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ABSTRACT

Essays on Asset Pricing

by

Ryan Dwight Israelsen

Chair: Lu Zhang

My dissertation aims to explain two features of Asset Pricing: the “high tech bubble”

and the return comovement anomaly.

In Chapter One, I show that a generalized version of the standard neoclassical

investment model can explain the relatively high equity prices in the late 1990s and

early 2000s in the US corporate nonfinancial and NASDAQ sectors along with the

relatively low prices before and after this period. Stock returns predicted by the

model are as volatile as the observed stock returns in both sectors. Three key model

assumptions are multiple capital goods, investment-specific technological change and

non-quadratic adjustment costs. During the “bubble” period, investment in equip-

ment is relatively high — consistent with high expected cash flows and high prices.

Investment rates subsequently fall — consistent with lower expected cash flows and

lower prices. On average, managers’ forecasts are correct. Increases in the growth rate

of equipment investment coincide with decreases in measured productivity growth.

This is consistent with the unobserved diversion of labor from producing output to-

wards accumulating human capital or other intangible assets.

In Chapter Two, I examine the role of information in explaining excess comove-

xi



ment in asset returns. Many studies have documented stock return comovement

above and beyond that predicted by standard asset pricing models. Furthermore,

when stocks are added to an index, their betas with respect to that index tend to

increase. I find that much of this excess comovement can be explained by corre-

lated information. If individual analysts earnings forecast errors are correlated across

stocks, the stock return correlations should be higher than fundamental correlations.

I develop a measure of correlated analyst coverage to test this hypothesis and find: (1)

Stocks with similar analysts tend to exhibit more excess comovement, (2) On average,

when a stock enters the S&P 500 index, the same analysts that cover other S&P 500

stocks begin to cover the new stock, and (3) Changes in excess comovement are larger

for stocks with larger increases in correlated analyst coverage around this event. This

measure does not seem to be proxying for correlations in risk or unexpected earnings.

xii



CHAPTER I

Investment Based Valuation

1.1 Introduction

The neoclassical investment model with capital adjustment costs is a workhorse in

the investment literature and has been used to explain many perceived anomalies in

the cross section of stock returns. However, the model in its standard form is unable

to explain the magnitudes of the significant run-up and subsequent fall in market

values of equity during the late 1990s and early 2000s. This leaves two possibilities:

either 1) the neoclassical framework cannot account for observed stock price behavior

during this period and we need to appeal instead to investor irrationality (e.g., Hong

and Stein, 1999) or time-varying uncertainty (e.g., Pastor and Veronesi, 2003, 2006);

or 2) the standard neoclassical model needs to be patched up so that it can account

for observed stock price behavior during this period. This paper shows that three

modifications to the assumptions of the standard model, all of which are consistent

with the spirit of the neoclassical framework, allow the model to accommodate the

large changes in equity values observed during the late 1990s and early 2000s along

with the high stock return volatility.

In the model’s standard form (à la Cochrane, 1991), firms maximize shareholder

value by choosing levels of investment in productive fixed capital which is subject to

quadratic adjustment costs. In this framework, the equilibrium market value of the
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firm’s equity, pt, plus its debt, bt, is equal to its capital stock, kt+1, times the shadow

price of capital, qt, or marginal q:

pt + bt = qtkt+1.

Figure 1.1 shows the actual market values of equity scaled by output for the US

corporate nonfinancial sector from 1953 to 2005 and the NASDAQ sector from 1983 to

2005 along with the fitted values predicted by the standard model using a Generalized

Method of Moments estimation procedure. The model is able to fit mean levels, but

is not flexible enough to explain the extreme changes in prices — especially during

the “bubble” period.

I modify the standard model in three ways. First, I make a distinction between

structures capital (real estate, buildings, etc.) and equipment capital (machines, soft-

ware, etc.). In practice, fixed capital is heterogeneous both in terms of productivity

and in terms of capital adjustment costs. For example, a square foot of office space

is not necessarily a good substitute for a new software package of the same value

in terms of producing goods and services. Also, more time is likely to be diverted

towards learning how to use the software package than towards learning to navigate a

new room. In equilibrium, marginal q is equal to both the discounted marginal cash

flows from investment and the marginal capital adjustment costs. If firms simply

scale all inputs up and down over time in fixed proportions, the standard model may

suffice, despite the heterogeneity. However, the composition of the aggregate capital

stock has shifted from structures towards equipment in both sectors recently, but not

necessarily monotonically. Additionally, equipment investment-capital ratios tend to

be more pro-cyclical than corresponding structures ratios. This assumption is crucial

in both the US corporate nonfinancial and NASDAQ sectors.

Second, I adjust for the changing quality of equipment capital. Standard models

2



hold the productive quality of capital constant. In reality, the quality of new capital –

especially equipment – changes over time. A common example used to illustrate this

“investment-specific technological change” is “Moore’s Law” which states that the

number of transistors that can be inexpensively placed on an integrated chip doubles

approximately every two years. If the price of the chips increases at a lower rate

than the productivity, then the real price of a chip will underestimate the level of

technology embodied in each new vintage of hardware. This assumption is especially

important in the NASDAQ sector which is more heavily invested in equipment capital.

Third, I allow adjustment costs to be non-quadratic. Quadratic adjustment costs

are primarily used for analytic convenience: with such adjustment costs, qt is linear in

investment-capital ratios. However, there is no ex-ante reason to expect a quadratic

function to provide a better approximation of adjustment costs than another convex

function. Because this function determines changes in q, its curvature is important

in determining the price levels, price changes, and the volatility of price changes.

The power of the adjustment cost function is a measure of the elasticity of qt with

respect to changes in investment. Holding the marginal cost level fixed, increases in

the curvature of the cost function decrease total adjustment costs – which can be

used to test the plausibility of the model. Allowing for non-quadratic costs permits

the model to generate relatively high prices and relatively low total adjustment costs.

When the standard neoclassical investment model is extended to include heteroge-

neous capital, investment-specific technological change and non-quadratic adjustment

costs, it can explain most of the extreme price movements during the “bubble” period

in both sectors. The equilibrium pricing equation from this generalized model is

pt + bt = qs
t st+1 + qe

t et+1,

where st and et are the structures and quality-adjusted equipment capital stocks,

3



respectively, and qs
t and qe

t are the corresponding shadow prices. Figure 1.2 shows

the actual market values of equity scaled by output for each sector along with the

values predicted by the generalized model. The model performs very well during the

“bubble”. During this period, investment is high. This is consistent with managers

willing to incur relatively high adjustment costs because they expect high marginal

cash flows from investing. When expected cash flows are high, prices are high. Man-

agers subsequently decrease rates of investment, expecting marginal cash flows to be

lower in the future. Low marginal cash flows mean low prices. On average, their

forecasts are correct. The time series of prices reflects the time series of investment.

During the “bubble” period, adjustment costs associated with equipment invest-

ment are relatively high. Investment in new equipment must be accompanied by

possibly unobservable complementary investment in human capital or intangible cap-

ital. This is consistent with the nature of investment in technologically advanced

equipment observed during this period. Furthermore, controlling for price, each new

vintage of equipment capital is more productive than the previous. As firms replace

old capital with newer, more productive capital, this leads to an additional increase

in value. When investment is high, this is especially pronounced. Indirect adjustment

costs for structures investment are close to zero.

I also examine the effect of heterogeneous capital, investment-specific technolog-

ical change, non-quadratic adjustment costs and leverage on the empirical relation

between investment and stock returns and I compare the results to Cochrane’s (1991)

results in terms of volatilities and autocorrelations of returns. In particular, I generate

the model predicted stock returns and find them to be as volatile as observed returns.

Cochrane (1991) uses a model with homogeneous capital, quadratic adjustment costs

and all-equity financing and generates a stock return standard deviation of less than

half of the actual value. The model in this paper generates quarterly return standard

deviations of about 6.1% in the US corporate nonfinancial sector and 12.6% in the

4



NASDAQ sector compared to the observed standard deviations of 6.4% and 10.4%,

respectively. The adjustment costs associated with structures are essentially zero.

Most of the results are driven by equipment capital. In the US corporate nonfinan-

cial sector, heterogeneous capital and debt financing have the biggest effect on stock

return volatility, but non-quadratic adjustment costs are also important. Generating

high stock return volatility is much easier on the NASDAQ, where investment-capital

ratios are much more volatile.

Both firm value and stock returns are functions of investment. When adjust-

ment costs functions are quadratic, marginal returns from investing are linear in the

investment-capital ratios. When the powers are greater than two, the relation be-

tween marginal returns and investment is convex. From a shareholder’s perspective,

if investment is unexpectedly high next quarter, the marginal cost of investment will

be higher than in the quadratic case. Controlling for the other parameters, the volatil-

ity of the investment-capital series is amplified relative to the quadratic adjustment

costs case. As a result, stock returns are more volatile.

Adjustment costs are crucial to the model. Managers increase investment up to the

point at which the marginal cost of investment – including adjustment costs – is equal

to the marginal expected profit from investment. If marginal costs are too low, the

implied marginal profits, and equity value will be too low. On the other hand, if total

adjustment costs are too high, the model may be inconsistent with reality. Allowing

the curvature of the adjustment costs function to depart from the quadratic case

generates relatively high equity prices and relatively low total adjustment costs. The

implied adjustment costs from the model are reasonably small for the US corporate

nonfinancial sector – 2% of output per quarter – and slightly larger for the NASDAQ

– about 12% of output. Average marginal adjustment costs are 1 for structures and

1.954 for equipment compared to 1 and 7.331 in the NASDAQ. These all lie within
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the range of previous estimates1.

I find that measured productivity growth drops with increases in equipment in-

vestment growth, consistent with accumulation of human capital during periods of

high investment. If equipment capital and human capital are complementary inputs

in the production function, periods of high investment in equipment will coincide with

periods of high investment in human capital. Human capital is accumulated through

the process of learning. When new equipment is introduced, workers must spend

time learning the best way to use it. This diversion of labor from producing output

towards learning how to use new capital reduces output. Because labor is not disag-

gregated into time spent learning and time spent producing, measured productivity

is low when investment in equipment is high. I do not find a statistically signifi-

cant effect for structures investment. This is consistent with small indirect structures

adjustment costs.

I cannot rule out every behavioral explanation for the “bubble”, nor do I attempt

to do so. Instead, I provide a rational model that is consistent with the prices,

returns, and return volatilities observed during this period. I also do not directly

model expectations. I cannot explain why investment is high during the late ’90s.

However, I do show that it is consistent with rational decision making on the part

of the firm. On average, firms’ forecasts about returns from investing are correct -

both unconditionally and controlling for predictive variables. Prices are high because

investment is high, and on average, high investment is followed by high returns from

investing.

High investment alone does not lead to high firm value. Both the level of invest-

ment and value of the firm are determined in equilibrium as a function of unobserved

expected productivity of capital. If the expected marginal return from investing is

1Merz and Yashiv (2005) find capital adjustment costs that average 4.2% of output in the US
corporate nonfinancial sector. To my knowledge no previous estimates of average adjustment costs
on the NASDAQ exist. Past estimates of marginal adjustment costs range from about 1 (Cooper
and Haltiwanger, 2006) to 10.5 (Cummins et al., 1994)
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high, investment will be high, and so will firm value. Furthermore, if marginal ad-

justment costs are increased for the same equilibrium levels of investment, it must

be that rational managers expect equally high marginal returns from investing. In

such an equilibrium, firm value will be even higher. High investment, high marginal

adjustment costs, and high firm value are consistent with high expected marginal

returns from investing.

1.1.1 Related Literature

The methodology in this paper is related to that in Merz and Yashiv (2005, 2007)

who examine the effect of labor market frictions and capital adjustment costs on

the value of the firm. In such an economy, labor adds to the market value of the

firm. They are able to explain much of the relative difference in levels from the 1970s

through the late 1990s and early 2000s. Instead of focusing on labor or intangible

assets, I show that by disaggregating fixed capital into two components, structures

and equipment, accounting for changes in the quality of equipment, and incorporating

non-quadratic adjustment costs, a neoclassical q-theory model can explain the high

price levels in the late 1990s and early 2000s relative to other years in both the US

corporate nonfinancial and NASDAQ sectors. Merz and Yashiv do not examine the

high tech sector or the relation between investment returns and stock returns.

The valuation literature has two major strands. The first consists of papers using

partial and general equilibrium neoclassical models to explain firm value. The benefit

of using these models is that firm value is a function of potentially observable variables.

If the firm is behaving optimally, the shadow price of capital, qt, is an objective

forecast of discounted marginal cash flows. The firm’s optimal forecast is used in lieu

of a subjective forecast. While qt may not be directly observable, it is a function of

a firm’s observable investment decisions. Several papers add unmeasured intangible

capital in the valuation context to explain firm value. Hall (2001) defines intangible
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capital as the difference in the market value of the firm and the value of the firm’s

tangible capital. By construction, the model fits the data perfectly. McGrattan

and Prescott (2005, 2007) use first order conditions to infer intangible capital and

investment and are able to generate a run-up in scaled US corporate values from the

1970s to the late 1990s. Because they use general equilibrium models, they rely on

aggregate consumption data and wage data and do not examine individual firms or

sectors.

At the other extreme are papers using accounting-based methods: relative valu-

ation, in which a firm’s financial ratios (e.g., price-to-earnings and market-to-book

equity) are compared to peer firms, and discounted cash flow analysis, which involves

discounting projected future cash flows at the appropriate risk-adjusted rate. Both

types of valuation are widely used in practical applications. However, both types also

involve an amount of subjectivity in the form of growth forecasts and discount rates.

Pastor and Veronesi (2003, 2006) use the clean surplus accounting relation to

model dynamics of the book value of equity. To relate book value and market value,

they assume that at some random time in the future the two will be equal. They pa-

rameterize the firm’s productivity process and assume that investors know all of the

model parameters with certainty except for the firm’s average profitability. Through

the process of learning, investors update their beliefs about this parameter. Be-

cause market values are convex in average profitability, firm valuations increase with

investors’ uncertainty about average profitability. After calibrating the model using

annual data, they find the implied levels of uncertainty about average profitability for

several NASDAQ stocks necessary to justify the prices at the height of the “bubble”

and argue that they are reasonably small.

In the model in this paper, there is no uncertainty about model parameters on the

part of investors. Instead, the investment decisions of managers are taken as given.

Any learning about profitability is implicitly embedded in the observed investment

8



decisions. Rational managers will equate marginal costs with marginal returns. Given

the amount of fixed capital of the firm and the adjustment costs function, managers’

investment decisions perfectly reveal their forecasts about profitability. The ratio-

nal market value of the firm immediately follows. In order to ensure that observed

investment decisions are consistent with rationality, I include the investment Euler

equations as moments in the estimation procedure. On average, managers’ one period

ahead forecasts of profitability are correct – both unconditionally and with respect to

the instruments. These two first order conditions restrict the set of parameter esti-

mates to those that are consistent with rational decision making. Pastor and Veronesi

(2003, 2006) do not directly use the information contained in a firm’s investment deci-

sions. Instead, they use a reduced form approach and model the profitability process

itself. Using the investment information could shed further light on the plausibility

of their parameter values and the implied uncertainty about average profitability.

Section 2 describes the model and its implications. Section 3 presents the empirical

strategy. Section 4 describes the data construction and summary statistics. Section 5

presents the empirical results for the main model along with alternate specifications.

Section 6 examines the effect of investment on productivity growth. I conclude in

Section 7.

1.2 The Model

I use an augmented version of the standard neoclassical q-theory model. Firms

use two capital inputs to produce homogeneous output. In the basic q-theory model,

all types of fixed capital are treated equal. In practice, capital is heterogeneous in

terms of productivity, adjustment costs and depreciation. In the production process,

an expensive machine is not necessarily a good substitute for a small piece of real

estate of the same value. To capture these differences, and to test the importance of

these distinctions in valuation, I incorporate multiple capital goods into the model.
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Output, π(st, et, θt), depends on the stocks of structures, st, and equipment, et, and

a vector of exogenous aggregate, firm- and input-specific productivity shocks, θt. To

simplify the notation, I suppress these arguments and define π(t) ≡ π(st, et, θt). The

production function exhibits constant returns to scale, so that π(st, et, θt) = πs(t)st +

πe(t)et, where subscripts denote partial derivatives, i.e., πs(t) ≡ ∂π(st, et, θt)/∂st

and πe ≡ ∂π(st, et, θt)/∂et are the marginal products of structures and equipment,

respectively. Labor is not included in the production function. When labor can be

adjusted immediately at no cost, wages are equal to the marginal product of labor

and all of the moments used in this paper are unchanged2.

Given the operating profits, firms choose structures-investment, is, and equipment-

investment, ie, to maximize the market value of the firm. Structures and equipment

evolve according to the following equations:

st+1 = ist + (1 − δs
t )st (1.1)

et+1 = γti
e
t + (1 − δe

t )et (1.2)

Structures at time t + 1 is equal to investment in new structures at time t plus the

non-depreciated portion of the existing stock of structures from the previous period.

The accumulation of equipment, on the other hand, is subject to investment-specific

technological change (as in Greenwood, Hercowitz and Krusell (2000) and Cummins

and Violante (2002)). I represent the level of the technology for producing equipment

as γt. This is typically increasing over time. Changes in gamma represent investment-

specific technological change. Controlling for price, each new vintage of equipment

capital tends to be more productive than the previous. To account for this change,

a “new” equipment capital stock must be generated using equation (1.2) along with

2Merz and Yashiv include (2007) labor adjustment costs in their model. The addition of labor
adjustment costs would strengthen my results. In such a case, labor adds to the value of the firm,
reducing the need for large capital adjustment costs.
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observed investment and an estimate of γt. Details are in Section 1.4.3. I assume

that the proportional depreciation rates, δs
t and δe

t , vary with time.

There are costs to investing in new capital. These include direct purchase and

installation costs and indirect adjustment costs. Adjustment costs include the indirect

costs of installing and integrating new capital and practices. The adjustment costs

function φ(ist , st, i
e
t , et) is convex in each of the inputs and is homogeneous of degree

one in its inputs:

φ(ist , st, i
e
t , et) = φis(t)i

s
t + φs(t)st + φie(t)i

e
t + φe(t)et. (1.3)

Both the levels of investment, ist and iet , and the sizes of the capital stocks, st and et,

may affect the magnitude of the adjustment costs. To simplify notation, I suppress

the arguments of the adjustment costs function and use φ(t) ≡ φ(ist , st, i
e
t , et) when-

ever possible. In addition to the cost of adjusting structures and equipment, I assume

that firms incur flow operating costs each period that are proportional to the capital

stocks, fsst and feet, where fs, fe > 0.

Liu, Whited, and Zhang (2007) show that when firms use both debt and equity

financing, stock returns are no longer equal to simple investment returns. At the

portfolio level, they find debt to be important in relating stock and investment returns.

To add this element of realism to the model I include debt financing and test its

importance in firm valuation. Following Hennessy and Whited (2005), I model one-

period debt. At the beginning of period t, firms issue one-period debt, bt, that must

be repaid at the beginning of period t + 1. The gross interest rate on bt, is denoted

lt. When applying the model to the data, I treat the choice of debt as given. Because

there are no taxes or bankruptcy costs, the choice of debt should not affect the firm’s

investment decisions.
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1.2.1 Value Maximization

Managers maximize the discounted future cash flows, dt, of the firm to the share-

holders using the exogenously determined pricing kernel, mt,t+τ , by choosing invest-

ment in structures and equipment capital over an infinite horizon. In this case, the

cum-dividend market value of equity of the firm is

v(st, et, bt, θt, γt) = max
{ist+τ ,iet+τ}

∞

τ=0

Et

[
∞∑

τ=0

mt,t+τdt+τ

]
(1.4)

subject to

dt = π(st, et, θt) − fsst − feet − φ(ist , st, i
e
t , et) + bt − ltbt−1 (1.5)

st+1 = (1 − δs
t )st + ist (1.6)

et+1 = (1 − δe
t )et + γti

e
t . (1.7)

The shareholders receive the cash flow, or dividend, dt, which consists of the revenues,

π(t), minus the flow operating costs, fsst and feet, minus the direct and indirect costs

of investment, φ(t), plus the difference between the amount of debt raised, bt+1, and

the amount due, ltbt−1.

The optimality conditions which must be consistent at time t and t + 1 are:

ist : qs
t = φis(t) (1.8)

iet : qe
t =

φie(t)

γt

(1.9)

st+1 : qs
t = Et

[
mt+1

{
πs(t + 1) − fs − φs(t + 1) + (1 − δs

t+1)q
s
t+1

}]
(1.10)

et+1 : qe
t = Et

[
mt+1

{
πe(t + 1) − fe − φe(t + 1) + (1 − δe

t+1)q
e
t+1

}]
, (1.11)

where qs
t and qe

t are the present-value multipliers or shadow prices associated with

constraints (1.6) and (1.7), respectively. The first order conditions (1.8) and (1.9)
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equate the marginal costs of investing in structures capital, φis(t), and equipment

capital, φie(t)/γt, with their marginal benefits, qs
t and qe

t . The equations (1.10) and

(1.11) are the Euler equations that describe the evolution of the shadow prices of

capital. Rolling equations (1.10) and (1.11) forward and recursively substituting the

results, qs
t and qe

t can be represented as the expected present value of the marginal

profit from investing in structures and equipment capital. Managers will increase

investment up to the point at which the marginal costs of investment are equal to the

expected marginal benefits.

Equations (1.8) and (1.9) imply that Et[mt+1r
I
st+1] = Et[mt+1r

I
et+1] = 1, where

rI
st+1 ≡

πs(t + 1) − fs − φs(t + 1) + (1 − δs
t+1)φis(t + 1)

φis(t)
(1.12)

is the return to investing in new structures,

rI
et+1 ≡

πe(t + 1) − fe − φe(t + 1) + (1 − δe
t+1)φie(t + 1)/γt+1

φie(t)/γt

(1.13)

is the return to investing in new equipment. The returns to investment in equations

(1.12) and (1.13) are the ratios of the marginal benefit at time t + 1 to marginal cost

at time t .

The costs of investing in an additional unit of structures capital include the pur-

chase price and marginal adjustment costs, both of which are represented by φis(t).

The term πs(t + 1) − fs in the structures investment return equation is the marginal

revenue minus the marginal flow operating cost from an additional unit of structures

capital at time t + 1. The term −φs(t + 1) represents the marginal adjustment costs

from an additional unit of kt+1. With economies of scale in the adjustment costs func-

tion, this term will be positive. The marginal investment cost term (1−δs
t+1)φis(t+1)

represents the continuation value, or shadow price at time t + 1, net of depreciation,
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which can be seen by substituting using equation (1.8). Thus, the ratio of the net

profits at time t + 1 to the cost of investing at time t represents the gross investment

return. The equipment investment return is analogous with the exception of the term

γt which adjusts for the level of technology in producing equipment.

1.2.2 Market Values and Stock Returns

I use the Generalized Method of Moments procedure to estimate the model pa-

rameters and to test how well the model performs in a valuation context. I define the

ex-dividend market value of equity, pt, as

pt ≡ v(st, et, bt, θt, γt) − dt (1.14)

and the stock return as

rS
t+1 ≡

v(st+1, et+1, bt+1, θt+1, γt+1)

pt

=
pt+1 + dt+1

pt

. (1.15)

Using these two definitions, the following two propositions provide two of the four

moments used in the estimation procedure.

Proposition 1. (Market Value of the Firm) Let the market value of the firm, vt, be

as in (1.4) and define the ex-dividend market value of equity, pt, as in (1.14). Then,

in equilibrium, the market value of the firm can be expressed as

vt = pt + bt = qs
t st+1 + qe

t et+1. (1.16)

Proof. See the first appendix.

Proposition 1 states that the market value of the firm’s equity and debt is equal

to the value of the structures and equipment capital stocks using the shadow prices

of capital investment. Note that the structures and equipment capital stocks are

14



evaluated one period ahead. This is because capital takes one period to become

productive and is determined by the optimal amount of investment at time t. The

effect of investment-specific technological change is captured in qe
t , which can be seen

by plugging equation (1.9) into (1.11).

Proposition 2. (Stock Returns) Let the market value of the firm, vt, be as in (1.4)

and define the firm’s market leverage ratio, νt, as νt ≡ bt/(pt + bt). Then, in equilib-

rium, the firm’s stock and bond returns are related to investment returns as follows:

νtr
B
t+1 + (1 − νt) rS

t+1 = ωtr
I
st+1 + (1 − ωt) rI

et+1, (1.17)

where the stock return, rS
t+1 is defined in (1.15), the investment returns, rI

st+1 and

rI
et+1, are defined in (1.12) and (1.13), and ωt is defined as:

ωt ≡
qs
t st+1

qs
t st+1 + qe

t et+1

=
φis(t)st+1

φis(t)st+1 + φie(t)et+1

. (1.18)

Proof. See the first appendix.

Proposition 2 states that the leverage-weighted average of the stock and bond

return is equal to the weighted average investment return. This is a generalization of

the stock-investment return relation introduced by Cochrane (1991). The investment

returns are weighted according to the contribution of the type of capital to total

market value. These two equations are used along with the firm’s first order conditions

for investment to estimate the model parameters.

1.3 Econometric Methodology

1.3.1 Estimation Strategy

I use Hansen’s (1982) Generalized Method of Moments (GMM) procedure to es-

timate seven parameters of the model. In the rational expectations framework, the
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firm’s expectational errors for each moment, ǫt, should be orthogonal to the instru-

ments, Zt, which are in the firm’s information set at the time t: Et[Zt

⊗
ǫt(xt+1, Θ0)] =

0. In this orthogonality condition,
⊗

is the Kronecker product, xt is a vector of data

and Θ0 is the vector of true model parameters. In the GMM framework, the best esti-

mate of Θ0 is that which minimizes the quadratic form using the sample counterparts

to the orthogonality condition:

Θ̂ = argmin

Θ

(
1

T

T∑

t=1

Zt

⊗
ǫt(xt+1, Θ)

)′

W

(
1

T

T∑

t=1

Zt

⊗
ǫt(xt+1, Θ)

)
, (1.19)

where W is a weighting matrix. The four moment conditions used in the estimation

process are described below. The instruments are described in the data section.

The Investment Euler Equations

Two quantity moment conditions corresponding to the structures-investment Eu-

ler equation from combining equations (1.8) and (1.10):

φis(t) = Et

[
mt+1

(
πs(t + 1) − fs − φs(t + 1) + φis(t + 1)(1 − δs

t+1)
)]

(1.20)

and the equipment-investment Euler equation from combining equations (1.9) and

(1.11):

φie(t)

γt

= Et

[
mt+1

(
πe(t + 1) − fe − φe(t + 1) +

φie(t + 1)

γt+1

(1 − δe
t+1)

)]
(1.21)

are included in the set of moments. To induce stationarity, I scale (1.20) and (1.21) by

πt/st and πt/et, respectively. These two equations restrict the set of possible shadow

prices to those that can occur in equilibrium. On average, managers’ forecasts of

marginal profits from investing will equal marginal costs. Pastor and Veronesi (2006)
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use a reduced form model of firm profitability and do not directly use the information

contained in firms’ investment decisions.

The Asset Valuation Equation

Combining equations (1.10) and (1.11) with equation (1.16) and rearranging yields

the valuation equation:

pt

π(t)
=

st+1

π(t)
Et

[
mt+1

(
πs(t + 1) − fs − φs(t + 1) + φis(t + 1)(1 − δs

t+1)
)]

+
et+1

π(t)
Et

[
mt+1

(
πe(t + 1) − fe − φe(t + 1) +

φie(t + 1)

γt+1

(1 − δe
t+1)

)]
(1.22)

−
bt

π(t)
.

Prices are not stationary. In the long run, prices increase at roughly the same rate as

profits. I scale the moment condition by πt to deal with stationary variables in the

estimation. Merz and Yashiv (2005) estimate a similar equation—equation (2.20)—in

their paper.

The asset valuation equation allows me to study the important question as to

whether the q-theoretic model can quantitatively explain the stock market “bubble”

in the late 1990s as well as how different ingredients of the model contribute to the

stock price run-up and subsequent decline.

The Expected Return Equation

Cochrane (1991) tests the relationship between investment returns and stock re-

turns, which are equal in his model. In my model, the relationship is more complex.

To further restrict the set of parameter values allowed by my model, I include in

my set of moment conditions the following expected-return equation implied from
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equation (1.17):

E

[
rS
t+1 −

ωtr
I
st+1 + (1 − ωt)r

I
et+1 − νtr

B
t+1

1 − νt

]
= 0. (1.23)

This relation holds with or without expectations. Note that Merz and Yashiv (2005)

do not estimate the return moment condition. The second term in the brackets is the

levered investment return. Liu, Whited and Zhang (2007) implement this equation

in the cross-section of returns.

1.3.2 Functional Forms

The production function is Cobb-Douglas, π(st, et, θt) = A(θt)s
α
t e1−α

t , which ex-

hibits constant returns to scale. Its partial derivatives are

πs(t) = α
π(st, et, θt)

st

(1.24)

πe(t) = (1 − α)
π(st, et, θt)

et

, (1.25)

with α and (1 − α) denoting the output elasticities of structures and equipment,

respectively. I estimate α. The linear homogeneous adjustment costs function allows

costs to vary across the two types of capital:

φ(ist , st, i
e
t , et) = ist + iet +

(
as

ist
st

)ηs

st +

(
ae

γti
e
t

et

)ηe

et. (1.26)

Over the relevant parameter space, adjustment costs are increasing in investment,

ist and iet , and decreasing in the capital stocks, st and et. For the same level of

investment, larger firms incur smaller adjustment costs. The coefficients, as and

ae, are scale parameters to be estimated. These functions are typically assumed to

be quadratic, but following Merz and Yashiv (2007), I estimate the powers of the

adjustment costs function, ηs and ηe, and test the importance of this assumption. In
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the quadratic case, marginal adjustment costs are linear in investment-capital ratios.

With powers greater than 2, this relationship is convex. Because qs
t and qe

t are equal

to marginal adjustment costs in equilibrium, increasing the powers of the adjustment

costs function will magnify the variability the investment-capital ratios, and in turn,

the variability of implied returns.

The power parameters of the adjustment cost function provide measures of the

elasticities of the indirect portions of qs
t and qe

t with respect to changes in investment.

In particular, it can be shown that

∂(qs
t − 1)/(qs

t − 1)

∂ist/i
s
t

= ηs − 1 (1.27)

and

∂(qe
t − 1)/(qe

t − 1)

∂iet/i
e
t

= ηe − 1. (1.28)

So, in the standard quadratic adjustment costs case, a one percent increase in invest-

ment is associated with a one percent increase in the portion of qt attributable to the

indirect adjustment costs.

1.3.3 Diagnostics

After estimating the production function parameter, the two operating cost pa-

rameters, and the four adjustment costs parameters, I use a variety of diagnostic tests

to evaluate the model performance along several important dimensions.

Prices

The main aim of the paper is to apply a neoclassical q-theory model to firm

valuation. I estimate the model parameters with and without investment-specific

technological change for both sectors. After estimating the parameters, the predicted
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market value of equity is compared to the observed value. Next, to evaluate the

importance of each of the main elements of the model, I estimate several alternate

specifications and examine the resulting price levels. In particular, I estimate param-

eters for the following variations: homogeneous capital, no leverage, and quadratic

adjustment costs. Finally, I divide the US corporate nonfinancial series into two

subsamples and repeat the estimation.

Model Fit

In the GMM framework, when there are more equations than parameters, the

quadratic form on the right hand side of (1.19) will be greater than zero. The test

of overidentifying restrictions is a test of the overall fit of the model. In particular,

defining JT as the minimized value of the right hand side with an optimal weighting

matrix, W ∗,

Jt =

(
1

T

T∑

t=1

Zt

⊗
ǫt(xt+1, Θ̂)

)′

W ∗

(
1

T

T∑

t=1

Zt

⊗
ǫt(xt+1, Θ̂)

)
,

then TJT ∼ χ2(#moments×#instruments−#parameters). If this quantity is large

enough, then we can reject that the model fits the data in a statistical sense. On the

other hand, if this number is sufficiently close to zero, then we will fail to reject the

model.

Adjustment Costs

In the standard model with no indirect adjustment costs, growth options, or in-

tangible capital, the price of capital is equal to one and the value of the firm is equal

to the value of its assets in place. Once indirect adjustment costs are added, this is

no longer the case. Given the estimated parameters, time series of total adjustment

costs and marginal adjustment costs are generated for the preferred models. These
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costs are examined for plausibility.

Stock Returns and Investment Returns

As shown in Cochrane (1991, Table I), aggregate investment returns generated

using a standard q-theory model with quadratic capital adjustment costs are much

less volatile than aggregate stock market returns. A natural test is whether a richer

model can deliver stock market volatilities comparable to those observed in the data.

Specifically, having estimated the model parameters, I compare the investment return

volatility to the stock market return volatility. Additionally, the autocorrelation

structures of the investment returns and investment-capital ratios are compared with

those of the stock returns. Finally, correlations are calculated between stock returns

and investment returns, investment growth and growth in profits as in Cochrane

(1991).

1.4 Data and Summary Statistics

1.4.1 US Corporate Nonfinancial

I use quarterly data from the period 1953:1 to 2005:2 for the nonfinancial corporate

business sector of the United States.

Output and Price Deflator

As my measure of output, π, I use the real value added of nonfinancial corporate

business from Table 1.14 (series A457RX1) of the NIPA accounts published by the

BEA of the Department of Commerce and its associated price deflator.
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Investment, Capital, Depreciation and the Price of Investment

I require the quarterly data to conform to the annual data. This is a multi-step

procedure. First, I generate quarterly investment and depreciation data for aggregate

physical capital that are consistent with the annual data. Next, the quarterly invest-

ment data are separated into investment in structures and investment in equipment.

Finally, I generate the quarterly structures and quarterly equipment capital stocks

using the quarterly investment data and the annual depreciation data. All data are

from the BEA NIPA tables and the Federal Reserve Flow of Funds data. See the

data appendix for details.

Market Value of Equity and Leverage

I use the market value of shares outstanding for nonfinancial corporate business

from the Federal Reserve (Table B.102, series FL103164003.Q) as my measure of the

market value of equity, pt. In the measure of financial leverage, ωt, I use total value of

credit market instruments, bt, for nonfarm nonfinancial corporate business from the

Federal Reserve (Table B.102, series FL104104005.Q) and the market value of equity.

Discount Factor and Stock and Bond Returns

Following Merz and Yashiv (2007), I use 1/rS
t+1 as the pricing kernel, mt,t+1. In

this case, rS
t+1 is the CRSP Value Weighted NYSE, NASDAQ and Amex nominal,

gross return deflated by the inflation rate. For the bond return, rB
t , I use the Baa-

rated bond yield from the Federal Reserve of St. Louis. Stock and Bond returns are

measured from point to point, and macroeconomic variables are typically quarterly

averages. Following Cochrane (1996), I average monthly returns and adjust the timing

so that they cover the period from the middle of the initial quarter through the middle

of the following quarter.
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1.4.2 NASDAQ data

I use quarterly aggregate NASDAQ data from 1983:4 to 2005:3. The beginning of

the sample is limited by the availability of disaggregated firm level investment data.

Accounting Data

The historical exchange codes in the CRSP monthly file are used to determine

when stocks were listed and delisted from the NASDAQ exchange. Accounting data

are gathered for those firms which are included in Compustat. Sales, capital stocks,

investment, and depreciation are gathered from CRSP3. Total investment in fixed

capital is reported quarterly, but is only disaggregated into structures and equipment

annually. For each stock, I divide quarterly total investment into its two components

based on the industry averages from the BEA NIPA fixed asset tables. Data are

aggregated based on market value of equity. See the data appendix for more details.

Returns, Market Value of Equity and Leverage and Pricing Kernel

The total market value of securities used in the NASDAQ index (usdval) is de-

fined as the Market Value of Equity, pt. The value-weighted stock return including

dividends, rS
t , is taken from the indices file (vwretd) and adjusted for timing as in

Cochrane (1996). As a proxy for the return to the debt, rB
t , I use the Baa-rated bond

yield from the Federal Reserve of St. Louis.

Financial leverage, ωt, is calculated using aggregate book value of Long Term

Debt from the Compustat Industrial Quarterly file (data51), and the market value of

equity. Firm debt data are aggregated in the same manner as the other series.

As in the case of the aggregate US corporate nonfinancial sector, I use the CRSP

value weighted index as a proxy for the pricing kernel.

3As in Love (2003) and Liu, Whited and Zhang (2007), sales are used in the marginal product
of capital. This can be done if the production function exhibits constant returns to scale and the
shocks to profits are reflected in sales.
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1.4.3 Investment-Specific Technological Change

The productive quality of equipment and software may change over time, even

adjusting for inflation. A common example used to illustrate this change is “Moore’s

Law” which states that the number of transistors that can be inexpensively placed

on an integrated chip doubles approximately every two years. As long as the price of

the chips increases at a lower rate than the productivity, then the real price of a chip

will underestimate the level of technology embodied in the new vintage of hardware.

To model the change in the technology in producing equipment and software, I

follow Greenwood, et al, (1997), and Cummins and Violante (2002), and use an ex-

ogenously determined process for γt based on Gordon’s (1990) quality-adjusted prices

for 22 categories of durable equipment from 1947-1983. Gordon estimates quality

adjusted prices using price hedonic regressions. Using Gordon’s indexes, Cummins

and Violante measure the quality bias implicit in the NIPA price indexes for the 1947-

1983 period and extrapolate the bias using the NIPA data from 1984-2000. I repeat

the exercise and extend each series through 2006. Using the Tornqvist procedure4,

I aggregate the asset-level price indexes into a structures and equipment index, pG
t .

The level of technology is then calculated as γt = pC
t /pG

t , where pC
t is a constant-

quality price index for consumption constructed by applying the Tornqvist procedure

to NIPA data on prices and shares of the consumption of non-durable goods (exclud-

ing energy expenditures) and nonhousing services. The quality adjusted price, pG
t

and the level of technology, γt for the period 1947-2006 are presented in Panels A and

B of figure 1.5.

Because old equipment loses some of its value as technology improves, depreciation

4The Tornqvist procedure is used to form a moving-weight average of percentage growth weights.
In this case, the Tornqvist index is a cumulative exponential index of growth rates in prices, where
the individual weights are the shares of either the investment good, or consumption good
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is adjusted according to the change in the relative price of the asset:

δeγ
t = 1 − (1 − δe

t )
γt−1

γt

. (1.29)

Finally, to capture the effect of technological change on the capital stock, a new

equipment series, eγ
t is generated using the observed investment, iet the adjusted de-

preciation, δeγ
t , the level of technology, γt, and the capital accumulation equation. The

new capital stock series is initialized at the beginning of the sample using steady-state

levels of the equipment capital stock. Panels C and D of Figure 1.5 show the propor-

tion of aggregate capital made up of equipment for both the US corporate nonfinancial

and NASDAQ sectors. Equipment capital has become relatively more important in

both cases, especially when controlling for investment-specific technological change.

1.4.4 Instruments

I use five instrumental variables in the GMM estimation which have been shown

to have power in predicting prices, returns and output. The default premium, deft,

is defined as the difference between the yields of Aaa and Baa corporate bonds. The

term premium, termt, is the yield on ten-year notes minus that on three-month Trea-

sury bills. Corporate bond data are from Ibbotson’s index of Long Term Corporate

bonds. The risk free rate, rft, is from Ken French’s website. The equally weighted

aggregate dividend yield, divt, is from CRSP. Finally, I use the Lettau and Ludvigsen

consumption-to-wealth ratio, cayt.

1.4.5 Summary Statistics

Table 1.1 summarizes the data for the US corporate nonfinancial sector from

1953-2005 and for the NASDAQ from 1983-2005. Structures investment-capital ratios

are much smaller on average than equipment ratios in both sectors. Adjusting for
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investment-specific technological change decreases the difference between the two,

mainly because the generated equipment capital stock is larger than the observed

stock. Investment in equipment is also more volatile than structures investment which

will also lead to a more volatile shadow price of equipment via the adjustment costs

function. Investment-capital ratios are higher in the NASDAQ for every category. On

average, from 1953 to 2005, the US corporate nonfinancial sector uses more structures

than equipment. The average equipment to total fixed capital ratio is 33% increases in

almost every quarter, ranging between 23% in the first quarter of 1953 to 45% in the

second quarter of 2005. After generating a constant quality equipment capital stock

series using investment specific technological change, the average drops to 19% and

the series ranges between 6% and 51%. A graph of both series is presented in Panel C

of figure 1.5. The NASDAQ firms use more equipment capital than structures capital

for most of the sample. On average, equipment makes up 56% of fixed capital, and

ranges from a low of 49% in the fourth quarter of 1983 to a high of 63% during the first

quarter of 1999. Controlling for investment-specific technological change, equipment

makes up 61% of fixed capital on average and ranges between 48% and 77%. These

two series are shown in figure 1.5, Panel D. Equipment depreciates more than twice as

fast as structures. Once adjusting for changes in the quality of equipment capital, this

difference is even larger. The table also shows that the NASDAQ firms use less debt

on average, 17.1%, than the average US nonfinancial firms, 35.3%. The scaled price

levels of the US corporate nonfinancial and NASDAQ sectors are roughly the same

on average – price is equal to about 5.5 times output. The NASDAQ series, however,

is much more volatile. As can be seen in Figure 1.6, the two series mimic each other

very closely during the 1983-2005 period with the exception of the extremely high

NASDAQ prices from 1999-2001.
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1.5 Results

1.5.1 Valuation

To test how well the neoclassical q-theory model performs in the valuation of

equity, I use the GMM framework to estimate the parameters for the generalized

model with and without investment-specific technological change for both sectors

and examine the parameter estimates and fit along with the predicted price levels.

Then, to determine which components of the model are necessary, I add each of the

following assumptions individually: homogeneous capital, equity-only financing, and

quadratic adjustment costs. Finally, to test for parameter instability, I estimate the

model for the US corporate nonfinancial sector for two subperiods.

Table 1.2 presents the parameter estimates and model fit for both sectors for

the generalized model with and without investment-specific technological change.

Panel A presents the results for the US corporate nonfinancial sector while Panel

B presents those of the NASDAQ sector. For each sector, the model is estimated

with and without (γt = 1) investment-specific technological change. Only in the

US corporate nonfinancial sector with investment-specific technological change are

the structures adjustment costs nontrivial. In the three other cases, the adjustment

costs for structures are essentially zero. When this is the case, the standard errors

for the structures adjustment cost parameters are relatively large. This is because

when adjustment costs are very small, the curvature of the function is irrelevant. In

these three cases, the parameter s is set to zero, the structures power parameter is

ignored and the remaining five parameters are estimated. In each of these cases, the

remaining parameters are relatively stable.

In all of the models, the p-value for the JT test of overidentifying restrictions is

greater than 5%. In other words, the model is not rejected at the 5% level of signif-

icance. The fit is especially good in the NASDAQ sector. In all four specifications,
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the structures output elasticity, α, is close to one. All of the estimated equipment

adjustment cost powers, ηe, are greater than 2, suggesting that the quadratic ad-

justment costs specification is not necessarily the best choice at the aggregate level.

These parameters are all smaller with investment-specific technological change than

without. The equipment adjustment costs power parameter ranges from 5.45 to 6.54

on the US corporate nonfinancial sector and from 2.18 to 3.68 on the NASDAQ. The

coefficients of the adjustment costs function, as and ae, are relatively stable for each

sector. Evaluating the marginal adjustment costs at the mean investment-capital

ratios from Table 1.1 provides intuition as to the economic significance of the mag-

nitude of these coefficients. In equilibrium, these are equal to the present value of

the expected marginal profits from investing, qs
t and qe

t . For the US corporate non-

financial sector, the “average” marginal investment costs for structures without and

with investment-specific technological change are 1.00 and 1.39 per dollar invested.

The corresponding costs for equipment are 1.69 and 1.58 per dollar. In the NASDAQ

sector, the “average” costs are 1.00 and 1.00 for structures and 9.08 and 7.33 for

equipment. In a model without indirect adjustment costs, these values are all equal

to 1 and the value of the firm is equal to the value of assets in place. When it is

costly to invest, managers will only do so if they expect marginal cash flows to be

sufficiently high. In this case, the marginal cash flows, or shadow prices of equipment,

are much higher on average on the NASDAQ than for the US corporate nonfinancial

sector.

Using the asset valuation equation (1.22) and the parameter estimates from Table

1.2, a price series can be generated for all four models and compared to the actual

prices observed in the market. Panel A of Figure 1.7 presents the resulting graphs

for the US corporate nonfinancial sector for both specifications – with and without

investment-specific technological change. In the latter case, the model with the re-

striction as = 0 is used, although the price series in the other looks very similar.
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Both predicted price series are slightly lower than the actual series from about 1958

until about 1973, and both are slightly higher during 1977 through about 1986. From

1986 until the end of the sample, the model with no investment-specific technological

change does a good job of matching the observed levels with the exception of the

extremely high prices during the peak of the “bubble” during the year 2000. Once

equipment capital is adjusted for changes in quality, the model is able to match even

the these extremely high prices. However, this second model produces prices that are

much too high starting in about 2003. By the end of the sample, the predicted prices

are roughly double those observed in the market. Panel B presents the results for the

NASDAQ models. Again the models with the restriction as = 0 are used, but the

plots for the model without this restriction look almost identical. The model without

investment-specific technological change overvalues the equity in almost every quarter

until the 4th quarter of 1998. After the 2nd quarter of 2001, it undervalues the equity

relative to the market. In the intermediate period it is roughly able to replicate the

extreme run up and decline in prices with the exception of the most extreme quarter

– the 2nd quarter of 2000. With the introduction of investment-specific technological

change to the model, the fit improves drastically over the entire length of the sample.

With the exception of the most extreme quarter of the “bubble” period, the model

fits the data very well.

1.5.2 Adjustment Costs

When adjustment costs are convex, managers increase investment until the marginal

costs of investing equal the present value of the expected marginal profits from in-

vesting. In equilibrium, investment is relatively high when rational managers expect

marginal profits to be relatively high. When the present value of marginal profits is

high, firm value is high. Figure 1.9 shows time series of equipment investment-capital

ratios, iet/et, and shadow prices of equipment, qe
t , for both sectors. In equilibrium, the
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latter is equal to the marginal costs of investment in equipment. When adjustment

costs are quadratic, marginal costs are a linear function of investment-capital ratios.

In our case, the relation is convex. Panel A shows the two time series for the US cor-

porate sector without investment-specific technological change. In a relative sense,

the investment-capital ratio mimics the price time series. Mechanically, when invest-

ment is relatively high, adjustment costs are relatively high. In equilibrium, marginal

costs of investment are equal to marginal returns from investing. Intuitively, when the

present value of the marginal profits from investing in new capital is relatively high,

managers will increase investment and the value of the firm, Vt = qs
t st+1 + qe

t et+1, will

be relatively high. The main driving forces behind the price series from the model

are the structures and equipment investment-capital ratios, which determine qs
t and

qe
t .

One way to determine how reasonable the adjustment costs parameters are is to

examine the implied adjustment costs and shadow prices, which are equal to the

marginal capital adjustment costs. The adjustment costs function includes the pur-

chase price of the capital along with the costs of adjustment. Table 1.3 presents time

series averages and standard deviations of adjustment costs as a percentage of total

output, net of direct investment costs, (φt − ist − iet)/πt, and the shadow prices of

capital investment, qs
t and qe

t . For the US corporate nonfinancial sector in Panel A,

the average adjustment costs as a percentage of output ranges from 2% to 2.5%. This

is much smaller than the 4.2% reported by Merz and Yashiv (2005) when treating

capital as homogeneous for the same sector. The corresponding ratios for the NAS-

DAQ (Panel B) are between 9.6% and 13.8%, which is much higher than the numbers

found in Merz and Yashiv (2005). However, they do not fit their model using NAS-

DAQ data. The NASDAQ is more heavily weighted towards equipment than towards

structures. Part of the reason for the increase is that equipment capital is more costly

to adjust. Lichtenberg (1988) finds that an increase in capital investment of one dollar
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decreases current output by 35 cents on average. He also finds evidence to suggest

that the marginal costs of adjusting equipment are larger than those associated with

structures. For the US nonfinancial sector, the time series average marginal costs of

investment in structures, qs
t , varies between 1.000 and 1.364 and the average marginal

cost of investment in equipment, qe
t , ranges from 1.954 to 2.119. NASDAQ estimates

in Panel B are 1.000 and 1.000 for structures and are much higher for equipment –

between 6.045 and 9.789. The marginal costs for the model that best fits the price

time series are 1.000 for structures and 7.331 for equipment. Based on previous esti-

mates, these costs seem plausible. Merz and Yashiv (2005) include a survey of past

estimates of total marginal adjustment costs, excluding the direct marginal costs of

investment. Adjusting for direct costs, past estimates of the average marginal adjust-

ment costs range between 1.02 and 10.47. These estimates do not distinguish between

types of capital. Because the adjustment costs for homogeneous capital would be a

convex combination of the costs for structures and equipment, the marginal costs of

adjusting equipment are an upper bound. The time series of qs
t and qe

t for the two

preferred models – without investment-specific technological change for the US sector

and with this change for the NASDAQ – can be seen in Figure 1.8.

When capital is divided into structures and equipment, and the adjustment costs

function is allowed to be non-quadratic, the q-theory model does a good job of valu-

ing aggregate US corporate nonfinancial equity and the NASDAQ sector – especially

from the mid-1990s through 2005. Investment-specific technological change improves

valuation in the NASDAQ sector, but does not seem to be as important in the US

corporate nonfinancial sector. Both average and marginal adjustment costs are rea-

sonably small based on the past literature.
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1.5.3 Alternative Specifications

To determine which of the elements of the generalized model are necessary, I

start with the two preferred models from Table 1.2 – the generalized model without

investment-specific technological change for the US corporate nonfinancial sector, and

the model that includes this technological change in the NASDAQ sector – and add

the following assumptions individually: homogeneous capital, equity only financing,

and quadratic adjustment costs. Then, I examine the parameter estimates and model

fit and plot the time series of predicted price levels. Finally, I test for parameter

instability in the US corporate nonfinancial sector with a subsample analysis.

Single Capital Good

To evaluate the importance of separating fixed capital into structures and equip-

ment, I treat all capital as homogeneous, estimate the parameters, and examine the

fit. The three moments that are used in the GMM estimation procedure are

φi(t) = Et [mt+1 (πk(t + 1) − c − φk(t + 1) + φi(t + 1)(1 − δt+1))] (1.30)

pt

πt

=
kt+1

πt

Et


mt+1




πk(t + 1) − c − φk(t + 1)

+φi(t + 1)(1 − δt+1)





−

bt

πt

(1.31)

0 = E

[
rS
t+1 −

rI
t+1 − νtr

B
t+1

1 − νt

]
(1.32)

These are the first order condition for investment in total fixed capital, kt, the asset

valuation equation, and the stock-investment returns identity for the single capital

goods case. Before estimating, the first order condition is scaled by πt/kt to help deal

with stationarity issues. The estimated parameters and model fit for the homogeneous

capital case using the US corporate nonfinancial data series are presented in Panel A

of Table 1.4. As in the case of multiple capital goods, the adjustment costs function

is non-quadratic with a power parameter of 7.14. Panel A of Figure 1.10 plots the
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actual scaled equity price versus the predicted prices from the preferred model and

the model with a single capital good with leverage. The two models perform similarly

until the “bubble” period in which case separating capital into two components seems

to help explain the high prices. Panel B of Table 1.4 shows that the model with

homogeneous capital fits the mean NASDAQ moments well. With homogeneous

capital, the adjustment costs power parameter is between 2.54 and 2.76. Panel B of

Figure 1.10 shows that while the prices predicted by the model with a single capital

good match those of the model with heterogeneous capital at the peak of the bubble,

it comes at the expense of a poor fit for the rest of the sample. By the end of the

sample, the model generated prices are one-third as large as those observed in the

market.

All Equity

For simplicity, it may be convenient to treat a firm’s financing as equity only as

done in Cochrane (1991). This is a common assumption when examining the link

between investment returns and stock returns. However, it may not make much sense

in the valuation context where absolute levels are needed. For example, in the US

corporate nonfinancial sector, the value of the fixed capital exceeds the market value

of equity. Any adjustment costs will increase this difference. On average, the US

nonfinancial sector has a leverage ratio of 35% compared to 17.1% for the NASDAQ.

Because NASDAQ firms use much less debt, I focus my energy on that sector. To test

the importance of leverage in valuation, I assume that firms have no debt (bt = 0)

and repeat the GMM estimation with the same moment conditions and instruments

as in the general case and then compare the predicted price levels to those from

the preferred model. Again, investment-specific technological change is included in

the NASDAQ case. The first column of Panel B in Table 1.5 shows the parameter

estimates and overall fit for the NASDAQ in the all equity case. As was the case
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in the generalized model, the adjustment costs coefficient for structures, as, is very

close to zero. This causes problems when estimating the associated power parameter.

As a result, I set the as to zero and estimate the model a second time. The power

parameter for the equipment is 2.43 which is larger in than in the preferred model

which included debt. The overall fit of the model is very good with a p-value of

0.921. From Panel B of Figure 1.11, we see that the predicted price series for both

the preferred model and the all equity model do very well at fitting the market data

for most of the sample. In fact, with the exception of four quarters during 2000

and 2001, the two are almost indistinguishable. Thus, at least in terms of relative

valuation, leverage does not seem to be a crucial ingredient in pricing the NASDAQ

over the course of this sample.

Quadratic Adjustment Costs

Many models assume adjustment costs functions to be quadratic. In such a case,

marginal costs are linear in investment-capital ratios. As shown in the general case,

this may not be ideal at the aggregate level. However, imposing this assumption may

aid in estimation by reducing the number of parameters. As before, the assumption

is imposed on the preferred specifications from the generalized model, and the results

examined and compared. The second column of Panel A in Table 1.5 presents the

results of the quadratic adjustment costs case for the US corporate nonfinancial sector.

With this added assumption, the p-value for the overall fit is 0.13 and the estimated

adjustment costs coefficients are 1.18 for structures and 3.43 for equipment. As seen

in Panel A of Figure 1.11, the prices behave much the same as those predicted by the

preferred model until the mid-90s during which time they significantly undervalue the

equity. They are not able to match the high prices observed during this period.

When quadratic adjustment costs are used in the NASDAQ, as seen in the sec-

ond column of Panel B, Table 1.5, the fit is very good. In the preferred case, the
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equipment adjustment costs were close to quadratic with a power parameter of 2.19,

and the marginal structures adjustment costs - net of the direct investment costs -

were essentially zero, so we might expect the model to perform relatively well. The

structures adjustment costs coefficient is 1.10, but is not significantly different from

zero. The equipment adjustment costs coefficient is 8.04 which is more than twice as

large as the coefficient in the aggregate US case. In Panel B of Figure 1.11 we see that

the quadratic adjustment costs model does almost as well as the preferred model in

pricing the equity for most of the sample. It does produce a run up in prices during

the bubble period, but they are not quite as great as those predicted by the model

with non-quadratic costs.

Subsample Analysis

It is possible that the poor fit in the early part of the sample in the US corporate

nonfinancial sector is due to parameter instability. If the parameters of the underlying

adjustment costs function, or profit function are changing over time, the model is not

likely to do well over the entire sample. For example, the structures capital share

decreases in almost every quarter, which suggest that its output elasticity might also

be changing with time. To test for this, I split the sample in half, from the 1st

quarter of 1953 through the 1st quarter of 1979, and from the 2nd quarter of 1979

through the 2nd quarter of 2005. In Table 1.6, I present results for two specifications

– with and without investment-specific technological change – for each subsample.

The fit of all four models improves relative to the results from the entire sample. The

structures elasticity of output, α is much lower over the first part of the sample than

the second. The power parameters for structures are between 3.74 and 3.87 during

the first subperiod and 2.34 in the second subperiod. In each case, the structures

parameter is less precisely estimated, but larger than the corresponding equipment

parameter. In the first subperiod, investment-specific technological change seems

35



to improve the overall fit. This is not the case in the second subperiod. However,

because two more parameters, as and ηs, are estimated, the degrees of freedom are

smaller. From the plots in Figure 1.13, we can see the results of breaking the sample

into two parts and estimating each separately on valuation. Without investment-

specific technological change, Panel A, there does not seem to be a significant change.

Once investment-specific technological change in included, Panel B, the story changes

slightly. In the first subsample, the fit is much the same for the first third, slightly

better in the middle, and slightly worse at the end. For the second subsample, the

fit is slightly better for the first 6 years and slightly worse for the next decade. For

the “bubble” period – from about 1995 through about 2003, the model using the

subsample does a very good job of fitting the observed data. The second subsample

roughly corresponds to the period covered in the Merz and Yashiv (2007) study. It

still suffers from the same end of sample problem that we see in the model using the

full sample, but the overpricing is slightly lower. Overall, breaking the sample into

two periods and estimating each separately did little to improve the fit in terms of

the time series of prices.

1.5.4 Stock and Investment Returns

As shown by Cochrane (1991), the investment returns from a q-theory model

with quadratic adjustment costs, homogeneous capital and no debt are much less

volatile than market stock returns. In particular, he estimates the quarterly standard

deviation of investment returns to be 3.42% compared to the market return volatility

of 7.24% for the period from 1947–1987. In standard q-theory models, investment

returns are exactly equal to stock returns. In the model in this paper, the stock

return is equal to the levered investment return as in (1.23). Figure 1.14 plots these

returns against the real stock returns for the US corporate sector and the NASDAQ

sector using the preferred models.
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Volatilities

The relation between stock returns and investment returns in Proposition 2 holds

state-by-state. In addition to the first moment holding, all higher moments should

hold. The second moment is not included in the GMM estimation procedure. A nat-

ural test is whether a richer model can deliver stock market volatilities comparable

to those observed in the data. I use the aggregate US corporate nonfinancial lev-

ered investment returns predicted by the preferred model without investment-specific

technological change, and the investment returns predicted by the NASDAQ model

with investment-specific technological change and calculate means, standard devia-

tions, and autocorrelations. Tables 1.7 and 1.8 include these estimates along with

means, standard deviations and autocorrelations of the investment capital ratios and

the CRSP value weighted real stock return.

For the US corporate nonfinancial sector, the standard deviation of the stock

return for the period from 1953–2005 is 6.41%, which is very close to the standard

deviation of the investment return of 6.13%. Consistent with Cochrane (1991, Table

I), the investment returns are more positively autocorrelated than the stock returns.

The 1-quarter autocorrelation of the stock return is 0.33 compared to 0.55 for the

investment return. The investment-capital ratios have high positive autocorrelations.

The NASDAQ returns are more volatile than those for the US corporate sector.

The levered investment returns from the model are even more volatile. The model pro-

duces a quarterly standard deviation of returns of 12.63% compared to the observed

standard deviation of 10.44%. Liu, Whited and Zhang (2007) found the monthly

levered investment return volatility to be smaller than the observed stock return

volatility in 24 of the 25 Fama-French size and book-to-market portfolios. They use

a neoclassical model similar to mine. However, they do not consider non-quadratic

adjustment costs or multiple capital goods.

To better understand the source of the model’s ability to generate higher volatili-
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ties than that of previous models, I calculate standard deviations from the predicted

stock returns for each specification and present the results in Table 1.9. Each speci-

fication represents the change in one model assumption. However, because all of the

model parameters change for each specification, it is difficult to attribute the changes

in standard deviations to any one parameter. The various models produce a wide

range of standard deviations. The first column of Table 1.9 presents results for the

US corporate nonfinancial sector. Cochrane (1991) uses homogeneous capital, equity

only financing and quadratic adjustment costs in the US corporate sector and gen-

erates standard deviations of less than half the size of those observed. Three of the

specifications represent these three assumptions individually. In each of these three

cases, the predicted standard deviations are much lower than the observed value. The

model with homogeneous capital and the model with equity-only financing generate

stock return standard deviations of about 2.5% per quarter compared to the actual

value of 6.41%. Restricting adjustment costs to be quadratic in investment results

in quarterly standard deviations of 4.32%. In the general case, with and without

investment-specific technological change, predicted returns are roughly as volatile as

actual returns at 6.32% and 6.13%, respectively.

At the aggregate NASDAQ level, it is much easier to generate high stock return

volatilities. Within the framework of the model, return volatility is driven principally

by volatility in marginal revenues and marginal costs, which in turn are driven by

investment-capital ratios and output. As shown in Table 1.1, the NASDAQ invest-

ment capital ratios are much more volatile than those of the US corporate nonfinancial

sector, with standard deviations of 1.31% versus 0.18% for the structures series and

1.64% versus 0.75% for the equipment series. Once investment-specific technological

change is added the standard deviations of the investment capital ratios for equipment

become 1.65% for the NASDAQ and 1.06% for the US corporate nonfinancial sector.

This disparity carries through to the predicted stock return series. As shown in the
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second column of Table 1.9, all of the models produce stock returns that are at least

as volatile as observed returns. The standard deviation of returns in the quadratic

adjustment costs case, 10.8% per quarter, is the closest to the actual value of 10.36%.

The standard deviations generated by the other specifications range from 11.53% in

the all-equity case to 18.70% in the generalized model without investment-specific

technological change. It is not clear how these specifications would compare if the

second moment were included in the GMM estimation procedure.

Correlations

In Table 1.10, the correlation between stock returns and model generated levered

investment returns is estimated. For the US corporate nonfinancial sector, there is

some positive correlation between the equipment investment return and the stock

return, but virtually none between the levered investment return. For the NASDAQ,

however, there is a strong, statistically significant relation between the two. The

correlation between the actual and predicted stock return is 0.37 and is highly sig-

nificant. Table 1.10 also presents correlations between stock returns and investment

growth and growth in output. Growth in investment and output are highly corre-

lated with US corporate nonfinancial stock returns. Structures investment growth

and growth in output are not significantly correlated with the NASDAQ stock return

index.

1.6 Adjustment Costs and Human Capital Accumulation

Fixed capital loses much of its productive capacity when it used improperly. The

amount of knowledge required to effectively use capital varies. It may take very little

effort to learn the best way to dig a hole with a new shovel or to learn to unlock a door.

On the other hand, many hours may be required to learn how to effectively utilize a

new computer program or operate a complex machine. Investment in new capital —
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especially high technology capital — is often accompanied by unmeasured investment

in human capital. Workers who would otherwise be producing goods and services

spend time learning how to use newly acquired equipment and software. If labor

is not disaggregated into time spent producing and time spent learning, measured

productivity will decrease when investment is high. This should be especially true

where large amounts of human capital are required.

To examine whether some of the adjustment costs measured in the previous sec-

tions are proxies for human capital accumulation, consider the following model. The

firm uses structures, st, equipment, et, labor, lt, and human capital, ht, to produce

output, πt, as follows:

πt = Ats
αs

t k(et, ht)
αe(θπ

t lt)
1−αs−αe . (1.33)

Here, θπ
t is the fraction of observed labor hours dedicated to producing output and

At is the time varying total factor productivity which has the following process:

At = At−1e
g+εt , (1.34)

where g is the mean growth rate of At and εt ∼ iid and mean zero. The function

k(et, ht) relates the use of equipment and human capital. For simplicity, I assume

that the two are perfect complements5:

k(et, ht) = min(et, νht). (1.35)

With this Leontief production function, equipment and human capital will be opti-

mally used in fixed proportions. The structures, equipment and human capital stocks

5A more general CES production function with a low elasticity of substitution will generate the
same qualitative predictions.
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evolve according to the familiar one period dynamics:

st+1 = (1 − δs)st + ist (1.36)

et+1 = (1 − δe)et + iet (1.37)

ht+1 = (1 − δh)ht + iht . (1.38)

In practice, we can observe capital stocks, depreciation rates, and investment in

structures and equipment. However, we cannot directly observe human capital or

investment in human capital. I model investment in human capital as a production

process that requires labor input:

iht = Bt(1 − θπ
t )lt, (1.39)

where Bt is the level of productivity in producing human capital. Dividing πt by lt

and taking log differences, we get the growth of output per labor hour:

log

(
πt/lt

πt−1/lt−1

)

= g + εt + αslog

(
st/lt

st−1/lt−1

)
+ αelog

(
et/lt

et−1/lt−1

)
+ (1 − αs − αe)log

(
θπ

t

θπ
t−1

)
.

(1.40)

We can observe all of the variables except for εt and θπ
t . Though we cannot observe

θπ
t directly, we can test for its influence on the estimated growth rate of total factor

productivity:

ĝt ≡ log

(
πt/lt

πt−1/lt−1

)
− α̂slog

(
st/lt

st−1/lt−1

)
− α̂elog

(
et/lt

et−1/lt−1

)
, (1.41)
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where α̂s and α̂e are regression coefficients from the following (misspecified) equation

log

(
πt/lt

πt−1/lt−1

)
= g + αslog

(
st/lt

st−1/lt−1

)
+ αelog

(
et/lt

et−1/lt−1

)
+ ǫt. (1.42)

Because the growth rate of θπ
t was omitted from the regression, the estimate ĝt will

be positively correlated with changes in θπ
t . When log(θπ

t /θπ
t−1) is relatively high, ĝt,

overestimates the true growth rate in productivity. Because equipment and human

capital are perfect substitutes, investment in equipment will be positively correlated

with the production of human capital. In other words, when iet is relatively high, θπ
t

will be relatively low. To test the hypothesis that investment in equipment capital

is accompanied by unobservable complementary capital accumulation, I estimate the

following equation:

ĝt = a + βslog(ist/i
s
t−1) + βelog(iet/i

e
t−1) + wt (1.43)

If labor is being diverted from production towards accumulating human capital when

investment in equipment is high, the coefficient βe should have a negative sign. The

same is true for βs. However, the earlier results indicate that adjustment costs for

structures are very small. In that case, we would expect the structures coefficient,

βs, to be zero.

To estimate the growth in productivity in equation (1.41) the total number of

labor hours is needed. This is not readily available for the US corporate nonfinancial

and NASDAQ sectors. However, the BLS provides these data for the private non-

farm business sector and also provides estimates of g using labor and capital inputs

(BLS Table XG 4c). Panel A of Table 1.11 reports summary statistics for real annual

productivity growth, and real annual structures and equipment investment growth

(BEA Fixed Assets Table 4) for the private non-farm business sector from 1949 to

2007. On average, productivity grew at a rate of 1.35% per year during this period.

42



In real terms, investment in structures capital declined at a rate of 0.06% per year.

Real investment in equipment capital grew at rate of 1.22% per year. Productivity

growth was much less volatile than investment growth with a standard deviation of

1.82% per year compared to 6.98% for structures and 7.93% for equipment.

Panel B presents OLS regression coefficients, standard errors, t statistics and the

R square for the equation (1.43). Consistent with the hypothesis that investment in

equipment is accompanied by the diversion of labor towards human capital accumu-

lation, the coefficient estimate for βe is equal to -10.16% and is statistically significant

at the 1% level. Because the dependent and independent variables are in logarithms,

this coefficient can be interpreted as an elasticity. Increasing equipment investment

growth by 1% leads to a 0.10% decrease in measured productivity. The sign of the

coefficient on structures investment growth, βs, is negative, but is not significantly

different from zero. This is consistent with the trivially small indirect adjustment

costs estimated in the US corporate nonfinancial and NASDAQ sectors.

1.7 Conclusion

I have shown that a generalized version of the standard neoclassical q-theory model

can be used in a valuation context. The prices observed during the late 1990s and

early 2000s are roughly consistent with such a model. In standard valuation tech-

niques, subjective forecasts are required to project future cash flows. In the q-theory

framework, on the other hand, managers maximize firm value. When firms behave

optimally, the shadow price of capital includes a forecast of future marginal cash

flows. This price is not directly observable, but it can be inferred – via an adjust-

ment costs function – from a firm’s observable investment decisions. When capital

is disaggregated into structures and equipment, adjustment costs are not restricted

to the quadratic case, such a model does reasonably well at explaining prices of the

aggregate US corporate nonfinancial sector. When investment-specific technological
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change is introduced, the model fits the NASDAQ sector very well. Including first

order conditions as moment conditions ensures that managers’ forecasts are correct

on average – unconditionally, and with respect to the instruments. The implied ad-

justment costs and shadow prices of capital are reasonably small for the aggregate

US market and higher for the NASDAQ sector, but still within the range of past es-

timates. In this framework, the stock returns predicted by models in both sectors are

as volatile as the observed stock returns. I find evidence that supports the idea that

investment in equipment is accompanied by unobserved investment in human capital

or intangible capital. This diverts labor from production and leads to a decrease in

measured productivity.

1.8 Appendix: Detailed Derivations

To derive the relation between stock returns, bond returns and capital investment

returns, I roll back the structures and equipment first order conditions one period

and multiply by structures and equipment, respectively, use the law of iterated ex-

pectations, sum up, and use the linear homogeneity of π, and φ to get

Et

[
mt+τ−1

(
qs
t+τ−1st+τ + qe

t+τ−1et+τ

)]

= Et




mt+τ




π(st+τ , et+τ , θt+τ ) − fsst+τ − feet+τ

−φ(ist+τ , st+τ , i
e
t+τ , et+τ )

+φis(t + τ)ist+τ

+φie(t + τ)iet+τ

+(1 − δs
t+τ )q

s
t+τst+τ

+(1 − δe
t+τ )q

e
t+τet+τ







. (1.44)

Here I have defined mt+τ ≡ mt,t+τ . Substituting the first order conditions for invest-

ment in structures and equipment and using the dynamics of structures and equipment
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accumulation I get

Et

[
mt+τ−1

(
qs
t+τ−1st+τ + qe

t+τ−1et+τ

)]

= Et




mt+τ




π(st+τ , et+τ , θt+τ ) − fsst+τ − feet+τ

−φ(ist+τ , st+τ , i
e
t+τ , et+τ )

+qs
t+τ (i

s
t+τ + st+τ )

+qe
t+τ (γt+τ i

e
t+τ + et+τ )







. (1.45)

Subtracting Et[mt+τ (lt+τbt+τ−1 − bt+τ )] and Et[mt+τ (q
s
t+τst+τ+1 + qe

t+τet+τ+1)] from

both sides of (1.45) gives us

Et




mt+τ−1

(
qs
t+τ−1st+τ + qe

t+τ−1et+τ

)

−mt+τ

(
qs
t+τst+τ+1 + qe

t+τet+τ+1

)

−mt+τ (lt+τbt+τ−1 − bt+τ )




= Et




mt+τ




π(st+τ , et+τ , θt+τ ) − fsst+τ − feet+τ

−φ(ist+τ , st+τ , i
e
t+τ , et+τ )

+bt+τ − lt+τbt+τ−1

−qs
t+τ

(
st+τ+1 −

(
1 − δs

t+τ

)
st+τ − ist+τ

)

−qe
t+τ

(
et+τ+1 −

(
1 − δe

t+τ

)
et+τ − γt+τ i

e
t+τ

)







. (1.46)

Now, notice that the left hand side of (1.46) is equal to the τ th element of the sum in

the value function. Applying the fundamental theorem of asset pricing to the firm’s

debt, we get

1 = Et[mt+1lt+1] (1.47)
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After plugging this in, the right hand side becomes

Et




mt+τ−1

(
qs
t+τ−1st+τ + qe

t+τ−1et+τ − bt+τ−1

)

−mt+τ

(
qs
t+τst+τ+1 + qe

t+τet+τ+1 − bt+τ

)


 . (1.48)

The sum of (1.48) from τ = 1 to ∞ combined with the transversality conditions is

equal to

qs
t st+1 + qe

t et+1 − bt. (1.49)

This result combined with the definition value function and the definition of pt give

us the relation:

pt + bt = qs
t st+1 + qe

t et+1. (1.50)

Using the first order conditions (1.8)-(1.11), this can be expressed as:

pt + bt = st+1Et

[
mt+1

(
πs(t + 1) − fs − φs(t + 1) + (1 − δs

t+1)φis(t + 1)
)]

+ et+1Et

[
mt+1

(
πe(t + 1) − fe − φe(t + 1) + (1 − δe

t+1)φie(t + 1)/γt+1

)]
. (1.51)

Define the market leverage ratio, νt, as

νt ≡
bt

pt + bt

. (1.52)
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Then, using the stock and bond return definition, (1.15), and the bond return identity,

rB
t+1 = lt+1, we get

νtr
B
t+1 + (1 − νt) rS

t+1 =




lt+1bt

pt+1 + π(st+1, et+1, θt+1) − fsst+1 − feet+1

−φ(ist+1, st+1, i
e
t+1, et+1)

−lt+1bt + bt+1




qs
t st+1 + qe

t et+1

. (1.53)

Using equation (1.50), the structures and equipment accumulation dynamics yields

νtr
B
t+1 + (1 − νt) rS

t+1 =




qs
t+1

(
ist+1 +

(
1 − δs

t+1

)
st+1

)

+qe
t+1

(
γt+1i

e
t+1 +

(
1 − δe

t+1

)
et+1

)

+π(st+1, et+1, θt+1) − fsst+1 − feet+1

−φ(ist+1, st+1, i
e
t+1, et+1)




qs
t st+1 + qe

t et+1

. (1.54)

Now, plugging in the first order conditions with respect to investment in structures

and equipment gives us

νtr
B
t+1 + (1 − νt) rS

t+1 =




π(st+1, et+1, θt+1) − fsst+1 − feet+1

+
(
1 − δs

t+1

)
φis(t + 1)st+1

+
(1−δe

t+1)φie(t+1)

γt+1
et+1




qs
t st+1 + qe

t et+1

. (1.55)

Finally, using the linear homogeneity of π, we get the relation between stock, bond

and investment returns:

νtr
B
t+1 + (1 − νt) rS

t+1 = ωtr
I
st+1 + (1 − ωt) rI

et+1, (1.56)
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where ωt is defined as

ωt ≡
qs
t st+1

qs
t st+1 + qe

t et+1

. (1.57)

1.9 Appendix: Data

1.9.1 US Corporate Nonfinancial

Investment, Capital, Depreciation and the Price of Investment

I require the quarterly data to conform to the annual data. This is a multi-step

procedure. First, I generate quarterly investment and depreciation data for aggregate

physical capital that are consistent with the annual data. Next, the quarterly invest-

ment data are separated into investment in structures and investment in equipment.

Finally, I generate the quarterly structures and quarterly equipment capital stocks

using the quarterly investment data and the annual depreciation data.

Total Quarterly Investment and Depreciation

I follow Merz and Yashiv (2005) in constructing the aggregate investment data.

First, for the purpose of comparison, I calculate an implied annual investment series

for real physical capital using the end-of-year capital stock series from the BEA fixed

asset tables 4.1 and 4.2 and the annual depreciation series from BEA fixed asset tables

4.4 and 4.5 according to:

it = kt − kt−1 + kdeprt, (1.58)

where kt is the real capital stock (Table 4.1, Item k1nnofi2es000 for the year 2000

multiplied by Table 4.2, series kcnnofi2es000) and kdeprt is the real capital depreci-

ation (Table 4.4, item m1nnofi2es000 for the year 2000 times Table 4.5 series mcn-
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nofi2es000).

Next, I calculate the real quarterly investment by taking the nominal quarterly

investment data from table F.6 of the Flow of Funds Accounts of the Board of Gov-

ernors of the Federal Reserve (series FA105013005.Q), and deflate them to year 2000

dollars using the nonresidential private fixed investment price index from the BEA’s

NIPA table 1.1.4 (series B008RG3).

Then, the time-aggregate end of year real investment from the quarterly data

(Federal Reserve) is compared to the implied annual real investment from the BEA.

Any discrepancy is equally spread between the two series across the quarterly entries

of any given year using Denton’s (1971) method.

I generate quarterly depreciation rates by dividing the real quarterly consumption

of fixed capital (NIPA table 1.14, item N456RX1) by a quarterly log-linear interpo-

lated series using the annual physical capital series from the fixed assets tables 4.1

and 4.2.

Incorporating depreciation, Denton’s (1971) method is again used to adjust the

quarterly investment series such that annual investment, iet is equal to

iq,1(1 − δq,1)(1 − δq,2)(1 − δq,3) + iq,2(1 − δq,2)(1 − δq,3) + iq,3(1 − δq,3) + iq,4, (1.59)

where iq,j, j = 1, 2, 3, 4 is equal to investment in quarter j, and δq,j , j = 1, 2, 3, 4 is

equal to depreciation in quarter j.

Generating Quarterly Structures and Equipment Capital Stock Series

Because I do not have access to quarterly investment data for nonfinancial corpo-

rate business broken down by structures and equipment, I assume that the ratio of

investment in structures, ist , to equipment, iet , remains constant for the four quarters

of each year. If this is the case, the total quarterly investment in capital can be used
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together with the annual ratio of investment in structures to investment in equipment

to generate disaggregated quarterly investment series.

As was done with total investment, I generate implied annual investment in struc-

tures and in equipment:

ist = st − st−1 + deprs
t (1.60)

iet = et − et−1 + depre
t , (1.61)

where st is the real structures capital stock (Table 4.1, Item k1nnofi2st000 for the

year 2000 multiplied by Table 4.2, series kcnnofi2st000), et is the real equipment

capital stock (Table 4.1, Item k1nnofi2eq000 for the year 2000 multiplied by Table

4.2, series kcnnofi2eq000), deprs
t is the real structures capital depreciation (Table 4.4,

item m1nnofi2st000 for the year 2000 times Table 4.5 series mcnnofi2st000), and depre
t

is the real equipment capital depreciation (Table 4.4, item m1nnofi2eq000 for the year

2000 times Table 4.5 series mcnnofi2eq000).

Next, the real total quarterly investment is divided into investment in structures

and investment in equipment based on to the annual ratio of real investment of the

two types of capital.

I generate real quarterly depreciation rates for structures and for equipment by

log-linearly interpolating the structures and equipment capital using the annual data

from tables 4.1 and 4.2 and then holding constant the annual depreciation rates,

δs
t =

deprs
t

st−1

(1.62)

δe
t =

depre
t

et−1

, (1.63)

through the quarters of year t.

Finally, using starting values, I generate real quarterly capital stock data for
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structures and equipment according to the capital accumulation equations

st+1 = st(1 − δs
t ) + ist (1.64)

et+1 = et(1 − δe
t ) + iet , (1.65)

where t now expresses quarters as opposed to years.

1.9.2 NASDAQ data

Output and Total Capital Stock and Investment

From the Compustat quarterly file, I use both sales (data2) as a measure of output,

πt, and Net Property Plant and Equipment (data42) as a measure of total net fixed

capital, kt. Total investment in fixed capital, it, is obtained from the Property Plant

and Equipment Expenditures series (data90). This item represents the cumulative

amount invested over the course of the fiscal year. The appropriate measure for

quarters two, three and four is the difference between the current and lagged value.

For consistency in aggregation, I require that firms have observations of the variables

in the preceding and succeeding quarter.

Structures and Equipment

In Schedule V of the Compustat Industrial Annual file, the stock of firms’ PPE is

broken down by type. I define structures as the sum of “Buildings”, “Construction in

Progress”, “Natural Resources”, “Land and Improvements” and “Capital Leases” and

equipment as the sum of “Machinery and Equipment” and “Other”6. The categories

are reported net of depreciation from 1969 to 1997 and at historical cost from 1984 to

2003. Capital at cost, or gross capital, kg
t is equal to net capital, kt, plus accumulated

depreciation.

6See Tuzel (2007) for a discussion of the categories
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Net structures and equipment capital are the variables of interest. However, be-

cause Compustat does not disaggregate the annual depreciation expense into these

categories it is not possible to calculate these directly using the gross capital data for

the latter period. Instead, using data from 1984 to 1993, I regress the ratio st/kt on

the ratio kgs
t /kg

t , and two lags, kgs
t−1/k

g
t−1 and kgs

t−2/k
g
t−2, and then apply the model out

of sample for the years 1994 to 2006. While Compustat reports net capital by type

through 1997, the number of firms reporting these items drops significantly starting

in 1994. I log-linearly interpolate the annual ratio of (net) structures to total (net)

fixed capital to the quarterly frequency and multiply this ratio by the quarterly total

fixed capital to generate an approximation of the quarterly structures and equipment

capital stocks.

Unfortunately, Compustat also does not report disaggregated investment. In or-

der to estimate both heterogeneous investment and depreciation, I gather annual

structures and equipment investment and depreciation data broken down by 63 BEA

industry codes from the NIPA Fixed Assets tables. For each of the industries, I cal-

culate the annual ratio of investment in structures to total investment. Next, I match

the 4 digit SIC codes from Compustat (dnum) to the BEA industry codes. Assuming

that firms in the NASDAQ index behave on average like the average firm in their

industries, the value weighted average ratio ist/(i
s
t + iet ) will be a good proxy for the

true ratio. Depreciation rates, δs
t and δt, are estimated in a similar manner using cap-

ital stocks as weights. Finally, I make the assumption that the annual structures to

total investment ratio and the depreciation rates are constant across the quarters of

the year. Quarterly investment in structures and equipment is then calculated using

the quarterly observations of total investment and the structures to total investment

ratios.
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Aggregation

Aggregating NASDAQ data in an appropriate manner presents a unique challenge.

Ideally, data from every firm listed on the NASDAQ index would be included. In

reality, a small percentage of NASDAQ firms (both in terms of numbers and total

market size) are not included in the Compustat database or are missing data. Figure

1.3 shows the proportion of NASDAQ market capital included in Compustat for four

variables. At times, the proportion becomes larger than one. This is because firms’

fiscal quarters do not necessarily line up with calendar quarters. I aggregate all

available firm data and make the assumption that the aggregate unobserved firms

behave as the observed firms on a per-market-capitalization basis.

Seasonality

The aggregate US corporate nonfinancial investment data are seasonally adjusted.

However, there is seasonality in both the number of NASDAQ firms included in Com-

pustat and the amount of investment. Requiring NASDAQ firms to have observa-

tions before and after the current observation corrects for much of the former source.

To correct for the latter, I remove seasonal effects using the Census Bureau’s X-11

seasonal adjustment procedure. Figure 1.4 compares the adjusted and unadjusted

investment series.
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Figure 1.1 : Valuation - US Corporate Nonfinancial (1953–2005) and
NASDAQ (1983–2005): Standard Model

These panels present actual and predicted market values of equity scaled by total output, pt/πt for

the US corporate nonfinancial sector (Panel A) from 1953Q1 to 2005Q2 and the NASDAQ sector

(Panel B) from 1983Q4 to 2005Q3. For the US corporate nonfinancial sector, The actual values are

from the market value of shares outstanding for nonfinancial corporate business from the Federal

Reserve (Table B.102, series FL103164003.Q) divided by the real output of nonfinancial corporate

business sector from Table 1.14 (series A457RX1) of the NIPA accounts published by the BEA of

the Department of Commerce. For the NASDAQ, the actual values are the market value of equity

for all the NASDAQ stocks from CRSP divided by the aggregate sales for all NASDAQ stocks

in Compustat adjusted for missing data. The models include quadratic adjustment costs and one

capital good and are estimated using Generalized Method of Moments.
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Figure 1.2 : Valuation - US Corporate Nonfinancial (1953–2005) and
NASDAQ (1983–2005)

These panels present actual and predicted market values of equity scaled by total output, pt/πt for

the US corporate nonfinancial sector (Panel A) from 1953Q1 to 2005Q2 and the NASDAQ sector

(Panel B) from 1983Q4 to 2005Q3. For the US corporate nonfinancial sector, The actual values are

from the market value of shares outstanding for nonfinancial corporate business from the Federal

Reserve (Table B.102, series FL103164003.Q) divided by the real gross value added of nonfinancial

corporate business from Table 1.14 (series A457RX1) of the NIPA accounts published by the BEA

of the Department of Commerce. For the NASDAQ, the actual values are the market value of equity

for all the NASDAQ stocks from CRSP divided by the aggregate sales for all NASDAQ stocks in

Compustat adjusted for missing data. The model used in the US corporate nonfinancial series does

not include investment specific technological change. Both models are estimated using Generalized

Method of Moments.
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Figure 1.3 : Missing NASDAQ Data in Compustat

This figure presents the total market capitalization from aggregating non-missing data for all NAS-

DAQ firms listed in Compustat as a proportion of the market capitalization of the entire universe

of NASDAQ firms. The variables are Sales, πt, Net Fixed Capital, (st + et), PPE Expenditures,

(ist + iet ), and Long Term Debt, bt.
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Figure 1.4 : Seasonal Adjustment of NASDAQ Data

This figure presents the aggregate NASDAQ investment-to-capital ratios with and without seasonal

adjustment. The Census Bureau’s X11 procedure is used to seasonally adjust the data.
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Figure 1.5 : Quality Adjusted Price of Equipment and Software
(1947–2006)

Panel A plots the time-series of the quality adjusted price of equipment, pG
t . Using Gordon’s (1990)

22 indexes, the quality bias implicit in the equivalent NIPA price indexes for the 1947-1983 period

is calculated and extrapolated using the NIPA data from 1983Q4-2006Q3. The aggregate index is

then formed by applying the Tornqvist procedure to the asset-level price indexes. Panel B plots the

level of technology in producing equipment capital which is calculated as γt = pC
t /pG

t , where pC
t

is a constant-quality price index for consumption constructed by applying the Tornqvist procedure

to NIPA data on prices and shares of the consumption of non-durable goods (excluding energy

expenditures) and nonhousing services. Panels C and D present the proportion of total capital

made up by equipment for the US corporate nonfinancial and NASDAQ sectors with and without

investment-specific technological change.
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Figure 1.6 : Scaled Market Values of Equity (1953–2005)

These panels present market values of equity scaled by total output, pt/πt, for the US corporate

nonfinancial sector from 1953Q1 to 2005Q2, and for the NASDAQ sector from 1983Q4 to 2005Q3.For

the US Corporate sector, the series is defined as the market value of shares outstanding for nonfi-

nancial corporate business from the Federal Reserve (Table B.102, series FL103164003.Q) divided

by the real gross value added of nonfinancial corporate business from Table 1.14 (series A457RX1)

of the NIPA accounts published by the BEA of the Department of Commerce. The NASDAQ series

is defined as the total market value of equity of all NASDAQ stocks from CRSP divided by the total

sales of all NASDAQ stocks adjusted for missing data. Data are quarterly.
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Figure 1.7 : Valuation - US Corporate Nonfinancial (1953–2005) and
NASDAQ (1983–2005)

These panels present actual and predicted market values of equity scaled by total output, pt/πt for

the US corporate nonfinancial sector (Panel A) from 1953Q1 to 2005Q2 and the NASDAQ sector

(Panel B) from 1983Q4 to 2005Q3. For the US corporate nonfinancial sector, The actual values are

from the market value of shares outstanding for nonfinancial corporate business from the Federal

Reserve (Table B.102, series FL103164003.Q) divided by the real gross value added of nonfinancial

corporate business from Table 1.14 (series A457RX1) of the NIPA accounts published by the BEA

of the Department of Commerce. For the NASDAQ, the actual values are the market value of equity

for all the NASDAQ stocks from CRSP divided by the aggregate sales for all NASDAQ stocks in

Compustat adjusted for missing data. The other two series are those generated by the generalized

model with and without (γt = 1) investment-specific technological change.
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Figure 1.8 : Marginal Adjustment Costs

These panels present the implied marginal adjustment costs, qs
t and qe

t for the US corporate non-

financial sector from 1953Q1 to 2005Q2, and for the NASDAQ sector from 1983Q4 to 2005Q3.

The adjustment costs for the US corporate nonfinancial sector (Panel A) are those implied by the

model without investment-specific technological change in the first column of Table 1.2. The im-

plied adjustment costs in the NASDAQ sector are those from the model with investment-specific

technological change in the final column of Table 1.2. Data are quarterly.
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Figure 1.9 : Marginal Adjustment Costs and Investment Capital Ratios

These panels present the implied marginal adjustment costs for equipment and the equipment

investment-capital ratios for the US corporate nonfinancial sector from 1953Q1 to 2005Q2, and

for the NASDAQ sector from 1983Q4 to 2005Q3. The adjustment costs, qe
t , and investment-capital

ratio, iet/et, for the US corporate nonfinancial sector (Panel A) are those implied by the model with-

out investment-specific technological change in the first column of Table 1.2. The implied adjustment

costs, t, and investment-capital ratio, ieγt/eγ
t in the NASDAQ sector are those from the model with

investment-specific technological change in the final column of Table 1.2. Data are quarterly.
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Figure 1.10 : Valuation - Homogeneous Capital

These two panels present actual and predicted market values of equity scaled by total output, pt/πt,

assuming that capital is homogeneous. Panel A presents results for the US corporate nonfinan-

cial sector from 1953Q1 to 2005Q2, and Panel B presents results for the NASDAQ sector from

1983Q4 to 2005Q3. For the US Corporate sector, the actual values are from the market value of

shares outstanding for nonfinancial corporate business from the Federal Reserve (Table B.102, series

FL103164003.Q) divided by the real gross value added of nonfinancial corporate business from Table

1.14 (series A457RX1) of the NIPA accounts published by the BEA of the Department of Commerce.

The preferred series in Panel A is from the generalized model with no investment-specific techno-

logical change (γt = 1). For the NASDAQ, the actual values are the market value of equity for all

the NASDAQ stocks from CRSP divided by the aggregate sales for all NASDAQ stocks in Compu-

stat adjusted for missing data. The preferred series in Panel B is from the generalized model with

investment-specific technological change.
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Figure 1.11 : Valuation - All Equity Model

These two panels present actual and predicted market values of equity scaled by total output, pt/πt,

assuming that firms are entirely equity financed. Panel A presents results for the US corporate

nonfinancial sector from 1953Q1 to 2005Q2, and Panel B presents results for the NASDAQ sector

from 1983Q4 to 2005Q3. For the US Corporate sector, the actual values are from the market value

of shares outstanding for nonfinancial corporate business from the Federal Reserve (Table B.102,

series FL103164003.Q) divided by the real gross value added of nonfinancial corporate business from

Table 1.14 (series A457RX1) of the NIPA accounts published by the BEA of the Department of

Commerce. The preferred series in Panel A is from the generalized model with no investment-

specific technological change (γt = 1). For the NASDAQ, the actual values are the market value of

equity for all the NASDAQ stocks from CRSP divided by the aggregate sales for all NASDAQ stocks

in Compustat adjusted for missing data. The preferred series in Panel B is from the generalized

model with investment-specific technological change.
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Figure 1.12 : Valuation - Quadratic Adjustment Costs

These two panels present actual and predicted market values of equity scaled by total output,

pt/πt, assuming that adjustment costs functions are quadratic. Panel A presents results for the

US corporate nonfinancial sector from 1953Q1 to 2005Q2, and Panel B presents results for the

NASDAQ sector from 1983Q4 to 2005Q3. For the US Corporate sector, the actual values are from

the market value of shares outstanding for nonfinancial corporate business from the Federal Reserve

(Table B.102, series FL103164003.Q) divided by the real gross value added of nonfinancial corporate

business from Table 1.14 (series A457RX1) of the NIPA accounts published by the BEA of the

Department of Commerce. The preferred series in Panel A is from the generalized model with no

investment-specific technological change (γt = 1). For the NASDAQ, the actual values are the

market value of equity for all the NASDAQ stocks from CRSP divided by the aggregate sales for all

NASDAQ stocks in Compustat adjusted for missing data. The preferred series in Panel B is from

the generalized model with investment-specific technological change.
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Figure 1.13 : Valuation - US Corporate Nonfinancial - Subsample Analysis

These panels present actual and predicted market values of equity scaled by total output, pt/πt. The

actual values are from the market value of shares outstanding for nonfinancial corporate business

from the Federal Reserve (Table B.102, series FL103164003.Q) divided by the real gross value added

of nonfinancial corporate business from Table 1.14 (series A457RX1) of the NIPA accounts published

by the BEA of the Department of Commerce. The other three series are those generated by the

generalized model for the entire sample, from 1953Q1 to 1979Q1, and 1979Q2 to 2005Q2l. Panel

A presents the series with no investment-specific technological change. Panel B presents the results

with investment-specific technological change.
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Figure 1.14 : Stock Returns

These panels present actual and predicted stock returns for the US corporate nonfinancial sector and

the NASDAQ sector. Panel A presents the results for the US corporate nonfinancial sector using

the model with leverage and without investment-specific technological change in Table 1.2 for the

period 1953Q1–2005Q2. Panel B presents the results for the NASDAQ sector using the model with

leverage and with investment specific technological change in Table 1.2. The stock returns are from

the CRSP value weighted portfolio in Panel A, and the NASDAQ value weighted index from CRSP

in Panel B. Both are deflated using the CPI.
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Table 1.1 : Descriptive Statistics for the US Corporate Nonfinancial
(1953–2005) and NASDAQ (1983–2005) sectors

This table reports sample averages, standard deviations, minima, and maxima of data for the US

corporate nonfinancial and NASDAQ sectors. The variables consist of the structures investment-

capital ratio, ist/st, equipment investment-capital ratios, iet/et & ietγt/keγ
t , equipment capital shares,

et/(st + et) & eγ
t /(st + eγ

t ), depreciation rates, δs
t , δe

t , & δeγ
t , leverage ratios, bt/(tt + bt), scaled

market values of equity, pt/πt, and gross stock and bond returns, rs
t & rs

b . The output variables

are gross value added for the US and sales for the NASDAQ sector. US data come from the BEA,

Federal Reserve and CRSP and cover the period from 1953Q1–2005Q2. The NASDAQ data are

from Compustat, CRSP and the BEA and cover the period from 1983Q4–2005Q3. The timing of

the stock and bond returns has been adjusted to match the macroeconomic data as in Cochrane

(1996).

Panel A: US Corporate Panel B: NASDAQ
Mean St Dev Max Min Mean St Dev Max Min

ist/st 1.32% 0.18% 1.68% 1.01% 3.67% 1.31% 6.53% 1.33%
iet/et 3.94% 0.75% 5.89% 2.47% 8.70% 1.64% 13.34% 6.31%

ietγt/eγ
t 3.66% 1.06% 5.97% 1.58% 4.91% 1.65% 10.31% 2.60%

et/(st + et) 33.25% 6.52% 44.96% 22.99% 55.93% 3.52% 62.70% 48.92%
eγ
t /(st + eγ

t ) 18.53% 13.29% 51.46% 5.86% 60.78% 8.66% 76.73% 48.36%
δs
t 0.73% 0.03% 0.80% 0.68% 0.72% 0.02% 0.77% 0.69%

δe
t 2.87% 0.61% 4.27% 2.24% 4.23% 0.57% 5.20% 3.42%

δeγ
t 3.96% 1.02% 5.85% 1.03% 5.66% 0.68% 6.85% 4.64%

bt/(pt + bt) 35.3% 7.7% 50.3% 21.5% 17.1% 3.3% 26.6% 7.6%
pt/πt 5.73 1.87 12.09 2.84 5.21 3.21 20.63 2.29

rs
t 1.02 0.06 1.19 0.84 1.02 0.10 1.39 0.77

rb
t 1.01 0.04 1.20 0.88 1.02 0.03 1.11 0.93
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Table 1.2 : GMM Estimation Results for the US Corporate Nonfinancial
and NASDAQ sectors.

This table reports parameter estimates, standard errors, JT statistics and p-values for the US cor-

porate nonfinancial sector from a GMM estimation procedure. The parameter α represents the

structures output elasticity. The parameters es and ee control scale in the adjustment cost function,

while ηs and ηe are power parameters. The flow operating cost parameters are fs and fe. Four

moments and five instruments are used in the estimation. The four moments are the first order con-

ditions (1.20) and (1.21), the valuation function (1.22), and the stock-investment returns relation

(1.23). The US corporate nonfinancial data are quarterly and cover the period from 1953Q1–2005Q.

The NASDAQ data are quarterly and cover the period from 1983Q4–2005Q3. Five instrumental

variables are also included. Corporate bond data are from Ibbotson’s index of Long Term Corporate

bonds. The default premium, deft, is defined as the difference between the yields of Aaa and Baa

corporate bonds. The term premium, termt, is the yield on ten-year notes minus that on three-

month Treasury bills. The risk free rate, rft, is from Ken French’s website. The equally weighted

aggregate dividend yield, divt, is from CRSP. Finally, I use the Lettau and Ludvigsen consumption-

to-wealth ratio, cayt.The timing of the stock and bond returns has been adjusted to match the

macroeconomic data as in Cochrane (1996). Two stage GMM is used with an identity weighting

matrix in the first stage and an optimal weighting matrix in the second stage. Six Newey-West lags

are used to estimate the optimal weighting matrix. In three cases, the structures adjustment costs

coefficient, as is set to zero. Standard errors are in parentheses.

Panel A: US Corporate Nonfin. Panel B: NASDAQ
No Tech. Change Tech. Change No Tech. Change Tech. Change

restr.: none (as = 0) none none (as = 0) none (as = 0)

α 0.95 0.92 0.95 0.86 0.98 0.96 0.95
(0.14) (0.13) (0.02) (0.13) (0.13) (0.08) (0.08)

as 0.04 7.30 5.71 7.85
(1.57) (3.36) (66.14) (18.50)

ae 10.60 10.37 9.86 7.32 7.29 8.34 8.35
(0.63) (0.41) (0.73) (0.10) (0.08) (0.11) (0.10)

ηs 1.43 2.67 6.64 8.98
(2.99) (0.64) (88.55) (32.38)

ηe 6.54 6.04 5.45 3.68 3.57 2.18 2.19
(0.92) (0.47) (0.90) (0.30) (0.19) (0.06) (0.05)

fs 0.19 0.19 0.20 1.94 2.25 2.19 2.14
(0.03) (0.03) (0.01) (0.31) (0.30) (0.19) (0.18)

fe -0.02 -0.01 0.02 0.18 -0.07 -0.21 -0.07
(0.06) (0.06) (0.02) (0.26) (0.26) (0.13) (0.13)

TJT 23.93 25.64 21.99 12.13 12.13 10.87 10.95
p-value 0.121 0.140 0.170 0.792 0.880 0.863 0.926
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Table 1.3 : Adjustment Costs

This table reports time series means and standard deviations for total adjustment as a proportion

of output, (φt − ist − ie)/πt, structures investment relative to output, ist/πt, equipment investment

relative to output, iet/πt the shadow price of structures, qs
t , and the shadow price of capital, qe

t for

the US corporate nonfinancial and NASDAQ sectors using 6 models. Panel A presents the results

for the US corporate nonfinancial sector from 1953Q1–2005Q2. Panel B presents results for the

NASDAQ sector from 1983Q4–2005Q3. Standard deviations are in parentheses.

Panel A: US Corporate Nonfinancial
Without Tech. Change With Tech. Change

Leverage Leverage
(φt − ist − ie)/πt 0.020 0.025

(0.021) (0.029)
ist/πt 0.059 0.059

(0.014) (0.014)
ie/πt 0.084 0.084

(0.021) (0.021)
qs
t 1.000 1.364

(0.000) (0.159)
qe
t 1.954 2.199

(0.703) (0.885)

Panel B: NASDAQ
Without Tech. Change With Tech. Change
All-Equity Leverage All-Equity Leverage

(φt − ist − iet)/πt 0.103 0.138 0.096 0.123
(0.093) (0.115) (0.100) (0.125)

ist/πt 0.017 0.017 0.017 0.017
(0.007) (0.007) (0.007) (0.007)

iet/πt 0.049 0.049 0.049 0.049
(0.014) (0.014) (0.014) (0.014)

qs
t 1.022 1.000 1.024 1.000

(0.269) (0.000) (0.251) (0.000)
qe
t 8.050 9.789 6.045 7.331

(4.142) (4.587) (2.533) (3.031)
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Table 1.4 : GMM Estimation Results for the US Corporate Nonfinancial
and NASDAQ sectors using homogeneous capital

This table reports parameter estimates, standard errors, JT statistics and p-values for the US cor-

porate nonfinancial and NASDAQ sectors from a GMM estimation procedure. The parameter a

control scale in the adjustment cost function, while η is the power parameter. The flow operating

cost parameter is f . Three moments and five instruments are used in the estimation. The three

moments are the first order conditions for investment in capital, the valuation function, and the

stock-investment returns relation. The US corporate nonfinancial data are quarterly and cover the

period from 1953Q1–2005Q2. The NASDAQ data are quarterly and cover the period from 1983Q4–

2005Q3. Five instrumental variables are also included. Corporate bond data are from Ibbotson’s

index of Long Term Corporate bonds. The default premium, deft, is defined as the difference be-

tween the yields of Baa and Aaa corporate bonds. The term premium, termt, is the yield on ten-year

notes minus that on three-month Treasury bills. The risk free rate, rft, is from Ken French’s website.

The equally weighted aggregate dividend yield, divt, is from CRSP. Finally, I use the Lettau and

Ludvigsen consumption-to-wealth ratio, cayt. The timing of the stock and bond returns has been

adjusted to match the macroeconomic data as in Cochrane (1996). Two stage GMM is used with an

identity weighting matrix in the first stage and an optimal weighting matrix in the second stage. Six

Newey-West lags are used to estimate the optimal weighting matrix. In three cases, the structures

adjustment costs coefficient, as is set to zero. Time series standard deviations are in parentheses.

Panel A: US Corporate Nonfinancial Panel B: NASDAQ
Leverage All Equity Leverage

a 16.71 7.43 7.69
(0.96) (0.25) (0.25)

η 7.14 2.76 2.54
(0.61) (0.17) (0.16)

f 0.12 0.83 0.81
(0.01) (0.05) (0.06)

TJT 19.11 11.39 11.27
p-value 0.209 0.724 0.733
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Table 1.5 : GMM Estimation Results for the US Corporate Nonfinancial
and NASDAQ Sectors - Alternate Specifications.

This table reports parameter estimates, standard errors, JT statistics and p-values for the US cor-

porate nonfinancial sector from a GMM estimation procedure. The parameter α represents the

structures output elasticity. The parameters es and ee control scale in the adjustment cost function,

while ηs and ηe are power parameters. The flow operating cost parameters are fs and fe. Four

moments and five instruments are used in the estimation. The four moments are the first order con-

ditions (1.20) and (1.21), the valuation function (1.22), and the stock-investment returns relation

(1.23). The US corporate nonfinancial data are quarterly and cover the period from 1953Q1–2005Q2.

The NASDAQ data are quarterly and cover the period from 1983Q4–2005Q3. Five instrumental

variables are also included. Corporate bond data are from Ibbotson’s index of Long Term Corporate

bonds. The default premium, deft, is defined as the difference between the yields of Aaa and Baa

corporate bonds. The term premium, termt, is the yield on ten-year notes minus that on three-

month Treasury bills. The risk free rate, rft, is from Ken French’s website. The equally weighted

aggregate dividend yield, divt, is from CRSP. Finally, I use the Lettau and Ludvigsen consumption-

to-wealth ratio, cayt.The timing of the stock and bond returns has been adjusted to match the

macroeconomic data as in Cochrane (1996). Two stage GMM is used with an identity weighting

matrix in the first stage and an optimal weighting matrix in the second stage. Six Newey-West lags

are used to estimate the optimal weighting matrix. In three cases, the structures adjustment costs

coefficient, as is set to zero. Standard errors are in parentheses.

Panel A: US Corporate Nonfin. Panel B: NASDAQ
Quadratic All Equity Quadratic

restrictions: (ηs = ηe = 2) (as = 0) (ηs = ηe = 2)
α 0.96 0.97 0.96 0.90

(0.10) (0.08) (0.07) (0.07)
as 1.18 7.66 1.10

(1.04) (23.38) (1.09)
ae 3.43 7.84 7.89 8.04

(0.22) (0.11) (0.11) (0.09)
ηs 8.98

(40.66)
ηe 2.40 2.43

(0.07) (0.06)
fs 0.19 2.19 2.16 2.02

(0.02) (0.17) (0.16) (0.16)
fe -0.04 -0.16 -0.05 -0.11

(0.04) (0.12) (0.11) (0.11)

TJT 25.99 11.05 11.08 11.22
p-value 0.130 0.854 0.921 0.916
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Table 1.6 : GMM Estimation Results for the US Corporate Nonfinancial
Sector - Subsample Analysis.

This table reports parameter estimates, standard errors, JT statistics and p-values for the US cor-

porate nonfinancial sector from a GMM estimation procedure. The parameter α represents the

structures output elasticity. The parameters es and ee control scale in the adjustment cost function,

while ηs and ηe are power parameters. The flow operating cost parameters are fs and fe. Four

moments and five instruments are used in the estimation. The four moments are the first order con-

ditions (1.20) and (1.21), the valuation function (1.22), and the stock-investment returns relation

(1.23). The US corporate nonfinancial data are quarterly and cover the period from 1953Q1–1979Q1

. Five instrumental variables are also included. Corporate bond data are from Ibbotson’s index of

Long Term Corporate bonds. The default premium, deft, is defined as the difference between the

yields of Aaa and Baa corporate bonds. The term premium, termt, is the yield on ten-year notes

minus that on three-month Treasury bills. The risk free rate, rft, is from Ken French’s website.

The equally weighted aggregate dividend yield, divt, is from CRSP. Finally, I use the Lettau and

Ludvigsen consumption-to-wealth ratio, cayt.The timing of the stock and bond returns has been

adjusted to match the macroeconomic data as in Cochrane (1996). Two stage GMM is used with an

identity weighting matrix in the first stage and an optimal weighting matrix in the second stage. Six

Newey-West lags are used to estimate the optimal weighting matrix. In three cases, the structures

adjustment costs coefficient, as is set to zero. Standard errors are in parentheses.

Panel A: 1953Q1–1979Q1 Panel B: 1979Q2–2005Q2
No Tech. Change Tech. Change No Tech. Change Tech. Change

(γt = 1) (γt = 1)

α 0.32 0.48 0.99 0.73
(0.08) (0.05) (0.13) (0.05)

as 7.61 13.29 3.39
(8.50) (1.93) (14.86)

ae 6.62 8.68 9.92 5.35
(0.76) (0.90) (0.24) (0.68)

ηs 3.74 3.87 2.34
(2.27) (0.41) (4.07)

ηe 3.57 2.85 5.81 2.28
(0.42) (0.41) (0.33) (0.42)

fs 0.04 0.07 0.24 0.17
(0.02) (0.01) (0.03) (0.02)

fe 0.32 1.18 -0.06 0.13
(0.03) (0.13) (0.05) (0.03)

TJT 13.57 13.85 13.45 13.95
p-value 0.649 0.678 0.815 0.671
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Table 1.7 : Means, Standard Deviation, and Autocorrelations of
Investment/Capital Ratios, Investment Returns and Stock Returns: US

Corp. (Compare to Cochrane (1991), Table 1)

This table reports time series means and standard deviations and autocorrelations for investment-

capital ratios, investment returns and stock returns for the US corporate nonfinancial sector from

1953Q1–2005Q2. Investment returns are those generated by the model without investment-specific

technological change in Table 1.2. All returns are gross returns. The stock returns are the CRSP

value weighted market index deflated with the CPI.

Investment/Capital Ratios Investment Returns Stock
Structures Equipment Total Structures Equipment Levered Return

Mean 1.32 3.94 2.12 102.78 102.02 102.11 102.04
St Dev 0.18 0.75 0.38 5.02 5.72 6.13 6.41

Autocorr 1 0.97 0.98 0.99 1.00 0.33 0.55 0.33
(by lag) 2 0.93 0.96 0.96 1.00 0.22 0.46 0.01

3 0.87 0.92 0.93 1.00 0.16 0.33 -0.02
4 0.81 0.87 0.89 1.00 0.17 0.28 0.00
5 0.73 0.82 0.84 1.00 0.03 0.19 -0.09
6 0.66 0.77 0.79 0.99 -0.08 0.11 -0.05
8 0.55 0.68 0.70 0.99 -0.22 0.04 0.03

12 0.41 0.59 0.60 0.99 -0.03 0.15 0.06

Table 1.8 : Means, Standard Deviation, and Autocorrelations of
Investment/Capital Ratios, Investment Returns and Stock Returns:

NASDAQ (Compare to Cochrane (1991), Table 1)

This table reports time series means and standard deviations and autocorrelations for investment-

capital ratios, investment returns and stock returns for the NASDAQ sector for the period 1983Q4–

2005Q3. Investment returns are those generated by the model with investment-specific technological

change in Table 1.2. All returns are gross returns. The stock returns are the NASDAQ value weighted

index from CRSP deflated with the CPI.

Investment/Capital Ratios Investment Returns Stock
Structures Equipment Total Structures Equipment Levered Return

Mean 3.67 4.91 4.57 104.61 103.09 102.46 102.47
St Dev 1.31 1.65 1.05 25.59 11.78 12.63 10.36

Autocorr 1 0.97 0.92 0.89 0.31 -0.12 -0.03 0.22
(by lag) 2 0.96 0.84 0.80 0.41 0.18 0.19 0.02

3 0.94 0.73 0.67 0.34 0.07 0.02 0.08
4 0.92 0.64 0.55 0.31 -0.12 -0.11 0.01
5 0.88 0.56 0.45 0.17 -0.08 -0.07 -0.18
6 0.86 0.50 0.37 0.20 0.05 0.04 0.02
8 0.79 0.37 0.21 0.00 -0.23 -0.23 0.03

12 0.65 0.28 0.04 -0.11 -0.01 -0.05 -0.03
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Table 1.9 : Model Generated Stock Return Standard Deviations

This table reports time series standard deviations for stock returns for the US corporate nonfi-

nancial and NASDAQ sectors for the periods 1953Q1–2005Q2, and 1983Q4–2005Q3, respectively.

Actual return standard deviations are compared to those predicted by various model specifications

to examine the effect of each assumption. Unless otherwise noted, investment specific technological

change is used for the NASDAQ but not for the US corporate nonfinancial sector. The specifications

are: with homogeneous capital, with investment-specific technological change, without investment-

specific technological change, with all equity financing, and with quadratic adjustment costs. The

stock returns for the US corporate nonfinancial sector are the CRSP value weighted market index

deflated with the CPI. The stock returns are for the NASDAQ come are the NASDAQ value weighted

index from CRSP deflated with the CPI.

US Corporate Nonfinancial NASDAQ
Actual 6.41% 10.36%
Homogeneous Capital 2.48% 16.59%
Inv. Spec. Tech. Change 6.32% 12.63%
No Inv. Spec. Tech. Change 6.13% 18.70%
All Equity 2.57% 11.53%
Quadratic Adj. Costs 4.32% 10.80%
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Table 1.10 : Regression of Real Stock Returns on Investment Returns,
Investment Growth, and Growth in Output (Compare to Cochrane

(1991), Table 2)

This table reports correlations, t-statistics and p-values for regressions of stock returns on investment

returns (rI
st, rI

et and r̂S
t ) , investment growth, and growth in output for the US corporate nonfinan-

cial sector (1953Q1–2005Q2) and the NASDAQ sector (1983Q4–2005Q3). Investment returns for

the US corporate nonfinancial sector are those generated by the model without investment-specific

technological change in Table 1.2. Investment returns for the NASDAQ are generated using the

model with investment-specific technological change in Table 1.2. All returns are gross returns. The

stock returns are the CRSP value weighted market index, and the NASDAQ value weighted index

deflated with the CPI. Growth in Output is the log-change in value added for the US Corporate

sector and log-change in revenues for the NASDAQ.

rS
t = α + β × (Right Hand Variable)t + εt

Panel A: US Corp. Nonfin. Panel B: NASDAQ
RHV t-stat %p-value Corr w/RHS t-stat %p-value Corr w/RHS
rI
st -0.64 52.2 -0.04 2.84 0.6 0.29

rI
et 3.64 0.0 0.24 2.97 0.4 0.30

r̂S
t -0.10 91.8 -0.01 3.67 0.0 0.37

ist -growth 2.73 0.7 0.19 1.36 17.9 0.15
iet -growth 3.60 0.0 0.24 3.01 0.3 0.31

(ist + iet )-growth 3.29 0.1 0.22 2.52 1.3 0.26
πt-growth 6.30 0.0 0.40 1.55 12.6 0.17
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Table 1.11 : Productivity and Adjustment Costs

This table reports summary statistics and regression coefficients for the regression log(At/At−1) =

α+βslog(ist/ist−1
)+βelog(iet/iet−1

)+et where At is net multifactor productivity in the private non-farm

business sector (BLS, Table XG 4c) and ist and iet are real investment in structures and equipment,

respectively, by the private non-farm business sector (BEA, Fixed Assets Table 4). Data are annual

and cover the period from 1949 through 2007. Panel A presents means, standard deviations, minima

and maxima for the growth rates. Panel B presents regression coefficient results, standard errors, t

statistics and the R square for the OLS regression.

Panel A: Summary Statistics
Variable Mean St. Dev. Min Max
log(At/At−1) 1.23% 1.82% -3.60% 6.30%
log(ist/i

s
t−1) -0.06% 6.98% -18.55% 12.20%

log(iet/i
e
t−1) 1.22% 7.93% -25.17% 13.27%

Panel B: Regression
Variable Coefficient St. Err. t Stat.
Intercept 1.35% 0.21% 6.43
log(ist/i

s
t−1) -2.93% 3.47% -0.85

log(iet/i
e
t−1) -10.16% 3.06% -3.32

R square 25.96%
Observations 59
Dep. Var. log(At/At−1)
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CHAPTER II

Can Analyst Coverage Explain Excess

Comovement?

2.1 Introduction

Return comovement is a fundamental part of modern asset pricing theory. With-

out exposure to systematic risk, all assets should earn the risk free rate of return. How-

ever, many recent studies have documented the existence of “excess comovement” —

or comovement above and beyond that which is predicted by standard models. These

papers typically fall into one of two categories: (a) those which identify groups of

assets whose returns are correlated after controlling for risk (e.g., Karolyi and Stulz,

1996, and Pasquariello and Kallberg, 2008) and (b) those which find increases in co-

movement after an event takes place which is not necessarily associated with a change

in fundamentals, such as the addition of a stock to an index (e.g., Barberis, et al.,

2005, and Boyer, 2007). In this paper, I use both approaches to show that correlated

information is another important source of comovement and can be used as a baseline

in defining “excessive”.

If news about the fundamentals of two stocks is both informative and correlated,

the returns of the two stocks will tend to be correlated. Because there is scant

data on individual investors’ information sets, information-driven comovement has
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received relatively less attention than alternate sources of comovement. Instead of

directly focusing on those consuming information (the investors), I focus my attention

on those producing information (the analysts). Analyst forecast data are readily

available for a wide range of stocks. Based on a model which ties earnings and earnings

forecasts to stock return correlations, I develop an easy-to-calculate, intuitive measure

of correlated analyst coverage,

Nij/
√

NiNj, (2.1)

where Ni and Nj, are the number of analysts covering stocks i, and j, respectively,

and Nij is the number of common analysts between the two stocks. I show this

measure to be a theoretical proxy for earnings forecast error correlations, and to have

practical power in explaining excess comovement. In particular, as correlated analyst

coverage increases, comovement increases — both in theory and in practice.

Using method (a) — controlling for risk based on standard asset pricing models

— I show that increases in correlated analyst coverage are associated with increases

in excess comovement. A 1 percent increase in the correlated information measure

is associated with an increase in excess comovement of about 0.3 percent. Analysts

tend to cover stocks within the same industry. To the extent that industry is a proxy

for risk exposure, the correlated analyst coverage variable could be proxying for risk.

However, the positive relation is robust even when controlling for industry. The

variable also does not seem to be proxying for correlations in unexpected earnings —

which have been shown to be related to abnormal returns.

In a second test of the model, using method (b), I choose an event — the addi-

tion of a stock to the S&P500 index — that has been shown to be associated with

increased comovement, but that is not necessarily associated with a change in the

firm’s fundamentals. I show that there is a fundamental change in the information
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structure associated with the newly added firms after the event. In particular, the

number of analysts covering the firms increase on average, and, in particular, these

new analysts tend to be those covering other S&P500 stocks. With respect to the

stocks in the index, the average correlated analyst coverage measure increases signif-

icantly for firms that are added to the index — about 17% within the first quarter

after the event. Furthermore, I find a positive cross-sectional relationship between the

change in correlated analyst coverage and the change in excess comovement. Pairs

of stocks whose sets of analysts become more similar tend to see increases in excess

comovement. While the magnitude of the effect is not large enough to explain all of

the change in comovement around these events, the effect itself is consistent with the

hypothesis that correlations in information are responsible for some level of excess

comovement.

In both the standard neoclassical investment model and standard consumption

based asset pricing models, when there is perfect information about the current states

of the economy, the correlation between any two firms’ stocks is based solely on

the fundamental risk characteristics of the firm, and expectations about risk factors.

However, when noisy signals about future states of the world are introduced, expected

returns, covariances, and correlations may be affected. In particular, when the errors

in signals about future earnings are positively correlated, the expected conditional

correlation of stock returns increase. Expected variances and covariances are functions

of the prior beliefs about the states and the noisy signals. Rational Bayesian updating

leads to an increase in comovement with increases in error correlations. Even though

the errors are known to be correlated, the effects of this correlation cannot be fully

erased when forming beliefs.

I focus on the covariance structure of forecast error. However, the forecast itself is

an estimate of the sum of idiosyncratic and systematic components. An unexpectedly

high forecast could mean that either the systematic state is higher than was expected,
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the idiosyncratic state is higher, or both. So the signals reveal relevant information

about systematic factors. Because this information will affect all stocks, this channel

can also drive comovement. Veldkamp (2005) develops a model of excess comove-

ment in a rational expectation equilibrium framework which has a similar aggregated

information component. In her model, investors have information about a subset of

assets. This generates comovement much the same way that the release of GDP or

unemployment forecasts affects the prices of a wide range of assets. The covariance

channel used in this paper provides a much stronger, direct effect than the aggregated

information nature of earnings forecasts.

The paper proceeds as follows. In section 2, I introduce the model and solve for

return correlations with and without earnings forecast signals. In section 3, based

on the model, I develop the correlated analyst forecast measure which is a proxy for

information correlation. I calibrate the model and generate the testable implications

of increasing the correlated analyst coverage. Then, I test the hypothesis that high

correlated information is associated with excess comovement using two approaches.

In section 4, I conclude.

2.2 Model

I use a neoclassical investment model. Because these models link prices and re-

turns to earnings, they provide a natural framework in which to incorporate earnings

forecasts. First, I derive stock return correlations in the model with no signals about

earnings, and then I incorporate earnings forecasts and examine the effect of these

signals on the correlations.

Firms maximize the present value of future cash flows given the pricing kernel as

in the standard neoclassical investment model. at time 0, given the current capital,

k0, the firm chooses the amount of investment i0 and capital k1 which will produce

output, π1 at time 1. After the output is produced, it is consumed along with the
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capital after depreciation, (1 − δ)k1. Capital at time 1 is equal to capital stock at

time 0 plus investment minus depreciation:

k1 = k0(1 − δ) + i0. (2.2)

For simplicity, there are no adjustment costs. Firms maximize the market value of

equity with respect to the exogenous pricing kernel, m0,1:

max
{i0}

{π(k0, x0, yi0) − i0 + E0 [m0,1 [π(k1, x1, yi1) + (1 − δ)k1]]} (2.3)

The first order condition is:

1 = E0 [m0,1 [π1(k1, x1, yi1) + (1 − δ)]] . (2.4)

As in the standard case, the following relations hold:

Et[m0,1r
I
0,1] = 1 (2.5)

where rI
0,1 is the investment return between periods 0 and 1 and is equal to

rI
0,1 ≡

π1(k1, x1, yi1) + (1 − δ)

1
. (2.6)

Furthermore,

P0 = E0 [m0,1 [π(k1, x1, yi1) + (1 − δ)k1]] , (2.7)

where P0 is the ex-dividend value of equity at period 0. When πt is linearly homoge-

neous, we can use the first order condition, (2.4) to get: P0 = k1. The stock return
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over this period is:

rS
0,1 ≡

π(k1, x1, yi1) + (1 − δ)k1

Et [m0,1 [π(k1, x1, yi1) + (1 − δ)k1]]
(2.8)

Substituting the first order condition, we get the standard results equating stock

returns and investment returns over the period 0 to 1. Let’s impose some structural

form on the functions. Let the production function for the ith be as follows:

πit = π(kit, xt, yit) = (xt + yit)kit, (2.9)

where the systematic productivity, xt, evolves according to:

xt+1 = x(1 − ρx) + ρxxt + σxε
x
t+1, (2.10)

where εx
t+1 is an i.i.d. standard normal variable, and the idiosyncratic productivity

for firm i, yit, evolves according to:

yit+1 = yi(1 − ρyi
) + ρyi

yit + σyi
εyi

t+1. (2.11)

The implicit assumption behind the structure of this production function is that all

firms have the same exposure to the systematic productivity variable. Generalizing

this function to allow the risk exposures to vary across stocks or including multiple

sources of systematic risk is straightforward. However, for the sake of simplicity,

and because I am focusing on “excess” comovement, and will be holding fundamen-

tals constant, I use this simple form. The variable xt has the following conditional
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moments:

µx1|x0
≡ E [x1 | x0] = x(1 − ρx) + ρxx0 (2.12)

σ2
x1|x0

≡ V ar
(
x1 | x0) = σ2

x (2.13)

(2.14)

and similar for yjt. The pricing kernel is assumed to be of the following form:

log mt,t+τ = log ητ + γ(xt − xt+τ ) (2.15)

Correlations without Signals

The variance of the stock return of any firm i from time 0 to time 1 is equal to

V ar0(r
i
0,1) = V ar0

(
Pi1

Pi0

)
(2.16)

=
1

k2
i1

V ar0(Pi1) (2.17)

= V ar0(x1 + yi1) (2.18)

The covariance of the stock returns of firm i and firm j can be written:

Cov0(r
i
0,1, r

j
0,1) =

1

ki1kj1

Cov0(Pi1, Pj1) (2.19)

= Cov0(x1 + yi1, x1 + yj1) (2.20)
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Thus, the correlation between the two stock returns is

ρij ≡ Corr0(r
i
0,1, r

j
0,1) =

Cov0(r
i
0,1, r

j
0,1)√

V ar0(ri
0,1)V ar0(r

j
0,1)

(2.21)

=
Cov0(x1 + yi1, x1 + yj1)√

V ar0(x1 + yi1)V ar0(x1 + yj1)
(2.22)

=
σ2

x√
{σ2

x + σ2
yi
}{σ2

x + σ2
yj
}
. (2.23)

When the conditional volatility of the systematic productivity variable is large relative

to the idiosyncratic volatilities, this correlation will be close to one. When there is

a large amount of firm specific productivity uncertainty, this value will be relatively

small. If the state variables, x1, yi1 and yj1 are partially inferred from some sort of a

signal, the correlations may not be the same as in the above case, as is described in

the next subsection.

2.2.1 Information

To examine the effects of correlated information on comovement, I introduce cor-

related signals into the model. At time 0+, immediately after the firms make their

investment decisions, earnings forecasts are released. No investment or production

takes place at time 0+. The only other difference between times 0 and 0+ is the infor-

mation set. None of the state variables differ (e.g., x0 = x0+). The state x0, yi0, yj0

and yl0 are known with certainty At times 0 and 0+. Also, assume that at time 1, the

states x1, yi1, yj1 and yl1 will be also known with certainty. The earnings forecasts,

ẽi, are of the form ẽi = πi1 + eiki1 = (x1 +yi1 + ei)ki1, where the forecast error, ei, is a

normal random variable which has a variance σ2
ei and a covariance σeij. Because the

levels of capital are known at time 0+ – one period in advance – an equivalent forecast

is zi = x1 + yi1 + ei. Using these earnings forecasts at time 0+, the representative

agent prices all stocks based on the known states at time 0+, and the best estimate
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of the future states given all of the earnings forecasts.

Correlations with Signals

As already shown, before the earnings forecasts are released (or in the case without

earnings forecasts) the market value of equity for firm i, Pi0 is equal to the optimal

capital stock, ki1. At time 1, the value, Pi1, is equal to the cash flow plus the non

depreciated portion of the capital stock:

Pi1 = (x1 + yi1)ki1 + (1 − δ)ki1 (2.24)

As soon as the earnings forecasts are released, the price will depend on the signals

(earnings forecasts) of all firms:

Pi0+ = E0+ [m0+,1Pi1]. (2.25)

We can solve for this based on the state variables at time 0 and the signals. However,

because we are focusing on correlations, we need not do so.

Similar to the case with no earnings forecasts,

V ar0+(ri
0+,1) =

1

P 2
i0+

V ar0+(Pi1) =
k2

i1

P 2
i0+

V ar0+ (x1 + yi1) (2.26)

Cov0+(ri
0+,1, r

j

0+,1) =
ki1kj1

Pi0+Pj0+

Cov0+ (x1 + yi1, x1 + yj1) . (2.27)

So,

ρ+
ij ≡ Corr0+(ri

0+,1, r
j

0+,1) =
Cov0+(x1 + yi1, x1 + yj1)√

V ar0+(x1 + yi1)V ar0+(x1 + yj1)
. (2.28)

This equation differs from (2.23) only in the information set. If the signals are suffi-

ciently noisy, the two will be close to the same. However, if the signals are informative,
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the two may differ. The conditional stock return correlation will be a function of the

parameters of the state variables and of the signals, and can be determined by solving

for the components of (2.28).

2.2.2 Kalman Filter

Due to the linear structure of the model, the Kalman filter algorithm or linear least

squares method provides the best estimate of the state variables and their covariances

at time 1, given the signals at time 0+.1 The Kalman Filter can be applied as follows.

the state process, st is

s1 = As0 + Bs + εt (2.29)

with measurements that are

z0+ = Cs1 + e1. (2.30)

In our case, the state variable vector st ∈ ℜn+1 is st = (xt, y1t, y2t, . . . , ynt)
′, where xt

represents the systematic level of productivity and yit is the idiosyncratic component

of productivity for firm i and s = (x, y1, y2, . . . , yn)′. The matrices A, B, and C are

as follows:

A =




ρx 0 0 · · · 0

0 ρ1
y 0 · · · 0

0 0 ρ2
y 0

...
...

. . .
...

0 0 0 · · · ρn
y




, (2.31)

1See Bertsekas (2000) for a detailed discussion of the Kalman filter and its relation to linear
regression
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B =




(1 − ρx) 0 0 · · · 0

0 (1 − ρ1
y) 0 · · · 0

0 0 (1 − ρ2
y) 0

...
...

. . .
...

0 0 0 · · · (1 − ρn
y )




, (2.32)

C =




1 1 0 0 · · · 0

1 0 1 0 · · · 0

1 0 0 1 · · · 0

...
...

...
. . .

...

1 0 0 0 · · · 1




, (2.33)

Applying the Kalman filter algorithm to estimate the states, ŝ1 and their variance-

covariance matrix, Σ:

ŝ1 = E[s1 | I0+ ] = Aŝ0 + Bs + ΣC ′N−1 (zt+1 − C (Aŝt + Bs)) (2.34)

Σ = E[(s1 − ŝ1)(s1 − ŝ1)
′ | I0+ ] = M − MC ′ (CMC ′ + N)

−1
CM. (2.35)

where M is the n + 1 × n + 1 diagonal variance-covariance matrix

M =




σ2
x 0 0 · · · 0

0 σ2
y1 0 · · · 0

0 0 σ2
y2 · · · 0

...
...

...
. . .

...

0 0 0 · · · σ2
yn




, (2.36)
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and N is the n × n diagonal variance-covariance matrix

N =




σ2
e1 σe1,2 σe1,3 · · · σe1,n

σe1,2 σ2
e2 σe2,3 · · · σe2,n

σe1,3 σe2,3 σ2
e3 · · · σe3,n

...
...

...
. . .

...

σe1,n σe2,n σe3,n · · · σ2
en




. (2.37)

Given the Σ matrix, we can solve for the predicted conditional stock return correlation

at time 0+: Given the signals at time 0+, The variances, covariances, and correlations

of the stock returns are

ρ+
12 ≡ Corr+

0 (rs1
0+,1, r

s2
0+,1) =

Cov0+(x1 + y11, x1 + y21)√
V ar0+(x1 + y11)V ar0+(x1 + y21)

, (2.38)

where

Cov0+(x1 + yi1, x1 + yj1) = Σ1,1 + Σ1,i+1 + Σ1,j+1 + Σi+1,j+1 (2.39)

V ar0+(x1 + yi1) = Σ1,1 + 2Σ1,i+1 + Σi+1,i+1 (2.40)

V ar0+(x1 + yj1) = Σ1,1 + 2Σ1,j+1 + Σj+1,j+1, (2.41)

and Σk,l denotes the element in the kth row and lth column of Σ. Because Σ is

calculated by inverting a matrix, when the number of stocks is large, it becomes

difficult to solve symbolically and thus comparative statics are hard to generalize.

For this reason, I calibrate the model and show that the stock return correlation

between any two stocks increases with the correlation in forecast errors. See the

appendix at the end of this chapter for a solution using two firms. After describing

the data and introducing a measure of correlated analyst coverage which proxies for

correlated forecast errors, I calibrate the model and show numerically that return
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comovement increases with increases in correlated forecast errors in the next section.

2.3 Data Sources and Variable Construction

I use the unique analyst and broker id numbers from the I/B/E/S (Institutional

Brokers’ Estimate System) database to determine which analysts are making earnings

per share forecasts. I gather stock return and industry SIC code data from the CRSP

(Center for Research in Security Prices) database. Data for the 3 Fama French factors

and the Carhart momentum factor along with data on additions and subtractions to

the S&P500 index are from Wharton Research Data Services.

2.3.1 Correlated Analyst Coverage and Forecast Errors Measure

I am interested in the covariance structure of the earnings forecast errors. It is

possible to estimate this matrix directly using realized earnings forecast errors. How-

ever, given the staggered nature of both earnings announcement dates and analyst

forecast dates, this is a difficult task in practice. Instead of estimating the covariance

matrix directly, I take an indirect approach using observable analyst coverage data.

Analysts typically use models or standardized methodologies when making projec-

tions about earnings. Additionally, many of the inputs used in their models, such as

projected GDP- or industry-growth may be used across multiple stocks, and among

analysts within the same firm. To the extent that each analyst uses the same method-

ology, model, and inputs, across stocks we might expect any systematic errors to filter

through to the earnings forecasts across stocks for which they make projections.

With this in mind, assume for simplicity that the signal of the ith firm is the

simple average of the forecasts of Ni analysts. Also, assume that the forecast error

for each analyst is the same regardless of stock and has a variance of σ2
a for any stock.

Then, the variance of the signal error, ei, for the ith stock is equal to σ2
a/Ni. Let

Ni,j be the number of shared analysts between the ith and jth stocks. Then, the
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covariance of the forecast errors for stocks i and j is:

Cov(ei, ej) =






0 if Ni,j = 0

σ2
a

NiNj
if Ni,j = 1

2σ2
a

NiNj
if Ni,j = 2

...
...

min(Ni,Nj)σ
2
a

NiNj
if Ni,j = min(Ni, Nj)

(2.42)

=
Ni,j

NiNj

σ2
a (2.43)

and thus the error correlation is:

ρan
ij ≡ Corr(ei, ej) =

Ni,j√
NiNj

. (2.44)

This coefficient which ranges between 0 and 1 is similar to measures which have been

used to quantify the “similarity” of sets.2 Thus, this quantity is a practical measure of

the similarity of the sets of analysts covering the two stocks and a theoretical measure

of the correlation between the forecast errors for the two stocks. Using the I/B/E/S

database, this can be easily calculated for any pair of stocks.

Each calendar year, for every pair of stocks listed on the S&P500 index from 1982

through 2007, I calculate the correlated analyst coverage measure, ρan
ij , by counting

the number of unique analysts making earnings forecasts in the I/B/E/S database,

Ni and Nj, and the number of common analysts within these two groups, Ni,j. There

are about 2.6 million stock pair observations over the 26 year period. The first line of

Panel A in Table 2.1 shows the summary statistics for ρan
ij . On average, this variable

is about 2.6%. This number is relatively low. However, the standard deviation is

2Two popular measures of similarity are Sørensen’s (1948) similarity coefficient, 2Ni,j/(Ni +Nj)
and the Jaccard (1901) similarity coefficient, Ni,j/(Ni+Nj−Ni,j). The measure in this paper differs
from Sørensen’s measure only in the sense that a geometric average is used in lieu of an arithmetic
average.
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about 7.7%. Analysts tend to specialize in a particular industry. Pairs of firms

within the same industry generally have relatively high coefficients. To the extent

that analysts working for the same firm use the same methodology, share the same

information, they will make similar mistakes in projecting a firm’s earnings. With

this in mind, I repeat the previous exercise at the brokerage firm level and generate

a correlated broker coverage measure, ρbr
ij . The second line of Panel A presents the

summary statistics for this variable. Not surprisingly, the mean of this coefficient

is much larger than the analyst coefficient at about 27%. The standard deviation

is about 23%. While individual analysts focus on industries, brokerage firms take a

more broad approach. The correlation coefficient between the two measures is 0.34.

2.3.2 Comovement Measures

Excess comovement, ρret
ij , is defined as the correlation coefficient between two

firms’ realized alphas using an asset pricing model:

ρret
ij =

T∑

t=1

eitejt (2.45)

where eit and ejt are the residuals from the asset pricing equation:

rit − rft = αi + βi1f1t + βi1f1t + . . . + βi1f1t + eit. (2.46)

Every calendar year from 1982 through 2007, I find all stocks which are part of

the S&P500 index during that entire year and the previous year. The factor loadings,

βi1, β12, . . .βNt, are estimated using data from the previous calendar year. Three

models are used: the CAPM, the Fama French 3 factor model (FF3 henceforth),

which includes the market return, the size factor and the growth factor, and a 4

factor model (FF4 henceforth) which adds the Carhart momentum factor to the Fama

French factors. Additionally, ρret
ij is calculated using raw returns in lieu of residuals.
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Panel B of Table 2.1 proved summary statistics for these estimates using daily

returns data. There are an average of 474 stocks per year that are part of the index

both the current and previous year. That leads to 2,633,944 yearly correlations over

the course of the sample, or about 100,000 per year. The average correlation using

raw returns is about 0.223. Excess comovement among these S&P500 stocks based

on the CAPM is about 0.052 on average, and about 0.103 and 0.116 using the FF3

and FF4 models, respectively. There is some negative excess comovement in some

cases, and the maximum for each variable exceeds 94%.

Because daily returns may be subject to microstructure issues like nonsynchronous

trading, I also estimate comovement using weekly returns according to the same

procedure as with the daily returns. Panel C of Table 2.1 presents the summary

statistics. In each case, the average correlations are higher than those calculated

using daily returns. The standard deviations are also larger.

2.4 Results

2.4.1 Calibration

In principal the predicted stock return correlation for any two stocks from the

model, Corr0+(ri
0+,1, r

j

0+,1), can be solved symbolically as a function of the underlying

parameters. However, when the number of signals is large, this becomes intractable as

it involves inverting a matrix which increases with the number of stocks. So solving

for partial derivatives when there are 500 stocks becomes infeasible. Therefore, I

calibrate the relevant model parameters, σ2
x, σ2

yi
, σ2

ei and σeij , and show numerically

that the stock return correlation between any two stocks increases with the covariance

of the stocks’ earning forecast errors.

Because the earnings cycle is typically quarterly, I focus on that frequency. I set

the conditional volatility, σx, of the systematic productivity process to 0.007, and the
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conditional volatility, σyi , of the firm-specific productivities to 0.3. These quarterly

parameters are consistent with Cooley and Cooley and Prescott (1995) and Zhang

(2005). I estimate the standard deviation, σei of the forecast error using the realized

errors from the quarterly consensus earnings-per-share forecasts for the sample period

from 1982 through 2007 for all S&P500 stocks in the I/B/E/S database. The standard

deviation of the quarterly earnings per share forecast error during this period is 0.423.

Because of the assumption that earnings are a linear function of the capital stock, K,

this error needs to be scaled by capital-per-share. Once this adjustment is made, the

realized standard deviation is 0.373, which I use as an estimate of σei . Because firms

report earnings at different moments in time, the earnings forecast error covariance

parameter, σeij , is difficult to estimate directly. However because I am interested in

the theoretical effect of changes in this parameter on stock return correlations, I vary

this parameter for stocks i and j and fix it for all other pairs of stocks and examine

the changes in ρij using equation (2.28). I set the error covariances for all other pairs

of the 500 stocks used in the procedure such that the error correlations are 0.026 —

the sample average value of ρan
ij .

Figure 2.1 shows the results of varying the forecast error correlation on the stock

return comovement for two stocks using these assumptions. Panel A shows that co-

movement increases from close to zero all the way towards one as the error correlation

increases. Panel B plots the slope of the curve in Panel A. This is the marginal effect

of increasing the error correlation on comovement. This marginal effect is between

0.4 and 0.5 until ρan
ij is increased to above 0.35. When ρan

ij is equal to 0.026, its sample

average, ∂ρret
ij /∂ρan

ij equals about 0.40.

These results provide the following testable hypothesis: firms with high corre-

lated analyst coverage, ρan
ij , have high comovement ρret

ij . Specifically, in a regression

of comovement on correlated analyst coverage, the coefficient should be positive. Ac-

cording to the calibration, around our sample mean of 0.028, this coefficient should
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be around 0.40. This hypothesis is tested in the following subsections.

2.4.2 Analyst Coverage and Excess Comovement

To test the hypothesis that increases in correlated analyst coverage are associated

with increases in comovement, I regress excess comovement on the correlated analyst

and broker coverage variables. The first columns of Panel A in Tables 2.2 through 2.5

present the results of these regressions using each of the four methods to estimate ex-

cess comovement. In all four cases, the coefficients are positive and highly significant,

ranging between 0.18 and 0.25. These are smaller than the the theoretical value of

0.41 from the calibration exercise. However, this may not be surprising. The assump-

tion which was used in linking correlated analyst coverage and correlated earnings

forecast errors provides an upper bound. If an individual analyst’s forecast errors

across stocks are not perfectly correlated, this number should be lower. In practice,

increasing correlated analyst coverage by one percent leads to an increase in excess

comovement of 0.18 to 0.25 percent.

An alternative hypothesis that is consistent with these results is that our models

are imperfect and analysts tend to cover firms with the same risk characteristics. If

this is the case, analyst coverage provides information about risk above and beyond

that provided by our models. Individual analysts tend to focus on firms within the

same industry. In order to test whether this is what’s being captured by my measure,

I use the variables SIC2, SIC3, and SIC4, which are indicator variables set to 1 if the

two firms share the same 2-, 3-, or 4- digit Standard Industry Classification codes, and

0 otherwise. The second through fifth columns present the results when controlling

for industry affiliation. Again, in each case, the coefficient on the correlated analyst

coverage variable is positive and significant, though magnitudes are smaller, ranging

between 0.11 and 0.19 once controlling for all three industry-level measures. To the

extent that these industries control for risk, correlated analyst coverage increases
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comovement above and beyond that explained by common industry. Depending on

the measure of comovement, stocks within the same 2-digit SIC industry exhibit

comovement that is between 6% and 9% higher than those with different SIC codes.

Not surprising, once the industry classification is refined, these numbers increase to

between 13% and 16% for the stocks within the same 3-digit SIC industry, and to

between 13% and 18% for stocks within the same 4-digit SIC industry.

The last five columns of Panel A repeat the results from the regressions in the

first five columns with the addition of year fixed effects. The qualitative results are

the same as before. However, the coefficients of the analyst variable are larger in

magnitude — as high as 29.6% — and the Adjusted R Square statistics are much

larger — as high as 0.49.

Individual analysts tend to cover a small percentage of the entire universe of

stocks. Any given brokerage firm with, however, may have analysts covering a much

larger percentage of the S&P500 firms. To the extent that analysts working for the

same firm use similar methodology, information, predictions, or process information

in the same manner, we might expect their forecast errors to be correlated. The

correlated broker coverage variable, ρbr
ij , may provide additional power in explaining

excess comovement. To test this hypothesis I repeat the regression in Panels A

replacing the analyst level variable with the brokerage level measure. These results

are in Panel B of tables 2.2 through 2.5. The coefficients on the brokerage variable

are all positive and significant, ranging from about 0.01 to 0.17 with the highest

coefficients when comovement is estimated using FF3 and FF4.

In Panel C of the four tables, I test whether both the correlated broker coverage

and correlated analyst coverage variables are important. I repeat the same regressions

as before but include both variables. The coefficients on ρan
ij are generally greater

than those on ρbr
ij , except for in a few cases in FF3 and FF4 when ρan

ij actually

becomes negative when the industry dummies are included without the year fixed
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effects. When year fixed effects are included, the magnitude of the broker coefficient

is greatly diminished, becoming negative in most cases.

2.4.3 Unexpected Earnings and Excess Comovement

Studies by Chan, Jegadeesh and Lakonishok (1996), and Chordia and Shivakumar

(2006) have documented a positive relation between standardized unexpected earnings

(SUE, Foster, Olsen, and Shevlin, 1984) and abnormal returns. SUE is calculated as

SUEit =
epsiq − epsiq−4

σit

, (2.47)

where epsiq is the most recent quarterly earnings per share announcement and σit is

the estimated standard deviation of unexpected earnings, epsiq − epsiq−4, over the

previous 8 quarters. To the extent that similar stocks are followed by similar analysts

and experience similar patterns of unexpected earnings, the analyst coverage measure

may be simply proxying for the correlation in unexpected earnings. To test this, I

estimate the correlation in unexpected earnings, ρue
ij , for every pair of S&P500 stocks

for which sufficient data are available and examine the effect of this variable on the

significance of the coefficients of ρan
ij and ρbr

ij in explaining excess comovement.

For each calendar year from 1990 to 2007, I estimate ρue
ij using the previous five

years worth of quarterly earnings data. I restrict the sample to those S&P500 stocks

that are listed on the index during the entire period and for which there are no

missing earnings data. For every pair of stocks that meet these criteria, I estimate

correlation coefficients using a 16-quarter time series of unexpected earnings, epsiq −

epsiq−4. Because I focus on correlations, standardizing the unexpected earnings is

less important. During this 18 year period, there are an average of 259 stocks per

year that are included in the analysis. That leads to 608,125 estimates of ρue
ij . Panel

D of Table 2.1 shows the summary statistics. This variable has a positive mean of
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about 6%, a standard deviation of 35% and a very wide range. The variable itself has

correlations of 4.9% and 3.8% with ρan
ij and ρbr

ij , respectively. While these numbers

are not large in magnitude, they are highly statistically significant.

Tables 2.6 through 2.9 present the results of regressing excess comovement on

various combinations of the analyst and broker coverage variables and the correlation

in unexpected earnings, ρan
ij , along with other control variables. As shown in the first

column of Panel A in each of these four tables, the inclusion of ρue
ij in the regression

does decrease the magnitude of the coefficient of ρan
ij , which ranges between 7% and

22%. However, the statistical significance remains. With the introduction of year

fixed effects – as seen in the fifth columns – the coefficients of the correlated analyst

coverage actually become larger than they were in the longer sample without the

inclusion of ρue
ij , ranging between 27% and 33%. Adjusted R Squares are as high as

0.575.

Panel B of the four tables shows the results from regressing excess comovement

on the broker level variable and the unexpected earnings variable. Relative to the

previous case, the coefficients on the broker variable are larger across the board. The

inclusion of the unexpected earnings correlation seems to strengthen the results. In

Panel C, the analyst and broker correlation measures and the unexpected earnings

correlation are all included in the regressions. The results are mixed. However,

there is little evidence that the correlated analyst and broker coverage variables are

proxying for unexpected earnings correlation.

2.4.4 Weekly Returns

Because daily data might be subject to microstructure issues such as nonsyn-

chronous trading, I also use weekly data. Tables 2.10 through 2.13 present the results

using weekly data to repeat the regressions from Tables 2.2 through 2.5. The results

are very similar to those done at the daily frequency. The average coefficient on ρan
ij
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in the simple univariate regression varies from 21% to 26%. As was the case with

the daily comovement results, the addition of the industry controls diminishes the

magnitude of the coefficients, but the results are qualitatively the same. However,

only once does the coefficient of the analyst variable become negative. The addition

of year fixed effects increases the magnitudes of the coefficients and the overall fit.

The brokerage level variables have a positive, significant effect on comovement until

year fixed effects and the analyst level variable are included.

As was the case with the daily data, the inclusion of unexpected earnings corre-

lation in the regressions slightly diminishes the marginal effect of correlated analyst

coverage in explaining excess comovement when no year fixed effects are included,

and strengthens the effect with the inclusion of year fixed effects. Using weekly data,

the results are more consistent and the magnitudes larger. The coefficient on ρan
ij is

as large as 38% when year fixed effects are included.

These results suggest that much of the excess comovement we observe is caused

by the correlated nature of the information structure. To provide another test of this

hypothesis, I examine a case in which the information structure changes for a stock

without a change in the stock’s underlying fundamental risk structure. Microstructure

issues do not seem to be driving the results and may actually be diminishing them.

2.4.5 Additions to the S&P500 Index

Barberis, Shleifer and Wurgler (2005) find that stocks’ betas with respect to the

S&P500 index tend to increase when they added to that index. They argue that

nothing fundamental changes with the stock in the short window over which they

estimate these betas and ascribe the increased correlation to the trading behavior

of “style investors” – investors who trade stocks based on characteristics or classi-

fications. “Style investors” and institutional investors buying and selling stocks in

order to track the S&P500 index are likely to cause an increased in a firm’s measured
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beta. However, there may be another source of comovement. If the if the information

structure changes, then we might expect the comovement to change.

Hegde and McDermott (2003) show that additions to the S&P500 index are asso-

ciated with increases in analyst coverage. If these new analysts are also those covering

other S&P500 stocks, the forecast errors may become more correlated. With this in

mind, I calculate ρan
ij and ρbr

ij each quarter from 12 quarters before to 12 quarters after

the event. I use data from the 386 firms from the period 1982 through 2007 which

had at least one analyst in the I/B/E/S database before the event. Table 2.18 shows

the average values before and after the event, plus the percentage increases, differ-

ences, t-statistics and p-values. On average, these measures of correlated information

increase when a stock is added to the index. There is a 17% increase in ρan
ij for these

new S&P500 stocks from the quarter before to the quarter after the addition. From

12 quarters before to 12 quarters after, there is a 140% increase. The percentage

increase in the brokerage variable is similar. Figure 2.2 plots these two variables in

event time. There is a distinct break visible at the event date. So on average, the

correlated analyst coverage increases with respect to the S&P500 stocks when these

stocks are added to the index.

If the increase in correlated information is responsible for some of the increase in

return comovement, we would expect this increase to be highest where the increase

in correlated analyst coverage is greatest. I regress the changes in excess comove-

ment defined by the four measures on changes in the analyst and brokerage coverage

variables from the calendar years before and after the event. Table 2.19 presents the

results using 386 firms that are added to the index from 1982 through 2007 for a total

of 136291 observations. In the simple regression of ∆ρret
ij on ∆ρan

ij , the coefficients

using all 4 comovement definitions all between about 5% and 6% and are highly sta-

tistically significant. The overall fit of the model, however is fairly low. Most of the

total variation in changes in comovement with these firms is not explained by changes
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in analyst coverage alone. Once year fixed effects are added, however, the total fit

does increase, especially in the raw returns case. This is probably capturing some of

the changes in market returns during this period. Controlling for the average increase

in comovement for each firm, the correlated analyst coverage variable still exhibits a

positive relation with comovement. This is shown in the seventh and ninth columns

of the table.

Overall, the effects of changes in the correlated analyst coverage on excess comove-

ment are consistently positive and significant around the addition date. Across all

specifications which include ∆ρan
ij , its coefficient ranges between 4.3 and 8.7 percent,

suggesting that increases in analyst coverage do lead to an increase in comovement

that is distinct from changes in fundamental risk characteristics.

2.5 Conclusion

When relevant information is correlated across stocks, the stocks returns will tend

to comove more than predicted by standard asset pricing models. This paper develops

a new, easy to calculate measure of correlated information based on analyst coverage.

A one percent increase in this measure leads to about a 0.4 percent increase in excess

comovement. This measure does not seem to be simply a proxy for risk exposure or

for correlations in unexpected earnings. The effect is still significant around additions

to the S&P500 index where there is a change in the information structure, but not

necessarily in the risk exposure does not necessarily. Combined with the standard

asset pricing models, this measure provides a benchmark level of comovement against

which to define “excess”.
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2.6 Appendix: Kalman Filter – 2 Stock Example

When the number of stocks is large—as is the case in practice—it is difficult to

solve for the variance-covariance matrix of the states symbolically. To give some

intuition as to what such a solution might look like, I solve for the two-stock case in

this section. In this case, the signals for stocks i and j are zi = x1 + yi1 + σeiwi &

zj = x1 + yj1 + σejwj, which are revealed at time 0+.

We want to solve for

Σ = M − MC ′ (CMC ′ + N)
−1

CM. (2.48)

In this case, we have:

M =




σ2
x 0 0

0 σ2
y1 0

0 0 σ2
y2




(2.49)

N =




σ2
e1 σe1,2

σe1,2 σ2
e2


 (2.50)

C =




1 1 0

1 0 1


 . (2.51)

Thus,

CM =




σ2
x σ2

y1 0

σ2
x 0 σ2

y2


 , (2.52)
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MC ′ =




σ2
x σ2

x

σ2
y1 0

0 σ2
y2




, (2.53)

and

(CMC ′ + N)−1 =
1

D




σ2
x + σ2

y2 + σ2
e2 −(σ2

x + σe1,2)

−(σ2
x + σe1,2) σ2

x + σ2
y1 + σ2

e1


 , (2.54)

where

D = (σ2
x + σ2

y1 + σ2
e1)(σ2

x + σ2
y2 + σ2

e2) − (σ2
x + σe1,2)2. (2.55)

Combining these equations, we can solve for Σ:

Σ11 =V ar0+(x1) =
σ2

x

[
(σ2

y1 + σ2
e1)(σ2

y2 + σ2
e2) − (σe1,2)2

]

D
(2.56)

Σ22 =V ar0+(y1) =
σ2

y1

[
(σ2

x + σ2
e1)(σ2

y2 + σ2
e2) + σ2

xσ
2
e1 − σe1,2(σe1,2 + 2σ2

x)
]

D
(2.57)

Σ33 =V ar0+(y2) =
σ2

y2

[
(σ2

x + σ2
e2)(σ2

y1 + σ2
e1) + σ2

xσ
2
e2 − σe1,2(σe1,2 + 2σ2

x)
]

D
(2.58)

Σ12 =Cov0+(x1, y1) = −
σ2

xσ
2
y1(σ2

y2 + σ2
e2 − σe1,2)

D
(2.59)

Σ13 =Cov0+(x1, y2) = −
σ2

xσ
2
y2(σ2

y1 + σ2
e1 − σe1,2)

D
(2.60)

Σ23 =Cov0+(y1, y2) =
σ2

y1σ2
y2(σ2

x + σe1,2)

D
(2.61)

where Σij is the element in the ith row and jth column of Σ.

Given the signals at time 0+, The variances, covariances, and correlations of the
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stock returns are

ρ+
12 ≡ Corr+

0 (rs1
0+,1, r

s2
0+,1) =

Cov0+(x1 + y11, x1 + y21)√
V ar0+(x1 + y11)V ar0+(x1 + y21)

, (2.62)

where

Cov0+(x1 + y11, x1 + y21) = Σ11 + Σ12 + Σ13 + Σ23 (2.63)

V ar0+(x1 + y11) = Σ11 + 2Σ12 + Σ22 (2.64)

V ar0+(x1 + y21) = Σ11 + 2Σ13 + Σ33. (2.65)
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Figure 2.1 : Comovement and Correlated Forecast Errors

These panels show the effect of changing the forecast error correlation on return comovement in the

model. Panel A plots the error correlation variable, ρan
ij against the return correlation ρret

ij . Panel B

plots the slope of this line, ∂ρret
ij /∂ρan

ij . In the calibration, σx is set to 0.007, σy to 0.3, σei to 0.373,

and σeij to 0.028 for all stocks. Then the σeij is varied between 0 and 0.3732 for two stocks and ρret
ij

is then calculated for these two stocks.

Panel A: Return Correlations and Correlated Forecast Errors
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Figure 2.2 : Correlated Analyst and Brokerage Coverage - Additions to
S&P500

These panels present average correlated analyst, ρan
ij (Panel A), and broker, ρbr

ij (Panel B), coverage

between firms added to the S&P500 index from 1982 through 2007 and all other S&P500 firms by

quarter from the 12th quarter before the addition date to the 12th quarter after the date. Analyst

and broker data are from the I/B/E/S database. S&P500 constituent data are from CRSP. The

values plotted in these graphs are found in Table 2.18.
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Table 2.1 : Summary Statistics

This table reports summary statistics for the correlated analyst coverage variables and the stock

return correlation coefficients for pairs of S&P500 stocks from the period 1982–2007. Panel A

presents the correlated analyst coverage measure, ρan
ij , which is defined in equation (2.44), and the

correlated brokerage coverage measure, in which brokers are used in lieu of analysts. The correlation

coefficients used in Panels B and C are estimated using raw returns, and residuals from the CAPM,

the Fama French 3 factor model, and the Fama French 3 factor model plus the Carhart momentum

factor. The three models are fit using one year’s worth of daily or weekly data and are applied to

the following year’s data to estimate the correlation coefficients. Analyst data are from the I/B/E/S

database, stock returns are from CRSP, and the Fama French and Carhart factor data are from

WRDS. Means, standard deviations, minima and maxima are expressed in percentage terms.

Panel A: Analysts and Brokers

Variable N Mean St. Dev Min Max

ρan
ij 2633944 3.8 7.7 0.0 100.0

ρbr
ij 2633944 27.4 23.2 0.0 100.0

Panel B: Daily Stock Return Correlations

Input N Mean St. Dev Min Max

raw returns 2633944 22.3 14.0 -34.7 96.2

CAPM alphas 2633944 5.2 12.4 -56.4 94.2

FF alphas 2633944 10.3 16.7 -54.4 94.3

FF+Carhart alphas 2633944 11.6 16.9 -54.3 95.6

Panel C: Weekly Stock Return Correlations

Input N Mean St. Dev Min Max

raw returns 2633944 24.0 18.3 -58.1 98.0

CAPM alphas 2633944 9.5 19.6 -74.2 97.4

FF alphas 2633944 18.0 22.4 -65.7 97.4

FF+Carhart alphas 2633944 22.7 22.3 -65.4 97.5

Panel D: Unexpected Earnings Correlation

Input N Mean St. Dev Min Max

ρue
ij 608125 5.9 35.0 -99.3 99.5
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Table 2.2 : Excess Comovement - Raw Returns (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are

equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification

code, respectively, and zero otherwise. Year fixed effects are included where indicated. The cor-

related analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated yearly using daily raw stock returns from

CRSP for every pair of S&P 500 stocks that is in the index during the calendar year along with the

previous year. 2633944 observations are used. All coefficients are expressed in percentage terms.

t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 20.2 15.5 15.0 16.0 13.5 25.0 20.9 20.5 21.2 19.1

(182) (134) (130) (140) (116) (284) (228) (223) (233) (205)

sic2 6.2 3.6 5.3 3.1
(134) (64) (145) (70)

sic3 11.5 5.1 9.9 3.9
(147) (40) (161) (38)

sic4 13.4 5.4 11.9 5.6
(133) (36) (151) (47)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.012 0.019 0.021 0.019 0.023 0.391 0.396 0.397 0.397 0.399

Panel B: Brokers

ρbr
ij 7.2 6.8 6.8 6.9 6.7 3.8 3.5 3.5 3.5 3.3

(194) (185) (185) (187) (183) (123) (112) (112) (114) (109)

sic2 7.7 4.3 7.7 4.4
(172) (79) (217) (101)

sic3 13.8 5.8 13.7 5.3
(186) (45) (233) (52)

sic4 16.4 6.5 16.6 7.1
(170) (43) (217) (60)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.014 0.025 0.027 0.025 0.030 0.376 0.387 0.389 0.387 0.392

Panel C: Analysts and Brokers

ρan
ij 14.6 9.4 8.8 9.9 7.1 24.4 19.9 19.4 20.2 17.9

(124) (77) (72) (81) (58) (256) (200) (194) (204) (177)

ρbr
ij 5.5 5.8 5.8 5.8 5.9 0.6 0.9 1.0 0.9 1.1

(141) (148) (150) (149) (152) (17) (27) (30) (28) (33)

sic2 6.6 3.8 5.4 3.1
(141) (69) (147) (71)

sic3 12.1 5.3 10.0 3.9
(156) (41) (163) (39)

sic4 14.2 5.9 12.0 5.7
(141) (39) (152) (48)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.020 0.027 0.029 0.027 0.031 0.391 0.396 0.397 0.397 0.399
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Table 2.3 : Excess Comovement - CAPM Alphas (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are

equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification

code, respectively, and zero otherwise. Year fixed effects are included where indicated. The cor-

related analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated yearly using the daily residuals from the

CAPM for each pair of S&P 500 stocks that are in the index during the calendar and the previous

year. Betas for the CAPM are estimated using data from the previous year. Returns data are from

CRSP. 2633944 observations are used. All coefficients are expressed in percentage terms. t-statistics

are in parentheses.

Panel A: Analysts

ρan
ij 24.2 17.8 17.8 18.9 15.5 27.3 21.2 21.3 22.2 19.0

(247) (175) (175) (187) (151) (300) (224) (225) (236) (199)

sic2 8.5 5.6 8.0 5.3
(208) (114) (210) (119)

sic3 14.2 4.7 13.0 3.4
(208) (42) (205) (33)

sic4 17.0 7.7 16.0 8.2
(193) (58) (197) (67)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.023 0.039 0.038 0.036 0.044 0.174 0.188 0.187 0.186 0.193

Panel B: Brokers

ρbr
ij 6.9 6.4 6.5 6.6 6.3 2.4 1.8 1.9 2.0 1.7

(212) (199) (199) (203) (196) (73) (58) (60) (62) (54)

sic2 10.3 6.5 10.4 6.7
(262) (135) (286) (151)

sic3 17.1 5.6 17.2 4.9
(262) (50) (282) (47)

sic4 20.7 9.0 21.1 9.8
(244) (68) (267) (80)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.017 0.042 0.042 0.038 0.050 0.148 0.173 0.173 0.170 0.182

Panel C: Analysts and Brokers

ρan
ij 19.4 12.4 12.4 13.5 9.8 28.9 22.4 22.5 23.4 20.0

(187) (116) (115) (127) (90) (294) (219) (219) (230) (192)

ρbr
ij 4.7 5.1 5.1 5.1 5.3 -1.5 -1.0 -1.0 -1.1 -0.8

(137) (149) (149) (148) (154) (-44) (-30) (-29) (-31) (-24)

sic2 8.8 5.8 7.9 5.3
(216) (119) (208) (118)

sic3 14.8 4.9 12.8 3.4
(216) (44) (203) (33)

sic4 17.7 8.1 15.8 8.1
(201) (62) (194) (67)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.030 0.047 0.047 0.044 0.053 0.175 0.188 0.187 0.186 0.193
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Table 2.4 : Excess Comovement - FF 3 Factor Alphas (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are

equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification

code, respectively, and zero otherwise. Year fixed effects are included where indicated. The cor-

related analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated yearly using the daily residuals from the

Fama French 3 factor model for each pair of S&P 500 stocks that are in the index during the calendar

and the previous year. Factor loadings for the Fama French model are estimated using data from

the previous year. Returns data are from CRSP and factor data from WRDS. 2633944 observations

are used. All coefficients are expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 18.6 12.1 11.9 13.3 9.7 25.6 19.9 20.0 20.8 17.9

(140) (87) (86) (96) (69) (263) (196) (197) (207) (174)

sic2 8.8 5.5 7.4 5.0
(156) (82) (183) (104)

sic3 15.2 6.5 12.1 3.0
(162) (43) (178) (27)

sic4 17.3 6.3 15.0 7.9
(143) (35) (172) (60)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.007 0.017 0.017 0.015 0.020 0.482 0.488 0.488 0.487 0.491

Panel B: Brokers

ρbr
ij 16.2 15.8 15.8 15.9 15.6 3.0 2.5 2.5 2.6 2.4

(373) (364) (365) (367) (362) (86) (73) (74) (76) (69)

sic2 9.2 5.5 9.7 6.2
(175) (86) (249) (131)

sic3 15.8 6.3 15.9 4.3
(181) (42) (245) (39)

sic4 18.6 7.0 19.7 9.3
(164) (40) (233) (72)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.050 0.061 0.062 0.060 0.065 0.469 0.482 0.481 0.480 0.486

Panel C: Analysts and Brokers

ρan
ij 2.5 -5.2 -5.5 -4.0 -8.1 26.2 20.0 20.1 20.9 17.8

(18) (-36) (-38) (-28) (-56) (249) (182) (183) (192) (159)

ρbr
ij 15.9 16.3 16.3 16.3 16.5 -0.5 -0.1 0.0 -0.1 0.1

(345) (355) (356) (355) (360) (-14) (-2) (-1) (-3) (3)

sic2 9.7 6.1 7.4 5.0
(178) (94) (182) (104)

sic3 16.9 6.9 12.1 3.0
(184) (46) (178) (27)

sic4 19.5 7.7 15.0 7.9
(165) (44) (172) (61)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.050 0.062 0.062 0.060 0.066 0.482 0.488 0.488 0.487 0.491
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Table 2.5 : Excess Comovement - FF 3 Factor + Carhart Alphas (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are

equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification

code, respectively, and zero otherwise. Year fixed effects are included where indicated. The cor-

related analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated yearly using the daily residuals from an

asset pricing model using the 3 Fama French factors and the Carhart momentum factor for each pair

of S&P 500 stocks that are in the index during the calendar and the previous year. Factor loadings

for the asset pricing model are estimated using data from the previous year. Returns data are from

CRSP and factor data from WRDS. 2633944 observations are used. All coefficients are expressed in

percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 20.5 14.3 14.1 15.4 12.0 25.5 20.0 20.1 20.8 18.0

(153) (102) (100) (111) (84) (260) (195) (195) (204) (173)

sic2 8.3 5.1 7.2 4.8
(146) (76) (176) (99)

sic3 14.4 6.2 11.9 3.1
(152) (40) (174) (27)

sic4 16.5 6.1 14.8 7.8
(135) (34) (168) (59)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.009 0.017 0.017 0.016 0.020 0.483 0.489 0.489 0.489 0.492

Panel B: Brokers

ρbr
ij 15.0 14.6 14.6 14.7 14.5 3.0 2.5 2.6 2.7 2.4

(341) (332) (332) (335) (330) (87) (74) (75) (77) (71)

sic2 9.0 5.4 9.5 6.1
(170) (83) (242) (126)

sic3 15.7 6.3 15.8 4.4
(176) (42) (240) (39)

sic4 18.5 7.0 19.5 9.3
(160) (39) (228) (70)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.042 0.053 0.053 0.051 0.056 0.472 0.483 0.483 0.482 0.487

Panel C: Analysts and Brokers

ρan
ij 5.9 -1.3 -1.6 -0.2 -4.1 26.0 20.0 20.0 20.8 17.8

(42) (-9) (-11) (-1) (-27) (245) (180) (180) (189) (157)

ρbr
ij 14.4 14.7 14.8 14.7 14.9 -0.5 0.0 0.0 0.0 0.2

(306) (316) (317) (315) (320) (-12) (0) (1) (-1) (5)

sic2 9.2 5.7 7.2 4.8
(164) (86) (176) (99)

sic3 16.0 6.6 11.9 3.1
(172) (43) (174) (27)

sic4 18.5 7.3 14.8 7.8
(154) (41) (168) (59)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.043 0.053 0.053 0.051 0.057 0.483 0.489 0.489 0.489 0.492
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Table 2.6 : Excess Comovement and Unexpected Earnings - Raw Returns
(Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using daily raw stock returns from CRSP for every pair of S&P 500 stocks that is in the index during

the calendar year along with the previous year. 2633944 observations are used. All coefficients are

expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 12.9 7.6 7.8 8.3 5.2 27.4 24.7 25.0 24.9 23.4

(71) (39) (40) (43) (26) (189) (156) (158) (160) (144)

ρue
ij 3.1 3.1 3.1 3.1 3.1 2.3 2.3 2.3 2.4 2.3

(63) (62) (63) (63) (63) (60) (60) (60) (60) (60)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.015 0.023 0.023 0.023 0.027 0.399 0.401 0.401 0.401 0.402

Panel B: Brokers

ρbr
ij 13.5 12.3 12.3 12.4 11.8 10.5 9.3 9.3 9.3 8.8

(112) (101) (101) (102) (97) (108) (95) (95) (96) (90)

ρue
ij 3.1 3.0 3.0 3.1 3.0 2.6 2.5 2.5 2.6 2.5

(62) (61) (61) (62) (61) (65) (64) (64) (64) (63)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.027 0.037 0.036 0.036 0.041 0.376 0.386 0.385 0.385 0.390

Panel C: Analysts and Brokers

ρan
ij 8.1 3.1 3.3 3.9 0.9 24.9 22.2 22.5 22.5 21.0

(44) (15) (17) (20) (4) (165) (136) (138) (139) (125)

ρbr
ij 12.0 11.8 11.8 11.8 11.7 5.7 5.6 5.6 5.6 5.6

(96) (95) (95) (94) (94) (57) (56) (56) (56) (56)

ρue
ij 3.0 3.0 3.0 3.0 3.0 2.3 2.3 2.3 2.3 2.3

(61) (60) (61) (61) (61) (59) (59) (59) (59) (59)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.030 0.038 0.037 0.037 0.041 0.402 0.404 0.404 0.404 0.405
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Table 2.7 : Excess Comovement and Unexpected Earnings - CAPM
Alphas (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using the daily residuals from the CAPM for each pair of S&P 500 stocks that are in the index

during the calendar and the previous year. Betas for the CAPM are estimated using data from the

previous year. Returns data are from CRSP. 2633944 observations are used. All coefficients are

expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 22.0 16.2 17.0 17.6 14.1 32.4 28.2 29.2 29.3 26.9

(125) (85) (89) (94) (72) (201) (161) (167) (170) (148)

ρue
ij 1.8 1.7 1.8 1.8 1.7 1.4 1.4 1.4 1.4 1.4

(36) (35) (36) (36) (36) (33) (33) (33) (33) (33)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.028 0.038 0.035 0.035 0.041 0.239 0.243 0.242 0.242 0.245

Panel B: Brokers

ρbr
ij 12.7 11.0 11.2 11.3 10.5 9.0 7.3 7.4 7.5 6.7

(106) (92) (93) (94) (88) (82) (67) (68) (69) (62)

ρue
ij 1.9 1.8 1.8 1.8 1.7 1.8 1.7 1.7 1.7 1.7

(38) (36) (36) (37) (36) (40) (38) (39) (39) (38)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.021 0.040 0.036 0.035 0.045 0.197 0.217 0.213 0.212 0.222

Panel C: Analysts and Brokers

ρan
ij 18.3 12.7 13.6 14.2 10.7 31.1 27.0 27.9 28.1 25.6

(101) (65) (69) (73) (54) (185) (148) (154) (157) (137)

ρbr
ij 9.4 9.1 9.2 9.1 9.0 2.9 2.9 2.9 2.8 2.8

(76) (74) (75) (74) (73) (26) (26) (26) (25) (25)

ρue
ij 1.7 1.6 1.7 1.7 1.6 1.4 1.4 1.4 1.4 1.4

(34) (34) (34) (34) (34) (32) (32) (32) (33) (32)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.037 0.047 0.044 0.044 0.049 0.240 0.244 0.242 0.243 0.245
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Table 2.8 : Excess Comovement and Unexpected Earnings - FF 3 Factor
Alphas (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using the daily residuals from the Fama French 3 factor model for each pair of S&P 500 stocks that

are in the index during the calendar and the previous year. Factor loadings for the Fama French

model are estimated using data from the previous year. Returns data are from CRSP and factor

data from WRDS. 2633944 observations are used. All coefficients are expressed in percentage terms.

t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 7.6 -0.2 0.5 1.7 -3.2 30.4 26.7 27.8 27.9 25.7

(29) (-1) (2) (6) (-11) (174) (140) (146) (148) (130)

ρue
ij 2.8 2.8 2.8 2.8 2.8 1.5 1.5 1.5 1.5 1.5

(39) (39) (39) (39) (39) (32) (32) (32) (32) (32)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.004 0.013 0.011 0.010 0.015 0.572 0.573 0.572 0.572 0.574

Panel B: Brokers

ρbr
ij 20.4 19.0 19.1 19.2 18.5 11.3 9.8 10.0 10.1 9.4

(118) (109) (110) (110) (106) (96) (84) (85) (86) (80)

ρue
ij 2.6 2.5 2.5 2.5 2.5 1.8 1.7 1.7 1.8 1.7

(36) (35) (35) (36) (35) (38) (36) (36) (37) (36)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.025 0.032 0.030 0.029 0.033 0.557 0.564 0.563 0.562 0.566

Panel C: Analysts and Brokers

ρan
ij -0.5 -7.9 -7.1 -5.9 -10.6 27.8 24.1 25.2 25.3 23.1

(-2) (-28) (-25) (-21) (-36) (152) (122) (127) (130) (113)

ρbr
ij 20.5 20.2 20.2 20.1 20.0 5.9 5.9 5.9 5.9 5.8

(114) (113) (112) (112) (112) (49) (49) (49) (49) (49)

ρue
ij 2.6 2.6 2.6 2.6 2.6 1.5 1.5 1.5 1.5 1.5

(36) (36) (36) (37) (36) (31) (31) (31) (31) (31)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.025 0.033 0.031 0.030 0.035 0.573 0.575 0.574 0.574 0.575
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Table 2.9 : Excess Comovement and Unexpected Earnings - FF 3 Factor
+ Carhart Alphas (Daily)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit

Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are in-

cluded where indicated. The correlated analyst and brokerage coverage variables are calculated using

the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly using

the daily residuals from an asset pricing model using the 3 Fama French factors and the Carhart

momentum factor for each pair of S&P 500 stocks that are in the index during the calendar and

the previous year. Factor loadings for the asset pricing model are estimated using data from the

previous year. Returns data are from CRSP and factor data from WRDS. 2633944 observations are

used. All coefficients are expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 8.6 1.2 1.8 2.8 -1.7 30.4 26.9 27.8 27.8 25.8

(33) (4) (6) (10) (-6) (174) (142) (146) (148) (131)

ρue
ij 3.0 3.0 3.0 3.0 3.0 1.4 1.4 1.4 1.4 1.4

(42) (42) (42) (42) (42) (30) (30) (30) (30) (30)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.005 0.013 0.011 0.011 0.015 0.573 0.575 0.574 0.574 0.575

Panel B: Brokers

ρbr
ij 18.6 17.2 17.3 17.4 16.8 10.7 9.2 9.3 9.4 8.7

(107) (99) (99) (100) (96) (91) (78) (80) (80) (74)

ρue
ij 2.9 2.8 2.8 2.8 2.7 1.7 1.6 1.7 1.7 1.6

(40) (39) (39) (39) (39) (36) (34) (35) (35) (34)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.022 0.028 0.027 0.026 0.030 0.558 0.565 0.564 0.564 0.567

Panel C: Analysts and Brokers

ρan
ij 1.4 -5.7 -5.1 -4.0 -8.3 28.1 24.7 25.5 25.6 23.6

(5) (-20) (-18) (-14) (-28) (154) (125) (129) (132) (116)

ρbr
ij 18.4 18.1 18.1 18.1 17.9 5.2 5.2 5.2 5.1 5.1

(102) (101) (101) (101) (100) (43) (43) (43) (43) (42)

ρue
ij 2.8 2.8 2.8 2.8 2.8 1.4 1.4 1.4 1.4 1.4

(40) (39) (40) (40) (39) (29) (29) (30) (30) (29)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.022 0.029 0.028 0.027 0.031 0.575 0.576 0.576 0.576 0.577
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Table 2.10 : Excess Comovement - Raw Returns (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are

equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification

code, respectively, and zero otherwise. Year fixed effects are included where indicated. The cor-

related analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated yearly using weekly raw stock returns

from CRSP for every pair of S&P 500 stocks that is in the index during the calendar year along

with the previous year. 2633944 observations are used. All coefficients are expressed in percentage

terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 25.8 20.0 20.0 21.1 18.0 29.6 24.2 24.2 25.1 22.3

(178) (132) (132) (140) (117) (220) (172) (172) (180) (156)

sic2 7.8 5.1 7.1 4.6
(127) (70) (126) (69)

sic3 12.8 4.5 11.8 3.9
(126) (27) (125) (26)

sic4 15.1 6.4 14.0 6.3
(115) (33) (116) (35)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.010 0.021 0.020 0.019 0.024 0.154 0.163 0.161 0.161 0.166

Panel B: Brokers

ρbr
ij 4.9 4.4 4.4 4.5 4.3 4.2 3.7 3.7 3.8 3.6

(100) (91) (91) (93) (88) (88) (78) (79) (81) (76)

sic2 9.9 6.3 9.8 6.1
(169) (87) (181) (93)

sic3 16.4 5.6 16.3 5.6
(168) (34) (182) (36)

sic4 19.6 8.0 19.6 8.1
(154) (40) (168) (45)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.005 0.021 0.019 0.017 0.025 0.139 0.155 0.153 0.152 0.159

Panel C: Analysts and Brokers

ρan
ij 23.5 17.3 17.3 18.4 15.1 29.3 23.4 23.3 24.4 21.2

(153) (108) (108) (115) (92) (202) (154) (153) (161) (137)

ρbr
ij 2.2 2.5 2.5 2.5 2.7 0.3 0.7 0.7 0.7 0.9

(43) (49) (49) (49) (52) (5) (14) (14) (13) (17)

sic2 7.9 5.2 7.1 4.7
(129) (72) (126) (70)

sic3 13.1 4.5 11.9 4.0
(128) (27) (126) (26)

sic4 15.5 6.7 14.1 6.4
(117) (34) (117) (35)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.012 0.023 0.021 0.020 0.026 0.155 0.163 0.162 0.161 0.166
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Table 2.11 : Excess Comovement - CAPM Alphas (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are equal

to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification code, re-

spectively, and zero otherwise. Year fixed effects are included where indicated. The correlated

analyst and brokerage coverage variables are calculated using the I/B/E/S database and equation

(2.44). The correlation coefficients are estimated yearly using the weekly residuals from the CAPM

for each pair of S&P 500 stocks that are in the index during the calendar and the previous year.

Betas for the CAPM are estimated using data from the previous year. Returns data are from CRSP.

2633944 observations are used. All coefficients are expressed in percentage terms. t-statistics are in

parentheses.

Panel A: Analysts

ρan
ij 25.9 17.6 18.2 19.4 14.9 32.7 24.9 25.6 26.5 22.5

(167) (109) (112) (120) (91) (224) (164) (168) (176) (146)

sic2 11.2 7.9 10.1 7.3
(171) (102) (167) (101)

sic3 17.4 4.2 15.4 2.7
(159) (23) (151) (16)

sic4 21.2 10.4 19.3 10.5
(150) (49) (148) (54)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.008 0.013 0.013 0.012 0.015 0.305 0.310 0.309 0.309 0.311

Panel B: Brokers

ρbr
ij 5.7 5.1 5.2 5.3 5.0 2.5 1.8 1.9 2.0 1.7

(110) (99) (100) (103) (97) (48) (35) (37) (39) (33)

sic2 13.0 8.8 13.0 9.0
(207) (115) (224) (125)

sic3 20.5 5.0 20.4 4.4
(196) (28) (210) (26)

sic4 25.2 11.6 25.4 12.4
(185) (55) (201) (63)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.011 0.019 0.018 0.018 0.021 0.296 0.305 0.304 0.304 0.307

Panel C: Analysts and Brokers

ρan
ij 22.7 13.7 14.3 15.5 10.8 35.1 26.8 27.5 28.4 24.1

(137) (80) (83) (91) (62) (223) (163) (166) (174) (144)

ρbr
ij 3.2 3.6 3.6 3.6 3.8 -2.2 -1.6 -1.6 -1.7 -1.4

(57) (66) (66) (66) (70) (-40) (-30) (-29) (-31) (-25)

sic2 11.4 8.1 10.0 7.3
(174) (104) (164) (101)

sic3 17.8 4.3 15.1 2.6
(162) (24) (149) (16)

sic4 21.7 10.7 19.0 10.4
(153) (51) (145) (53)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.014 0.020 0.019 0.019 0.022 0.305 0.310 0.309 0.309 0.311
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Table 2.12 : Excess Comovement - FF 3 Factor Alphas (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are equal

to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification code, re-

spectively, and zero otherwise. Year fixed effects are included where indicated. The correlated

analyst and brokerage coverage variables are calculated using the I/B/E/S database and equation

(2.44). The correlation coefficients are estimated yearly using the weekly residuals from the Fama

French 3 factor model for each pair of S&P 500 stocks that are in the index during the calendar and

the previous year. Factor loadings for the Fama French model are estimated using data from the

previous year. Returns data are from CRSP and factor data from WRDS. 2633944 observations are

used. All coefficients are expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 21.8 14.0 14.4 15.6 11.5 30.4 23.6 24.2 24.9 21.4

(122) (75) (77) (85) (61) (203) (151) (155) (160) (135)

sic2 10.4 7.2 8.9 6.5
(139) (81) (143) (87)

sic3 16.5 4.6 13.5 1.8
(131) (22) (129) (11)

sic4 19.9 9.3 17.3 10.1
(123) (38) (129) (50)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.006 0.013 0.012 0.011 0.015 0.318 0.324 0.323 0.323 0.325

Panel B: Brokers

ρbr
ij 11.8 11.2 11.3 11.4 11.1 3.5 2.9 3.0 3.1 2.8

(199) (190) (191) (193) (188) (66) (56) (57) (59) (53)

sic2 11.4 7.6 11.6 8.0
(159) (86) (194) (109)

sic3 18.2 4.9 18.1 3.4
(152) (24) (182) (20)

sic4 22.3 10.1 22.9 11.9
(144) (42) (177) (59)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.015 0.024 0.023 0.022 0.027 0.309 0.319 0.317 0.317 0.321

Panel C: Analysts and Brokers

ρan
ij 11.1 2.4 2.7 4.0 -0.6 31.1 23.7 24.3 25.1 21.3

(59) (12) (14) (21) (-3) (192) (140) (143) (149) (124)

ρbr
ij 10.5 11.0 11.0 11.0 11.2 -0.7 -0.1 -0.1 -0.2 0.1

(167) (175) (175) (175) (178) (-12) (-2) (-2) (-3) (2)

sic2 11.1 7.6 8.9 6.5
(148) (86) (142) (87)

sic3 17.7 4.9 13.5 1.8
(141) (24) (129) (11)

sic4 21.4 10.2 17.3 10.1
(132) (42) (129) (50)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.016 0.024 0.023 0.023 0.027 0.318 0.324 0.323 0.323 0.325
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Table 2.13 : Excess Comovement - FF 3 Factor + Carhart Alphas
(Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated analyst coverage, ρan
ij , and correlated brokerage coverage,

ρbr
ij , along with various control variables. SIC2, SIC3, and SIC4 are indicator variables that are

equal to 1 if the pair of stocks share the same 2-, 3-, or 4-digit Standard Industry Classification

code, respectively, and zero otherwise. Year fixed effects are included where indicated. The cor-

related analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated yearly using the weekly residuals from an

asset pricing model using the 3 Fama French factors and the Carhart momentum factor for each pair

of S&P 500 stocks that are in the index during the calendar and the previous year. Factor loadings

for the asset pricing model are estimated using data from the previous year. Returns data are from

CRSP and factor data from WRDS. 2633944 observations are used. All coefficients are expressed in

percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 25.8 19.2 19.5 20.4 17.0 29.3 23.1 23.6 24.1 21.0

(146) (104) (106) (111) (90) (196) (147) (150) (155) (132)

sic2 8.9 6.2 8.2 5.8
(120) (70) (130) (79)

sic3 14.2 3.5 12.5 1.5
(114) (17) (120) (9)

sic4 17.4 8.8 16.3 9.9
(109) (37) (121) (49)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.012 0.018 0.018 0.017 0.020 0.172 0.177 0.177 0.176 0.179

Panel B: Brokers

ρbr
ij 9.9 9.4 9.4 9.5 9.2 3.5 3.0 3.1 3.1 2.9

(167) (159) (160) (162) (157) (67) (57) (58) (59) (54)

sic2 10.6 7.1 10.8 7.3
(149) (81) (180) (99)

sic3 17.1 4.3 17.0 3.1
(144) (21) (170) (18)

sic4 21.2 10.1 21.7 11.6
(137) (42) (167) (58)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.004 0.014 0.014 0.013 0.018 0.159 0.169 0.169 0.168 0.173

Panel C: Analysts and Brokers

ρan
ij 17.9 10.5 10.8 11.7 7.9 29.8 23.1 23.5 24.1 20.8

(95) (54) (55) (60) (40) (184) (136) (138) (143) (120)

ρbr
ij 7.8 8.2 8.2 8.2 8.4 -0.5 0.0 0.0 0.0 0.2

(125) (132) (132) (132) (135) (-8) (0) (1) (0) (4)

sic2 9.4 6.5 8.2 5.9
(127) (73) (130) (79)

sic3 15.0 3.7 12.5 1.5
(121) (18) (119) (9)

sic4 18.5 9.5 16.3 9.9
(116) (39) (121) (49)

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.013 0.019 0.019 0.018 0.021 0.172 0.177 0.177 0.176 0.179
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Table 2.14 : Excess Comovement and Unexpected Earnings - Raw
Returns (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using weekly raw stock returns from CRSP for every pair of S&P 500 stocks that is in the index

during the calendar year along with the previous year. 608125 observations are used. All coefficients

are expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 20.1 15.0 15.7 16.1 13.1 30.9 27.5 28.3 28.3 26.4

(86) (59) (62) (64) (50) (138) (113) (116) (118) (104)

ρue
ij 3.6 3.5 3.6 3.6 3.5 3.1 3.1 3.1 3.1 3.1

(55) (54) (55) (55) (54) (51) (51) (51) (51) (51)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.017 0.022 0.021 0.021 0.023 0.158 0.160 0.159 0.159 0.160

Panel B: Brokers

ρbr
ij 10.6 9.1 9.2 9.3 8.6 8.8 7.4 7.5 7.5 6.8

(66) (57) (58) (58) (54) (59) (49) (50) (50) (45)

ρue
ij 3.7 3.6 3.6 3.6 3.6 3.5 3.4 3.4 3.4 3.3

(56) (55) (55) (55) (55) (56) (55) (55) (56) (55)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.013 0.022 0.020 0.019 0.024 0.137 0.146 0.144 0.144 0.148

Panel C: Analysts and Brokers

ρan
ij 17.1 12.2 12.9 13.4 10.4 -2.0 26.2 26.9 27.0 25.1

(70) (47) (49) (52) (39) (-14) (103) (106) (108) (96)

ρbr
ij 7.5 7.3 7.3 7.3 7.2 -10.4 3.1 3.1 3.0 3.0

(46) (44) (44) (44) (44) (-76) (20) (20) (20) (19)

ρue
ij 3.5 3.5 3.5 3.5 3.5 -19.1 3.1 3.1 3.1 3.1

(54) (53) (53) (54) (53) (-142) (51) (51) (51) (51)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.021 0.025 0.024 0.024 0.026 0.159 0.160 0.160 0.160 0.161
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Table 2.15 : Excess Comovement and Unexpected Earnings - CAPM
Alphas (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using the weekly residuals from the CAPM for each pair of S&P 500 stocks that are in the index

during the calendar and the previous year. Betas for the CAPM are estimated using data from

the previous year. Returns data are from CRSP. 608125 observations are used. All coefficients are

expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 24.8 18.2 19.6 20.2 16.2 38.1 33.7 35.2 35.4 32.7

(94) (64) (68) (72) (55) (154) (125) (131) (133) (117)

ρue
ij 2.5 2.5 2.5 2.5 2.5 1.8 1.8 1.8 1.8 1.8

(34) (34) (34) (34) (34) (26) (26) (26) (27) (26)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.017 0.022 0.020 0.020 0.024 0.195 0.198 0.196 0.196 0.198

Panel B: Brokers

ρbr
ij 13.8 12.0 12.2 12.3 11.4 10.4 8.5 8.8 8.9 7.9

(77) (66) (68) (68) (63) (63) (51) (53) (53) (48)

ρue
ij 2.6 2.5 2.6 2.6 2.5 2.2 2.1 2.1 2.1 2.0

(36) (34) (35) (35) (34) (32) (31) (31) (31) (30)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.012 0.023 0.020 0.019 0.025 0.169 0.180 0.178 0.177 0.183

Panel C: Analysts and Brokers

ρan
ij 20.8 14.4 15.8 16.5 12.6 -1.4 32.3 33.8 34.0 31.3

(76) (49) (54) (57) (42) (-9) (116) (121) (123) (109)

ρbr
ij 10.0 9.8 9.8 9.8 9.7 3.3 3.2 3.2 3.2 3.2

(54) (53) (53) (53) (52) (22) (19) (19) (19) (19)

ρue
ij 2.4 2.4 2.4 2.4 2.4 -8.1 1.7 1.7 1.8 1.7

(33) (33) (33) (33) (33) (-54) (26) (26) (26) (26)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.021 0.027 0.025 0.024 0.028 0.196 0.198 0.197 0.197 0.198
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Table 2.16 : Excess Comovement and Unexpected Earnings - FF 3 Factor
Alphas (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using the weekly residuals from the Fama French 3 factor model for each pair of S&P 500 stocks that

are in the index during the calendar and the previous year. Factor loadings for the Fama French

model are estimated using data from the previous year. Returns data are from CRSP and factor

data from WRDS. 608125 observations are used. All coefficients are expressed in percentage terms.

t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 17.6 10.5 11.9 12.7 8.3 36.0 32.4 34.0 34.0 31.8

(56) (31) (35) (38) (24) (143) (118) (123) (125) (111)

ρue
ij 3.1 3.0 3.0 3.1 3.0 1.7 1.7 1.7 1.7 1.7

(35) (35) (35) (35) (35) (25) (25) (25) (25) (25)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.007 0.012 0.011 0.010 0.013 0.394 0.395 0.394 0.394 0.395

Panel B: Brokers

ρbr
ij 19.8 18.2 18.4 18.6 17.7 13.6 11.9 12.2 12.3 11.5

(94) (86) (87) (87) (83) (80) (71) (72) (72) (68)

ρue
ij 3.0 2.9 2.9 2.9 2.9 2.1 2.0 2.0 2.0 1.9

(34) (33) (34) (34) (33) (30) (28) (29) (29) (28)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.017 0.022 0.021 0.020 0.024 0.380 0.386 0.384 0.384 0.387

Panel C: Analysts and Brokers

ρan
ij 10.5 3.8 5.2 6.1 1.9 -11.2 29.2 30.8 30.9 28.7

(33) (11) (15) (18) (5) (-70) (102) (108) (110) (97)

ρbr
ij 17.9 17.6 17.7 17.6 17.5 -22.7 7.1 7.1 7.1 7.1

(82) (81) (81) (81) (80) (-147) (41) (41) (41) (41)

ρue
ij 2.9 2.8 2.9 2.9 2.8 -25.6 1.7 1.7 1.7 1.7

(33) (33) (33) (33) (33) (-169) (24) (24) (24) (24)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.018 0.023 0.021 0.021 0.024 0.395 0.397 0.396 0.396 0.397
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Table 2.17 : Excess Comovement and Unexpected Earnings - FF 3 Factor
+ Carhart Alphas (Weekly)

This table reports OLS regression coefficients and t-statistics from regressing stock return correla-

tions between pairs of stocks on correlated unexpected earnings, ρue
ij , correlated analyst coverage,

ρan
ij , and correlated brokerage coverage, ρbr

ij , along with various control variables. SIC2, SIC3, and

SIC4 are indicator variables that are equal to 1 if the pair of stocks share the same 2-, 3-, or 4-

digit Standard Industry Classification code, respectively, and zero otherwise. Year fixed effects are

included where indicated. The correlated analyst and brokerage coverage variables are calculated

using the I/B/E/S database and equation (2.44). The correlation coefficients are estimated yearly

using the weekly residuals from an asset pricing model using the 3 Fama French factors and the

Carhart momentum factor for each pair of S&P 500 stocks that are in the index during the calendar

and the previous year. Factor loadings for the asset pricing model are estimated using data from

the previous year. Returns data are from CRSP and factor data from WRDS. 608125 observations

are used. All coefficients are expressed in percentage terms. t-statistics are in parentheses.

Panel A: Analysts

ρan
ij 20.2 14.5 15.5 16.0 12.6 34.3 31.2 32.4 32.3 30.5

(66) (44) (47) (49) (37) (137) (114) (119) (120) (108)

ρue
ij 3.3 3.3 3.3 3.3 3.3 1.7 1.7 1.7 1.7 1.7

(39) (39) (39) (39) (39) (26) (25) (26) (26) (26)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.010 0.013 0.012 0.012 0.014 0.369 0.370 0.369 0.369 0.370

Panel B: Brokers

ρbr
ij 18.1 16.6 16.8 16.9 16.2 12.3 10.8 11.0 11.1 10.4

(88) (80) (81) (82) (78) (74) (65) (66) (66) (62)

ρue
ij 3.3 3.2 3.2 3.3 3.2 2.1 2.0 2.0 2.0 2.0

(39) (38) (38) (39) (38) (30) (29) (29) (30) (29)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.015 0.021 0.019 0.019 0.022 0.355 0.361 0.359 0.359 0.362

Panel C: Analysts and Brokers

ρan
ij 14.1 8.7 9.7 10.3 7.0 -10.2 28.4 29.7 29.6 27.8

(45) (26) (29) (31) (20) (-64) (100) (105) (106) (95)

ρbr
ij 15.5 15.3 15.3 15.3 15.2 -17.3 6.2 6.2 6.1 6.1

(73) (72) (72) (72) (72) (-112) (36) (36) (36) (35)

ρue
ij 3.2 3.1 3.1 3.2 3.1 -8.8 1.7 1.7 1.7 1.7

(37) (37) (37) (37) (37) (-58) (25) (25) (25) (25)

sic dummy — 2 3 4 2,3,4 — 2 3 4 2,3,4

Year FE N N N N N Y Y Y Y Y
Adj. R Sq. 0.019 0.022 0.021 0.021 0.022 0.370 0.371 0.371 0.371 0.371
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Table 2.18 : Correlated Analyst Coverage Before and After Additions

This table reports the average correlated analyst coverage measure and correlated broker coverage

measure for stocks before and after being added to the S&P500 index, plus the percentage change

and difference in these means, and the t-statistic and p-value for these differences. The means are

calculated for the 1st quarter before and after the event through the 12th quarter before and after.

386 stocks are used from 1982 through 2007.

Panel A: Using Analysts

Qtr Before After %Change Diff t-stat p-value

1 0.0098 0.0115 17.3 0.0017 3.39 0.0007
2 0.0095 0.0120 26.3 0.0025 4.64 < 0.0001
3 0.0088 0.0121 37.5 0.0033 6.27 < 0.0001
4 0.0081 0.0125 54.3 0.0044 8.58 < 0.0001
5 0.0081 0.0124 53.1 0.0042 8.25 < 0.0001
6 0.0079 0.0126 59.5 0.0047 8.70 < 0.0001
7 0.0074 0.0125 68.9 0.0052 9.54 < 0.0001
8 0.0068 0.0123 80.9 0.0055 10.82 < 0.0001
9 0.0062 0.0126 103.2 0.0064 12.13 < 0.0001
10 0.0064 0.0125 95.3 0.0061 11.36 < 0.0001
11 0.0062 0.0124 100.0 0.0062 11.30 < 0.0001
12 0.0052 0.0125 140.4 0.0073 13.95 < 0.0001

Panel B: Using Brokers

Qtr Before After %Change Diff t-stat p-value

1 0.2289 0.2672 16.7 0.0383 5.64 < 0.0001
2 0.2147 0.2764 28.7 0.0617 8.93 < 0.0001
3 0.1991 0.2821 41.7 0.0830 11.93 < 0.0001
4 0.1915 0.2839 48.3 0.0924 13.20 < 0.0001
5 0.1794 0.2881 60.6 0.1087 15.52 < 0.0001
6 0.1647 0.2843 72.6 0.1196 16.66 < 0.0001
7 0.1579 0.2881 82.5 0.1302 18.42 < 0.0001
8 0.1469 0.2893 96.9 0.1424 20.56 < 0.0001
9 0.1360 0.2859 110.2 0.1499 21.55 < 0.0001
10 0.1292 0.2850 120.6 0.1558 22.23 < 0.0001
11 0.1158 0.2855 146.5 0.1697 24.53 < 0.0001
12 0.1074 0.2901 170.1 0.1827 26.81 < 0.0001
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Table 2.19 : Excess Comovement: Additions to the SP 500 Index

This table reports OLS regression coefficients and t-statistics from regressing the change in stock

return correlations between stocks that are added to the S&P500 index and all other stocks in the

index on changes in correlated analyst coverage, ∆ρan
ij , and correlated brokerage coverage, ∆ρbr

ij

before and after the addition date. Year and firm fixed effects are included where indicated. The

correlated analyst and brokerage coverage variables are calculated using the I/B/E/S database and

equation (2.44). The correlation coefficients are estimated using daily raw returns (Panel A), or

residuals from the CAPM (Panel B), the Fama French 3 factor model (Panel C) and a model using

the Fama French factors plus the Carhart momentum factor (Panel D). Returns data are from

CRSP and factor data from WRDS. 136291 observations are used. All coefficients are expressed in

percentage terms. t-statistics are in parentheses.

Panel A: Raw Returns

∆ρan
ij 5.64 8.61 5.43 7.55 6.02 6.28

(3.2) (4.8) (3.6) (5.0) (4.8) (5.0)

∆ρbr
ij -4.36 -4.60 -3.06 -3.28 -0.27 -0.47

(-12.1) (-12.6) (-9.7) (-10.3) (-0.9) (-1.6)

Year FE N N N Y Y Y N N N
Firm FE N N N N N N Y Y Y
Adj. R Sq. 0.0001 0.0011 0.0012 0.2817 0.2821 0.2823 0.5095 0.5094 0.5095

Panel B: CAPM Alphas

∆ρan
ij 4.92 4.27 4.73 4.34 5.93 4.76

(3.8) (3.3) (3.6) (3.3) (3.9) (3.7)

∆ρbr
ij 1.13 1.01 0.73 0.61 0.47 0.32

(4.2) (3.8) (2.7) (2.2) (1.5) (1.0)

Year FE N N N Y Y Y N N N
Firm FE N N N N N N Y Y Y
Adj. R Sq. 0.0001 0.0001 0.0002 0.0084 0.0083 0.0084 0.0554 0.0553 0.0554

Panel C: Fama French 3-Factor Alphas

∆ρan
ij 5.51 5.69 5.38 5.60 5.66 5.70

(4.6) (4.7) (4.5) (4.6) (4.7) (4.7)

∆ρbr
ij -0.12 -0.27 -0.18 -0.34 0.10 -0.08

(-0.5) (-1.1) (-0.7) (-1.4) (0.3) (-0.3)

Year FE N N N Y Y Y N N N
Firm FE N N N N N N Y Y Y
Adj. R Sq. 0.0002 0.0000 0.0002 0.0018 0.0017 0.0018 0.0162 0.0160 0.0162

Panel D: Fama French 3 Factor + Carhart Alphas

∆ρan
ij 5.15 5.33 5.10 5.27 5.30 5.36

(4.3) (4.4) (4.3) (4.4) (4.4) (4.4)

∆ρbr
ij -0.13 -0.27 -0.11 -0.26 0.06 -0.11

(-0.5) (-1.1) (-0.4) (-1.0) (0.2) (-0.4)

Year FE N N N Y Y Y N N N
Firm FE N N N N N N Y Y Y
Adj. R Sq. 0.0001 0.0000 0.0001 0.0016 0.0014 0.0016 0.0132 0.0130 0.0132
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