Approximate Bayesian Bootstrap (ABB) approximates the draws of φ from

the above Dirichlet posterior distribution with draws from a scaled multinomial dis-

tribution (Rubin and Schenker, 1986). First an r dimensional vector X is drawn with

replacement from the respondents’ values. Then the n− r nonrespondent values are

drawn with replacement from X. This method is easy to compute, and repeated

applications will yield again yield proper multiple imputations. Variances for the

ABB method are on average higher than variances for the BB method by a factor of

(r + 1)/r, but confidence coverage for the two methods were very close and always

superior to the simple hot deck in simulations in (Rubin and Schenker, 1986). Kim

(2002) notes that the bias of the ABB method is not negligible when sample sizes

are small and response rates are low. He suggests a modification in which the size
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of the vector X drawn from the respondents is not r, but instead is a value d chosen

to minimize the bias in the variance for small samples. The value of d depends on

the total sample size and the response rate and as n → ∞, d → r, so that in large

samples the correction is not needed. See Kim (2002) for details.

One of the biggest advantages to parametric multiple imputation is that it allows

users to easily estimate variances for sample quantities besides totals and means. To

achieve this with the hot deck requires modifying the imputation procedure to be

“proper,” via BB or ABB. However, implementation of these methods in sample set-

tings more complex than simple random sampling (i.e. multi-stage sampling) remains

largely unexplored. On the other hand, software for parametric Bayesian multiple

imputation (e.g. IVEWARE) is available and can handle clustering, weighting, and

other features of complex survey designs. Practitioners and agencies already using

the hot deck may be unwilling to alter their imputation strategy to obtain correct

variance estimates from multiple imputation, choosing instead to utilize a resampling

technique. Those looking for a new multiple imputation strategy may prefer the ease

of the parametric methods.

2.8 Detailed Example

With so many variations of the hot deck in use, we set out to compare a subset

of these methods using a real data set. The third National Health and Nutrition

Examination Survey (NHANES III) is a large-scale survey that has previously been

used to compare imputation methods, including parametric and non-parametric and

single and multiple imputation methods (Ezzati-Rice, Fahimi, Judkins, and Khare,

1993a; Ezzati-Rice, Khare, Rubin, Little, and Schafer, 1993b; Khare, Little, Rubin,

and Schafer, 1993). NHANES III data were also released to the public as a multiply
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imputed data set (U.S. Department of Health and Human Services, 2001). Details of

the survey design and data collection procedures are available in Plan and Operation

of the Third National Health and Nutrition Examination Survey (U.S. Department

of Health and Human Services, 1994).

2.8.1 Description of the Data

NHANES III collected data in three phases: (a) a household screening interview,

(b) a personal home interview, and (c) a physical examination at a mobile exami-

nation center (MEC). The total number of persons screened was 39,695, with 86%

(33,994) completing the second phase interview. Of these, only 78% were examined

in the MEC. Previous imputation efforts for NHANES III focused on those indi-

viduals who had completed the second phase; weighting adjustments were used to

compensate for non-response at this second stage. Since the questions asked at both

the second and third stage varied considerably by age we chose to select only adults

age 17 and older who had completed the second phase interview for the purposes

of our example, leaving a sample of 20,050. Variables that were fully observed for

the sample included age, gender, race, and household size. We focused on the im-

putation of diastolic blood pressure measurements (DBP) and selected additional

variables from the second and third stages that we hypothesized might be related to

this outcome: self-rating of health status (a five-level ordinal variable), an indicator

for high blood pressure, height, and weight. In order to have a “truth” against which

to measure each imputation method we selected the cases with fully observed data

on all ten selected variables as our population (n=16,739, 83.5% of total sample).
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2.8.2 Sampling and Nonresponse Mechanisms

A sample of size 800 was drawn by simple random sampling from the popula-

tion for an approximate 5% sampling fraction. We utilized two separate propensity

models to induce missingness in the sample. We initially fit a logistic regression

model on an indicator for missingness on the DBP variable using the entire sample

(n=20,050). This created predicted probabilities of non-response that mimicked the

actual propensities observed in the NHANES data and ranged from 0.05 to 0.29.

Variables included in the regression model were necessarily those observed for all

subjects, and so were limited to age, race, sex, and household size (plus all inter-

actions). This propensity model led to an expected 14.9% percent missing (Model

1). Our second propensity model was intended to be stronger, have a higher percent

missing, and induce bias such that a complete case analysis would lead to overesti-

mation of average DBP. The following model was used to obtain the probability of

non-response for subject i:

logit(P (Mi = 1)) = −3+1.5∗I(agei < 40)+0.75∗femalei+0.25∗Mexican-Americani

where femalei and Mexican-Americani equal one if subject i is female and Mexican-

American, respectively. The individual probabilities of non-response ranged from

0.10 to 0.75, with an expected percent missing of 33.1% (Model 2).

For each of the two sets of predicted non-response probabilities, nonresponse in-

dicators for each unit in the sample were independently drawn from a Bernoulli

distribution with probabilities according to each of the two propensity models. Non-

respondent values were then deleted from the drawn sample to create the respondent

data set. This process of sampling and creating nonrespondents was repeated 1,000

times.
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2.8.3 Imputation Methods

The following imputation methods were applied to the incomplete sample: ad-

justment cell random hot deck, predictive mean random hot deck, propensity cell

random hot deck, and parametric regression imputation. All three hot deck meth-

ods create donor pools based on a distance metric and use equal probability draws

from the donors in each pool to impute for the nonrespondents. The adjustment cell

hot deck used age, gender, and race to create imputation classes. In comparison,

the predictive mean and the response propensity hot decks allowed incorporation of

many more variables; Table 2.2 lists the imputation methods and auxiliary variables

used in each method. Since a total of 18 cells were created in the cross-classification

of variables in the adjustment cell method we chose to utilize a similar number of

cells in the other two methods, 20 equally sized cells for both predictive mean and

propensity stratification. Attempts to include more variables when defining adjust-

ment cell strata lead to cells that were too sparse; instead of trying to collapse cells

ad-hoc we opted to use the coarser cells. We required a minimum of five respondents

in each imputation cell to proceed with hot deck imputation; this minimum was met

in all runs. The parametric regression imputation method assumed normality for the

outcome and used the same model as that which created the predictive mean strata.

For each method we applied both single and multiple imputation. Single imputa-

tion resulted in one estimator of the mean for each of the four imputation methods.

A total of three methods for estimating variance for SI after random hot deck im-

putation were used: a näıve estimator treating the imputed values as if they were

observed (SI Näıve), an exact formula (SI Formula), and the jackknife of Rao and

Shao (1992) (SI RS Jackknife). For the parametric method there were two variance

estimators: a näıve estimator and a bootstrap estimator (SI Bootstrap).
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We applied three versions of MI to the incomplete data leading to three separate

mean estimators for each imputation method: improper MI with K = 5 data sets

(IMI 5), proper MI with K = 5. The simulation was carried out using the software

R with the MICE package for parametric imputation (R Development Core Team,

2007; Van Buuren and Oudshoorn, 1999).

Empirical bias and root mean square error (RMSE) for each imputation method

M were calculated as follows,

EBias =
1

1000

1000∑
i=1

(θ̂Mi − θ)

RMSE =

√√√√ 1

1000

1000∑
i=1

(θ̂Mi − θ)2

where θ̂Mi is the estimate of the population mean using method M for the ith repli-

cate and θ is the true population parameter. Variance estimators for each method

were evaluated using the empirical variance (defined as the variance of the point

estimator observed in the Monte Carlo sample) and the average variance estimate.

In addition to evaluating accuracy in point and variance estimators we were inter-

ested in coverage properties of the imputation methods, so the actual coverage of a

nominal 95% confidence interval and average CI length were also calculated.

2.8.4 Results

Differences among the imputation methods were magnified under the stronger

propensity mechanism (model 2); results from model 1 were similar and are not

shown. Table 2.3 displays results from the simulation using propensity model 2. All

methods performed well in terms of bias, with only the complete case estimate under

propensity model 2 demonstrating (relatively) large bias and thus severe undercover-

age (47%). The propensity strata did exhibit higher bias than either the adjustment
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cell or predictive mean methods but the magnitude was very small. Näıve variance

estimators always underestimated the empirical variance, leading to empirical cov-

erages for a nominal 95% interval ranging from 81-90%. Improper MI for all hot

deck methods underestimated the variance, leading to coverage of only 90-91%. All

other methods had near the 95% nominal coverage. Across all hot deck methods MI

had lower empirical variance than SI methods, leading to shorter confidence inter-

vals but still adequate coverage. MI with K = 20 showed slight gains in efficiency

over K = 5. This simulation failed to demonstrate any major advantage of para-

metric imputation over the hot deck methods. Performance was very similar, with

the parametric imputation having slightly lower RMSE. MI with parametric impu-

tation had shorter confidence intervals than with either adjustment cell or predictive

mean strata, however CI length was virtually identical to that of the predictive mean

strata.

Figure 2.1 plots the ratio of average to empirical variance against the empirical

variance for the adjustment cell (•) and predictive mean cell (N) methods to give

insight into their efficiency. Figure 2.2 similarly plots CI coverage against CI length.

Again, results were similar across both propensity models; we only show the stronger

mechanism. Predictive mean MI had smaller empirical variance for both propensity

models with only slight underestimation, but coverage was not affected and remained

at nominal levels. The jackknife following SI for both methods accurately estimated

its empirical variance but was not as efficient; confidence coverage was at nominal

levels but with large CI length. Overall the predictive mean method appeared to

have a slight advantage over the adjustment cell method as evidenced by a gain in

efficiency seen in both single and multiple imputation strategies.

This simulation used a variety of random hot deck methods to impute data in a
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real data set. All hot deck methods performed well and without bias, however the

relationship between outcome and predictor variables was not particularly strong in

this data set. Applying the predictive mean model to the complete population yielded

an R2 of 0.20, and this weak association may partially explain why the adjustment

cell method that only used three auxiliary variables had similar results to the more

flexible methods of creating the donor pools. This simulation also demonstrated the

potentially severe effects of treating singly imputed data as if it were observed data,

a practice that while unfortunately common in practice cannot be recommended.

2.9 Conclusion

The hot deck is widely used by practitioners to handle item nonresponse. Its

strengths are that it imputes real (and hence realistic) values, it avoids strong para-

metric assumptions, it can incorporate covariate information, and it can provide

good inferences for linear and nonlinear statistics if appropriate attention is paid to

propagating imputation uncertainty. A weakness is that it requires good matches of

donors to recipients that reflect available covariate information; finding good matches

is more likely in large than in small samples. Simple hot decks based on adjustment

cells have limited ability to incorporate extensive covariate information; these limi-

tations may be ameliorated by the metric-based approaches in Section 2.3, but these

methods are more complex and theory on them is largely lacking.

Our review highlights several issues with the hot deck that we feel deserve consid-

eration. The first issue is the use of covariate information. Adjustment cell methods,

while popular in their simplicity, limit the amount of auxiliary information that can

be effectively used. Alternative distance metrics are more flexible and should be

considered, in particular we feel the predictive mean metric shows promise. When
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choosing the variables for creating donor pools, the priority should be to select vari-

ables that are predictive of the item being imputed, Y . For example, forward selec-

tion for the regression of Y on X1, . . . , Xk might be used to choose covariates that

significantly predict Y and could be the basis for a predictive mean metric for defin-

ing donor pools. The response propensity is important for reducing bias, but only

if it is associated with Y ; traditional covariate selection methods could be used to

determine if auxiliary information that is predictive of nonresponse is also associated

with Y . With multiple Y ’s, the choice of a single metric (i.e. single partition hot

deck) requires compromising matches, whereas partitions for each Y allow tailoring

of metrics to each specific item. However, in order to preserve associations among

the imputed values, each step should condition on previously imputed Y ’s.

A second issue surrounding the hot deck is how to deal with “swiss cheese” missing

data patterns. While some methods have been suggested (e.g. the cyclic p-partition

hot deck), we were unable to find much theory to support these methods. More

development of their theoretical properties and simulation studies of performance

are needed.

The third and final issue that must be taken into consideration is how to obtain

valid inference after imputation via the hot deck. As with any imputation method,

it is important to propagate error, and with the hot deck this step is often over-

looked. In practice, we think that the single most important improvement would be

to compute standard errors that incorporate the added variance from the missing

information when the fraction of missing information is substantial, by one of the

sample reuse methods or MI, as discussed in Section 2.7. There has been consider-

able debate among methodologists about the relative merits of these two approaches,

particularly under misspecified models (Meng, 1994; Fay, 1996; Rao, 1996; Rubin,
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1996; Robins and Wang, 2000; Kim, Brick, Fuller, and Kalton, 2006), and more sim-

ulation comparisons of the repeated-sampling properties of these approaches would

be of interest. However, either approach is superior to assuming the added variance

from imputation is zero, which is implied by treating a single imputed data set as if

the imputed values are real.

Despite the practical importance of the hot deck as a method for dealing with

item nonresponse, the statistics literature on theory of the method and comparisons

with alternative approaches is surprisingly limited, yielding opportunities for further

methodological work. Other areas where more development seems possible include

better ways to condition on available information in creating donor pools, ways to

assess the trade-off between the size of donor pool and quality of matches, and

methods for multivariate missing data with a general pattern of missingness. On the

theoretical side, consistency of the hot deck has been shown under MCAR, or missing

completely at random within adjustment cells, but useful conditions for consistency

under MAR when conditioning on the full set of available information seem lacking.

Also hot deck methods for situations where nonresponse is “nonignorable” (that is,

the data are not missing at random) have not been well explored. Hopefully this

review will stir some additional methodological activity in these areas.
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Table 2.1: Effect of weighting adjustments on bias and variance of a mean, by strength of association
of the adjustment cell variables with nonresponse and outcome (Little and Vartivarian, 2005)

Association with outcome
Low High

Low Bias: – Bias: –
Association Var: – Var: ↓
with nonresponse High Bias: – Bias: ↓

Var: ↑ Var: ↓

Table 2.2: Imputation methods applied to samples drawn from the NHANES III data

Method Imputation Cell Variables Number of Cells
1. Adjustment cells age (categorical), gender, race 18
2. Predictive Mean cells age (continuous), gender, race, household size, 20, equally sized

health status, ever high BP, body mass index
3. Propensity cells age (continuous), gender, race, household size 20, equally sized
4. Parametric Model age (continuous), gender, race, household size, n/a

health status, ever high BP, body mass index
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Figure 2.1: Empirical variance and ratio of average to empirical variance from Propensity Model 2
(∼33% missing), for hot deck imputation within adjustment cells (•) and predictive mean cells (N).
Results from 1,000 replicates (n=800).
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Figure 2.2: Confidence interval length and coverage from Propensity Model 2 (∼33% missing), for
hot deck imputation within adjustment cells (•) and predictive mean cells (N). Results from 1,000
replicates (n=800).
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CHAPTER III

The Use of Sample Weights in Hot Deck Imputation

3.1 Introduction

Missing data are often a problem in large-scale surveys, arising when a sampled

unit does not respond to the entire survey (unit nonresponse) or to a particular

question (item nonresponse). We consider here imputation for item nonresponse,

a common technique for creating a complete data set that can then be analyzed

with traditional analysis methods. In particular we consider use of the hot deck, an

imputation strategy in which each missing value is replaced with an observed response

from a “similar” unit (Kalton and Kasprzyk, 1986). The hot deck method does not

rely on model fitting for the variable to be imputed, and thus is potentially less

sensitive to model misspecification than an imputation method based on a parametric

model, such as regression imputation. It preserves the distribution of item values,

unlike mean imputation which leads to a spike of values at the respondent mean.

Additionally, only plausible values can be imputed, since values come from observed

responses in the donor pool.

The most common method of matching donor to recipient is to divide responding

and nonresponding units into imputation classes, also known as adjustment cells or

donor pools, based on variables observed for all units (Brick and Kalton, 1996). To

45
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create cells, any continuous variables are categorized before proceeding. Imputation

is then carried out by randomly picking a donor for each nonrespondent within

each cell. These classes historically have been formed a priori based on knowledge

of the subject matter and choosing variables that are associated with the missing

values. In addition, variables that are predictive of nonresponse may be used to

define imputation classes.

Once imputation has created a filled-in data set, analysis can proceed using the

sampling weights determined by the sample design. Unlike weighting for nonre-

sponse, where sample weights must be combined with nonresponse weights for subse-

quent analysis, no adjustment to the weights is necessary. However, ignoring sample

weights effectively imputes using the unweighted sample distribution of respondents

in an adjustment cell, which may cause bias if these respondents have differing sam-

pling weights. In this paper we consider several ways for using the survey weights

in creating donor pools and carrying out hot deck imputation. Section 3.2 reviews

methods developed for incorporating sample weights into the hot deck. In Section 3.3

a simulation study compares estimators of a population mean using these methods.

Section 3.4 demonstrates these methods on data from the third National Health and

Nutrition Examination Survey (NHANES III).

3.2 Methods for Incorporating Sample Weights

Two approaches to selection from hot deck donor pools have been used: sequential

and random. Sequential selection first sorts all units within a donor pool and then

imputes for each missing value the closest preceding respondent value, a variant of

nearest neighbor imputation. The sort order can be random, or sorting variables

can be auxiliary variables presumed related to the item being imputed. In contrast,
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random selection imputes each missing value with a random draw from the donor

pool for each nonrespondent. Neither of these methods necessarily incorporate survey

design weights into donor selection.

A modification to the sequential procedure to incorporate sample weights was

proposed by Cox (1980) and called the weighted sequential hot deck (WSHD). The

procedure preserves the sorting methodology of the unweighted procedure, but allows

all respondents the chance to be a donor and uses sampling weights to restrict the

number of times a respondent value can be used for imputation. Respondents and

nonrespondents are first separated into two files and sorted (randomly, or by auxiliary

variables). Sample weights of the nonrespondents are rescaled to sum to the total

of the respondent weights. The algorithm can be thought of as aligning both these

rescaled weights and the donors’ weights along a line segment, and determining which

donors overlap each nonrespondent along the line (Williams and Folsom, 1981). Thus

the set of donors who are eligible to donate to a given nonrespondent is a function of

the sort order, the nonrespondent’s sample weight, and the sample weights of all the

donors. The algorithm is designed so that, over repeated imputations, the weighted

mean obtained from the imputed values is equal in expectation to the weighted mean

of the respondents alone within imputation strata. If response probability is constant

within a cell then the WSHD leads to an unbiased estimator. “Similarity” of donor

to recipient is still controlled by the choice of sorting variables.

Adjustments to the random selection method that incorporate the sample weights

include inflating the donated value by the ratio of the sample weight of the donor to

that of the recipient (Platek and Gray, 1983) or selecting donors via random draw

with probability of selection proportional to the potential donor’s sample weight

(Rao and Shao, 1992; Rao, 1996). The former method has drawbacks, particularly
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in the case of integer-valued imputed values, since the imputations may no longer be

plausible values. The latter method does not suffer from this inconsistency problem

and yields an asymptotically unbiased estimator, assuming constant response proba-

bility within an adjustment cell. Note that in contrast to the weighted sequential hot

deck, the sample weights of nonrespondents are not used in determining the selection

probabilities of donors. We refer to this method as the weighted random hot deck

(WRHD) to distinguish it from the weighted sequential hot deck (WSHD).

We suggest that neither WRHD nor WSHD are appropriate ways of incorporating

design weights into the hot deck. Specifically, both the WSHD and WRHD fail to

remove bias if outcome is related to the design weights and response propensity is not

constant within an adjustment cell. The correct approach is to create donor pools

based on stratification by auxiliary variables and design variables that determine the

sampling weights. The goal should be to create imputation cells that are homoge-

neous with respect to both the outcome and the propensity to respond. Creating

cells by cross-classification of both auxiliary and design variables is the best way to

achieve this goal, in so far as these variables are associated with outcomes and non-

response. With adjustment cells created in this way, draws proportional to sample

weights are unnecessary and inefficient. One concern with this method is that if re-

sponse is not related to the design variables, excess noise is added by over-stratifying

without an accompanying bias reduction. However, simulations in Collins, Schafer,

and Kam (2001) suggest that the benefits of reduction in bias outweigh the increase

in variance. Little and Vartivarian (2003) demonstrated by simulation that when

weighting for nonresponse adjustment, computing the unweighted response rate ap-

plied within cells defined by auxiliary and design variables was the correct approach,

and that weighting the nonresponse rates using the sampling weights does not re-
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move bias in all cases. In the next section we describe a simulation study, which

shows that a similar scenario holds for the hot deck estimators.

3.3 Simulation Study

A simulation study was conducted to compare the performance of the various

forms of the hot deck under a variety of population structures and nonresponse

mechanisms. We build on the simulation in Little and Vartivarian (2003) which

compared weighting estimators for the population mean. Categorical variables were

simulated to avoid distributional assumptions such as normality.

3.3.1 Description of the Population

As in Little and Vartivarian (2003), a population of size 10000 was generated on

a binary stratifier Z known for all population units, a binary adjustment variable X

observed for the sample, and a binary survey outcome Y observed only for respon-

dents. Taking S to be the sampling indicator and R the response indicator, the joint

distribution of these variables, say [Z,X, Y, S,R] can be factorized as follows:

[X,Z, Y, S,R] = [X,Z][Y |X,Z][S|X,Z, Y ][R|X,Z, Y, S]

The distributions on the right side was then defined as follows:

(a) Distribution of X and Z.

The joint distribution of [X,Z] was multinomial, with Pr(X = 0, Z = 0) = 0.3,

Pr(X = 1, Z = 0) = 0.4, Pr(X = 0, Z = 1) = 0.2, and Pr(X = 1, Z = 1) = 0.1.

(b) Distribution of Y given X and Z.

Population values of the survey variable Y were generated according to the
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logistic model

logit (Pr(Y = 1|X,Z)) = 0.5 + γX(X − X̄) + γZ(Z − Z̄) + γXZ(X − X̄)(Z − Z̄)

for five choices of γ = (γX , γZ , γXZ) chosen to reflect different relationships be-

tween Y and X and Z. These choices are displayed in Table 3.1 using conven-

tional linear model notation. For example, the additive logistic model [X+Z]Y

sets the interaction γXZ to zero, whereas the model [XZ]Y sets this interaction

equal to 2. The models [X]Y and [Z]Y allow the outcome to depend on X only

and Z only. The null model, where outcome is independent of X and Z, is

denoted [φ]Y .

(c) Distribution of S given Z, X, and Y .

The sample cases were assumed to be selected by stratified random sampling, so

S is independent of X and Y given Z, that is [S|X,Z, Y ] = [S|Z]. Two different

sample sizes were evaluated. A sample of n0 = 125 was drawn from the stratum

with Z = 0 and size n1 = 25 from the stratum with Z = 1, yielding a total

sample size of 150. A larger sample of size 600 was then obtained by sampling

n0 = 500 and n1 = 100 from the strata with Z = 0 and Z = 1 respectively.

(d) Distribution of R given Z, X, Y , and S.

Since the response mechanism is assumed ignorable and the selection was by

stratified random sampling, R is independent of Y and S given X and Z, i.e.

[R|Z,X, Y, S] = [R|Z,X]. The latter was generated according to the logistic

model

logit (Pr(R = 1|X,Z)) = 0.5 + βX(X − X̄) + βZ(Z − Z̄) + βXZ(X − X̄)(Z − Z̄)

where β = (βX , βZ , βXZ) took the same values as γ, found in Table 3.1. As

with the distribution of Y given X and Z, this yielded five models for the
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distribution of R given X and Z. For example, [X + Z]R refers to an additive

logistic model for R given X and Z. This produced an average response rate

over all simulations of 60%.

There were a total of 5 × 5 = 25 combinations of population structures and nonre-

sponse mechanisms in the simulation study and two different sample sizes. A total

of 1000 replicate populations of (X,Z, Y, S,R) were generated for each of the 25× 2

combinations.

3.3.2 Estimators

A total of seven methods for estimating the population mean were employed.

Four versions of the hot deck were used to impute missing values, followed by com-

puting the usual sample-weighted Horvitz-Thompson estimator for the population

mean. The four hot deck methods are summarized in Table 3.2. All hot deck meth-

ods stratify on X, that is, perform imputation separately for units with X = 0 and

X = 1. The weighted hot deck methods, wrhd(x) and wshd(x), use information in

Z in determining donor probabilities, in contrast to uhd(xz), which imputes within

cells additionally defined by Z, and uhd(x), which ignores the information in Z.

We implemented the wshd(x) in both a sorted (by Z, within adjustment cells) and

unsorted form, the results were similar and we report only the unsorted results.

In addition, three weighting estimators were used to estimate the population aver-

age without imputation, shown in Table 3.3. The weighting estimators wrr(x) and

urr(xz) are analogous to the hot deck methods wrhd(x) and uhd(xz), respectively.

We expected to see higher variance with the hot deck methods, but parallel results

in terms of bias. For each replicate we also calculated the complete-case estimate

using the Horvitz-Thompson estimator, with weights unadjusted for nonresponse.
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Finally, for comparison purposes we calculated the before-deletion estimate using

the Horvitz-Thompson estimator, that is, before sampled units with R = 0 had their

Y values deleted. This captures simulation variance in measures of bias and acts as

a benchmark for evaluating increases in root mean square error due to nonresponse.

Empirical bias and root mean square error (RMSE) for each method M were

calculated as follows:

(3.1) EBias =
1

1000

1000∑
i=1

(θ̂Mi − θi)

(3.2) RMSE =

√√√√ 1

1000

1000∑
i=1

(θ̂Mi − θi)2

where θ̂Mi is the estimate of the population mean using method M for the ith

replicate and θi is the full population mean for the ith replicate. Selected pairs of

hot deck estimators were compared to determine if differences in performance were

statistically significant. The average difference between a pair of estimators was

calculated as

(3.3) d̄ =
1

1000

1000∑
i=1

|θ̂BDi − θ̂1i| − |θ̂BDi − θ̂2i|

where for the ith replicate θ̂BDi is the estimated sample mean before-deletion of cases

due to non-response and θ̂1i and θ̂2i are estimates found after imputation with the

two different hot deck methods being compared.

3.3.3 Results

Tables 3.4 and 3.5 display the empirical bias for all seven methods as well as the

complete case and before-deletion estimates for the smaller and larger sample sizes.
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Tables 3.6 and 3.7 show the percent increase in RMSE for each method over the

before-deletion method for sample sizes n = 150 and n = 600 respectively. Table 3.8

displays d̄ (×10, 000) for the comparison of uhd(xz) with each of the other three hot

deck methods for the smaller sample size; results were similar for the larger sample

size and are not shown. Differences that are statistically significant from zero based

on a t-test are asterisked (∗ = p < 0.05, ∗∗ = p < 0.01).

As shown in Table 3.4, the unweighted hot deck using cells based on X and Z,

uhd(xz), has small empirical bias in all population structures. With this method, the

expected outcome and response propensity are constant within a cell, regardless of

the model for Y and R, so imputation leads to an unbiased estimate of the population

mean. This is similar to the weighting estimator that uses unweighted response rates

but stratifies on both X and Z, urr(xz), which also has low empirical bias over all

populations. Not surprisingly, the hot deck estimator that ignores Z, uhd(x), is

biased for situations where Y depends on Z, since the dependence on Z cannot be

ignored. However, the weighted hot decks (wrhd(x) and wshd(x)) do not correct the

bias for all these cases. When the response propensity does not depend on Z, both

wrhd(x) and wshd(x) have low bias, since the response propensity is constant within

their adjustment cells (based on X only). If the response propensity is not constant

within adjustment cells, as in populations where R depends on Z, then wrhd(x)

and wshd(x) are biased and in fact have larger bias than the method that ignores Z,

though we believe this to be an artifact of the simulation design and cannot conclude

that uhd(x) would always outperform wrhd(x) and wshd(x) in these situations. This

parallels the performance of the weighting methods that stratify on X only (wrr(x),

urr(x)), which have similar performance with two exceptions. As noted in Little and

Vartivarian (2003), wrr(x) outperforms urr(x) where R depends on both X and Z
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and Y depends on X but not Z (specifically rows 11 and 12 of Table 3.4). This is not

seen with the hot deck methods; all hot deck methods have low bias for populations

where the outcome Y does not depend on Z, regardless of the model for R. When

Y depends only on X, both the weighted and unweighted respondent means are

unbiased within cells defined by X. Thus the hot deck methods are all unbiased,

as over repeated imputations they impute the (weighted) respondent mean to the

nonrespondents. For the weighting methods, using unweighted response rates as in

urr(x) yields biased estimates of the response rate, and thus biased estimates of the

overall mean, and weighting the response rates as in wrr(x) corrects this bias.

All hot deck and weighting methods perform well in terms of bias when the out-

come is independent of X and Z, regardless of the response model. Of note, in

comparing the average absolute errors, wshd(x) has statistically significantly lower

empirical bias than uhd(xz) when Y does not depend on Z, though the size of the

difference is small compared to the differences seen when uhd(xz) outperforms the

weighting methods.

When missingness is independent of X and Z, that is, missingness is completely

at random (Rubin, 1976), the complete case estimator is unbiased. Nonresponse

adjustment via any of these methods is unnecessary but not harmful in almost all

cases. All hot deck and weighting methods produce unbiased estimates with one

exception: the unweighted hot deck that ignores Z, uhd(x), induces bias when the

outcome is dependent on Z (populations 5, 10, and 20). In this case the nonresponse

compensation has an adverse effect and is dangerous, demonstrating the need to

condition on as much auxiliary data as is available.

A crude summary of the overall performance of the methods is the average of the

percent increase in RMSE over all populations, shown at the bottom of Tables 3.6
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and 3.7. The best overall hot deck method under both sample sizes is uhd(xz), which

as expected has higher RMSE than the best overall weighting method, urr(xz). Dif-

ferences between uhd(xz) and other hot deck methods follow similar patterns for both

sample sizes but are exaggerated with the larger sample size (n = 600). The worst

hot deck method is the weighted random hot deck, with a higher overall RMSE than

the sequential version. Somewhat surprisingly, the unweighted hot deck showed lower

overall RMSE than both the weighted hot decks and two of the weighting methods

(wrr(x), urr(x)). Though uhd(x) is biased in more scenarios, the magnitude of the

bias is much lower than wrhd(x), wshd(x), wrr(x), and urr(x), and this difference

drives the difference in RMSE. We reiterate that this finding is likely an artifact of

the simulation design, and in fact though the bias is smaller, uhd(x) is biased for a

larger number of populations than the weighted hot deck methods. The sequential

version of the weighted hot deck (wshd(x)) has lower RMSE than wrhd(x) in all

populations for both sample sizes, and in fact has the lowest (or in one case just

slightly larger than the lowest) RMSE among hot deck methods when Y does not

depend on X or Z.

Overall, the unweighted hot deck that stratifies on both design and covariate

information is robust under all scenarios, and the expected increase in RMSE when

response does not depend on the design variable was not severe. In fact uhd(xz)

had very similar RMSE to the unweighted method that stratified on X only, uhd(x),

in the ten populations where Y did not depend on Z, demonstrating that over-

stratifying at least in this case did not lead to a notable increase in variance. Of the

weighted hot deck methods, the sequential version performed slightly better than the

method using weighted draws from the donor pools.
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3.4 Application

The third National Health and Nutrition Examination Survey (NHANES III) was

a large-scale stratified multistage probability sample of the noninstitutionalized U.S.

population conducted during the period from 1988 to 1994 (U.S. Department of

Health and Human Services, 1994). NHANES III collected data in three phases: (a)

a household screening interview, (b) a personal home interview, and (c) a physical

examination at a mobile examination center (MEC). The total number of persons

screened was 39,695, with 86% (33,994) completing the second phase interview. Of

these, only 78% were examined in the MEC. Previous imputation efforts for NHANES

III focused on those individuals who had completed the second phase; weighting

adjustments are used to compensate for non-response at this second stage. Since the

questions asked at both the second and third stage varied considerably by age we

chose to select only adults age 20 and older who had completed the second phase

interview for the purposes of our example, leaving a sample size of 18,825. Design

variables that were fully observed for the sample included age, gender, race, and

household size.

In order to demonstrate the hot deck methods on a continuous outcome we used

systolic blood pressure measured at the MEC examination (SBP, defined as the aver-

age of three recorded measurements). The nonresponse rate was 16%. As our strati-

fication variable (X) we chose a self-reported health status variable (Excellent/Very

Good/Good/Fair/Poor) from the household interview. Since only 6% of subjects

reported the lowest level of health status, the lowest two categories (Fair/Poor) were

combined, leaving 4 strata. The Z variables were the design variables: gender (2

levels), race (3 levels), age (3 levels), and household size (3 levels). The goal was to
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estimate the population mean of SBP.

In order to demonstrate the effect of larger nonresponse rates we increased the

missingness as follows. First, we fit a logistic regression model on an indicator

for missingness of SBP using the entire sample (n=18,825), using main effects for

health status and all design variables as predictors, leaving the variables age and

log(household size) as continuous. This created predicted probabilities of non-response

mimicking the actual propensities observed in the NHANES data and ranging from

0.05 to 0.39. The mean probability for respondents was 0.15; in order to double the

missingness to 32% we required an additional 19% of the respondents to have missing

values, so each predicted probability was increased by 0.04. Nonresponse indicators

for each respondent were then independently drawn from a Bernoulli distribution

with these predicted probabilities and values were subsequently deleted from the

sample to create a second data set.

The four different imputation strategies implemented in the simulation study were

applied to each of the two data sets. The weighted hot deck methods, wrhd(x) and

wshd(x), stratified by health status and used the sample weights to determine donor

probabilities within the donor pools. The most naive hot deck method, uhd(x) strati-

fied by health status and ignored the sample weights, and the fully stratified method,

uhd(xz) stratified by both health status and the design variables for a total of 215

donor cells (one cell was empty). Complete case estimates were also calculated. In

order to obtain measures of variability and better compare estimates, imputation was

via the Approximate Bayesian Bootstrap (Rubin and Schenker, 1986). Within each

adjustment cell the respondent values were resampled with replacement to form a

new pool of potential donors and the imputation method (wrhd(x), wshd(x), uhd(x),

uhd(xz)) was then applied to this bootstrapped donor pool. This method is easy to
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compute, and repeated applications yield proper multiple imputations. A total of

10 multiply imputed data sets were created for each method, the Horvitz-Thompson

estimator of the mean SBP calculated for each data set, and resulting inference

obtained using the combining rules of Rubin (1987).

Resulting mean estimates and 95% confidence intervals are displayed in Figure 3.1

for both the original 16% missingness and the induced 32% missingness. The larger

level of nonresponse showed more exaggerated differences in performance between the

methods. For both scenarios the weighted hot deck methods (wrhd(x) and wshd(x))

lead to intervals that are close to the complete case estimates. The uhd(xz) method

generates estimates that are higher than those of the weighted methods, with the

difference becoming more exaggerated with the larger amount of nonresponse. The

mean estimate for uhd(xz) is the same across moth missingness scenarios, which

is comforting since the overall mean should be the same in both cases, while both

wrhd(x) and wshd(x) parallel the complete case estimate and show a downward

shift under 32% missingness. The unweighted hot deck that ignores the weights

(uhd(x)) also shows a downward shift as missingness increases. One feature that

is evident with these data that did not appear in the simulations is the increase in

variance with uhd(xz) – for the larger amount of missingness the confidence interval

for uhd(xz) is larger than that of the weighted methods, though the difference is

minimal. Though the “truth”’ is not available for this real data set, the performance

of uhd(xz) appears to be the most robust as it produces similar estimates under both

missingness mechanisms.
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3.5 Conclusion

The simulation study suggests strongly that the two forms of sample-weighted

hot deck (WSHD and WRHD) do not correct for bias when the outcome is related

to the sampling weight and the response propensity, and are inferior to the method

that uses the sampling weight as a stratifying variable when forming adjustment

cells. The simulation study focused on estimating a mean and was deliberately kept

simple, but it varied systematically the key elements of the problem, namely the rela-

tionship between the outcome and the response propensity and the sampling stratum

and adjustment cell variable. It seems to us unlikely that more complex simulations

will lead to different conclusions, although admittedly this possibility cannot be ruled

out. The conclusions parallel similar results for weighting nonresponse adjustments

in Little and Vartivarian (2003). Weighting adjustments are a bit more efficient than

the hot deck, since the latter is effectively adding noise to the estimates to preserve

distributions. However, the hot deck is a more flexible approach to item nonresponse

than weighting, and the added noise from imputing real values from donors can be

reduced by applying the hot deck repeatedly to generate multiply-imputed data sets

(Rubin, 1987). Since a benefit of the hot deck is the preservation of associations

among variables, future evaluation of these methods when estimating a second order

relation such as a correlation or regression coefficient would be of interest. However

we conjecture that methods that condition on the design information would outper-

form sample-weighted hot deck methods for these kinds of estimands, as they do for

the mean.

The main drawback to creating adjustment cells that stratify on sampling strata

as well as other covariate information is that it may lead to a large number of cells,
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and hence some cells where there are no donors for a case with missing values.

With an extensive set of covariates X and Z, imputation based on the multiple

regression of Y on X and Z maintains the logic of the suggested approach while

accommodating extensive sets of covariates. Specifically, a hot deck approach is to

create adjustment cells based on the predicted means from the regression of Y on X

and Z, or to generate donors for incomplete cases based on predictive mean matching

(Little, 1986). For a review of recent extensions of hot deck adjustment cell methods,

including predictive mean matching, see Andridge and Little (2008).
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Table 3.1: Models for Y given X, Z

γX γZ γXZ

[XZ]Y 2 2 2
[X + Z]Y 2 2 0
[X]Y 2 0 0
[Z]Y 0 2 0
[φ]Y 0 0 0

Table 3.2: Hot Deck Methods

Method Adjustment Cells Draws

wrhd(x) Weighted Random Hot Deck X Proportional to sample weight
wshd(x) Weighted Sequential Hot Deck X n/a
uhd(x) Unweighted Hot Deck X Equal probability
uhd(xz) Unweighted Hot Deck X and Z Equal probability

Table 3.3: Weighting Methods

Method Adjustment Cells Response Rate

wrr(x) Weighted Response Rate X Weighted
urr(x) Unweighted Response Rate X Unweighted
urr(xz) Unweighted Response Rate X and Z Unweighted
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Table 3.8: Pairwise comparisons of average absolute error (d̄ x 1,000) of hot deck methods (n=150)

Generated model for Y and R uhd(xz) and uhd(xz) and uhd(xz) and
[ ]Y [ ]R wrhd(x) wshd(x) uhd(x)

1 XZ XZ -5.2** -1.7 0.7
2 XZ X + Z -11.2** -8.1** -2.9**
3 XZ X -0.4 3.4** 0.2
4 XZ Z -10.0** -6.5** -2.6**
5 XZ φ 0.3 4.6** -2.4**
6 X + Z XZ -12.9** -10.9** -3.2**
7 X + Z X + Z -31.2** -29.3** -11.9**
8 X + Z X -2.1 0.8 -7.2**
9 X + Z Z -17.1** -16.9** -4.8**
10 X + Z φ -2.0* 3.0** -5.6**
11 X XZ -0.4 3.2** 0.6
12 X X + Z 2.2* 5.1** 3.5**
13 X X 1.1 6.3** 2.2*
14 X Z -0.5 3.0** 0.7
15 X φ 1.5 4.6** 1.2
16 Z XZ -11.6** -8.3** -3.0**
17 Z X + Z -23.6** -21.9** -8.5**
18 Z X -5.7** -0.1 -10.3**
19 Z Z -18.0** -14.8** -6.4**
20 Z φ -2.7** 2.6** -7.7**
21 φ XZ -1.1 4.1** 0.2
22 φ X + Z 4.3** 6.8** 3.4**
23 φ X -1.2 4.3** 1.6
24 φ Z 0.2 3.2** 1.7*
25 φ φ 0.0 4.8** 1.0
Negative value: First estimator does better
Positive value: Second estimator does better
* Significance at the 5 percent level
** Significance at the 1 percent level
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Figure 3.1: Estimates of mean SBP for NHANES III data, after imputation with different hot deck
methods. Original missingness was 16%; artificially increased missingness was 32%. Results from
10 multiply-imputed data sets. cc=Complete Case.
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CHAPTER IV

Proxy Pattern-Mixture Analysis for Survey Nonresponse

4.1 Introduction

Missing data are often a problem in large-scale surveys, arising when a sampled

unit does not respond to the entire survey (unit nonresponse) or to a particular

question (item nonresponse). In this paper we focus on the adjustment for and mea-

surement of nonresponse bias in a single variable Y subject to missing values, when a

set of variables X are measured for both respondents and nonrespondents. With unit

nonresponse this set of variables is generally restricted to survey design variables, ex-

cept in longitudinal surveys where variables are measured prior to dropout. With

item nonresponse, the set of observed variables can include survey items not subject

to nonresponse, and hence is potentially more extensive. With a set of variables Y

subject to nonresponse, our methods could be applied separately for each variable,

but we do not consider here methods for multivariate missing data where variables

are missing for different sets of cases.

Limiting the impact of nonresponse is an important design goal in survey research,

and how to measure and adjust for nonresponse is an important issue for statisti-

cal agencies and other data collectors, particularly since response rates are on the

decline. Current U.S. federal standards for statistical surveys state, “Nonresponse

68
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bias analyses must be conducted when unit or item response rates or other factors

suggest the potential for bias to occur,” (Office of Management and Budget, 2006,

p. 8) and go on to suggest that unit nonresponse rates of less than 80% require such

an analysis. However, specific analysis recommendations are lacking, focusing on

methods for accurately calculating response rates. While the response rate is clearly

an important feature of the problem, there is a tension between increasing response

rates and increasing response error by including respondents with no inclination to

respond accurately. Indeed, some studies have shown that response rates are a poor

measure of nonresponse bias (e.g. Curtain, Presser, and Singer, 2000; Keeter, Miller,

Kohut, Groves, and Presser, 2000).

There are three major components to consider in evaluating nonresponse: the

amount of missingness, differences between respondents and nonrespondents on char-

acteristics that are observed for the entire sample, and the relationship between

these fully observed covariates and the survey outcome of interest. Each facet pro-

vides some information about the impact of nonresponse, but no single component

completely tells the story. Historically the amount of missingness, as measured by

the response rate, has been the most oft-used metric for evaluating survey quality.

However, response rates ignore the information contained in auxiliary covariates.

Federal reports have recommended the second component, evaluating nonresponse

based on differences between respondents and nonrespondents (Federal Committee

on Statistical Methodology, 2001). A related approach is to focus on measures based

on the response propensity, the estimated probability of response given the covari-

ates, which is the auxiliary variable that is most different between respondents and

nonrespondents. Measures such as the variability of nonresponse weights indicate

the potential of weighting for nonresponse bias reduction, and lack of variability can
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suggest missingness is completely at random. Though response propensity analyses

are appealing, nonresponse bias depends on the strength of the correlation between

the survey variable of interest and the probability of response, and bias will vary

across items in a single survey (Bethlehem, 2002; Groves, 2006).

The final component is the value of the auxiliary information in predicting survey

outcomes. Suppose Y is a survey outcome subject to nonresponse, X is an auxiliary

variable observed for respondents and nonrespondents, and missing values of Y are

imputed by predictions of the regression of Y on X estimated using the respondent

sample. If data are missing completely at random, the variance of the mean of Y

based on the imputed data under simple random sampling is asymptotically

V ar(µ̂y) =
σyy
r

(
1− n− r

n
ρ2

)
,

where n is the sample size, r is the number of respondents, σyy is the variance of

Y , and ρ is the correlation between X and Y (see Little and Rubin, 2002, equation

7.14). The corresponding fraction of missing information, the loss of precision from

the missing data, is

FMI =
n/σyy − V ar−1(µ̂y)

n/σyy
.

This fraction varies from the nonresponse rate (n− r)/n when ρ2 = 0 to 0 when

ρ2 = 1. With a set of covariates Z, imputation based on the multiple regression

of Y on Z yields similar measures, with ρ2 replaced by the squared coefficient of

determination of the regression of Y on Z. This approach is attractive since it gives

appropriate credit to the availability of good predictors of Y in the auxiliary data as

well as a high response rate, and arguably good prediction of the survey outcomes is

a key feature of good covariates; in particular, conditioning on a covariate Z that is

a good predictor of nonresponse but is unrelated to survey outcomes simply results
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in increased variance without any reduction in bias (Little and Vartivarian, 2005).

A serious limitation with this approach is that it is more focused on precision than

bias, and it assumes the data are missing at random (MAR); that is, missingness of

Y is independent of Y after conditioning on the covariates Z (Rubin, 1976). Also,

this approach cannot provide a single measure of the impact of nonresponse, since

by definition measures are outcome-specific.

Previous work has focused on distinct measures based on these considerations,

but has not integrated them in a satisfactory way. We propose a new method for

nonresponse bias measurement and adjustment that takes account all three aspects,

in a way which we find intuitive and satisfying. In particular, it gives appropriate

credit for predictive auxiliary data, without making the MAR assumption, which is

implicit in existing propensity and prediction methods; our methods are based on a

pattern-mixture model (Little, 1993) for the survey outcome that allows missingness

to be not at random (NMAR) and assesses the sensitivity of estimates to deviation

from MAR. We prefer a sensitivity analysis approach over approaches that require

strong distributional and other assumptions on the missingness mechanism for esti-

mation such as the selection models arising from the work of Heckman (1976). For

more discussion of this point see for example Little and Rubin (2002, chap. 15) and

citations therein. As a measure of the impact of nonresponse, we propose using the

estimated fraction of missing information, obtained through multiple imputation un-

der the pattern-mixture model with a range of assumptions about the nonresponse

mechanism.

Section 4.2 introduces our approach to the nonresponse problem and describes the

general framework, and Section 4.3 details the corresponding pattern-mixture model

analysis. Section 4.4 describes three different estimation approaches: maximum
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likelihood, a Bayesian approach, and multiple imputation. Section 4.5 discusses

the use of the fraction of missing information from multiple imputation under the

pattern-mixture model as a measure of nonresponse bias. Section 4.6 describes a set

of simulation studies to demonstrate the assessment of nonresponse bias using these

methods. Section 4.7 applies these methods to data from NHANES III. Section 4.8

presents discussion, including extensions of the proposed method.

4.2 General Framework

We consider the problem of assessing nonresponse bias for estimating the mean of

a survey variable Y subject to nonresponse. For simplicity, we initially consider an

infinite population with a sample of size n drawn by simple random sampling. Let Yi

denote the value of a continuous survey outcome and Zi = (Zi1, Zi2, . . . , Zip) denote

the values of p covariates for unit i in the sample. Only r of the n sampled units

respond, so observed data consist of (Yi, Zi) for i = 1, . . . , r and Zi for i = r+1, . . . , n.

In particular this can occur with unit nonresponse, where the covariates Z are design

variables known for the entire sample or with item nonresponse. Of primary interest

is assessing and correcting nonresponse bias for the mean of Y .

For simplicity and to reduce dimensionality, we replace Z by a single proxy variable

X that has the highest correlation with Y . This proxy variable can be estimated

by regressing Y on Z using the respondent data, including important predictors of

Y , as well as interactions and nonlinear terms where appropriate. The regression

coefficients are subject to sampling error, so in practice X is estimated rather than

known, but we address this complication later. Let ρ be the correlation of Y and

X, which we assume is positive. If ρ is high (say, 0.8) we call X a strong proxy

for Y and if X is low (say, 0.2) we call X a weak proxy for Y . The distribution of
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X for respondents and nonrespondents provides the main source of information for

assessing nonresponse bias for Y .

Let ȳR denote the respondent mean of Y , which is subject to nonresponse bias.

We consider adjusted estimators of the mean µy of Y of the form

(4.1) µ̂y = ȳR + g(ρ̂)

√
syy
sxx

(x̄− x̄R),

where x̄R is the respondent mean of X, x̄ is the sample mean of X, and sxx and syy

are the respondent sample variances of X and Y . Note that since the proxy X is

the conditional mean of Y given X it will have lower variance than Y . Rearranging

terms yields the standardized bias in ȳR as a function of the standardized bias in x̄R,

(4.2)
µ̂y − ȳR√

syy
= g(ρ̂)

x̄− x̄R√
sxx

.

Some comments on the estimator (1) follow. The classical regression estimator is

obtained when g(ρ̂) = ρ̂, and this is an appropriate choice when missingness depends

on the proxy X. It is also appropriate more generally when the data are missing at

random (MAR), that is, missingness depends on Z, if Y |Z is normal, and models

are well specified. This is true because under MAR, the partial association between

the residual Y −X and the missing data indicator (say M) is zero.

In general, we may want the weight g(ρ̂) given to the standardized proxy data

to increase with the strength of the proxy, and g(ρ̂) → 1 as ρ̂ → 1, that is, as the

proxy variable converges towards the true variable Y . The size of the deviation, d =

x̄− x̄R, and its standardized version, d∗ = d/
√
sxx, is a measure of the deviation from

missing completely at random (MCAR), and as such is the “observable” component

of nonresponse bias for Y . Specific choices of g(ρ̂) based on a pattern-mixture model

are presented in the next section.
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The information about nonresponse bias for Y depends on the strength of the

proxy, as measured by ρ̂, and the deviation from MCAR, as measured by the size of

d. We consider four situations, ordered from what we consider most favorable to least

favorable from the point of view of the quality of this information for nonresponse

bias assessment and adjustment.

1. If X is a strong proxy (large ρ̂), and d is small, then the adjustment via (4.1)

is small and the evidence of a lack of nonresponse bias in Y is relatively strong,

since it is not evident in a variable highly correlated with Y . This is the most

favorable case.

2. If X is a strong proxy, and d is large, then there is strong evidence of response

bias in respondent mean ȳR but good information for correcting the bias using

the proxy variable via (4.1). Since an adjustment is needed, model misspecifi-

cation is a potential issue.

3. If X is a weak proxy (small ρ̂), and d is small, then the adjustment via (4.1)

is small. There is some evidence against nonresponse bias in the fact that d is

small, but this evidence is relatively weak since it does not address the possibility

of bias from unobserved variables related to Y .

4. If X is a weak proxy, and d is large, then the adjustment via (4.1) depends

on the choice of g(ρ̂), although it is small under the MAR assumption when

g(ρ̂) = ρ̂. There is some evidence that there is nonresponse bias in Z in the fact

that d is large, but no evidence that there is bias in Y since Z is only weakly

related to Y . The evidence against bias in Y is however relatively weak since

there may be bias from other unobserved variables related to Y . This is the

least favorable situation.
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In the next section we consider specific choices of g(ρ̂) based on a pattern-mixture

model analysis that reflects this hierarchy.

4.3 The Pattern-Mixture Model

Let M denote the missingness indicator, such that M = 0 if Y is observed and

M = 1 if Y is missing. We assume E(Y |Z,M = 0) = α0 +αZ, and let X = αZ. For

simplicity we assume in this section that α is known, that is, we ignore estimation

error in α. We focus on the joint distribution of [Y,X,M ] which we assume follows

the bivariate pattern-mixture model discussed in Little (1994). This model can be

written as follows:

(Y,X|M = m) ∼ N2

(
(µ(m)

y , µ(m)
x ),Σ(m)

)
M ∼ Bernoulli(1− π)

Σ(m) =

 σ
(m)
yy ρ(m)

√
σ

(m)
yy σ

(m)
xx

ρ(m)

√
σ

(m)
yy σ

(m)
xx σ

(m)
xx


(4.3)

where N2 denotes the bivariate normal distribution. Of primary interest is the

marginal mean of Y , which can be expressed as µy = πµ
(0)
y + (1 − π)µ

(1)
y . This

model is underidentified, since there is no information on the conditional normal dis-

tribution for Y given X for nonrespondents (M = 1). However, Little (1994) shows

that the model can be identified by making assumptions about how missingness of

Y depends on Y and X. Specifically if we assume that

(4.4) Pr(M = 1|Y,X) = f(X + λ∗Y ),

for some unspecified function f and known constant λ∗, the parameters are just

identified by the condition that

(4.5) ((Y,X)⊥M |f(X + λ∗Y ))
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where ⊥ denotes independence. The resulting ML estimate of the mean of Y aver-

aging over patterns is

(4.6) µ̂y = ȳR +
sxy + λ∗syy
sxx + λ∗sxy

(x̄− x̄R),

where sxx, sxy and syy are the sample variance of X, the sample covariance of X and

Y , and the sample variance of Y for respondents (Little (1994)).

We apply a slight modification of this model in our setting, rescaling the proxy

variable X to have the same variance as Y , since we feel this enhances the inter-

pretability of the model (4.4) for the mechanism. Specifically we replace (4.4) by

(4.7) Pr(M = 1|Y,X) = f(X

√
σ

(0)
yy

σ
(0)
xx

+ λY ) = f(X∗ + λY ),

where X∗ is the proxy variable X scaled to have the same variance as Y in the

respondent population, and λ = λ∗
√
σ

(0)
xx /σ

(0)
yy . The parameters are just identified by

the condition that

(4.8) ((Y,X)⊥M |f(X∗ + λY ))

where ⊥ denotes independence. We call the model defined by (4.3) and (4.7) a proxy

pattern-mixture (PPM) model. By a slight modification of the arguments in (Little,

1994), the resulting maximum likelihood estimate of the overall mean of Y has the

form of (4.1) where

(4.9) g(ρ̂) =
λ+ ρ̂

λρ̂+ 1
,

and ρ̂ is the respondent sample correlation. Note that regardless of λ, g(ρ̂) → 1 as

ρ̂→ 1, so this choice of g satisfies the desirable property previously described.

4.3.1 Properties of the Missing Data Mechanism

There are limitless ways to model deviations from MAR, and any method needs

to make assumptions. Thus, the assumption about the missing data mechanism,
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given by (4.7), is a key to the proposed method, and deserves careful consideration.

The assumption (4.7) is quite flexible and covers a wide range of models relating X

(X∗) and Y to M . In particular, it is more flexible than the well-known Heckman

selection model (Heckman, 1976), which assumes that missingness is linear in X and

Y . For example, the PPM model encompasses not only mechanisms that are linear

in X or linear in Y , but also ones that are quadratic in X or quadratic in Y . A broad

class of mechanisms are those that depend on both X and Y , potentially including

quadratic terms and the interaction of X and Y , that is

(4.10) logit(Pr(M = 1|Y,X)) = γ0 + γ1X + γ2X
2 + γ3Y + γ4Y

2 + γ5XY

If we take f(·) in (4.7) to be quadratic, we obtain a missingness mechanism for

the PPM that is a specific subset of this general model. The PPM missing data

mechanism is

logit(Pr(M = 1|Y,X)) = α0 + α1(X + λY ) + α2(X + λY )2

= α0 + α1X + α1λY + α2X
2 + α2λ

2Y 2 + 2α2XY(4.11)

Assuming this more general model, the ability of the PPM to produce an unbiased

estimate depends on whether there is a value of λ that makes (4.11) close to the true

mechanism (4.10). In particular, we note that the sign of the X and Y terms (and

similarly the X2 and Y 2 terms) must be the same; however since X is a proxy for Y

we feel that this assumption is not unreasonable.

An alternative method when data may be not missing at random is to specify

a selection model, which factors the joint distribution of Y and M given X into

the conditional distribution of M given Y and X as in (4.10) and the marginal

distribution of Y given X (e.g. Heckman, 1976; Diggle and Kenward, 1994; Little

and Rubin, 2002). The approach requires full specification of the distribution of M
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given Y and X. In contrast, our pattern-mixture model avoids the need to specify

the function f that relates missingness of Y to X∗+λY , although it shares with the

corresponding selection model the assumption that missingness depends on Y and Z

only through the value of X∗+λY . One reason for restricting the dependence on the

set of variables Z to the combination X∗ is that, under the normality assumption,

dependence on missingness of Y on other combinations (say U = δZ) does not

result in bias in the mean of Y , since Y is conditionally independent of U given X∗.

Reduction to X∗ limits the analysis to just one sensitivity parameter (λ) and so is

much simpler than an analysis that models departures from MAR for each of the

individual Z’s. Another advantage of our model is that likelihood-based analysis is

much simpler than selection models, which require iterative algorithms.

4.3.2 Other Properties of the Model

Suppose λ is assumed to be positive, which seems reasonable given that X is

a proxy for Y . Then as λ varies between 0 (missingness depends only on X) and

infinity (missingness depends only on Y ), g(ρ̂) varies between ρ̂ and 1/ρ̂. This result

is intuitively very appealing. When λ = 0 the data are MAR, since in this case

missingness depends only on the observed variable X. In this case g(ρ̂) = ρ̂, and

(4.1) reduces to the standard regression estimator described above. In this case the

bias adjustment for Y increases with ρ̂, as the association between Y and the variable

determining the missing data mechanism increases. On the other hand when λ =∞

and missingness depends only on the true value of Y , g(ρ̂) = 1/ρ̂ and (4.1) yields the

inverse regression estimator proposed by Brown (1990). The bias adjustment thus

decreases with ρ̂, reflecting the fact that in this case the bias in Y is attenuated in

the proxy, with the degree of attenuation increasing with ρ̂.
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4.3.3 Sensitivity Analysis

There is no information in the data to inform the choice of λ . Little (1994)

proposes a sensitivity analysis, where the estimate defined by (4.1) and (4.9) are

considered for a range of values of λ between 0 and infinity; the latter is the most

extreme deviation from MAR, and estimates for this case have the highest variance.

Indeed for small ρ̂, the estimate with λ set to infinity is very unstable, and it is

undefined when ρ̂ = 0. We suggest a sensitivity analysis using λ = (0, 1,∞) to

capture a range of missingness mechanisms. In addition to the extremes, we use the

intermediate case of λ = 1 that weights the proxy and true value of Y equally because

the resulting estimator has a particularly convenient and simple interpretation. In

this case g(ρ̂) = 1 regardless of the value of ρ̂, implying that the standardized bias

in ȳR is the same as the standardized bias in x̄R. In general, the stronger the proxy,

the closer the value of ρ̂ to one, and the smaller the differences between the three

estimates.

4.4 Estimation Methods

4.4.1 Maximum Likelihood

The estimator described by (4.1) and (4.9) is maximum likelihood (ML) for the

pattern-mixture model. Large-sample variances are given by Taylor series calcu-

lations as in Little (1994) (details given in Appendix, Section 4.9.1), though this

approximation may not be appropriate for small samples. Additionally, the ML

estimate and corresponding inference does not take into account the fact that the re-

gression coefficients that determine X are subject to sampling error. Better methods

incorporate this uncertainty, such as the Bayesian methods described below.
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4.4.2 Bayesian Inference

An alternative to ML is Bayesian inference, which allows us to incorporate the

uncertainty in X and which may perform better in small samples. Let M denote the

missingness indicator, and let α be a the vector of regression parameters from the

regression of Y given Z that creates the proxy (i.e. X = αZ). Let Z −→ (X, V ) be

a (1-1) tranformation of the covariates. Letting [] denote distributions, we factor the

joint distribution of Y , X, V , M , and α as follows:

(4.12) [Y,X, V,M, α] = [Y,X|M,α][M ][α][V |Y,X,M, α]

We leave the last distribution for V unspecified, and assume in (4.12) that M is

independent of α. We assume the standard linear regression model creates the proxy

X; the Yi are independent normal random variables with mean X = Zα and variance

φ2. We place non-informative priors on all parameters and draw from their posterior

distributions. For each draw of the parameters we recalculate the proxy using the

draws of α and then scale using the draw of σ
(0)
xx and σ

(0)
yy . Throughout the remainder

of this and the following section we take X to denote this scaled version of the proxy.

Draws from the posterior distribution are obtained using different algorithms for

the cases with λ = 0 and λ =∞, as detailed below. In the case of intermediate values

of λ the algorithm for λ =∞ is applied to obtain draws from the joint distribution of

(X,X + λY ) and then these draws are transformed to obtain the parameters of the

joint distribution of (X, Y ) (details in Appendix, Section 4.9.2). In the equations

that follow, let sjj be the sample variance of j, bjk.k and sjj.k be the regression

coefficient of k and the residual variance from the regression of j on k, and (0) and

(1) denote quantities obtained from respondents and nonrespondents, respectively.

The sample size is n with r respondents, and p is the number of covariates Z that
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create the proxy.

First we consider the model with λ = 0. This implies that missingness depends

only on X, so the distribution of Y given X is the same for respondents and non-

respondents. Thus the intercept and regression coefficient, β
(m)
y0.x and β

(m)
yx.x, are the

same for M = 0 and M = 1. Draws of the identifiable parameters are computed in

the following sequence:

1. 1/φ2 ∼ χ2
(r−p−1)/((r − p− 1)s(0)

yy.z)

2. α ∼ N(α̂, φ2(ZTZ)−1)

3. π ∼ Beta(r + 0.5, n− r + 0.5)

4. 1/σ(0)
xx ∼ χ2

(r−1)/(rs
(0)
xx )

5. µ(0)
x ∼ N(x̄R, σ

(0)
xx /r)

6. 1/σ(0)
yy.x ∼ χ2

(r−2)/(rs
(0)
yy.x)

7. β(0)
yx.x ∼ N

(
byx.x,

σ
(0)
yy.x

rs
(0)
xx

)

8. β
(0)
y0.x ∼ N(ȳR − β(0)

yx.xx̄R, σ
(0)
yy.x/r)

9. 1/σ(1)
xx ∼ χ2

(n−r−1)/((n− r)s(1)
xx )

10. µ(1)
x ∼ N(x̄NR, σ

(1)
xx /(n− r))

Draws from the posterior distribution of µy are obtained by substituting these draws

into µy = β
(0)
y0.x + β

(0)
yx.xµx where µx = πµ

(0)
x + (1− π)µ

(1)
x .

When λ =∞, the resulting assumption is that missingness depends only on Y , so

the distribution of X given Y is the same for respondents and nonrespondents, i.e.

β
(m)
x0.y and β

(m)
xy.y are the same for M = 0 and M = 1. Draws are obtained in a similar

fashion as before. Steps 1 through 3 remain the same, but steps 4 through 10 are
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replaced by the following:

4. 1/σ(0)
yy ∼ χ2

(r−1)/(rs
(0)
yy )

5. µ(0)
y ∼ N(ȳR, σ

(0)
yy /r)

6. 1/σ(0)
xx.y ∼ χ2

(r−2)/(rs
(0)
xx.y)

7. 1/σ(1)
xx ∼ χ2

(n−r−1)/((n− r)s(1)
xx )

8. β(0)
xy.y ∼ N

(
bxy.y,

σ
(0)
xx.y

rs
(0)
yy

)

9. β
(0)
x0.y ∼ N(x̄R − β(0)

xy.yȳR, σ
(0)
xx.y/r)

10. µ(1)
x ∼ N(x̄NR, σ

(1)
xx /(n− r))

To satisfy parameter constraints, the drawn value of σ
(1)
xx from step 7 must be larger

than the drawn value of σ
(0)
xx.y from step 6; if this is not the case then these draws are

discarded and these steps repeated. Draws from the posterior distribution of µy are

obtained by substituting these draws into

µy = πµ(0)
y + (1− π)

µ
(1)
x − β(0)

x0.y

β
(0)
xy.y

.

4.4.3 Multiple Imputation

An alternative method of inference for the mean of Y is multiple imputation (Ru-

bin, 1978). We create K complete data sets by filling in missing Y values with draws

from the posterior distribution, based on the pattern-mixture model. Draws from

the posterior distribution of of Y are obtained by first drawing the parameters from

their posterior distributions as outlined in Section 4.4.2, dependent on the assump-

tion about λ, and then drawing the missing values of Y based on the conditional

distribution of Y given X for nonrespondents (M = 1),
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(4.13) [yi|xi,mi = 1, φ(k)] ∼ N

µ(1)
y(k) +

σ
(1)
yx(k)

σ
(1)
xx(k)

(
xi − µ(1)

x(k)

)
, σ

(1)
yy(k) −

σ
(1)
yx(k)

2

σ
(1)
xx(k)


where the subscript (k) denotes the kth draws of the parameters. For the kth com-

pleted data set, the estimate of µy is the sample mean Ȳk with estimated vari-

ance Wk. A consistent estimate of µy is then given by µ̂y = 1
K

∑K
k=1 Ȳk with

Var(µ̂y) = W̄K+ K+1
K
BK , where W̄K = 1

K

∑K
k=1Wk is the within-imputation variance

and B = 1
K−1

∑K
k=1(Ȳk − µ̂y)2 is the between-imputation variance.

An advantage of the multiple imputation approach is the ease with which complex

design features like clustering, stratification and unequal sampling probabilities can

be incorporated. Once the imputation process has created complete data sets, design-

based methods can be used to estimate µy and its variance; for example the Horvitz-

Thompson estimator can be used to calculate Ȳk. Incorporating complex design

features into the model and applying maximum likelihood or Bayesian methods is

less straightforward, though arguably more principled. See for example Little (2004)

for more discussion.

4.5 Quantifying Nonresponse Bias

We propose using the estimated fraction of missing information (FMI), obtained

through multiple imputation under the PPM model with different nonresponse mech-

anism assumptions, as a measure of nonresponse bias. The FMI due to nonresponse is

estimated by the ratio of between-imputation to total variance under multiple impu-

tation (Little and Rubin, 2002). Traditionally one applies this under the assumption

that data are missing at random, but we propose its use under the pattern-mixture

model where missingness is not at random. FMI is influenced by both the strength

of the proxy (ρ) and the size of the deviation from MCAR (d). For the purposes
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of illustration we use the standardized deviation d∗ so it is the same regardless of

whether X has been scaled.

Figure 4.1 is a plot of simulated data showing FMI as a function of ρ for different

values of d∗ and the response rate. Separate estimates of FMI are obtained for

different nonresponse assumptions (λ = 0, 1,∞). For all nonresponse mechanisms,

as the strength of the proxy (ρ) increases, the FMI decreases, eventually reaching

zero for a perfect proxy (ρ = 1). Across all values of ρ and d∗ FMI is smallest when

assuming λ = 0, largest when assuming λ =∞, and falls in between when λ = 1.

When missingness is at random (λ = 0) and d∗ is small, the FMI is approximately

equal to the nonresponse rate for ρ = 0 and decreases as the strength of the proxy

increases. For all values of λ, larger d leads to elevated FMI, though these differences

are relatively small compared to the effect of ρ. The FMI is larger for lower response

rates across all values of ρ, though differences are more severe with a strong proxy

than with a weak one.

With NMAR mechanisms, the FMI is greatly inflated above the response rate for

weak proxies, but rapidly declines to levels similar to those of the MAR assumption.

The relative gains from a moderately correlated proxy are larger for NMAR mecha-

nisms than for the MAR mechanism. For example, for small d and 50% missingness

the gain from moving from ρ = 0 to ρ = 0.5 is a decrease in FMI from 50% to

43% when λ = 0 but from nearly 100% to 75% when λ = ∞. Clearly the pres-

ence of strong predictors is of the utmost importance in identifying and removing

nonresponse bias; the sensitivity of FMI to ρ illustrates this.
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4.6 Simulation Studies

We now describe a set of simulation studies designed to (1) illustrate the effects

of ρ, d∗, and sample size on PPM estimates of the mean of Y , (2) assess confidence

coverage of ML, Bayes and MI inferences, and (3) demonstrate the performance of

the PPM model when data arise from a selection model with a range of nonresponse

mechanisms. All simulations and data analysis were performed using the software

package R (R Development Core Team, 2007).

4.6.1 Numerical Illustration of PPMA

Our first objective with the simulation studies was to numerically illustrate the

taxonomy of evidence concerning bias based on the strength of the proxy and the

deviation of its mean. We created a total of eighteen artificial data sets in a

3x3x2 factorial design. A single data set was generated for each combination of

ρ = {0.8, 0.5, 0.2}, d∗ = {0.1, 0.3, 0.5} and n = {100, 400} as follows. A single

covariate Z was generated for both respondents and nonrespondents with the out-

come Y generated only for respondents. Respondent data were created as pairs

(zi, yi), i = 1 . . . r with zi ∼ N(0, ρ2) and yi = 1 + zi + ei, where ei ∼ N(0, 1 − ρ2).

Nonrespondent data were Z ′s only, generated from zi ∼ N(2ρd∗, ρ2) for i = r+1 . . . n.

The nonresponse rate was fixed at 50%. This data structure was chosen so that the

variance of the complete case mean would be constant (and equal to one) across dif-

ferent choices of ρ and d∗, and so that varying ρ would not affect d∗ and vice-versa.

R2 values that corresponded to the selected ρ were 64%, 25%, and 4%, covering a

range likely to be encountered in practice.

For each of the eighteen data sets, estimates of the mean of Y and its precision

were obtained for λ = (0, 1,∞). For each value of λ, three 95% intervals were
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calculated:

(a) ML: the maximum likelihood estimate ± 2 standard errors (large-sample ap-

proximation)

(b) PD: the posterior median and 2.5th to 97.5th posterior interval based on 5000

draws from the posterior distribution of µY as outlined in Section 4.4.2

(c) MI: mean ± 2 standard errors from 20 multiply imputed data sets.

Posterior median and quantiles were used because initial evaluations showed that the

posterior distribution of µY was skewed and had extreme outliers for small ρ and large

λ. The complete case estimate (± 2 standard errors) was also computed for each

data set; note that the expected value of the respondent mean and corresponding

confidence interval is constant across all values of ρ and d for each n.

Results

Results from applying the three estimation methods to each of the nine data sets

with n = 100 are displayed in Figure 4.2. The complete case estimate is shown

alongside 95% intervals estimated by maximum likelihood, multiple imputation, and

the posterior distribution, for λ = (0, 1,∞). For each population the PD intervals

are longer than the ML and MI intervals for all choices of λ, especially for weak

proxies and λ =∞. Results for n = 400 were similar and are not shown.

Populations with a strong proxy (ρ = 0.8) do not show much variation across

values of λ; there is evidence that nonresponse bias is small for small d and there is

good information to correct the potential bias for larger values of d. For moderately

strong proxies (ρ = 0.5) the intervals increase in length, with differences between PD

and ML becoming more exaggerated as d increases. As expected, when the proxy is

weak (ρ = 0.2) we see large intervals for models that assume missingness is not at
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random (λ 6= 0); this reflects the fact that we are in the worst-case scenario where

there is not much information in the proxy to estimate the nonresponse bias. Notice

that in this simulation the true mean of Y is not known; we simply illustrate the

effect of various values of ρ and λ on the sensitivity analysis.

4.6.2 Confidence Coverage

The second objective of the simulation was to assess coverage properties for each

of the three estimation methods. We generated 500 replicate data sets as before

for each of the eighteen population designs and computed the actual coverage of

a nominal 95% interval and median interval length. The Bayesian intervals were

based on 1000 draws from the posterior distribution. Coverage is based on the

unreasonable assumption that the assumed value of λ equals the actual value of

λ. This is unrealistic, but coverages are clearly not valid when the value of λ is

misspecified, and uncertainty in the the choice of λ is captured by the sensitivity

analysis.

Results

Table 4.1 displays the nominal coverage and median CI width for each of the

eighteen populations. For populations with a strong or moderately strong proxy

(ρ = 0.8, 0.5) coverage is at or above nominal levels for all three methods, for both

the smaller and larger sample sizes and for all levels of d. For these populations,

PD inference is slightly more conservative; intervals are larger than ML for most

populations. However, when the proxy is weak, ML coverage is below nominal levels

for larger values of λ, while both PD and MI have coverage close to nominal levels.

Wiwth small sample size and weak proxies, taking λ = ∞ leads to large confidence

intervals, since draws of βxy.y approach zero. The λ = ∞ model requires a strong
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proxy or large sample size to provide reliable estimates of µy.

4.6.3 Missing Data Mechanisms under a Selection Model

In our final simulation we generated complete data under a selection model frame-

work, induced missingness according to a range of missing data mechanisms, and

applied the PPM sensitivity analysis to evaluate its coverage. The selection model

factorization implies marginal normality, while the PPM assumes conditional nor-

mality, so in this simulation the distributional assumptions of the PPM are violated.

Simulated data were pairs (zi, yi) for i = 1 . . . n from a bivariate normal distribution

such that EZ = EY = 1, V ar(Z) = V ar(Y ) = 1, and Cov(Z, Y ) = ρ. The missing

data indicator M was generated according to a logistic model,

logit(Pr(M = 1|Y, Z)) = γ0 + γZZ + γZ2Z
2 + γY Y + γY 2Y

2,

for eight choices of γ = {γ0, γZ , γZ2, γY , γY 2} chosen to reflect different nonresponse

mechanisms, including both MAR and NMAR scenarios. The choices of γ are dis-

played in Table 4.2, and are labeled using conventional linear model notation. These

models for M led to approximately 50% missingness in populations where the miss-

ing data mechanism was linear in Z and Y , and a slightly lower proportion of missing

values in the populations that were quadratic in Z and/or Y . We note that unlike the

previous simulations, ρ is specified as the correlation between Y and the covariate Z

in the entire sample, not the respondents only. For populations where nonresponse

is linear in Z and/or Y , the induced correlation between Y and the proxy X is the

same for both respondents and nonrespondents and is equal to ρ. However, when

missingness is quadratic in Z and/or Y , the correlation between Y and the proxy is

attenuated in the respondents and stronger in the nonrespondents.

There were two different sample sizes, n = {100, 400}, and three different cor-
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relations, ρ = {0.8, 0.5, 0.2}. We generated 500 replicate data sets for each of the

two sample sizes, three correlation levels, and eight nonresponse mechanisms and

applied our PPM sensitivity analysis with λ = 0, 1,∞ to estimate the mean of Y .

As before we calculated three 95% intervals for the mean of Y (ML, PD, and MI)

and computed the actual coverage and length of a nominal 95% interval, noting that

µY = 1 for all populations. Bayesian intervals were based on 1000 draws from the

posterior distribution. We also calculated the coverage of the sensitivity analysis as

a whole, that is, the percent of the replicates where at least one of the three intervals

(λ = 0, 1,∞) covered the population mean.

Results

Results from the 24 populations with n = 400 are shown in Figures 4.3a–c; cov-

erage was higher for the smaller sample size since confidence intervals were wider for

all values of λ and is not shown. There were four nonresponse mechanisms where,

aside from distributional assumptions, there was a value of λ that corresponded to

the true missingness mechanism: λ = 0 for mechanisms that depended only on Z

([Z] and [Z2]) and λ =∞ for mechanisms that depended only on Y ([Y ] and [Y 2]).

For these populations, coverage was approximately at nominal levels for the corre-

sponding value of λ for all estimation methods and for all three levels of correlation

ρ.

The remaining four nonresponse mechanisms had missingness dependent on some

combination of Z and Y , the toughest situation for the PPM. For missingness mecha-

nisms [Z+Y ] and [Z2+Y 2] there is in theory a value of λ that yields the corresponding

PPM, however it might not be one of the three in the sensitivity analysis. In these

situations the PPM performed well, with at or near nominal coverage for one of

the λ values for all three levels of ρ, and at least one interval covering the truth in
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almost 100% of the replicates. The final two missingness mechanisms, [Z2 + Y ] and

[Z + Y 2], do not correspond to any value of λ; these are situations where the PPM

is likely to show poor performance. In fact, no method reached nominal coverage

levels, except for the weak proxy (ρ = 0.2) where confidence interval lengths were

extremely large for λ = ∞ (note the increase in range of the plot). However, as a

whole the sensitivity analysis performed better for these populations in that at least

one interval covered the truth at closer to nominal levels (at or above nominal levels

for ML and MI, at worst 83% for PD, results not shown).

As expected, confidence interval lengths were larger for PD and MI than for ML,

particularly for the weaker proxies. However, this did not always lead to improved

coverage. By construction the confidence intervals for PD were not symmetrical, and

for λ = 1 and λ = 0 they were heavily skewed due to draws of βxy.y that approached

zero. When the point estimates were biased (for example, for [Z + Y 2] and λ =∞),

the skewness tended to lead to undercoverage for PD, while the symmetric intervals

of ML and MI had higher coverage. These differences were exaggerated in the weaker

proxies, where better coverage was driven by large confidence interval widths, not by

unbiased point estimates.

Overall, the PPM sensitivity analysis performed well in a setting where it was not

the “correct” model. This final simulation demonstrated the flexibility of the method,

as it had good coverage for a wide range of nonresponse mechanisms, including both

linear and quadratic functions of the covariate and the outcome.

4.7 Application

The third National Health and Nutrition Examination Survey (NHANES III) was

a large-scale stratified multistage probability sample of the noninstitutionalized U.S.
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population conducted during the period from 1988 to 1994 (U.S. Department of

Health and Human Services, 1994). NHANES III collected data in three phases: (a)

a household screening interview, (b) a personal home interview, and (c) a physical

examination at a mobile examination center (MEC). The total number of persons

screened was 39,695, with 86% (33,994) completing the second phase interview. Of

these, only 78% were examined in the MEC. Since the questions asked at both the

second and third stage varied considerably by age we chose to select only adults

age 17 and older who had completed the second phase interview for the purposes

of our example, leaving a sample size of 20,050. We chose to focus on estimating

nonresponse bias for three body measurements at the MEC exam: systolic blood

pressure (SBP), diastolic blood pressure (DBP), and body mass index (BMI). The

nonresponse rates for these three items was 15%, 15%, and 10% respectively. It has

been suggested that nonresponse in health surveys may be related to health (Cohen

and Duffy, 2002), hence these measures may potentially be missing not at random.

In order to reflect nonresponse due to unit nonresponse at the level of the MEC

exam we chose to only include fully observed covariates to create the proxies; variables

that were fully observed for the sample included age, gender, race, and household

size. The design weight was also used as a covariate in creating the proxies. Linear

regression was used to create the proxies, with the final models chosen with backwards

selection starting from a model that contained second-order interactions. To better

approximate a normal distribution, BMI values were log-transformed. Systolic blood

pressure displayed both the largest correlation between outcome and the proxy and

the largest deviation in the proxy, with ρ̂ = 0.6, d = 1.0 and d∗ = 0.08. Diastolic

blood pressure had ρ̂ = 0.33, d = 0.05, and d∗ = 0.01, while log(BMI) had the weakest

proxy at ρ̂ = 0.24 and essentially no deviation with d = −0.0004 and d∗ = −0.008.
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For each outcome, estimates of the mean and confidence intervals for λ = (0, 1,∞)

were obtained using maximum likelihood (ML), 5000 draws from the posterior dis-

tribution (PD), and multiple imputation with K = 20 data sets (MI). Additionally,

since NHANES III has a complex survey design we obtained estimates using multi-

ple imputation with design-based estimators of the mean using the survey weights

(MI wt). Design-based estimators were computed using the “survey” routines in R,

which estimate variances using Taylor series linearizations (Lumley, 2004).

Mean estimates and confidence intervals are displayed in Figures 4.4, 4.5, and

4.6. The three methods, ML, PD, and MI, produce similar estimates and confidence

intervals across all three outcomes and all values of λ. The intervals for weighted

MI are larger than those for either of the non-design-adjusted methods, and for

both SBP and BMI there is also a shift in the mean estimates for the weighted

estimators, consistent for all values of λ, reflecting the impact on these outcomes

of the oversampling in NHANES of certain age and ethnic groups. The choice of

λ has a larger impact on the mean estimate for the SBP and DBP measurements;

assuming MAR would result in significantly different mean estimates than assuming

NMAR. BMI has a weak proxy and a small deviation so there is some evidence

against nonresponse bias (small d) but this evidence is weak (small ρ).

Table 4.3 shows the estimates of FMI for each outcome under each missingness

mechanism for multiple imputation analyses that ignore design weights (FMI) and

incorporate them (FMIwt). The weighted estimates of FMI are considerably smaller

than the unweighted estimates; the same between-imputation variance is coupled

with increased within-imputation variability due to incorporation of the sample de-

sign. Larger values of λ result in larger estimates of FMI. When the proxy is strong,

as with SBP, FMI remains relatively low even when assuming NMAR. For BMI which
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has a weak proxy but also essentially zero deviation, if one is willing to assume λ = 0

then the FMI is low and close to the nonresponse rate, as there appears to be little

deviation from MCAR. However, since the proxy is weak, as soon as one assumes

NMAR the estimates of FMI become drastically larger, as high as 83%.

4.8 Discussion

The PPM analysis of nonresponse bias we propose has the following attractive

features: it integrates all the various components of nonresponse noted in the in-

troduction into a single sensitivity analysis. It is the only analysis we know of that

formally reflects the hierarchy of evidence about bias in the mean suggested in the

introduction, which we believe is realistic. It is easy to implement, since the ML form

is simple to compute, and the Bayesian simulation is noniterative, not requiring it-

erative Markov Chain Monte Carlo methods that pervade more complex Bayesian

methods and might deter survey practitioners; the MI method is also non-iterative,

and allows complex design features to be incorporated in the within-imputation com-

ponent of variance. PPM analysis includes but does not assume MAR, and it provides

a picture of the potential nonresponse bias under a reasonable range of MAR and

non-MAR mechanisms. It gives appropriate credit to the existence of good predic-

tors of the observed outcomes. When data are MAR, it is the squared correlation

between the covariates and the outcome that drives the reduction in variance, which

means that covariates with rather high correlations are needed to have much impact.

An interesting implication of our PPM analysis is that if the data are not MAR,

covariates with moderate values of correlation, such as 0.5, can be useful in reducing

the sensitivity to assumptions about the missing data mechanism. We suggest that

emphasis at the design stage should be on collection of strong auxiliary data to help
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evaluate and adjust for potential nonresponse, not solely on obtaining the highest

possible response rate.

The PPM analysis employs a sensitivity analysis to assess deviations from MAR,

in contrast with some selection model approaches that attempt to use the data

to estimate parameters that capture deviations from MAR (e.g. Heckman, 1976;

Diggle and Kenward, 1994). These models are technically identified in situations

where pattern-mixture models are not, but estimation of the NMAR parameters is

still based on strong and unverifiable structural and distributional assumptions, and

these assumptions are more transparent in the pattern-mixture factorization, since

differences between respondents and nonrespondents are directly modeled (Little and

Rubin, 2002). The sensitivity analysis for PPM analysis only varies one sensitivity

parameter, λ, but still manages to capture a range of assumptions on the missing

data mechanism. Both the standard and reverse regression estimators are contained

in the PPM framework, which are familiar to survey practitioners.

A drawback of the PPM analysis is that by reducing the auxiliary data to the

single proxy X∗, the coefficient λ is not associated with any particular covariate and

hence is difficult to interpret, since the effects on missingness on individual covariates

Zj are lost. The pattern-mixture model proposed by Daniels and Hogan (2000) in

the context of longitudinal data, uses a location-scale parameterization to model dif-

ferences in the marginal distribution of (Y, Z) for respondents and nonrespondents.

This model is more readily interpretable than our approach, but it is very underi-

dentified, even with a single Z it has three unidentified parameters, and additional

specification is needed to limit the number of parameters to be varied in a sensi-

tivity analysis. Modeling the conditional distribution of Y given Z for respondents

and nonrespondents, as in PPM analysis, focuses more directly on the distribution
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that is not identified, namely the distribution of Y given Z for nonrespondents. A

reasonable alternative to the PPM model allows the intercept of this regression to

differ for respondents and nonrespondents but the regression coefficients and residual

variance to be the same. This results in a simple nonignorable model with just one

sensitivity parameter, the difference in intercepts. However, it is hard to assess how

much of a difference in intercepts is plausible, and this model does not readily distin-

guish between strong and weak proxies of Y . Allowing the regression coefficients of

individual Zj’s in this model to differ for respondents and nonrespondents provides

more flexibility, at the expense of adding more unidentified parameters, particularly

when there is more than one covariate. Our approach trades off interpretability for

parsimony, allowing a single parameter to model deviations from MAR.

Another limitation of our analysis is that it focuses only on the mean of a par-

ticular outcome Y , so it is outcome-specific. Thus, in a typical survey with many

outcomes, the analysis needs to be repeated on each of the key outcomes of inter-

est and then integrated in some way that reflects the relative importance of these

outcomes. This makes life complicated, but that seems to us inevitable. An unavoid-

able feature of the problem is that nonresponse bias is small for variables unrelated

to nonresponse, and potentially larger for variables related to nonresponse. Mea-

sures that do not incorporate relationships with outcomes, like the variance of the

nonresponse weights, cannot capture this dimension of the problem. Presenting the

fraction of missing information over a range of key survey variables and a range of

values of λ seems valuable for capturing the full scope of the potential nonresponse

bias.

The pattern-mixture model that justifies the proposed analysis strictly only ap-

plies to continuous survey variables, where normality is reasonable, although we feel
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it is still informative when applied to non-normal outcomes. Extensions to categor-

ical variables appear possible via probit models, and many other extensions can be

envisaged, including extensions to other generalized linear models. PPM analysis

can be applied to handle item nonresponse by treating each item subject to missing

data separately, and restricting the covariates to variables that are fully observed.

However, this approach does not condition fully on the observed information, and

extensions for general patterns of missing data would be preferable. Our future work

on PPM analysis will focus on developing these extensions.

4.9 Appendix

4.9.1 Large-Sample Variance of the MLE

We want to find the large-sample variance of the maximum likelihood estimate of

µy, given by

µ̂y = ȳR +

√
syy
sxx

(
λ+ ρ̂

λρ̂+ 1

)
(x̄− x̄R),

where x̄R and ȳR are respondent means of X and Y , x̄ is the sample mean of X, and

sxx, syy, and sxy are the respondent sample variances and covariance of X and Y .

Let h =
√

syy

sxx

(
λ+ρ̂
λρ̂+1

)
so that the MLE can be expressed as µ̂y = ȳR + h× (x̄− x̄R).

Using Taylor expansion,

V̂ar(µ̂y) = V̂ar(ȳR + h× (x̄− x̄R))

= V̂ar(ȳR) + (x̄− x̄R)2V̂ar(h) + h2V̂ar(x̄− x̄R) + 2hĈov(ȳR, x̄− x̄R)

=
syy
r

+ (x̄− x̄R)2V̂ar(h) + h2

(
σ̂xx
n

+
sxx
r
− 2

sxx
n

)
− 2h

(
n− r
n

)
sxy
r

=
σ̂yy
n

+ (x̄− x̄R)2V̂ar(h) +

(
n− r
nr

)(
h2sxx − 2hsxy + syy

)
(4.14)

since Cov(ȳR, h) = 0 and Cov(x̄ − x̄R, h) = 0. To find the variance of h, we rewrite
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ρ̂ in terms of variances and covariances and express h as

h =
syy
sxx

(
λ
√
sxxsxy + sxy

λsxy +
√
sxxsyy

)
.

For bivariate normal (Xi, Yi), applying the central limit theorem and delta method

yields

√
r[(sxx, syy, sxy)

T − (σxx, σyy, σxy)
T ]

d−→ N(0,Σ)

where

Σ =


2σ2

xx 2σ2
xy 2σxxσxy

2σ2
xy 2σ2

yy 2σyyσxy

2σxxσxy 2σyyσxy σ2
xy + σxxσyy


Applying the delta method, the asymptotic variance of h is given by ∇hTΣ∇h/r,

which after some calculations yields

V̂ar(h) =

(
sxxsyy − s2

xy

)
rs2

xx

(√
sxxsyy + λsxy

)4 × {s2
xxs

2
yy(1− λ2 + λ4)

+ 2sxxsyysxyλ(3λsxy +
√
sxxsyy(1 + λ2))

+λs3
xy(λsxy + 2

√
sxxsyy(1 + λ2))

}
.

(4.15)

Plugging (4.15) into (4.14) completes the calculation of V̂ar(µ̂y).

4.9.2 Posterior Draws for Intermediate Values of λ

Let W = X + λY be the linear combination of X and Y . When λ ∈ (0,∞),

missingness depends on W , which is not observed for the nonrespondents. Thus

we apply the algorithm for λ = ∞ to the pair (X,W ) and obtain draws from this

joint distribution. This results in posterior draws of the following set of parameters:
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(φ2, α, π, σ
(0)
ww, µ

(0)
w , σ

(0)
xx.w, σ

(0)
xx , β

(0)
xw.w, β

(0)
x0.w, µ

(0)
x ). Draws from the marginal mean of W

are obtained by transforming these draws with,

µw = πµ(0)
w + (1− π)

µ
(1)
x − β(0)

x0.w

β
(0)
xw.w

.

Since W = X + λY , we have Y = (W − X)/λ and thus draws from the marginal

mean of Y are obtained by the transformation µy = (µw − µx)/λ.
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Table 4.1: Coverage and median confidence interval length for eighteen artificial populations. ML:
Maximum likelihood; PD: Posterior distribution; MI: 20 multiply imputed data sets. Results over
500 replicates.

n=100 n=400

Population Coverage CI Width Coverage CI Width
ρ d λ ML PD MI ML PD MI ML PD MI ML PD MI

0.8 0.1 0 93 94 93 0.46 0.47 0.47 95 94 94 0.23 0.23 0.23
1 95 95 95 0.47 0.48 0.48 95 95 95 0.24 0.24 0.24
∞ 95 95 96 0.51 0.52 0.52 95 95 94 0.25 0.25 0.25

0.8 0.3 0 94 94 94 0.48 0.49 0.49 96 95 95 0.24 0.24 0.24
1 96 96 96 0.50 0.51 0.51 96 95 96 0.25 0.25 0.25
∞ 96 95 96 0.55 0.56 0.56 96 95 96 0.27 0.27 0.27

0.8 0.5 0 95 96 95 0.52 0.53 0.53 96 95 95 0.26 0.26 0.26
1 96 97 96 0.54 0.56 0.55 96 95 97 0.27 0.27 0.27
∞ 97 96 97 0.62 0.64 0.64 97 96 96 0.31 0.31 0.31

0.5 0.1 0 93 93 93 0.52 0.53 0.54 94 93 94 0.26 0.26 0.27
1 95 96 95 0.56 0.59 0.59 95 95 96 0.29 0.28 0.29
∞ 97 95 97 0.84 0.98 0.96 96 95 95 0.41 0.42 0.43

0.5 0.3 0 93 94 94 0.54 0.56 0.56 94 94 94 0.27 0.27 0.28
1 96 97 96 0.59 0.64 0.64 95 95 96 0.3 0.31 0.31
∞ 96 96 97 1.0 1.2 1.2 95 95 96 0.51 0.52 0.53

0.5 0.5 0 95 95 95 0.58 0.6 0.61 94 94 95 0.29 0.29 0.3
1 97 97 98 0.64 0.73 0.72 95 96 97 0.33 0.35 0.35
∞ 96 97 96 1.3 1.6 1.6 97 96 96 0.66 0.68 0.69

0.2 0.1 0 93 94 94 0.55 0.56 0.57 94 93 93 0.28 0.27 0.28
1 94 96 96 0.64 0.72 0.72 95 95 95 0.33 0.33 0.34
∞ 94 97 97 2.5 9.9 9.0 94 97 96 1.2 1.7 1.6

0.2 0.3 0 94 95 94 0.57 0.59 0.6 95 94 94 0.29 0.29 0.29
1 87 96 94 0.66 0.98 0.97 95 96 97 0.34 0.38 0.38
∞ 87 96 93 4.7 23 19 90 97 94 2.3 3.4 3.3

0.2 0.5 0 95 95 95 0.62 0.63 0.65 96 95 94 0.31 0.31 0.32
1 86 98 97 0.73 1.7 1.4 95 97 98 0.36 0.45 0.45
∞ 85 96 94 7.4 39 32 90 97 96 3.5 5.6 5.3
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Table 4.2: Parameters in the model for M given Z and Y for the third simulation.

Model γ0 γZ γZ2 γY γY 2

[Z] -0.5 0.5 0 0 0
[Z2] -1 0 0.5 0 0
[Y ] -0.5 0 0 0.5 0
[Y 2] -1 0 0 0 0.5
[Z + Y ] -1 0.5 0 0.5 0
[Z2 + Y 2] -2 0 0.5 0 0.5
[Z2 + Y ] -1.5 0 0.5 0.5 0
[Z + Y 2] -1.5 0.5 0 0 0.5

Table 4.3: Fraction of missing information (FMI) estimates from NHANES III data for three
outcomes. SBP = systolic blood pressure; DBP = diastolic blood pressure; BMI = body-mass
index, log-transformed to approximate normality. FMIwt denotes estimation incorporating the
survey design.

Outcome Missing (%) ρ̂ d d∗ λ FMI (%) FMIwt (%)

SBP 15 0.60 1.0 0.079 0 9.6 10
1 13 8.3
∞ 24 11

DBP 15 0.33 0.050 0.011 0 16 5.8
1 24 8.3
∞ 75 30

BMI 9.7 0.24 -0.00042 -0.0084 0 12 3.6
1 18 5.8
∞ 83 53
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Figure 4.2: 95% confidence intervals for nine generated data sets (n = 100) for λ = (0, 1,∞).
Numbers below intervals are the interval length. CC: Complete case; ML: Maximum likelihood;
PD: Posterior distribution; MI: 20 multiply imputed data sets.
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Figure 4.3: Coverage and median CI length for twenty-four artificial populations for λ = 0 (•),
λ = 1 (�), and λ = ∞ (∆), with (a) ρ = 0.8; (b) ρ = 0.5; (c) ρ = 0.2. ML: Maximum likelihood;
PD: Posterior distribution; MI: 20 multiply imputed data sets. Results over 500 replicates with
n = 400.
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(b) ρ = 0.5
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Figure 4.4: Estimates of mean SBP for λ = (0, 1,∞) based on NHANES III adult data. Numbers
below intervals are the interval length. CC: Complete case; CC wt: Complete case with estimation
incorporating the survey design; ML: Maximum likelihood; PD: Posterior distribution; MI: 20
multiply imputed data sets; MIwt: 20 multiply imputed data sets with estimation incorporating
the survey design.
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Figure 4.5: Estimates of mean DBP for λ = (0, 1,∞) based on NHANES III adult data. Numbers
below intervals are the interval length. CC: Complete case; CC wt: Complete case with estimation
incorporating the survey design; ML: Maximum likelihood; PD: Posterior distribution; MI: 20
multiply imputed data sets; MIwt: 20 multiply imputed data sets with estimation incorporating
the survey design.
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Figure 4.6: Estimates of mean BMI (log-transformed) for λ = (0, 1,∞) based on NHANES III adult
data. Numbers below intervals are the interval length. CC: Complete case; CC wt: Complete case
with estimation incorporating the survey design; ML: Maximum likelihood; PD: Posterior distri-
bution; MI: 20 multiply imputed data sets; MIwt: 20 multiply imputed data sets with estimation
incorporating the survey design.
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CHAPTER V

Extensions of Proxy Pattern-Mixture Analysis

5.1 Introduction

Response rates for large-scale surveys have been steadily declining in recent years

(Curtain, Presser, and Singer, 2005), increasing the need for methods to analyze the

impact of nonresponse on survey estimates. There are three major components to

consider in evaluating nonresponse: the amount of missingness, differences between

respondents and nonrespondents on characteristics that are observed for the entire

sample, and the relationship between these fully observed covariates and the survey

outcome of interest. Current methods to handle nonresponse in surveys have tended

to focus on a subset of these components, however, the impact of nonresponse cannot

be fully understood without all three pieces. In addition, historically the focus

has been on situations were data are assumed to be missing at random (Rubin,

1976), with less attention paid to the case when missingness may be not at random

(NMAR), that is, depend on the unobserved outcome itself. In this paper we propose

a method for estimating population proportions in survey samples with nonresponse

that includes but does not assume ignorable missinginess.

A limited amount of work has been done in the area of nonignorable nonresponse

for categorical outcomes in survey data. Some examples include Stasny (1991),

108
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who used a hierarchical Bayes nonignorable selection model to study victimization

in the National Crime Survey. Extensions of this approach by Nandram and Choi

(2002a) and Nandram and Choi (2002b) use continuous model expansion to center

the nonignorable model on an ignorable model, in the manner of Rubin (1977). Sim-

ilar methods are developed for multinomial outcomes in Nandram, Han, and Choi

(2002) and Nandram, Liu, Choi, and Cox (2005) and used to study health outcomes

in the third National Health and Nutrition Examination Survey (NHANES III). The

main difference between our proposed approach and these previous methods is the

method of modeling the missing data. There are two general classes of models for

incomplete data, selection models and pattern-mixture models (Little and Rubin,

2002). Previous work on nonresponse models in surveys has tended to favor the

selection model; we use a pattern-mixture approach. The pattern-mixture approach

requires explicit assumptions on the missing data mechanism and naturally leads to

a sensitivity analysis, whereas the selection model approach requires strong distribu-

tional assumptions to (often weakly) identify parameters. In addition, methods for

categorical nonresponse have tended to be limited to the case when auxiliary data

are also categorical. However, auxiliary variables may be continuous; our proposed

method does not require that continuous variables be categorized before inclusion in

the model.

The work in this paper is an extension of our previously described proxy pattern-

mixture analysis (PPMA) for a continuous outcome; In Section 5.2 we briefly review

the continuous outcome PPMA before describing its extension to binary outcomes

in Section 5.3. Section 5.4 discusses three different estimation approaches, maximum

likelihood, a Bayesian approach, and multiple imputation, and the sensitivity of each

method to model misspecification. In Section 5.5 we extend the binary case to ordinal
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outcomes. These methods are illustrated first through simulation in Section 5.6 and

then by application to NHANES III data in Section 5.7. Section 5.8 presents some

concluding remarks.

5.2 Review of the Proxy Pattern-Mixture Model

Proxy pattern-mixture analysis was developed for the purpose of assessing non-

response bias for estimating the mean of a continuous survey variable Y subject to

nonresponse. For simplicity, we initially consider an infinite population with a sample

of size n drawn by simple random sampling. Let Yi denote the value of a continuous

survey outcome and Zi = (Zi1, Zi2, . . . , Zip) denote the values of p covariates for unit

i in the sample. Only r of the n sampled units respond, so observed data consist of

(Yi, Zi) for i = 1, . . . , r and Zi for i = r + 1, . . . , n. In particular this can occur with

unit nonresponse, where the covariates Z are design variables known for the entire

sample or with item nonresponse. Of primary interest is assessing and correcting

nonresponse bias for the mean of Y .

To reduce dimensionality and for simplicity we reduce the covariates Z to a single

proxy variable X that has the highest correlation with Y , estimated from a regression

analysis of Y on Z using respondent data. Let ρ be the correlation of Y and X, which

we assume is positive. If ρ is high (say, 0.8) we call X a strong proxy for Y and if

X is low (say, 0.2) we call X a weak proxy for Y . In addition to the strength of the

proxy as measured by ρ, an important factor is the deviation from missing completely

at random (MCAR) as measured by the difference between the overall mean of the

proxy and the respondent mean of the proxy, d = x̄ − x̄R. The distribution of

X for respondents and nonrespondents provides the main source of information for

assessing nonresponse bias for Y . We consider adjusted estimators of the mean of
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Y that are maximum likelihood for a pattern-mixture model with different mean

and covariance matrix of Y and X for respondents and nonrespondents, assuming

missingness is an arbitrary function of a known linear combination of X and Y . This

allows insight into whether missingness may be not at random (NMAR).

Specifically, we let M denote the missingness indicator, such that M = 0 if Y

is observed and M = 1 if Y is missing. We assume that the joint distribution of

[Y,X,M ] follows the bivariate pattern-mixture model discussed in Little (1994). This

model is underidentified, since there is no information on the conditional normal

distribution for Y given X for nonrespondents (M = 1). However, Little (1994)

shows that the model can be identified by making assumptions about how missingness

of Y depends on Y and X. For the proxy pattern-mixture we assume that,

(5.1) Pr(M = 1|Y,X) = f(X

√
σ

(0)
yy

σ
(0)
xx

+ λY ) = f(X∗ + λY ),

where X∗ is the proxy variable X scaled to have the same variance as Y in the

respondent population. By a slight modification of the arguments in (Little, 1994),

the resulting maximum likelihood estimate of the overall mean of Y is,

(5.2) µ̂y = ȳR +
λ+ ρ̂

λρ̂+ 1

√
syy
sxx

(x̄− x̄R),

where x̄R and ȳR are the respondent means ofX and Y , sxx and syy are the respondent

sample variances of X and Y , and x̄ is the overall sample mean of X.

The parameter λ is a sensitivity parameter; there is no information in the data

with which to estimate it. Different choices of λ correspond to different assumptions

on the missing data mechanism. We assume that λ is positive, which seems reason-

able given that X is a proxy for Y . Then as λ varies between 0 (missingness depends

only on X) and infinity (missingness depends only on Y ), g(ρ̂) = (λ + ρ̂)/(λρ̂ + 1)

varies between ρ̂ and 1/ρ̂. When λ = 0 the data are MAR, since in this case miss-
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ingness depends only on the observed variable X. In this case g(ρ̂) = ρ̂, and (5.2)

reduces to the standard regression estimator. In this case the bias adjustment for

Y increases with ρ̂, as the association between Y and the variable determining the

missing data mechanism increases. On the other hand when λ =∞ and missingness

depends only on the true value of Y , g(ρ̂) = 1/ρ̂ and (5.2) yields the inverse regres-

sion estimator proposed by Brown (1990). The bias adjustment thus decreases with

ρ̂, reflecting the fact that in this case the bias in Y is attenuated in the proxy, with

the degree of attenuation increasing with ρ̂.

For assessing potential nonresponse bias in the mean of Y , we suggest a sensitivity

analysis using λ = (0, 1,∞) to capture a range of missingness mechanisms. In

addition to the extremes, we use the intermediate case of λ = 1 that weights the

proxy and true value of Y equally because the resulting estimator has a particularly

convenient and simple interpretation. In this case g(ρ̂) = 1 regardless of the value

of ρ̂, implying that the standardized bias in ȳR is the same as the standardized bias

in x̄R. In general, the stronger the proxy, the closer the value of ρ̂ to one, and the

smaller the differences between the three estimates.

5.3 Extension of PPMA to a Binary Outcome

The proxy pattern-mixture analysis described above strictly only applies to contin-

uous survey variables, where normality is reasonable. However, categorical outcomes

are ubiquitous in sample surveys. In this section we extend PPMA to binary out-

comes using a latent variable approach. Let Yi now denote the value of a partially

missing binary survey outcome, and Zi = (Zi1, Zi2, . . . , Zip) denote the values of p

fully observed covariates for unit i in the sample. As before, only r of the n sam-

pled units respond, so observed data consist of (Yi, Zi) for i = 1, . . . , r and Zi for
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i = r+ 1, . . . , n. Of interest is the proportion of units in the population with Y = 1.

For simplicity and to reduce dimensionality, we replace Z by a single continuous

proxy variable X, estimated by a probit regression of Y on Z using the respondent

data,

(5.3) Pr(Y = 1|Z,M = 0) = Φ(α0 + αZ).

We take X = α̂0 + α̂Z to be the linear predictor from the probit regression, rather

than the predicted probability, so that its support is the real line. The regression

coefficients α are subject to sampling error, so in practice X is estimated rather than

known. The choice of the probit link, rather than alternatives such as the logit link,

is due to the latent variable motivation of probit regression. We assume that Y is

related to a continuous normally distributed latent variable U through the rule that

Y = 1 when the latent variable U > 0. The latent (respondent) data are then related

to the covariates through the linear regression equation, U = α0 + αZ + ε, where

ε ∼ N(0, 1).

This latent variable approach motivates application of the normal proxy pattern-

mixture (PPM) model to the latent variable U and proxy X. If we could observe

U for the respondents, application of the PPM model would be straightforward.

Taking M to be the missing data indicator, we assume that the joint distribution of

[U,X,M ] follows the bivariate pattern-mixture model:

(U,X|M = m) ∼ N2

(
(µ(m)

u , µ(m)
x ),Σ(m)

)
M ∼ Bernoulli(1− π)

Σ(m) =

 σ
(m)
uu ρ(m)

√
σ

(m)
uu σ

(m)
xx

ρ(m)

√
σ

(m)
uu σ

(m)
xx σ

(m)
xx

 ,
(5.4)

where N2 denotes the bivariate normal distribution. Note that the parameter ρ(m)
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is the correlation between the latent variable U and the constructed proxy X. As

with the continuous outcome PPM model the parameters µ
(1)
u , σ

(1)
uu , and ρ(1) are

unidentifiable without further model restrictions. Since U is completely unobserved,

σ
(0)
uu is also not identifiable and without loss of generality can be fixed at an arbitrary

value. Following convention we set σ
(0)
uu = 1/(1− ρ(0)2) so Var(U |X,M = 0) = 1.

We identify the model by making assumptions about how missingness of Y de-

pends on U and X. As with the continuous outcome PPM model, we modify the

arguments in Little (1994) and assume that

(5.5) Pr(M = 1|U,X) = f(X

√
σ

(0)
uu

σ
(0)
xx

+ λU) = f(X∗ + λU),

where X∗ is the proxy variable X scaled to have the same variance as U in the

respondent population. An important feature of this mechanism is that when λ > 0,

i.e. under NMAR, the missingness in the binary outcome Y is being driven by X

and by the completely unobserved latent U . This allows for a “smooth” missingness

function in the sense that conditional on X the probability of missingness may lie on

a continuum instead of only taking two values (as would be the case if missingness

depended on Y itself). Of primary interest is the marginal mean of Y , which is given

by,

(5.6) µy = Pr(Y = 1) = Pr(U > 0) = πΦ

(
µ(0)
u /

√
σ

(0)
uu

)
+ (1− π)Φ

(
µ(1)
u /

√
σ

(1)
uu

)
,

where Φ(·) denotes the standard normal CDF.

5.3.1 Summary of Evidence about Nonresponse Bias

The information about nonresponse bias in the mean of Y is contained in the

strength of the proxy as measured by ρ(0) and the deviation in the proxy mean,

d = x̄ − x̄R. Strong proxies (large ρ(0)) and small deviations (small d) lead to
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decreased uncertainty and higher precision in estimates, even under NMAR, while

weak proxies (low ρ(0)) and large deviations (large d) lead to increased uncertainty,

especially when missingness depends on Y . In the case of the continuous outcome,

both ρ(0) and d were directly interpretable, since ρ̂(0) was the square root of the R2

from the regression model that built the proxy X and the deviation d was on the

same scale as the (linear) outcome Y . With a binary outcome, we lose these neat

interpretations of ρ(0) and d, though their usefulness as markers of the severity of

the nonresponse problem (d) and our ability to make adjustments to combat the

problem (ρ(0)) remains. The information about nonresponse bias in Y is contained

in X, with X now a proxy for the latent U instead of the partially observed outcome

Y itself.

Another issue unique to the binary case (and subsequent extension to ordinal Y )

is that the size of the nonresponse bias in Y , i.e. the difference in mean between

respondent and overall means, depends not only on the size of the deviation on the

latent scale (d) but also on the respondent mean itself. In the continuous case,

the bias in ȳR is a linear function of d (see (5.2)); a deviation d has the same

(standardized) effect on the overall mean regardless of the value of ȳR. However,

in the binary case the deviation is on the latent scale, and only the bias in U is

location-invariant. When transformed to the binary outcome, different d values will

lead to different size biases, depending on the respondent mean of Y . The use of the

standard normal CDF to transform U to Y drives this; the difference Φ(a+d)−Φ(a)

is not merely a function of d but also depends on the value of a.
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5.4 Estimation Methods

5.4.1 Maximum Likelihood

Maximum likelihood (ML) estimators for the distribution of U given X for non-

respondents follow directly from the continuous outcome PPM model,

µ̂(1)
u = µ̂(0)

u + g ×

√
σ̂

(0)
uu

σ̂
(0)
xx

(x̄NR − x̄R)

σ̂(1)
uu = σ̂(0)

uu + g2 × σ̂
(0)
uu

σ̂
(0)
xx

(σ̂(1)
xx − σ̂(0)

xx )(5.7)

g =
λ+ ρ̂(0)

λρ̂(0) + 1
.

Plugging these estimates into (5.6) yields the ML estimate of the mean of Y . The

ML estimates of the parameters of the distribution of X are the usual estimators,

however, estimators for µ
(0)
u and ρ(0), and therefore σ

(0)
uu , are not immediately obvious

since the latent U is unobserved even for respondents. To obtain these estimates,

we note that the correlation ρ(0) is the biserial correlation between the binary Y and

continuous X for the respondents. Maximum likelihood estimation of the biserial

correlation coefficient was first studied by Tate (1955a,b), who showed that a closed

form solution does not exist. The parameters ρ(0) and ω(0) = µ
(0)
u /

√
σ

(0)
uu (referred to

as the cutpoint) must be jointly estimated through an iterative procedure such as a

Newton-Raphson type algorithm. It is important to note that the ML estimate of

ω(0) is not the inverse probit of the respondent mean of Y , i.e. the ML estimate of

the mean of Y for respondents is not ȳR.

An alternative method of estimating the biserial correlation coefficient is the two-

step method, proposed by Olsson, Drasgow, and Dorans (1982) in the context of

the polyserial correlation coefficient. In the first step, the cutpoint ω(0) is estimated

by ω̂(0) = Φ−1(ȳR), so that the ML estimate of the respondent mean of Y is ȳR.

Then a conditional maximum likelihood estimate of ρ(0) is then computed, given the
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other parameter estimates. This method is computationally simpler than the full

ML estimate, and also has the attractive property of returning the logical estimate

µ̂
(0)
y = ȳR.

The large sample variance of the full ML estimate of µy is obtained through

Taylor series expansion and inversion of the information matrix. The properties of

the two-step estimator are not well studied, so variance estimates are obtained with

the bootstrap.

5.4.2 Bayesian Inference

The ML estimate ignores the uncertainty inherent in the creation of the proxy X.

An alternative approach is to use a Bayesian framework that allows incorporation

of this uncertainty. Since U is unobserved, we propose using a data augmentation

approach. We place noninformative priors on the regression parameters α and use

a Gibbs sampler to draw the latent U for respondents (Albert and Chib, 1993).

Conditional on α (and therefore on the created proxy X), U follows a truncated

normal distribution,

(U |Y, α,M = 0) = (U |Y,X,M = 0) ∼ N(X, 1) = N(αZ, 1)

truncated at the left by 0 if Y = 1 and at the right by 0 if Y = 0.

(5.8)

Then given the augmented continuous U we draw α from its posterior distribution,

which also follows a normal distribution,

(5.9) (α|Y, U,M = 0) ∼ N((ZTZ)−1ZTU, (ZTZ)−1),

and recreate the proxy X = αZ.

This data augmentation allows for straightforward application of the Bayesian

estimation methods for continuous PPMA. For a chosen value of λ, we apply the
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PPM algorithm as described in Chapter IV to the pair (X,U) to obtain draws of the

parameters of the joint distribution of X and U . Since U is unobserved even for the

respondents, after each draw of the parameters from the PPM model, X is recreated

for the entire sample and U is redrawn for the respondents given the current set of

parameter values as described in the data augmentation approach above. Note that

this does not require a draw of the latent data for nonrespondents. Draws from the

posterior distribution of µy are obtained by substituting the draws from the Gibbs

sampler into (5.6).

5.4.3 Multiple Imputation

An alternative method of inference is multiple imputation (Rubin, 1978). For

a selected λ we create K complete data sets by filling in missing Y values with

draws from the posterior distribution, based on the pattern-mixture model. For

a given draw of the parameters φ = (µ
(1)
u , µ

(1)
x , σ

(1)
uu , σ

(1)
xx , ρ(1)) from their posterior

distribution as Section 5.4.2, we draw the latent U for nonrespondents based on the

conditional distribution,

(5.10) [ui|xi,mi = 1, φ(k)] ∼ N

µ(1)
u(k) +

σ
(1)
ux(k)

σ
(1)
xx(k)

(
xi − µ(1)

x(k)

)
, σ

(1)
uu(k) −

σ
(1)
ux(k)

2

σ
(1)
xx(k)


where the subscript (k) denotes the kth draws of the parameters. In order to reduce

auto-correlation between the imputations due to the Gibbs sampling algorithm for

drawing the parameters, we thin the chain for the purposes of creating the imputa-

tions. The missing yi are then imputed as yi = I(ui > 0), where I() is an indicator

function taking the value 1 if the expression is true. For the kth completed data set,

the estimate of µy is the sample mean Ȳk with estimated variance Wk. A consistent

estimate of µy is then given by µ̂y = 1
K

∑K
k=1 Ȳk with Var(µ̂y) = W̄K + K+1

K
BK , where

W̄K = 1
K

∑K
k=1Wk is the within-imputation variance and B = 1

K−1

∑K
k=1(Ȳk − µ̂y)2
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is the between-imputation variance.

As with the continuous PPMA, an advantage of the multiple imputation approach

is the ease with which complex design features like clustering, stratification and

unequal sampling probabilities can be incorporated. Once the imputation process

has created complete data sets, design-based methods can be used to estimate µy and

its variance; for example the Horvitz-Thompson estimator can be used to calculate

Ȳk.

5.4.4 Sensitivity to a Non-normally Distributed Proxy

A crucial assumption of the PPM model for both continuous and binary outcomes

is that of bivariate normality of X and Y or U . The continuous outcome PPM

model is relatively robust to departures from this assumption and only relies on linear

combinations of first and second moments in estimating the mean of Y . However, for

binary outcomes the normality assumption plays a more crucial role, made clear with

a simple example. Suppose the proxy X is normally distributed in the respondent

population, with [X|M = 0] ∼ N(µ
(0)
x , σ

(0)
xx ). We assume that, for respondents, the

latent variable U = X + e where e ∼ N(0, 1), such that Pr(Y = 1|M = 0) = Pr(U >

0|M = 0). Then the conditional and marginal respondent distributions of U along

with the mean of Y are given by,

[U |X,M = 0] ∼ N(X, 1)

[U |M = 0] ∼ N(µ(0)
x , 1 + σ(0)

xx )

µ(0)
y = Pr(U > 0|M = 0) = Φ

(
µ(0)
u /

√
σ

(0)
uu

)
= Φ

(
µ(0)
x /

√
1 + σ

(0)
xx

)
However, if the distribution of X, fX(x), is not normal, then the conditional distri-

bution [U |X,M = 0] is the same but the marginal distribution is no longer normal.

Now Pr(U > 0) =
∫∞

0
fU(u) du where fU(u) is the convolution of the error distribu-
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tion N(0, 1) and fX(x). Thus even the estimate of the respondent mean of Y will be

biased, despite the fact that Y is fully observed for the respondents.

Even though PPMA can provide unbiased estimates of the mean and variance of

U in the case when Z is not normally distributed (like the continuous PPMA), the

transformation to the mean of Y is only accurate when Z is normally distributed.

Both the full ML estimation and Bayesian methods will produce biased estimates

of µy if X deviates away from normality. The two-step ML method is less sensitive

to non-normality, since it estimates µ
(0)
y by ȳR. Multiple imputation also is less

sensitive to departures from normality since imputation is based on the conditional

distribution [U |X,M ] which is normal by definition of the latent variable and is not

affected by non-normal X.

We propose modifying the Bayesian method to attempt to reduce sensitivity to

deviations from normality in the proxy X. The modification is an extension of the

multiple imputation approach: at each iteration of the Gibbs sampler, the latent

U for nonrespondents is drawn conditional on the current parameter values, and

the subsequent draw of µ
(1)
y is taken to be µ

(1)
y = 1

n−r
∑n

i=r+1 I(Ui > 0). A similar

method of obtaining an estimator for the respondent mean does not work, as draws

of U for the respondents in the Gibbs sampler are conditional on the observed Y

and thus the resulting draw will always be ȳR. To avoid this, we can take one of two

approaches. An obvious extension is to redraw the latent U conditional only on the

current draws of the proxy and the parameters, with the subsequent draw of µ
(0)
y is

taken to be µ
(0)
y = 1

n−r
∑n

i=r+1 I(Ui > 0). The drawback of this method (Modification

1) is that variances may actually be overestimated since we are essentially imputing

the observed binary outcome Y for the respondents. Alternatively, we can use the

average of the predicted probabilities for the respondents as a draw of µ
(0)
y , i.e.
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1
r

∑r
i=1 Φ−1(Xi). This is actually a draw of the conditional mean of Y (conditional

on X) and so its posterior distribution will underestimate the variance of µ
(0)
y . To

combat this we take a bootstrap sample of the Xi before calculating the mean of the

predicted probabilities (Modification 2).

5.5 Extension to Ordinal Outcome

Suppose instead of a binary outcome we observe a partially missing ordinal out-

come Y , where Yi takes one of J ordered values, 1, . . . , J . As with the binary case we

assume there is an underlying latent continuous variable U , related to the observed

Y through the rule that Y = j if γj−1 < U < γj for j = 1, . . . , J , with γ0 = −∞ and

γJ =∞. This latent structure motivates an extension of probit regression to ordinal

outcomes (e.g. Agresti, 2002, chap. 7), which we apply to the respondent data:

(5.11) Pr(Y ≤ j|Z,M = 0) = Pr(U ≤ γj) = Φ(γj + αZ).

We take X = α̂Z to be the proxy, noting that the intercepts {γj} are the cutpoints of

the latent variable U and are not used in the construction of the proxy. As with the

binary Y we apply the proxy pattern-mixutre model (5.4) to the joint distribution

of the proxy X and latent U , with assumption (5.5) on the missing data mechanism

to make the model identifiable. Of interest are the marginal probabilities that Y = j

for j = 1, . . . , J , averaged across missing data patterns, given by:

Pr(Y = j) = π Pr(γj−1 < U ≤ γj|M = 0) + (1− π) Pr(γj−1 < U ≤ γj|M = 1)

= π

Φ

γj − µ(0)
u√

σ
(0)
uu

− Φ

γj−1 − µ(0)
u√

σ
(0)
uu


+ (1− π)

Φ

γj − µ(1)
u√

σ
(1)
uu

− Φ

γj−1 − µ(1)
u√

σ
(1)
uu



(5.12)
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5.5.1 Estimation Methods

Resulting maximum likelihood estimates of the parameters µ
(1)
u and σ

(1)
uu have the

same form (5.7) as in the binary case. The ML estimates of the parameters of the

distribution of X for respondents and nonrespondents are the usual estimators. This

leaves µ
(0)
u , σ

(0)
uu , ρ(0), and γ = {γj} to be estimated. Without loss of generality we

take µ
(0)
u = 0 and σ

(0)
uu = 1 and obtain MLEs for the correlation ρ(0) and cutpoints

γ. This reduces to the problem of estimating the polyserial correlation between the

ordinal Y and continuous X, first considered by Cox (1974). As with the binary case,

there is no closed-form solution and an iterative solution is required. The MLE of the

marginal probabilities of Y are obtained by substituting these estimates into (5.12).

As with the binary case, the ML estimate of Pr(Y = j|M = 0) is not 1
r

∑r
i=1 I(yi = j).

As an alternative, the two-step method of Olsson et al. (1982) estimates γ with the

inverse normal distribution function evaluated at the the cumulative proportions of

Y for the respondents. The ML estimate of ρ(0) is then obtained by maximizing the

likelihood conditional on these estimates of γ̂. As with the binary case, the two-step

method is appealing because the estimates of Pr(Y = j|M = 0) will be the sample

proportions. Large sample variances are obtained for full ML through Taylor series

expansion, and via the bootstrap for the two-step estimator.

Bayesian estimation for ordinal Y is similar to the binary case. With noninfor-

mative priors on the regression parameters α we again use the data augmentation

approach of Albert and Chib (1993) to draw the latent U for respondents and apply

the continuous PPM model to the latent U and proxy X. The posterior distribution

of U given α (or equivalently the proxy X = αZ) and γ is given by a truncated
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normal distribution,

(U |Y = j, α, γ,M = 0) ∼ N(X, 1)

truncated at the left (right) by γj−1(γj).

(5.13)

The conditional posterior distribution of α is multivariate normal as before, given

by (5.9). The posterior distribution of γj given U and α is uniform on the interval

[max{max{Ui : Yi = j}, γj−1},min{min{Ui : Yi = j + 1}, γj+1}]. Application of

the continuous PPM model to the latent data proceeds in an iterative fashion as in

Section 5.4.2, with draws from the posterior distribution of the marginal probabilities

of Y obtained by substituting draws from the PPMA algorithm into (5.12).

Multiple imputation for the ordinal outcome is a straightforward extension of the

Bayesian method. For a chosen λ, draws of the latent U for nonrespondents are

obtained in the same manner as the binary case, using (5.10). The missing Y are

then imputed as Yi = I(γj+1 < Ui ≤ γj).

As with the binary case, the model is sensitive to an incorrect specification of the

distribution of the proxy X. The two-step ML estimation and multiple imputation

are less sensitivity to deviation away from normality, but both the full ML estimation

and Bayesian method will produce biased results, even for estimates of the respondent

probabilities. We propose similar modifications to the Bayesian method as in the

binary case. We draw the latent U for nonrespondents conditional on the current

parameter values and a draw of Pr(Y = j|M = 1) is taken to be 1
n−r

∑n
i=r+1 I(γj+1 <

Ui ≤ γj) for j = 1, . . . , J . Again there are two methods of obtaining draws of the

respondent probabilities. In the first method we redraw U for the respondents, not

conditioning on Y , and estimate probabilities as for the nonrespondents. The second

method draws a bootstrap sample of respondents and uses the average over the r

respondents of the predicted probabilities given the current α (for each of the J
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categories) as draws of the posterior probabilities.

5.6 Simulation Studies

We now describe a set of simulation studies designed to (1) illustrate the effects

of ρ, d∗, and sample size on PPMA estimates of the mean of a binary outcome Y ,

(2) assess confidence coverage of ML, Bayes and MI inferences when model assump-

tions are met, and (3) assess confidence coverage of the various estimation methods

when the normality assumption is incorrect. All simulations and data analysis were

performed using the software package R (R Development Core Team, 2007).

5.6.1 Numerical Illustration of Binary PPMA

Our first objective with the simulation studies was to numerically illustrate the

taxonomy of evidence concerning bias based on the strength of the proxy and the

deviation of its mean. We created a total of eighteen artificial data sets in a 3x3x2

factorial design with a fixed nonresponse rate of 50%. A single data set was generated

for each combination of ρ = {0.8, 0.5, 0.2}, d∗ = {0.1, 0.3, 0.5} and n = {100, 400} as

follows. A single covariate Z was generated for both respondents and nonrespondents,

with zi ∼ N(0, 1), i = 1, . . . , r for respondents and zi ∼ N(d∗/(1 − r/n), 1), i =

r + 1, . . . , n for nonrespondents. For respondents only, a latent variable ui was

generated as [ui|zi] ∼ N(a0 + a1zi, 1), with an observed binary Y then created as

yi = 1 if ui > 0. We set a1 = ρ/
√

1− ρ2 so that Corr(Y,X|M = 0) = ρ and choose

a0 = Φ−1(0.3)
√

1 + a2
1 so that the expected value of Y for respondents was 0.3. In

this and all subsequent simulations the latent variable U was used for data generation

and then discarded; only Y and Z were used for the proxy pattern-mixture analysis.

For each of the eighteen data sets, estimates of the mean of Y and its variance were

obtained for λ = (0, 1,∞). For each value of λ, three 95% intervals were calculated:
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(a) ML: the (full) maximum likelihood estimate ± 2 standard errors (large-sample

approximation),

(b) PD: the posterior median and 2.5th to 97.5th posterior interval based on 2000

cycles of the Gibbs sampler as outlined in Section 5.4.2, with a burn-in of 20

iterations,

(c) MI: mean ± 2 standard errors from 20 multiply imputed data sets, with a

burn-in of 20 iterations and imputing on every hundredth iteration of the Gibbs

sampler.

The two-step ML estimator and two modifications to the Bayes estimator to handle

non-normal proxies were also calculated. Since the simulated covariate data were

normally distributed, the modified estimators yield similar results and are not shown.

The complete case estimate (± 2 standard errors) was also computed for each data

set.

Results

Figure 5.1 shows the resulting 95% intervals using each of the three estimation

methods for the nine data sets with n = 400, plotted alongside the complete case

estimate. The relative performances of each method for the data sets with n = 100

are similar to the results with n = 400 (with larger interval lengths); results are

not shown. We note that in this simulation the true mean of Y is not known; we

simply illustrate the effect of various values of ρ and d∗ on the sensitivity analysis

and compare the different estimation methods.

For populations with strong proxies (ρ = 0.8), ML, PD, and MI give nearly

identical results. For these populations there is not a noticable increase in the length

of the intervals as we move from λ = 0 to λ =∞, suggesting that even in the case of
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a large deviation (d∗ = 0.5) there is good information to correct the potential bias.

For weaker proxies we begin to see differences among the three methods. When

λ = 0 (MAR) the three methods yield similar inference, but for nonignorable mech-

anisms the intervals for PD and MI tend to be wider than those for ML. For both

Bayesian methods (PD, MI) the interval width increases as we move from λ = 0 to

λ = ∞, with a marked increase in length when ρ = 0.2. The ML estimate displays

different behaviour; its intervals actually get very small for the weak proxies and

large d. This is due to the unstable behaviour of the MLE near the boundary of the

parameter space. For weak proxies (small ρ), the MLE of σ
(1)
uu as given in (5.7) can be

zero or negative if the nonrespondent proxy variance is smaller than the respondent

variance. If it is negative, we set σ̂
(1)
uu = 0. Since the MLE of the mean of Y is

given by µ
(1)
y = Φ

(
µ

(1)
u /

√
σ

(1)
uu

)
, a zero value for σ

(1)
uu causes µ̂

(1)
y to be exactly 0 or

1 depending on the sign of µ
(1)
u . The large sample variance will then be small since

the estimate of σ
(1)
uu is zero, and interval widths will be small relative to the PD or

MI intervals.

Since the outcome is binary, we obtain a natural upper and lower bound for the

mean of Y by filling in all missing vales with zeros or all with ones. These bounds are

shown in dotted lines in Figure 5.1. For strong proxies, even with a large deviation

this upper bound is not reached, suggesting that even in the worst-case NMAR

scenario where missingness depends entirely on the outcome the overall mean would

not be this extreme. However, for the weakest proxy (ρ = 0.02) we see that even for

the smallest deviation the intervals for PD and MI cover these bounds. This is due to

the weak information about Y contained in the proxy. The PD intervals are highly

skewed and the MI intervals are exaggerated in length. The posterior distribution

of µy is bimodal, with modes at each of the two bounds obtained when all missings
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are zeros or all ones. Thus the posterior interval essentially covers the entire range

of possible values of µy. Similarly for MI the imputed data sets have imputed values

that are either all zeros or all ones. This causes very large variance and thus large

intervals, and since by construction the intervals are symmetric for MI, they are even

larger than the posterior intervals from PD. As previously discussed, the ML method

gives extremely small intervals for the weak proxies, with the point estimate at the

upper bound.

5.6.2 Confidence Coverage, Normally Distributed Proxy

The second objective of the simulation was to assess coverage properties for each of

the three estimation methods when model assumptions are met, i.e. when the proxy

is normally distributed. We generated data using the same set-up as Section 5.6.1.

We fixed d∗ = 0.3 and varied ρ = {0.8, 0.5, 0.2} and n = {100, 400} for a total of

six populations, and generated 500 replicate data sets for each population. For each

population we applied the proxy pattern-mixture model using each of λ = {0, 1,∞},

with the assumption that the assumed value of λ equals the actual value of λ. This

lead to a total of eighteen hypothetical populations, and for each we computed the

actual coverage of a nominal 95% interval and median interval length. We also

calculated the relative empirical bias for each estimator. Assuming that the λ value

is correct is unrealistic, but coverages are clearly not valid when the value of λ is

misspecified, and uncertainty in the the choice of λ is captured by the sensitivity

analysis.

A total of six estimators for the mean of the binary outcome Y and its variance

were obtained for each of the eighteen data sets. These included the usual maximum

likelihood (ML Full), posterior distribution (PD A), and multiple imputation (MI)

estimators as in the previous section, as well as the three modified estimators: the
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two-step maximum likelihood estimator (ML 2-step) and two modifications to the

Bayesian estimator as described in Section 5.4.4 (PD B, PD C). Confidence intervals

for the two-step ML estimator were based on 500 bootstrap samples. Posterior

intervals for all three PD methods were based on 1000 draws from the Gibbs sampler

as the chains were quick to converge.

Results

Table 5.1 displays the average empirical relative bias, nominal coverage, and me-

dian CI width for the eighteen populations. For the smaller sample size (n = 100),

all methods suffer from slight undercoverage, even when the proxy is strong. This

undercoverage is exaggerated in the populations with the weakest proxy (ρ = 0.2)

and when λ = ∞, where all the methods are negatively biased. With 50% nonre-

sponse, these small samples have only 50 observed data points, and estimation of the

distribution of the latent variable from the binary observations is challenging. No

method displays consistently better performance in the small sample size, though

the larger interval lengths of PD B (redrawing the latent U for nonrespondents) and

MI yield slightly improved performance.

Differences between the methods emerge with the larger sample size (n = 400).

All methods perform well when the proxy is strong (ρ = 0.8), though the second

modification to the Bayesian method (PD C — bootstrapping the predicted prob-

abilities) consistently shows a small amount of undercoverage. As expected, the

interval widths for the alternative modification to the Bayesian method (PD B) are

wider than the usual PD method (PD A), with PD B actually overcovering for sev-

eral populations, most notably when λ = 0 or 1. There does not seem to be much

difference between the two ML methods for any of the populations, though for the

smaller sample size we see slightly wider confidence intervals for the two-step method.



129

As was evident in the previous simulation, when ρ = 0.2 and λ =∞ the confidence

interval length for ML Full is much smaller than any of the other methods, and this

leads to slight undercoverage.

5.6.3 Confidence Coverage, Non-Normally Distributed Proxy

As a final objective for the simulation study we wanted to assess the performance

of the modifications to the maximum likelihood and Bayesian estimation methods

for binary Y when the normality assumption of the proxy was violated. Since by

definition this is a situation where the model is violated, we cannot generate data

as in the previous two sets of simulations. Instead, complete data were generated in

a selection model framework and missingness was induced via different missingness

mechanisms. The sample size was fixed at n = 400 since the previous simulation

showed difficulty in distinguishing performances of the methods for smaller n. Three

different distributions for a single covariate Z were selected: (a) Normal(0, 1), (b)

Gamma(4, 0.5), (c) Exponential(1). These distributions were chosen to evaluate the

effect of both moderate skew (Gamma) and severe skew (Exponential). The normally

distributed covariate was chosen to serve as a reference; the selection model implies

marginal normality, while the PPM model assumes conditional normality, so even

with a normally distributed covariate the distributional assumptions of the PPM

model are violated.

Data were generated as follows. For each of the three Z distributions the covariate

zi, i = 1, . . . , n was generated. Then for each of ρ = {0.8, 0.5, 0.2} the latent ui was

generated from [ui|zi] ∼ N(a0 +a1zi, 1), where a1 = ρ/
√

1− ρ2 so that Corr(Y,X) =

ρ. Values of a0 were chosen so that the expected value of Y was approximately 0.3,

where the binary outcome Y was then created as yi = 1 if ui > 0. The missing data
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indicator mi was generated according to a logistic model,

logit(Pr(mi = 1|ui, zi)) = γ0 + γZzi + γUui,

and values of yi were deleted when mi = 1. The two different mechanisms selected

were MAR, with γZ = 0.5, γU = 0, and extreme NMAR, with γZ = 0, γU = 0.5. Aside

from the discrepancy of marginal versus conditional normality, these two mechanisms

correspond to λ values of 0 and∞, respectively. For both scenarios, values of γ0 were

selected to induce approximately 50% missingness.

The process of generating {zi, ui, yi,mi}, and inducing missingness was repeated

500 times for each of the eighteen populations. The same six estimators for the mean

of the binary outcome Y and its variance were obtained for each of the eighteen data

sets as in the previous section. For the MAR mechanism, λ was taken to be zero,

and for NMAR λ =∞.

Results

When Z is normally distributed, results are similar to the previous simulation,

as seen in Table 5.2a. All methods are unbiased across all scenarios except when

ρ = 0.2 under NMAR. For this population there is a small bias but all methods

except ML Full still achieve nominal coverage, and in fact many show higher than

nominal coverage. The consistently best performing methods are ML 2-step, PD B,

and MI, which reach nominal coverage in all scenarios. PD C shows undercoverage (as

in the previous simulation) when the proxy is strong, and also slight undercoverage

under MAR. As was previously seen, ML Full has intervals that are too short when

missingness is not at random and the proxy is weak (ρ = 0.2), and thus exhibits very

poor coverage. The two-step ML fixes this problem, since the bootstrap is used for

variance estimation instead of the large-sample approximation, though the intervals
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are nearly twice as long as other methods that actually show overcoverage.

Table 5.2b shows results for the slightly skewed proxy, when Z has a Gamma

distribution. The methods that rely the most on the underlying normality assump-

tion of the PPMA, ML Full and PD A, show bias for the stronger proxies under

both missingness mechanisms and hence tend to undercover. When missingness is

at random, as before the best performers are ML 2-step, PD B, and MI, with PD C

showing undercoverage. The more difficult populations are under NMAR. For both

ρ = 0.8 and ρ = 0.5 all methods exhibit some bias, though ML Full and PD A are the

most biased, and subsequently all methods fail to acheive nominal coverage. The ex-

ception is MI, which is at nominal coverage for all but one scenario. For the weakest

proxy (ρ− 0.2) ML Full again shows undercoverage, while the two-step ML corrects

this problem. However, it does so with very large confidence intervals relative to the

Bayesian methods which reach nominal coverage.

Results for Z having an Exponential distribution are displayed in Table 5.2c.

The results are similar to the Gamma case, with larger biases and lower coverage

rates across all populations. With a severely skewed proxy, the PPM model actually

performs the worst with a strong proxy; under both MAR and NMAR it is diffi-

cult for any estimation method to reach nominal coverage. As the strength of the

proxy weakens, under MAR ML 2-step and PD B reach nominal coverage, while the

unmodified ML Full and PD A methods remain biased and have poor coverage.

Overall, the best performing method is MI, which achieves nominal or just un-

der nominal coverage for all three distributions of Z, including the severely skewed

Exponential, and under both missingness mechanisms with all strengths of proxies.

This result is not surprising. Even though MI uses the fully parametric PPM model

to generate posterior draws of the parameters, these draws are subsequently used
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to impute the missing Y values via the conditional distribution of [U |X,M = 1].

Even if the proxy is not normally distributed, the conditional distribution of the

latent variable given the proxy is normal by definition, and so MI should be the least

sensitive to departures away from normality in the proxy.

The one other method that does reasonably well in most scenarios is the first

modification to the Bayesian draws, PD B. As with MI, this method conditions on

the proxy and draws the latent U and thus outperforms the unmodified Bayesian

method that relies entirely on the joint normality of U and the proxy X. PD B

achieves at or near nominal coverage for strong proxies across all levels of skewness,

but exhibits overcoverage for weaker proxies. This is to be expected, since in this

modification the latent U for respondents are redrawn unconditional on the observed

Y , which is effectively imputing the observed Y , and certainly has the potential to

add unnecessary variability, as was noted in Section 5.4.4.

5.7 Application

The third National Health and Nutrition Examination Survey (NHANES III) was

a large-scale stratified multistage probability sample of the noninstitutionalized U.S.

population conducted during the period from 1988 to 1994 (U.S. Department of

Health and Human Services, 1994). NHANES III collected data in three phases: (a)

a household screening interview, (b) a personal home interview, and (c) a physical

examination at a mobile examination center (MEC). The total number of persons

screened was 39,695, with 86% (33,994) completing the second phase interview. Of

these, only 78% were examined in the MEC. Since the questions asked at both the

second and third stage varied considerably by age we chose to select only adults age

17 and older who had completed the second phase interview for the purposes of our
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example, leaving a sample size of 20,050.

We selected two binary variables and one ordinal variable: an indicator for low

income, defined as being below the poverty threshold, an indicator for hypertension,

defined as having a systolic blood pressure above 140 mmHg, and a three-level bone

mineral density (BMD) variable (normal / osteopenia / osteoporosis). The nonre-

sponse rates for these three items were 15%, 11%, and 22% respectively. In order to

reflect nonresponse due to unit nonresponse at the level of the MEC exam we chose

to only include fully observed covariates to create the proxies; variables that were

fully observed for the sample included age, gender, race, and household size. The

(log-transformed) design weight was also used as a covariate in creating the proxies.

The final models were chosen with backwards selection starting from a model that

contained all second-order interactions.

Both hypertension and BMD had strong proxies and relatively large deviations,

with ρ̂ = 0.67 and d∗ = 0.065 for hypertension and ρ̂ = 0.63 and d = −0.064 for

BMD. Income had a slightly weaker proxy, with ρ̂ = 0.47, but also a smaller deviation

with d = 0.035.

For each outcome, estimates of the probilities and confidence intervals for λ =

(0, 1,∞) were obtained using maximum likelihood (ML), 1000 draws from the pos-

terior distribution with a burn-in of 20 draws (PD), and multiple imputation with

K = 20 data sets (MI), again with a burn-in of 20 draws and imputing on every

hundredth iteration. Additionally, since NHANES III has a complex survey design

we obtained estimates using multiple imputation with design-based estimators of

the mean using the survey weights (MI wt). Design-based estimators were com-

puted using the “survey” routines in R, which estimate variances using Taylor series

linearizations (Lumley, 2004).
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Estimated proportions and confidence intervals are displayed in Figures 5.2, 5.3,

and 5.4. The intervals for weighted MI are larger than those for any of the non-

design-adjusted methods, and for all three outcomes there is also a shift in the mean

estimates for the weighted estimators, consistent for all values of λ, reflecting the

impact on these outcomes of the oversampling in NHANES of certain age and ethnic

groups. The deviations are not negligble for any of the three outcomes, as evidenced

by the shift in the estimates as we move from λ = 0 to λ = ∞. However, all three

outcomes have moderately strong proxies, so the width of confidence intervals even

in the extreme case of λ = ∞ are not inflated too much above the length of the

intervals under MAR (λ = 0).

For both hypertension and BMD we see a difference in the estimates for full max-

imum likelihood (ML Full) and the unmodified Bayesian method (PD A) compared

to all the other estimators. The distribution of the proxies for each of the three out-

comes is shown in Figure 5.5, separately for respondents and nonrespondents. We

can see that the proxies for both hypertension and BMD are skewed, while the proxy

for income does not appear to be exactly normally distributed but is basically sym-

metric. The sensitivity of the full ML and Bayesian method to non-normality is an

issue of skewness. These deviations from symmetry have the effect of shifting mean

estimates considerably, as seen in Figures 5.2 and 5.4. Though we do not know the

true proportions, since the modified methods condition on the proxy when estimat-

ing the proportions and yield the respondent proportion as the respondent means,

for these skewed proxies using the modified Bayesian methods, multiple imputation,

or the two-step ML estimator seems to be the wisest choice.

The two modifications to the Bayesian method, labeled PD B and PD C in the

figures, do not yield identical inference. In particular the first modification, redraw-
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ing the latent U for respondents, seems to be overestimating variance relative to

the two-step ML estimator (ML 2step) and multiple imputation estimator (MI).

Conversely, the modifcation that bootstraps the predicted probabilities seems to be

slightly underestimating variability.

5.8 Discussion

In this paper we have extended the previously developed proxy pattern-mixture

analysis to handle binary and ordinal data, which are ubiquitous in sample survey

data. As with a continuous outcome, this novel method integrates the three key com-

ponents that contribute to nonresponse bias: the amount of missingness, differences

between respondents and nonrespondents on characteristics that are observed for the

entire sample, and the relationship between these fully observed covariates and the

survey outcome of interest. The analysis includes but does not assume that missing-

ness is at random, allowing the user to investigate a range of non-MAR mechanisms

and the resulting potential for nonresponse bias. For the binary case, it is common

to investigate what the estimates would be if all nonresponding units were zeros (or

ones), and in fact the binary PPMA produces these two extremes when the proxy is

weak.

An attractive feature of the continuous outcome PPMA is its ease of implemen-

tation; a drawback of the extension to binary (and ordinal) outcomes is a loss of

some of this simplicity. By introducing a latent variable framework we reduce the

problem to one of applying the continuous PPMA to a latent variable, but since

this underlying continuous latent variable is unobserved even for nonrespondents,

application is more complex. Closed-form solutions are no longer available for the

maximum likelihood approach, and Bayesian methods require iteration using Gibbs
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sampling. However, the ML solutions are good starting points for the Gibbs sampler

and only very short burn-in periods are required.

An additional level of complexity in the binary and ordinal case is the effect of

skewed proxies. Where the continuous PPMA is relatively robust to departures from

bivariate normality in the proxy and outcome, the binary and ordinal cases rely

heavily on the normality assumption. The assumption of normality of the proxy is

crucial and even slight deviations away from normality will cause biased results. To

relax the dependence on the normality assumption we introduced modified estimators

that appear to not only perform better when the normality assumption is violated

but also maintain good performance if the normality assumption holds.

We have described three different estimation methods for the categorical PPMA,

maximum likelihood, fully Bayesian, and multiple imputation. In our investigations

the consistently best performer is multiple imputation, MI does not require a modi-

fication to handle skewed proxies, while both the maximum likelihood and Bayesian

methods require modified estimators. In addition, incorporation of design weights in

estimating the mean is straightforward with MI, as once the model-based imputation

is completed a design-based estimator of the mean can be applied in a straightforward

manner.

Future work will work to extend PPMA to domain estimation, an important issue

in practice. In particular, we are interested in the case where there is a continuous

outcome and a binary domain indicator. When the domain indicator is fully observed

(for example, gender in the NHANES data), application of the continuous PPM

model is straightforward; the domain indicator can be included in the model that

creates the proxy, or the entire continuous PPM method can be applied separately for

the two domains. The more complex case is when the domain indicator and outcome
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are jointly missing. We have begun work on this aim, using methods similar to that

of Little and Wang (1996), who extend the bivariate pattern-mixture model to the

multivariate case when there are two patterns of missingness.
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Figure 5.2: Estimates of the proportion hypertensive for λ = (0, 1,∞) based on NHANES III adult
data. Numbers below intervals are the interval length. CC: Complete case; CC wt: Complete
case with estimation incorporating the survey design; ML Full: Maximum likelihood; ML 2step:
Two-step Maximum likelihood; PD A: Posterior distribution; PD B: Modification 1 to Bayesian
method; PD C: Modification 2 to Bayesian method; MI: 20 multiply imputed data sets; MIwt: 20
multiply imputed data sets with estimation incorporating the survey design.
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Figure 5.3: Estimates of proportion low income for λ = (0, 1,∞) based on NHANES III adult data.
Numbers below intervals are the interval length. CC: Complete case; CC wt: Complete case with
estimation incorporating the survey design; ML Full: Maximum likelihood; ML 2step: Two-step
Maximum likelihood; PD A: Posterior distribution; PD B: Modification 1 to Bayesian method;
PD C: Modification 2 to Bayesian method; MI: 20 multiply imputed data sets; MIwt: 20 multiply
imputed data sets with estimation incorporating the survey design.
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Figure 5.4: Estimates of proportions in each of three categories of BMD for λ = (0, 1,∞) based on
NHANES III adult data. Numbers below intervals are the interval length. CC: Complete case; CC
wt: Complete case with estimation incorporating the survey design; ML Full: Maximum likelihood;
ML 2step: Two-step Maximum likelihood; PD A: Posterior distribution; PD B: Modification 1 to
Bayesian method; PD C: Modification 2 to Bayesian method; MI: 20 multiply imputed data sets;
MIwt: 20 multiply imputed data sets with estimation incorporating the survey design.
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Table 5.1: Average relative empirical bias, 95% interval coverage and median interval length for
eighteen artificial populations with d∗ = 0.3 and (a) ρ = 0.8; (b) ρ = 0.5; (c) ρ = 0.2. ML Full:
Maximum likelihood; ML 2-step: modified maximum likelihood; PD A: Posterior distribution; PD
B: Modification 1 to PD; PD C: Modification 2 to PD; MI: 20 multiply imputed data sets. Results
over 500 replicates.

(a) ρ = 0.8, d∗ = 0.3

n = 100 n = 400

Relative Coverage CI Relative Coverage CI
λ Method Bias (%) (%) Width Bias (%) (%) Width

0 ML Full -0.6 91.2 0.24 -0.4 94.0 0.12
ML 2-step -0.2 93.8 0.25 -0.3 96.0 0.13
PD A 0.0 92.4 0.23 -0.2 94.2 0.12
PD B -0.1 92.4 0.24 -0.3 94.8 0.13
PD C -0.4 89.8 0.22 -0.4 92.2 0.11
MI -0.8 91.0 0.23 -0.2 94.0 0.12

1 ML Full -0.8 92.2 0.24 -0.3 94.0 0.12
ML 2-step -0.3 93.6 0.25 -0.2 94.8 0.13
PD A -0.7 92.2 0.23 -0.3 93.8 0.12
PD B -0.8 92.4 0.25 -0.4 94.8 0.13
PD C -0.9 90.2 0.22 -0.4 92.4 0.11
MI -2.6 91.0 0.23 -1.2 93.2 0.12

∞ ML Full -0.7 92.6 0.25 -0.2 93.0 0.13
ML 2-step -0.2 94.6 0.27 0.0 94.8 0.13
PD A -0.9 93.4 0.25 -0.2 93.4 0.13
PD B -1.1 93.4 0.26 -0.3 94.8 0.13
PD C -1.0 90.6 0.24 -0.3 92.2 0.12
MI -2.3 91.6 0.25 -1.4 92.2 0.13

Bolded values are below 1.96 simulation standard errors.
Italicized values are above 1.96 simulation standard errors.
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(b) ρ = 0.5, d∗ = 0.3

n = 100 n = 400

Relative Coverage CI Relative Coverage CI
λ Method Bias (%) (%) Width Bias (%) (%) Width

0 ML Full -0.1 92.6 0.27 -0.3 94.6 0.14
ML 2-step 0.1 93.2 0.28 -0.2 94.2 0.14
PD A 0.8 93.4 0.26 0.0 94.8 0.13
PD B 0.6 95.8 0.30 -0.1 97.6 0.15
PD C 0.2 91.8 0.25 -0.2 93.2 0.13
MI -0.5 91.2 0.26 0.7 92.6 0.13

1 ML Full -0.5 91.0 0.28 -0.1 94.8 0.14
ML 2-step -0.4 92.0 0.28 -0.1 95.2 0.14
PD A -1.0 93.6 0.28 -0.1 95.8 0.14
PD B -1.2 96.2 0.32 -0.2 97.4 0.16
PD C -1.2 92.0 0.27 -0.2 94.2 0.14
MI -3.4 91.6 0.27 -1.0 96.0 0.15

∞ ML Full -1.7 91.0 0.34 1.1 94.4 0.19
ML 2-step 0.7 94.0 0.39 1.6 93.0 0.20
PD A -4.7 95.2 0.33 0.3 96.8 0.19
PD B -4.5 96.6 0.36 0.5 96.8 0.20
PD C -4.5 94.6 0.33 0.4 96.2 0.19
MI -5.7 94.2 0.35 -0.3 94.8 0.20

Bolded values are below 1.96 simulation standard errors.
Italicized values are above 1.96 simulation standard errors.
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(c) ρ = 0.2, d∗ = 0.3

n = 100 n = 400

Relative Coverage CI Relative Coverage CI
λ Method Bias (%) (%) Width Bias (%) (%) Width

0 ML Full 0.0 93.0 0.28 -0.2 95.0 0.14
ML 2-step 0.0 93.2 0.28 -0.2 94.8 0.14
PD A 1.3 94.2 0.26 0.1 94.4 0.13
PD B 1.0 97.2 0.31 0.1 97.4 0.16
PD C 0.7 93.2 0.25 0.0 93.4 0.13
MI -0.7 93.0 0.26 1.6 94.0 0.13

1 ML Full -7.0 80.2 0.29 -0.6 93.4 0.15
ML 2-step -6.9 80.8 0.30 -0.6 93.4 0.15
PD A -10 95.2 0.37 -1.5 97.0 0.18
PD B -10 96.4 0.41 -1.6 97.8 0.20
PD C -10 95.2 0.36 -1.5 96.8 0.17
MI -11 91.8 0.37 -3.3 97.6 0.18

∞ ML Full -19 75.8 0.31 -5.6 92.4 0.20
ML 2-step -18 82.0 0.66 -4.7 95.2 0.30
PD A -25 80.6 0.53 -8.1 91.4 0.22
PD B -25 84.8 0.55 -8.1 94.4 0.23
PD C -25 80.6 0.54 -8.0 91.2 0.22
MI -28 87.0 0.60 -11 94.0 0.21

Bolded values are below 1.96 simulation standard errors.
Italicized values are above 1.96 simulation standard errors.
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Table 5.2: Average relative empirical bias, 95% interval coverage and median interval length for
eighteen artificial populations with n = 400 and covariate distributions (a) Normal; (b) Gamma;
(c) Exponential. ML Full: Maximum likelihood; ML 2-step: modified maximum likelihood; PD A:
Posterior distribution; PD B: Modification 1 to PD; PD C: Modification 2 to PD; MI: 20 multiply
imputed data sets. Results over 500 replicates.

(a) Z ∼ Normal(0, 1)

MAR NMAR
Pr(M = 1|Z,U) = f(Z) Pr(M = 1|Z,U) = f(U)

Relative Coverage CI Relative Coverage CI
ρ Method Bias (%) (%) Width Bias (%) (%) Width

0.8 ML Full -0.2 93.0 0.12 0 93.4 0.13
ML 2-step -0.1 93.6 0.12 0 94.4 0.14
PD A 0.3 92.8 0.12 0 94.0 0.13
PD B 0.1 94.4 0.12 -0.3 94.6 0.14
PD C 0.0 91.4 0.11 -0.3 92.2 0.13
MI 0.0 93.6 0.12 0.1 93.6 0.14

0.5 ML Full 0.1 94.4 0.13 -1.6 91.6 0.20
ML 2-step 0.2 95.0 0.13 -1.6 97.2 0.27
PD A 0.5 93.6 0.13 0.4 95.6 0.23
PD B 0.4 96.6 0.15 0.2 96.4 0.24
PD C 0.3 92.8 0.12 0.2 95.0 0.23
MI 0.4 93.6 0.13 0.4 96.2 0.25

0.2 ML Full -0.1 93.8 0.13 -1.2 57.0 0.22
ML 2-step -0.1 94.4 0.13 -1.2 96.0 0.57
PD A 0.3 93.2 0.13 5.2 99.0 0.35
PD B 0.2 96.6 0.16 5.1 99.2 0.36
PD C 0.1 92.4 0.12 5.0 98.8 0.35
MI 0.3 93.4 0.13 4.1 97.8 0.37

Bolded values are below 1.96 simulation standard errors.
Italicized values are above 1.96 simulation standard errors.
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(b) Z ∼ Gamma(4, 0.5)

MAR NMAR
Pr(M = 1|Z,U) = f(Z) Pr(M = 1|Z,U) = f(U)

Relative Coverage CI Relative Coverage CI
ρ Method Bias (%) (%) Width Bias (%) (%) Width

0.8 ML Full 7.9 88.0 0.12 12 78.2 0.12
ML 2-step 2.7 93.4 0.12 10 84.2 0.12
PD A 8.2 85.4 0.12 12 77.4 0.12
PD B 0.4 93.2 0.12 4.5 92.4 0.12
PD C 0.3 90.8 0.11 4.6 89.4 0.11
MI 0.4 93.4 0.12 4.8 93.6 0.13

0.5 ML Full 2.3 92.4 0.13 8.3 85.0 0.15
ML 2-step 0.9 93.4 0.13 7.5 90.8 0.19
PD A 2.7 91.8 0.13 8.4 84.2 0.16
PD B 0.5 96.6 0.15 5.2 91.8 0.17
PD C 0.3 92.2 0.12 5.2 89.0 0.16
MI 0.4 93.4 0.13 5.4 93.0 0.17

0.2 ML Full 0.0 94.0 0.14 1.1 68.4 0.21
ML 2-step -0.1 94.8 0.14 1.0 96.2 0.43
PD A 0.5 93.0 0.13 6.5 97.0 0.30
PD B 0.1 97.4 0.16 5.5 97.8 0.30
PD C 0.0 92.4 0.13 5.5 96.8 0.29
MI 0.2 94.4 0.13 5.4 96.4 0.31

Bolded values are below 1.96 simulation standard errors.
Italicized values are above 1.96 simulation standard errors.
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(c) Z ∼ Exponential(1)

MAR NMAR
Pr(M = 1|Z,U) = f(Z) Pr(M = 1|Z,U) = f(U)

Relative Coverage CI Relative Coverage CI
ρ Method Bias (%) (%) Width Bias (%) (%) Width

0.8 ML Full 16 66.4 0.13 21 37.4 0.11
ML 2-step 5.5 89.6 0.12 16 56.8 0.11
PD A 17 63.8 0.13 21 36.2 0.11
PD B 0.4 92.6 0.12 5.2 90.6 0.11
PD C 0.3 88.6 0.10 5.3 88.4 0.10
MI 0.4 92.0 0.11 5.3 94.0 0.12

0.5 ML Full 4.0 92.4 0.14 14 71.4 0.13
ML 2-step 1.7 93.6 0.13 12 81.2 0.17
PD A 4.5 90.4 0.13 14 69.8 0.13
PD B -0.1 96.8 0.14 6.0 91.8 0.15
PD C -0.1 92.8 0.12 6.1 85.8 0.13
MI 0.0 93.4 0.13 6.2 93.2 0.15

0.2 ML Full 0.1 93.8 0.14 -0.5 65.4 0.18
ML 2-step -0.2 94.2 0.14 -0.6 94.4 0.41
PD A 0.5 93.4 0.13 6.6 94.8 0.25
PD B -0.2 97.0 0.15 4.1 98.0 0.26
PD C -0.3 92.6 0.12 4.1 97.2 0.25
MI -0.1 93.0 0.13 4.3 96.6 0.26

Bolded values are below 1.96 simulation standard errors.
Italicized values are above 1.96 simulation standard errors.



CHAPTER VI

Summary and Future Work

This thesis described several different problems pertaining to nonresponse in com-

plex sample surveys and suggested novel methods to tackle these problems. The first

half of the dissertation (Chapters II and III) dealt with hot deck imputation, a par-

ticular method for “filling in the holes” left by missing data in a sample survey.

The second half of the dissertation (Chapters IV and V) focused not on a particu-

lar method of imputation but rather on evaluating the magnitude of potential bias

brought on by the missing data, using a novel analysis method we called a proxy

pattern-mixture analysis.

Chaper II contained an extensive review of hot deck imputation. Though survey

practitioners tend to favor this simple form of imputation, there is a glaring lack of

unifying theory and implementation tends to be relatively ad hoc. We found that

no consensus exists as to the best way to apply the hot deck and obtain inferences

from the completed data set. We described a range of different forms of the hot deck

and different uses of the hot deck in practice, including the U.S. Census Bureau’s

hot deck for the Current Population Survey (CPS). We outlined existing research on

its statistical properties, highlighting several areas in which the current research is

lacking and would be good places for future work. We also provided an extended
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example of variations of the hot deck applied to the third National Health and

Nutrition Examination Survey (NHANES III).

In Chapter II we considered a particular aspect of hot deck imputation, the use

of sample weights. The naive approach is to ignore sample weights in creation of

adjustment cells, which effectively imputes the unweighted sample distribution of

respondents in an adjustment cell, potentially causing bias. Alternative approaches

have been proposed that use weights in the imputation by incorporating them into

the probabilities of selection for each donor (Cox, 1980; Rao and Shao, 1992). In this

chapter we showed by simulation that these weighted hot decks do not correct for

bias when the outcome is related to the sampling weight and the response propensity.

We describe the correct approach, which is to use the sampling weight as a strat-

ifying variable alongside additional adjustment variables when forming adjustment

cells. We also demonstrated the practical use of our method through application to

NHANES III data.

In Chapter IV we turned our focus to a different aspect of survey nonresponse:

the potential for bias, particularly in the case when missingness might be related

to the missing data themselves. We were unable to find existing methods that we

felt adequately integrated the major factors contributing to the potential for bias,

and thus were motivated to create a novel method. We introduced proxy pattern-

mixture analysis (PPMA), a new method for assessing and adjusting for nonresponse

bias for a continuous survey outcome when there is some fully observed auxiliary

information available. PPMA is based on constructing a proxy for the partially

missing outcome, and we proposed a taxonomy for the evidence concerning bias based

on the strength of this proxy and the deviation of the mean of auxiliary information

for respondents from its overall mean. We described several different estimation
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methods and introduced the fraction of missing information under the PPMA model

as a simple measure of the magnitude of the nonresponse bias problem for a given data

set. We proposed a sensitivity analysis to capture a range of potential missingness

mechanisms, and illustrated the method through both simulation and application to

NHANES III data.

Chapter V dealt with the natural extension of the PPMA to categorical outcomes.

Through probit models and a latent variable framework we developed methods for

evaluating nonresponse bias in binary and ordinal outcomes. We described multi-

ple estimation methods and the sensitivity to model assumptions for each one. We

proposed modifications to the less robust estimators to allow flexibility in handling

situations where model assumptions may be violated. Simulations were used to illus-

trate the method and investigate the properties of the various estimation methods.

Finally, NHANES III data were used to demonstrate the applicability of the method

to real data.

There is much future work that will arise from this dissertation. As described

in Chapter II, a major area that deserves attention is the so-called “swiss cheese

pattern of missing data. Historically, hot deck methods have been studied when

only one variable is subject to nonresponse. Though methods for general patterns of

missingness have been suggested, there is little existing research on their empirical

or theoretical properties. Future comparison of existing methods and development

of hybrid approaches would be beneficial.

The other work that will grow out of this dissertation pertains to the proxy

pattern-mixture analysis. In Chapter IV we describe the PPMA for continuous

outcomes, and there are several potential extensions of this work. Thus far we have

focused only on estimation of a mean; a useful extension would be to expand the ap-



152

proach to estimate potential bias in regression estimands. We developed the PPMA

in the setting of unit nonresponse, and in the future will adapt the method to han-

dle multivariate patterns of nonresponse arising from item nonresponse. Finally,

extensions to handle panel surveys with more than two waves would also be of use.

In Chapter V the PPMA was extended to binary outcomes, and the next obvious

step is domain estimation, an area of large interest to survey practitioners. Some

discussion of this future aim follows. We will consider the case where there is a

continuous outcome Y and a binary domain indicator D. When D is fully observed,

application of the continuous PPM model is straightforward; the domain indicator

can be included in the model that creates the proxy, or the entire continuous PPM

method can be applied separately for the two domains. The more complex case is

when D is missing when Y is missing, which we consider here. The primary interest

is evaluating nonresponse bias for the domain means of Y .

Since both Y and D are partially missing, the proxy pattern-mixture analysis

requires the creation of two proxies, one for Y and one for Y . Let X1 be the proxy

for Y , created by a linear regression of Y on the covariates Z for the respondents.

Since D is binary, we create a proxy X2 for D, created by a probit regression of D

on the covariates Z, assuming the latent variable U underlies D. With two proxies

we have two measures of the strength of the proxies, ρ
(0)
1y and ρ

(0)
2u for the proxies for

Y and D, respectively. There are also two measures of deviation, d1 = x̄1 − x̄1R and

d2 = x̄2 − x̄2R. The basic ranking of levels of evidence still holds; strong proxies and

small deviations lead to the least uncertainty, with weak proxies and large deviations

leading to the greatest uncertainty. However, there is added complexity when trying

to estimate nonresponse bias for a domain mean. One could imagine a scenario where

you have a strong proxy for Y , and thus a good handle on nonresponse bias for the
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overall mean of Y , but a weak proxy for D, and thus weak information with which

to estimate the potential for bias in Y within a domain.

The extension of the PPM to domain estimation extends the PPM model in a

similar manner as the work of Little and Wang (1996), who extend the bivariate

pattern-mixture model to the multivariate case when there are two patterns of miss-

ingness. We assume that the joint distribution of the proxies X1 and X2, outcome

Y , and latent domain variable U follow a multivariate pattern mixture model,

(X1, X2, Y, U |M = m) ∼ N4

(
(µ

(m)
1 , µ

(m)
2 µ(m)

y , µ(m)
u ),Σ(m)

)
M ∼ Bernoulli(1− π)

Σ(m) =



σ
(m)
11 σ

(m)
12 ρ

(m)
1y

√
σ

(m)
11 σ

(m)
yy σ

(m)
1u

σ
(m)
12 σ

(m)
22 σ

(m)
2y ρ

(m)
2u
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uu
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
.

(6.1)

Since U is a latent variable we fix σ
(0)
uu to an arbitrary value as in the binary PPM.

The model is underidentified, and identifying restrictions are needed to estimate the

parameters of the conditional distribution [Y, U |X1, X2,M = 1]. In the language of

Little and Wang (1996) the model is “just-identified” in that the number of partially

observed variables is equal to the number of fully observed variables, enabling esti-

mation without further restrictions in the extreme case where missingness depends

only on Y and U .

Once the PPM has yielded estimates of the joint distribution of Y and U for

the nonrespondents, estimates of the domain means are obtained by considering the

conditional distribution of Y given U . The domain mean (D = 1) of Y for M = m
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is given by,

(6.2) E[Y |U > 0,M = m] = µ
(m)
y|d = µ(m)

y +
ρ

(m)
yu

√
σ

(m)
yy

√
2πΦ

(
µ

(m)
u

σ
(m)
uu

) exp

{
−µ(m)

u

2

2σ
(m)
uu

}

Thus the domain mean averaged over patterns is given by πµ
(0)
y|d + (1− π)µ

(1)
y|d.

Since the domain is a binary variable, the domain estimate will be sensitive to

deviation from normality of the proxy X2. Modifications to estimation methods are

needed to ensure robustness, similar to the two-step maximum likelihood estimation

and the modified Bayesian methods in the binary case.



BIBLIOGRAPHY

Agresti, A. (2002), Categorical Data Analysis, Wiley: New York.

Albert, J. H. and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous

Response Data,” Journal of the American Statistical Association, 88, 669–679.

Andridge, R. R. and Little, R. J. A. (2008), “A Review of Hot Deck Imputation for

Survey Nonresponse,” Submitted to International Statistical Review.

— (2009), “The Use of Sample Weights in Hot Deck Imputation,” Journal of Official

Statistics, 25, 21–36.

Bailar, J. C. and Bailar, B. A. (1978), “Comparison of Two Procedures for Imputing

Missing Survey Values,” in American Statistical Association Proceedings of the

Survey Research Methods Section, pp. 462–467.

Barzi, F. and Woodward, M. (2004), “Imputations of Missing Values in Practice:

Results from Imputations of Serum Cholesterol in 28 Cohort Studies,” American

Journal of Epidemiology, 160, 34–45.

Berger, Y. G. and Rao, J. N. K. (2006), “Adjusted Jackknife for Imputation Un-

der Unequal Probability Sampling Without Replacement,” Journal of the Royal

Statistical Society B, 68, 531–547.

Bethlehem, J. (2002), “Weighting Nonresponse Adjustments Based on Auxiliary In-

formation,” in Survey Nonresponse, eds. Groves, R., Dillman, D., Eltinge, J., and

Little, R., New York: Wiley, chap. 18, pp. 275–287.

Bollinger, C. R. and Hirsch, B. T. (2006), “Match Bias from Earnings Imputation

in the Current Population Survey: The Case of Imperfect Matching,” Journal of

Labor Economics, 24, 483–519.

Bowman, K., Chromy, J., Hunter, S., Martin, P., and Odom, D. (eds.) (2005), 2003

NSDUH Methodological Resource Book, Rockville, MD: Substance Abuse and Men-

tal Health Services Administration, Office of Applied Studies.

155



156

Breiman, L. and Friedman, J. H. (1993), Classification and Regression Trees, New

York: Chapman & Hall.

Brick, J. M. and Kalton, G. (1996), “Handling Missing Data in Survey Research,”

Statistical Methods in Medical Research, 5, 215–238.

Brick, J. M., Kalton, G., and Kim, J. K. (2004), “Variance Estimation with Hot

Deck Imputation Using a Model,” Survey Methodology, 30, 57–66.

Brown, C. H. (1990), “Protecting Against Nonrandomly Missing Data in Longitudi-

nal Studies,” Biometrics, 46, 143–155.

Burns, R. M. (1990), “Multiple and Replicate Item Imputation in a Complex Sample

Survey,” in U.S. Bureau of the Census Proceedings of the Sixth Annual Research

Conference, pp. 655–665.

Chen, J. and Shao, J. (1999), “Inference with Survey Data Imputed by Hot Deck

when Imputed Values are Nonidentifiable,” Statistica Sinica, 9, 361–384.

— (2000), “Nearest Neighbor Imputation for Survey Data,” Journal of Official Statis-

tics, 16, 113–141.

— (2001), “Jackknife Variance Estimation for Nearest-Neighbor Imputation,” Jour-

nal of the American Statistical Association, 96, 260–269.

Cochran, W. G. (1977), Sampling Techniques, Wiley: New York, 3rd ed.

Cohen, G. and Duffy, J. C. (2002), “Are Nonrespondents to Health Surveys Less

Healthy than Respondents,” Journal of Official Statistics, 18, 13–23.

Collins, L., Schafer, J., and Kam, C. (2001), “A Ccomparison of Inclusive and Re-

strictive Missing-Data Strategies in Modern Missing-Data Procedures,” Psycho-

logical Methods, 6, 330–351.

Cotton, C. (1991), “Functional Description of the Generalized Edit and Imputation

System,” Tech. rep., Statistics Canada.

Cox, B. G. (1980), “The Weighted Sequential Hot Deck Imputation Procedure,”

in American Statistical Association Proceedings of the Survey Research Methods

Section, pp. 721–726.

Cox, B. G. and Folsom, R. E. (1981), “An Evaluation of Weighted Hot Deck Im-

putation for Unreported Health Care Visits,” in American Statistical Association

Proceedings of the Survey Research Methods Section, pp. 412–417.



157

Cox, N. R. (1974), “Estimation of the Correlation Between a Continuous and a

Discrete Variable,” Biometrics, 30, 171–178.

Curtain, R., Presser, S., and Singer, E. (2000), “The Effects of Response Rate

Changes on the Index of Consumer Sentiment,” Public Opinion Quarterly, 64,

413–428.

— (2005), “Changes in Telephone Survey Nonresponse over the Past Quarter Cen-

tury,” Public Opinion Quarterly, 69, 87–98.

Daniels, M. J. and Hogan, J. W. (2000), “Reparameterizing the Pattern Mixture

Model for Sensitivity Analyses under Informative Dropout,” Biometrics, 56, 1241–

1248.

David, M., Little, R. J. A., Samuhel, M. E., and Triest, R. K. (1986), “Alterna-

tive Methods for CPS Income Imputation,” Journal of the American Statistical

Association, 81, 29–41.

Diggle, P. and Kenward, M. G. (1994), “Informative Drop-Out in Longitudinal Data

Analysis,” Applied Statistics, 43, 49–93.

Efron, B. (1994), “Missing Data, Imputation, and the Bootstrap,” Journal of the

American Statistical Association, 89, 463–475.

England, A. M., Hubbell, K. A., Judkins, D. R., and Ryaboy, S. (1994), “Impu-

tation of Medical Cost and Payment Data,” in American Statistical Association

Proceedings of the Survey Research Methods Section, pp. 406–411.

Ezzati-Rice, T. M., Fahimi, M., Judkins, D., and Khare, M. (1993a), “Serial Im-

putation of NHANES III With Mixed Regression and Hot-Deck Imputation,” in

American Statistical Association Proceedings of the Survey Research Methods Sec-

tion, pp. 292–296.

Ezzati-Rice, T. M., Khare, M., Rubin, D. B., Little, R. J. A., and Schafer, J. L.

(1993b), “A Comparison of Imputation Techniques in the Third National Health

and Nutrition Examination Survey,” in American Statistical Association Proceed-

ings of the Survey Research Methods Section, pp. 303–308.

Fay, R. E. (1993), “Valid Inferences from Imputed Survey Data,” in American Statis-

tical Association Proceedings of the Survey Research Methods Section, pp. 41–48.

— (1996), “Alternative Paradigms for the Analysis of Imputed Survey Data,” Journal

of the American Statistical Association, 91, 490–498.



158

— (1999), “Theory and Application of Nearest Neighbor Imputation in Census 2000,”

in American Statistical Association Proceedings of the Survey Research Methods

Section, pp. 112–121.

Federal Committee on Statistical Methodology (2001), “Statistical Policy Working

Paper 31: Measuring and Reporting Sources of Error in Surveys,” Tech. rep.,

Executive Office of the President of the United States of America.

Ford, B. L. (1983), “An Overview of Hot-Deck Procedures,” in Incomplete Data in

Sample Surveys, eds. Madow, W. G., Olkin, I., and Rubin, D. B., Academic Press:

New York, vol. 2, pp. 185–207.

Grau, E. A., Frechtel, P. A., and Odom, D. M. (2004), “A Simple Evaluation of

the Imputation Procedures Used in HSDUH,” in American Statistical Association

Proceedings of the Survey Research Methods Section, pp. 3588–3595.

Groves, R. M. (2006), “Nonresponse Rates and Nonresponse Bias in Household Sur-

veys,” Public Opinion Quarterly, 70, 646–675.

Haziza, D. and Beaumont, J.-F. (2007), “On the Construction of Imputation Classes

in Surveys,” International Statistics Review, 75, 25–43.

Haziza, D. and Rao, J. N. K. (2006), “A Nonresponse Model Approach to Inference

Under Imputation for Missing Survey Data,” Survey Methodology, 32, 53–64.

Heckman, J. J. (1976), “The Common Structure of Statistical Models of Truncation,

Sample Selection, and Limited Dependent Variables and a Simple Estimator for

Such Models,” The Annals of Economic and Social Measurement, 5, 475–492.

Heitjan, D. F. and Little, R. J. A. (1991), “Multiple Imputation for the Fatal Accident

Reporting System,” Applied Statistics, 40, 13–29.

Judkins, D. R. (1997), “Imputing for Swiss Cheese Patterns of Missing Data,” in

Proceedings of Statistics Canada Symposium 97.

Judkins, D. R., Hubbell, K. A., and England, A. M. (1993), “The Imputation of

Compositional Data,” in American Statistical Association Proceedings of the Sur-

vey Research Methods Section, pp. 458–462.

Kalton, G. and Kasprzyk, D. (1986), “The Treatment of Missing Survey Data,”

Survey Methodology, 12, 1–16.

Kass, G. V. (1980), “An Exploratory Technique for Investigating Large Quantities

of Categorical Data,” Applied Statistics, 29, 119–127.



159

Keeter, S., Miller, C., Kohut, A., Groves, R. M., and Presser, S. (2000), “Conse-

quences of Reducing Nonresponse in a National Telephone Survey,” Public Opinion

Quarterly, 64, 125–148.

Khare, M., Little, R. J. A., Rubin, D. B., and Schafer, J. L. (1993), “Multiple

Imputation of NHANES III,” in American Statistical Association Proceedings of

the Survey Research Methods Section, pp. 297–302.

Kim, J. K. (2002), “A Note on Approximate Bayesian Bootstrap,” Biometrika, 89,

470–477.

Kim, J. K., Brick, J. M., Fuller, W. A., and Kalton, G. (2006), “On the Bias of

the Multiple-Imputation Variance Estimator in Survey Sampling,” Journal of the

Royal Statistical Society B, 68, 509–521.

Kim, J. K. and Fuller, W. (2004), “Fractional Hot Deck Imputation,” Biometrika,

91, 559–578.

Lazzeroni, L. G., Schenker, N., and Taylor, J. M. G. (1990), “Robustness of Multiple-

Imputation Techniques to Model Misspecification,” in American Statistical Asso-

ciation Proceedings of the Survey Research Methods Section, pp. 260–265.

Lillard, L., Smith, J. P., and Welch, F. (1982), “What Do We Really Know About

Wages: The Importance of Non-reporting and Census Imputation,” Tech. rep.,

Rand Corporation, Santa Monica, CA.

Little, R. J. A. (1986), “Survey Nonresponse Adjustments for Estimates of Means,”

International Statistics Review, 54, 139–157.

— (1988), “Missing-Data Adjustments in Large Surveys,” Journal of Business and

Economic Statistics, 6, 287–296.

— (1993), “Pattern-Mixture Models for Multivariate Incomplete Data,” Journal of

the American Statistical Association, 88, 125–134.

— (1994), “A Class of Pattern-Mixture Models for Normal Incomplete Data,”

Biometrika, 81, 471–483.

— (2004), “To Model or Not to Model? Competing Modes of Inference for Finite

Population Sampling,” Journal of the American Statistical Association, 99, 546–

556.

Little, R. J. A. and Rubin, D. B. (2002), Statistical Analysis with Missing Data,

Wiley: New York, 2nd ed.



160

Little, R. J. A. and Vartivarian, S. (2003), “On Weighting the Rates in Non-Response

Weights,” Statistics in Medicine, 22, 1589–1599.

— (2005), “Does Weighting for Nonresponse Increase the Variance of Survey Means?”

Survey Methodology, 31, 161–168.

Little, R. J. A. and Wang, Y. (1996), “Pattern-Mixture Models for Multivariate

Incomplete Data with Covariates,” Biometrics, 52, 98–111.

Lumley, T. (2004), “Analysis of complex survey samples,” Journal of Statistical

Software, 9, 1–19.

Marker, D. A., Judkins, D. R., and Winglee, M. (2002), “Large-Scale Imputation for

Complex Surveys,” in Survey Nonresponse, Wiley: New York, pp. 329–341.

Meng, X. L. (1994), “Multiple Imputation Inferences with Uncongenial Sources of

Input (with discussion),” Statistical Science, 9, 538–573.

Nandram, B. and Choi, J. W. (2002a), “A Bayesian Analysis of a Proportion Under

Non-Ignorable Non-Response,” Statistics in Medicine, 21, 1189–1212.

— (2002b), “Hierarchical Bayesian Nonresponse Models for Binary Data from Small

Areas with Uncertainty about Ignorability,” Journal of the American Statistical

Association, 97, 381–388.

Nandram, B., Han, G., and Choi, J. W. (2002), “A Hierarchical Bayesian Non-

ignorable Nonresponse Model for Multinomial Data from Small Areas,” Survey

Methodology, 28, 145–156.

Nandram, B., Liu, N., Choi, J. W., and Cox, L. (2005), “Bayesian Non-response

Models for Categorical Data from Small Areas: An Application to BMD and

Age,” Statistics in Medicine, 24, 1047–1074.

National Center for Education Statistics (2002), “NCES Statistical Standards,” Tech.

rep., U.S. Department of Education.

Office of Management and Budget (2006), “Standards and Guidelines for Statistical

Surveys,” Tech. rep., Executive Office of the President of the United States of

America.

Oh, H. L. and Scheuren, F. S. (1983), “Weighting Adjustments for Unit Nonre-

sponse,” in Incomplete Data in Sample Surveys, eds. Madow, W. G., Olkin, I.,

and Rubin, D. B., Academic Press: New York, vol. 2, pp. 143–184.

Olsson, U., Drasgow, F., and Dorans, N. J. (1982), “The Polyserial Correlation

Coefficient,” Psychometrika, 47, 337–347.



161

Ono, M. and Miller, H. P. (1969), “Income Nonresponses in the Current Population

Survey,” in American Statistical Association Proceedings of the Social Statistics

Section, pp. 277–288.

Perez, A., Dennis, R. J., Gil, J. F. A., and Rondon, M. A. (2002), “Use of the Mean,

Hot Deck and Multiple Imputation Techniques to Predict Outcome in Intensive

Care Unit Patients in Colombia,” Statistics in Medicine, 21, 3885–3896.

Platek, R. and Gray, G. B. (1983), “Imputation Methodology: Total Survey Error,”

in Incomplete Data in Sample Surveys, eds. Madow, W. G., Olkin, I., and Rubin,

D. B., Academic Press: New York, vol. 2, pp. 249–333.

R Development Core Team (2007), R: A Language and Environment for Statistical

Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-

900051-07-0.

Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., and Solenberger, P. (2001),

“A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence

of Regression Models,” Survey Methodology, 21, 85–95.

Rancourt, E. (1999), “Estimation with Nearest Neighbor Imputation at Statistics

Canada,” in American Statistical Association Proceedings of the Survey Research

Methods Section, pp. 131–138.

Rancourt, E., Särndal, C. E., and Lee, H. (1994), “Estimation of the Variance in the

Presence of Nearest Neighbor Imputation,” in American Statistical Association

Proceedings of the Survey Research Methods Section, pp. 888–893.

Rao, J. N. K. (1996), “On Variance Estimation with Imputed Survey Data,” Journal

of the American Statistical Association, 91, 499–506.

Rao, J. N. K. and Shao, J. (1992), “Jackknife Variance Estimation with Survey Data

Under Hot Deck Imputation,” Biometrika, 79, 811–822.

Robins, J. M. and Wang, N. (2000), “Inference for Imputation Estimators,”

Biometrika, 87, 113–124.

Rubin, D. B. (1976), “Inference and Missing Data (with Discussion),” Biometrika,

63, 581–592.

— (1977), “Formalizing Subjective Notions About the Effect of Nonrespondents in

Sample Surveys,” Journal of the American Statistical Association, 72, 538–542.

— (1978), “Multiple Imputation in Sample Surveys - a Phenomenological Bayesian

Approach to Nonresponse,” in American Statistical Association Proceedings of the

Survey Research Methods Section, pp. 20–34.



162

— (1981), “The Bayesian Bootstrap,” Annals of Statistics, 9, 130–134.

— (1986), “Statistical Matching Using File Concatenation with Adjusted Weights

and Multiple Imputations,” Journal of Business and Economic Statistics, 4, 87–94.

— (1987), Multiple Imputation for Nonresponse in Surveys, Wiley: New York.

— (1996), “Multiple Imputation After 18+ Years,” Journal of the American Statis-

tical Association, 91, 473–489.

Rubin, D. B. and Schenker, N. (1986), “Multiple Imputation for Interval Estima-

tion from Simple Random Samples with Ignorable Non-Response,” Journal of the

American Statistical Association, 81, 366–374.

Saigo, H., Shao, J., and Sitter, R. R. (2001), “A Repeated Half-Sample Bootstrap and

Balanced Repeated Replications for Randomly Imputed Data,” Survey Methodol-

ogy, 27, 189–196.

Särndal, C. E. (1992), “Methods for Estimating the Precision of Survey Estimates

When Imputation Has Been Used,” Survey Methodology, 18, 241–252.

Schenker, N. and Taylor, J. M. G. (1996), “Partially Parametric Techniques for

Multiple Imputation,” Computational Statistics and Data Analysis, 22, 425–446.

Shao, J. and Chen, J. (1999), “Approximate Balanced Half Sample and Repeated

Replication Methods for Imputed Survey Data,” Sankhya, Series B, 61, 187–201.

Shao, J., Chen, Y., and Chen, Y. (1998), “Balanced Repeated Replication for Strat-

ified Multistage Survey Data under Imputation,” Journal of the American Statis-

tical Association, 93, 819–831.

Shao, J. and Sitter, R. R. (1996), “Bootstrap for Imputed Survey Data,” Journal of

the American Statistical Association, 91, 1278–1288.

Shao, J. and Steel, P. (1999), “Variance Estimation for Survey Data With Compos-

ite Imputation and Nonnegligible Sampling Fractions,” Journal of the American

Statistical Association, 94, 254–265.

Shao, J. and Wang, H. (2002), “Sample Correlation Coefficients Based on Survey

Data Under Regression Imputation,” Journal of the American Statistical Associ-

ation, 97, 544–552.

Siddique, J. and Belin, T. R. (2008), “Multiple imputation using an iterative hot-deck

with distance-based donor selection,” Statistics in Medicine, 27, 83–102.



163

Srivastava, M. S. and Carter, E. M. (1986), “The Maximum Likelihood Method for

Non-Response in Sample Surveys,” Survey Methodology, 12, 61–72.

Stasny, E. A. (1991), “Hierarchical Models for the Probabilities of a Survey Classifi-

cation and Nonresponse: An Example from the National Crime Survey,” Journal

of the American Statistical Association, 86, 296–303.

Tang, L., Song, J., Belin, T. R., and Unutzer, J. (2005), “A Comparison of Imputa-

tion Methods in a Longitudinal Randomized Clinical Trial,” Statistics in Medicine,

24, 2111–2128.

Tate, R. F. (1955a), “Applications of Correlation Models for Biserial Data,” Journal

of the American Statistical Association, 50, 1078–1095.

— (1955b), “The Theory of Correlation Between Two Continuous Variables When

One is Dichotomized,” Biometrika, 42, 205–216.

Twisk, J. and de Vente, W. (2002), “Attrition in Longitudinal Studies: How to Deal

with Missing Data,” Journal of Clinical Epidemiology, 55, 329–337.

U.S. Bureau of the Census (2002), “Technical Paper 63,” Tech. rep., U.S. Government

Printing Office.

U.S. Department of Health and Human Services (1994), “Plan and Operation of the

Third National Health and Nutrition Examination Survey, 1988-94,” Tech. rep.,

National Center for Health Statistics, Centers for Disease Control and Prevention.

— (2001), “Third National Health and Nutrition Examination Survey (NHANES III,

1988-1994): Multiply Imputed Data Set. CD-ROM, Series 11, No. 7A.” Tech. rep.,

National Center for Health Statistics, Centers for Disease Control and Prevention.

Van Buuren, S. and Oudshoorn, C. G. M. (1999), “Flexible Multivariate Imputation

by MICE,” Tech. rep., TNO Prevention and Health, Leiden.

Williams, R. L. and Folsom, R. E. (1981), “Weighted Hot-Deck Imputation of Med-

ical Expenditures Based on a Record Check Subsample,” in American Statistical

Association Proceedings of the Survey Research Methods Section, pp. 406–411.




