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CHAPTER I

Introduction

This thesis focused on analysis of high-dimensional data, and its applications in

bioinformatics. The primary topics are group variable selection, partial correlation

estimation and transcriptional regulation network construction. Below, I will briefly

describe the major components of my thesis.

1.1 Group Variable Selection

Variable selection is an essential component of modern statistical data analy-

sis. Starting with a large number of variables, possibly larger than the number of

observations, the aim is to determine a smaller subset that includes the most impor-

tant effects. Traditional methods treat the predictor variables “flatly,” considering

variables as exchangeable. However, in many science and engineering applications,

predictor variables have one or more types of inherent structure. Incorporating such

structural information into the modeling procedure poses interesting and challenging

questions.

Specifically, the grouping structure in variable selection is considered in this thesis.

In many scientific applications, there is a natural grouping of predictor variables.

For example, in biological applications, assayed genes or proteins can be grouped

by biological roles or biological pathways. Traditional variable selection methods

1
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tend to make selection based on the strength of individual variables rather than

the strength of groups of variables, often resulting in selecting more groups than

necessary. In this thesis, a new group variable selection method is proposed that not

only removes unimportant groups effectively, but also keeps the flexibility of selecting

variables within a group. We also showed that the new method offers the potential

for achieving the theoretical “oracle” property.

1.2 Partial Correlation Estimation

Covariance selection is the identification and estimation of non-zero entries in the

inverse covariance matrix (concentration matrix). Covariance selection is very use-

ful in elucidating associations among a set of random variables. Under Gaussianity,

for example, non-zero entries of the concentration matrix imply conditional depen-

dency (i.e., non-zero partial correlation) between corresponding variable pairs [17].

Traditional methods only work when the sample size (n) is larger than the number

of variables (p) [17, 68]. Recently, a number of methods have been introduced to

perform covariance selection for data sets with p > n [36, 37, 43, 51, 56, 71].

In this thesis, a computationally efficient approach —space(Sparse PArtial Cor-

relation Estimation)— for selecting non-zero partial correlations is proposed under

the high-dimension-low-sample-size setting. This method employs sparse regression

techniques for model fitting. It is shown that space performs well in both non-zero

partial correlation selection and the identification of hub variables, and it also out-

performs two existing methods. We then apply space to a microarray breast cancer

data set and identify a set of hub genes which may provide important insights on

genetic regulatory networks.
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1.3 Transcriptional Regulation Network Construction

In many organisms, the expression levels of each gene are controlled by the ac-

tivation levels of known “Transcription Factors” (TF). A problem of considerable

interest is that of estimating the “Transcription Regulation Networks” (TRN) relat-

ing the TFs and genes. While the expression levels of genes can be observed, the

activation levels of the corresponding TFs are usually unknown, greatly increasing

the difficulty of the problem. Based on previous experimental work, it is often the

case that partial information about the TRN is available. For example, certain TFs

may be known to regulate a given gene or in other cases a connection may be pre-

dicted with a certain probability. In general, the biology of the problem indicates

there will be very few connections between TFs and genes. Several methods have

been proposed for estimating TRNs. However, they all suffer from problems such as

unrealistic assumptions about prior knowledge of the network structure or computa-

tional limitations. In this thesis, a new approach is proposed to directly utilize prior

information about the network structure in conjunction with observed gene expres-

sion data to estimate the TRN. Our approach uses L1 penalties on the network to

ensure a sparse structure. This has the advantage of being computationally efficient

as well as making many fewer assumptions about the network structure. We used

our methodology to construct the TRN for E. coli and showed that the estimate is

biologically sensible and compares favorably with previous estimates.



CHAPTER II

Group Variable Selection via a Hierarchical Lasso and Its
Oracle Property

In many engineering and scientific applications, prediction variables are grouped.

For example, in biological applications, assayed genes or proteins can be grouped

by biological roles or biological pathways. Common statistical analysis methods

such as ANOVA factor analysis and functional modeling with basis sets also exhibit

natural variable groupings. Existing successful group variable selection methods

have the limitation of selecting variables in an “all-in-all-out” fashion, i.e., when one

variable in a group is selected, all other variables in the same group are also selected

[2, 72, 75]. In many real problems, however, we may want to keep the flexibility of

selecting variables within a group, such as in gene-set selection. In this chapter, we

develop a new group variable selection method that not only removes unimportant

groups effectively, but also keeps the flexibility of selecting variables within a group.

We also show that the new method offers the potential for achieving the theoretical

“oracle” property [20, 21].

2.1 Introduction

Consider the usual regression situation: we have training data, (x1, y1), . . .,

(xi, yi), . . ., (xn, yn), where xi = (xi1, . . . , xip) are the predictors and yi is the re-

4
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sponse. To model the response y in terms of the predictors x1, . . . , xp, one may

consider the linear model:

(2.1) y = β0 + β1x1 + . . . + βpxp + ε,

where ε is the error term. In many important practical problems, however, prediction

variables are “grouped.” For example, in ANOVA factor analysis, a factor may have

several levels and can be expressed via several dummy variables, and the dummy

variables corresponding to the same factor form a natural “group.” Similarly, in ad-

ditive models, each original prediction variable may be expanded into different order

polynomials or a set of basis functions, and these polynomials (or basis functions)

corresponding to the same original prediction variable form a natural “group.” An-

other example is in biological applications, where assayed genes or proteins can be

grouped by biological roles (or biological pathways).

For the rest of this chapter, we assume that the prediction variables can be divided

into K groups and the kth group contains pk variables. Specifically, the linear model

(2.1) is now written as

yi = β0 +
K∑

k=1

pk∑
j=1

βkjxi,kj + εi.(2.2)

We are interested in finding out which variables, especially which “groups,” have an

important effect on the response. For example, (x11, . . . , x1p1), (x21, . . . , x2p2), . . .,

(xK1, . . . , xKpK
) may represent different biological pathways and y may represent

a certain phenotype. We are interested in deciphering which of these biological

pathways “work together” to determine the phenotype and how it is done.

There are two important challenges in this problem: prediction accuracy and in-

terpretation. We would like our model to accurately predict future data. Prediction

accuracy can often be improved by shrinking the regression coefficients. Shrinkage
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sacrifices some bias to reduce the variance of the predicted value and hence may

improve the overall prediction accuracy. Interpretability is often realized via vari-

able selection. With a large number of prediction variables, we often would like to

determine a smaller subset that exhibits the strongest effects.

Variable selection has been studied extensively in the literature [8, 20, 27, 28,

40, 57, 63, 77]. In particular, Lasso [63] has gained much attention in recent years.

The Lasso criterion penalizes the L1-norm of the regression coefficients to achieve a

sparse model:

(2.3) max
β0,βkj

−1

2

n∑
i=1

(
yi − β0 −

K∑

k=1

pk∑
j=1

βkjxi,kj

)2

− λ

K∑

k=1

pk∑
j=1

|βkj|,

where λ ≥ 0 is a tuning parameter. Note that by location transformation, we can

always assume that the predictors and the response have mean 0, so we can ignore

the intercept in equation (2.3).

Due to the singularity at βkj = 0, the L1-norm penalty can shrink some of the

fitted coefficients to be exactly zero when making the tuning parameter sufficiently

large. However, Lasso and other methods above are for the case when the candi-

date variables can be treated individually or “flatly.” When variables are grouped,

ignoring the group structure and directly applying Lasso as in equation (2.3) may

be sub-optimal. For example, suppose the kth group is unimportant, then Lasso

tends to make individual estimated coefficients in the kth group zero, rather than

the whole group, i.e., Lasso tends to make selections based on the strength of indi-

vidual variables rather than the strength of the group, often resulting in selecting

more groups than necessary.

Group variable selection problem have been addressed in some literature [2, 72,

75]. Antoniadis and Fan [2] proposed to use a blockwise additive penalty in the

setting of wavelet approximations. To increase the estimation precision, empirical
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wavelet coefficients were thresholded or shrunken in blocks (or groups) rather than

individually.

In [72] and [75], Lasso model (2.3) is extended for group variable selection. Yuan

and Lin [72] chose to penalize the L2-norm of the coefficients within each group, i.e.,

∑K
k=1 ‖βk‖2, where

(2.4) ‖βk‖2 =
√

β2
k1 + . . . + β2

kpk
.

Due to the singularity of ‖βk‖2 at βk = 0, appropriately tuning λ can set the whole

coefficient vector βk = 0, hence the kth group is removed from the fitted model. We

note that in the setting of wavelet analysis, this method reduces to that proposed by

Antoniadis and Fan [2].

Instead of using the L2-norm penalty, Zhao et al. [75] suggested using the L∞-

norm penalty, i.e.,
∑K

k=1 ‖βk‖∞, where

(2.5) ‖βk‖∞ = max(|βk1|, |βk2|, . . . , |βkpk
|).

Similar to the L2-norm, the L∞-norm of βk is also singular when βk = 0; hence

when λ is appropriately tuned, the L∞-norm can also effectively remove unimportant

groups.

However, there are some possible limitations with these methods: Both the L2-

norm penalty and the L∞-norm penalty select variables in an “all-in-all-out” fashion,

i.e., when one variable in a group is selected, all other variables in the same group are

also selected. The reason is that both ‖βk‖2 and ‖βk‖∞ are singular only when the

whole vector βk = 0. Once a component of βk is non-zero, the two norm functions

are no longer singular. This can also be heuristically understood as the following:

for the L2-norm (2.4), it is the ridge penalty that is under the square root; since the

ridge penalty can not do variable selection (as in ridge regression), once the L2-norm
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is non-zero (or the corresponding group is selected), all components will be non-zero.

For the L∞-norm (2.5), if the “max(·)” is non-zero, there is no increase in the penalty

for letting all the individual components move away from zero. Hence if one variable

in a group is selected, all other variables are also automatically selected.

In many important real problems, however, we may want to keep the flexibility

of selecting variables within a group. For example, in the gene-set selection problem,

a biological pathway may be related to a certain biological process, but it does not

necessarily mean all the genes in the pathway are all related to the biological process.

We may want to not only remove unimportant pathways effectively, but also identify

important genes within important pathways.

For the L∞-norm penalty, another possible limitation is that the estimated co-

efficients within a group tend to have the same magnitude, i.e. |βk1| = |βk2| =

. . . = |βkpk
|; and this may cause some serious bias, which jeopardizes the prediction

accuracy.

In this chapter, we propose an extension of Lasso for group variable selection,

which we call Hierarchical Lasso (HLasso). Our method not only removes unimpor-

tant groups effectively, but also keeps the flexibility of selecting variables within a

group. Furthermore, asymptotic studies motivate us to improve our model and show

that when the tuning parameter is appropriately chosen, the improved model has the

oracle property [20, 21], i.e., it performs as well as if the correct underlying model

were given in advance. Such a theoretical property has not been previously studied

for group variable selection at both the group level and the within group level.

The rest of this chapter is organized as follows. In Section 2.2, we introduce

our new method: the Hierarchical Lasso. We propose an algorithm to compute

the solution for the Hierarchical Lasso in Section 2.3. In Section 2.4, we study the
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asymptotic behavior of the Hierarchical Lasso and propose an improvement for the

Hierarchical Lasso. Numerical results are in Sections 2.5 and 2.6, and we conclude

this chapter with Section 2.7.

2.2 Hierarchical Lasso

In this section, we extend the Lasso method for group variable selection so that we

can effectively remove unimportant variables at both the group level and the within

group level.

We reparameterize βkj as

(2.6) βkj = dkαkj, k = 1, . . . , K; j = 1, . . . , pk,

where dk ≥ 0 (for identifiability reasons). This decomposition reflects the information

that βkj, j = 1, . . . , pk, all belong to the kth group, by treating each βkj hierarchically.

At the first level of the hierarchy is dk, controlling βkj, j = 1, . . . , pk, as a group; αkj

is at the second level of the hierarchy, reflecting differences within the kth group.

For the purpose of variable selection, we consider the following penalized least

squares criterion:

max
dk,αkj

−1

2

n∑
i=1

(
yi −

K∑

k=1

dk

pk∑
j=1

αkjxi,kj

)2

−λ1 ·
K∑

k=1

dk − λ2 ·
K∑

k=1

pk∑
j=1

|αkj|(2.7)

subject to dk ≥ 0, k = 1, . . . , K,

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters. The estimates at the group level are

controlled by λ1, and it can effectively remove unimportant groups: if dk is shrunken

to zero, all βkj in the kth group will be equal to zero. The estimates at the variable-

specific level are controlled by λ2: if dk is not equal to zero, some of the αkj, hence
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some of the βkj, j = 1, . . . , pk, still have the possibility of being zero; in this sense,

the hierarchical penalty keeps the flexibility of the L1-norm penalty.

One may complain that such a hierarchical penalty may be more complicated to

tune in practice. However, it turns out that the two tuning parameters λ1 and λ2 in

equation (2.7) can be simplified into one. Specifically, if we let λ = λ1 · λ2, we can

show that equation (2.7) is equivalent to

max
dk,αkj

−1

2

n∑
i=1

(
yi −

K∑

k=1

dk

pk∑
j=1

αkjxi,kj

)2

−
K∑

k=1

dk − λ

K∑

k=1

pk∑
j=1

|αkj|(2.8)

subject to dk ≥ 0, k = 1, . . . , K.

Lemma II.1. Let (d̂
∗
, α̂∗) be a local maximizer of (2.7), then there exists a local

maximizer (d̂
?
, α̂?) of (2.8) such that d̂∗kα̂

∗
kj = d̂?

kα̂
?
kj. Similarly, if (d̂

?
, α̂?) is a

local maximizer of (2.8), there exists a local maximizer (d̂
∗
, α̂∗) of (2.7) such that

d̂∗kα̂
∗
kj = d̂?

kα̂
?
kj.

The proof for this is in Appendix A. This lemma indicates that the final fitted

models from (2.7) and (2.8) are the same, although they may provide different dk and

αkj. This also implies that in practice, we do not need to tune λ1 and λ2 separately;

we only need to tune one parameter λ = λ1 · λ2 as in equation (2.8).

2.3 Algorithm

To estimate the dk and αkj in equation (2.8), we can use an iterative approach,

i.e., we first fix dk and estimate αkj, then we fix αkj and estimate dk, and we iterate

between these two steps until the solution converges. Since at each step, the value

of the objective function (2.8) decreases, the solution is guaranteed to converge.

When dk is fixed, (2.8) becomes a Lasso problem, hence we can use either the

LAR/LASSO algorithm [19] or a quadratic programming package to efficiently solve
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for αkj. When αkj is fixed, (2.8) becomes a non-negative garrote problem. Again,

we can use either an efficient solution path algorithm or a quadratic programming

package to solve for dk. In summary, the algorithm proceeds as follows:

1. (Standardization) Center y. Center and normalize xkj.

2. (Initialization) Initialize d
(0)
k and α

(0)
kj with some plausible values. For example,

we can set d
(0)
k = 1 and use the least squares estimates or the simple regression

estimates by regressing the response y on each of the xkj for α
(0)
kj . Let β

(0)
kj =

d
(0)
k α

(0)
kj and m = 1.

3. (Update αkj) Let

x̃i,kj = d
(m−1)
k xi,kj, k = 1, . . . , K; j = 1, . . . , pk,

then

α
(m)
kj = arg max

αkj

−1

2

n∑
i=1

(
yi −

K∑

k=1

pk∑
j=1

αkjx̃i,kj

)2

− λ
K∑

k=1

pk∑
j=1

|αkj|.

4. (Update dk) Let

x̃i,k =

pk∑
j=1

α
(m)
kj xi,kj, k = 1, . . . , K,

then

d
(m)
k = arg max

dk≥0
−1

2

n∑
i=1

(
yi −

K∑

k=1

dkx̃i,k

)2

−
K∑

k=1

dk.

5. (Update βkj) Let

β
(m)
kj = d

(m)
k α

(m)
kj .

6. If ‖β(m)
kj −β

(m−1)
kj ‖ is small enough, stop the algorithm. Otherwise, let m ← m+1

and go back to Step 3.
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Orthogonal Case

To gain more insight into the hierarchical penalty, we have also studied the algo-

rithm in the orthogonal design case. This can be useful, for example, in the wavelet

setting, where each xkj corresponds to a wavelet basis function, different k may cor-

respond to different “frequency” scales, and different j with the same k correspond

to different “time” locations. Specifically, suppose xT

kjxkj = 1 and xT

kjxk′j′ = 0 if

k 6= k′ or j 6= j′, then Step 3 and Step 4 in the above algorithm have closed form

solutions.

Let β̂ols
kj = xT

kjy be the ordinary least squares solution when xkj are orthonormal

to each other.

3. When dk is fixed,

(2.9) α
(m)
kj = I(d(m−1)

k > 0) · sgn(β̂ols
kj ) ·

(
|β̂ols

kj |
d

(m−1)
k

− λ

(d
(m−1)
k )2

)

+

.

4. When αkj is fixed,

(2.10) d
(m)
k = I(∃j, α(m)

kj 6= 0) ·
(

pk∑
j=1

(α
(m)
kj )2

∑pk

j=1(α
(m)
kj )2

β̂ols
kj

α
(m)
kj

− 1∑pk

j=1(α
(m)
kj )2

)

+

.

Equations (2.9) and (2.10) show that both d
(m)
k and α

(m)
kj are soft-thresholding esti-

mates. Here we provide some intuitive explanation.

We first look at α
(m)
kj in equation (2.9). If d

(m−1)
k = 0, it is natural to estimate

all αkj to be zero because of the penalty on αkj. If d
(m−1)
k > 0, then from our

reparametrization, we have αkj = βkj/d
(m−1)
k , j = 1, . . . , pk. Plugging in β̂ols

kj for

βkj, we obtain α̃kj = β̂ols
kj /d

(m−1)
k . Equation (2.9) shrinks α̃kj, and the amount

of shrinkage is inversely proportional to (d
(m−1)
k )2. So when d

(m−1)
k is large, which

indicates the kth group is important, the amount of shrinkage is small, and when
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d
(m−1)
k is small, which indicates the kth group is less important, the amount of

shrinkage is large.

Now considering d
(m)
k in equation (2.10). If all α

(m)
kj are zero, it is natural to

estimate d
(m)
k to also be zero because of the penalty on dk. If not all α

(m)
kj are 0, say

α
(m)
kj1

, . . . , α
(m)
kjr

are not zero, then we have dk = βkjs/α
(m)
kjs

, 1 ≤ s ≤ r. Again, plugging

in β̂ols
kjs

for βkjs , we obtain r estimates for dk: d̃k = β̂ols
kjs

/α
(m)
kjs

, 1 ≤ s ≤ r. A natural

estimate for dk is then a weighted average of the d̃k, and equation (2.10) provides

such a (shrunken) average, with weights proportional to (α
(m)
kj )2.

2.4 Asymptotic Theory

In this section, we explore the asymptotic behavior of the Hierarchical Lasso

method.

The Hierarchical Lasso criterion (2.8) uses dk and αkj. We first show that it can

also be written in an equivalent form using the original regression coefficients βkj.

Theorem II.2. If (d̂, α̂) is a local maximizer of (2.8), then β̂, where β̂kj = d̂kα̂kj,

is a local maximizer of

max
βkj

−1

2

n∑
i=1

(
yi −

K∑

k=1

pk∑
j=1

xi,kjβkj

)2

−2
√

λ ·
K∑

k=1

√
|βk1|+ |βk2|+ . . . + |βkpk

|.(2.11)

On the other hand, if β̂ is a local maximizer of (2.11), then we define (d̂, α̂), where

d̂k = 0, α̂k = 0 if ‖β̂k‖1 = 0, and d̂k =

√
λ‖β̂k‖1, α̂k = β̂k√

λ‖β̂k‖1
if ‖β̂k‖1 6= 0. Then

the so-defined (d̂, α̂) is a local maximizer of (2.8).

The proof for this is in Appendix A. Note that the penalty term in (2.11) is similar

to the L2-norm penalty (2.4), except that under each square root, we now penalize
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the L1-norm of βk, rather than the sum of squares. However, unlike the L2-norm,

which is singular only at the point βk = 0, (i.e., the whole vector is equal to 0), the

square root of the L1-norm is singular at βkj = 0 no matter the values of other βkj’s.

This explains, from a different perspective, why the Hierarchical Lasso can remove

not only groups, but also variables within a group even when the group is selected.

Equation (2.11) also implies that the Hierarchical Lasso belongs to the “CAP” family

[75].

We study the asymptotic properties allowing the total number of variables Pn, as

well as the number of groups Kn and the number of variables within each group pnk,

to go to ∞, where Pn =
∑Kn

k=1 pnk. Note that we add a subscript “n” to K and pk

to denote that these quantities can change with n. Accordingly, β, yi and xi,kj are

also changed to βn, yni and xni,kj. We write 2
√

λ in (2.11) as nλn, and the criterion

(2.11) is re-written as

max
βn,kj

−1

2

n∑
i=1

(
yni −

Kn∑

k=1

pnk∑
j=1

xni,kjβn,kj

)2

−nλn ·
Kn∑

k=1

√
|βn,k1|+ |βn,k2|+ . . . + |βn,kpnk

|.(2.12)

Our asymptotic analysis in this section is based on criterion (2.12).

Let β0
n = (β0

An
, β0

Bn
, β0

Cn
)

T

be the underlying true parameters, where

An = {(k, j) : β0
n,kj 6= 0},

Bn = {(k, j) : β0
n,kj = 0, β0

nk 6= 0},

Cn = {(k, j) : β0
nk = 0},

Dn = Bn ∪ Cn.(2.13)

Note that An contains the indices of coefficients which are truly non-zero, Cn contains

the indices where the whole “groups” are truly zero, and Bn contains the indices of
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zero coefficients, but they belong to some non-zero groups. So An, Bn and Cn are

disjoint and they partition all the indices. We have the following theorem.

Theorem II.3. If
√

nλn = O(1), then there exists a root-(n/Pn) consistent local

maximizer β̂n = (β̂An
, β̂Bn

, β̂Cn
)

T

of (2.12), and if also Pnn
−3/4/λn → 0 as n →∞,

then Pr(β̂Cn
= 0) → 1.

The proof for this is in Appendix A. Theorem II.3 implies that the Hierarchical

Lasso method can effectively remove unimportant groups. For the above root-(n/Pn)

consistent estimate, however, if Bn 6= ∅ (empty set), then Pr(β̂Bn
= 0) → 1 is not

always true. This means that although the Hierarchical Lasso method can effectively

remove all unimportant groups and some of the unimportant variables within impor-

tant groups, it cannot effectively remove all unimportant variables within important

groups.

Next, we improve the Hierarchical Lasso method to tackle this limitation.

2.4.1 Further Improvement and Generalization

To improve the Hierarchical Lasso method, we apply the adaptive idea [8, 57, 67,

73, 74, 76], i.e., to penalize different coefficients differently. Specifically, we consider

max
βn,kj

−1

2

n∑
i=1

(
yni −

Kn∑

k=1

pk∑
j=1

xni,kjβn,kj

)2

−nλn ·
Kn∑

k=1

√
wn,k1|βn,k1|+ wn,k2|βn,k2|+ . . . + wn,kpk

|βn,kpnk
|,(2.14)

where wn,kj are pre-specified weights. The intuition here is that if the effect of

a variable is strong, we would like the corresponding weight to be small, hence

the corresponding coefficient is lightly penalized. If the effect of a variable is not

strong, we would like the corresponding weight to be large, hence the corresponding

coefficient is heavily penalized. In practice, we may consider using the ordinary least
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squares estimates or the ridge regression estimates to help us compute the weights,

for example,

(2.15) wn,kj =
1

|β̂ols
n,kj|γ

or wn,kj =
1

|β̂ridge
n,kj |γ

,

where γ is a positive constant.

2.4.2 Oracle Property

Problem Setup

Since the theoretical results we develop for (2.14) are not restricted to the squared

error loss, for the rest of the section, we consider the generalized linear model. For

generalized linear models, statistical inferences are based on underlying likelihood

functions. We assume that the data V ni = (Xni, Yni), i = 1, . . . , n are independent

and identically distributed for every n. Conditioning on Xni = xni, Yni has a density

fn(gn(xT

niβn), Yni), where gn(·) is a known link function. We maximize the penalized

log-likelihood

max
βn,kj

Qn(βn) = Ln(βn)− Jn(βn)

=
n∑

i=1

`n(gn(xT

niβn), yni)− n
Kn∑

k=1

pλn,wn(βnk),(2.16)

where `n(·, ·) = log fn(·, ·) denotes the conditional log-likelihood of Y , and

pλn,wn(βnk) = λn

√
wn,k1|βn,k1|+ . . . + wn,kpk

|βn,kpnk
|.

Note that under the normal distribution, `n(gn(xT

niβn), yni) = − (yni−xT
niβn)2

2C1
+ C2,

hence (2.16) reduces to (2.14).

The asymptotic properties of (2.16) are described in the following theorems, and

the proofs are in Appendix A. We note that the proofs follow the spirit of previous

work [20, 21], but due to the grouping structure and the adaptive weights, they are

non-trivial extensions of these work.
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To control the adaptive weights, we define:

an = max{wn,kj : β0
n,kj 6= 0},

bn = min{wn,kj : β0
n,kj = 0}.

We assume that

0 < c1 < min{β0
n,kj : β0

n,kj 6= 0} < max{β0
n,kj : β0

n,kj 6= 0} < c2 < ∞.

We then have the following theorems.

Theorem II.4. For every n, the observations {V ni, i = 1, 2, . . . , n} are independent

and identically distributed, each with a density fn(V n1, βn) that satisfies conditions

(A1)-(A3) in Appendix A. If P 4
n

n
→ 0 and P 2

nλn
√

an = op(1), then there exists a local

maximizer β̂n of Qn(βn) such that ‖β̂n − β0
n‖ = Op(

√
Pn(n−1/2 + λn

√
an)).

Hence by choosing λn
√

an = Op(n
−1/2), there exists a root-(n/Pn) consistent

penalized likelihood estimate.

Theorem II.5. For every n, the observations {V ni, i = 1, 2, . . . , n} are independent

and identically distributed, each with a density fn(V n1, βn) that satisfies conditions

(A1)-(A3) in Appendix A. If P 4
n

n
→ 0, λn

√
an = Op(n

−1/2) and P 2
n

λ2
nbn

= op(n), then

there exists a root-(n/Pn) consistent local maximizers β̂n such that:

(a) Sparsity: Pr(β̂n,Dn
= 0) → 1, where Dn = Bn ∪ Cn.

(b) Asymptotic normality: If λn
√

an = op((nPn)−1/2) and P 5
n

n
→ 0 as n →∞, then

we also have:

√
nAnI

1/2
n (β0

n,An
)(β̂n,An

− β0
n,An

) → N (0, G),

where An is a q × |An| matrix such that AnA
T

n → G and G is a q × q nonnegative

symmetric matrix. In(β0
n,An

) is the Fisher information matrix which knows β0
Dn

= 0.
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The above requirements, λn
√

an = op((nPn)−1/2) and P 2
n

λ2
nbn

= op(n) as n → ∞,

can be satisfied by selecting λn and wn,kj appropriately. For example, we may let

λn = (nPn)−1/2

logn
and wn,kj = 1

|β̂0
n,kj |2

, where β̂0
n,kj is the un-penalized likelihood estimate

of β0
n,kj, which is root-(n/Pn) consistent. Then we have an = Op(1) and 1

bn
= Op(

Pn

n
).

Hence λn
√

an = op((nPn)−1/2) and P 2
n

λ2
nbn

= op(n) are satisfied when P 5
n

n
→ 0.

Likelihood ratio test

Similarly as in the paper of Fan and Peng [21], we can do a likelihood ratio test.

Consider the problem of testing linear hypotheses:

H0 : Anβ
0
n,An

= 0 vs. H1 : Anβ
0
n,An

6= 0,

where An is a q× |An| matrix and AnA
T

n → Iq for a fixed q. This problem includes

testing simultaneously the significance of a few covariate variables.

We can introduce a natural likelihood ratio test for the problem

Tn = 2

{
sup
Ωn

Qn(βn|V )− sup
Ωn,Anβn,An

=0
Qn(βn|V )

}
,

where Ωn is the parameter space for βn.

We can derive the following theorem about the asymptotic null distribution of the

test statistic.

Theorem II.6. When conditions in (b) of Theorem II.5 are satisfied, under H0 we

have

Tn → χ2
q,

as n →∞.

2.5 Simulation Study

In this section, we use simulations to demonstrate the Hierarchical Lasso (HLasso)

method, and compare the results with those of some existing methods. Specifically,
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we first compare Hierarchical Lasso with some other group variable selection meth-

ods, i.e., the L2-norm Group Lasso (2.4) and the L∞-norm Group Lasso (2.5). Then

we compare the Adaptive Hierarchical Lasso with some other “oracle” (but non-group

variable selection) methods, i.e., the SCAD and the Adaptive Lasso.

We extended the simulations in [72], and considered a model which had both cat-

egorical and continuous prediction variables. We first generated seventeen indepen-

dent standard normal variables, Z1, . . . , Z16 and W. The covariates were then defined

as Xj = (Zj + W )/
√

2. Then the last eight covariates X9, . . . , X16 were discretized

to 0, 1, 2, and 3 by Φ−1(1/4), Φ−1(1/2) and Φ−1(3/4). Each of X1, . . . , X8 was ex-

panded through a fourth-order polynomial, and only the main effects of X9, . . . , X16

were considered. This gave us a total of eight continuous groups with four variables

in each group and eight categorical groups with three variables in each group. We

considered two cases.

Case 1. “All-in-all-out”

Y =
[
X3 + 0.5X2

3 + 0.1X3
3 + 0.1X4

3

]
+

[
X6 − 0.5X2

6 + 0.15X3
6 + 0.1X4

6

]

+ [I(X9 = 0) + I(X9 = 1) + I(X9 = 2)] + ε.

Case 2. “Not all-in-all-out”

Y =
(
X3 + X2

3

)
+

(
2X6 − 1.5X2

6

)
+ [I(X9 = 0) + 2 I(X9 = 1)] + ε.

For all the simulations above, the error term ε follows a normal distribution

N(0, σ2), where σ2 was set such that each signal-to-noise ratio, Var(XTβ)/Var(ε),

was equal to 3. We generated n = 400 training observations from each of the above

models, along with 200 validation observations and 10,000 test observations. The

validation set was used to select the tuning parameters λ’s that minimized the vali-

dation error. Using these selected λ’s, we calculated the mean squared error (MSE)
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with the test set. We repeated this 200 times and computed the average MSEs and

their corresponding standard errors. We also recorded how frequently the important

variables were selected and how frequently the unimportant variables were removed.

The results are summarized in Table 2.1.

As we can see, all shrinkage methods perform much better than OLS; this il-

lustrates that some regularization is crucial for prediction accuracy. In terms of

prediction accuracy, we can also see that when variables in a group follow the “all-

in-all-out” pattern, the L2-norm (Group Lasso) method performs slightly better than

the Hierarchical Lasso method (Case 1 of Table 2.1). When variables in a group do

not follow the “all-in-all-out” pattern, however, the Hierarchical Lasso method per-

forms slightly better than the L2-norm method (Case 2 of Table 2.1). For variable

selection, in terms of identifying important variables, the four shrinkage methods,

the Lasso, the L∞-norm, the L2-norm, and the Hierarchical Lasso all perform sim-

ilarly in both Case 1 and Case 2 (“Non-zero Var.” of Table 2.1). However, the

L2-norm method and the Hierarchical Lasso method are more effective at removing

unimportant variables than Lasso and the L∞-norm method in both Case 1 and Case

2 (“Zero Var.” of Table 2.1).

In the above analysis, we used either criterion (2.8) or criterion (2.11) for the

Hierarchical Lasso, i.e., we did not use the adaptive weights wkj to penalize different

coefficients differently. To assess the improved version of the Hierarchical Lasso, i.e.

criterion (2.14), we also considered using adaptive weights. Specifically, we applied

the OLS weights in (2.15) to (2.14) with γ = 1. We compared the results with those

of SCAD and the Adaptive Lasso, which also enjoy the oracle property. However,

we note that SCAD and the Adaptive Lasso do not take advantage of the grouping

structure information. As a benchmark, we also computed the Oracle OLS results,
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Table 2.1: Comparison of several group variable selection methods, including the L2-norm Group
Lasso, the L∞-norm Group Lasso and the Hierarchical Lasso. The OLS and the regular
Lasso are used as benchmarks. The upper half shows results for Case 1, and the lower
half shows results for Case 2. “MSE” is the mean squared error of the test set. “Zero
Var.” is the percentage of correctly removed unimportant variables. “Non-zero Var.”
is the percentage of correctly identified important variables. All the numbers before
parentheses are means over 200 repetitions, and the numbers within the parentheses are
the corresponding standard errors.

Case 1: “All-in-all-out”
OLS Lasso L∞ L2 HLasso

MSE 0.92 (0.018) 0.47 (0.011) 0.31 (0.008) 0.18 (0.009) 0.24 (0.008)
Zero Var. - 57% (1.6%) 29% (1.4%) 96% (0.8%) 94% (0.7%)
Non-Zero Var. - 92% (0.6%) 100% (0%) 100% (0%) 98% (0.3%)
Case 2: “Not all-in-all-out”

OLS Lasso L∞ L2 HLasso
MSE 0.91 (0.018) 0.26 (0.008) 0.46 (0.012) 0.21 (0.01) 0.15 (0.006)
Zero Var. - 70% (1%) 17% (1.2%) 87% (0.8%) 91% (0.5%)
Non-zero Var. - 99% (0.3%) 100% (0%) 100% (0.2%) 100% (0.1%)

i.e., OLS using only the important variables. The results are summarized in Table

2.2. We can see that in the “all-in-all-out” case, the Adaptive Hierarchical Lasso

removes unimportant variables more effectively than SCAD and Adaptive Lasso,

and consequently, the Adaptive Hierarchical Lasso outperforms SCAD and Adaptive

Lasso by a significant margin in terms of prediction accuracy. In the “not all-in-all-

out” case, the advantage of knowing the grouping structure information is reduced,

however, the Adaptive Hierarchical Lasso still performs slightly better than SCAD

and Adaptive Lasso, especially in terms of removing unimportant variables.

To assess how the sample size affects different “oracle” methods, we also consid-

ered n=200, 400, 800, 1600 and 3200. The results are summarized in Figure 2.1,

where the upper half corresponds to the “all-in-all-out” case, and the lower half

corresponds to the “not all-in-all-out” case. Not surprisingly, as the sample size in-

creases, the performances of different methods all improve: in terms of prediction

accuracy, the MSE’s all decrease (at about the same rate) and approach that of the

Oracle OLS; in terms of variable selection, the probabilities of identifying the correct
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model all increase and approach one. However, overall, the Adaptive Hierarchical

Lasso always performs the best among the three “oracle” methods, and the gap is

especially prominent in terms of removing unimportant variables when the sample

size is moderate.

Table 2.2: Comparison of several “oracle” methods, including the Adaptive Hierarchical Lasso,
SCAD and the Adaptive Lasso. SCAD and Adaptive Lasso do not take advantage of
the grouping structure information. The Oracle OLS uses only important variables.
Descriptions for the rows are the same as those in the caption of Table 2.1.

Case 1: “All-in-all-out”
Oracle OLS Ada Lasso SCAD Ada HLasso

MSE 0.16 (0.006) 0.37 (0.011) 0.35 (0.011) 0.24 (0.009)
Zero Var. - 77% (0.7%) 79% (1.1%) 98% (0.3%)
Non-Zero Var. - 94% (0.5%) 91% (0.6%) 96% (0.5%)
Case 2: “Not all-in-all-out”

Oracle OLS Ada Lasso SCAD Ada HLasso
MSE 0.07 (0.003) 0.13 (0.005) 0.11 (0.004) 0.10 (0.005)
Zero Var. - 91% (0.3%) 91% (0.4%) 98% (0.1%)
Non-zero Var. - 98% (0.4%) 99% (0.3%) 99% (0.3%)

2.6 Real Data Analysis

In this section, we use a gene expression dataset from the NCI-60 collection of

cancer cell lines to further illustrate the Hierarchical Lasso method. We sought to use

this dataset to identify targets of the transcription factor p53, which regulates gene

expression in response to various signals of cellular stress. The mutational status of

the p53 gene has been reported for 50 of the NCI-60 cell lines, with 17 being classified

as normal and 33 as carrying mutations in the gene [49].

Instead of single-gene analysis, gene-set information has recently been used to

analyze gene expression data. For example, Subramanian et al. [59] developed the

Gene Set Enrichment Analysis (GSEA), which is found to be more stable and more

powerful than single-gene analysis. Efron and Tibshirani [18] improved the GSEA

method by using a new statistics for summarizing gene-sets. Both methods are based
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Figure 2.1: Comparison of several oracle methods, including the SCAD, the Adaptive Lasso and
the Adaptive Hierarchical Lasso. SCAD and Adaptive Lasso do not take advantage
of the grouping structure information. The Oracle OLS uses only important variables.
The first row corresponds to the “all-in-all-out” case, and the second row corresponds
to the “not all-in-all-out” case. “Correct zero ratio” records the percentage of correctly
removed unimportant variables. “Correct non-zero ratio” records the percentage of
correctly identified important variables.
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on hypothesis testing. In this analysis, we consider using the Hierarchical Lasso

method for gene-set selection. The gene-sets used here are the cytogenetic gene-sets

and the functionals gene-sets from the GSEA package [59]. We only considered the

391 overlapping gene-sets with a size greater than 15 genes.

Since the response here is binary (normal vs mutation), following the discussion

in Section 2.4, we use the logistic Hierarchical Lasso regression, instead of the least

square Hierarchical Lasso. Note that a gene may belong to multiple gene-sets, we

also extend the Hierarchical Lasso to the case of overlapping groups. Suppose there

are K groups and J variables. Let Gk denote the set of indices of the variables in the

kth group. One way to model the overlapping situation is to extend criterion (2.8)

as the following:

max
dk,αj

n∑
i=1

`

(
K∑

k=1

dk

∑
j:j∈Gk

αjxi,j, yi

)
(2.17)

−
K∑

k=1

dk − λ ·
J∑

j=1

|αj|

subject to dk ≥ 0, k = 1, . . . , K,

where αj can be considered as the “intrinsic” effect of a variable (no matter which

group it belongs to), and different group effects are represented via different dk. In

the formulation, `(ηi, yi) = yiηi − log(1 + eηi) is the logistic log-likelihood function

with yi being a 0/1 response. Also notice that if each variable belongs to only one

group, the model reduces to the non-overlapping criterion (2.8).

We randomly split the 50 samples into the training and test sets 100 times; for

each split, 33 samples (22 carrying mutations in the gene and 11 being normal) were

used for training and the remaining 17 samples (11 carrying mutations in the gene

and 6 being normal) were for testing. For each split, we applied three methods, the

logistic Lasso, the logistic L2-norm Group Lasso and the logistic Hierarchical Lasso.
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For each of the splits, we pre-selected 2000 genes from 10,100 genes according to the

t-statistics of the training sample. Tuning parameters were chosen using five-fold

cross-validation.

We first compare the prediction accuracy of the three methods. Over the 100

random splits, the logistic Hierarchical Lasso has an average misclassification rate of

14% with the standard error 1.8%, which is smaller than 23%(1.7%) of the logistic

Lasso and 32%(1.2%) of the logistic Group Lasso. To assess the stability of the

prediction, we recorded the frequency in which each sample, as a test observation,

was correctly classified. For example, if a sample appeared in 40 test sets among the

100 random splits, and out of the 40 predictions, the sample was correctly classified

36 times, we recorded 36/40 for this sample. The results are shown in Figure 2.2. As

we can see, for most samples, the logistic Hierarchical Lasso classified them correctly

for most of the random splits, and the predictions seemed to be slightly more stable

than the logistic Lasso and the logistic L2-norm Group Lasso.

Next, we compare gene-set selection of these three methods. The most notable

difference is that both logistic Lasso and the logistic Hierarchical Lasso selected gene

CDKN1A most frequently out of the 100 random split, while the logistic L2-norm

Group Lasso rarely selected it. CDKN1A is also named as wild-type p53 activated

fragment-1 (p21), and it is known that the expression of gene CDKN1A is tightly

controlled by the tumor suppressor protein p53, through which this protein mediates

the p53-dependent cell cycle G1 phase arrest in response to a variety of stress stimuli

(http://www.ncbi.nlm.nih.gov/).

We also compared the gene-sets selected by the logistic Hierarchical Lasso with

those selected by the GSEA of Subramanian et al. [59] and the GSA of Efron and

Tibshirani [18]. The two most frequently selected gene-sets by the Hierarchical Lasso

http://www.ncbi.nlm.nih.gov/�
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are atm pathway and radiation sensitivity. The most frequently selected genes in atm

pathway by the logistic Hierarchical Lasso are CDKN1A, MDM2 and RELA, and

the most frequently selected genes in radiation sensitivity are CDKN1A, MDM2 and

BCL2. It is known that MDM2, the second commonly selected gene, is a target gene

of the transcription factor tumor protein p53, and the encoded protein in MDM2 is a

nuclear phosphoprotein that binds and inhibits transactivation by tumor protein p53,

as part of an autoregulatory negative feedback loop (http://www.ncbi.nlm.nih.gov/).

Note that the gene-set radiation sensitivity was also selected by GSEA and GSA.

Though the gene-set atm pathway was not selected by GSEA and GSA, it shares

7, 8, 6, and 3 genes with gene-sets radiation sensitivity, p53 signalling, p53 hypoxia

pathway and p53 Up respectively, which were all selected by GSEA and GSA. We

also note that GSEA and GSA are based on the marginal strength of each gene-

set, while the logistic Hierarchical Lasso fits an “additive” model and uses the joint

strengths of gene-sets.
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Figure 2.2: The number of samples vs the frequency that a sample was correctly classified on 100
random splits of the p53 data.

http://www.ncbi.nlm.nih.gov/�
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2.7 Discussion

In this chapter, we have proposed a Hierarchical Lasso method for group variable

selection. Different variable selection methods have their own advantages in different

scenarios. The Hierarchical Lasso method not only effectively removes unimportant

groups, but also keeps the flexibility of selecting variables within a group. We show

that the improved Hierarchical Lasso method enjoys an oracle property, i.e., it per-

forms as well as if the true sub-model were given in advance. Numerical results

indicate that our method works well, especially when variables in a group are asso-

ciated with the response in a “not all-in-all-out” fashion.

The grouping idea is also applicable to other regression and classification settings,

for example, the multi-response regression and multi-class classification problems.

In these problems, a grouping structure may not exist among the prediction vari-

ables, but instead, natural grouping structures exist among parameters. We use the

multi-response regression problem to illustrate the point [9, 65]. Suppose we observe

(x1, y1), . . ., (xn, yn), where each yi = (yi1, . . . , yiK) is a vector containing K re-

sponses, and we are interested in selecting a subset of the prediction variables that

predict well for all of the multiple responses. Standard techniques estimate K pre-

diction functions, one for each of the K responses, fk(x) = βk1x1 + · · ·+ βkpxp, k =

1, . . . , K. The prediction variables (x1, . . . , xp) may not have a grouping structure,

however, we may consider the coefficients corresponding to the same prediction vari-

able form a natural group, i.e., (β1j, β2j, . . . , βKj). Using our Hierarchical Lasso idea,
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we reparameterize βkj = djαkj, dj ≥ 0, and we consider

max
dj≥0,αkj

−1

2

K∑

k=1

n∑
i=1

(
yik −

p∑
j=1

djαkjxij

)2

−λ1 ·
p∑

j=1

dj − λ2 ·
p∑

j=1

K∑

k=1

|αkj|.

Note that if dj is shrunk to zero, all βkj, k = 1, . . . , K will be equal to zero, hence

the jth prediction variable will be removed from all K predictions. If dj is not equal

to zero, then some of the αkj and hence some of the βkj, k = 1, . . . , K, still have

the possibility of being zero. Therefore, the jth variable may be predictive for some

responses but non-predictive for others.

2.8 Appendix A

Proof of Lemma II.1

Let Q∗(λ1, λ2, d, α) be the criterion that we would like to maximize in equation

(2.7) and let Q?(λ, d, α) be the corresponding criterion in equation (2.8).

Let (d̂
∗
, α̂∗) be a local maximizer of Q∗(λ1, λ2, d, α). We would like to prove

(d̂
?

= λ1d̂
∗
, α̂? = α̂∗/λ1) is a local maximizer of Q?(λ, d, α).

We immediately have

Q∗(λ1, λ2, d, α) = Q?(λ, λ1d, α/λ1).

Since (d̂
∗
, α̂∗) is a local maximizer of Q∗(λ1, λ2, d, α), there exists δ > 0 such that if

d′, α′ satisfy ‖d′ − d̂
∗‖+ ‖α′ − α̂∗‖ < δ then Q∗(λ1, λ2, d

′, α′) ≤ Q∗(λ1, λ2, d̂
∗
, α̂∗).

Choosing δ′ such that δ′

min
“
λ1, 1

λ1

” ≤ δ, for any (d′′, α′′) satisfying ‖d′′− d̂
?‖+‖α′′−
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α̂?‖ < δ′ we have

∥∥∥∥
d′′

λ1

− d̂
∗
∥∥∥∥ + ‖λ1α

′′ − α̂∗‖ ≤
λ1

∥∥∥d′′
λ1
− d̂

∗∥∥∥ + 1
λ1
‖λ1α

′′ − α̂∗‖
min

(
λ1,

1
λ1

)

=
‖d′′ − d̂

?‖+ ‖α′′ − α̂?‖
min

(
λ1,

1
λ1

)

<
δ′

min
(
λ1,

1
λ1

)

< δ.

Hence

Q?(λ, d̂
′′
, α̂′′) = Q∗(λ1, λ2, d̂

′′
/λ1, λ1α̂

′′)

≤ Q∗(λ1, λ2, d̂
∗
, α̂∗)

= Q?(λ, d̂
?
, α̂?).

Therefore, (d̂
?

= λ1d̂
∗
, α̂? = α̂∗/λ1) is a local maximizer of Q?(λ, d, α).

Similarly we can prove that for any local maximizer (d̂
?
, α̂?) of Q?(λ, d, α), there is

a corresponding local maximizer (d̂
∗
, α̂∗) of Q∗(λ1, λ2, d, α) such that d̂∗kα̂

∗
kj = d̂?

kα̂
?
kj.

Lemma II.7. Suppose (d̂, α̂) is a local maximizer of 2.8. Let β̂ be the Hierarchical

Lasso estimate related to (d̂, α̂), i.e., β̂kj = d̂kα̂kj. If d̂k = 0, then α̂k = 0; if d̂k 6= 0,

then ‖β̂k‖1 6= 0 and d̂k =

√
λ‖β̂k‖1, α̂k = β̂k√

λ‖β̂k‖1
.

Proof of Lemma II.7

If d̂k = 0, then α̂k = 0 is quite obvious. Similarly, if α̂k = 0, then d̂k = 0.

Therefore, if d̂k 6= 0, then α̂k 6= 0 and ‖β̂k‖1 6= 0.

We prove d̂k =

√
λ‖β̂k‖1, α̂k = β̂k√

λ‖β̂k‖1
for d̂k 6= 0 by contradiction. Suppose ∃k′

such that d̂k′ 6= 0 and d̂k′ 6=
√

λ‖β̂k′‖1. Let

√
λ‖β̂k′‖1
d̂k′

= c. Then α̂k = c β̂k√
λ‖β̂k‖1

.

Suppose c > 1.
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Let d̃k = d̂k and α̃k = α̂k for k 6= k′; and let d̃k′ = δ′d̂k′ and α̃k′ = α̂k′
1
δ′ , where δ′

satisfies c > δ′ > 1 and is very close to 1 such that ‖d̃k′ − d̂k′‖1 + ‖α̃k′ − α̂k′‖1 < δ

for some δ > 0.

Then we have

Q?(λ, d̃, α̃)−Q?(λ, d̂, α̂) = −δ′|d̂k′| − 1

δ′
λ‖α̂k′‖1 + |d̂k′|+ λ‖α̂k′‖1

=

(
−δ′

c
− c

δ′
+

1

c
+ c

) √
λ‖β̂k′‖1

=
1

c
(δ′ − 1)

(
c2

δ′
− 1

) √
λ‖β̂k′‖1

> 0.

Therefore, for any δ > 0, we can find d̃, α̃ such that ‖d̃− d̂‖1 + ‖α̃− α̂‖1 < δ and

Q?(λ, d̃, α̃) > Q?(λ, d̂, α̂). These contradict with (d̂, α̂) being a local maximizer.

Similarly for the case when c < 1. Hence, we have the result that if d̂k 6= 0, then

d̂k =

√
λ‖β̂k‖1, α̂k = β̂k√

λ‖β̂k‖1
.

Proof of Theorem II.2

Let Q(λ, β) be the corresponding criterion in equation (2.11).

Suppose (d̂, α̂) is a local maximizer of Q?(λ, d, α), we first show that β̂, where

β̂kj = d̂kα̂kj, is a local maximizer of Q(λ, β), i.e. there exists a δ′ such that if

‖4β‖1 < δ′ then Q(λ, β̂ +4β) ≤ Q(λ, β̂).

We denote 4β = 4β(1) +4β(2), where 4β
(1)
k = 0 if ‖β̂k‖1 = 0 and 4β

(2)
k = 0 if

‖β̂k‖1 6= 0. We have ‖4β‖1 = ‖4β(1)‖1 + ‖4β(2)‖1.

Now we show Q(λ, β̂ +4β(1)) ≤ Q(λ, β̂) if δ′ is small enough. By Lemma II.7,

we have d̂k =

√
λ‖β̂k‖1 and α̂k = β̂k√

λ‖β̂k‖1
if ‖d̂k‖1 6= 0; and α̂k = 0 if ‖d̂k‖1 = 0.

Furthermore, let d̂′k =

√
λ‖β̂k +4β

(1)
k ‖1, α̂

′
k =

β̂k+4β
(1)
kq

λ‖β̂k+4β
(1)
k ‖1

if ‖d̂k‖1 6= 0. Let

d̂′k = 0, α̂′
k = 0 if ‖d̂k‖1 = 0. Then we have Q?(λ, d̂

′
, α̂′) = Q(λ, β̂ + 4β(1)) and
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Q?(λ, d̂, α̂) = Q(λ, β̂). Hence we only need to show that Q?(λ, d̂
′
, α̂′) ≤ Q?(λ, d̂, α̂).

Note that (d̂, α̂) ia a local maximizer of Q?(λ, d, α). Therefore there exists a δ such

that for any d′, α′ satisfying ‖d′ − d̂‖1 + ‖α′ − α̂‖1 < δ, we have Q?(λ, d′, α′) ≤

Q?(λ, d̂, α̂).

Now since

|d̂′k − d̂k| = |
√

λ‖β̂k +4β
(1)
k ‖1 −

√
λ‖β̂k‖1|

≤ |
√

λ‖β̂k‖1 − λ‖4β
(1)
k ‖1 −

√
λ‖β̂k‖1|

≤ 1

2

λ‖4β
(1)
k ‖1√

λ‖β̂k‖1 − λ‖4β
(1)
k ‖1

≤ 1

2

λ‖4β
(1)
k ‖1√

λa− λδ′

≤ 1

2

λ‖4β
(1)
k ‖1√

λa/2
,

where a = min{‖β̂k‖1 : ‖β̂k‖1 6= 0} and δ′ < a/2.
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Furthermore

‖α̂′
k − α̂k‖1 =

∥∥∥∥∥∥
β̂k +4β

(1)
k√

λ‖β̂k +4β
(1)
k ‖1

− β̂k√
λ‖β̂k‖1

∥∥∥∥∥∥
1

≤
∥∥∥∥∥∥

β̂k +4β
(1)
k√

λ‖β̂k +4β
(1)
k ‖1

− β̂k√
λ‖β̂k +4β

(1)
k ‖1

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥
β̂k√

λ‖β̂k +4β
(1)
k ‖1

− β̂k√
λ‖β̂k‖1

∥∥∥∥∥∥
1

≤ ‖4β
(1)
k ‖1√

λa/2

+
‖β̂k‖1|

√
λ‖β̂k +4β

(1)
k ‖1 −

√
λ‖β̂k‖1|√

λ‖β̂k +4β
(1)
k ‖1

√
λ‖β̂k‖1

≤ ‖4β
(1)
k ‖1√

λa/2
+

b√
λa/2

√
λa

(
1

2

λ‖4β
(1)
k ‖1√

λa/2

)

≤ ‖4β
(1)
k ‖1

(
1√
λa/2

+
b

a
√

λa

)
,

where b = max{‖β̂k‖1 : ‖β̂k‖1 6= 0}.

Therefore, there exists a small enough δ′, if ‖4β(1)‖1 < δ′ we have ‖d̂′ − d̂‖1 +

‖α̂′ − α̂‖1 < δ. Hence Q?(λ, d̂
′
, α̂′) ≤ Q?(λ, d̂, α̂) (due to local maximality) and

Q(λ, β̂ +4β(1)) ≤ Q(λ, β̂).

Next we show Q(λ, β̂ +4β(1) +4β(2)) ≤ Q(λ, β̂ +4β(1)). Note that

Q(λ, β̂ +4β(1) +4β(2))−Q(λ, β̂ +4β(1)) = 4β(2)T∇L(β̂
∗
)−

K∑

k=1

√
λ‖4β(2)‖1,

where β∗ is a vector between β̂+4β(1) +4β(2) and β̂+4β(1). Since ‖4β(2)‖1 < δ′

is small enough, the second term dominates the first term, hence we have Q(λ, β̂ +

4β(1) +4β(2)) ≤ Q(λ, β̂ +4β(1)).

Overall, we have that there exists a small enough δ′, if ‖4β‖1 < δ′, then Q(λ, β̂+

4β) ≤ Q(λ, β̂), which implies that β̂ is a local maximizer of Q(λ, β).
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Similarly, we can prove that if β̂ is a local maximizer of Q(λ, β), and if we let

d̂k =

√
λ‖β̂k‖1 and α̂k = β̂k√

λ‖β̂k‖1
for ‖β̂k‖1 6= 0, and let d̂k = 0 and α̂k = 0 for

‖β̂k‖1 = 0, then (d̂, α̂) is a local maximizer of Q?(λ, d, α).

Regularity Conditions

Let Sn be the number of non-zero groups, i.e., ‖β0
nk‖ 6= 0. Without loss of

generality, we assume

‖β0
nk‖ 6= 0, for k = 1, . . . , Sn,

‖β0
nk‖ = 0, for k = Sn + 1, . . . , Kn.

Let snk be the number of non-zero coefficients in group k, 1 ≤ k ≤ Sn; again, without

loss of generality, we assume

β0
n,kj 6= 0, for k = 1, . . . , Sn; j = 1, . . . , snk,

β0
n,kj = 0, for k = 1, . . . , Sn; j = snk + 1, . . . , pnk.

For simplicity, we write βn,kj, pnk and snk as βkj, pk and sk in the following.

Since we have diverging number of parameters, to keep the uniform properties of

the likelihood function, we need some conditions on the higher-order moment of the

likelihood function, as compared to the usual condition in the asymptotic theory of

the likelihood estimate under finite parameters [35].

(A1) For every n, the observations {V ni, i = 1, 2, . . . , n} are independent and iden-

tically distributed, each with a density fn(V n1, βn). Here fn(V n1, βn) has a

common support and the model is identifiable. Furthermore, the first and sec-
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ond logarithmic derivatives of fn satisfy the equations

Eβn

[
∂ log fn(V n1, βn)

∂βkj

]
= 0, for k = 1, . . . , Kn; j = 1, . . . , pk

Ik1j1k2j2(βn) = Eβn

[
∂

∂βk1j1

log fn(V n1, βn)
∂

∂βk2j2

log fn(V n1, βn)

]

= Eβn

[
− ∂2

∂βk1j2∂βk2j2

log fn(V n1, βn)

]
.

(A2) The Fisher information matrix

I(βn) = Eβn

[
∂

∂βn

log fn(V n1, βn)
∂T

∂βn

log fn(V n1, βn)

]

satisfies the condition

0 < C1 < λmin{I(βn)} ≤ λmax{I(βn)} < C2 < ∞,

and for any k1, j1, k2, j2, we have

Eβn

[
∂

∂βk1j1

log fn(V n1, βn)
∂

∂βk2j2

log fn(V n1, βn)

]2

< C3 < ∞,

Eβn

[
− ∂2

∂βk1j1∂βk2j2

log fn(V n1, βn)

]2

< C4 < ∞.

(A3) There exists an open subset ωn of Ωn ∈ RPn that contains the true parameter

point β0
n such that for almost all V n1, the density fn(V n1, βn) admits all third

derivatives ∂3fn(V n1, βn)/(∂βk1j1∂βk2j2∂βk3j3) for all βn ∈ ωn. Furthermore,

there exist functions Mnk1j1k2j2k3j3 such that

∣∣∣∣
∂3

∂βk1j1∂βk2j2∂βk3j3

log fn(V n1, βn)

∣∣∣∣ ≤ Mnk1j1k2j2k3j3(V n1) for all βn ∈ ωn,

and Eβn
[M2

nk1j1k2j2k3j3
(V n1)] < C5 < ∞.

These regularity conditions guarantee the asymptotic normality of the ordinary

maximum likelihood estimates for diverging number of parameters.

For expositional simplicity, we will first prove Theorem II.4 and Theorem II.5,

then prove Theorem II.3.
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Proof of Theorem II.4

We will show that for any given ε > 0, there exists a constant C such that

(2.18) Pr

{
sup
‖u‖=C

Qn(β0
n + αnu) < Qn(β0

n)

}
≥ 1− ε,

where αn =
√

Pn(n−1/2 + λn
√

an/2
√

c1). This implies that with probability at least

1− ε, that there exists a local maximum in the ball {β0
n + αnu : ‖u‖ ≤ C}. Hence,

there exists a local maximizer such that ‖β̂n − β0
n‖ = Op(αn). Since 1/2

√
c1 is a

constant, we have ‖β̂n − β0
n‖ = Op(

√
Pn(n−1/2 + λn

√
an)).

Using pλn,wn(0) = 0, we have

Dn(u) = Qn(β0
n + αnu)−Qn(β0

n)

≤ Ln(β0
n + αnu)− Ln(β0

n)

−n
Sn∑

k=1

(pλn,wn(β0
nk + αnuk)− pλn,wn(β0

nk))

, (I) + (II).(2.19)

Using the standard argument on the Taylor expansion of the likelihood function,

we have

(I) = αnu
T∇Ln(β0

n) +
1

2
uT∇2Ln(β0

n)uα2
n +

1

6
uT∇{uT∇2Ln(β∗n)u}α3

n

, I1 + I2 + I3,(2.20)

where β∗n lies between β0
n and β0

n + αnu. Using the same argument as in the proof

of Theorem 1 of [21], we have

|I1| = Op(α
2
nn)‖u‖,(2.21)

I2 = −nα2
n

2
uTIn(β0

n)u + op(1)nα2
n‖u‖2,(2.22)
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and

|I3| =

∣∣∣∣∣
1

6

Kn∑

k1=1

pk∑
j1=1

Kn∑

k2=1

pk∑
j2=1

Kn∑

k3=1

pk∑
j3=1

∂3Ln(β∗n)

∂βk1j1∂βk2j2∂βk3j3

uk1j1uk2j2uk3j3α
3
n

∣∣∣∣∣

≤ 1

6

n∑
i=1

{
Kn∑

k1=1

pk∑
j1=1

Kn∑

k2=1

pk∑
j2=1

Kn∑

k3=1

pk∑
j3=1

M2
nk1j1k2j2k3j3

(Vni)

}1/2

‖u‖3α3
n

= Op(P
3/2
n αn)nα2

n‖u‖3.

Since P 4
n

n
→ 0 and P 2

nλn
√

an → 0 as n →∞, we have

(2.23) |I3| = op(nα2
n)‖u‖3.

From (2.21)-(2.23), we can see that, by choosing a sufficiently large C, the first

term in I2 dominates I1 uniformly on ‖u‖ = C; when n is large enough, I2 also

dominates I3 uniformly on ‖u‖ = C.

Now we consider (II). Since αn =
√

Pn(n−1/2 + λn
√

an/2
√

c1) → 0, for ‖u‖ ≤ C

we have

(2.24) |β0
kj + αnukj| ≥ |β0

kj| − |αnukj| > 0

for n large enough and β0
kj 6= 0. Hence, we have

pλn,wn(β0
nk + αnuk)− pλn,wn(β0

nk)

= λn(
√

wn,k1|β0
k1 + αnuk1|+ . . . + wn,kpk

|β0
kpk

+ αnukpk
|

−
√

wn,k1|β0
k1|+ . . . + wn,kpk

|β0
kpk
|)

≥ λn(
√

wn,k1|β0
k1 + αnuk1|+ . . . + wn,ksk

|β0
ksk

+ αnuksk
|

−
√

wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
|)

≥ λn(
√

wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
| − αn(wn,k1|uk1|+ . . . + wn,ksk

|uksk
|)

−
√

wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
|) (for n large enough, by (2.24))

= λn

√
wn,k1|β0

k1|+ . . . + wn,ksk
|β0

ksk
|(
√

1− γnk − 1),
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where γnk is defined as γnk =
αn(wn,k1|uk1|+...+wn,ksk

|uksk
|)

wn,k1|β0
k1|+...+wn,ksk

|β0
ksk

| . For n large enough, we have

0 ≤ γnk < 1 and γnk ≤ αn‖uk‖(wn,k1+...+wn,ksk
)

c1(wn,k1+...+wn,ksk
)

= αn‖uk‖
c1

≤ αnC
c1

→ 0 with probability

tending to 1 as n →∞.

Therefore,

pλn,wn(β0
nk + αnuk)− pλn,wn(β0

nk)

≥ λn

√
wn,k1|β0

k1|+ . . . + wn,ksk
|β0

ksk
|(
√

1− γnk − 1)

≥ λn

√
wn,k1|β0

k1|+ . . . + wn,ksk
|β0

ksk
|
(

1 + |op(1)|
2

(−γnk)

)

(Using γnk = op(1) and Taylor expansion)

≥ −λn
αn(wn,k1|uk1|+ . . . + wn,ksk

|uksk
|)√

wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
|

(
1 + |op(1)|

2

)

≥ −αnλn

‖uk‖√ansk

2
√

c1

(1 + |op(1)|).

Therefore, the term (II) in (2.19) is bounded by

nαnλn

(
Sn∑

k=1

‖uk‖√ansk

2
√

c1

)
(1 + |op(1)|),

which is further bounded by

nαnλn

√
an(‖u‖ ·

√
Pn

2
√

c1

)(1 + |op(1)|).

Note that αn =
√

Pn(n−1/2 + λn
√

an/2
√

c1), hence the above expression is bounded

by

‖u‖nα2
n(1 + |op(1)|).

This term is also dominated by the first term of I2 on ‖u‖ = C uniformly. Therefore,

Dn(u) < 0 is satisfied uniformly on ‖u‖ = C. This completes the proof of the

theorem.
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Proof of Theorem II.5

We have proved that if λn
√

an = Op(n
−1/2), there exists a root-(n/Pn) consistent

estimate β̂n. Now we prove that this root-(n/Pn) consistent estimate has the oracle

sparsity under the condition P 2
n

λ2
nbn

= op(n), i.e., β̂kj = 0 with probability tending to 1

if β0
kj = 0.

Using Taylor’s expansion, we have

∂Qn(βn)

∂βkj

=
∂Ln(βn)

∂βkj

− n
∂pλn,wn(βnk)

∂βkj

=
∂Ln(β0

n)

∂βkj

+
Kn∑

k1=1

pk1∑
j1=1

∂2Ln(β0)

∂βkj∂βk2j2

(βk1j1 − β0
k1j1

)

+
1

2

Kn∑

k1=1

pk1∑
j1=1

Kn∑

k2=1

pk2∑
j2=1

∂3Ln(β∗n)

∂βkj∂βk1j1∂βk2j2

(βk1j1 − β0
k1j1

)(βk2j2 − β0
k2j2

)

− nλnwn,kj

2
√

wn,k1|βk1|+ . . . + wn,kpk
|βkpk

|sgn(βkj)(2.25)

, I1 + I2 + I3 + I4,

where β∗n lies between βn and β0
n.

Using the argument in the proof of Lemma 5 of [21], for any βn satisfying ‖βn −

β0
n‖ = Op(

√
Pn/n), we have

I1 = Op(
√

n) = Op(
√

nPn),

I2 = Op(
√

nPn),

I3 = op(
√

nPn).

Then, since β̂n is a root-(n/Pn) consistent estimate maximizing Qn(βn), if β̂kj 6= 0,

we have

∂Qn(βn)

∂βkj

∣∣∣∣
βn=β̂n

= Op(
√

nPn)− nλnwn,kj

2
√

wn,k1|β̂k1|+ . . . + wn,kpk
|β̂kpk

|
sgn(β̂kj)

= 0.(2.26)
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Therefore,

nλnwn,kj√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
|

= Op(
√

nPn) for β̂kj 6= 0.

This can be extended to

nλnwn,kj|β̂kj|√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
|

= |β̂kj|Op(
√

nPn),

for any β̂kj with β̂nk 6= 0. If we sum this over all j in the kth group, we have

(2.27) nλn

√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
| =

pk∑
j=1

|β̂kj|Op(
√

nPn).

Since β̂n is a root-(n/Pn) consistent estimate of β0
n, we have |β̂kj| = Op(1) for

(k, j) ∈ An and |β̂kj| = Op(
√

Pn/n) for (k, j) ∈ Bn ∪ Cn.

Now for any k and j satisfying β0
kj = 0 and β̂kj 6= 0, equation (2.26) can be written

as:

∂Qn(βn)

∂βkj

∣∣∣∣
βn=β̂n

=
1

2λn

√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
|

(2.28)

(Op(
√

Pn/n)nλn

√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
|

−nλ2
nwn,kjsgn(β̂kj))

= 0.

Denote hnk = Op(
√

Pn/n)nλn

√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
|. Let hn =

∑Kn

k=1 hnk.

By equation (2.27), we have hn =
∑Kn

k=1 Op(
√

Pn/n)
∑pk

j=1 |β̂kj|Op(
√

nPn) = Op(P
2
n).

Since P 2
n

λ2
nbn

= op(n) guarantees that nλ2
nbn dominates hn with probability tending to

1 as n → ∞, the first term in (2.28) is dominated by the second term as n → ∞

uniformly for all k and j satisfying β0
kj = 0 since wn,kj ≥ bn and hn > hnk. Denote

gnk = 2λn

√
wn,k1|β̂k1|+ . . . + wn,kpk

|β̂kpk
|/(nλ2

nbn). Let gn =
∑Kn

k=1 gnk. By equation

(2.27), we have gn = 2
∑Kn

k=1(1/n)
∑pk

j=1 |β̂kj|Op(
√

nPn)/(nλ2
nbn) = op(1/

√
nPn). The
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absolute value of the second term in (2.28) is bounded below by 1/gn. So with

probability uniformly converging to 1 the second term in the derivative ∂Q(β)
∂βkj

|β=β̂n

will go to ∞ as n → ∞, which is a contradiction with equation (2.28). Therefore,

for any k and j satisfying β0
kj = 0, we have β̂kj = 0 with a probability tending to 1

as n →∞. We have β̂Dn
= 0 with probability tending to 1 as well.

Now we prove the second part of Theorem II.5. From the above proof, we know

that there exists (β̂n,An
,0) with probability tending to 1, which is a root-(n/Pn)

consistent local maximizer of Q(βn). With a slight abuse of notation, let Qn(βn,An
) =

Qn(βn,An
,0). Using the Taylor expansion on ∇Qn(β̂n,An

) at point β0
n,An

, we have

1

n
(∇2Ln(β0

n,An
)(β̂n,An

− β0
n,An

)−∇Jn(β̂n,An
))(2.29)

= − 1

n

(
∇Ln(β0

n,An
) +

1

2
(β̂n,An

− β0
n,An

)
T∇2{∇Ln(β∗n,An

)}(β̂n,An
− β0

n,An
)

)
,

where β∗n,An
lies between β̂n,An

and β0
n,An

.

Now we define

Cn , 1

2
(β̂n,An

− β0
n,An

)
T∇2{∇Ln(β∗n,An

)}(β̂n,An
− β0

n,An
).

Using the Cauchy-Schwarz inequality, we have

∥∥∥∥
1

n
Cn

∥∥∥∥
2

≤ 1

n2

n∑
i=1

n‖β̂n,An
− β0

n,An
‖4

Sn∑

k1=1

pk∑
j1=1

Sn∑

k2=1

pk∑
j2=1

Sn∑

k3=1

pk∑
j3=1

M3
nk1j1k2j2k3j2

(V ni)

= Op(P
2
n/n2)Op(P

3
n) = Op(P

5
n/n2) = op(1/n).(2.30)

Since P 5
n

n
→ 0 as n →∞, by Lemma 8 of [21], we have

∥∥∥∥
1

n
∇2Ln(β0

n,An
) + In(β0

n,An
)

∥∥∥∥ = op(1/Pn)

and

(2.31)∥∥∥∥
(

1

n
∇2Ln(β0

n,An
) + In(β0

n,An
)

)
(β̂n,An

− β0
n,An

)

∥∥∥∥ = op(1/
√

nPn) = op(1/
√

n).
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Since

√
wn,k1|β̂k1|+ . . . + wn,ksk

|β̂ksk
|

=
√

wn,k1|β0
k1|(1 + Op(

√
Pn/n)) + . . . + wn,ksk

|β0
ksk
|(1 + Op(

√
Pn/n))

=
√

wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
|(1 + Op(

√
Pn/n)),

we have

λnwn,kj√
wn,k1|β̂k1|+ . . . + wn,ksk

|β̂ksk
|

=
λnwn,kj√

wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
|
(1+Op(

√
Pn/n)).

Furthermore, since

λnwn,kj√
wn,k1|β0

k1|+ . . . + wn,ksk
|β0

ksk
|
≤ λnwn,kj√

wn,kjc1

≤ λn
√

an√
c1

= op((nPn)−1/2)

for (k, j) ∈ An, we have

(
1

n
∇Jn(β̂n,An

)

)

kj

=
λnwn,kj

2
√

wn,k1|β̂k1|+ . . . + wn,ksk
|β̂ksk

|
= op((nPn)−1/2)

and

(2.32)

∥∥∥∥
1

n
∇Jn(β̂n,An

)

∥∥∥∥ ≤
√

Pnop((nPn)−1/2) = op(1/
√

n).

Together with (2.30), (2.31) and (2.32), from (2.29) we have

In(β0
n,An

)(β̂n,An
− β0

n,An
) =

1

n
∇Ln(β0

n,An
) + op(1/

√
n).

Now using the same argument as in the proof of Theorem 2 of [21], we have

√
nAnI

1/2
n (β0

n,An
)(β̂n,An

−β0
n,An

) → √
nAnI

−1/2
n (β0

n,An
)

(
1

n
∇Ln(β0

n,An
)

)
→ N (0, G),

where An is a q × |An| matrix such that AnAn
T → G and G is a q × q nonnegative

symmetric matrix.
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Proof of Theorem II.3

Note that when wn,kj = 1, we have an = 1 and bn = 1. The conditions λn
√

an =

Op(n
−1/2) and P 2

n

λ2
nbn

= op(n) in Theorem II.5 become λn

√
n = Op(1) and Pn

λn
√

n
→

0. These two conditions cannot be satisfied simultaneously by adjusting λn, which

implies that Pr(β̂D = 0) → 1 cannot be guaranteed.

We will prove that by choosing λn satisfying
√

nλn = Op(1) and Pnn
−3/4/λn → 0

as n → ∞, we can have a root-n consistent local maximizer β̂n = (β̂An
, β̂Bn

, β̂Cn
)

T

such that Pr(β̂Cn
= 0) → 1.

Similar as in the proof of Theorem II.5, we let h′n =
∑Kn

k=Sn+1 hnk. By equa-

tion (2.27), we have h′n =
∑Kn

k=Sn+1 Op(
√

Pn/n)
∑pk

j=1 |β̂kj|Op(
√

nPn) = Op(P
2
n/
√

n).

Since Pnn
−3/4/λn → 0 guarantees that nλ2

n dominates h′n with probability tending

to 1 as n →∞, the first term in (2.28) is dominated by the second term as n →∞

uniformly for any k satisfying β0
nk = 0 since wn,kj = 1 and h′n > hnk. Similar as in

the proof of Theorem II.5, we have β̂Cn
= 0 with probability tending to 1.

Proof of Theorem II.6

Let Nn = |An| be the number of nonzero parameters. Let Bn be an (Nn−q)×Nn

matrix which satisfies BnB
T

n = INn−q and AnB
T

n = 0. As βn,An
is in the orthogonal

complement to the linear space that is spanned by the rows of An under the null

hypothesis H0, it follows that

βn,An
= BT

nγn,

where γn is an (Nn−q)×1 vector. Then, under H0 the penalized likelihood estimator

is also the local maximizer γ̂n of the problem

Qn(βn,An
) = max

γn

Qn(BT

nγn).
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To prove Theorem II.6 we need the following two lemmas.

Lemma II.8. Under condition (b) of Theorem II.5 and the null hypothesis H0, we

have

β̂n,An
− β0

n,An
=

1

n
I−1

n (β0
n,An

)∇Ln(β0
n,An

) + op(n
−1/2),

BT

n(γ̂n − γ0
n) =

1

n
BT

n{BnIn(β0
n,An

)BT

n}−1Bn∇Ln(β0
n,An

) + op(n
−1/2).

Proof of of Lemma II.8

We need only prove the second equation. The first equation can be shown in the

same manner. Following the proof of Theorem II.5, it follows that under H0,

BnIn(β0
n,An

)BT

n(γ̂n − γ0
n) =

1

n
Bn∇Ln(β0

n,An
) + op(n

−1/2).

As the eigenvalue λi(BnIn(β0
n,An

)BT

n) is uniformly bounded away from 0 and infinity,

we have

BT

n(γ̂n − γ0
n) =

1

n
BT

n{BnIn(β0
n,An

)BT

n}−1Bn∇Ln(β0
n,An

) + op(n
−1/2).

Lemma II.9. Under condition (b) of Theorem II.5 and the null hypothesis H0, we

have

Qn(β̂n,An
)−Qn(BT

nγ̂n)(2.33)

=
n

2
(β̂n,An

−BT

nγ̂n)
T

In(β0
n,An

)(β̂n,An
−BT

nγ̂n) + op(1).

Proof of Lemma II.9

A Taylor’s expansion of Qn(β̂n,An
)−Qn(BT

nγ̂n) at the point β̂n,An
yields

Qn(β̂n,An
)−Qn(BT

nγ̂n) = T1 + T2 + T3 + T4,
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where

T1 = ∇TQn(β̂n,An
)(β̂n,An

−BT

nγ̂n),

T2 = −1

2
(β̂n,An

−BT

nγ̂n)
T∇2Ln(β̂n,An

)(β̂n,An
−BT

nγ̂n),

T3 =
1

6
∇T{(β̂n,An

−BT

nγ̂n)
T∇2Ln(β?

n,An
)(β̂n,An

−BT

nγ̂n)}(β̂n,An
−BT

nγ̂n),

T4 =
1

2
(β̂n,An

−BT

nγ̂n)
T∇2Jn(β∗n,An

)(β̂n,An
−BT

nγ̂n).

We have T1 = 0 as ∇TQn(β̂n,An
) = 0.

Let Θn = In(β0
n,An

) and Φn = 1
n
∇Ln(β0

n,An
). By Lemma II.7 we have

(β̂n,An
−BT

nγ̂n)

= Θ−1/2
n {In −Θ1/2

n BT

n(BnΘnB
T

n)−1BnΘ
1/2
n }Θ−1/2

n Φn

+op(n
−1/2).

In −Θ1/2
n BT

n(BnΘnB
T

n)−1BnΘ
1/2
n is an idempotent matrix with rank q. Hence, by

a standard argument and condition (A2),

(β̂n,An
−BT

nγ̂n) = Op(

√
q

n
).

We have

(2.34)

(
1

n
∇2Jn(βn,An

)

)

kjk1j1

= 0, for k 6= k1

and

(
1

n
∇2Jn(β∗n,An

)

)

kjkj1

=
λnwn,kjwn,kj1

4(wn,k1|β∗k1|+ . . . + wn,ksk
|β∗ksk

|)3/2

=
λnwn,kjwn,kj1

4(wn,k1|β0
k1|+ . . . + wn,ksk

|β0
ksk
|)3/2

(1 + op(1))

≤ λn
√

an

4(c1)3/2
(1 + op(1))

= op((nPn)−1/2).(2.35)
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Combining (2.34), (2.35) and condition q < Pn, following the proof of I3 in Theorem

II.4, we have

T3 = Op(nP 3/2
n n−3/2q3/2) = op(1)

and

T4 ≤ n

∥∥∥∥
1

n
∇2Jn(β∗n,An

)

∥∥∥∥ ‖β̂n,An
−BT

nγ̂n‖2

= nPnop((nPn)−1/2)Op(
q

n
)

= op(1).

Thus,

(2.36) Qn(β̂n,An
)−Qn(BT

nγ̂n) = T2 + op(1).

It follows from Lemmas 8 and 9 of [21] that

∥∥∥∥
1

n
∇2Ln(β̂n,An

) + In(β0
n,An

)

∥∥∥∥ = op

(
1√
Pn

)
.

Hence, we have

1

2
(β̂n,An

−BT

nγ̂n)
T{∇2Ln(β̂n,An

) + nIn(β0
n,An

)}(β̂n,An
−BT

nγ̂n)

≤ op

(
n

1√
Pn

)
Op(

q

n
) = op(1).(2.37)

The combination of (2.36) and (2.37) yields (2.33).

Proof of Theorem II.6

The proof of the Theorem is the same as the proof of Theorem 4 in [21] given

Lemmas II.8 and II.9.



CHAPTER III

Partial Correlation Estimation by Joint Sparse Regression
Models

In this chapter, a computationally efficient approach —space(Sparse PArtial Cor-

relation Estimation)— for selecting non-zero partial correlations under the high-

dimension-low-sample-size setting is proposed. This method assumes the overall

sparsity of the partial correlation matrix and employs sparse regression techniques

for model fitting. The performance of space is illustrated by extensive simulation

studies. It is shown that space performs well in both non-zero partial correlation

selection and identification of hub variables, and it also outperforms two existing

methods. We then apply space to a microarray breast cancer data set and iden-

tify a set of hub genes which may provide important insights on genetic regulatory

networks.

3.1 Introduction

There has been a large amount of literature on covariance selection: the identi-

fication and estimation of non-zero entries in the inverse covariance matrix (a.k.a.

concentration matrix or precision matrix ) starting with the seminal paper by Demp-

ster [16]. Covariance selection is very useful in elucidating associations among a set

of random variables, as it is well known that non-zero entries of the concentration

46
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matrix correspond to non-zero partial correlations. Moreover, under Gaussianity,

non-zero entries of the concentration matrix imply conditional dependency between

corresponding variable pairs conditional on the rest of the variables [17]. Traditional

methods do not work unless the sample size (n) is larger than the number of vari-

ables (p) [17, 68]. Recently, a number of methods have been introduced to perform

covariance selection for data sets with p > n [37, 43, 55, 71].

In this chapter, we propose a novel approach using sparse regression techniques

for covariance selection. Our work is partly motivated by the construction of genetic

regulatory networks (GRN) based on high dimensional gene expression data. Denote

the expression levels of p genes as y1, · · · , yp. A concentration network is defined as an

undirected graph, in which the p vertices represent the p genes and an edge connects

gene i and gene j if and only if the partial correlation ρij between yi and yj is non-

zero. Note that, under the assumption that y1, · · · , yp are jointly normal, the partial

correlation ρij equals to Corr(yi, yj|y−(i,j)), where y−(i,j) = {yk : 1 ≤ k 6= i, j ≤ p}.

Therefore, for ρij being nonzero is equivalent to yi and yj being conditionally depen-

dent given all other variables y−(i,j). The proposed method is specifically designed

for the high-dimension-low-sample-size scenario. It relies on the assumption that the

partial correlation matrix is sparse (under normality assumption, this means that

most variable pairs are conditionally independent), which is reasonable for many

real life problems. For instance, it has been shown that most genetic networks are

intrinsically sparse [25, 31, 62]. The proposed method is also particularly powerful

in the identification of hubs : vertices (variables) that are connected to (have nonzero

partial correlations with) many other vertices (variables). The existence of hubs is

a well known phenomenon for many large networks, such as the internet, citation

networks, and protein interaction networks [45]. In particular, it is widely believed
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that genetic pathways consist of many genes with few interactions and a few hub

genes with many interactions [4].

Another contribution of this chapter is to propose active-shooting, a novel algo-

rithm for solving penalized optimization problems such as Lasso [63]. This algorithm

is computationally more efficient than the original shooting algorithm [24]. It en-

ables us to implement the proposed procedure efficiently, such that we can conduct

extensive simulation studies involving ∼ 1000 variables and hundreds of samples.

To our knowledge, this is the first set of intensive simulation studies for covariance

selection with such high dimensions.

A few methods have also been proposed recently to perform covariance selection

in the context of p À n. Similar to the method proposed in this chapter, they

all assume sparsity of the partial correlation matrix. Meinshausen and Buhlmann

[43] introduced a variable-by-variable approach for neighborhood selection via the

Lasso regression. They proved that neighborhoods can be consistently selected under

a set of suitable assumptions. However, as regression models are fitted for each

variable separately, this method has two major limitations. First, it does not take

into account the intrinsic symmetry of the problem (i.e., ρij = ρji). This could

result in a loss of efficiency, as well as contradictory neighborhoods. Secondly, if

the same penalty parameter is used for all p Lasso regressions as suggested by their

paper, more or less equal effort is placed on building each neighborhood. This does

not seem to be the most efficient way to address the problem, unless the degree

distribution of the network is nearly uniform. However, most real life networks have

skewed degree distributions, such as the power-law networks. As observed by Schafer

and Strimmer [55], the neighborhood selection approach limits the number of edges

connecting to each node. Therefore, it is not very effective in hub detection. On the
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contrary, the proposed method is based on a joint sparse regression model, which

simultaneously performs neighborhood selection for all variables. It also preserves

the symmetry of the problem and thus utilizes data more efficiently. We show by

intensive simulation studies that our method performs better in both model selection

and hub identification. Moreover, as a joint model is used, it is easier to incorporate

prior knowledge such as network topology into the model. This is discussed in Section

3.2.1.

Besides the regression approach mentioned above, another class of methods em-

ploy the maximum likelihood framework. Yuan and Lin [71] proposed a penalized

maximum likelihood approach which performs model selection and estimation si-

multaneously and ensures the positive definiteness of the estimated concentration

matrix. However, their algorithm can not handle high dimensional data. The largest

dimension considered by them is p = 10 in simulation and p = 5 in real data. Fried-

man et al. [23] proposed an efficient algorithm glasso to implement this method,

such that it can be applied to problems with high dimensions. We show by simula-

tion studies that, the proposed method performs better than glasso in both model

selection and hub identification. Rothman et al. [51] proposed another algorithm

to implement the method of Yuan and Lin [71]. The computational cost is on the

same order of glasso, but in general not as efficient as glasso. Li and Gui [37] in-

troduced a threshold gradient descent (TGD) regularization procedure. Schafer and

Strimmer [55] proposed a shrinkage covariance estimation procedure to overcome the

ill-conditioned problem of sample covariance matrix when p > n. There are also a

large class of methods covering the situation where variables have a natural order-

ing, e.g., longitudinal data, time series, spatial data, or spectroscopy. These methods

are all based on the modified Cholesky decomposition of the concentration matrix
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[6, 29, 36, 69]. In this chapter, we, however, focus on the general case where an

ordering of the variables is not available.

The rest of this chapter is organized as follows. In Section 3.2, we describe the joint

sparse regression model, its implementation and the active-shooting algorithm. In

Section 3.3, the performance of the proposed method is illustrated through simulation

studies and compared with that of the neighborhood selection approach and the

likelihood based approach glasso. In Section 3.4, the proposed method is applied

to a microarray expression data set of n = 244 breast cancer tumor samples and

p = 1217 genes. A summary of the main results are given in Section 3.5. Technique

details of the algorithm and more simulation results are provided in Appendix B.

3.2 Method

3.2.1 Model

In this section, we describe a novel method for detecting pairs of variables having

nonzero partial correlations among a large number of random variables based on

i.i.d. samples. Suppose that, (y1, · · · , yp)
T has a joint distribution with mean 0

and covariance Σ, where Σ is a p by p positive definite matrix. Denote the partial

correlation between yi and yj by ρij (1 ≤ i < j ≤ p). It is defined as Corr(εi, εj),

where εi and εj are the prediction errors of the best linear predictors of yi and yj

based on y−(i,j) = {yk : 1 ≤ k 6= i, j ≤ p}, respectively. Denote the concentration

matrix Σ−1 by (σij)p×p. It is known that, ρij = − σij√
σiiσjj

. Let y−i := {yk : 1 ≤

k 6= i ≤ p}. The following well-known result (Lemma III.1) relates the estimation of

partial correlations to a regression problem.

Lemma III.1. : For 1 ≤ i ≤ p, yi is expressed as yi =
∑

j 6=i βijyj + εi, such that

εi is uncorrelated with y−i if and only if βij = −σij

σii = ρij
√

σjj

σii . Moreover, for such



51

defined βij, Var(εi) = 1
σii , Cov(εi, εj) = σij

σiiσjj .

Note that, under the normality assumption, ρij = Corr(yi, yj|y−(i,j)) and in Lemma

III.1, we can replace “uncorrelated” by “independent”. Since ρij = sign(βij)
√

βijβji,

the search for non-zero partial correlations can be viewed as a model selection prob-

lem under the regression setting. In this chapter, we are mainly interested in the case

where the dimension p is larger than the sample size n. This is a typical scenario for

many real life problems. For example, high throughput genomic experiments usually

result in data sets of thousands of genes for tens or at most hundreds of samples.

However, many high-dimensional problems are intrinsically sparse. In the case of ge-

netic regulatory networks, it is widely believed that most gene pairs are not directly

interacting with each other. Sparsity suggests that even if the number of variables is

much larger than the sample size, the effective dimensionality of the problem might

still be within a tractable range. Therefore, we propose to employ sparse regression

techniques by imposing the L1-norm penalty on a suitable loss function to tackle the

high-dimension-low-sample-size problem.

Suppose Y k = (yk
1 , · · · , yk

p)T are i.i.d. observations from (0,Σ), for k = 1, · · · , n.

Denote the sample of the ith variable as Y i = (y1
i , · · · , yn

i )T . Based on Lemma III.1,

we propose the following joint loss function

Ln(θ, σ, Y ) =
1

2

( p∑
i=1

wi||Y i −
∑

j 6=i

βijY j||2
)

=
1

2

( p∑
i=1

wi||Y i −
∑

j 6=i

ρij

√
σjj

σii
Y j||2

)
,(3.1)

where θ = (ρ12, · · · , ρ(p−1)p)T , σ = {σii}p
i=1; Y = {Y k}n

k=1; and w = {wi}p
i=1 are

nonnegative weights. For example, we can choose wi = 1/Var(εi) = σii to weigh

individual regressions in the joint loss function according to their residual variances,

as is done in regression with heteroscedastic noise. We propose to estimate the partial
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correlations θ by minimizing a penalized loss function

Ln(θ, σ, Y ) = Ln(θ, σ, Y ) + J (θ),(3.2)

where the penalty term J (θ) controls the overall sparsity of the final estimation of

θ. In this chapter, we focus on the L1-norm penalty [63]:

J (θ) = λ||θ||1 = λ
∑

1≤i<j≤p

|ρij|.(3.3)

The proposed joint method is referred as space (Sparse PArtial Correlation Esti-

mation) hereafter. It is related to the neighborhood selection approach [43] (referred

as MB hereafter), where a Lasso regression is performed separately for each variable

on the rest of the variables. However, space has several important advantages.

(i) In space, sparsity is utilized for the partial correlations θ as a whole view.

However, in the neighborhood selection approach, sparsity is imposed on each

neighborhood. The former treatment is more natural and utilizes the data

more efficiently, especially for networks with hubs. A prominent example is the

genetic regulatory network, where master regulators are believed to exist and

are of great interest.

(ii) According to Lemma III.1, βij and βji have the same sign. The proposed method

assures this sign consistency as it estimates {ρij} directly. However, when fit-

ting p separate (Lasso) regressions, it is possible that sign(β̂ij) is different from

sign(β̂ji), which may lead to contradictory neighborhoods.

(iii) Furthermore, the utility of the symmetric nature of the problem allows us to

reduce the number of unknown parameters in the model by almost half (p(p +

1)/2 for space vs. (p− 1)2 for MB), and thus improves the efficiency.
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(iv) Finally, prior knowledge of the network structure are often available. The joint

model is more flexible in incorporating such prior knowledge. For example,

we may assign different weights wi to different nodes according to their “impor-

tance”. We have already discussed the residual variance weights, where wi = σii.

We can also consider the weight that is proportional to the (estimated) degree

of each variable, i.e., the estimated number of edges connecting with each node

in the network. This would result in a preferential attachment effect which ex-

plains the cumulative advantage phenomena observed in many real life networks

including GRNs [3].

These advantages help enhance the performance of space. As illustrated by the

simulation study in Section 3.3, the proposed joint method performs better than the

neighborhood selection approach in both non-zero partial correlation selection and

hub detection.

As compared to the penalized maximum likelihood approach glasso [23], the

simulation study in Section 3.3 shows that space also outperforms glasso in both

edge detection and hub identification under all settings that we have considered. In

addition, space has the following advantages.

(i) The complexity of glasso is O(p3), while as discussed in Section 3.2.2, the space

algorithm has the complexity of min(O(np2), O(p3)), which is much faster than

the algorithm of Yuan and Lin [71] and in general should also be faster than

glasso when n < p, which is the case in many real studies.

(ii) As discussed in Section 3.5, space allows for trivial generalizations to other

penalties of the form of |ρij|q rather than simply |ρij|, which includes ridge and

bridge [24] or other more complicated penalties like SCAD [20]. The glasso
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algorithm, on the other hand, is tied to the Lasso formulation and cannot be

extended to other penalties in a natural manner.

Note that, in the penalized loss function (3.2), σ needs to be specified. We propose

to estimate θ and σ by a two-step iterative procedure. Given an initial estimate

σ(0) of σ, θ is estimated by minimizing the penalized loss function (3.2), whose

implementation is discussed in Section 3.2.2. Then given the current estimates θ(c)

and σ(c), σ is updated based on Lemma III.1: 1/σ̂ii = 1
n
||Y i−

∑
j 6=i β̂

(c)
ij Y j||2, where

β̂
(c)
ij = (ρij)(c)

√
(σjj)(c)

(σii)(c)
. We then iterate between these two steps until convergence.

Since 1/σii ≤ Var(yi) = σii, we can use 1/σ̂ii as the initial estimate of σii, where

σ̂ii = 1
n−1

∑n
k=1(y

k
i − ȳi)

2 is the sample variance of yi. Our simulation study shows

that, it usually takes no more than three iterations for this procedure to stabilize.

3.2.2 Implementation

In this section, we discuss the implementation of the space procedure: that is,

minimizing (3.2) under the L1-norm penalty (3.3). We first re-formulate the problem,

such that the loss function (3.1) corresponds to the L2-norm loss of a “regression

problem.” We then use the active-shooting algorithm proposed in Section 3.2.3

to solve this Lasso regression problem efficiently.

Given σ and positive weights w, let Y = (Ỹ
T

1 , ..., Ỹ
T

p )T be a np×1 column vector,

where Ỹ i =
√

wiY i (i = 1, · · · , p); and let X = (X̃ (1,2), · · · , X̃ (p−1,p)) be a np by

p(p− 1)/2 matrix, with

X̃ (i,j) = (0, ..., 0,
√

σ̃jj

σ̃ii Ỹ
T

j , 0, ..., 0,
√

σ̃ii

σ̃jj Ỹ
T

i , 0, ..., 0)T

↑ ↑

ithblock jthblock

,

where σ̃ii = σii/wi (i = 1, · · · , p). Then it is easy to see that the loss function
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(3.1) equals to 1
2
||Y −Xθ||22, and the corresponding L1-norm minimization problem

is equivalent to: minθ
1
2
||Y − Xθ||22 + λ||θ||1. Note that, the current dimension

ñ = np and p̃ = p(p − 1)/2 are of a much higher order than the original n and p.

This could cause serious computational problems. Fortunately, X is a block matrix

with many zero blocks. Thus, algorithms for Lasso regressions can be efficiently

implemented by taking into consideration this structure (see Part I of Appendix

B for the detailed implementation). To further decrease the computational cost,

we develop a new algorithm active-shooting (Section 3.2.3) for the space model

fitting. Active-shooting is a modification of the shooting algorithm, which was

first proposed by Fu [24] and then extended by many others including Genkin et al.

[26] and Friedman et al. [22]. Active-shooting exploits the sparse nature of sparse

penalization problems in a more efficient way, and is therefore computationally much

faster. This is crucial for applying space for large p and/or n. It can be shown that

the computational cost of space is min(O(np2), O(p3)), which is the same as applying

p individual Lasso regressions as in the neighborhood selection approach. We want

to point out that, the proposed method can also be implemented by lars [19].

However, unless the exact whole solution path is needed, compared with shooting

type algorithms, lars is computationally less appealing [22].

Finally, note that the concentration matrix should be positive definite. In prin-

ciple, the proposed method (or more generally, the regression based methods) does

not guarantee the positive definiteness of the resulting estimator, while the likelihood

based method by Yuan and Lin [71] and Friedman et al. [23] assures the positive def-

initeness. While admitting that this is one limitation of the proposed method, we

argue that, since we are more interested in model selection than parameter esti-

mation, we are less concerned with this issue. Indeed, the space estimators are
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rarely non-positive-definite under the high dimensional sparse settings that we are

interested in. More discussions on this issue can be found in Section 3.3.

3.2.3 Active Shooting

In this section, we propose a computationally very efficient algorithm active-shooting

for solving Lasso regression problems. Active-shooting is motivated by the shooting

algorithm [24], which solves the Lasso regression by updating each coordinate iter-

atively until convergence. Shooting is computationally very competitive compared

with the well known lars procedure [19]. Suppose that we want to minimize an

L1-norm penalized loss function with respect to β

f(β) =
1

2
||Y −Xβ||22 + γ

∑
j

|βj|,

where Y = (y1, · · · , yn)T , X = (xij)n×p = (X1 : · · · : Xp) and β = (β1, · · · , βp)
T .

The shooting algorithm proceeds as follows:

1. Initial step: for j = 1, · · · , p,

(3.4)
β

(0)
j = arg minβj

{1
2
||Y − βjXj||2 + γ|βj|}

= sign(Y T Xj)
(|Y T Xj |−γ)+

XT
j Xj

,

where (x)+ = xI(x > 0).

2. For j = 1, ..., p, update β(old) −→ β(new) :

(3.5)

β
(new)
i = β

(old)
i , i 6= j;

β
(new)
j = arg minβj

1
2

∥∥∥Y −∑
i6=j β

(old)
i X i − βjXj

∥∥∥
2

+ γ|βj|

= sign
(

(ε(old))T Xj

XT
j Xj

+ β
(old)
j

)(∣∣∣ (ε(old))T Xj

XT
j Xj

+ β
(old)
j

∣∣∣− γ

XT
j Xj

)
+

,

where ε(old) = Y −Xβ(old).

3. Repeat step 2 until convergence.
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At each updating step of the shooting algorithm, we define the set of currently

non-zero coefficients as the active set. Since under sparse models, the active set

should remain small, we propose to first update the coefficients within the active

set until convergence is achieved before moving on to update other coefficients. The

active-shooting algorithm proceeds as follows:

1. Initial step: same as the initial step of shooting.

2. Define the current active set Λ = {k : current βk 6= 0}.

(2.1) For each k ∈ Λ, update βk with all other coefficients fixed at the current

value as in equation (3.5);

(2.2) Repeat (2.1) until convergence is achieved on the active set.

3. For j = 1 to p, update βj with all other coefficients fixed at the current value

as in equation (3.5). If no βj changes during this process, return the current β

as the final estimate. Otherwise, go back to step 2.

Table 3.1: The numbers of iterations required by the shooting algorithm and the active-shooting
algorithm to achieve convergence (n = 100, λ = 2). “coef. #” is the number of non-zero
coefficients

p coef. # shooting active-shooting
200 14 29600 4216
500 25 154000 10570
1000 28 291000 17029

The idea of active-shooting is to focus on the set of variables that is more likely

to be in the model, and thus it improves the computational efficiency by achieving a

faster convergence. We illustrate the improvement of the active-shooting over the

shooting algorithm by a small simulation study of the Lasso regression (generated

in the same way as in Section 5.1 of [22]). The two algorithms result in exact same

solutions. However, as can be seen from Table 3.1, active-shooting takes much

fewer iterations to converge (where one iteration is counted whenever an attempt to
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update a βj is made). In particular, it takes less than 30 seconds (on average) to

fit the space model by active-shooting (implemented in c code) for cases with

1000 variables, 200 samples and when the resulting model has around 1000 non-zero

partial correlations on a server with two Dual/Core, CPU 3 GHz and 4 GB RAM.

This great computational advantage enables us to conduct large scale simulation

studies to examine the performance of the proposed method (Section 3.3).

3.2.4 Tuning

The choice of the tuning parameter λ is of great importance. Since the space

method uses a Lasso criterion, methods that have been developed for selecting the

tuning parameter for Lasso can also be applied to space, such as the GCV [63],

the CV [20], the AIC [11] and the BIC [78]. Several methods have also been pro-

posed for selecting the tuning parameter in the setting of covariance estimation, for

example, the MSE based criterion [55], the likelihood based method [29] and the

cross-validation and bootstrap methods [37]. In this chapter, we propose to use

a “BIC-type” criterion for selecting the tuning parameter mainly due to its sim-

plicity and computational easiness. For a given λ, denote the space estimator by

θ̂λ = {ρ̂ij
λ : 1 ≤ i < j ≤ p} and σ̂λ = {σ̂ii

λ : 1 ≤ i ≤ p}. The corresponding residual

sum of squares for the i-th regression: yi =
∑

j 6=i βijyj + εi is

RSSi(λ) =
n∑

k=1


yk

i −
∑

j 6=i

ρ̂ij
λ

√
σ̂jj

λ

σ̂ii
λ

yk
j




2

.

We then define a “BIC-type” criterion for the i-th regression as

BICi(λ) = n× log(RSSi(λ)) + log n×#{j : j 6= i, ρ̂ij
λ 6= 0}.(3.6)

Finally, we define BIC(λ) :=
∑p

i=1 BICi(λ) and select λ by minimizing BIC(λ).

This method is referred as space.joint hereafter.
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In [71], a BIC criterion is proposed for the penalized maximum likelihood ap-

proach. Namely

(3.7)

BIC(λ) := n×
[
− log |Σ̂−1

λ |+ trace(Σ̂
−1

λ S)
]
+log n×#{(i, j) : 1 ≤ i ≤ j ≤ p, σ̂ij

λ 6= 0},

where S is the sample covariance matrix, and Σ̂
−1

λ = (σ̂ij
λ ) is the estimator under λ.

In this chapter, we refer this method as glasso.like. For the purpose of comparison,

we also consider the selection of the tuning parameter for MB. Since MB essentially

performs p individual Lasso regressions, the tuning parameter can be selected for each

of them separately. Specifically, we use criterion (3.6) (evaluated at the corresponding

MB estimators) to select the tuning parameter λi for the i-th regression. We denote

this method as MB.sep. Alternatively, as suggested by Meinshausen and Buhlmann

[43], when all Y i are standardized to have sample standard deviation one, the same

λ(α) =
√

nΦ−1(1− α
2p2 ) is applied to all regressions. Here, Φ is the standard normal

c.d.f.; α is used to control the false discovery rate and is usually taken as 0.05 or 0.1.

We denote this method as MB.alpha. These methods are examined by the simulation

studies in the next section.

3.3 Simulation

In this section, we conduct a series of simulation experiments to examine the

performance of the proposed method space and compare it with the neighborhood

selection approach MB as well as the penalized likelihood method glasso. For all

three methods, variables are first standardized to have sample mean zero and sample

standard deviation one before model fitting. For space, we consider three different

types of weights: (1) uniform weights: wi = 1; (2) residual variance based weights:

wi = σ̂ii; and (3) degree based weights: wi is proportional to the estimated degree
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of yi, i.e., #{j : ρ̂ij 6= 0, j 6= i}. The corresponding methods are referred as space,

space.sw and space.dew, respectively. For all three space methods, the initial value

of σii is set to be one. Iterations are used for these space methods as discussed in

Section 3.2.1. For space.dew and space.sw, the initial weights are taken to be one

(i.e., equal weights). In each subsequent iteration, new weights are calculated based

on the estimated residual variances (for space.sw) or the estimated degrees (for

space.dew) of the previous iteration. For all three space methods, three iterations

(that is updating between {σii} and {ρij}) are used since the procedure converges

very fast and more iterations result in essentially the same estimator. For glasso,

the diagonal of the concentration matrix is not penalized.

We simulate networks consisting of disjointed modules. This is done because many

real life large networks exhibit a modular structure comprised of many disjointed or

loosely connected components of relatively small size. For example, experiments on

model organisms like yeast or bacteria suggest that the transcriptional regulatory

networks have modular structures [34]. Each of our network modules is set to have

100 nodes and generated according to a given degree distribution, where the degree

of a node is defined as the number of edges connecting to it. We mainly consider two

different types of degree distributions and denote their corresponding networks by

Hub network and Power-law network (details are given later). Given an undirected

network with p nodes, the initial “concentration matrix” (σ̃ij)p×p is generated by

σ̃ij =





1, i = j;

0, i 6= j and no edge between nodes i and j;

∼ Uniform([−1,−0.5] ∪ [0.5, 1]), i 6= j and an edge connecting nodes i and j.

We then rescale the non-zero elements in the above matrix to assure positive definite-

ness. Specifically, for each row, we first sum the absolute values of the off-diagonal
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entries, and then divide each off-diagonal entry by 1.5 fold of the sum. We then

average this re-scaled matrix with its transpose to ensure symmetry. Finally the

diagonal entries are all set to be one. This process results in diagonal dominance.

Denote the final matrix as A. The covariance matrix Σ is then determined by

Σ(i, j) = A−1(i, j)/

√
A−1(i, i)A−1(j, j).

Finally, i.i.d. samples {Y k}n
k=1 are generated from Normal(0,Σ). Note that, Σ(i, i) =

1, and Σ−1(i, i) = σii ≥ 1.

Hub networks In the first set of simulations, module networks are generated by

inserting a few hub nodes into a very sparse graph. Specifically, each module consists

of three hubs with degrees around 15, and the other 97 nodes with degrees at most

four. This setting is designed to mimic the genetic regulatory networks where there

exist a few hub genes, and most other genes have only a few edges. A network

consisting of such modules is shown in Figure 3.1(a). In this network, there are

p = 500 nodes and 568 edges. The simulated non-zero partial correlations fall in

(−0.67,−0.1] ∪ [0.1, 0.67), with two modes around -0.28 and 0.28. Based on this

network and the partial correlation matrix, we generate 50 independent data sets

each consisting of n = 250 i.i.d. samples.

We then evaluate each method at a series of different values of the tuning param-

eter λ. The number of total detected edges (Nt) decreases as λ increases. Figure

3.2(a) shows the number of correctly detected edges (Nc) vs. the number of total

detected edges (Nt) averaged across the 50 independent data sets for each method.

We observe that all three space methods (space, space.sw and space.dew) consis-

tently detect more correct edges than the neighborhood selection method MB (except

for space.sw when Nt < 470) and the likelihood based method glasso. MB performs

favorably over glasso when Nt is relatively small (say less than 530), but performs
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(a) Hub network: 500 nodes and 568 edges. 15 nodes (in black) have
degrees of around 15.
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(b) Power-law network: 500 nodes and 495 edges. 3 nodes (in black)
have degrees at least 20.

Figure 3.1: Topology of simulated networks.
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worse than glasso when Nt is large. Overall, space.dew is the best among all meth-

ods. Specifically, when Nt = 568 (which is the number of true edges), space.dew

detects 501 correct edges on average with a standard deviation 4.5 edges. The cor-

responding sensitivity and specificity are both 88%, where through out this section

sensitivity is defined as number of correctly detected edges/total number of true

edges, and specificity is defined as number of correctly detected edges/number of

total detected edges. On the other hand, MB and glasso detect 472 and 480 correct

edges on average, respectively, when the number of total detected edges Nt being

568.

In terms of hub detection, for a given Nt, a rank is assigned to each variable

yi based on its estimated degree (the larger the estimated degree, the smaller the

rank value). We then calculate the average rank of the 15 true hub nodes for each

method. The results are shown in Figure 3.2(b). This average rank would achieve

the minimum value 8 (indicated by the grey horizontal line), if the 15 true hubs

have larger estimated degrees than all other non-hub nodes. As can be seen from

the figure, the average rank curves (as a function of Nt) for the three space methods

are very close to the optimal minimum value 8 for a large range of Nt. This suggests

that these methods can successfully identify most of the true hubs. Indeed, for

space.dew, when Nt equals to the number of true edges (568), the top 15 nodes with

the highest estimated degrees contain at least 14 out of the 15 true hub nodes in all

replicates. On the other hand, both MB and glasso identify far fewer hub nodes, as

their corresponding average rank curves are much higher than the grey horizontal

line.

To investigate the impact of dimensionality p and sample size n, we perform

simulation studies for a larger dimension with p = 1000 and various sample sizes
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Figure 3.2: Simulation results for Hub network.
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Table 3.2: Power (sensitivity) of space.dew , MB and glasso in identifying correct edges when FDR
is controlled at 0.05.

Network p n space.dew MB glasso

Hub-network 500 250 0.844 0.784 0.655
200 0.707 0.656 0.559

Hub-network 1000 300 0.856 0.790 0.690
500 0.963 0.894 0.826

Power-law network 500 250 0.704 0.667 0.580

with n = 200, 300 and 500. The simulated network includes ten disjointed modules

of size 100 each and has 1163 edges in total. Non-zero partial correlations form

a similar distribution as that of the p = 500 network discussed above. The ROC

curves for space.dew, MB and glasso resulted from these simulations are shown in

Figure 3.3. When false discovery rate (=1-specificity) is controlled at 0.05, the power

(=sensitivity) for detecting correct edges is given in Table 3.2. From the figure and

the table, we observe that the sample size has a big impact on the performance of all

methods. For p = 1000, when the sample size increases from 200 to 300, the power of

space.dew increases more than 20%; when the sample size is 500, space.dew achieves

an impressive power of 96%. On the other hand, the dimensionality seems to have

relatively less influence. When the total number of variables is doubled from 500 to

1000, with only 20% more samples (that is p = 500, n = 250 vs. p = 1000, n = 300),

all three methods achieve similar powers. This is presumably because the larger

network (p = 1000) is sparser than the smaller network (p = 500) and also the

complexity of the modules remains unchanged. Finally, it is obvious from Figure 3.3

that, space.dew performs best among the three methods.

We then investigate the performance of these methods at the selected tuning

parameters (see Section 3.2.4 for details). For the above Hub network with p = 1000

nodes and n = 200, 300, 500, the results are reported in Table 3.3. As can be seen

from the table, BIC based approaches tend to select large models (compared to the
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Table 3.3: Edge detection under the selected tuning parameter λ. For average rank, the optimal
value is 15.5. For MB.alpha, α = 0.05 is used.

Sample size Method Total edge detected Sensitivity Specificity Average rank

space.joint 1357 0.821 0.703 28.6
n = 200 MB.sep 1240 0.751 0.703 57.5

MB.alpha 404 0.347 1.00 175.8
glasso.like 1542 0.821 0.619 35.4

space.joint 1481 0.921 0.724 18.2
n = 300 MB.sep 1456 0.867 0.692 30.4

MB.alpha 562 0.483 1.00 128.9
glasso.like 1743 0.920 0.614 21

space.joint 1525 0.980 0.747 16.0
n = 500 MB.sep 1555 0.940 0.706 16.9

MB.alpha 788 0.678 1.00 52.1
glasso.like 1942 0.978 0.586 16.5
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Figure 3.3: Hub network: ROC curves for different samples sizes (p = 1000).
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true model which has 1163 edges). space.joint and MB.sep perform similarly in

terms of specificity, and glasso.like works considerably worse than the other two in

this regard. On the other hand, space.joint and glasso.like performs similarly

in terms of sensitivity, and are better than MB.sep on this aspect. In contrast,

MB.alpha selects very small models and thus results in very high specificity, but very

low sensitivity. In terms of hub identification, space.joint apparently performs

better than other methods (indicated by a smaller average rank over 30 true hub

nodes). Moreover, the performances of all methods improve with sample size.

Power-law networks Many real world networks have a power-law (also a.k.a scale-

free) degree distribution with an estimated power parameter α = 2 ∼ 3 [45]. Thus,

in the second set of simulations, the module networks are generated according to a

power-law degree distribution with the power-law parameter α = 2.3, as this value is

close to the estimated power parameters for biological networks [45]. Figure 3.1(b)

illustrates a network formed by five such modules with each having 100 nodes. It

can be seen that there are three obvious hub nodes in this network with degrees of at

least 20. The simulated non-zero partial correlations fall in the range (−0.51,−0.08]∪

[0.08, 0.51), with two modes around -0.22 and 0.22. Similar to the simulation done

for Hub networks, we generate 50 independent data sets each consisting of n = 250

i.i.d. samples. We then compare the number of correctly detected edges by various

methods. The result is shown in Figure 3.4. On average, when the number of total

detected edges equals to the number of true edges which is 495, space.dew detects

406 correct edges, while MB detects only 378 and glasso detects only 381 edges. In

terms of hub detection, all methods can correctly identify the three hub nodes for

this network.

These simulation results suggest that when the (concentration) networks are rea-
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Figure 3.4: Simulation results for Power-law network. x-axis: the number of total detected edges;
y-axis: the number of correctly identified edges. The vertical grey line corresponds to
the number of true edges.

sonably sparse, we should be able to characterize their structures with only a couple-

of-hundreds of samples when there are a couple of thousands of nodes. In addition,

space.dew outperforms MB by at least 6% on the power of edge detection under all

simulation settings above when FDR is controlled at 0.05, and the improvements are

even larger when FDR is controlled at a higher level say 0.1 (see Figure 3.3). Also,

compared to glasso, the improvement of space.dew is at least 15% when FDR is

controlled at 0.05, and the advantages become smaller when FDR is controlled at a

higher level (see Figure 3.3). Moreover, the space methods perform much better in

hub identification than both MB and glasso. We have also applied space methods,

MB and glasso on networks with nearly uniform degree distributions generated by

following the simulation procedures in the paper of Meinshausen and Buhlmann [43],

as well as the AR network discussed by Friedman et al. [23], Yuan and Lin [71]. For
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these cases, the space methods perform comparably, if not better than, the other

two methods. However, for these networks without hubs, the advantages of space

become smaller compared to the results on the networks with hubs. The detailed

results are shown in Part II of Appendix B.

We conjecture that, under the sparse and high dimensional setting, the superior

performance in model selection of the regression based method space over the penal-

ized likelihood method is partly due to its simpler quadratic loss function. Moreover,

since space ignores the correlation structure of the regression residuals, it amounts

to a greater degree of regularization, which may render additional benefits under the

sparse and high dimensional setting.

In terms of parameter estimation, we compare the entropy loss of the three meth-

ods. We find that, they perform similarly when the estimated models are of small

or moderate size. When the estimated models are large, glasso generally performs

better in this regard than the other two methods. Since the interest of this chapter

lies in model selection, detailed results of parameter estimation are not reported here.

As discussed earlier, one limitation of space is its lack of assurance of positive

definiteness. However, for simulations reported above, the corresponding estimators

we have examined (over 3000 in total) are all positive definite. To further investigate

this issue, we design a few additional simulations. We first consider a case with

a similar network structure as the Hub network, however having a nearly singular

concentration matrix (the condition number is 16, 240; as a comparison, the condition

number for the original Hub network is 62). For this case, the estimate of space

remains positive definite until the number of total detected edges increases to 50, 000;

while the estimate of MB remains positive definite until the number of total detected

edges is more than 23, 000. Note that, the total number of true edges of this model
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is only 568, and the model selected by space.joint has 791 edges. In the second

simulation, we consider a denser network (p = 500 and the number of true edges

is 6, 188) with a nearly singular concentration matrix (condition number is 3, 669).

Again, we observe that, the space estimate only becomes non-positive-definite when

the estimated models are huge (the number of detected edges is more than 45, 000).

This suggests that, for the regime we are interested in in this chapter (the sparse

and high dimensional setting), non-positive-definiteness does not seem to be a big

issue for the proposed method, as it only occurs when the resulting model is huge

and thus very far away from the true model. As long as the estimated models are

reasonably sparse, the corresponding estimators by space remain positive definite.

We believe that this is partly due to the heavy shrinkage imposed on the off-diagonal

entries in order to ensure sparsity.

Finally, we investigate the performance of these methods when the observations

come from a non-normal distribution. Particularly, we consider the multivariate tdf -

distribution with df = 3, 6, 10. The performances of all three methods deteriorate

compared to the normal case, however the overall picture in terms of relative per-

formance among these methods remains essentially unchanged (detailed results not

shown).
3.4 Application

More than 500,000 women die annually of breast cancer world wide. Great efforts

are being made to improve the prevention, diagnosis and treatment for breast cancer.

Specifically, in the past couple of years, molecular diagnostics of breast cancer have

been revolutionized by high throughput genomics technologies. A large number of

gene expression signatures have been identified (or even validated) to have potential

clinical usage. However, since breast cancer is a complex disease, the tumor process
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cannot be understood by only analyzing individual genes. There is a pressing need to

study the interactions between genes, which may well lead to better understanding

of the disease pathologies.

In a recent breast cancer study, microarray expression experiments were conducted

for 295 primary invasive breast carcinoma samples [14, 66]. Raw array results and

patient clinical outcomes for 244 of these samples are available on-line and are used in

this chapter. Data can be downloaded at http://microarray-pubs.stanford.edu/

wound NKI/explore.html. To globally characterize the association among thou-

sands of mRNA expression levels in this group of patients, we apply the space

method on this data set as follows. First, for each expression array, we perform the

global normalization by centering the mean to zero and scaling the median abso-

lute deviation to one. Then we focus on a subset of p = 1217 genes/clones whose

expression levels are significantly associated with tumor progression (p-values from

univariate Cox models < 0.0008, corresponding FDR = 0.01). We estimate the par-

tial correlation matrix of these 1217 genes with space.dew for a series of λ values.

The degree distribution of the inferred network is heavily skewed to the right. Specif-

ically, when 629 edges are detected, 598 out of the 1217 genes do not connect to any

other genes, while five genes have degrees of at least 10. The power-law parameter

of this degree distribution is α = 2.56 , which is consistent with the findings in the

literature for GRNs [45]. The topology of the inferred network is shown in Figure

3.5(a), which supports the statement that genetic pathways consist of many genes

with few interactions and a few hub genes with many interactions.

We then search for potential hub genes by ranking nodes according to their de-

grees. There are 11 candidate hub genes whose degrees consistently rank the highest

under various λ (see Figure 3.5(b)). Among these 11 genes, five are important
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known regulators in breast cancer. For example, HNF3A (also known as FOXA1 ) is

a transcription factor expressed predominantly in a subtype of breast cancer, which

regulates the expression of the cell cycle inhibitor p27kip1 and the cell adhesion

molecule E-cadherin. This gene is essential for the expression of approximately 50%

of estrogene-regulated genes and has the potential to serve as a therapeutic target

[44]. Except for HNF3A, all the other 10 hub genes fall in the same big network com-

ponent related to cell cycle/proliferation. This is not surprising as it is well-agreed

that cell cycle/proliferation signature is prognostic for breast cancer. Specifically,

KNSL6, STK12, RAD54L and BUB1 have been previously reported to play a role

in breast cancer: KNSL6 (also known as KIF2C ) is important for anaphase chro-

mosome segregation and centromere separation, which is overexpressed in breast

cancer cells but expressed undetectably in other human tissues except testis [58];

STK12 (also known as AURKB) regulates chromosomal segregation during mitosis

as well as meiosis, whose LOH contributes to an increased breast cancer risk and

may influence the therapy outcome [61]; RAD54L is a recombinational repair pro-

tein associated with tumor suppressors BRCA1 and BRCA2, whose mutation leads

to defect in repair processes involving homologous recombination and triggers the

tumor development [41]; in the end, BUB1 is a spindle checkpoint gene and belongs

to the BML-1 oncogene-driven pathway, whose activation contributes to the survival

life cycle of cancer stem cells and promotes tumor progression. The roles of the other

six hub genes in breast cancer are worth of further investigation. The functions of

all hub genes are briefly summarized in Table 3.4.
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(a) Network inferred from the real data (only showing components with at least
three nodes). The gene annotation of the hub nodes (numbered) are given in
Table 3.4.
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(b) Degree ranks (for the 100 genes with highest degrees). Different circles
represent different genes. Solid circles: the 11 genes with highest degrees.
Circles: the other genes. The sd(rank) of the top 11 genes are all smaller
than 4.62 (4.62 is the 1% quantile of sd(rank) among all the 1217 genes),
and thus are identified as hub nodes.

Figure 3.5: Results for the breast cancer expression data set.
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Table 3.4: Annotation of hub genes
Index Gene Symbol Summary Function (GO)

1 CENPA Encodes a centromere protein (nucleosome assembly)
2 NA. Annotation not available
3 KNSL6 Anaphase chromosome segregation (cell proliferation)
4 STK12 Regulation of chromosomal segregation (cell cycle)
5 NA. Annotation not available
6 URLC9 Annotation not available (up-regulated in lung cancer)
7 HNF3A Transcriptional factor activity (epithelial cell differentiation)
8 TPX2 Spindle formation (cell proliferation)
9 RAD54L Homologous recombination related DNA repair (meiosis)
10 ID-GAP Stimulate GTP hydrolysis (cell cycle)
11 BUB1 Spindle checkpoint (cell cycle)

3.5 Summary

In this chapter, we propose a joint sparse regression model – space – for selecting

non-zero partial correlations under the high-dimension-low-sample-size setting. By

controlling the overall sparsity of the partial correlation matrix, space is able to

automatically adjust for different neighborhood sizes and thus to utilize data more

effectively. The proposed method also explicitly employs the symmetry among the

partial correlations, which also helps to improve efficiency. Moreover, this joint

model makes it easy to incorporate prior knowledge about network structure. We

develop a fast algorithm active-shooting to implement the proposed procedure,

which can be readily extended to solve some other penalized optimization problems.

We also propose a “BIC-type” criterion for the selection of the tuning parameter.

With extensive simulation studies, we demonstrate that this method achieves good

power in non-zero partial correlation selection as well as hub identification, and also

performs favorably compared to two existing methods. The impact of the sample

size and dimensionality has been examined on simulation examples as well. We then

apply this method on a microarray data set of 1217 genes from 244 breast cancer

tumor samples, and find 11 candidate hubs, of which five are known breast cancer
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related regulators.

3.6 Appendix B

Part I

In this section, we provide details for the implementation of space which takes

advantage of the sparse structure of X . Denote the target loss function as

(3.8) f(θ) =
1

2
‖Y −Xθ‖2 + λ1

∑
i<j

|ρij|.

Our goal is to find θ̂ = argminθf(θ) for a given λ1. We will employ active-shooting

algorithm (Section 2.3) to solve this optimization problem.

Without loss of generality, we assume mean(Y i) = 1/n
∑n

k=1 yk
i = 0 for i =

1, . . . , p. Denote ξi = Y T
i Y i. We have

X T
(i,j)X (i,j) = ξj

σjj

σii
+ ξi

σii

σjj
;

YT X (i,j) =

√
σjj

σii
Y T

i Y j +

√
σii

σjj
Y T

j Y i.

Denote ρij = ρ(i,j). We now present details of the initialization step and the updating

steps in the active-shooting algorithm.

1. Initialization

Let

(3.9)

ρ
(0)
(i,j) =

(|YT X (i,j)|−λ1)
+
·sign(YT X (i,j))

X T
(i,j)X (i,j)

=

„˛̨
˛̨
q

σjj

σii Y T
i Y j+

q
σii

σjj Y T
j Y i

˛̨
˛̨−λ1

«

+

·sign(Y T
i Y j)

ξj
σjj

σii +ξi
σii

σjj

.

For j = 1, . . . , p, compute

(3.10) Ŷ
(0)

j =

(√
σ11

σjj
Y 1, ...,

√
σpp

σjj
Y p

)
·




ρ
(0)
(1,j)

...

ρ
(0)
(p,j)




,
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and

(3.11) E(0) = Y − Ŷ (0)
=

(
(E

(0)
1 )T , ..., (E(0)

p )T
)

,

where E
(0)
j = Y j − Ŷ

(0)

j , for 1 ≤ j ≤ p.

2. Update ρ
(0)
(i,j) −→ ρ

(1)
(i,j)

Let

(3.12) A(i,j) = (E
(0)
j )T ·

√
σii

σjj
Y i,

(3.13) A(j,i) = (E
(0)
i )T ·

√
σjj

σii
Y j.

We have

(3.14)
(E(0))T X (i,j) = (E

(0)
i )T ·

√
σjj

σii Y j + (E
(0)
j )T ·

√
σii

σjj Y i

= A(j,i) + A(i,j).

It follows

(3.15)

ρ
(1)
(i,j) = sign

(
(E(0))T X

(i,j)

X T
(i,j)X (i,j)

+ ρ
(0)
(i,j)

)(∣∣∣∣
(E(0))T X

(i,j)

X T
(i,j)X (i,j)

+ ρ
(0)
(i,j)

∣∣∣∣− λ1

X T
(i,j)X (i,j)

)

+

= sign

(
A(j,i)+A(i,j)

ξj
σjj

σii +ξi
σii

σjj

+ ρ
(0)
(i,j)

)(∣∣∣∣
A(j,i)+A(i,j)

ξj
σjj

σii +ξi
σii

σjj

+ ρ
(0)
(i,j)

∣∣∣∣− λ1

ξj
σjj

σii +ξi
σii

σjj

)

+

.

3. Update ρ(t) −→ ρ(t+1)

From the previous iteration, we have

• E(t−1): residual in the previous iteration (np× 1 vector).

• (i0, j0): index of coefficient that is updated in the previous iteration.

• ρ
(t)
(i,j) =





ρ
(t−1)
(i,j) if (i, j) 6= (i0, j0), nor (j0, i0)

ρ
(t−1)
(i,j) −∆ if (i, j) = (i0, j0), or (j0, i0)
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Then,

(3.16)

E
(t)
k = E

(t−1)
k for k 6= i0, j0;

E
(t)
j0

= E
(t−1)
j0

+ Ŷ
(t−1)

j0
− Ŷ

(t)

j0

= E
(t−1)
j0

+
∑p

i=1

√
σii

σj0j0
Y i(ρ

(t−1)
(i,j0) − ρ

(t)
(i,j0))

= E
(t−1)
j0

+
√

σi0i0

σj0j0
Y i0 ·∆;

E
(t)
i0

= E
(t−1)
i0

+
√

σj0j0

σi0i0
Y j0 ·∆.

Suppose the index of the coefficient we would like to update in this iteration is (i1, j1),

then let

A(i1,j1) = (E
(t)
j1

)T ·
√

σi1i1

σj1j1
Y i1 ,

A(j1,i1) = (E
(t)
i1

)T ·
√

σj1j1

σi1i1
Y j1 .

We have

(3.17)

ρ
(t+1)
(i,j) = sign

(
A(j1,i1)+A(i1,j1)

ξj
σj1j1

σi1i1
+ξi1

σi1i1

σj1j1

+ ρ
(t)
(i1,j1)

)

×
(∣∣∣∣

A(j1,i1)+A(i1,j1)

ξj
σj1j1

σi1i1
+ξi1

σi1i1

σj1j1

+ ρ
(t)
(i1,j1)

∣∣∣∣− λ1

ξj
σjj

σii +ξi
σii

σjj

)

+

.

Using the above steps 1–3, we have implemented the active-shooting algorithm

in c, and the corresponding R package space to fit the space model is available on

cran.

Part II

In this section we apply space, MB and glasso on several examples used by Yuan

and Lin [71], Meinshausen and Buhlmann [43], and Friedman et al. [23].

(a) Chain network AR(1) [23, 71]

We consider an AR(1) model with p = 500, n = 250. The concentration matrix

is as follows: σii = 1; σij is 0.25 for |i−j| = 1 and 0 otherwise. We then calculate
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the covariance matrix and re-scale it to have diagonal 1. The condition number

of the resulting concentration matrix is 3. The number of true edges in the

corresponding network is 499 (a chain shape). We apply space, MB and glasso

for a large range of tuning parameters, such that the sizes of the estimated

models vary from 300 to 550. All the estimated concentration matrices by

space and MB are positive definite. The results are shown in Figure 3.6.

(b) Circle network

We consider a Circle network with p = 500, n = 250. The concentration

matrix is as follows: σii = 1; σi,i−1 = σi−1,i = 0.3; and σ1,n = σn,1 = 0.3.

We then calculate the covariance matrix and re-scale it to diagonal 1. The

condition number of the resulting matrix is 4. The number of true edges in the

corresponding network is 500. We apply space, MB and glasso for a large range

of tuning parameters, such that the sizes of the estimated models vary from 300

to 650. All the estimated concentration matrices by space and MB are positive

definite. The results are shown in Figure 3.7.

(c) Uniform network [23, 43]

We consider a network similarly as the one used by Meinshausen and Buhlmann

[43] with p = 500, n = 250. We first generate p points uniformly on the two-

dimensional unit square [0, 1]2. Then we draw an edge between each pair of

nodes with a probability of ϕ(d/
√

p), where d is the Euclidean distance between

the pair of variables and ϕ is the density of the standard normal distribution.

Then, for each node, if its degree k is larger than 4, we randomly remove k − 4

edges connecting to this node. We repeat this process until the maximum degree

of the network is 4. Then we set σii = 1, σij = 0.245 if there is an edge between
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(i, j), and σij = 0 otherwise. In the end, we re-scale the covariance matrix

such that the diagonal elements are 1. The condition number of the resulting

matrix is 6.6. The number of true edges in the corresponding network is 447.

We apply space, MB and glasso for a large range of tuning parameters, such

that the sizes of the estimated models vary from 300 to 550. All the estimated

concentration matrices by space and MB are positive definite. The results are

shown in Figure 3.8.

As expected, in all the above simulations, the estimates of space are always

positive definite (at least within the range that we have examined), as these examples

are all well conditioned. Moreover, for these networks without hubs, the performance

of space is at least comparable to, if not better than, the performance of MB and

glasso.
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Figure 3.6: Chain network (AR(1)). x-axis: the number of total detected edges; y-axis: the number
of correctly identified edges. The vertical grey line corresponds to the number of true
edges.
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Figure 3.7: Circle network . x-axis: the number of total detected edges; y-axis: the number of
correctly identified edges. The vertical grey line corresponds to the number of true
edges.
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Figure 3.8: Uniform network . x-axis: the number of total detected edges; y-axis: the number
of correctly identified edges. The vertical grey line corresponds to the number of true
edges.



CHAPTER IV

Sparse Regulation Networks

In many organisms the expression levels of each gene are controlled by the activa-

tion levels of known “Transcription Factors” (TF). A problem of considerable interest

is that of estimating the “Transcription Regulation Networks” (TRN) relating the

TFs and genes. While the expression levels of genes can be observed, the activation

levels of the corresponding TFs are usually unknown; greatly increasing the difficulty

of the problem. Based on previous experimental work it is often the case that partial

information about the TRN is available. For example, certain TFs may be known to

regulate a given gene or in other cases a connection may be predicted with a certain

probability. In general the biology of the problem indicates there will be very few

connections between TFs and genes. Several methods have been proposed for esti-

mating TRNs, however, they all suffer from problems such as unrealistic assumptions

about prior knowledge of the network structure or computational limitations. We

propose a new approach that can directly utilize prior information about the network

structure in conjunction with observed gene expression data to estimate the TRN.

Our approach uses L1-norm penalties on the network to ensure a sparse structure.

This has the advantage of being computationally efficient as well as making many

fewer assumptions about the network structure. We use our methodology to con-

81
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struct the TRN for E. coli and show that the estimate is biologically sensible and

compares favorably with previous estimates.

4.1 Introduction

Figure 4.1: A general network with L = 3 transcription factors and n = 7 genes.

p1 p2 p3

e1 e2 e3 e4 e5 e6 e7

Recent progress in genomic technology allows scientists to gather vast and de-

tailed information on DNA sequences, their variability, the timing and modality of

their translation into proteins, and their abundance and interacting partners. The

fields of system and computational biology have been redefined by the scale and res-

olution of these datasets and the necessity to interpret this data deluge. One theme

that has clearly emerged is the importance of discovering, modeling, and exploiting

interactions among different biological molecules. In some cases, these interactions

can be measured directly, in others they can be inferred from data on the interact-

ing partners. In this context, reconstructing networks, analyzing their behavior and

modeling their characteristics have become fundamental problems in computational

biology.

Depending on the type of biological process considered, and the type of data

available, different network structures and different graph properties are relevant. In
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this work we focus on one type of bipartite network that has been used to model

transcription regulation, among other processes, and is illustrated in Figure 4.1. One

distinguishes input (p1, p2, p3 in Figure 4.1) and output nodes (e1, . . . , e7 in Figure

4.1); directed edges connect input nodes to one or more output nodes and indicate

control. Furthermore, we can associate a numerical value with each edge, which

indicates the nature and strength of the control. The topology of this network can

be described with a 0-1 matrix Z with as many rows as the output nodes and as

many columns as the input nodes, and where zij = 1 if there is a direct edge from

input node j to output node i. An analogous matrix A can be used to store the

numerical information on the strength of the control, when this is available.

Bipartite networks such as the one illustrated in Figure 4.1 have been successfully

used to describe and analyze transcription regulation [39]. Transcription is the initial

step of the process where by the information stored in genes is used by the cell to

assemble proteins. To adapt to different cell functions and different environmental

conditions, only a small number of the genes in the DNA are transcribed at any given

time. Understanding this selective process is the first step towards understanding

how the information statically coded in DNA dynamically governs all cell life. One

critical role in the regulation of this process is played by transcription factors. These

molecules bind in the promoter region of the genes, facilitating or making it impos-

sible for the transcription machinery to access the relevant portion of the DNA. To

respond to different environments, transcription factors have multiple chemical con-

figurations, typically existing both in “active” and “inactive” forms. Their binding

affinity to the DNA regulatory regions vary depending on the particular chemical

configuration, allowing for a dynamic regulation of transcription. Depending on the

complexity of the organism at hand, the total number of transcription factors (TFs)
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varies, as well as the number of TFs participating to the regulation of each gene.

In bipartite networks such as the one in Figure 4.1, input nodes can be taken to

represent the variable concentrations in the active form of transcription factors, and

output nodes as the transcript amounts of different genes. An edge connecting a TF

to a gene indicates that the TF participates in the control of the gene transcription.

As usual, mathematical stylization only captures a simplified version of reality. Bi-

partite graphs overlook some specific mechanisms of transcription regulation, such as

self-regulation of TF expression or feed-back loops connecting genes to transcription

factors. Despite these limitations, networks such as the one in Figure 4.1 provide a

useful representation of a substantial share of the biological process.

Researchers interested in reconstructing transcription regulation have at their

disposal a variety of measurement types, which in turn motivate diverse estima-

tion strategies. The data set that motivated the development of our methodology

consisted of measurements of gene transcription levels for E. coli, obtained from a

collection of 35 gene expression arrays. These experiments, relatively cheap and fairly

common, allow one to quantify transcription amounts for all the genes in the E. coli

genome, under diverse cell conditions. While our data consists of measurements on

the the output nodes i.e. the gene expression levels, we also have access to some

information on the topology of the network: DNA sequence analysis or ChIP-chip

experiments can be used to evaluate the likelihood of each possible edge. However,

we have no direct measurements of the input nodes i.e. the concentrations of the

active form of the TFs. While, in theory, it is possible to obtain these measurements,

they are extremely expensive and are typically unavailable. Changes in transcription

of TF are measured with gene expression arrays, but these are usually very limited

and responsible for a portion of gene expression variation that we do not aim to
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analyze (one classical example is cell-cycle induced differences).

Our E. coli data consist of spotted array experiments with two dyes, which mea-

sure the changes in expression from a baseline level for the queried genes (taking the

logarithm of the ratio of intensities, typically reported as raw data). These percent-

age changes can be related linearly to variations in the concentrations of the active

form of the transcription factors [39]. Coupling this linearity assumption, with the

bipartite network structure, we model the log-transformed expressions of gene i in

experiment t, eit, as

eit =
L∑

j=1

aijpjt + εit, i = 1, . . . , n, t = 1, . . . , T

where n, L and T denote the number of genes, TFs, and experiments respectively;

aij represents the control strength of transcription factor j on gene i; pjt the concen-

tration of transcription factor j in experiment t; and εit captures i.i.d. measurement

errors and biological variability. A value of aij = 0 indicates that there is no network

connection, or equivalently no relationship, between gene i and TF j while non-zero

values imply that changes in the TF affect the gene’s expression level. It is convenient

to formulate the model in matrix notation,

(4.1) E = AP + ε,

where E is an n× T matrix of eit’s, A is an n×L matrix of aij’s and P is an L× T

matrix of pjt’s. A and P are both unknown quantities.

A number of variants of model (4.1) have been applied to the study of gene

expression data. The first attempts utilized dimension reduction techniques such

as principal component analysis or singular value decomposition [1]. Using this

approach a unique solution to simultaneously estimate the pj’s and the strength

of the network connections is obtained by assuming orthogonality of the pj’s–an
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assumption that does not have biological motivations. An interesting development is

the use of Independent Component Analysis, where the orthogonality assumption is

substituted by stochastic independence [33]. These models can be quite effective in

providing a dimensionality reduction, but the resulting P ’s often lack interpretability.

When the gene expression data refers to a series of experiments in a meaningful

order (temporal, by degree of exposure, etc), model (4.1) can be considered as the

emission component of a state space model, where hidden states can be meaningfully

connected to transcription factors [5, 38, 54]. Depending on the amount of knowledge

assumed on the A matrix, state space models can deal with networks of different

size and complexities.

Values of the factors, P , that are clearly interpretable as changes in concentration

of transcription factors together with the identifiability of model (4.1) can be achieved

by imposing restrictions on A that reflect available knowledge on the topology of the

network. Liao et al. [39] assume the entire network structure is known a priori

and gives conditions for identifiability of A and P based on the pattern of zeros

in A, reflecting the natural sparsity of the system. A simple iterative least squares

procedure is proposed for estimation, and the bootstrap used to asses variability.

This approach has two substantial limitations. First, it assumes that the entire

network structure is known, while in practice it is most common for only parts of

the structure to have been thoroughly studied. Second, not all known transcription

networks satisfy the identifiability conditions. A number of subsequent contribu-

tions have addressed some of these limitations. Tran et al. [64] introduce other,

more general, identifiability conditions; Yu and Li [70] propose an alternative esti-

mation procedure for the factor model; Brynildsen et al. [10] explore the effect of

inaccurate specification of the network structure; Chang et al. [13] propose a faster
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algorithm. Particularly relevant to this chapter is the work of Sabatti and James

[52], which removes both limitations of the method of Liao et al. [39] by using a

Bayesian approach. The authors obtain a prior probability on the network structure

using sequence analysis, and then use a Gibbs sampler to produce posterior estimates

of the TRN. In theory, this approach can be applied to any network structure, even

when only part of the structure is known. However, a significant limitation is that

the computational effort required to implement the Gibbs sampler grows exponen-

tially with the number of potential connections between a particular gene and the

transcription factors. As a result, one is forced to choose a prior on the network

where the probability of most edges is set to zero, thereby fixing a priori a large

portion of the topology. While sparsity in the connections is biologically reasonable,

it would obviously be more desirable to allow the gene expression data to directly

identify the connections.

To overcome these limitations, we take a somewhat different approach in this

chapter that builds in the same advantages as the Bayesian approach in terms of

utilizing partial network information and working on any structure. However, our

approach is more computationally efficient, which allows increased flexibility in de-

termining the final network topology. We treat the estimation of both the connection

strengths, A, and the transcription factors concentrations, P , as a variable selection

problem. In this context, our data has an extremely large number of variables, i.e.

potential connections, but is sparse in terms of the number of “true” variables, i.e.

connections that actually exist. There have recently been important methodological

innovations for this type of variable selection problem. A number of these methods

involve the use of an L1-norm penalty on the regression coefficients which has the

effect of performing automatic variable selection. A few examples include the Lasso
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[63], the adaptive Lasso [76], SCAD [20], the Elastic Net [77], the Dantzig selector

[12], the Relaxed Lasso [42], VISA [50], and the Double Dantzig [30]. The most well

known of these approaches is the Lasso, which performs variable selection by impos-

ing an L1-norm penalty on the regression coefficients. In analogy with the Lasso, our

method also utilizes L1-norm penalties on the connection strengths, A, as well as

the transcription factor concentrations, P . This allows us to automatically produce

a sparse network structure, which incorporates the prior information. We show that,

given the same prior network, our approach produces similar results to the Bayesian

formulation, but is considerably more computationally efficient, which allows us to

assume a less restrictive prior.

Prior Information: a dictionary of regulatory proteins binding sites

arcA      crp       fnr . . .

WMarcA WMcrp WMfnr . . .

First Data Input: 

Initial topology for regulatory network

p each arrow
has a prior prob. 

Second Data Input: expression array values in M experiments

Posterior Topology

p
each arrow has 
a posterior probability

promotes

suppresses

Reconstruction of TF activities

upstream sequences for all the genes 

Quantification of Control Strength

Figure 4.2: Transcription network reconstruction integrating DNA sequence and gene expression
information. Circles represent regulatory proteins and Squares genes. An arrow con-
necting a circle to a square indicates that the transcription factor controls the expression
of the gene. Varying arrow thickness signifies different control strengths.
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Figure 4.2 gives a schematic illustration of our approach. First, we identify a

group of transcription factors that are believed to regulate the gene expression levels.

Second, we compute an initial topology for the network using both documented

experimental evidence, as well as an analysis of the DNA sequence up-stream of a

given gene. Finally, we use the initial topology, as well as the gene expression levels

from multiple experiments, as inputs to our L1-norm penalized regression approach

to produce an updated final network topology, a quantification of the connection

strengths and an estimation of the transcription factor levels.

This chapter is structured as follows. In Section 4.2 we provide a detailed descrip-

tion of the data that we are analyzing and the available prior information. Section 4.3

develops the methodological approach we use to fit the transcription regulation net-

work. Our analysis of the E. coli data is presented in Section 4.4. We also include

a comparison with the results using the Bayesian approach [52]. A simulation study

is provided in Section 4.5 followed by a discussion in Section 4.6.

4.2 Data and prior information on network structure

The data set that motivated the development of our methodology included 35 mi-

croarray experiments of Escherichia coli that were either publicly available or were

carried out in the laboratory of Professor James C. Liao at UCLA. The experiments

consisted of Tryptophan timecourse data (1-12) [32], glucose acetate transition data

(13-19) [46, 48], UV exposure data (20-24) [15] and a protein overexpression time-

course dataset (25-35) [47]. To reduce spurious effects due to the inhomogeneity

of the data collection, we standardized the values of each experiment, so that the

mean across all genes in each experiment was zero and the variance one. Merging

these different datasets resulted in expression measurements on 1433 genes across 35
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experiments. In general terms, biological knowledge of the nature of the microarray

experiments suggested that the TrpR regulon should be activated in the Tryptophan

timecourse data, the LexA regulon should be activated in the UV experiments, and

the RpoH regulon in the protein overexpression data.

We also were able to identify partial information about the network structure

connecting the transcription factors and genes. We first identified a set of transcrip-

tion factors that previous literature suggested were important in this system: this

resulted in 37 transcription factors. Recall that our bipartite network structure can

be represented using an n × L, 0-1 matrix, Z, where n = 1433 is the number of

genes under consideration and L = 37 is the number of transcription factors. The

element zij is one if TF j regulates gene i, and zero otherwise. For a number of well

studied TF experimental data is available that clearly indicates their binding in the

upstream region of regulated genes (in other words zij = 1). However, for many of

the elements of Z, only partial information is available.

To summarize the prior evidence on the network structure, we introduce πij =

P (zij = 1). If there was documented experimental evidence of a binding site for tran-

scription factor j in the promoter region of gene i, we set πij = 1. We assigned values

to the remaining elements of π using the same strategy as in Sabatti and James [52].

Briefly, we calibrated πij on the basis of an analysis of the DNA sequence upstream of

the studied genes. We used available information on the characteristics of the DNA

sequence motif recognized by the TF to inform the sequence analysis, carried out

with Vocabulon [53]. This algorithm is particularly well suited for this genomewide

investigation, but other methodologies could also be applied. We hence identified all

the putative binding sites for these transcription factors in the portion of the genome

sequence that was likely to have a regulatory function. We categorized a location as
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a potential binding site if the Vocabulon algorithm assigned it a probability higher

than 0.5. In this case we set the corresponding πij = 0.5. All remaining entries of π

were set to zero.

Two qualifications are in order. First, resorting to Vocabulon and sequence analy-

sis is only but one venue to gather knowledge on the network structure. In particular,

it is worth noting that results from ChIP-Chip experiments are an important source

of information that could be used for this purpose [7, 60]. Secondly, the degree of

sparsity of the initial network can be substantially varied, as documented in Sec-

tion 4.4.3. Indeed, one can use different thresholds to decide when a binding site

is detected; moreover putative sites may have a varying degree of certainty that

could be reflected in the choice of πij. However, we have found that using the value

πij = 0.5 seemed to work well in our study.

4.3 Methodology

4.3.1 The Model

As anticipated in the introduction, we couple the bipartite network structure

with the assumption of a linear relation between variations in the concentration of

the active form of the TF and variations in the gene expression levels, obtaining the

following model,

E = AP + ε,

where E is an n× T matrix of eit’s, A is an n×L matrix of aij’s and P is an L× T

matrix of pjt’s. A and P are both unknown quantities. Respectively, n, L and T

denote the number of genes, TFs and experiments, aij represents the control strength

of transcription factor j on gene i, pjt the concentration of transcription factor j in

experiment t, and εit captures i.i.d. measurement errors and biological variability. As
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mentioned previously, this model is unidentifiable. However, we also have available

an n × L matrix of πij’s which provide P (aij 6= 0). This extra information, along

with our penalized fitting procedure, ensure identifiable estimates for A and P .

4.3.2 Fitting the Model

In Section 4.3.2 we begin by examining a simple application of the Lasso opti-

mization approach to fit (4.1). Then, in Section 4.3.2 we extend this approach to

provide our final fitting procedure.

A Preliminary Approach

A natural way to extend the Lasso procedure to estimate A and P is to minimize

the penalized squared loss function:

(4.2) ‖ E −AP ‖2
2 +λ1 ‖ A ‖1 +λ2 ‖ P ‖1

where λ1 and λ2 are two tuning parameters and ‖ · ‖1 is the sum of the absolute

values of the given matrix. Note that ‖ · ‖2
2 corresponds to the sum of squares of all

components of the corresponding matrix with any missing values ignored. While this

objective function appears to require the selection of two tuning parameters, (4.2)

can be reformulated as

‖ E −A∗P ∗ ‖2
2 +λ1λ2 ‖ A∗ ‖1 + ‖ P ∗ ‖1

where A∗ = A/λ2 and P ∗ = λ2P . Hence, it is clear that a single tuning parameter

suffices and A and P can be computed as the minimizers of

(4.3) ‖ E −AP ‖2
2 +λ ‖ A ‖1 + ‖ P ‖1 .

Optimizing (4.3) for different values of λ controls the level of sparsity of the estimates

for A and P .

A simple iterative algorithm can be used to solve (4.3). Namely:
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• Step 1: Choose initial values for A and P denoted by A(0) and P (0). Let k = 1.

• Step 2: Fix A = A(k−1), find the P = P (k) minimizing ‖ E −A(k−1)P ‖2
2 + ‖

P ‖1

• Step 3: Fix P = P (k), find the A = A(k) minimizing ‖ E−AP (k) ‖2
2 +λ ‖ A ‖1

• Step 4: If ‖ P (k) − P (k−1) ‖ or ‖ A(k) −A(k−1) ‖ are large, let k ← k + 1 and

return to Step 2.

Steps 2 and 3 in this algorithm can be easily achieved using a standard application

of the LARS algorithm used for fitting the Lasso.

Incorporating the Prior Information

The fitting procedure outlined in the previous section is simple to implement and

often quite effective. It can be utilized in situations where no prior information is

available about the network structure because minimizing (4.3) is, a priori, equally

likely to cause any particular element of A to be zero, or not to be zero.

However, in practice, for our data, we know that many elements of A must be

zero, i.e. where πij = 0, and others can not be zero, i.e. where πij = 1. Of the

remaining elements, some are highly likely to be zero while others are most likely

non-zero, depending on their πij. Hence it is important that our fitting procedure

directly takes the prior information into account. This limitation is removed by

minimizing (4.4),

(4.4) ‖ E −AP ‖2
2 −λ1

∑
ij

log(πij)|aij|+ λ2 ‖ A ‖2
2 + ‖ P ‖1 .

The key changes between (4.3) and (4.4) are the addition of − log(πij) and a square

of L2-norm penalty on A. The incorporation of the prior information has several

effects on the fit. First, aij is automatically set to zero if πij = 0. Second, aij can
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not be set to zero if πij = 1. Finally, aij’s for which the corresponding πij is small

are likely to be set to zero while those for which πij is large are unlikely to be set to

zero. Optimizing (4.4) is achieved using a similar iterative approach to that used for

(4.3).

• Step 1: Choose initial values for A and P denoted by A(0) and P (0). Let k = 1.

• Step 2: Fix A = A(k−1), find the P = P (k) minimizing ‖ E −A(k−1)P ‖2
2 + ‖

P ‖1.

• Step 3: Fix P = P (k), find the A = A(k) minimizing ‖ E − AP (k) ‖2
2

−λ1

∑
ij log(πij)|aij|+ λ2 ‖ A ‖2.

• Step 4: If ‖ P (k) − P (k−1) ‖ or ‖ A(k) −A(k−1) ‖ are large, let k ← k + 1 and

return to Step 2.

Step 2 can be again be implemented using the LARS algorithm. Step 3 utilizes the

shooting algorithm [22, 24].

Equation (4.4) treats all elements of P equally. However, in practice there is often

a grouping structure in the experiments, or correspondingly the columns of P . For

example, in the E. coli data columns 1 through 12 of P correspond to the Tryptophan

timecourse experiments while columns 13 through 19 represent the glucose acetate

transition experiments. To examine any possible advantages from modeling these

natural groupings we implemented a second fitting procedure. Let Gk be the index

of the experiments in the kth group assuming all the experiments are divided into

K groups. Then our second approach involved minimizing,

(4.5) ‖ E −AP ‖2
2 −λ1

∑
ij

log(πij)|aij|+ λ2 ‖ A ‖2
2 + ‖ P ‖2

where ‖ P ‖2=
∑L

j=1

∑K
k=1

√∑
t∈Gk

p2
jt. Replacing ‖ P ‖1 with ‖ P ‖2 has the effect
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of forcing the pjt’s within the same group to either all be zero or all non-zero. In

other words either all of the experiments or none of the experiments within a group

are selected. Minimizing (4.5) uses the same algorithm as for (4.4) except that in

Step 2 the shooting algorithm is used rather than LARS. We show results from both

methods. To differentiate between the two approaches we call (4.4) the “ungrouped”

method and (4.5) the “grouped” approach.

Normalizing the Estimators

The use of penalties on A and P allows us to produce unique estimates for the

parameters up to an indeterminacy in the signs of A and P i.e. one can obtain

identical results by flipping the sign on the jth column of A and the jth row of P .

There are a number of potential approaches to deal with the sign. Sabatti and James

[52] defined two new quantities that are independent from rescaling and changes of

signs and have interesting biological interpretations:

p̃jt =

∑
i aijpjt∑

i 1(aij 6= 0)
and ãij =

∑
t aijpjt

T

p̃jt is the average effect of each transcription factor on the genes it regulates (regulon

expression), and ãij is the average control strength over all experiments. These

quantities are directly related to the expression values of genes in a regulon. We

have opted to use p̃jt and ãij to report our results. This also has the advantage of

allowing easy comparison with the analysis of Sabatti and James [52].

4.4 Case Study

In this section we give a detailed examination of the results from applying the

grouped and ungrouped methods to the E. coli data. Section 4.4.1 outlines the con-

struction of our initial network structure while Section 4.4.2 discusses our procedure
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for choosing the tuning parameters. The main results are provided in Section 4.4.3.

Finally, Section 4.4.4 provides the results from a sensitivity analysis performed by

adjusting the sparsity level on the initial network structure.

4.4.1 The Initial Network Structure

The first step in constructing the Transcription Regulation Network is to develop

an initial guess for π i.e. the probability distribution of the network structure.

As discussed in Section 4.2, π was computed using various sources. Where there

was experimental evidence of a link between transcription factor j and gene i we

set πij = 1. For the remaining elements we used the Vocabulon [53] algorithm to

estimate πij. Initially we set πij = 0.5 for any probability estimated to be at least

0.5. For all other transcription factor-gene combinations we set πij = 0. This was

the approach taken in Sabatti and James [52] and allowed us to directly compare the

two sets of results. With the Bayesian approach of Sabatti and James [52] this high

level of sparsity in the network structure was necessary for computational reasons.

However, using our Lasso based methodology this level of sparsity is not required.

Hence, in Section 4.4.4 we examine how our results change as we reduce the level of

sparsity in the initial structure.

By merging the potential binding sites with the known sites from the literature,

and with the expression data, we obtained a set of 1433 genes, potentially regulated

by at least one of 37 transcription factors and on which expression measurements

were available (missing values in the array data were allowed). Our estimate for

π suggested a great deal of sparsity with only 2073 non-zero entries, 291 of which

corresponded to πij = 1 and the remaining 1782 to πij = 0.5. Figure 4.3(a) shows the

distribution of the number of genes thought to be regulated by a singe transcription

factor in our initial network. The figure shows that 14 of the transcription factors
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Figure 4.3: Histograms for the number of genes that are regulated by each TF. (a) Prior network.
(b) Posterior network after using the ungrouped method.

were only expected to regulate 20 or fewer genes and 34 of the 37 TFs were expected

to regulate at most 120 genes. The notable exception was CRP, which potentially

regulated over 500 genes. It is worth noting that without adopting our penalized

regression framework, we would not be able to study this transcription network,

simply because the number of experiments (35) is smaller than the number of TFs

considered (37): the use of penalty terms regularizes the problem.

4.4.2 Selecting the Tuning Parameters

The first step in estimating A and P requires the selection of the tuning parame-

ters, λ1 and λ2. These could be chosen subjectively but we experimented with several

more objective automated approaches. We first attempted to select the tuning pa-

rameters corresponding to the lowest values of BIC or AIC. However, BIC produced

models that were biologically too sparse i.e. the number of zero entries in A was
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too large. It appears that the log(n) factor used by BIC is too large if one uses the

number of non-missing values in the E matrix as “n” (n = 40, 000) because they

are not really independent. Conversely, AIC resulted in networks being selected that

had too many connections.
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Figure 4.4: Cross validated error rates as a function of λ2 for the ungrouped and grouped methods.
The vertical lines indicate variability in the cross validated error.

Instead we opted to use a two stage approach. We first computed the cross

validated error over a grid of λ1’s and λ2’s and selected the tuning parameters cor-

responding to the minimum. Figure 4.4 show the cross validated error rates for

different values of λ2 with λ1 = 64. For both the ungrouped and grouped methods

the minimum was achieved with λ1 = λ2 = 64. Second, we used the bootstrap to

determine whether there was significant evidence that an element in A was non-zero.

We ran our method on 100 bootstrap samples. For each element of A, we computed

a corresponding p-value based on the 100 bootstrap results, thus we had approxi-

mately 2000 p-values. Since this constituted a significant multiple testing problem

we used False Discovery Rate (FDR) methods to set a cutoff such that the FDR was

no more than 0.05. Elements in A with p-values smaller than the cutoff were left as

is while the remainder were set to zero. All the results that follow are based on this

bootstrap analysis.
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4.4.3 Results

Figure 4.5: Prior network (left) and posterior estimate produced using the ungrouped method
(right). The large circles correspond to the 37 transcription factors while the small
circles represent the 1433 genes. The lines joining large and small circles indicate net-
work connections.

The results from our analysis of the 35 experiments suggested that a significant

portion of the potential binding sites should be discarded. Figure 4.3(b) shows the

distribution of the number of genes regulated by a singe transcription factor in our

final network structure. We see that 19 TFs are expected to regulate 20 or fewer

genes and 30 of the 37 TFs were expected to regulate at most 50 genes. Even

CRP, went from over 500 potential binding sites in the prior to approximately 400

in the posterior. The posterior estimate for A contained 1586 non-zero entries,

approximately a 25% reduction in the number of connections in our prior guess for

the network. Figure 4.5 provides graphical representations for the prior and posterior

networks. Note that in the posterior estimate there are many fewer connections and

as a result there are numerous genes and three TFs that are no longer connected to

the rest of the network, suggesting there is no evidence that these particular genes

are regulated by any of the 37 TFs we examined.
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Sabatti and James [52] discuss several possible reasons for the changes between

the initial and final network structure. In brief, Vocabulon works entirely using the

sequence information. Hence, it is quite possible for a portion of the E. coli genome

sequence to look just like a binding site for a TF, resulting in a high probability as

estimated by Vocabulon, when in reality it is not used by the protein in question.

In addition, Vocabulon searches for binding sites in the regulatory region of each

gene by inspecting 600 base pairs upstream of the start codon which often causes

Vocabulon to investigate the same region for multiple genes. If a binding site is

located in such a sequence portion, it will be recorded for all of the genes whose

“transcription region” covers it.

Figure 4.6 illustrates the estimated transcription factor activation levels using

both the ungrouped and grouped methods. We have several ways to validate these

results. First, we note that the estimated activation levels show very strong simi-

larities to the results of Sabatti and James [52]. Both their results and ours show

the following characteristics. First, there are a number of transcription factors that

are not activated in any of the experiments. Focusing on the regulons that are ac-

tivated in some of the experiments, we note that our method produces results that

correspond to the underlying biology. For example, the first 8 experiments [32]—

represented in the lower portion of the displays from bottom up—are two 4-point

time courses of tryptophan starvation. The absence of tryptophan induces the de-

repression of the genes regulated by trpR. Correspondingly, our results indicate a

clear increase in expression for trpR. In arrays 9-12, the cells were provided with

extra tryptophan. Hence, for these experiments we would expect lowered expression.

Our results show a negative effect, though the magnitude is small. Additionally, the

argR and fliA regulons can be seen to move in the opposite direction to trpR which
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Figure 4.6: (a) Ungrouped and (b) grouped methods. Each plot corresponds to the experiments
for one transcription factor. Experiments are organized along the vertical axis, from
bottom to top, with dashed lines separating the experiment groups. Green dots indicate
the estimates for p̃jt and the horizontal bars provide bootstrap confidence intervals.
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corresponds to what has been documented in the literature [32]. Figure 4.6 also

suggests that the rpoH2, rpoH3 and narL regulons are all moving in the opposite

direction to trpR.

Experiments 20-24, which correspond to the results between the second and third

horizontal dashed lines, are a comparison of wild type E. coli cells with cells that

were irradiated with ultraviolet light, which results in DNA damage. Note that

lexA shows a high expression level in these experiments, as one would predict since

many of the DNA damaged-genes are known to be regularly repressed by lexA [15].

Finally, metR, ntrC, purR, rpoH2, and rpoH3 all show strong activations in the

protein overexpression data, the final 11 experiments. In particular, notice that

rpoH2 and rpoH3 present the same profile across all experiments. This provides

further validation of our procedure since these two really represent the same protein,

and are listed separately because they correspond to two different types of binding

sites of the TF. Overall, these results conform to the known biology, but also suggest

some additional areas for exploration.

The main differences between our results and those of Sabatti and James [52]

are that our penalties on P tend to generate more exact zero estimates than the

Bayesian approach, providing somewhat easier interpretation. The grouped and

ungrouped results are also similar, but the grouping structure is more prominent in

the grouped method, for example, in metJ and ompR.

Next, we examine the estimates for A. Since a number of TFs showed no activa-

tion in these experiments we would not expect to be able to accurately estimate their

control strengths on the genes. Hence, we will concentrate our analysis here on trpR

because this was the most strongly activated TF. Figure 4.7 presents our estimates of

ã for seven genes associated with the trpR. Each boxplot illustrates the 100 bootstrap
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Figure 4.7: Boxplots of the bootstrap estimates for ã for seven different genes.

estimates of ã for a particular gene. The first three boxplots correspond to genes

b1264, b1265, b1266. The b-numbers, that identify the genes, roughly correspond

to their genomic location, so it is clear that the genes are adjacent to each other.

Gene b1264 is known to be regulated by trpR, so it’s πij was set to 1. The other two

genes were chosen by Vocabulon as potential candidates because the binding site for

b1264 was also in the search regions for b1265 and b1266 i.e. these were cases of the

overlapping regulatory regions described previously. While Vocabulon was unable

to determine whether a connection existed between b1265, b1266 and trpR, using

our approach we can see that, while ã for b1264 is large, the estimates for b1265

and b1266 are essentially zero. Thus it is possible to use our model to rule out the

regulation of two genes by trpR that are within a reasonable distance from a trpR

real binding site. Among the remaining four genes b1704, b3161 and b4393 are all

known to be regulated by trpR. Correspondingly, they all have moderate to large
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estimated activation strengths. b4395 again has an overlapping regulatory region to

b4393. The results suggest this is not regulated by trpR.

4.4.4 Relaxing Zero Coefficients
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Figure 4.8: Fraction of non-zero ãij ’s as a function of λ2 for the ungrouped and grouped methods.
The solid line corresponds to those connections where there was documented evidence
of a relationship, the dashed line to where the Vocabulon algorithm suggested there was
a relationship and the dash-dot line to where there was no evidence of a relationship.

The results from Section 4.4.3 use the same relatively sparse initial network struc-

ture as that of Sabatti and James [52]. Recall, the structure we have assumed so

far contained only three possible values for π i.e. πij = 0, πij = 0.5 or πij = 1. All

connections with πij = 0 are forced to remain at zero whatever the gene expression

data may suggest. However, as discussed previously, our methodology is able to

handle far less sparse structures. Hence, we next investigated the sensitivity of our

results to the initial structure by randomly adjusting certain TF-gene connections.

In particular we randomly selected 200 of the connections where πij = 0 and reset

them to πij = 0.5. We also reset all connections where πij = 1 to πij = 0.5 so that

all connections were treated equivalently. We then reran the ungrouped and grouped

methods using the new values for π.

Figure 4.8 provides plots of the resulting fractions of non-zero estimates for ãij,
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as a function of λ2 with λ1 set to 64. A clear pattern emerges with the fraction of

non-zero’s where there was documented evidence very high (solid line). Somewhat

lower is the fraction of non-zero’s for the connections suggested by Vocabulon (dashed

line). Finally, the lowest level of non-zero’s is exhibited where there was no significant

evidence of a connection (dash-dot line). These results are comforting because they

suggest that our methodology is able to differentiate between the clear, possible and

unlikely connections even when πij is equal for all three groups. In addition, there

appears to be evidence that the Vocabulon algorithm is doing a good job of separating

potential from unlikely connections. Finally, these results illustrate that, unlike the

Bayesian approach, it is quite computationally feasible for out methodology to work

on relatively dense initial network structures.

4.5 Simulation Study

After fitting the E. coli data we conducted a simulation study to assess how well

our methodology could be expected to reconstruct transcription regulation networks

with characteristics similar to those for our data set. We used the estimated ma-

trices, Â and P̂ , from Section 4.4 as the starting point for generating the gene

expression levels. In particular we first let Ã = Â + εA, P̃ = P̂ + εP , where

εAij ∼ sA ×N(0, σ2(Â)) and εP ij ∼ sP ×N(0, σ2(P̂ i)) are noise terms. Depending

on the simulation run, sA was set to either 0.2 or 0.4 while sP was set to either 0.1 or

0.3. Next, all elements of Ã corresponding to πij = 0 were set to zero. In addition,

among elements were πij = 0.5, we randomly set ρ of the Ã
′
s to zero where ρ was

set to either 60% or 80%. The expression levels were then generated using

E = ÃP̃ + sN × Γ̃,
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where Γ̃ is a matrix of error term with Γ̃ij ∼ N(0, 1) and sN was set to either 0.2

or 0.4. We produced one simulation run for each combination of sA, sP , ρ, and sN ,

resulting in a total of 16 simulations.
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Figure 4.9: False Positive Rates versus True Positive Rates for 16 simulations. Black solid lines
correspond to sN = 0.2, ρ = 0.8, dash-dot lines to sN = 0.2, ρ = 0.6, green dotted lines
to sN = 0.4, ρ = 0.8 and dashed lines to sN = 0.4, ρ = 0.6. Different values of sA and
sP had little effect on the results so they have not been individually identified.

For each simulation run we computed the False Positive Rate (FPR) and the True

Positive Rate (TPR) for different possible tuning parameters. The FPR is defined

as the fraction of estimated non-zero coefficients, aij, among all elements of Ã where

ãij = 0 and πij = 0.5. The TPR is defined as the fraction of estimated non-zero coef-

ficients, aij, among all elements of Ã where ãij 6= 0 and πij = 0.5. Figure 4.9 provides

a summary of the results from running the ungrouped and grouped approaches on

the sixteen simulations. Each curve corresponds to the FPR vs TPR for one simu-

lation run using different tuning parameters. The results suggest that a reasonable

level of accuracy can be produced for this data. For example, with sN = 0.2 both

methods can achieve an 80% TPR at the expense of a 20% FPR. To lower the FPR

to 10% decreases the TPR to approximately 60%. Even with sN = 0.4, a relatively

high level, we can achieve a 60% TPR at the expense of a 20% FPR.
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4.6 Discussion

We have introduced a new methodology for estimating the parameters of model

(4.1) associated with a bipartite network, as illustrated in Figure 4.1. Our approach

is based on introducing L1-norm penalties to the regression framework, and using

prior information about the network structure.

We have focused on the application of this model to reconstruction of E. coli tran-

scription network, as this allows easy comparison with previously proposed models.

Our approach has the advantage, over the work of Liao et al. [39] and Sabatti and

James [52], that it does not require assuming prior knowledge of a large fraction of

the network. When we utilize the same prior structure as used by Sabatti and James

[52] we get similar, and biologically sensible, results. However, by relaxing the prior

assumptions on the sparsity of the network structure we gain additional insights such

as independent validation both of the experimentally derived network connections

and also the connections suggested by the Vocabulon algorithm.

While we tested our methodology on the E. coli data, our approach is potentially

applicable to many other organisms. In particular there are many organisms for

which far less of the TRN structure is known a priori, making it impossible to use

the algorithms by Liao et al. [39] and Sabatti and James [52]. In these cases our L1-

penalization approach could still be applied, allowing researchers to start to explore

the transcription network of these organisms.

Finally, it is worth recalling that, while we describe how to set the π values

with specific reference to TRN, the L1-penalized regression approach, can be used

to estimate parameters of bipartite networks arising in other scientific context.
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