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ABSTRACT 

Today, manufacturing quality control is characterized by a plethora of data, 

continuously collected across the manufacturing processes and throughout a product’s 

life cycle.  The level of details with which products can be measured today allows for 

extraction of both dimensional and non-dimensional quality characteristics uniquely 

describing a product’s fit and functionality. Traditionally, most of the quality inspection 

systems can only handle the dimensional information and few system addresses the issue 

of product performance both during assembly and in the field of use. Besides geometric 

dimensions, the product performance is also determined by other non-dimensional 

characteristics. For example, the sealing performance between mating surfaces is greatly 

influenced by surface texture; and the density distribution of a blade plays an important 

role on its aerodynamic performance. Hence, in order to seamlessly integrate all the 

dimensional and non-dimensional information for better quality inspection, process 

diagnosis and performance analysis, I propose a representation for the concept of 

“Product DNA”[1].  

I have developed a representation of “Product DNA”, called as-manufactured CAD 

model, to encode high-definition features including geometry dimensions, surface texture, 

and physical attributes such as mass density of the product. By decoding the high-

definition features, the information of manufacturing processes and functional 



 

 xv 

performance can be examined and correlated. Under the framework of as-manufactured 

CAD model based “Product DNA” concept, this research mainly focuses on the coding 

process of geometry dimensions, surface texture and physical attributes (mass density).  

For the dimensional geometry genome, a non-rigid registration approach is 

proposed to encode the geometry information into the as-manufactured CAD model 

based on inspection points. In this approach, a weighted mutual distance method is 

utilized to establish the correspondence and then the template object is iteratively 

transformed and morphed to best fit the measured points with affine and free-from 

deformation (FFD) transformation while maintaining geometry constraints. For the 

surface texture genome, a B-spline wavelet-based multi-resolution analysis (MRA) 

approach has been proposed for surface texture characterization. Compared to traditional 

surface texture analysis methods, the B-spline wavelet-based MRA method allows finer 

frequency regimes decomposition and thus achieves more precise diagnosis of process 

faults. For the physical attribute genome, a systematic approach to reconstruct a 

heterogeneous model based on mass density points is proposed. The decoupled B-spline 

based representations to model geometry and mass density allows more modeling 

flexibility and save huge storage space. Moreover, constraints and multi-resolution based 

mass density fitting algorithm guarantees to achieve reasonable mass density range and 

satisfied accuracy. 



 1 

CHAPTER 1 
INTRODUCTION 

1.1 Motivation 

Today's manufactured part is associated with an abundance of data continuously 

collected across the manufacturing processes and throughout the product life cycle. This 

sheer volume of data becomes overwhelming. How to efficiently extract useful 

information from the sheer volume of data is a challenging problem in quality inspection, 

process diagnosis and performance analysis. Traditionally, most of the quality evaluation 

systems can only handle the dimensional information. However, the process and 

performance are also highly related to other non-dimensional characteristics. For example, 

the surface texture on a work piece is actually a fingerprint of the manufacturing process; 

the physical attribute of residual stress is a dominant factor to fatigue life; and the density 

distribution of casting blade plays an important role in determining its natural frequency.  

 Similar to biological DNA that contains complete information for the 

development and functioning of a living organism, a product also possesses unique 

characteristics which reflect design intent, encode manufacturing information and 

perform particular functionalities. These unique characteristics can be viewed as "Product 

DNA" of the part. Modern measurement technology allows full measurement of a 

manufactured product in different level of details. For example, the geometric shape can 
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be digitized by CMM (coordinate measure machine) or laser scanner; the surface texture 

can be measured by laser holographic interferometers [2][1], and the internal structure 

can be measured by ICT (Industrial Computer Tomography). All these different types of 

data can be integrated together and uniquely represented by a "Product DNA", inspired 

from the human genomes in which a DNA molecule uniquely describes the traits of a 

living organism. Therefore, "Product DNA" contains a unique and complete description 

of a product including geometry dimensions, surface textures and physical attributes.  

From the perspective of dimensional and surface quality characteristics, Zhang [1] 

proposed a research framework of "Product DNA" in powertrain manufacturing. By 

using the dimensional genome in the "Product DNA", a procedure to deal with the 

diagnosibility problem with the "Stream of Variation" model has been designed. This 

procedure is used to investigate root causes of process faults by examining information 

contained in a large set of fault parameters with a smaller array of variables named 

"station-level errors". In addition, a method to characterize the product surface patterns 

with histogram estimators has been developed for the use of surface classification. 

Furthermore, a set of dimension reduction methods are introduced in case the 

dimensionality problem is encountered in surface classification. 

Like DNA which can be decoded and used for health diagnosis and disease 

treatment, "Product DNA" potentially has a wide range of engineering applications. First, 

"Product DNA" can be used for quality inspection by comparing the decoded genome 

with that of nominal design. By constantly monitoring the "Product DNA" during the 

product life cycle, people can determine when the part has significant quality change and 

needs to be repaired or replaced.  Second, correlating the genomes of "Product DNA" to 
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manufacturing parameters and conditions enables us to better understand manufacturing 

and diagnose process faults. Third, "Product DNA" is of great importance for design 

optimization. The physical attributes can be modified to achieve desired functional 

performance based on relationships between the physical attributes and functional 

performance. Last but not least, "Product DNA" can serve as a linkage to better 

understand the relationships between manufacturing process and physical performance. 

Under the general framework of the concept "Product DNA", this research aims to 

develop a specific representation for "Product DNA", called as-manufactured CAD 

model, to implicitly represent a physical product.  Like DNA which is an encoding and 

decoding mechanism that contains code, or language, in representing the organism, the 

as-manufactured CAD model encodes high-definition features including geometry 

topology, surface texture, and physical attributes such as mass density of the product. By 

decoding the high-definition features, the information of a manufacturing process and the 

functional performance of the part can be examined and correlated.  

1.2 Literature Review 

To ensure successful development of an as-manufactured CAD model to support 

the concept of "Product DNA", comprehensive and state-of-the-art literatures have been 

reviewed from the perspectives of geometry modeling, surface texture characterization 

and physical attributes modeling, respectively.  
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1.2.1 Review of Geometry Modeling 

One straightforward way to encode geometry dimensions into   "Product DNA" is 

to reconstruct a CAD model (as-manufactured model) based on the measured data points 

of a manufactured part. Geometry modeling is an old topic and CAD (computer aided 

design) is the most popular modeling technology which has been developed since 1960's. 

Almost every product in today's market is designed through CAD technology. In 1990, 

Farin [3] reviewed the most recent advances of curves and surfaces theory in CAGD 

(computer aided geometry design). Later on, Piegl and Tiller [4] discussed the NURBS 

theory from the application perspective. CAD is playing a crucial role in modern product 

conceptual forward design. On the other hand, reconstructing a 3D CAD model based on 

the measured points of an existing manufactured part becomes a very common problem 

in the fields of part inspection and GD&T (geometry dimensioning and tolerancing). This 

recent technology is called reverse engineering. Unlike the forward modeling which 

transforms a concept to a model, the goal of reverse engineering is to create a model to 

best represent the geometry shape of a manufactured part. Varady et al. [5] gave a very 

complete overview in terms of the four major steps of reverse engineering in which the 

segmentation and surface fitting is the most challenging task if no nominal model existed 

for the manufactured part. In the case when a design specification is available, the 

designer's intent could be converted into geometry or engineering constraints 

incorporated in the as-manufactured model. Werghi et al. [6] proposed a framework for 

3D object reconstruction by incorporating geometry constraints between analytical 

surfaces. In parallel, Benko et al. [7] also addressed the constrained fitting problem in 

reverse engineering for 2D and 3D analytical curves and surfaces with a modified 
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Newton iteration method. Li et al. [8][9] extended the constrained fitting work to free-

form objects and considered engineering constraints specifically for aero parts 

reconstruction. In the cases of the existence of a nominal CAD model, morphing and 

transforming the nominal model provides a more direct and convenient way to best fit the 

measured points while maintaining the original geometry topology and boundary 

continuities. This process is also called non-rigid registration between CAD model and 

point set. Different from the rigid registration which only deals with translation and 

rotation on the object, non-rigid registration deform the object with higher DOFs (degrees 

of freedom). There were many research efforts of rigid registration [10][11] conducted in 

the fields of object recognition and geometry inspection. On the other hand, non-rigid 

registration between images is recently becoming a rapidly evolving discipline in bio-

medical area [12] for the purpose of deformation tracking of intra-subjects, variability 

comparison of inter-subjects, clinical diagnosis and anatomy planning. However, to my 

best knowledge, the topic of non-rigid registration between CAD model and discrete 

point sets is rarely addressed because of complex topological relationships and geometry 

constraints imposed between individual geometry elements. This topic will be discussed 

in details in Chapter 2.  

1.2.2 Review of Surface Texture Characterization 

If the geometry is considered as the macro-dimensional measure of "Product DNA", 

the surface texture can be viewed as the micro measure of "Product DNA". While the 

accuracy of dimensional geometry is critical for parts tolerancing and assembly, the 

surface tomography greatly affects the mechanical and physical properties of contact 
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surfaces such as wear, friction, lubrication, sealing, bearing ratio, contact deformation, 

contact stress, thermal and electrical conductivity.   

Although engineering surfaces of different materials manufactured by different 

processes normally have different tomography, the surface pattern and texture can be 

basically characterized by some standard terms such as lay, form, waviness and 

roughness [13].  Lay is the term designating the directions of predominant surface pattern 

mainly observed in machining surfaces. Form, waviness and roughness are utilized to 

describe the surface tomography in different perspective scales. Roughness refers to the 

finely spaced surface irregularities with short wavelengths or in other words high 

frequency. For the machining process, surface roughness is influenced by feed rate, 

cutting speed, depth of cut, as well as tooling conditions and higher frequency vibrations 

of the system. Waviness, on the other hand, is the surface variations with medium 

wavelength spacing. It may be the result of tool geometry errors, tool vibrations or the 

deflections of the workpiece during the manufacturing [14]. Form, referred as long 

wavelength, is the macroscopic geometry shape containing significant features such as 

radius, chamfer and curved profile.  

In order to measure the details of the surface texture, a variety of high resolution 

instruments have been developed during the last several decades. According to different 

measurement principles, these devices can be roughly divided into 2 types: contact and 

non-contact [15]. The stylus based profilometer is the most commonly used contact 

instrument which can trace the surface profile by detecting and recording the vertical 

motions of the stylus. The resolution of this type of profilometer is determined by the tip 

size of the stylus that can be ranging from 0.1 um to 1 mm. Since the stylus profilometer 
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is the oldest surface measurement device, a number of standards have been defined based 

on this type of instrument for characterizing the surface texture. However, the outputs of 

a profilometer are mostly two dimensional and provide no 3D information of the surface 

characteristics. On the other hand, the relative contacting movement between stylus and 

surface limits the measurement speed. In respond to these limitations, the optical methods 

offer an alternative faster way to measure the 3D surface texture in a comparable 

resolution. A recent development of confocal laser scanning microscope (CLSM) enables 

to gain appropriate surface information and sufficient boundary definition of wear 

particles in micro scale [16]. Other commercialized optical interferometry systems 

include Shapix produced by Coherix [1], µCam-3D by Novacam [17], Wyko of Veeco 

[18], etc. The resolution of an optical system is naturally constrained by the light 

wavelength. Recent advances of unconventional measurement techniques, for example 

the scanning electron microscope (SEM), the transmission electron microscope (TEM), 

the scanning tunneling microscope (STM) and the atomic force microscope(AFM), have 

greatly improved the scanning resolution. However, these advanced measurement 

techniques can only measure a very small area at one time. It costs huge time to stitch the 

small patches together for large surface measurement. More detailed overview of surface 

texture measurement methods can be found in [15][19].  

After the surface tomography data is acquired, the surface characterization is then 

becoming important in many disciplines and industrial applications. Many research 

efforts have been made to develop and define 2D parameters to characterize the surface 

profile since the stylus profilometer was invented by 1930s [19]. For instance, the 

parameters introduced by Whitehouse [20] are one of the most famous parameter set. In 
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addition, parameters defined by different standardization organizations [13] are also 

commonly utilized to characterize the surface roughness. The 2D parameters most often 

used  for inspection and tolerancing include average roughness Ra, root-mean- squares 

(RMS) deviation Rq, maximum valley depth Rv, maximum peak height Rp, peak to 

valley height Rt, ten-point height Rz and bearing ratio tp [21]. Although the 2D 

parameter set is still widely in use in many applications, it is sometimes inadequate or has 

difficulties to characterize a surface in three dimensions. With the emergence of 

commercial 3D measurement system, there is an increasing need to develop a set of 

effective 3D parameters to characterize the 3D tomography of a surface. Dong et al. [23]-

[26] carefully extended the 2D parameters and elegantly developed a set of 3D 

parameters to characterize the surface irregularities in the aspects of amplitude, spacing, 

hybrid properties between amplitude and spacing, and physical functionalities. This is the 

so-called Birmingham 14.   

Instead of characterizing a surface with statistical methods, it is also meaningful to 

view the surface irregularities as a spatial signal and analyze it in the frequency domain. 

It has been widely accepted that an engineering surface is composed of a range of spatial 

frequencies and each of them results from different aspects of the manufacturing 

processes and performs some specific functions of the surface. Form, waviness and 

roughness are just roughly separated wavelength regimes. To better understand the 

surface characteristics in more detailed level, fine wavelength regimes separation is 

required. Since today's measurement systems have considerably higher resolutions, 

modern digital filtering techniques [27][28] make it possible to separate the surface signal 

into fine frequency bandwidths. Raja et al. [29] gave a very comprehensive review of 
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recent advances in the separation of surface texture. One common disadvantage of most 

current filter banks is the lumping that of a wide bandwidth into a single entry such as 

form, waviness and roughness. This lumping limits its applications in close monitoring of 

manufacturing process, tighter control of surface quality and precise prediction of part 

performance. For this reason, the recent development of wavelets theory and multi-

resolution analysis provides a powerful tool to decompose a surface into multi-scale 

representations.  

Wavelet is a finite energy function with compact support in both space and 

frequency domain and whose integral is zero [30]. Unlike Fourier analysis with basis 

functions of sine or cosine which have infinite space domain thus only have frequency 

resolution but no space resolution, the local support property of wavelet function enables 

wavelet transform to achieve desired resolutions in both space and frequency domains.  

By scaling and shifting the original waveform function (mother wavelet), the wavelet 

analysis provides a flexible space-frequency window where large scale wavelets are used 

for low frequency analysis and small scale wavelets are used for high frequency. This 

multi-scales wavelet transform is also called multi-resolution analysis. The wavelet 

transform includes many different wavelet basis functions and each of them has a 

different property and application. Fu et al. [31] compared 4 types of commonly used 

wavelets (Haar, Daubechies, Coiflets and Biorthogonal) and concluded that Bior6.8 and 

Coif4 are good choices for surface analysis in terms of the frequency transmission 

characteristics.  

Due to the superior performance and capabilities compared to other filter banks, 

wavelets transform has been applied to 3D surface texture characterization by many 
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scholars [32]-[36]. However, most of the surface tomography studies based on the 

digitized data only focus on analyzing the discrete points for some specific application 

purposes while neglecting the physical surface is a continuous surface. In order to 

develop the as-manufactured CAD model for the concept of "Product DNA", a 

continuous and multi-resolution based representation will be of great significance for 

surface texture modeling and characterization. Because of the high order continuity and 

local support property, the piecewise-polynomial B-splines are naturally utilized for 

multi-level representation of continuous curve or surface. Chui et al. [37] developed a 

large family of spline wavelets. Finkelstein [38] adopted the endpoint-interpolating B-

spline wavelet transform for multi-resolution analysis of B-spline curve. B-spline basis 

functions are widely used in the computer graphics, however, there is little research 

carried out on how to apply the B-spline wavelet transform to represent and analyze the 

surface texture in multi-resolution, and correlate different levels of continuous surface 

texture to the manufacturing process. Chapter 3 will address this topic in more details 

[100]. 

1.2.3 Review of Physical Attributes Modeling 

Most current manufacturing quality control practice focuses on the conformance of 

dimensional fit of manufactured products. Few has focused on the issue of product 

performance both during assembly and in the field of use.  Physical attribute is another 

important component of "Product DNA", which is critical to the functional performance 

of a product. For example, the residual stress of manufactured part has significant impact 

on its fatigue life [39]. In the aerospace industry, the density distribution of the blades 

produced by casting, forging and laser consolidation plays an important role to the 



 

 11

aerodynamic properties such as natural frequency. However, the density distribution of 

manufactured parts always deviates from the nominal design. In order to analyze and 

predict the engineering performance of the manufactured part, there is a need to build an 

as-manufactured CAD model that incorporates physical attributes into traditional 

geometry CAD model for engineering analysis.  

 Heterogeneous object modeling is a popular method to integrate the physical 

attributes into the traditional CAD model. Comprehensive research and studies [40] have 

been conducted for heterogeneous object modeling in a forward design way. According 

to the representations of the heterogeneous object, there are two basic approaches for 

heterogeneous modeling: discrete method and continuous method.  

The discrete modeling approach represents heterogeneous object with extensive 

sub-divided volumes. Voxel-based model is a typical discrete model to represent the 

volumetric data measured by MRI and CAT scanning devices [41]-[43]. Like a pixel 

denotes a picture element in 2D space, a voxel represents a volume element in 3D space 

associated with specified physical attributes (e.g., mass density). The voxel-based model 

is powerful to model complex object because of its discrete representation. It is also very 

convenient for volumetric rendering and 3D visualization. However, because voxel-based 

model is an approximated description of the object, the accuracy is heavily dependent on 

the size of elements, i.e., the resolution of the voxels. Huge storage space is needed for a 

highly accurate voxel-based model. In addition, the step-wise geometry exterior and 

discontinuous physical attributes might bring errors for engineering analysis.   
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 Another popular discrete representation is mesh-based model, which employs a 

collection of polyhedrons to represent the object [44]. Each polyhedron is defined by a 

set of nodes containing spatial coordinates and physical attributes. A polyhedron is also 

termed as an element, so the mesh-based model is also called finite element (FE) model. 

Mesh-based model can be directly used for engineering analysis.  Like voxel-based 

model, it can also model very complex object. However, since it is a discrete 

representation, it also costs huge memory to store a highly accurate model. In addition, 

the mesh-based model is actually a dummy model. The editing or manipulation on the 

model is very cumbersome because the operation involves movement for each node.  

 Different from discrete modeling, continuous modeling employs an exact and 

rigorous representation to model the object. Therefore, it is more elegant and accurate. 

Comprehensive studies have been conducted in this category.  Kumar et al. [45] proposed 

an approach of mr -set to represent heterogeneous objects by integrating the material 

composition along with the geometry in the solid model. Based on this representation, a 

series of heterogeneous modeling operations (e.g., union, intersection, difference) were 

also defined analogous to the geometry operation. Biswas et al. [46] proposed an 

implicitly constrained material function to model the material composition based on 

distance fields with reference to material features. This approach guarantees smoothness 

and analytic properties of the model and is applicable to represent material features of 

arbitrary dimension, shape and topology. Explicit analytical functions are adopted by Zhu 

[47] to represent material distribution of the heterogeneous object. This representation is 

intuitive and easy to use. However, the explicit material function is highly tight to the 

coordinate system, which makes it only suitable to model simple forms of heterogeneous 
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objects. Siu and Tan [48] proposed a grading source-based scheme for heterogeneous 

object modeling. In this scheme, the object acts as a container whose material 

composition is evaluated based on distances from the source features.  Later on, Kou and 

Tan [49] introduced a hierarchical representation to model heterogeneous object in which 

the geometry is represented by B-rep and the material distribution is modeled and 

evaluated through a heterogeneous feature tree. A heterogeneous object is considered as a 

multidimensional point set with multiple attributes in [50]. For this hypervolume model, 

the function representation (F-Rep) is used as the basic model for the point set geometry, 

and the attributes are modeled independently with real-valued scalar functions. Spline-

based representations are employed to model the heterogeneous object by several 

researchers [51]-[56]. For example, for a B-spline volume represented heterogeneous 

object, the physical attributes are encoded into the control points by extending the 

dimensions from three dimensions to higher-order dimensions.  Many of the spline-based 

heterogeneous modeling methods couple the geometry and attribute together to share the 

same knot vector, degree and control points. This unified representation usually limits the 

flexibility of the physical attributes design. Martin and Cohen [57] presented a method to 

model volumetric data with decoupled trivariate NURBS representation in which the 

geometry and attributes could have different knot vector, order and number of control 

points except sharing the same parametric domain. This decoupled representation means 

the geometry and physical attributes can be modeled with different resolutions and thus 

increases design flexibility.  

Although there are many methods proposed for heterogeneous object modeling, 

most of the studies are performed in a forward design way that converts design intent into 
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a product model. Different from the traditional heterogeneous object modeling in a 

forward design approach, this dissertation will address the problem of reconstructing a 

heterogeneous object based on cross-sectional mass density points measured from a 

manufactured part. Chapter 4 will discuss this topic in more details. 

1.3 Research Objective and Tasks 

1.3.1 Framework of “Product DNA” 

In this proposed research, the concept of "Product DNA" will be further expanded 

 

Figure 1.1: The schematic framework of as-manufactured CAD model based "Product 
DNA" 
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in a systematic way to account for all characteristics. Figure 1.1 shows the generic 

framework for the concept of "Product DNA". Under this framework, we develop an as-

manufactured CAD model to uniquely represent the "Product DNA" of a manufactured 

part based on measurement data. The model encodes all the part characteristics, including 

geometric dimensions, surface textures and physical attributes (density, residual stress, 

etc.). This process is called DNA encoding. Following that, a variety of toolboxes will be 

developed to decode the information of "Product DNA" for purposes of different 

applications such as process diagnosis and prognosis, functional performance prediction, 

engineering analysis, quality inspection and validation, product redesign and fabrication. 

The proposed framework of "Product DNA" will be demonstrated from the perspectives 

of geometry dimension, surface texture and physical attributes, respectively. The 

objective of the proposed concept of "Product DNA" is to help better understand the 

relationships between manufacturing process, part quality and physical performance and 

thus to reduce life-cycle cost of the product development.  

1.3.2 Research Tasks 

In Zhang’s [1] Ph.D. dissertation, three topics are addressed independently under 

the framework of "Product DNA" in powerchain manufacturing: (1) measurement 

scheme improvement of dimensional quality characteristics; (2) robust engineering 

modeling for process fault diagnosis; and (3) surface classification. In order to develop 

the as-manufactured CAD model for the concept of "Product DNA", this proposed 

research will focus on the coding process under the framework of "Product DNA" with 

real case studies in the aerospace and automobile industry. Specifically, the tasks of 
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product information coding are carried out in three different aspects: (1) dimensional 

geometry; (2) surface texture; and (3) physical attribute (mass density). 

 (1) For the dimensional geometry coding, a fast and automated geometry modeling 

tool with non-rigid registration method is developed. In the case of given nominal 

geometry model, the as-manufactured model can be reconstructed quickly by morphing 

the nominal model to best fit the measured data points from actual parts while 

incorporating geometric constraints.  

(2) For the surface texture coding, a B-spline wavelet based representation is 

proposed for multi-resolution analysis. The surface texture details are encoded in the 

multi-level B-spline surfaces using B-spline wavelets functions. By decoding the 

wavelets in different scales, the surface characteristics can be analyzed and correlated to 

manufacturing process 

(3) For the physical attribute coding, a systematic approach is proposed for 

heterogeneous modeling based on cross-sectional mass density points. Mass density 

distribution has significant impact on the product performance. A decoupled B-spline 

representation is proposed to model the geometry and mass density independently with 

different resolutions.  

1.4 Outline 

This dissertation presents the as-manufactured CAD model for the concept of 

"Product DNA" and its development and implementation.  
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Chapter 1 of the dissertation provides a brief description of this doctoral research 

and literature review of related research work.  

Chapter 2 describes a novel algorithm for fast and accurate geometry modeling 

based on the technology of non-rigid registration between nominal CAD model and 

inspection points. Some real examples have demonstrated its superiority compared to the 

state-of-the-art algorithms and tools. 

A multi-resolution based B-spline surface is proposed for surface texture modeling 

and analysis in Chapter 3. The idea of multi-resolution engineering surface analysis is 

introduced. Cases studies of end-milling surfaces have demonstrated the success and 

effectiveness of the proposed method.  

By taking mass density as an example of physical attribute, Chapter 4 presents a 

method to incorporate mass density information into traditional geometry CAD model 

based on cross-sectional mass density points.  Decoupled representation is adopted to 

model geometry and mass density independently. Moreover, a constraint based multi-

resolution method is proposed for mass density fitting in order to achieve reasonable 

mass density range and satisfied accuracy. 

Chapter 5 concludes this research and describes the future work and original 

contributions.  



 18 

CHAPTER 2 
GEOMETRY MODELING BASED ON NON-RIGID REGISTRATION 

OF 2D PROFILE CURVES 

2.1 Introduction 

One straightforward way to encode the geometry dimensions into the "Product 

DNA" is to reconstruct a CAD model (as-manufactured model) based on the measured 

points of a manufactured part. Reverse engineering provides an effective solution to build 

such a CAD model based on the measurement data. When the nominal CAD models and 

original drawings are not available, it is often necessary to reconstruct a CAD model (also 

called as-manufactured model) based on the measured points for downstream applications 

such as engineering analysis, part re-design and fabrication. Another important application 

of the as-manufactured model is for quality validation when the nominal CAD is available. 

Influenced by various manufacturing factors, the manufactured part usually differs from 

the designed nominal model to some extent. The difference of some key parameters 

between the as-manufactured model and the nominal model can quantitatively evaluate the 

manufacturing quality.  

As stated in the review of reverse engineering [5], surface fitting is a crucial step to 

transform the measured points into a geometry CAD model. There are many algorithms 

proposed for single surface fitting in the research field.  Pratt [58] proposed a general 
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framework to fit an algebraic curve or surface of a given shape to a two or three-

dimensional point set with a direct least-squares fitting method. Based on the 

consideration of convenience and efficiency, the algebraic distance is minimized, subject 

to some quadratic normalization constraints imposed on the variables of the implicit 

expression of algebraic curve or surface.  Pottmann et al. [59] applied methods of line 

geometry to the set of surface normals in combination with techniques of numerical 

approximation to fit a rotational surface or helical surface to a given 3D scattered points. 

Marshall et al. [60] presented methods for least-squares fitting of analytical surfaces 

(sphere, cylinder, cone and tori) for the purpose of data segmentation. In their fitting 

algorithm, a faithful distance function is used to approximate the true geometric distance, 

which achieves robustness in the presence of geometric degeneracy. In the NURBS book 

[4], there are detailed illustrations of how to interpolate or fit a B-spline surface to a grid 

of regular points. For irregularly distributed points, Ma and Kruth [61] presented a 

parameterization method by iteratively projecting the scattered points to a base surface 

until reaching a final fitted B-spline surface. In order to achieve high fitting accuracy, 

Weiss et al. [62] analyzed the free quantities of least-squares fitting such as the number of 

knots, the weights of smoothing function and the best parameterization of data points and 

thus provided practical solutions to compute good initial parameterizations and 

simultaneously maintain tight fitting tolerances and smoothness. 

In practice, a nominally designed CAD model is usually bounded by a number of 

surfaces neighboring one another. Moreover, various geometric constraints are imposed 

on some individual surfaces or between different surfaces to satisfy particular 

requirements of engineering rules [8]. In order to capture such design intents during the 
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reverse engineering, the geometric constraints must be incorporated into the multiple 

surfaces fitting process. Werghi et al. [6] proposed a general incremental framework of 

model reconstruction in which the geometric constraints can be integrated into the fitting 

process, leading to an optimal tradeoff between the shape fitting error and the constraint 

tolerance. In the numerical algorithm, the constrained fitting problem was converted into a 

sequential of unconstrained optimization problem with penalized constraints terms, which 

was solved by standard Levenberg–Marquardt method. Benko et al. [63] described a 

detailed procedure for 3D object reconstruction based on the segmented point cloud. 

Starting from simple surface fitting and 2D constrained profile based translational and 

rotational surface fitting, a B-rep model is eventually reconstructed with post blend 

creation and further beautification. Later on, the same team [7] summarized the 

constrained fitting work by considering multiple curves (lines and circular arcs) in 2D and 

quadratic surfaces (planes, spheres, cylinders, cones and torus) in 3D with commonly 

encountered geometric constraints. Different from Werghi’s method, the Lagrangian-

multiplier method was utilized to solve the problem of conflict constraints by converting 

inconsistent constraints into independent constraints. Recently, Li et al. [9] and Ke et al. 

[64] extended 2D constrained fitting by including B-spline curves into the 2D profile, 

which has demonstrated great industrial success in complex surface reconstruction such as 

lofting surface, extruding surface and revolving surface.  

There are three basic assumptions in the 2D constrained fitting [64]: sorted profile 

data points, segmented sub-point sets and initial fitted curve of each sub-point set. 

However, in practice the sorting and segmentation often turn out to be very challenging 

when the data points are noisy or non-uniformly distributed. A failed sorting of data points 
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will result in wrong parameterization of the points during the curve reconstruction. Figure 

2.1 shows a failed sorting example with closest point method due to some missing points 

on the leading edge (the arrow is the sorting direction). Even for the high quality data 

points, it is also difficult to judge which curve segment the points around the connecting 

areas belong to. In addition, if a series of 2D profile curves, for example, the cross 

sections of a lofting or sweeping surface, need to be reconstructed, the work of sorting, 

segmentation and initial curves fitting for each section will be very labor intensive. 

Moreover, the compatibility conditions that all cross-sectional B-spline curves must share 

the same knot vector and number of control vertices are hard to maintain. All these 

disadvantages of the current constrained fitting method have limited its use to noisy data 

points and fast reverse modeling.   

In this research, we propose a new method, called constraints based non-rigid 

registration, for 2D profile curves based geometry modeling. We assume there exists a 

template profile curve, which can always be obtained by slicing the nominal CAD model 

or created by sketching. The objective is to recover the shape of the manufactured part 

based on the template nominal curve and measured points. Unlike the constrained fitting 

that only minimizes the one-way distance from the data points to initial fitted curves; we 

 
Figure 2.1: (a) A failed sorting example of a blade sectional points, and (b) magnified 

view of the lead edge area 

(b) (a) 
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consider a weighted mutual (two-way) distances between the template profile curve and 

the data points as the objective function. With affine combined with FFD (free-form 

deformation) transformation, the template curve can iteratively move closer to the target 

data points by minimizing the weighted mutual distances while satisfying specified 

geometry constraints. Compared with the constrained fitting, non-rigid registration is a 

fully automated process with more robustness. The advantages are six-folds: (1) no 

necessity for data points sorting; (2) no need for segmentation of data points; (3) no need 

of parameterization for data points belonging to B-spline curves; (4) immunity to noisy 

data points; (5) the template curve can be used for a series of cross-sectional points with 

similar topology, thus it is not necessary to fit the initial curves for each section; and (6) 

the compatibility conditions [65] between different sections are automatically satisfied. 

Curve compatibility is an important condition to obtain a smooth lofted surface. 

The rest of this chapter is organized as follows: the next section gives an overview 

on the state-of-the-art registration methods. The representations of curve objects and 

constraints are presented in Section 2.3. Following that, the algorithm of the proposed 

method is illustrated in details in Section 2.4. In Section 2.5, we present some simulated 

and real examples and demonstrate the effectiveness and superiority of the proposed 

method. Finally, Section 2.6 draws the conclusion and future work.  

2.2 Overview of Registration 

Registration is a coordinate transformation process through which the source data is 

aligned to the target data so that similar features are brought into correspondence. 

Mathematically, the objective of registration is to find the transformation matrix by 
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minimizing the generalized distance, also known as dissimilarity, from the source data to 

the target data. Normally, the dissimilarity can be measured by computing the Euclidean 

distance between the corresponding feature pairs (also called correspondence) on the 

source and target data, respectively. Therefore, the establishment of correspondence and 

selection of transformation are the two essential tasks of registration. The cost function of 

registration can be stated as follows.  

( )( )2

,
,

: ( ),i j i i j
i j

Minimize dist fω∑ X Y       (2.1) 

Where iX  and jY are the corresponding feature pairs on the source and target data, 

respectively; if is the transformation function applied on the source data iX ; 

( )( )i jdist f X ,Y is defined as the directed Euclidian distance from the transformed source 

data iX to the target data jY ; ,i jω is a weight factor of the directed distance from iX to jY . 

The magnitude of ,i jω  indicates how much contribution of the corresponding directed 

distance to the cost function. Section 2.2.1 reviews some typical methods of how to 

determine the weight factor. 

2.2.1 Correspondence Establishment 

One of the most popular correspondence establishment methods is the closest 

distance method. A classic paradigm of this method is Iterative Closest Point (ICP) 

algorithm [10], which takes the nearest neighbor on the target data for a given point on 

source data as its correspondence. The correspondence is then updated by conducting 

iterative transformations. The correspondence established by this method can be viewed as 
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a binary matrix between the source and target data. For example, two point sets 

{ }, 1...i i m= =X X  and { }, 1...j j n= =Y Y  as shown in Figure 2.2(a), if a source point 

iX corresponds a target point jY , then , 1i jω = ; otherwise, , 0i jω = . Therefore, the cost 

function of ICP method can be written as: 

2

,
,

( ) ( )i j i j
i j

E f fω= −∑ X Y        (2.2) 

where f is the rigid transformation and • is the Euclidean norm. 

One limitation of ICP method is that the corresponding point pairs are very sensitive 

to data noise and relative positions between source and target points. It is observed in 

Figure 2.2 that some source points might have the same correspondence but some target 

points might not have correspondence.  

The constrained fitting [64] can also be viewed as a registration process where initial 

constructed curves (source data) iC  are iteratively transformed to best fit the measured 

 
Figure 2.2: (a) Correspondence search with ICP method, and (b) the binary 

correspondence matrix 

(a) 

jY
iX

Source points Target points      

(b) 

,i jω 1Y 2Y 3Y 4Y  5Y  

1X  0 1 0 0 0 

2X  0 1 0 0 0 

3X  0 0 1 0 0 

4X  0 0 0 1 0 
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points (target data) Y by minimizing the directed distance from the target points to the 

curves, i.e., 

( )( )2

,
,

( ) , ( )i j i j i i
j i

E f dist fω=∑ Y C       (2.3) 

The weight factor ,j iω  depends on segmentation of the target points Y . If jY belongs 

to iC , then , 1j iω = ; otherwise , 0i jω = . if can be viewed as the transformation function 

represented with respect to the parameters of curve iC , and thus the curve is transformed 

by changing the curve parameters. ( ), ( )j i idist fY C  is computed as the minimum distance 

from point jY to its corresponding curve iC . If we denote the closest point of jY on curve 

iC  as jX , then the cost function can be rewritten as: 

2

,
,

( ) ( )i j i j i j
j i

E f fω= −∑ Y X        (2.4) 

It is recognized that equation (2.4) has the same form as equation (2.2) except that 

different transformation functions are applied on different types of curves. Therefore, 

constrained fitting also establishes a one-way binary correspondence matrix such that for 

each data point jY , the nearest point jX on curve iC is considered as the correspondence.  

Instead of assigning the same weight (it is 1) to the distance of each pair of 

correspondence, Weiss et al. [62] set different weights to express the relative 

“importance” of the data points to a fitted B-spline surface according to reliability criteria. 

Normally, the smaller the distance, the larger the weight. The correspondence matrix is 
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thus a relaxation of the binary matrix where the entry value ,i jω  can range from 0 to 1. 

The relaxation of the correspondence matrix allows partial matching between the source 

data and target data.  

Chui [66] also adopted the relaxed correspondence matrix (called softassign) for 

point matching between two discrete point sets. The weight for the distance of each pair of 

corresponding points is computed as a function with respect to the distance and the 

annealing temperature, whose initial value is set to the largest square distance of all point 

pairs. As the iteration proceeds, the relaxed correspondence matrix is updated and towards 

to a binary matrix when the source point set is getting closer to the target point set.  

Besides considering the coordinates information of the points, there are also methods 

that consider other geometric properties of the points for registration. Jonson and Hebert 

[67] presented a representation for mesh surface rigid registration by matching oriented 

points that is based on indexing of spin-images. Bae and Lichti [68] proposed a method 

based on geometric primitives and neighborhood search for partially overlapped point 

clouds. In this method, the change of geometric curvature and approximated normal vector 

of the surface formed by a point and its neighborhood are used to determine 

correspondence of point clouds. Because the problem considered in this research is non-

rigid registration, the normal and curvature might be far different between the source data 

and target data. Moreover, even for rigid registration, if the discrete points are very noisy, 

the computed normal and curvature are not stable and cannot be used for registration. 

Therefore, only the coordinates of the points are used for correspondence establishment of 

non-rigid registration in this research. 
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2.2.2 Affine Combined with FFD Transformation 

Affine transformation is a linear operation, which is suitable for global registration 

when the source data is far from the target data. Traditionally, FFD has important 

application in forward design. Kagan et al [69] proposed two new methods to create 

sculptured surfaces and volumetric solids by mechanically deforming the B-spline 

elements with adaptive refinement. In order to overcome the restriction of FFD on the 

model with holes or gaps, a discontinuous FFD (DFFD) [70] approach was proposed to 

incorporate iso-parameteric discontinuities into the deformation. This approach also 

demonstrated great application in computer-aided surgical simulation [71].  Because FFD 

is a non-linear operation based on B-spline basis functions with local supportive properties, 

it works well for local deformation when the source data is very close to the target data. 

The aim of combining affine and FFD transformation is to make the non-rigid registration 

behavior with affine transformation dominated at the beginning and then FFD more 

dominated as the source object is getting closer to the target object. 

With the notations of 2D transformation reviewed in Appendix A, the affine 

combined with FFD transformation of a point kP embedded in a lattice can be expressed as:  

, ,

, , , , ,
, 0 , 0

( ) ( , ) ( ) ( , )( )
k

M N M N
T

k i j k k i j i j k k i j i j k
i j i j

f B u v f B u v′ ′ ′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′ ′= =

= = + = +∑ ∑ PP V TV δ TP B δ  (2.5) 

2.3 Curve and Constraints Representations 

In this research, the 2D profile only composed of multiple B-spline curves is 

considered because the line and circular curves can be converted into B-spline curves. 
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2.3.1 B-spline Curve 

A B-spline curve of order r (degree + 1) can be defined as [5]: 

,
0

( ) ( )
L

T
k r k

k
t N t

=

=∑C P N P�        (2.6) 

where [ ]0
T

L=P P P" are the control vertices;  0, ,( ) ( )
T

r L rN t N t⎡ ⎤= ⎣ ⎦N "  and 

, ( )k rN t  is the thr  order B-spline basis functions with the knot vectors 

[ ]0 r L L rt t t t +=t " " " .  

Substituting equation (A.5) to equation (2.6), the B-spline curve can be represented 

with respect to the control points of the designed lattice as: 

( ) Tt = PC N B V          (2.7) 

where 
0 L

TT T⎡ ⎤= ⎣ ⎦P P PB B B" . 

2.3.2 Boundary Constraints 

In most applications, the positional (G0) and tangent (G1) continuities are the 

prevalent constraints enforced on the endpoints of neighboring B-spline curves. The first 

order derivatives on both endpoints for a B-spline curve expressed by equation (2.6) can 

be computed as: 

( )1 0
1(0)

r

r
t
−′ = −C P P        (2.8) 

( )1
1(1)

1 L L
L

r
t −

−′ = −
−

C P P        (2.9) 

There are four cases of connection between two B-spline curves: start point to start 

point, start point to end point, end point to start point and end point to end point. Without 
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loss of generality, we only consider the case of start point to start point. Suppose 

{ }, 0...k k L=P and { }, 0...j j J=Q are the control vertices of two B-spline curves ( )tPC  

and ( )tQC , respectively, then the positional continuity means that they must have the same 

start point after transformation, i.e., 

0 0( ) ( )f f− =P Q 0         (2.10) 

The G1 continuity requires that the first order derivatives (0)′PC and (0)′QC are 

collinear after transformation. Mathematically, the G1 constraint can be formed as follows 

with the derivative equation (2.8). 

[ ] [ ]1 0 1 0( ) ( )) ( ) ( )f f f fη− − − =P P Q Q 0      (2.11) 

where η  is a constant which can be evaluated as the ratio of the length of vector 

(0)′PC over that of vector (0)′QC  from the template curve.  

Suppose f  is the affine combined with FFD transformation, the continuity 

conditions can be simplified as follows by plugging equation (2.5) to equations (2.10) and 

(2.11), respectively. 

0 00 0( ) ( )T T− + − =P QT P Q B B δ 0       (2.12) 

[ ]
1 0 1 01 0 1 0( ) ( ) ( ) ( )T T T Tη η⎡ ⎤− − − + − − − =⎣ ⎦P P Q QT P P Q Q B B B B δ 0   (2.13) 
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2.4 The Algorithm of Non-rigid Registration 

The proposed non-rigid registration algorithm works in three basic stages: (a) the 

template curve is firstly sampled into a discrete point set according to particular 

approximation tolerance; (b) a mutual distance based weighting method is proposed to 

establish the correspondence between the sampled points and target cross-sectional points; 

and (c) the affine combined with FFD transformation is adopted to register the template 

curve to the cross-sectional points by minimizing the mutual distances between the 

sampled points and cross-sectional points. The transformation iteratively proceeds with 

updated correspondence matrix until the maximum iteration times are reached or 

registration accuracy is satisfied.   

2.4.1 Correspondence Matrix 

As discussed in Section 2.2, only the one-way directed distance from the target 

points to the curves are considered in constrained fitting [64]. It works well for initial 

constructed curves very close to the data points; but when the initial curves are far from 

the data points, as shown in Figure 2.3, the constrained fitting method might result in 

 
Figure 2.3: The end points of a curve are stretching out by minimizing the one-way 

directed distance 
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undesired curves whose endpoints are stretching out, even though the distance from the 

data points to the fitted curves is minimized. Hence, the directed distance from the curves 

{ }( ) ( )kt t=C C to the points { }j=Y Y should also be incorporated in the cost function, i.e., 

 ( )( )( ) ( )( )( )2 2
( ) , ( ) ( ) ,E f dist f t dist f t= +Y C C Y     (2.14) 

In constrained fitting [64], the directed distance ( )( ), ( )jdist f tY C is defined as the 

distance from point jY to its correspondence (closest point) jX on curves ( )tC  as shown in 

equation (2.3), which works well if the initial curves are very close to the data points. 

However, this definition is not always reasonable when the relative position between the 

curves and data points is poor. Consider a simple example of a single B-spline curve 

reconstruction as shown in Figure 2.4, all the data points have the same correspondence 

(closest point) on the initial B-spline curve according to the directed distance defined in 

constrained fitting [64]. This simple binary correspondence matrix will lead to minimize 

the sum of squared distance from each data point to the same point on the curve, which is 

obviously unreasonable for curves fitting.  

 
Figure 2.4: All points have the same correspondence on the curve in constrained fitting 
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In order to overcome the drawback of the directed distance definition in constrained 

fitting, we sample the curves ( )tC into a discrete point set { }, 1...i i m= =X X  according to 

a particular approximation tolerance. The directed distance ( )( ), ( )dist f tY C from the 

target point set { }, 1...j j n= =Y Y to the curves ( )tC  is then defined approximately as the 

directed distance from the target point set Y to the sampled point set X , 

i.e., ( )( ),dist fY X .  

Let us define: 

 

( )( )( ) ( )( )( )
( )( )( )

( )

2 2

2

1

2
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1 1
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= =

−

∑
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    (2.15) 

Where ( )( )( )2
,dist fY X  is defined as the sum of squared distance from each target 

point jY  to the sampled point set X , denoted as ( )( )( )2
,jdist fY X , which is further 

defined as the sum of weighted square distance from the target point jY  to each sampled 

point iX . ,j iω  is the weight factor satisfying ,0 1j iω≤ ≤ and ,
1

1
m

j i
i
ω

=

=∑ . 

Similarly, the squared distance ( )( )( )2
( ) ,dist f tC Y  from the curves ( )tC to the 

target points Y is defined as follows: 
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    (2.16) 

where ,i jϖ  is the weight factor satisfying ,0 1i jϖ≤ ≤ and ,
1

1
n

i j
j

ϖ
=

=∑ . 

It is noticed that the definitions of directed distance in equations (2.15) and (2.16) 

have the same forms except different notations of the weight factor. 

, ( 1... )j i i mω = measures the possibility of the source points { }iX to be the correspondence 

for each target point jY . In contrast, , ( 1... )i j j nϖ = measures the possibility of the target 

points { }jY to be the correspondence for each source point iX . Different from the 

constrained fitting where only a one-way binary correspondence matrix is used to 

minimize the directed distance from the target points to the curves, there are two weighted 

Figure 2.5: (a) Illustration of mutual distance between the source data and the target data, 

(b) weighted correspondence matrix from the target data to the source data, and (c) 

weighted correspondence matrix from the source data to the target data 

(c) 
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correspondence matrices (See Figure 2.5) utilized to minimize the mutual distances 

between the curves and target points.  

Since the weight factors indicate the relative “importance” of the distance between 

each corresponding point pairs in the cost function, the following properties should be 

taken into account when evaluating the weight factors: 

(1) The smaller the distance, the larger the weight factor. In other words, there 

is a higher possibility to be correspondence for two closer points than for two points far 

from each other.  

(2) As the curves are transformed to the data points, the correspondence matrix 

is converging to a binary matrix, which means that each point will finally have only one 

correspondence with weight 1. This property guarantees that non-rigid registration is 

equivalent to constrained fitting when the curves are getting very closer to the target 

points.  

In order to satisfy the above properties, a Gaussian function with respect to the 

distance is adopted to compute the weight factor. Mathematically,  

2
,

, 2

1 exp
22

j i
j i

d
ω

σσ π

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
       (2.17) 

where ,j i j id = −Y X andσ is registration error which is defined as the averaged 

sum of squared distance between the source points and target points, i.e., 
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21 n m

j i
j imn

σ = −∑∑ Y X        (2.18) 

It is obvious that ,j iω is a strictly decreasing function with respect to the distance ,j id . 

Moreover, the Gaussian bell shape is getting sharper with decreasing registration error σ  

when the curves are moving closer to the target points (See Figure 2.6). Ideally, when the 

registration error is decreasing toward to zero, all the weight factors with non-zero 

distance ,j id are converging to zero except the weight factor with zero distance.  Hence, 

the weighted correspondence matrix is approximately reduced to a binary matrix if the 

curves are very close to the data points, which is one of the assumptions in constrained 

fitting. 

It should be pointed out that the weight factors computed with equation (2.17) will 

be conducted a row normalization as follows to satisfy the conditions of 

,0 1j iω≤ ≤ and ,
1

1
m

j i
i

ω
=

=∑ .  

 
Figure 2.6: The function of weight factor with respect to the distance ,j id  and registration 

error σ  

,j iω

,j id
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         (2.19) 

Similarly, the weight factors ,i jϖ are computed as 

2
,

, 2

1 exp
22

i j
i j

d
ϖ

σσ π

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
       (2.20) 

where ,i j i jd = −X Y .  

It is noticed that the initially computed ,i jϖ  with equation (2.20) is the same as the 

initially computed ,j iω  with equation (2.17), but they are normally different after row 

normalization. ,i jϖ can be normalized as follows: 

,
,

,
1

i j
i j n

i j
j

ϖ
ϖ

ϖ
=

←

∑
         (2.21) 

2.4.2 Transformation Mechanism 

In order to gradually transform and deform the template curve to best fit the target 

points, the affine combined with FFD transformation is applied to the sampled points of 

the template curve.   

The transformation of a sampled point iX on a template curve with parameter it can 

be represented with respect to the curve control vertices as: 
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,
0
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i k r i k
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which ends up with the following equation by substituting equation (2.5).  

,
0

( ) ( )( )
k

L
T T

i k r i k i i
k

f N t
=

= + = +∑ P PX TP B δ TX N B δ     (2.23) 

where 
0 1 L

TT T T⎡ ⎤= ⎣ ⎦P P P PB B B B" . 

2.4.3 Cost Functions 

The cost function of equation (2.14) with mutual directed distances can be written as 

follows by substituting equation (2.23) into equations (2.15) and (2.16). 
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1 1 1 1
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1 1
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= =
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T,δ X Y Y X

TX N B δ Y
   (2.24) 

Since the affine transformation and free-form deformation (FFD) are conducted 

simultaneously, there is a balancing problem in non-rigid registration. In order to control 

the transformation step size during non-rigid registration, two penalized terms are imposed 

on the affine and FFD transformation where the first term is a penalty coefficient α  

multiplied by trace of the difference between the transformation matrix T  and the identity 

matrix I  and the second term is a penalty coefficient β  multiplied by the displacement 

δ of the lattice control points. Mathematically, these two penalized terms can be 

formulated as: 

2 ( ) ( ) ( )T TE traceα β= − − +T,δ T I T I δ δi      (2.25) 
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Smoothness is another important issue for free-form object deformation. Just like 

real objects, deformation energy is stored in the lattice during non-rigid registration, so 

minimizing the bending energy is an effective way to control the surface smoothness. The 

bending energy of the lattice expressed in equation (A.4) can be defined as [72]: 

2 2 21 1 2 2 2

2 2
0 0

2latticeE dudv
u v u v

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪= + +⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭
∫ ∫

S S S     (2.26) 

By substituting equation (A.5) to (2.26), a concise form of the lattice energy can be 

obtained: 

T T
latticeE = V D DV         (2.27) 

Where 

1 1 2 2 2

2 2
0 0

2
T T T

dudv
u v u v

⎧ ⎫∂ ∂ ∂
= + +⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭
∫ ∫

B B BD      (2.28) 

Because the affine transformation does not produce bending energy, a penalty factor 

γ  is applied only to the displacement of lattice control points to control the smoothness 

during non-rigid registration. By replacing V with δ in equation (2.27), this penalized 

term can be rewritten as: 

3 ( , ) T TE =T δ δ D Dδ         (2.29) 

By synthesizing equations (2.24), (2.25) and (2.29) and taking into account the 

geometry constraints, the non-rigid registration can be stated as a constrained optimization 

problem: 
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where [ ]1( , ) ( , ) ( , ) T
KC C=C T δ T δ T δ" is the vector of geometric constraints.  

The parameters of α , β  and γ  are initialized with empirical values based on the 

test examples. In order to make the affine transformation in the beginning of non-rigid 

registration, the initial value of α is normally set much smaller than that of β . Based on 

our test, the good initial values of the penalty coefficients are set as follows: 0α =0.1; 

0β =10; 0γ =10. 

2.4.4 Algorithm 

If some of the constraints are dependent, it is necessary to eliminate the dependent 

constraint equations before solving the optimization problem (2.30). Assume the 

constraints are independent each other, then the constrained optimization problem (2.30) 

can be solved with the Lagrangian multipliers method. Denote the Lagrangian multipliers 

as T K∈λ R , and then the optimal solution ( , , )T δ λ of (2.30) must satisfy the following 

equations: 

( , ) ( , ) 0

( , ) ( , ) 0

( , ) 0

T

T

E

E

⎧∇ − ∇ =
⎪
∇ − ∇ =⎨
⎪ =⎩

T T

δ δ

T δ λ C T δ

T δ λ C T δ

C T δ

i
i       (2.31) 

Since the objective function of (2.30) has a standard quadratic form, the 

computational efficiency of the optimization problem is mainly determined by the 
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complexity of the constraint function ( , )C T δ . If the constraints are non-linear, the 

equations (2.31) can be solved with multidimensional Quasi-Newton [73] method. But 

when ( , )C T δ  is a set of linear constraints, for example, the positional and tangent 

constraints between B-spline curve as shown in equations (2.12) and (2.13) , then 

optimization problem (2.30) turns out to be a convex quadratic programming problem, 

which can be solved explicitly [74].  

As mentioned above, α and β  are two key coefficients to control the transformation 

behavior. Since the initial value of β  is set much larger than that of α , the registration is 

dominated by the affine transformation at the beginning. As iterations proceed, both α and 

β  are gradually decreasing with the rate equal to the ratio of the present registration error 

to the initial registration error. Finally, the iterations will stop either when the maximum 

iteration times are achieved or when the registration error is less than the desired 

registration error. The energy coefficient γ  is given with an empirical value.  

The steps of the non-rigid registration algorithm for 2D profile curve reconstruction 

are outlined with pseudo algorithm language as follows: 

Set initial values 0γ , 0α and 0β  

Set the maximum iteration times Κ  and the desired registration error 0ε . 

0k =  

Sample the template curve into points 

Compute the initial registration error 0σ with equation (2.18) 

do 

{ 
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Compute and normalize ,
k
j iω and ,

k
i jϖ ,with equations (2.17), (2.19),(2.20) and (2.21) 

Solve equations (2.31) to obtain κT and κδ  

1k k= +  

Transform the free-form object and sampled points with equation (2.15)and (2.23) 

Update kσ with equation (2.18) 

1
0

k
k k

σα α
σ−=   

0

k
k k

σβ β
σ

=  

} while 0(( ) & ( ))kk σ ε< Κ ≥  

2.5 Examples and Discussion 

The algorithm described above has been implemented in Unigraphics and tested with 

simulated and real examples. In this section, we will illustrate how this method works 

more efficiently than constrained fitting for 2D profile curves based geometry modeling. 

Moreover, we will show that non-rigid registration is superior to constrained fitting when 

handling noisy or non-uniformly distributed data points.  

2.5.1 Time Complexity 

The dimensions of the variables in the optimization problem (2.30) are determined 

by the degrees of freedom (DOFs) of 2D affine combined with FFD transformation, which 

is 2 6MN + ,where ,M N are the number of control points of the lattice along the 

,u v directions  and 6 is the DOFs of affine transformation (see Appendix A). Because the 
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sampled points of the template curve have to be parameterized with respect to the lattice, 

the time complexity of the algorithm with respect to the number of control points of the 

lattice is  ( )o MN . The degree and knot vector of the lattice are decided a priori. For all the 

test examples, the lattice has number of control points of 4 4×  and degree of 3 along the 

,u v directions with uniform knot vector.  

2.5.2 Case Studies 

Example 1: Figure 2.7(a) shows data points of six cross sections measured from a 

used turbine blade with industrial computer tomography (ICT) and a template profile 

curve consisting of two B-spline curve with positional and tangent constraints on both 

leading and trailing edges. For each section, the distance between leading edge point and 

trailing edge point is about 20 mm and the maximum thickness is about 5 mm. The 

accuracy of ICT in this example is 0.1 mm. In order to analyze aerodynamics performance 

of the used part, it is necessary to reconstruct a CAD model, called as-manufactured 

model, to recover the physical shape of the blade based on the measured points. In 

 
Figure 2.7: (a) Cross sectional points of a physical turbine blade and a template curve, (b) 

section curves reconstructed with non-rigid registration, and (c) lofted solid model based 

on the reconstructed curves 

(b) (c)(a) 

Section 

No. 

1 

 

2 

3 

 

4 

5 
 

6
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constrained fitting method [64], the point set of each section is required to be manually 

segmented in advance, and then the segmented point subsets are carefully sorted and fitted 

with initial B-spline curves. After that, the constrained fitting module is launched to 

optimize the profile curves. Finally, the as-manufactured model is reconstructed by lofting 

all the optimal section curves.  

It is noticed that the pre-processing of data points before constrained fitting is very 

tedious and labor intensive, which greatly reduces the modeling efficiency. In addition, the 

lofting surface with high smoothness requires all the sections meet the compatibility 

conditions [65] that all cross-sectional B-spline curves must share the same degree and 

knot vector. However, each fitted cross-sectional curve based on manually segmented 

section points normally does not have the same knot vector. Furthermore, the leading edge 

points between sections are often zigzag along the radial direction (from bottom to top) of 

the blade, which usually results in poor smoothness of the lofting surface.  

Different from the constrained fitting method which requires the initial profile curve 

close to the data points, non-rigid registration method enables the template profile curve to 

be automatically transformed and fitted to the cross-sectional points without any data pre-

processing such as sorting, segmentation and parameterization. Furthermore, since the 

same template profile curve is used for all the cross-sectional points, the compatibility 

conditions are satisfied in a natural way.  
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Figure 2.8 shows three different stages of non-rigid registration for section No.1 

where the dashed black grid is the original lattice; the black curve is the template curve 

which is composed of two B-spline curves with positional and tangent constraints on both 

leading and trailing edge; the dashed blue grid is transformed lattice and the blue curve is 

the transformed curve. Figure 2.8(a) is the initial state before registration where the 

template profile curve is obtained by slicing the nominal CAD model. After 5 iterations, 

the template curve is globally registered to the cross-sectional points with affine 

transformation dominated (See Figure 2.8 (b)). At the last stage, the template curve is best 

fitted to the point set with FFD dominated and large deformation on the lattice. Twenty 

iterations of non-rigid registration for this section model are completed successfully within 

45 seconds, yielding an optimized profile curve with satisfied tangent constraints on both 

leading and trailing edges.  

Figure 2.7(b) and (c) show all the reconstructed cross sectional curves with 20 

iterations and the lofted solid model, respectively. Table 2.1 lists the error between each 

cross-sectional curve and the corresponding point set. The average time used for each 

 
Figure 2.8: Three different stages of 2D non-rigid registration: (a) before registration, (b) 

after 5 iterations, and (c) after 20 iterations 

(a) (b) (c) 
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section is about 45 seconds on a desktop with 3.4 GHz Intel Pentium and 2047 MB RAM. 

In this example, the engineering tolerance of reconstruction error between the curves and 

points must be less than one half of the measurement error. It is obvious that both of the 

average and root mean square error are less than 0.05 mm. 

Table 2.1: Error report of 2D non-rigid registration for the turbine blade 

Example 2: This simulated example aims to demonstrate the robustness and 

superiority of non-rigid registration compared to constrained fitting. As shown in Figure 

2.9(a), the initial profile curve consists of one B-spline curve and three line segments with 

positional continuity between any two adjacent curves. In addition, tangent continuity is 

imposed between the B-spline curve and the two neighboring line segments. The number 

of control vertices of the B-spline curve is 52. It is noticed that some noise data are added 

into the cross-sectional points. The size of this profile is about 4.5x0.9 units. Figure 2.9(c) 

shows the result of constrained fitting method [64], which is the primary reference of this 

Section No. 1 2 3 4 5 6 

Avg. err. (mm) 0.0164 0.0176 0.0204 0.0227 0.0186 0.0172 

RMS err. (mm) 0.0216 0.0229 0.0264 0.0306 0.0240 0.0255 

 
Figure 2.9: (a) Initial profile curve and data points, (b) reconstructed curve with non-rigid 

registration, and (c) reconstructed curve with constrained fitting method [64] 

(a) 

(b) (c) 
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research. Although the average fitting error is small (0.015 units), there are many wiggles 

on the B-spline curve, which is unacceptable for quality inspection purpose. In order to 

take advantage of the proposed non-rigid registration method, all the line segments are re-

expressed by B-spline curves with degree of one and number of control vertices of two on 

both endpoints. Figure 2.9(b) shows a very smooth profile curve produced by non-rigid 

registration with slightly larger average fitting error (0.024 units), which is acceptable for 

the noisy data with standard deviation of 0.021 units to the registered curve. The reason of 

immunity to noise for non-rigid registration is that the movement of the profile curve is 

driven by the transformation of the lattice with well-controlled deformation behavior. 

Example 3: This example consists of seven cross sectional points of a compressor 

blade measured by laser scanner as shown in Figure 2.10 (a). For each section, the 

distance between leading edge point and trailing edge point is about 10 units and the 

 
Figure 2.10: (a) Template profile curve and measured points, (b) reconstructed curve with 

non-rigid registration, (c) lofted surface model, and (d) magnified view of the leading 

edges of the reconstructed curves 

(c) 

(d) 

(b) 

 

(a) 

Section No. 
 1   2    3     4     5       6         7 
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maximum thickness is about 3 units. The template profile curve is composed of two B-

spline curves with positional and tangent constraints on both leading and trailing edges. 

Inherited from the nominal CAD model, the numbers of control points on the convex and 

concave sides are 84 and 47, respectively. It is obvious that the sectional points in this 

example are visually noisy, thus it would be very cumbersome for data pre-processing 

such as noise cleaning, sorting, segmentation and parameterization.  However, with non-

rigid registration method, the user only needs to pick up the template profile curve and all 

the cross-sectional points, then the template curve can be automatically transformed and 

best fitted to the noisy points to reconstruct all the cross-sectional curves. Figure 2.10 (b) 

shows the reconstructed cross-sectional curves. As shown in the magnified view of the 

leading edges in Figure 2.10 (d), the noisy points do not have any significant influence on 

the quality of the reconstructed curves, which demonstrates non-rigid registration method 

possesses great robustness and immunity to noisy data. Figure 2.10 (c) shows the lofted 

solid model based on the reconstructed profile curves. Table 2.2 lists the error between 

each reconstructed curve and the corresponding point set. The average time spent for each 

section is about 90 seconds on a desktop with 3.4 GHz Intel Pentium and 2047 MB RAM.  

Table 2.2: Error report of 2D non-rigid registration for the compressor blade 

 

Example 4: This is the failed sorting example with constrained fitting as shown 

Figure 2.1. However, the cross-sectional curve can be successfully reconstructed with 

non-rigid registration method. As shown in Figure 2.11 (a), the template profile curve is 

Section No. 1 2 3 4 5 6 7 

Avg. err. (×0.001units) 0.091 0.079 0.091 0.135 0.084 0.102 0.086 

RMS err. (×0.001units ) 0.122 0.058 0.107 0.338 0.081 0.099 0.097 
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composed of two B-spline curves with positional and tangent constraints on both leading 

and trailing edges. The number of cross-sectional points is 410 and the numbers of control 

vertices on the convex and concave sides are 51 and 17, respectively. The size of the 

section is about 5x1 units. Figure 2.11 (b) shows the reconstructed curve with average 

error of 0.014 units after 20 iterations. This example demonstrated the robustness of non-

rigid registration when handling non-uniformly distributed point set with gaps or missing 

points in the profile. 

2.6 Conclusions and Future Work 

We have proposed a non-rigid registration method to reconstruct an as-manufactured 

geometry CAD model for the development of "Product DNA". With two weighted 

correspondence matrices based on mutual distances, this method iteratively registers a 

template curve to measured points by using affine combined with FFD transformation 

while simultaneously maintaining geometry constraints. Superior to constrained fitting, 

non-rigid registration does not require initial curves close to data points. In addition, there 

is no necessity of data preprocessing such as sorting, segmentation and parameterization. 

Furthermore, non-rigid registration shows stronger robustness to noisy data than 

 
Figure 2.11: (a) Template profile curve and data points, and (b) reconstructed curve with 

non-rigid registration 

(a) (b) 
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constrained fitting. The simulated and real examples have demonstrated the effectiveness 

and superiority of the method.  

With the proposed method, more geometry constraints into non-rigid registration for 

more types of part family. Besides positional and tangent constraints, a complex profile 

curve might have miscellaneous geometry constraints such as parallelism and 

perpendicularity. Since the geometry is a macro-dimensional measure genome of "Product 

DNA", the as-manufactured CAD models can be classified into different categories for the 

purposes of part searching and quality inspection. 
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CHAPTER 3 
SURFACE TEXTURE MODELING AND ANALYSIS WITH B-SPLINE 

WAVELET 

3.1 Introduction 

If the dimensional geometry is considered as the macro-measure of the "Product 

DNA", the surface texture can be viewed as the micro measure of "Product DNA", which 

uniquely describes the surface tomography of a manufacturing part. It has been well 

recognized that surface texture is in effect the "fingerprint" of manufacturing process 

[15]. In order to better understand the relationship between surface texture and 

manufacturing process, it is a crucial problem of how to characterize and analyze the 

surface texture with appropriate methods.  

Although engineering surfaces of different materials manufactured by different 

processes normally have different tomography, the surface texture can be basically 

characterized by some standard terms such as lay, waviness and roughness [13]. 

Traditionally, the surface texture has been characterized and analyzed with two-

dimensional (2D) parameters since the stylus profilometer was invented in 1930s. For 

instance, the parameters introduced by Whitehouse [20] are one of the most famous 

parameter set. In addition, parameters defined by different standardization organizations 

[13][21] are also commonly utilized for surface texture characterization. The 2D 
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parameters often used for inspection and tolerancing include average roughness aR , root-

mean-squares (RMS) deviation qR , maximum valley depth vR , maximum peak height 

pR , peak to valley height tR ,ten-point height zR  and bearing ratio pt  [22].  

The 2D parameter set is still widely in use in many applications, but it is sometimes 

inadequate or has difficulties to characterize the surface texture in three-dimension (3D). 

With the rapid development of 3D measurement technology, there is an increasing need 

to develop a set of effective 3D parameters for 3D surface texture characterization. 

Birmingham 14 is one of the most popular and widely accepted parameter set developed 

under such situations. Taking into account the lessons of parameter rash and parameter 

redundancy [20], Dong et al. [23]-[26] carefully extended the 2D parameters and 

elegantly developed a set of 3D parameters to characterize the surface irregularities in the 

aspects of amplitude, spacing, hybrid properties between amplitude and spacing, and 

physical functionalities.  

Instead of characterizing the surface texture with statistical methods, it is also 

meaningful to view the surface irregularities as a spatial signal and analyze it in the 

frequency domain. It has been widely accepted that an engineering surface encodes a 

range of spatial frequencies. To better understand the surface characteristics in more 

detailed levels, finer frequency regimes separation is required. Since today’s 

measurement systems already have considerably higher resolutions, modern digital 

filtering techniques [27][28] make it possible to separate the surface signal into fine 

frequency bandwidths [75][76]. Raja [29] gave a very comprehensive review of recent 

advances in separation of surface texture. One common disadvantage of most current 
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filter banks is the lumping a wide bandwidth into a single entry such as form, waviness 

and roughness, which limits its applications in close monitoring of manufacturing process 

and tighter control of surface quality. For this reason, the recent development of wavelets 

theory and multi-resolution analysis provides a powerful tool to separate the surface 

texture into finer frequency regimes. There have many research efforts made to apply 

wavelet transform into engineering surface analysis [16][32]-[35]. Since the wavelet 

transform has many diverse wavelet basis functions, each of them has different properties 

and applications. Fu et al. [31] compared 4 types of commonly used wavelets (Haar, 

Daubechies, Coiflets and Biorthogonal) and concluded that Bior6.8 and Coif4 are good 

choices for surface analysis in terms of the frequency transmission characteristics.  

Milling is one of the most widely used material removal processes in industry. The 

milled surface quality is very important in many applications such as mating surfaces and 

assembly surfaces between the parts. Therefore, in order to set optimal milling 

parameters and thus achieve desired surface quality, it is a critical problem to find the 

relationship between surface texture and milling process. Montgomery and Altintas [77] 

derived the theoretical surface roughness of end-milling by considering factors such as 

cutting tool geometry, feed per revolution and number of teeth on the cutter. 

Nevertheless, the surface roughness is normally higher than the theoretical value because 

there often exists vibrations, deflection of workpiece and tool, chipping and some other 

random factors in actual milling process. Experiments based statistical models provide an 

alternative way to examine the relationship between surface roughness and 

manufacturing conditions [78]-[82]. Alauddin [78] created a surface roughness model to 

determine the optimum cutting conditions by taking into account three major controllable 
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cutting parameters of cutting speed, feed and axial depth of cut. Besides the three major 

cutting parameters, Fuh and Wu [79] simultaneously introduced tool nose radius and 

flank as controllable factors to build a statistical model for surface roughness prediction 

in end-milling of aluminum. Most recently, Zhang [82] applied Taguchi design method to 

optimize the cutting parameters to achieve desirable surface roughness. In this 

experiment design, the tool wear and temperature were considered as noisy factors.  Note 

that all the above reviewed studies only utilized a single frequency parameter, roughness, 

to characterize spatial distributed surface texture and to map diverse manufacturing 

factors. However, different manufacturing factors might have different impact on 

different frequency regimes of the surface texture. Although many types of wavelets are 

utilized for surface texture separation and analysis, to the best of the authors’ knowledge, 

there is little research conducted to explore how the milling factors affect different 

frequency regimes of the surface texture.  

Motivated by multi-resolution curves presented for curves editing and smoothing 

[38] in computer graphics, in this research, a multi-level B-spline surfaces based 

representation is presented to describe the surface texture and then the B-spline wavelet 

based multi-resolution analysis (MRA) is applied for surface texture decomposition. 

Based on the measured high-resolution data points of the workpiece, an initial B-spline 

surface with desired continuity and accuracy is fitted. With B-spline wavelet transform, 

this surface is decomposed into lower-resolution approximations and higher-frequency 

details. The initial fitted surface with full description of the surface texture can also be 

perfectly reconstructed based on the lower-resolution approximations and higher-

frequency details by taking inverse B-spline wavelet transform. The advantages of B-
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spline wavelet-based MRA for surface texture are five-fold. First, B-spline surface is an 

industry standard and can express any continuous surfaces; second, the basis function of 

B-spline surface are piece-wise continuous and have local support property, so it is 

computational efficient; third, the B-spline wavelet has good amplitude transmission and 

linear phase property and thus there is no distortion in the filtered surface texture [83]; 

fourth, it can deal with measured surface with scattered points or partially missing data. 

Finally, all the standard parameters [25][26] can be computed more easily and accurately 

based on the multi-level B-spline surfaces representation.  

In order to correlate the multi-scaled surface textures to the manufacturing factors, 

two experiments are conducted for the end-milling process of aluminum. The first 

experiment aims to explore the impact significance of the milling parameters on different 

frequency regimes of the milled surface. The purpose of the second experiment is to 

examine how the tool wear affects different frequency regimes of the surface texture.  

The rest of this chapter is organized as follows: the next section gives an overview 

of wavelet transform and MRA. Section 3.3 illustrates how the multi-level B-spline 

surfaces are utilized to represent surface texture and how the B-spline wavelet based 

MRA method is applied for surface texture analysis. In Section 3.4, we present two case 

studies of end-milling to show how cutting parameters and tool wear affect the different 

frequency regimes of the surface texture decomposed with the proposed MRA method. 

Finally, Section 3.5 draws the conclusion. 
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3.2 Overview of Wavelet Transform and MRA 

A wavelet is a finite energy function ψ  defined on )(2 RL space with compact 

support in both space and frequency domain and whose integral is zero [29].  

∫
+∞

∞−
= 0)( dxxψ   while   ∫

+∞

∞−
+∞<dxx 2)(ψ    (3.1)  

This function is sometimes called mother wavelet. A family of wavelets is obtained 

by scaling )(xψ with s  and translating it with t : 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

tx
s

xts ψψ 1)(,         (3.2) 

where the factor 21−s  is for the energy normalization, i.e., 1)(, =xtsψ . 

Unlike Fourier analysis with basis functions sine or cosine which have infinite 

space domain thus only have frequency resolution but no space resolution, the local 

support property of wavelet function enables wavelet transform to achieve desired 

resolutions in both space and frequency domains.  By scaling and shifting the original 

waveform function (mother wavelet), wavelet analysis provides a flexible space-

frequency window where large scale wavelets are used for lower frequency analysis and 

small scale wavelets are used for higher frequency analysis. This multi-scaled wavelet 

transform is also called multiresolution analysis (MRA).  

3.2.1 Wavelet Transform 

The wavelet transform of a function )()( 2 Rxf L∈ at position t  and scale s  is 
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with )(1)( *

s
x

s
xs

−
= ψψ  and )(* •ψ is the conjugate complex function of )(•ψ . 

Since ∫
+∞

∞−
== 0)()0(ˆ dxxψψ , the transfer function ψ̂  is a band pass filter [30].  

By applying inverse wavelet transform, the original signal can also be reconstructed 

as [30]: 

∫ ∫
+∞ +∞

∞−
=

0 ,2 )(),(11)( dtdsxstWf
sC

xf stψ
ψ

     (3.4) 

where +∞<= ∫
∞+

ω
ω
ωψ

ψ dC
0

2)(ˆ
.      (3.5) 

Note that the scaling parameter s  and translating parameter t  make the wavelet 

transform as a flexible windowed transform on the signal. By increasing s , the space 

spread of the Heisenberg’s box [30] increases while the frequency spread decrease. 

Therefore, the high frequency component of a signal can be examined by decreasing the 

scaling parameters. When ),( stWf is known for the high frequency component 

with 0ss < , the reconstruction of f requires a complement of information corresponding 

),( stWf  with 0ss > . This is obtained by a so-called scaling function φ with the modulus 

of its Fourier transform defined by 

s
dss

s

22

0

)(ˆ)(ˆ ∫
+∞

= ωψωφ .       (3.6) 
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It can be verified that 1=φ and ψω
ωφ C=

→

2

0
)(lim , so the scaling function can be 

interpreted as the impulse response of a low-pass filter [30].  

Hence, the low frequency approximation of f at scale s  is 

)(*)(),(),( , tfxxfstLf sts φφ ==       (3.7) 

where ⎟
⎠
⎞

⎜
⎝
⎛ −

=
s

tx
s

xts φφ 1)(, , ⎟
⎠
⎞

⎜
⎝
⎛=

s
x

s
xs φφ 1)(  and ( )xx ss −= *)( φφ . 

By combining equations (3.4) and (3.7), the signal can thus be reconstructed with 

the low frequency component for 0ss >  plus the high frequency details 0ss < [30],  

)(*),(1)(*),(1)(
0

0

0
0

0 2 xstLf
sCs

dsxstWf
C

xf s

s

s φψ
ψψ

+= ∫    (3.8) 

3.2.2 Multi-Resolution Analysis (MRA) 

A comprehensive review of MRA in computer graphics can be found in Stollnitz’s 

book [84]. The MRA is defined based on a nested linear function spaces 

)(210 RLVVVV j =⊂⊂⊂⊂⊂ ∞"" . These subspaces are called scaling spaces with 

the resolution of the functions in jV  increasing with j . The basis functions of the scaling 

spaces are called scaling functions as mentioned in the previous section. The wavelet 

spaces, jW , are defined as the complement of jV in  1+jV , so we have the following 

relationships [84]: 

jjj WVV +=+1 ; Φ=∩ jj WV ;      (3.9) 
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∑
−∞=

+ =+++=+=
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i

ijjjj WWWWVWVV "1001     (3.10) 

The basis functions in jW are called wavelets.  

The basis of the scaling space jV and wavelet space jW can be represented by row 

function vectors [ ])()()( 1)(0 xxx j
jv

jj
−= ϕϕ "φ  and [ ])()()( 1)(0 xxx j

jw
jj

−= ψψ "ψ , 

where )( jv and )( jw are the dimensions of jV  and jW , respectively.  

The nested subspace jV is in fact equivalent to the refinement of the scaling 

functions )(xjφ . In other words, there must exist a constant matrix jP  with dimensions 

)1()( −× jvjv  satisfying 

jjj xx Pφφ )()(1 =− .        (3.11)  

Since 1−jW is another complement subspace in jV  , there exists a )1()( −× jwjv  

matrix jQ  such that  

jjj xx Qφψ )()(1 =− .        (3.12) 

The matrix jP and jQ are also called scaling and wavelet filters, respectively.  

For any function 1+jf in 1+jV , it can thus be written as the sum of a unique function 

in the scaling space jV and the wavelet space jW . Therefore, the goal of MRA is to 

decompose a function or a signal into the scaling and wavelet subspaces for relevant 

details analysis at different level j .  
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Assume [ ]Tj
jv

jj cc 1)(0 −= "c  is the coefficient vector associated with an 

approximation version jf  of function f  where jjjf cφ= , the low resolution 

approximation 1−jc  can be achieved by some form of linear filtering and down-sampling 

on the entries of jc [84]. The process can be expressed as a matrix equation 

jjj cAc =−1          (3.13) 

Apparently, some details are lost during the low resolution approximation of  jc . In 

order to capture the lost information, the details 1−jd can be computed by an appropriate 

matrix jB  as 

jjj cBd =−1          (3.14) 

Since equations (3.13) and (3.14) decompose a signal into a low-resolution 

approximation and corresponding details, this process is also called analysis and the 

matrix pairs jA and jB  are called analysis filters. On the contrary, the high-resolution 

signal can be reconstructed from the low-resolution approximation and the corresponding 

details as follows: 

11 −− += jjjjj dQcPc         (3.15) 

The reconstruction process is also called synthesis and thus jP and jQ are called 

synthesis filters. 

Note that equations (3.11) and (3.12) can be combined together with a block matrix 

notation: 
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[ ] [ ]1111 || −−−− = jjjjj QPφψφ        (3.16) 

According to the definition of MRA, a function approximation jf at resolution 

j can be decomposed into a lower resolution approximation 1−jf  plus the details 1−jg , 

i.e., 

11 −− += jjj gff         (3.17) 

where jjjf cφ= ; 111 −−− = jjjf cφ and 111 −−− = jjjg dψ . 

Substituting equations (3.13) and (3.14) into the above equations, then (3.17) can be 

reduced into 

jjjjjjjj cBψcAφcφ 11 −− +=         (3.18) 

Write equation (3.18) into block matrix form as 

[ ] j
j

j
jj φ

B
Aψφ =⎥

⎦

⎤
⎢
⎣

⎡−− 11 |         (3.19) 

Thus, the combining of equations (3.16) and (3.19) gives us 

[ ] 111 | −−−=⎥
⎦

⎤
⎢
⎣

⎡ jj
j

j

QP
B
A         (3.20) 

The equation (3.20) shows that the reconstruction filters can be easily computed by 

inverting the block matrix of the scaling and wavelet filters.  
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3.3 B-spline Wavelet based MRA of Surface Texture 

It is desirable to construct the wavelets with all the good properties such as 

orthogonality, compact support and smoothness. However, the orthogonality always 

comes at the expense of wide support and low smoothness. In order to get an accurate 

and high resolution approximation of the surface texture, the endpoint- interpolating B-

spline wavelets, in which the basis functions are compactly supported but not orthogonal 

one another, are presented and applied for the surface texture representation and analysis.   

3.3.1 Surface Texture Representation 

A general non-uniform B-spline basis function with degree p over a non-decreasing 

knot vector [ ]1110 ,,,,, ++++= pnnnpp uuuuuu """u  can be defined as the Cox-de Boor 

recursion formula [3]:  

⎩
⎨
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0,        (3.21) 
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= ; "" ,2,1,0 == pni  (3.22) 

Note that 000 ≡ in the above equation.  

In order to ensure the B-spline curve or surface interpolate the boundaries, the knot 

vector is usually normalized in the interval [0,1] and the first and last knots are made 

1+p  repeated times.  To make uniformly spaced B-splines, n  is set to 12 −+ pj  and the 

knots 
121 ,,
−++ pp juu " are equally spaced in the interval [0,1] in which j  is the level of the 

piecewise-plynomials formed by the scaling functions j
pn

j
p NN ,,0 ," . In other words, j  is 
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the resolution which represents how many times the knot vector space can be subdivided. 

Thus, the larger the number of B-spline scaling functions, the higher resolution the vector 

space is.  

By summarizing the end-point interpolating and uniform spacing conditions, the 

knot vector can be written as: 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−==

++
+ �
�	�""
	�""

timesp

jjjj

timesp
jpjuu

11
220 2,2,12,22,2,1,0,0

2
1,u    (3.23) 

Denote )( pV j  the )(2 RL  space spanned by the B-spline basis functions, i.e. 

scaling functions, j
pp

j
p jNN ,12,0 ,

−+
" with degree p  over the knot vector (3.23), and then 

the nested spaces )(),(0 pVpV j"  are forming a MRA.  

Based on the end-point interpolating and uniform spacing knot vector, a B-spline 

curve with level of m  and degree of p can be represented as: 

mm
p

p

i

m
i

m
pi

m
m

uNuC cNc ⋅== ∑
−+

=

12

0
, )()(       (3.24) 

where [ ]m
pp

m
p

m
p mNN ,12,0 −+
= "N  and [ ]Tm

p
mm

m 120 −+
= ccc " ; )(, uN m

pi  are the B-

spline basis functions; m
ic  are the control points; and the knot vector is defined by 

equation (3.23) with the replacement of m to j .  

Similarly, a uniform endpoint-interpolating B-spline surface with  u  level of m  

and v  level of n  can be represented by the tensor product as follows: 
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where p and q  are the degrees along  u  and v  directions; nm
ji
,

,c are the control 

points; )(, uN m
pi and )(, uN n

qj are the u  and v  scaling functions defined in equations (3.21) 

and (3.22).  

With the equations (3.24) and (3.25), the 2D surface profile and 3D surface texture 

can be represented with multiple levels by fitting a B-spline curve or a B-spline surface to 

the measured 2D or 3D data points, respectively.  

3.3.2 Surface Texture Decomposition and Reconstruction 

It is necessary to first introduce B-spline wavelet based MRA for 2D surface profile 

because the MRA of surface texture can be considered as a generalization from 2D to 3D.  

In order to decompose a signal into a low-resolution approximation and high-

frequency details with equations (3.13) and (3.14), the analysis filters must be computed 

firstly. However, because the analysis filters are normally dense matrix, it would be a 

better approach to use equation (3.20) to determine the analysis filters by inversing the 

synthesis filters, which can be computed more easily. 

Because the B-spline scaling functions are known in equation (3.22), the scaling 

filter jP can be easily computed with equation (3.11). The columns of jP are sparse due 

to the local support of the B-spline basis functions.  
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Note that B-spline wavelets are semi-orthogonal, i.e., the wavelets are orthogonal to 

scaling functions at the same level, but to each other, except case of degree of 0. 

Mathematically,  

[ ] 0ψφ =jj ,          (3.26) 

Substituting equation (3.12) to (3.26), we have 

[ ] 0Qφφ =− jjj ,1         (3.27) 

Since the above homogeneous linear equation system does not have a unique 

solution, some additional constraints must be imposed. Finkelstein [38] derived the 

wavelet filter jQ (See Appendix B) with minimum number of consecutive non-zero of 

the columns to achieve the small compact support of the corresponding wavelets. The 

wavelets basis jψ  can be constructed with equation (3.12).  

Suppose the surface profile is represented by equation (3.24), the )(2 RL space of 

mV  is spanned by the scaling functions m
pN and the control points mc can be considered 

as coefficients of the scaling functions in general wavelet transform.  

The surface profile at level 1−m approximation can be formulated as finding new 

control points 1−mc  by employing equation (3.13), i.e, 

111 )( −−− ⋅= mm
p

m uC cN         (3.28) 

where 1−m
pN is new basis which spans a nested subspace 1−mV  in mV . 
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The lower-resolution approximation comes with the lost details which can be 

captured as: 

111 )( −−− ⋅= mm
p

m uD dψ         (3.29) 

where 1−m
pψ  is the basis of the wavelet subspace 1−mW   with dimension 

12 −m orthogonal and complement to 1−mV  in mV ; is the coefficients of the high-frequency 

details.   

Combining equations (3.13), (3.14) and (3.20) into block matrix, 1−mc and 1−md can 

be computed with the following equation: 

[ ] mmm
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⎢
⎣

⎡
        (3.30)  

This decomposition process of the surface profile can be recursively proceeded 

until it reaches level 0. The hierarchy of this process is shown in Figure 3.1.  

On the other hand, the original surface profile can be reconstructed based on lower-

resolution approximations and corresponding details: 

 
Figure 3.1: Hierarchy of multiresolution curve decomposition 
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If we substitute equation (3.12) to equation (3.29), the details )(1 uD m−  turn out to 

be a B-spline curve with the m level scaling basis functions of m
pN  and control points md~  

that is obtained by multiplying mQ to 1−md .  

1

1

111

~

)(

−

−

−−−

⋅=

⋅⋅=

⋅=

mm
p

mmm
p

mm
p

m uD

dN

dQN

dψ

       (3.32) 

In order to quickly reconstruct the original surface profile )(uC m from the lowest-

resolution approximation )(0 uC  and all the details )(uD j , we can recursively substitute 

equations (3.11) and (3.12) to equation (3.31) until all the scaling functions reach level 

m . Mathematically, 
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    (3.33) 

The MRA of surface profile can be naturally extended as two dimensional (2D) 

wavelet transform to deal with surface texture. There are two basic types of 2D wavelet 

transform: standard and non-standard transform [84].  
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The standard wavelet transform begins with a one dimensional wavelet transform to 

the surface along a direction, for example u  direction, until the desired low level 

approximation in u  direction is reached. Following that, the surface is decomposed along 

v  direction to a desired level with one dimensional wavelet transform. Different from the 

standard wavelet transform, the non-standard transform alternates the one dimensional 

wavelet transform in the u  and v  direction to the surface. The comparison of standard 

and non-standard wavelet transform to a surface is shown in Figure 3.2 (a) and (b).  

  The non-standard wavelet transform performs more efficiently than 

standard wavelet transform in terms of the computational time. However, it requires the 

same number of levels along u and v directions of the surface. Hence, it cannot be 

applied to general B-spline surface. In this research, a hybrid wavelet transform is used 

for the surface texture decomposition. The hybrid wavelet transform performs with the 

non-standard wavelet transform until one direction reaches the lowest-resolution 

approximation. If the other direction can still be decomposed, then the standard wavelet 

transform is performed until it reaches lowest-resolution approximation, too. 

Similar to the surface profile reconstruction, the original surface texture nmS ,  can 

also be quickly reconstructed from the lowest-resolution approximation 0,0S  and all the 

 
Figure 3.2: Hierarchy of multiresolution surface decomposition (a) standard wavelet 

transform, and (b) non-standard wavelet transform 

(a) (b) 
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corresponding details by recursively using equations (3.11) and (3.12) until all the scaling 

functions reach level m and n  in the u  and v  directions, respectively.  

3.3.3 B-spline Wavelet-based MRA Algorithm 

Summarizing the previous section, a general algorithm of multi-resolution analysis 

for surface texture is illustrated as follows. 

Input:  

A sample of 3D point set )...0( Kkk =R measured from a surface texture of a 

manufactured part.  

Algorithm: 

Step1. By using equation (3.25), fit or interpolate an initial B-spline surface to the 

3D point set with uniform and end-interpolating knot vectors.  The number of levels m  

and n  of the surface is determined by desired fitting accuracy and theu , v  knot vectors 

are defined by equation (3.23). Denote the initial surface as nmS , . 

Step2.  Form the synthesis filters jP and jQ where ),max(...0 nmj = . 

Step3.  Apply the hybrid 2D wavelet transform to the column vector with equation 

(3.30) until each direction reaches the lowest (zero) level. Therefore, the initial surface 

has been decomposed into the lowest level approximation 0,0S  and higher-frequency 

details ( nmD ,1− , 1,1 −− nmD , 1,2 −− nmD , 2,2 −− nmD ," , 0,0D ). 

Step4. By employing equation (3.15), the surface texture at any level ji, can be 

easily reconstructed and examined based on the lowest level surface 0,0S and 

corresponding higher- frequency details.   
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3.4 Case Studies 

To demonstrate the effectiveness of the proposed MRA algorithm for surface 

texture in real applications, end-milling surfaces under different cutting parameters and 

tool wear conditions are examined. Based on the decomposed lower-resolution 

approximations and higher-frequency details, the surface texture is separated into three 

major frequency regimes: surface roughness, surface waviness and surface form. 

Moreover, regression models are built for these frequency-banded surface responses with 

respect to the milling parameters and tool wear conditions.  

3.4.1 Correlation between Multi-scale Surface Textures and Milling 
Parameters 

As mentioned above, the purpose of this experiment is to apply the B-spline 

wavelet based MRA to milled surface texture and correlate different frequency regimes to 

milling parameters.  

3.4.1.1 Experiment Setup 

Like other studies [77]-[82], the feed rate ( f ), spindle speed ( s ), and axial depth of 

cut ( d ) are selected as the controllable variables of end-milling. As shown in Table 3.1, a 

two level factorial experiment was performed for each controllable variable, so there 

were total eight experimental runs. A Mori Seiki CNC milling center was used for the 

experiments. The work material selected was Aluminum 6061. The slot-milling was 

conducted using a two-fluted H.S.S Endmill SEL250 tool with diameter of 12.7mm under 

dry conditions. Figure 3.3 shows the slot-milling surfaces under different cutting 

parameters. 
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Table 3.1: Two-level factorial design 

  Spindle Speed (RPM) Depth of Cut (mm) Feed Rate (mm/min) 

slot 1 500 0.2 50 
slot 2 500 0.2 150 
slot 3 500 1 50 
slot 4 500 1 150 
slot 5 1500 0.2 50 
slot 6 1500 0.2 150 
slot 7 1500 1 50 
slot 8 1500 1 150 

3.4.1.2 Results and Analysis 

The 3D surface texture of the milled surfaces was measured by a WYKO optical 

profiler with lateral resolution of 1.65 mμ . Three spots on each milled surface were 

measured with one in the middle (B spot) and the other two near the edges (A spot and C 

spot) as shown in Figure 3.4. Figure 3.5 shows the measurement result of the middle spot 

(B spot) of slot 1. As shown in this figure, the number of measurement points is 368X240 

in the x  and y  directions.  

Because the milled surface might have sharp micro-features along the feed marks, 

the B-spline basis functions with degree of one ( 1=p ), which has positional continuity, 

 
Figure 3.3: Milled slots of the two-level factorial experiment design 

Slot No:2     3        4       5        6        7       8        1  
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is utilized for MRA of the surface texture. Following the procedure of the MRA 

algorithm, an initial B-spline surface 7,8S with number of controls points of 257X129 is 

firstly reconstructed by interpolating part of the measured points. After fully 

decomposing the surface texture, we can obtain all the levels of details 

( 7,7D , 6,7D , 6,6D , 5,6D , 5,5D , 4,5D , 4,4D , 3,4D , 3,3D , 2,3D , 2,2D , 1,2D , 1,1D , 0,1D , 0,0D ) and 

the lowest level of approximation ( 0,0S ). If the reconstruction is applied to the middle 

spot of slot 1 by combining the highest four levels of the details ( 7,7D to 3,4D ) as 

roughness and the remaining levels of details ( 3,3D to 0,0D ) as waviness, Figure 3.6 (b) 

and (c) are obtained. Since the milled surface is flat, the lowest level of approximation 

0,0S  is considered as the form as shown in Figure 3.6 (a).  

 
Figure 3.4: measurement locations of three spots  

 
Figure 3.5: spot B of slot 1 fromWyko measurement 
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In order to validate the feasibility the MRA algorithm, the ISO Gaussian low pass 

filter [85] was implemented and the computed arithmetic average height values ( aR ) of 

roughness and waviness were compared. The impulse response of the 2D Gaussian filter 

for 3D surface texture is defined as an extension of the 1D Gaussian filter [86]: 
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    (3.34) 

where πβ /2ln= and ycxc λλ , are the cut-off wavelengths in the x and y directions 

respectively.  

Figure 3.6: Surface texture decomposition with B-spline wavelet filters 

 
Figure 3.7: Surface texture decomposition with B-spline wavelet filters 

(a) Surface waviness (b) Surface roughness 

(a) Surface form (b) Surface waviness (c) Surface roughness 
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To be consistent with separation of the MRA algorithm, the cut-off wavelengths in 

x  and y  directions are both set to mμ 26.4 21.65 4 =× . Figure 3.7 (a) and (b) shows the 

separated waviness and roughness of the middle spot of slot 1 with Gaussian filter. It is 

observed that the separated waviness and roughness between the MRA algorithm and 

Gaussian filter are correlated well in most locations. However, the results of MRA are 

normally better than that of Gaussian filter because Gaussian filter often introduces 

distortion around the edge areas [29]. 

The computed arithmetic average height value ( aR ) of the form can be considered 

as an indicator of the local flatness of the milled surface. Table 3.2 lists all computed 

aR values of all the milled surfaces. The last two columns show the difference of 

roughness and waviness between the B-spline wavelet based MRA algorithm and the 

Gaussian filter based method. The differences of aR values are due to different 

transmission properties between the B-spline wavelet filter and Gaussian filter. However, 

all the differences of aR  values are less than or around 20%, which is very common for 

different filter banks [87].  

Table 3.2: aR values of all the slot surfaces from the two-level factorial experiments 

unit: um 

Roughness    
(B-spline 

wavlet 
filter)  

Waviness    
(B-spline 

wavlet 
filter)  

Form      
(B-spline 
wavelet 
filter) 

 Roughness 
(Gaussian 

Filter) 

Waviness 
(Gaussian  

filter) 

Roughness 
difference 

Waviness 
difference 

slot 1 _A 0.40441 0.47875 0.34101 0.36645 0.52946 10.359% -9.578% 
slot 1 _B 0.44484 0.34504 0.26420 0.40223 0.37538 10.593% -8.082% 
slot 1 _C 0.36147 0.41347 0.11036 0.31825 0.37891 13.581% 9.121% 

slot1_avg. 0.40357 0.41242 0.23852 0.36231 0.42792 11.389% -3.621% 
slot 2_A 0.63814 1.97960 0.29384 0.61847 1.81900 3.180% 8.829% 
slot 2_B 0.64047 2.36160 0.80942 0.64935 2.24240 -1.368% 5.316% 
slot 2_C 0.56043 2.23370 0.18983 0.53193 2.07550 5.358% 7.622% 

slot 2_avg. 0.61301 2.19163 0.43103 0.59992 2.04563 2.183% 7.137% 
slot 3_A 0.59740 0.46786 0.12509 0.56232 0.42803 6.238% 9.305% 
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slot 3_B 0.44500 0.68371 0.17717 0.41993 0.60984 5.970% 12.113% 
slot 3_C 0.46139 0.42484 0.33949 0.42281 0.47020 9.125% -9.647% 

slot 3_avg. 0.50126 0.52547 0.21392 0.46835 0.50269 7.027% 4.532% 
slot 4_A 0.71630 1.46410 0.41353 0.69236 1.21620 3.458% 20.383% 
slot 4_B 0.63022 1.31690 0.21321 0.57530 1.15380 9.546% 14.136% 
slot 4_C 0.50261 1.63790 0.32920 0.50101 1.50190 0.319% 9.055% 

slot 4_avg. 0.61638 1.47297 0.31865 0.58956 1.29063 4.549% 14.127% 
slot 5_A 0.37471 0.32419 0.04618 0.35032 0.27312 6.962% 18.699% 
slot 5_B 0.40938 0.31202 0.06030 0.37425 0.28353 9.387% 10.048% 
slot 5_C 0.41187 0.23285 0.11194 0.36234 0.22606 13.669% 3.004% 

slot 5_avg. 0.39865 0.28969 0.07281 0.36230 0.26090 10.033% 11.032% 
slot 6_A 0.49972 0.62792 0.05188 0.47242 0.54913 5.779% 14.348% 
slot 6_B 0.41695 0.74244 0.23158 0.38584 0.67526 8.063% 9.949% 
slot 6_C 0.53688 0.55793 0.10172 0.43626 0.49447 23.064% 12.834% 

slot 6_avg. 0.48452 0.64276 0.12839 0.43151 0.57295 12.285% 12.184% 
slot 7_A 0.31431 0.11235 0.01493 0.28770 0.11596 9.249% -3.113% 
slot 7_B 0.30559 0.07549 0.03242 0.27283 0.09954 12.007% -24.163% 
slot 7_C 0.33414 0.11742 0.03151 0.29072 0.12469 14.935% -5.830% 

slot 7_avg. 0.31801 0.10175 0.02629 0.28375 0.11340 12.075% -10.268% 
slot 8_A 0.61557 0.46759 0.11005 0.56357 0.40870 9.227% 14.409% 
slot 8_B 0.45610 0.70897 0.32054 0.41183 0.68569 10.750% 3.395% 
slot 8_C 0.43304 0.78391 0.24507 0.41076 0.68601 5.424% 14.271% 

slot 8_avg. 0.50157 0.65349 0.22522 0.46205 0.59347 8.552% 10.114% 

3.4.1.3 Regression Models and Conclusions 

The R software [36] is used to analyze the aR values of the separated surface 

roughness, waviness and form with the MRA algorithm. In order to investigate the 

relationships between the surface textures and the milling parameters, the aR  values of 

different frequency regimes are first plotted with respect to the three major milling 

parameters as shown Figure 3.8. By observing these boxplots, it can be seen that the 

surface roughness, waviness and form decreases as the spindle speed increases. In 

contrast, the surface roughness, waviness and form increases as the feed rate increases. 

Moreover, it seems that the axial depth of cut does not have significant impact on the 

surface roughness, waviness and form.  
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In order to validate the above observations, the first-order regression models were 

developed for surface roughness, waviness and form with respect to the three milling 

variables. Table 3. 3 shows the summary of the surface roughness regression model. It 

can be seen that the axial depth of cut is not a significant variable to the surface 

roughness (p-value larger than 0.05), which is consistent with our observations. Hence, 

the axial depth of cut variable is dropped and the re-built regression model of the surface 

roughness is shown in Table 3.4. It is obvious that both the spindle speed and feed rate 

have significant impact on the surface roughness. However, the impact of feed rate (99% 

confidence level) is more significant than that of spindle speed (95% confidence level). 

 

 
Figure 3.8: Boxplots of the relationship between the surface texture and milling 
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The surface waviness and surface form are handled in the same way with the 

surface roughness. Table 3.5 shows the full regression model of the surface waviness. 

Similar to the surface roughness model, the axial depth of cut is not a significant variable 

to the surface waviness. Table 3.6 shows the surface waviness regression model after 

dropping the axial depth of cut variable. By observing p-values of the variables of spindle 

speed and feed rate, both of them have significant impact on the surface waviness and 

also have the same level of confidence (95%).  

 

 

 

 

Table 3.3: Full regression model of surface roughness 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Coefficients:     Estimate      t value     Pr(>|t|)     
(Intercept)         0.454622     14.048    0.00014*** 
Spindle speed   -0.107867    -3.333     0.02902*   
Depth of cut     0.009368     0.289      0.78661     
Feed rate           0.148498     4.589      0.01011*   

Table 3.5: Full regression model of surface waviness 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Coefficients:     Estimate      t value     Pr(>|t|)     
(Intercept)         0.7945      2.853    0.0463 * 
Spindle speed   -0.7287      -2.616    0.0590 . 
Depth of cut     -0.1957      -0.703    0.5210   
Feed rate           0.9079      3.259    0.0311 * 

Table 3.4: Full regression model of surface roughness without depth of cut 

Coefficients:         Estimate     t value         Pr(>|t|)     
(Intercept)         0.45931      18.134       9.37e-06 *** 
Spindle speed   -0.10787     -3.688       0.01417 *   
Feed rate         0.14850      5.077         0.00384 **  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 
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Table 3.7 shows the full regression model of the surface form. Similar to the surface 

roughness model, the axial depth of cut is not a significant variable to the surface form. 

Table 3.8 shows the surface form regression model after dropping the axial depth of cut 

variable. Although both of the spindle speed and feed rate are significant variables to the 

surface form, the impact of feed rate (95% confidence level) is less significant than that 

of spindle speed (99% confidence level). 

3.4.2 Correlation between Multi-scale Surface Textures and Tool Wear 
Conditions 

The main objective of this experiment is to examine how the tool wear severity 

affects different frequency regimes of the milled surface in a qualitative sense. 

Table 3.6: Full regression model of surface waviness without depth of cut 
 

Coefficients:         Estimate     t value         Pr(>|t|)     
(Intercept)         0.6967       3.047          0.0285 * 
Spindle speed   -0.7287      -2.760        0.0399 * 
Feed rate         0.9079      3.438    0.0185 * 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 

Table 3.7: Full regression model of surface form 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Coefficients:     Estimate      t value     Pr(>|t|)     
(Intercept)         0.24239     6.345    0.00316** 
Spindle speed   -0.18735     -4.904   0.00802**  
Depth of cut     -0.02167     -0.567   0.60093    
Feed rate           0.13794    3.611  0.02255 * 

Table 3.8: Full regression model of surface form without depth of cut 

Coefficients:         Estimate     t value         Pr(>|t|)     
(Intercept)         0.23156     7.528        0.000655*** 
Spindle speed   -0.18735    -5.275      0.003259**  
Feed rate         0.13794    3.884     0.011600 *   
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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3.4.2.1 Experiment Setup 

The same Mori Seiki CNC milling center, work material and cutting tools were 

used in this experiment. Different from the first experiment, four cutting tools with 

different severity of tool wear were used to cut the material with the same milling 

parameters ( f =150 mm/min, s =1000 rpm and d =0.5 mm) under dry environment. 

Since the degree of the tool wear is hard to quantify, the four tools are categorized as new 

tool, normal tool, slightly worn tool and severely worn tool.  

 

Figure 3.9 shows the magnified photos of these four tools. The number on the 

pictures indicates the degree of flank wear. The new tool shown in the picture has never 

 
Figure 3.9: Magnified photos of the new tool, normal tool, slightly and severely worn tool  
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been used before the cutting. The normal tool has milled out aluminum volume of 76mm 

by 152mm by 6mm under the milling conditions of f =150 mm/min, s =1000 rpm and 

d =0.5 mm. It can be observed that there are some slight differences around the cutting 

edge tip areas compared to the new tool.  The tool wear of the slightly and severely worn 

tool was generated by cutting high speed steel under severe milling conditions of f =200 

mm/min, s =500 rpm and d =2 mm. The slightly worn tool has removed material volume 

of 76mm by 152mm by 6mm. Besides the flank wear, build-up edges and crater wear 

also appear on the cutting tool. The severely worn tool removed twice of the material 

volume of the slightly worn tool. Compared to the slightly worn tool, the tool wear areas 

enlarge and the tool wear degree is more severe. Figure 3.10 shows the four 

corresponding slots milled by these tools. 

3.4.2.2 Result and Analysis 

The milled surfaces were measured and handled in the same way with the first 

experiment. Figure 3.11 shows a measurement example of the middle spot on the milled 

 
Figure 3.10: Milled slots with different tools 

New 
tool 

Normal 
tool 

Slightly 
worn tool 

Severely 
worn tool 
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surface with new tool. As shown in this figure, the lateral resolution is 1.65 mμ  and the 

number of measurement points is 1253X1071 in the x  and y  directions. 

An initial B-spline surface 10,10S with degree of one and number of controls 

points of 1025X1025 is reconstructed by interpolating part of the measured points. 

Since the number of control points are the same along the u  and v  directions, the 

non-standard 2D wavelet transform is applied to decompose the surface texture 

into high-frequency details and low- resolution approximations. If the five 

highest levels of the details are combined as the roughness and the five lowest levels 

 
Figure 3.11: Spot B of the slot with new tool 

Figure 3.12: Surface texture decomposition with B-spline wavelet filters 

(a) Surface form (b) Surface waviness (c) Surface roughness 
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of the details are combined as the waviness, Figures 3.12 (b) and (c) are obtained. The 

reason we choose level five to separate the roughness and waviness is that the implied 

cut-off wavelength is mμ 52.8 21.65 5 =× , which is close to the theoretical feed per teeth 

of 150/2/1000 = 75 mμ  in this experiment.  Similar to the first experiment, the lowest 

level of approximation is considered as the surface form as shown in Figure 3.12 (a).  

Figures 3.13 (a) and (b) show the separated waviness and roughness of the same 

spot of Figure 3.12 with Gaussian filter by setting the cut-off wavelength as 52.8 mμ . 

Similar to Table 3.2, Table 3.9 lists all the computed aR values of the milled surfaces in 

this experiment.  

Table 3.9: aR  values of all slot surfaces milled by tools with different tool wears 

  

Roughness   
(B-spline 
wavelet 
filter)  

Waviness   
(B-spline 
wavelet 
filter)  

Form      
(B-spline 
wavelet 
filter) 

Roughness 
(Gaussian 

Filter) 

Waviness 
(Gaussian  

filter) 

Roughness 
difference 

Waviness 
difference 

New Tool_A 0.32717 0.41091 0.10881 0.30635 0.36989 6.80% 11.09% 
New Tool_B 0.30421 0.33214 0.144 0.2907 0.33971 4.65% -2.23% 
New Tool_C 0.35044 0.68404 0.17047 0.30742 0.67046 13.99% 2.03% 

avg. 0.327273 0.475697 0.141093 0.30149 0.46002 8.55% 3.41% 
Normal tool_A 0.32436 0.41291 0.10785 0.30079 0.41206 7.84% 0.21% 
Normal tool_B 0.33725 0.39465 0.16309 0.31765 0.4042 6.17% -2.36% 
Normal tool_C 0.34036 0.4841 0.1693 0.29915 0.49192 13.78% -1.59% 

 
Figure 3.13: Surface texture decomposition with B-spline wavelet filters 

(a) Surface waviness (b) Surface roughness 
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avg. 0.33399 0.430553 0.146747 0.305863 0.43606 9.20% -1.26% 
Slightly worn_A 0.45423 0.86472 0.1549 0.38245 0.80039 18.77% 8.04% 
Slightly worn_B 0.38953 0.78892 0.23469 0.3335 0.69539 16.80% 13.45% 
Slightly worn_C 0.48979 0.72579 0.17974 0.42024 0.66177 16.55% 9.67% 

avg. 0.444517 0.793143 0.189777 0.37873 0.719183 17.37% 10.28% 
Severely worn_A 0.55232 1.4238 0.20177 0.44055 1.1938 25.37% 19.27% 
Severely worn_B 0.55194 1.4503 0.14883 0.43533 1.2099 26.79% 19.87% 
Severely worn_C 0.50488 1.3016 0.19095 0.40394 1.0967 24.99% 18.68% 

avg. 0.53638 1.3919 0.180517 0.426607 1.1668 25.73% 19.29% 
 

3.4.2.3 Regression Model and Conclusions 

Similar to the logic of the first experiment, the relationship between different 

frequency regimes of the surface texture and the tool wear severity is plotted as shown in 

Figure 3.14. From these boxplots, it can be seen that the mean of surface roughness, 

waviness and form increase as the tool wear is getting worse and worse. However, it 

seems no big difference between the new tool and normal tool in terms of the roughness 

and waviness. In fact, it is really hard to tell the form difference between different tools 

only according to observations on the boxplots. 

 
Figure 3.14: Boxplots of the relationship between surface texture and tool wears 
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In order to explore how the tool wear affects surface texture, the One-Way ANOVA 

method [88] is used to analyze the differences of roughness, waviness and form generated 

with different tool wears, respectively. Table 3.10 shows the surface roughness model by 

setting the new tool as the reference. By observing the p-values, it can be seen that the 

surface roughness of normal tool is not significantly different from that of the new tool 

while the surface roughness of slightly and severely worn tools are significantly different 

from (higher than) that of the new tool. We also compute the confidence intervals (CIs) 

of the difference [88] for pairwise comparisons between the normal tool, slightly and 

severely worn tools. Because all CIs of the difference in Table 3.11 do not contain zero, 

we conclude that the surface roughness of slightly worn tools is significantly different 

from (higher than) that of the normal tool and the surface roughness of severely worn 

tools is significantly different from (higher than) that of the slightly worn tool in this 

experiment.  

 

 

 

 

 

 

 

 

 

 

Table 3.10: Regression model of surface roughness 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Coefficients:      Estimate      t value     Pr(>|t|)     
(Intercept)         0.327273    18.075   9.01e-08 *** 
Normal tool        0.006717    0.262    0.79972     
Slightly worn    0.117243    4.579    0.00181 ** 
Severely worn   0.209107    8.166   3.77e-05 *** 
Residual standard error: 0.03136 on 8 degrees of freedom 
Multiple R-Squared: 0.9191,       Adjusted R-squared: 0.8887  
F-statistic: 30.28 on 3 and 8 DF,  p-value: 0.0001021

Table 3.11: CIs of roughness difference between normal tool, slight and severely worn tool 

Normal tool               vs.     Slightly worn tool:  -0.169572  ~  -0.051480 
Normal tool                vs.    Severely worn tool: -0.261436  ~  -0.143344 
Slightly worn tool    vs.    Severely worn tool:  -0.150910  ~  -0.032818 
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According to the One-Way ANOVA analysis results of the waviness as shown in 

Table 3.12 and Table 3.13, we can draw similar conclusions: The waviness of the new 

tool and normal tool are significantly smaller than that of slightly worn tool and severely 

worn tool; the waviness of slightly worn tool is significantly smaller than that of severely 

worn tool; there is no significant difference of the waviness between the new tool and 

normal tool.  

 

 

 

 

 

 

 

 

 

 

 

Table 3.12: Regression model of surface waviness 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 

Coefficients:     Estimate      t value     Pr(>|t|)     
(Intercept)         0.47570     7.563   6.53e-05 *** 
Normal tool        -0.04514     -0.508    0.6255     
Slightly worn    0.31745     3.569    0.0073 ** 
Severely worn  0.91620     10.300  6.80e-06 *** 
Residual standard error: 0.1089 on 8 degrees of freedom 
Multiple R-Squared: 0.949,       Adjusted R-squared: 0.9299  
F-statistic: 49.64 on 3 and 8 DF,  p-value: 1.628e-05

Table 3.13: CIs of waviness difference between normal tool, slight and severely worn tool 

Normal tool               vs.     Slightly worn tool:  -0.5676318  ~  -0.1575482 
Normal tool                vs.    Severely worn tool: -1.1663818   ~  -0.7562982 
Slightly worn tool    vs.    Severely worn tool:  -0.8037918  ~  -0.3937082 

Table 3.14: Regression model of surface form 

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

Coefficients:     Estimate      t value     Pr(>|t|)     
(Intercept)         0.141093    7.245   8.85e-05*** 
Normal tool        0.005653    0.205     0.842     
Slightly worn    0.048683    1.768     0.115     
Severely worn  0.039423    1.432     0.190     
Residual standard error: 0.03373 on 8 degrees of freedom  
Multiple R-Squared: 0.3669,      Adjusted R-squared: 0.1295  
F-statistic: 1.546 on 3 and 8 DF,   p-value: 0.2763  

Table 3.15: CIs of form difference between normal tool, slight and severely worn tool 
Normal tool               vs.     Slightly worn tool:  -0.10653834  ~  0.02047834 
Normal tool                vs.    Severely worn tool: -0.09727834  ~  0.02973834 
Slightly worn tool    vs.    Severely worn tool:  -0.05424834 ~  0.07276834 
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Table 3.14 shows the One-Way ANOVA analysis results of the surface form. Please 

notice that all the p-values of the tools are quite large (larger than 0.1), which means that 

the surface forms of normal tool, slightly worn and severely worn tool are not 

significantly different from the new tool. The results of CIs shown in Table 3.15 further 

verify that the surface forms of these four tools are not significantly different one another 

because each of the CI contains zero. Another interesting observation on Table 3.14 is 

that the p-value (0.2763) of the regression is very large compared to 0.05. This means the 

surface forms of all these four tools are not significantly different from zero, i.e., the 

milled surfaces are locally flat.  

3.5 Conclusions 

In this study, a B-spline wavelet-based MRA algorithm has been developed to 

model and analyze the surface texture genome of "Product DNA". With the proposed 

algorithm, the surface texture can be efficiently decomposed into lower-resolution 

approximations and higher-frequency details. Based on the reconstructed surface 

roughness, waviness and form by combining different frequency regimes, the aR  

parameters are computed respectively and compared to that of Gaussian filter. The 

comparison results have shown the effectiveness and success of the B-spline wavelet-

based MRA algorithm.  

In addition, two experiments were also performed to correlate different frequency 

regimes of the surface texture to milling variables and tool wear conditions, respectively. 

Based on the regression models of surface roughness, waviness and form with respect to 
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three major milling variables, only the feed rate and spindle speed are found to have 

significant effect on all the separated frequency regimes of the surface texture. 

Furthermore, compared to the spindle speed, the feed rate has more significant, the same 

significant and less significant impact on the surface roughness, waviness and form, 

respectively.  

The One-Way ANOVA analysis of the experiment results with different tool wear 

degrees shows that the surface roughness and waviness generated by severely worn tool 

are significantly higher than that by slightly worn tool, which is also significantly higher 

than that by normal and new tools. Nevertheless, there are no significant differences of 

surface roughness and waviness between the new tool and normal tool, respectively.  

Moreover, the tool wear degrees have not shown significant effect on the surface form. 

All the milled surfaces with different tool wear severities possess local flatness.  

With the B-spline wavelet based multi-resolution analysis method, future work can 

be conducted for faults diagnosis based on the surface texture genome variations within 

or between the manufacturing processes.  
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CHAPTER 4 
HETEROGENEOUS MODELING BASED ON CROSS-SECTIONAL 

MASS DENSITY POINTS 

4.1 Introduction 

Besides dimensional geometry and surface texture, physical attribute is another 

important component of "Product DNA" for a manufactured part. Traditionally, most of 

the quality inspection systems focus on the dimensional information and few addresses 

the issue of product performance both during assembly and in the field of use. In addition 

to geometric dimensions, the product performance is also determined by other non-

dimensional characteristics. For example, the physical attribute of residual stress is a 

dominant factor to fatigue life; and the mass density distribution of a casting blade plays 

an important role on its aerodynamic performance. Hence, there is a need to characterize 

a product based on the integration of all the dimensional and non-dimensional 

information into the as-manufactured CAD model based "Product DNA" for better 

quality inspection, process diagnosis and performance analysis.  

 Heterogeneous object modeling provides an effective way to physical attribute 

into traditional geometry CAD model, which is mainly focusing on geometry topology 

and dimensions [89][90]. Heterogeneous parts normally refer to objects with non-

uniformly distributed material compositions or microstructures [91][92]. In parallel with 
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the development of layered manufacturing technology, most of the current studies [40] on 

heterogeneous object modeling are conducted in a way of forward design of different 

material compositions in a part.  Similar to an r-set object in 3D Euclidean space, Kumar 

et al. [45][93] proposed an rm-object to represent the material composition of the CAD 

model for the purposes of layered manufacturing. Qian et al. [94] adopted an approach of 

functionally graded material (FGM) distribution to design turbine blades in order to 

achieve desired performance on different areas of the part.  

 Besides the "heterogeneities" of compositional variation, the objects with only 

one material may also possess structural heterogeneity such as anisotropy, porosity and 

voids. Structural heterogeneity might be intentionally designed for the purpose of 

application. But in some situations, structural heterogeneity is an undesired property due 

to imperfections of manufacturing process. For example, in the aerospace industry, the 

porosity or voids in blades manufactured by casting, forging or laser consolidation has 

significant influence on part properties such as natural frequency, internal crack, fatigue 

life, dynamic strain and stress. In order to analyze and predict the performance of a 

manufactured part, a model with heterogeneous microstructures is required for 

engineering analysis. The ICT (industrial computer tomography) technology enables to 

penetrate the manufactured part and produces a stack of 3D intensity images. Because the 

heterogeneous microstructures have different absorption rate of X-rays, the image pixels 

are presented with different intensities. With the relationship equation between intensity 

and mass density, the 3D images can be converted into mass density points. Hence, mass 

density can be used as a good quantitative indicator of porosities in a manufactured part. 

Low mass density region has higher probability of voids and vice visa.  
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 Different from the traditional heterogeneous object modeling in a forward design 

way, this research is addressing the problem of reconstructing a heterogeneous object 

(called as-manufactured model) based on cross-sectional mass density points measured 

from a manufactured part. This as-manufactured heterogeneous model has a wide range 

of applications. First, it can be used for quality inspection by comparing the density 

distribution of the manufactured part with that of nominal part design. By constantly 

monitoring the density variation during the product life cycle, people can determine when 

the part has significant quality change and needs to be repaired or replaced.  Second, 

correlating the density distribution to manufacturing parameters and cutting conditions 

enables to better understand and diagnose manufacturing process. Third, the as-

manufactured heterogeneous model is of great importance for design optimization. The 

density distribution can be modified to achieve desired functional performance based on 

relationships between density and functional performance. Last but not least, the as-

manufactured heterogeneous model can be served as a linkage to better understand the 

relationships between manufacturing process and physical performance and thus to 

reduce the manufacturing cost while achieving desired functional performance. 

 The rest of this chapter is organized as follows: Section 4.2 briefly reviews related 

work of heterogeneous object modeling. Section 4.3 introduces representations of the 

heterogeneous objects. Section 4.4 describes an approach to reconstruct a heterogeneous 

model based on cross-sectional mass density points. Some examples are presented in 

section 4.5 to demonstrate the effectiveness of the proposed approach. Finally, section 4.6 

draws the conclusion and future work.  
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4.2 Related Work 

Although this research is focusing on reconstructing a structural heterogeneous 

model based on measured data, some closely related work of forward heterogeneous 

object design is reviewed here.  

 In general, heterogeneous object modeling involves a two-step sequential process 

[44][95]: geometry modeling and physical attributes modeling. Geometry modeling aims 

to model the shape and spatial topology of the object in 3D Euclidean space 3E . The 

commonly used representations of geometry solids are CSG and B-rep [89]. On the other 

hand, the physical attributes include a wide range of types such as material composition, 

density, and residual stress, etc. By incorporating the physical attributes into the 

geometry model, the modeling space is expanded into kAE ×3  , where kA is the attribute 

space with number of dimensions k . Most of the recent research on heterogeneous object 

modeling is mainly dealing with the attribute of material composition. According to 

different representation forms of the model, the heterogeneous modeling schemes can be 

classified into two categories: discrete modeling and continuous modeling.  

 Voxel-based [41]-[43] and mesh-based [44] model are the most popular 

representations of discrete modeling. Voxel-based model represents the model with 

voxels measured by MRI and CAT scanning devices while the mesh-based model 

employs a collection of polyhedrons to represent the object. Both the voxel-based and 

mesh-based models are powerful to model object with complex topology. Other 

advantages include convenience for volumetric rendering, 3D visualization and easy use 

for engineering analysis.  However, due to the discrete representation, it costs huge 
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storage space if highly accurate model is desired. In addition, it is generally cumbersome 

to edit or manipulate the model because the operation involves changes for all the voxels 

or elements.  

 B-spline based representation is widely used for continuous heterogeneous 

modeling because of its convenience to edit and modify the control points. Huang et al. 

[53][96] utilized Bezier curve to model the material distribution of a flywheel and thus to 

achieve optimal design of functionally gradient materials. Kou and Tan [49] introduced a 

hierarchical representation to model heterogeneous object in which some primitive 

objects are were by heterogeneous B-spline curves. Qian et al. [54] extended the 

geometry B-spline volume to model material composition by adding additional 

dimensions to the original 3D control points. Recently, Yang et al. [56] presented an 

integrated design and analysis approach for heterogeneous object realization, which 

employs a unified design and analysis model based on B-spline representation and allows 

for direct interaction between the design and analysis model without laborious meshing 

operation. All the above B-spline based representation assumes that the geometry and 

physical attributes share the same set of control points, degree and knot vector. This tight 

coupling representation limits design flexibility when the geometry and physical 

attributes have different requirements on the number of control points. Martin and Cohen 

[57] proposed an alternative approach to represent volumetric data based on tri-variate 

NURBS, in which the geometry and the attributes are represented by independent tri-

variate volumes except sharing the same parametric domain.  

  Although there are many methods proposed for heterogeneous object modeling, 

most of the studies are performed in a forward design way that converts design intent into 
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a product model. To the best knowledge of the authors, there is no prior work addressing 

the problem of reconstructing an as-manufactured heterogeneous model based on 

physical attribute data. Different from reverse engineering of geometry model, new issues 

might occur in reconstructing an as-manufactured heterogeneous model. For example, 

constraints might be needed to ensure the non-negativity of physical attributes.  

 In this research, a systematic approach is proposed to reconstruct a heterogeneous 

model based on cross sectional mass density points obtained by converting the intensity 

images from ICT. Because resolution requirements are different for geometry and mass 

density, decoupled B-spline representations are adopted to model the object. First, the 

geometry boundary curves are reconstructed by morphing the template curves to the 

cross-sectional profile points. Second, the cross-sectional geometry surfaces are 

reconstructed based on the boundary curves. Following that, the scattered density points 

of each section are parameterized and encoded into the geometry surfaces with a 

constraints based multi-resolution approach. Finally, all the density encoded surfaces are 

lofted into a 3D heterogeneous solid model. There are three important aspects in our 

approach: (a) decoupled B-spline representations are adopted to model the geometry and 

mass density; (b) multi-resolution based method is used to model density attributes; and 

(c) boundary constraints are considered when incorporating density information into the 

geometry model.  
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4.3 Heterogeneous Object Representations 

As mentioned earlier, the heterogeneous model space is kAE ×3  , where 3E is the 

3D Euclidean space and kA is the physical attribute space with number of dimensions k . 

In this research, k  equals 1 because only mass density is considered. The heterogeneous 

objects include mass density point, mass density surface and mass density solid. 

4.3.1 Mass Density Point 

A mass density point Q  can be considered as a four dimensional point which is 

represented by its coordinates plus a mass density ρ , i.e., [ ]Tzyx ρ=Q . 

4.3.2 Mass Density Surface 

The mass density surface is a mapping f from the parametric domain ),( vuΩ  to 

the heterogeneous space 13 AE × , i.e., 132: RRR ×→f . By decoupling the geometry 

and mass density information, the geometric part represented by a normal B-spline 

surface is defined as follows [4]: 
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3
,i j E∈P are the geometric control points and gg nm , are the number of geometric control 

points along vu, parametric directions, respectively. , ( )i pN u  and , ( )j qN v are the B-spline 

basis functions with degree of  gp  and gq  in theu and v  directions, respectively. The B-
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spline basis functions are defined on a non-decreasing sequence of real numbers of 
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where { }0 1,..., m pu u + +=U is called the knot vector.  

 The density part of the surface is defined independently with similar B-spline 

form as the geometry except different control points, degree and knot vector. 
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Where 1
, Ad ji ∈ are the density control points and all other notations are analogous 

to the geometry part.  

4.3.3 Mass Density Solid 

Similarly, a mass density solid can be represented by two separated tri-variate B-

spline volumes. The tri-vairate B-spline volume is an extension of bivariate B-spline 

surface with an additional parametric direction of w .  The geometry part is represented 

as: 
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where , ,i j kP are the geometric control points of ( 1) ( 1) ( 1)g g gm n l+ × + × + mesh. The 

B-spline basis functions , ( )i pN u , , ( )j qN v  and , ( )k rN w  have similar definitions with the 

mass density surface.  

 On the other hand, the mass density part is represented by an independent scalar 

tri-variate B-spline volume as: 
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where kjid ,, are the density control points.  

 The decoupled representations enable us to model geometry and mass density 

with different resolutions. Normally, the mass density data from ICT has much more 

volume than the geometry profile points measured by CMM. In this situation, huge 

storage space can be saved by using less number of control points to model the geometry. 

In addition, all the algorithms of B-spline based geometry modeling can be extended to 

handle the mass density modeling with slight modifications.   

4.4 Proposed Approach 

The proposed approach to reconstruct a mass density solid based on cross-sectional 

ICT images consists of four basic stages: (a) conversion and analysis of intensity images 

to mass density points; (b) reconstruction of cross-sectional geometric surface; (c) 

reconstruction of cross-sectional mass density surface; and (d) mass density solid lofting. 

4.4.1 Intensity Images and Mass Density Points 
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Industry computer tomography (ICT) is widely used for non-destructive inspection, 

density measurement and defects detection [97]. A cone-beam CT system mainly consists 

of four basic functional units: micro-focus x-ray tube, a precise sample fixture, a flat 

panel digital detector and a computer system for image reconstruction. A schematic CT 

system is shown in Figure 4.1. When x-ray transits the rotating object, the digital detector 

records the attenuated intensity, which can be used to reconstruct cross-sectional 

grayscale images with proper algorithms. Because the intensity attenuation is related to 

the material's absorption rate and density, the grayscale image can be processed to obtain 

cross-sectional mass density points. 

The ICT system with high resolution has been applied to measure the samples. The 

system consists of a highly stable micro-focus x-ray tube with voltage of 420kv and a 

high resolution surface detector of 500X500 pixels. The pixel size is 0.0762 mm (0.003 

inch). The output of the reconstruction is a standard DICOM format image. The system 

 

Figure 4.1:  Schematic cone-beam CT system 

X-ray tube Digital detector 

Rotating fixture 

Computer 
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allows scanning objects with maximum dimensions of width and height 76.2X76.2 mm 

(3X3 inches).  

 Figure 4.2(a) shows a reconstructed intensity image of a compressor blade airfoil 

section. Figure 4.2(b) is the intensity histogram of the image. As we can see, most of the 

pixels are concentrated in the intensity range of 0 to 500, which corresponds to the black 

 

Figure 4.2:  (a) Intensity image of an airfoil section, and (b) intensity histogram of the 
image 

 

Figure 4.3:  (a) Binary image of the airfoil section, and (b) boundary image of the airfoil 
section 
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area of the image. On the other hand, the pixels of the blades section are concentrated in 

intensity range from 3500 to 4500, which corresponds to the bright area of the image. By 

using the function of im2bw in Matlab, the original image can be converted into a binary 

image as shown in Figure 4.3(a). Furthermore, the boundary image (Figure 4.3(b)) is 

extracted based on the binary image through the function of bwboundaries in Matlab. 

If we assume the mass density be linear with the pixel intensity and the nominal 

mass density of the compressor blade be 8.000 g/cm3 with respect to the average intensity 

of 3600 of the white pixels in the binary image, the binary intensity image can be 

converted into a set of mass density points as shown in Figure 4.4(a). There are totally 

7242 mass density points for this section with maximum density of 8.858 g/cm3, 

minimum density of 4.005 g/cm3, average density of 8.000 g/cm3 and standard deviation 

of 1.404 g/cm3. Figure 4.4(b) shows the boundary points displayed in Unigraphics (UG).  

 

Figure 4.4:  (a) Mass density points of the airfoil section in UG, and (b) boundary points 
displayed in UG 

(a) (b) 
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4.4.2 Geometric Surface Reconstruction 

In order to obtain a final lofted heterogeneous solid, a series of cross-sectional 

heterogeneous surfaces are required to be firstly reconstructed based on the cross-

sectional boundary points and interior mass density points. A sequential modeling 

process is adopted to reconstruct the heterogeneous surface: geometry surface 

reconstruction and mass density surface reconstruction. This sub-section focuses on 

reconstructing cross-sectional geometry surfaces based on boundary points. 

Because the mass density points of each section are coplanar, the cross-sectional 

geometric surface is purely determined by the boundary points. To ensure the 

compatibility conditions that all cross-sectional B-spline curves share the same degree 

and knot vector, a template curve based non-rigid registration method [98] is employed to 

reconstruct all the profile curves based on the boundary points. Figure 4.5(a) shows an 

example that consists of a template curve and 10 sections of mass density points. The 

template curve is composed of 4 B-spline curves with positional and tangent constraints 

applied between any two adjacent curves. The curves on the leading edge and trailing 

edge have number of control points of 7 and the curves on the convex and concave sides 

 

Figure 4.5:  (a) Template curve and cross-sectional density points, and (b) reconstructed 
boundary curves with non-rigid registration method 
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have number of control points of 15, respectively. With the non-rigid registration method, 

the template curve is automatically transformed and morphed to best fit all the cross-

sectional boundary points. Figure 4.5(b) shows all the reconstructed boundary curves 

associated with mass density points.  

 Different from homogeneous lofting which is directly performed on the boundary 

curves, heterogeneous lofted solid is reconstructed based on heterogeneous surfaces. 

Therefore, cross-sectional planar geometric surfaces are to be created. Given 4 boundary 

B-spline curves, a bilinearly blended Coons surface can be easily constructed [4]. 

Because all the boundary curves are derived from the same template curve, all the 

reconstructed Coons surfaces have the same degree, number of control point and knot 

vector in both vu, parametric directions. The satisfaction of this compatibility condition 

is critical to obtain a final solid model with high quality. Figure 4.6 shows all the 

reconstructed cross-sectional Coons surfaces of the compressor blade example.  

4.4.3 Mass Density Surface Reconstruction 

The second step of the sequential modeling is to reconstruct a mass density surface 

based on the cross-sectional geometric surfaces and mass density points. 

 

Figure 4.6:  Reconstructed cross-sectional Coons surfaces based on the boundary curves 
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4.4.3.1 Initial Mass Density Fitting 

As mentioned in section 3, the decoupled B-spline representation (equation 4.4) is 

used to model the scattered mass density points for each section. Given a set of scattered 

mass density points { } Kkk ...0, == QQ , the objective of mass density fitting is to get an 

optimal representation of ),( vuD  which minimizes the fitting errors as well as keeping 

smooth density change. The least-square cost function can be formulated as: 
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 As shown in the above cost function, the optimization variables include the 

degrees, knot vectors and control points of the density surface. Since the cross-sectional 

geometric surface is already available, the degree and knot vector of the mass density 

surface can be initially chosen as the same as that of the geometric surface. Moreover, the 

parameters ku and kv of the mass density point kQ can be computed by locating the 

nearest point on the geometric surface. This way, the density control points D  are the 

only variables to be considered and the initially fitted mass density surface will share the 

same parametric domain and have the same degree, knot vector and number of control 

points with the geometric surface. The optimization is reduced as: 
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 The above least-square optimization problem can be explicitly solved by setting 

the first derivatives to zero, i.e. 
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 It can be easily proved that∑
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,, NN is a positive semi-definite matrix in that 
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T  for any vector x . Because the number of scattered mass density 

points is usually larger than that of the control points, the matrix of ∑
=
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k

T
kdkd

0
,, NN is 

normally positive definite. Therefore, the control points D  can be obtained by inversing 

the matrix. But if in some cases the matrix is not positive definite, the linear equation of 

(4.9) can still be solved by singular value decomposition (SVD) method [99].  

 

Figure 4.7:  (a) A geometry surface and simulated mass density points, and (b) height 
display of the mass density points and fitted mass density surface 
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 Figure 4.7 (a) shows an example which consists of a geometric surface with 

degree of 3X3 and number of control points of 4X4 in vu,  directions, respectively. In 

addition, 2500 randomly simulated density points are added to the geometric surface. 

This scattered mass density point set has the maximum density 85.495 units, minimum 

density of 76.001 units, average density of 79.107 units and standard deviation density of 

2.365 units. As shown in the figure, the mass density points are intentionally manipulated 

such that density is decreasing from the central area to the lateral area. With the above 

illustrated method, a initial density surface can be reconstructed. Figure 4.7(b) is the 

height display of the mass density points and reconstructed mass density surface 

relatively to the geometric surface.  

4.4.3.2 Multi-resolution based Mass Density Fitting 

As shown in the height display of the example in Figure 4.7(b), the mass density 

surface does not pass through all the density points. The reason is that the number of 

density control points inherited from the geometric surface is not large enough to meet 

desired accuracy. In order to achieve higher accuracy, more control density points are 

needed to increase the freedom of fitting. A multi-resolution based density fitting 

approach is proposed to add more control points to the mass density surface. The multi-

resolution based density fitting can be easily realized by refining the knot vectors of the 

initial fitted mass density surface. 

 Knot refinement means to insert multiple knots into the knot vector at once. 

Single knot insertion is a very important operation to B-spline surface. Given the thj  row 

density control points )...0(, dji mid =  with degree of dp  and the knot vector 
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{ }
dmuu ,...0=U  and a knot ),( 1+∈ kk uuu to be inserted, then the newly formed knot vector 

is { }
dd mmkkkkk uuuuuuuuuu ====== ++++ 112100 ...,,,,...,U . Denote V and V the 

)(2 RL spaces spanned by the B-spline basis functions defined by knot vector U  and U , 

respectively, it is clearly that VV ⊂ ; thus the row of control density points jid , have 

equivalent correspondences  )1...0(, += dji mid in  V .  The new row control density 

points jid , can be computed as [4]:  

jiijiiji ddd ,1,, )1( −−+= αα        (4.10) 
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 In our implementation, new knots are inserted into the middle of any two adjacent 

and unequal knots. That is to say, a coarse knot vector space JV  is halved and subdivided 

into a finer space 1+JV . Therefore, if an initial density surface has 

)()( dddd qnpm +×+ control points mesh, then the next refined control density mesh is 

)2()2( dddd qnpm +×+  and the thJ refined control density mesh 

is )2()2( dd
J

dd
J qnpm +×+ . These nested knot vector spaces 

)(210 RLVVVV J =⊂⊂⊂⊂⊂ ∞""  forms a multi-resolution of the mass density 

surface.  
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 Following up the example presented in Figure 4.7, the multi-resolution based 

density fitting approach is applied. Figure 4.8 shows the colors display of the mass 

density surfaces under different resolutions. As shown in the figure, the color of the mass 

density surface matches the color of mass density points better and better as the 

resolution increases. Table 4.1 lists the average and root mean square (RMS) density 

fitting errors for all the resolutions. Figure 4.9 shows the corresponding chart of the errors 

with respect to the mesh resolutions. Consistent with the color display, both of the errors 

are gradually decreasing with increasing resolutions.  

Table 4.1: Error report of multi-resolution based density fitting 

Mesh Resolution: 4X4 5X5 7X7 11X11 19X19 
RMS Error (units): 0.560 0.370 0.334 0.314 0.288 

Average Error (units): 0.452 0.303 0.277 0.259 0.234 
 

Figure 4.8:  Color display of multi-resolution based mass density surfaces 

 

Figure 4.9:  Mass density fitting error with respect to mesh resolution 

Error (units) 

Mesh resolution 

Resolution: 
4X4

Resolution: 
5X5

Resolution: 
11X11

Resolution: 
7X7

Resolution: 
19X19



 

 106

4.4.3.3 Constrained Mass Density Fitting 

As pointed out by Yang et al. [56], the material composition of the heterogeneous 

points must be positive and less than 1 in heterogeneous object design. However, in their 

interpolation algorithm, they did not consider the problem that even all the heterogeneous 

points have the material compositions positive and less than 1, the lofted curve, surface 

and volume might still have areas whose material compositions are negative or larger 

than 1 due to fitting oscillation. This is unreasonable in real practice. Figure 4.10 (a) 

shows a simple example with four heterogeneous points with coordinates (0, 0, 0, 0.2), 

(2, 0, 0, 0.5), (2.7, 0, 0, 0.02) and (3, 0, 0, 0.98) from left to right. As we can see, all the 

points' material compositions are within the range of 0 to 1. However, if the general 

heterogeneous curve lofting algorithm is applied with degree of 3, the resulted curve will 

have portions with material compositions larger than 1 or less than 0 as shown in Figure 

4.10 (d). The color displayed heterogeneous curve in Figure 4.10(b) also shows obvious 

inconsistent color matching between the curve and points. 

One way to solve this problem is to use B-spline curve with degree of 1 to model 

the material compositions because all the linearly blended curve portions between any 

Figure 4.10:  (a) Heterogeneous points, (b) interpolated cubic heterogeneous curve, (c) 
interpolated linear heterogeneous curve, and (d) height display of the material 

composition of the fitted curves 

(d) 

(a) 

(b) 

(c) 
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two adjacent points have the material composition values between that of the two points. 

Therefore, given the heterogeneous points have material compositions positive and less 

than 1, the interpolated curve will also satisfy this condition. As shown in Figure 4.10(c), 

the linearly interpolated heterogeneous curve has good color match with the 

heterogeneous points.  

 Linear B-spline to model heterogeneous points will limit the degree of freedom 

for heterogeneous object reconstruction. Moreover, for scattered heterogeneous points in 

2D, the B-spline heterogeneous surface fitting (not interpolation) with degree of 1 

sometimes also results in some undesired portions. An alternative way to conquer this 

problem is to impose boundary constraints on the reconstructed heterogeneous surface.  

 For a set of scattered mass density points with approximated normal distribution 

with mean densityμ  and standard deviationσ ,  the low and up bounds of the boundary 

constraints can be set as )3,0max( σμ − and σμ 3+ , respectively. The boundary 

constraints not only guarantee the reconstructed mass density surface within a reasonable 

density range, but also exclude some possible noisy points from the intensity images. It 

should be pointed out that the boundary constraints can be set to other forms depending 

on the distribution types of the scattered mass density points.  

 By incorporating the boundary constraints into equation (4.8), the mass density 

surface fitting then becomes a constrained optimization problem as: 
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where lb and ub stand for the low bound and up bound, respectively. This 

inequality constraint requires every surface point satisfy the boundary constraints, which 

means there are infinite constraints because of infinite surface points. One way to 

simplify the boundary constraints is to use the B-spline's strong convex hull property 

which says a B-spline curve (or surface) is contained in the convex hull of its control 

polyline (or mesh). Therefore, the constrained optimization problem can be simplified as: 
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where lb and ub denote the low bound and up bound vectors (with the same 

dimensions as D ), respectively. 

 As pointed out in section 4.4.3.1, the matrix ∑
=

K

k

T
kdkd

0
,, NN is a positive semi-

definite matrix, hence )(DE is a convex function. Furthermore, because the inequality 

constraints are linear, the constrained optimization is a standard quadratic programming 

problem. In this case, the quadratic problem has a global minimum if there exists at least 

one vector D satisfying the boundary constraints. The optimal solution D must satisfy the 

Karush-Kuhn-Tucker (KKT) conditions and the simplex algorithm can be used to solve 

the linear equation system of the KKT conditions [74].  
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4.4.3.4 Algorithm 

By comprehensively considering the issues of accuracy and constraints, the 

algorithm of mass density surface reconstruction based on geometric surface and 

scattered mass density points can be summarized as follows: 

 Set the desired density fitting error threshold 0ε . 

 Compute the mean density μ and standard deviation σ  

 Parameterize the mass density points with respect to the geometric surface 

 Set the number of control points and knot vector of the initial density surface as 

the same as the geometric surface 

 Solve the constrained optimization problem (4.13) to obtain 0D  

 Report the density fitting error ε  

 J=0 

 While( 0ε ε> ) 

 { 

  J=J+1 

  Refine the knot vectors of the previous density surface 

  Solve the constrained optimization problem (4.13) to obtain JD  

  Report the density fitting error ε  

 } 

4.4.4 3D Heterogeneous Lofting 

After a series of cross-sectional mass density surfaces have been reconstructed, the 

final mass density solid can be created by extending the 1D B-spline curve interpolation 
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algorithm [4] to 3D. Because decoupled representations are used for cross-sectional 

geometric and mass density surface reconstruction, the lofting of geometric solid and 

mass density solid are performed independently. Moreover, since all the cross-sectional 

geometric surfaces are derived from the same template curve, the compatibility 

conditions (same knot vector, same degree and same number of control points) are 

automatically satisfied. However, all the mass density surfaces must be refined to have 

the same resolutions with the highest one. In addition, the degree along the density lofting 

direction is chosen as 1 in cases of unreasonable regions on the density solid.  

 Suppose there are 1+l  heterogeneous surfaces denoted 

as lkAEDkk ...0,),( 13 =×∈S , the decoupling representation based 3D mass density 

lofting algorithm can be described as follows: 

 Set the degree  gr and dr in the lofting direction 

 Computing the knot vector gW and dW along the lofting direction based on the 

spacing between adjacent cross sections. 

 For each column (totally )1()1( +×+ gg nm columns) of the geometric control 

points )...0(, lkk
ji =P , apply the B-spline curve interpolation algorithm to get control 

points )...0,...0,...0(,, lknjmi ggkji ===P  of the volume geometry. 

 For each column (totally )1()1( +×+ dd nm columns) of the density control points 

)...0(, Lkd k
ji = , apply the B-spline curve interpolation algorithm to get control points 

)...0,...0,...0(,, lknjmid ddkji ===  of the volume mass density. 
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 The volume represented by geometry control points kji ,,P and mass density control 

points kjid ,, is the final lofted mass density solid which passes all the cross-sectional 

geometric and mass density surfaces. 

4.5 Case Studies 

The approach described in section 4.4 has been implemented in Unigraphics and 

tested with real examples. Because the mass density points of all examples have 

approximated normal distribution, the low and up bounds of the constraints for density 

fitting are set to )3,0max( σμ − and σμ 3− , respectively. Both fitting accuracy and 

calculation cost are given to illustrate the robustness and the applicability of the proposed 

approach. All the tests are performed on a DELL desktop with 3.4 GHz Intel Pentium and 

2047 MB RAM. 

4.5.1 Case Study 1 

This example shows the constrained multi-resolution based mass density fitting for 

a cross-section of a gauge block. Figure 4.11 (a) shows one section of 24,796 mass 

density points with mean density 8.000g/cm3, maximum density 9.625g/cm3, minimum 

 

Figure 4.11:  (a) Cross-sectional mass density points of a gauge block, (b) mass density 
surface with 4X4 resolution, and (c) mass density surface with 35x35 resolution 

(a) (b) (c) 
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density 3.900 g/cm3 and standard deviation 0.811g/cm3.  For the constrained fitting, the 

low bound is set as 5.567g/cm3 and the up bound is set as 10.433 g/cm3. As the customers 

require the RMS error must be less than 50% of one standard deviation, the mass density 

fitting starts from resolution of 4X4 and ends at resolution of 35X35. As it can be seen 

from Table 4.2, the accuracy is satisfied from the resolution of 11X11. Figure 4.11(b) and 

(c) shows color display of the mass density surfaces with resolutions 4X4 and 35X35, 

respectively. It is obvious that Figure 4.11(c) has better color matching to the mass 

density points than Figure 4.11(b). Table 4.2 lists the average and RMS errors of mass 

density fitting under different resolutions and Figure 4.12 graphically shows the error 

change with respect to the resolution. As what is expected, both of the average and RMS 

errors are gradually decreasing as the resolution is increasing. The running time 

constrained density fitting for the resolution of 35x35 is about 150 seconds.  

Table 4.2: Error report of multi-resolution based density fitting for the block section 
Mesh Resolution: 4X4 5X5 7X7 11X11 19X19 35X35 

RMS Error (g/cm3): 0.596 0.500 0.425 0.374 0.356 0.322 

Average Error (g/cm3): 0.391 0.348 0.311 0.266 0.255 0.232 

 

Figure 4.12:  Mass density fitting error with respect to the mesh resolution for the block 
section 

g/cm3 

Mesh resolution 
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4.5.2 Case Study 2 

Figure 4.13(a) shows one cross-sectional geometric surface of gauge pin which is 

represented by planar B-spline surface with degree of 3 and number of control points 7 in 

both parametric directions. In Figure 4.13(b), there are totally 21,305 mass density points 

with mean density 8.000g/cm3, maximum density 9.498g/cm3, minimum density 3.911 

g/cm3 and standard deviation 0.814g/cm3.  The low bound and up bound constraints are 

set as 5.558 g/cm3 and 10.442 g/cm3, respectively. The multi-resolution based mass 

density fitting algorithms is tested on this example until it reaches the resolution of 

35X35. Figures 4.13(c) and (d) are the color displays of the fitted mass density surfaces 

with resolution of 7x7 and 35x35, respectively. Based on the comparison of these two 

figures, it is evident that Figure 4.13(d) has closer density change pattern to the mass 

density points. Table 4.3 lists the error report and Figure 4.14 shows the chart of the error 

with respect to the mesh resolution. As we can see in both of the table and chart, the 

average and RMS errors are gradually decreasing with increasing mesh resolution. The 

running time constrained density fitting for the resolution of 35x35 is about 120 seconds. 

Figure 4.13:  (a) A gauge pin geometry surface, (b) mass density points, (c) mass density 
surface with resolution of 7X7, and (d) mass density surface with resolution of 35X35 

(a) (b) (c) (d) 
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Table 4.3: Error report of multi-resolution based density fitting for the pin section 

 

 

4.5.3 Case Study 3 

This example is following up the compressor blade example presented in Section 

4.2. But here we focus on the mass density surfaces reconstruction based on the 

reconstructed geometric surfaces and mass density points. Figure 4.15(a) shows all the 

cross-sectional mass density points and Table 4.4 lists the statistics of the mass density 

points. Because the resolution (15X7) of the mass density control points inherited from 

Mesh Resolution: 7X7 11X11 19X19 35X35 

RMS Error (g/cm3): 0.352542 0.328628 0.31269 0.287634 

Average Error (g/cm3): 0.253866 0.230398 0.224682 0.205086 

 

Figure 4.14:  Mass density fitting error with respect to the mesh resolution for the pin 
section 

 

Figure 4.15:  (a) Cross-sectional mass density points, and (b) reconstructed cross-
sectional mass density surfaces 

g/cm3 

Mesh resolution 

(a) (b) 
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the geometric surface is larger enough to achieve desired accuracy, the constrained mass 

density fitting is performed only once for each section. Figure 4.15 (b) shows the 

reconstructed cross-sectional mass density surfaces. It can be seen that all the mass 

density surfaces have great color matching with the corresponding cross-sectional mass 

density points. Table 4.5 list the average and RMS errors of mass density fitting for each 

section. As shown in the table, the small average and RMS errors indicate good fitting to 

the mass density points. The running time for each section is about 60s. Based on the 

reconstructed mass density surfaces, the 3D heterogeneous lofting algorithm is applied 

and Figure 4.16(a) shows the lofted mass density solid. Figure 4.16(b) shows three 

isoparametric surfaces of 5.0=u , 5.0=v  and 5.0=w evaluated based on the mass 

density solid. 

Table 4.4: Statistics of cross-sectional mass density points of the compressor blade 
Section number: 1 2 3 4 5 6 7 8 9 10 

Point number: 3818 3971 4235 4575 4929 5356 5807 6254 6850 7242 

Maximum 
density(g/cm3): 10.408 10.437 10.470 10.524 10.388 10.245 10.242 10.239 10.085 9.858 

Minimum 
density(g/cm3): 3.950 3.933 3.911 3.839 3.781 3.723 3.674 3.616 3.552 4.005 

Figure 4.16:  (a) Mass density solid of the compressor blade, and (b) isoparametric 
surfaces evaluated from the mass density solid 

(a) 
(b) 
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Average 
density(g/cm3): 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 

Stadard 
deviation(g/cm3):  1.857 1.841 1.852 1.815 1.792 1.758 1.746 1.694 1.652 1.404 

Low bound 
density(g/cm3): 2.429 2.477 2.444 2.555 2.624 2.726 2.762 2.918 3.044 3.788 

Up bound 
density(g/cm3): 13.571 13.523 13.556 13.445 13.376 13.274 13.238 13.082 12.956 12.212 

 

Table 4.5: Error report of mass density fitting for the compressor blade's sections 

 

4.5.4 Case Study 4 

This example is a blade artifact. Figure 4.17(a) includes 8 cross-sectional geometric 

surface reconstructed with non-rigid registration method [98]. Each surface has the 

degree of 3X3 and number of control point 25X4 along the vu, parametric directions. 

Figure 4.17(b) shows the corresponding cross-sectional mass density points. Table 4.6 

Section number: 1 2 3 4 5 6 7 8 9 10 

RMS error (g/cm3): 0.133 0.113 0.132 0.133 0.133 0.145 0.138 0.140 0.138 0.141 

Average error (g/cm3): 0.097 0.087 0.101 0.102 0.104 0.109 0.109 0.110 0.109 0.109 

Figure 4.17:  (a) Cross-sectional geometric surfaces of an artifact blade, (b) mass density 
points, and (c) reconstructed mass density surfaces 

(a) (b) (c) 
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lists the statistics of the mass density points of each section. As shown in the table, the 

mass density points are quite noisy because of the high standard deviation and lower 

minimum densities. By applying the constrained density fitting to each section with the 

number of density control points the same as that of the geometric surface, a series of 

density surfaces are reconstructed as shown in Figure 4.17(c). It can be observed that the 

color display of each density surface matches its corresponding density point very well. 

In addition, as shown in the error report in Table 4.7, most of the RMS errors are satisfied 

except section 5, 6, and 7 whose RMS error are just slightly larger than one half of the 

standard deviation. This is normal for such noisy mass density points and the error can be 

further reduced by increasing the resolutions of the mass density surface. The running 

time for each section in this example is about 90 seconds. Figure 4.18(a) shows the mass 

density solid reconstructed by using the 3D heterogeneous lofting algorithm and Figure 

4.18(b) shows the isoparametric surfaces of 5.0=u , 5.0=v  and 5.0=w evaluated based 

on the mass density solid. 

Table 4.6: Statistics of the cross-sectional mass density points of the artifact blade 

 

 

Section number: 1 2 3 4 5 6 7 8 

Point number: 11343 11860 12443 13026 13605 14264 14917 15530 

Maximum density(g/cm3): 9.879 9.583 9.512 9.332 9.294 9.182 9.326 9.493 

Minimum density(g/cm3): 0.323 0.308 0.338 0.490 0.720 0.849 0.794 0.419 

Average density(g/cm3): 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 

Standard deviation(g/cm3):  2.390 1.943 1.653 1.382 1.227 1.163 1.140 1.242 

Low bound density(g/cm3): 0.83 2.171 3.041 3.854 4.319 4.511 4.58 4.274 

Up bound density(g/cm3): 15.17 13.829 12.959 12.146 11.681 11.489 11.42 11.726 
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Table 4.7: Error report of mass density fitting for the artifact blade's sections 
Section number: 1 2 3 4 5 6 7 8 

RMS error (g/cm3): 0.828 0.796 0.742 0.667 0.626 0.600 0.598 0.618 

Average error (g/cm3): 0.534 0.474 0.413 0.346 0.316 0.301 0.300 0.338 

 

 

4.6 Conclusions and Future Work 

By taking mass density as one of the physical attributes of "Product DNA", this 

research proposes a constraint based multi-resolution approach to reconstruct a 

heterogeneous model based on cross-sectional mass density points. In this approach, a 

series of cross-sectional geometric surfaces are firstly reconstructed by transforming and 

deforming a template curve to best fit the boundary points extracted from the intensity 

images of ICT. Based on the cross-sectional mass density points, a decoupled 

representation is used for mass density surface fitting in order to increase modeling 

flexibility. Inheriting the number of control points and knot vectors from the 

 

Figure 4.18:  (a) Mass density solid of the artifact blade, and (b) isoparametric surfaces 
evaluated from the mass density solid 

(a) (b) 
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reconstructed geometric surface, an initial mass density surface is reconstructed by 

minimizing the sum squared distances between the surface and points. In order to obtain 

a mass density surface within a reasonable density range, boundary constraints are added 

into density fitting. Further knot refinement technology can be applied on the initial mass 

density surface to increase fitting resolutions and thus achieve desired accuracy. Finally, 

a mass density solid is lofted based on the reconstructed mass density surfaces with 3D 

heterogeneous lofting algorithm.  

 There are three basic advantages of the proposed approach. First, the decoupled 

representations enable independent modeling flexibilities for geometry and mass density 

and thus save huge storage space under different resolution requirements. Second, the 

boundary constraints guarantees a reasonable mass density surface reconstructed based 

on the mass density points. Third, the multi-resolution based method provides a coarse-

to-fine fitting hierarchy to achieve desired accuracy. The simulated and real examples 

have demonstrated the effectiveness and superiority of the proposed approach.  

 Future research of heterogeneous object modeling can be extended into 

incorporating more types of physical attributes into the as-manufactured CAD model 

based "Product DNA" for different applications. In addition, performance analysis and 

prediction can be conducted based on the reconstructed as-manufactured CAD model can 

also be investigated.   
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This doctoral research is focusing on reconstructing an as-manufactured CAD 

model based on measurement data, which is an essential stage for the development of 

"Product DNA" framework. Specifically, the research work has been conducted from 

three different perspectives to encode the product information into the as-manufactured 

CAD model: dimensional geometry, surface texture and physical attribute (mass density).  

 First, a non-rigid registration approach has been proposed for 2D profile curves 

based geometry modeling for the purpose of geometry information. In this approach, a 

weighted mutual distance based method is proposed to establish the correspondence and 

then the template curve is iteratively transformed and morphed to best fit the measured 

points through affine combined with FFD transformation while maintaining geometry 

constraints. The final solid model can then be created by lofting, sweeping, translating or 

revolving with the morphed 2D profile curves. Compared to the traditional constrained 

fitting method that assumes the 2D profile points have been segmented in advance and 

the initial fitted curves are very close to the points, this non-rigid registration approach 

does not require any data preprocessing such as noise filtering, sorting, segmentation and 

parameterization. Moreover, the compatibility conditions between different profile curves 



 

 121

are automatically satisfied to ensure the final reconstructed solid with high quality. The 

real industry examples have demonstrated the effectiveness and significance of the 

approach applied in part family modeling and manufactured part validation.  

 Second, a B-spline wavelet-based MRA approach has been proposed for surface 

texture modeling, analysis and process parameters correlation in end-milling. Motivated 

by multi-resolution curves in computer graphics, an initial B-spline surface is first 

interpolated or fitted to the measured points of the surface texture. With B-spline wavelet 

transform, the initial surface is then decomposed into higher-frequency details and lower-

frequency approximations. By taking the reconstructed surface roughness, waviness and 

form based on different frequency regimes as the responses, regression models are built 

by considering feed rate, spindle speed, axial depth of cut and tool wears as controllable 

variables in the end-milling process of aluminum. The real case studies and comparisons 

with ISO Gaussian filter have demonstrated the effectiveness of the proposed B-spline 

wavelet-based MRA algorithm for surface texture analysis and manufacturing process 

diagnostics.  

 Third, by taking mass density as an example of physical attribute, a systematic 

approach has been proposed to reconstruct a heterogeneous model based on measured 

cross-sectional intensity images. To increase modeling flexibility and save storage space, 

decoupled B-spline based representations are adopted to model geometry and mass 

density independently. Moreover, a constraint based multi-resolution method is proposed 

for mass density surface fitting in order to achieve reasonable mass density range and 

satisfied accuracy. Finally, a 3D heterogeneous mass solid is created by lofting all the 

reconstructed mass density surfaces with 3D heterogeneous lofting algorithm. The 
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simulated and real examples have demonstrated the effectiveness and success of the 

proposed approach for reconstruction of heterogeneous objects. In addition, the proposed 

approach can also be used for heterogeneous object modeling for other physical attributes 

such as porosity and material composition. 

5.2 Future Work 

The research work of this doctorial study is concentrated on the coding process of 

"Product DNA", which is the first step to develop the entire framework of the concept. In 

this dissertation, three different DNA genomes, i.e., geometry dimensions, surface texture 

and physical attributes (mass density), have been considered to reconstruct an as-

manufactured CAD model based on measurement data. As indicated in Figure 1.1, the 

coding process of building an as-manufactured CAD model is an essential part of the 

entire "Product DNA" framework. In order to complete the whole "Product DNA" 

framework for different purposes of applications, a number of future research may be 

taken up following the studies in this dissertation. 

 1. Establishment of Product DNA library. Inspired by the idea of human gene 

library, a Product DNA library can be built based on the classification of manufacturing 

parts. The genome priority of classification is geometry, surface texture and physical 

attributes. By comparing geometry genomes, the products with similar geometry 

genomes will be grouped into a part family. For example, the blades at different stages in 

jet engine belong to the same part family because they shares the similar geometry 

genome, although the dimensions, surface texture and physical attributes might be 

different.  Surface texture pattern and physical attributes distribution can be further 
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divided based on the family parts into more detailed categories. In addition, the 

information of manufacturing process, functional performance and product life time can 

be attached to each Product DNA.  

 SQL database can be used to build the Product DNA library. New Product DNA 

can be easily added to the library according to classification rules. A search engine can 

also be developed for the Product DNA library. The search engine will enable the users to 

quickly find their interested products by inputting some key words such as genomes of 

geometry, dimensions, surface textures or physical attributes. The initial product based on 

the Product DNA concept could be a data management and reporting system that will be 

designed to analyze Product DNA to determine the capacity and predict the life 

expectancy for a product based on the predetermined function the product is built to 

perform. 

 2. Product DNA based quality inspection. Each product in the library has a 

corresponding Product DNA of the nominal design. Influenced by various manufacturing 

factors, the manufactured part usually differs from the nominal design to some extent. 

Therefore, an important application of Product DNA is to inspect the product quality by 

comparing the corresponding genome of the manufactured part with that of the nominal 

design. On the other hand, by continuously monitoring the Product DNA of manufactured 

parts throughout the whole life cycle, people can find the quality issue at the right time 

and make decisions of repairing or replacement.  

 3. Product DNA based process diagnosis. The Product DNA can be used to 

identify the causes of genomes variation and relationship to the manufacturing processes. 
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With knowledge of these causes and relationships, higher precision manufacturing will be 

possible. By examining the relationship between the genomes variation and the 

manufacturing process, the root causes or factors which result in the variation can be 

identified. The preliminary research in chapter 3 has demonstrated this idea by 

correlating surface texture genomes to the milling process.  

 In this research, a set of tools can be developed with experience-based knowledge 

and its unified consideration of the analytical knowledge and connections. The Stream of 

Variations approach can be utilized to connect dimensional and surface texture genomes 

of the product with fixture or tool alignment errors in the process. In addition, statistical 

methods can be used to describe connections of product DNA with the process-level 

faults and behavioral patterns of the product during its use. It is anticipated that a number 

of physical attribute genomes will be extracted from the product measurements for which 

no experience-based knowledge about connections to the process-level faults or product 

behavior patterns will be available. 

 4. Product DNA based performance analysis and prediction. The Product DNA 

not only uniquely defines the product's characteristics, but also defines the functional 

performance of the product in the field of use. In this research, the relationship between 

DNA genomes and physical performance can be investigated. Furthermore, DNA 

decoding tools can be developed for the purpose of performance analysis and prediction. 

 Case study can be carried out depending on different applications. For example, 

the geometry dimensional genome of the blades is fundamentally related to the 

aerodynamics performance [8]. By incorporating engineering rules into the geometry 
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genomes, the relationship between the performance and geometry parameters can be 

better understood. Surface texture genome has significant impact on the performance of 

functional surfaces such as mating and sealing surfaces in powertrain manufacturing. 

Wavelet based multi-resolution analysis (MRA) method can be used to identify the 

dominated frequency regimes which have the most significant influence on the 

performance. Physical attributes normally have more direct relationships to the physical 

performance. The density genomes, especially for the casting, forging and laser 

consolidation part, can also be studied to explore the relationships to performance such as 

natural frequency and dynamic strain and stress. Simulation models can be developed by 

decoding the physical attributes genome.    

 By constantly monitoring the Product DNA and analyzing the physical 

performance, time series model can be built to examine the evolution behaviors of the 

genomes and how they dynamically affect the physical performance over time. Statistical 

methods can be developed based on the time series model for the purpose of performance 

prediction.  

 5. Optimization of design, manufacturing and performance. The ultimate goal of 

Product DNA development is to provide a platform for optimal product design and 

manufacturing to achieve desired performance. Product DNA serves as the information 

hub which closes the loop of design, manufacturing, inspection and engineering analysis 

(See Figure 5.1).  

 Design optimization tools can be developed by modifying corresponding DNA 

genomes based on the relationships between Product DNA and physical performance. To 
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do this, the performance will be set as the objective function with DNA genomes as the 

variables while subject to some engineering constraints. Optimal Product DNA can be 

obtained by solving a constrained optimization problem.  

 There is a lack of understanding about exactly how manufacturing processes 

directly and indirectly affect the desired physical attributes and performance of the parts 

they produce. Product DNA can be considered a linkage between the process and 

performance because it carries genomes related both to process information and 

performance patterns of the product. Once we have constructed a cost model of process 

and an improved understanding of how manufacturing process parameters affect part 

characteristics, methods can be developed to choose parameter settings which allow users 

to both achieve desired physical performance and minimize manufacturing cost.  To do 

this, the quality of the desired physical attribute genomes can be expressed in terms of 

manufacturing cost, formulated with a constrained objective function, and developed by a 

technique to evaluate the optimal value of the process parameters.   

 

Figure 5.1:  Product DNA based closed-loop design, manufacturing, inspection and 
analysis 
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5.3 Original Contributions 

This research tackled the coding process of reconstructing an as-manufactured CAD 

model under the framework of "Product DNA". The main original contributions of this 

dissertation are summarized as follows:  

 1. For the dimensional geometry genome, the non-rigid registration approach for 

2D profile curves based geometry modeling is novel. Most of the state-of-the-art 

approaches require the 2D profile points sorted, segmented and parameterized. With the 

non-rigid registration approach, a template curve can be automatically transformed and 

morphed to best fit the 2D profile points without any data preprocessing work. Moreover, 

all the reconstructed 2D profile curves naturally satisfy the compatibility condition, 

which is essential to obtain a high quality solid model by sweeping, lofting, revolving or 

translating.  

 2. For the surface texture genome, the B-spline wavelet-based MRA algorithm for 

surface texture modeling and analysis is novel. Because the B-spline wavelet has linear 

phase transmission characteristics, the filtered surface texture does not have any 

distortions. Most of the current studies are still using a single frequency band to 

characterize the surface texture. With the B-spline wavelet-based MRA method, the 

surface texture can be decomposed into multiple finer frequency bands such as surface 

form, surface waviness and surface roughness. By correlating different frequency bands 

of the surface texture to manufacturing parameters and conditions, process faults and root 

causes can be more precisely diagnosed.  
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 3. In addition to dimensional geometry and surface texture, physical attributes are 

incorporated into the "Product DNA" framework. By taking mass density as an example 

of physical attribute, a systematic approach to reconstruct a heterogeneous solid based on 

cross-sectional mass density points is new. Although there are numerous studies in the 

field of heterogeneous modeling, all of them are conducted in a forward design way by 

converting a concept into a computer model. On the contrary, the proposed approach 

enables to build a heterogeneous model based on the inspection data of a manufactured 

part. The as-manufactured mass density solid has important applications such as quality 

inspection and engineering analysis. In addition, the algorithm of constrained mass 

density surface fitting with decoupled multi-resolution representation is novel.  
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APPENDICES 

Appendix A: Transformations in 2D space 

Transformation is a function f  which maps a point [ ]1 2 1 T
i i ix x=X  in the 

source data to the corresponding point 1 2 1
T

j j jy y⎡ ⎤= ⎣ ⎦Y in the target data, i.e., 

: i jf →X Y .         (A.1) 

Rigid Transformation 

Rigid transformation in 2D allows the source data rigidly to move to the target data 

with 3 DOFs (degree of freedom), i.e., one rotation and two translations. The 

mathematical form of rigid transformation with homogeneous coordinates is: 

1 1

2 2

cos sin
( ) sin cos

0 0 1 1

i

i i

t x
f t x

θ θ
θ θ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X .      (A.2) 

Affine Transformation 

Different from rigid transformation, affine transformation in 2D allows the source 

data to deform with three additional DOFs (one shear and two scales). Therefore, 

1 2 3 1

4 5 6 2( )
0 0 1 1

i

i i i

a a a x
f a a a x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

X TX� .      (A.3) 

Free-from Deformation 
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The basic idea of FFD is to deform the object by manipulating the control points of 

a designed mesh [101]. There are many proposed methods [102] for mesh design and the 

simplest way is to define the mesh shape as the axis oriented bounding box of the object 

with a grid of control points V . Because the objects considered in this paper are 2D 

curves, the designed mesh, sometimes called lattice, is often expressed as a tensor 

product B-spline surface: 

,

, ,
, 0

( , ) ( , )
M N

T
i j i j

i j

u v B u v′ ′ ′ ′
′ ′=

= ∑S V B V�       (A.4) 

where 0,0 ,( , ) ( , )
T

M NB u v B u v⎡ ⎤= ⎣ ⎦B "  and , , ,( , ) ( ) ( )i j i p j qB u v B u B v= ; , ,( ), ( )i p j qB u B v  are 

the thp , thq  order B-spline basis functions with the knot vectors 

0 p M M pu u u u +⎡ ⎤= ⎣ ⎦u " " "  and 0 q N N qv v v v +⎡ ⎤= ⎣ ⎦v " " " , 

respectively. 0,0 ,

T

M N⎡ ⎤= ⎣ ⎦V V V" are the lattice control points. 

A point kP embedded in the lattice with parameters ( , )k ku v can be computed as: 

,

, ,
, 0

( , ) ( , )
k

M N
T

k k k i j k k i j
i j

u v B u v′ ′ ′ ′
′ ′=

= = ∑ PP S V B V�      (A.5) 

Hence, if a displacement vector δ is made on the control points of the lattice, then 

the transformation of the point kP can be expressed as: 

,

, , ,
, 0

( ) ( , )( )
k

M N
T

k i j k k i j i j k
i j

f B u v′ ′ ′ ′ ′ ′
′ ′=

= + = +∑ PP V δ P B δ     (A.6) 

where 0,0 ,

T

M N⎡ ⎤= ⎣ ⎦δ δ δ" . 
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Appendix B: B-spline wavelet filter banks 

This appendix presents the matrices of synthesis filters jP and jQ of endpoint-

interpolating B-spline wavelets of degree 3,2,1,0=p . As shown in the matrix structure, 

zeros have been omitted; diagonal dots indicate that the previous column is to be repeated 

the appropriate number of times and shifted down by two rows for each column. Finally, 

note that the matrices given here correspond to un-normalized basis functions.  
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