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CHAPTER I

Introduction

For Euclidean spaces, Whitney [Whi57] developed geometric integration theory

to integrate “functions” over “sets” in such a way that the integral depends on how

the set is positioned in Rn. In this theory, the sets over which one integrates are flat

chains (limits of polyhedral chains under the so-called flat norm), and the functions

one integrates over these chains are flat forms. Flat forms are L∞-differential forms

with L∞-exterior derivatives. The flat norm of such a form is the maximum of the

L∞-norm of the form and that of its derivative. Since flat chains can be thought

of as L1-functions on Rn, it is natural to consider flat forms as dual to flat chains,

where the action of a form on a chain is given by integration. Moreover, this duality

respects the norms: the space of flat forms endowed with the flat norm is isometric

to the space of flat cochains with the norm dual to the flat norm on chains. This

fundamental result was proven by Wolfe in 1948 (see [Whi57]).

In [Ada08], Adams extended the theory of flat chains from Rn to Banach spaces.

In this thesis, we define flat partial forms in a Banach space, and prove that the

space of these forms is the dual to Adams’s space of flat chains. We consider only

Banach spaces over R.

A similar duality result is true in the case of sharp forms (forms with Lipschitz

1
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continuous coefficient functions) and sharp cochains (linear functionals on so-called

sharp chains); namely, the space of sharp forms is dual to the space of sharp chains.

The proof of this fact in the Euclidean case can be found in Whitney [Whi57].

In [Nol86], Noltie extended this result to Banach spaces.

The current paper is part of the recent efforts to generalize geometric measure

theory beyond Euclidean space. In particular, currents in metric spaces have been

the subject of recent investigation. Roughly speaking, currents in Euclidean space

are linear functionals on differential forms. In 2000, Ambrosio and Kirchheim [AK00]

developed a theory of currents in metric spaces as linear functionals on “tuples” of

Lipschitz functions. Following this, Lang [Lan] developed a variant of this theory, and

Wenger [Wen05], [Wen07] generalized the isoperimetric inequality found in [AK00]

and studied convergence properties of metric currents.

Generalizations of chains, which can be regarded as “pre-dual” to forms, have

also been investigated. In addition to Adams’s paper on chains in Banach spaces,

De Pauw and Hardt have defined and studied rectifiable and flat chains in metric

spaces (see [DPH]).

Our goal is to identify the dual space to the space of flat chains with a space

of suitably defined differential forms. The key idea in our definition of a partial

form is the following. Instead of defining a k-form as a function that maps points

in a Banach space V to k-covectors (alternating k-linear maps from [V ]k to R) as

in [Car70], we view a form as a function from a subset of the product space V × [V ]k

to R. We require that such a function, or measurable partial k-form, be measurable

when restricted to any horizontal or vertical slice in the product space, and that it

satisfies some multi-linearity conditions on finite-dimensional affine subspaces of V

(see Definition IV.4). This relaxation of the standard definition allows us to consider
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forms which may not be smooth and to define an equivalence relation between partial

forms.

In this work we consider only global measurable partial forms. Using Fubini’s

theorem, one can show that a measurable partial form on a finite-dimensional space

is also a classical measurable differential form on that space (see Section 4.2).

We extend many standard geometric concepts to this setting: we define the wedge

product of two partial forms (see 4.6) and an exterior differentiation operator d on

(locally integrable) partial k-forms mapping partial k-forms to partial (k + 1)-forms.

Our exterior d is defined in a weak sense so that Stokes’s Theorem holds when the

forms act by integration on polyhedral chains (see 4.5). Finally, we define an L∞-type

norm on partial k-forms by

‖F‖∞ := sup
W k⊆V

{
ess sup
p∈W k

{|Fp(νW k)|}
}

,

where the supremum is taken over all k-dimensional affine subspaces W k of the

Banach space V and νW k denotes the unit mass* k-vector (see 2.3) whose components

span W k. Equipped with this norm, we define the flat norm on the space of partial

forms as in the Euclidean setting to be ‖F‖[ := max{‖F‖∞, ‖dF‖∞}. The space of

flat partial forms consists of those partial forms with finite flat norm. Here, even

though our L∞-type norm does not agree with the L∞-norm in Rn, the resulting

space of flat partial forms in Rn agrees with classical flat forms in Rn.

Our main result is that the space of flat partial forms is the dual space to Adams’s

space of flat chains.

Theorem I.1. The space of flat partial k-forms endowed with the flat norm is iso-

metric to the space of bounded linear functionals on flat k-chains with the norm dual

to the flat norm on chains.
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A priori, a partial form need not be defined for as many points in the product space

V × [V ]k as a classical differential form. However, using Theorem I.1 and techniques

from [BL00], we prove in Chapter VII that a flat partial form in a separable Banach

space V is defined for “many” points in the product space, and hence is not too far

from a classical form (i.e., a function from V to Hom(ΛkV,R)).

Theorem I.2. Let F be a flat partial form in a separable Banach space V . There

exists an Aronszajn-null set N in V so that for all p ∈ V \N and all ν ∈ ΛkV , the

point (p, ν) is in the domain of F .

In the Euclidean setting, flat chains and forms are invariant under bi-Lipschitz

maps. Our final result (see Chapter VIII) is in this direction.

Theorem I.3. In a Banach space, flat partial k-forms pull back to flat partial k-

forms under Lipschitz maps.

To prove Theorem I.3, we show that polyhedral chains push forward to flat chains

under Lipshitz maps.

A long-term goal of this project is to apply it to the question of the bi-Lipschitz

embeddability of a general metric space in Rk (see [HS02], [HK], and [HPR]); Theo-

rem I.3 indicates that flat forms are stable under Lipschitz mappings and hence are

natural objects to consider in this study.

Another interesting open question is the relationship between partial differential

forms and the metric chains and currents defined in [AK00], [Lan] and [DPH] in a

Banach space.



CHAPTER II

Preliminaries

2.1 The spaces ΛkV and ΛkV

Given a Banach space V , we denote the k-fold product of V by [V ]k = V ×· · ·×V .

For a set X ⊂ V , χX : V → {0, 1} is the characteristic function of X, defined by

χX(x) = 1 for x ∈ X and χX(x) = 0 otherwise. Let C([V ]k) denote the free vector

space over [V ]k, i.e., C([V ]k) := spanR{χ{(v1,...,vk)} : (v1, . . . , vk) ∈ [V ]k}. The vectors

(y1, y2, . . . , yk)− λ(y1, . . . , x
i
1, . . . , yk)− µ(y1, . . . , x

i
2, . . . , yk),

where yi = λxi
1 + µxi

2 for i = 1, . . . , k, together with the vectors

(y1, y2, . . . , yk)

where yi = yj for some i 6= j generate a subspace G ⊂ C([V ]k). The space of k-

vectors on a Banach space V , denoted ΛkV , is the quotient space C([V ]k)/G. Denote

the equivalence class of the k-tuple (v1, . . . , vk) in this quotient space by v1∧· · ·∧vk.

We define a function µ : [V ]k → ΛkV that maps a k-tuple in [V ]k to its equivalence

class in the quotient space ΛkV :

(2.1) µ(v1, . . . , vk) := v1 ∧ · · · ∧ vk

for all (v1, . . . , vk) in [V ]k. A simple k-vector is an element of ΛkV that lies in the

image of the map µ. The space ΛkV , together with the map µ, has the following

5
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universal property. If f : [V ]k → R is an alternating k-linear map, then there is a

unique linear map ω : ΛkV → R with the property that f = ω ◦ µ.

Towards defining the dual space to ΛkV , we endow ΛkV with the quotient topology

τ induced by µ. In other words, U of ΛkV is in τ if and only if µ−1(U) is open in

[V ]k under the product topology.

Suppose that f : [V ]k → R is an alternating k-linear map. As in [Car71], the

continuity of f with respect to the product topology on [V ]k is equivalent to its

boundedness with respect to the norm ‖ · ‖Cartan, where

‖f‖Cartan := sup{|f(x1, . . . , xk)| : xi ∈ V, |xi| ≤ 1, i = 1, . . . , k}.

Lemma II.1. Let f : [V ]k → R be an alternating k-linear map, and let ω : ΛkV → R

be the map for which f = ω ◦ µ. The continuity of f with respect to the product

topology on [V ]k is equivalent to the continuity of ω with respect to the topology τ on

ΛkV .

Proof: The proof immediately follows from the definition of the topology τ . The

function f is continuous if and only if for each open U ⊂ R, f−1(U) is open in the

product topology. Since f−1(U) = µ−1 ◦ ω−1(U), ω is continuous.

Definition II.2. The space of k-covectors on V , denoted ΛkV , is the space of linear

maps from ΛkV to R that are continuous with respect to τ .

By the universal property of ΛkV and Lemma II.1, ΛkV is isomorphic to the space

of alternating k-linear functions f : [V ]k → R that are continuous under the product

topology on [V ]k.

For ϕ ∈ ΛkV and ω ∈ ΛkV , we use the notation ω(ϕ) = 〈ω, ϕ〉 = 〈ϕ, ω〉.

General references on the spaces ΛkV and ΛkV are [Gre78], [Fed69], and [Car71].
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2.2 Norms on ΛkV and ΛkV

In a Banach space V , the space of k-vectors of elements in the dual space V ∗ can

be viewed as a subspace of the space of k-covectors in V in the following way. Let

f1, . . . , fk be elements of V ∗, and define the action of f1 ∧ · · · ∧ fk on the simple

k-vector v1 ∧ . . . ∧ vk by

〈f1 ∧ · · · ∧ fk, v1 ∧ . . . ∧ vk〉 := det(〈fi, vj〉).

This action is well-defined because the determinant is alternating and multilinear.

We then have a natural dual pairing Λk(V
∗)× ΛkV → R given by

〈∑
i

f i
1 ∧ · · · ∧ f i

k,
∑

j

vj
1 ∧ . . . ∧ vj

k

〉
=

∑
i

∑
j

〈f i
1 ∧ · · · ∧ f i

k, v
j
1 ∧ . . . ∧ vj

k〉.

In [Gro83], Gromov defines two norms, mass and mass*, on the space of simple

k-vectors. In this work we are more interested in the mass* norm, but since the mass

norm is used to construct the mass* norm, we review both definitions in this section.

Essentially, the mass of a simple k-vector is the infimum over all its simple rep-

resentations of the product of the lengths of its components. The precise definition

follows.

Let V be a Banach space and suppose that ν = v1 ∧ · · · ∧ vk ∈ ΛkV is a nonzero

simple k-vector in ΛkV . One can show (see Lemma II.6) that if 0 6= ν ∈ ΛkV and

ν = u1 ∧ · · · ∧ uk = w1 ∧ · · · ∧ wk, then span(u1, . . . , uk) = span(w1, . . . , wk). We

denote the unique (oriented) subspace spanned by the components of ν by Tν :=

span(v1, . . . , vk).

If ν ∈ ΛkV is simple and L : Tν → Tν is any linear transformation, it induces a

linear transformation on the one-dimensional space ΛkTν given by v1 ∧ · · · ∧ vk 7→

L(v1) ∧ · · · ∧ L(vk). This induced transformation is just multiplication by a scalar,
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defined to be the determinant of L, det(L). Thus, for all v1 ∧ · · · ∧ vk ∈ ΛkV , we

have L(v1) ∧ · · · ∧ L(vk) = det(L) · v1 ∧ · · · ∧ vk.

Definition II.3. Let ν be a simple k-vector. If ν 6= 0 then the mass of ν is given by

the following infimum:

‖ν‖m := inf

{ k∏
i=1

|Lvi|V : L : Tν → Tν linear, det L = 1

}
.

If ν = 0, define ‖ν‖m := 0.

Gromov uses mass in the dual space V ∗ to define the mass* of a simple k-vector.

The following characterization of mass* comes from [ÁPT04].

Definition II.4. Let V be a Banach space and ν a simple k-vector in ΛkV . The

mass* of ν is

(2.2) ‖ν‖m* := sup{〈ν, ξ〉 : ξ ∈ ΛkV
∗ simple, ‖ξ‖m ≤ 1}.

For any simple k-vector ν, Gromov proves [Gro83, p. 30] that

(2.3) ‖ν‖m ≤ ‖ν‖m* ≤ c(k)‖ν‖m,

where c(k) = kk/2.

Gromov’s mass* extends to a norm on the entire space ΛkV of k-vectors (see [ÁPT04]).

We note that in fact, that one can actually extend mass* to all k-vectors using equa-

tion (2.2).

Lemma II.5. The quantity ‖ν‖m* := sup{〈ν, ξ〉 : ξ ∈ ΛkV
∗ simple, ‖ξ‖m ≤ 1}

defines a norm on the space ΛkV of k-vectors on V .

Proof: That ‖cν‖m* = |c| · ‖ν‖m* for any c ∈ R follows immediately from the fact
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that ΛkV
∗ is a subspace of ΛkV . For the triangle inequality, let ν, µ ∈ ΛkV . Then

‖ν + µ‖m* = sup{〈ν + µ, ξ〉 : ξ ∈ ΛkV
∗ simple, ‖ξ‖m ≤ 1}

= sup{〈ν, ξ〉+ 〈µ, ξ〉 : ξ ∈ ΛkV
∗ simple, ‖ξ‖m ≤ 1}

≤ sup{〈ν, ξ〉 : ξ ∈ ΛkV
∗ simple, ‖ξ‖m ≤ 1}

+ sup{〈µ, ξ〉 : ξ ∈ ΛkV
∗ simple, ‖ξ‖m ≤ 1}

= ‖ν‖m* + ‖µ‖m*.

To see that ‖ · ‖m* is finite, let ν ∈ ΛkV . Then ν =
∑N

i=1 νi, where νi is simple

for i from 1 to N . For any simple ξ ∈ ΛkV
∗ and all i = 1, . . . , N , 〈νi, ξ〉 ≤ ‖νi‖m*.

Thus, 〈ν, ξ〉 ≤ ∑
i ‖νi‖m*, so ‖ν‖m* is finite.

Let ν =
∑N

i=1 vi
1∧· · ·∧vi

k be a nonzero k-vector in ΛkV . Let W = span{vi
j}. Then

ν ∈ ΛkW . Since ν 6= 0 and W is finite dimensional, there exists a simple covector

ξ = ξ1 ∧ · · · ∧ ξk ∈ ΛkW ∗ so that 〈ν, ξ〉 > 0. We may assume that |ξi|W ∗ = 1 for

i = 1, . . . , k. Extend each ξi by the Hahn-Banach theorem to a functional ξi in V ∗

with norm one and set ξ := ξ1∧ · · ·∧ ξk. Then ‖ξ‖m ≤ |ξ1| · · · |ξk| = 1 and 〈ν, ξ〉 > 0,

so ‖ν‖m* > 0.

We can then define the comass* of a k-covector ω ∈ ΛkV to be the dual to the

mass* norm:

‖ω‖c* := sup{〈ω, ν〉 : ν ∈ ΛkV, ‖ν‖m* ≤ 1}.

2.3 k-directions

We normalize the space of k-vectors using the mass* norm. A simple k-vector

whose mass* is one is called a k-direction.

We note that each oriented k-dimensional vector subspace P of V (i.e., each

element of the oriented Grassmannian of V ) corresponds to a unique k-direction
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νP in the following way. An orientation of P consists of a choice of a basis and

an ordering of the basis elements. By definition, two ordered bases (v1, . . . , vk) and

(w1, . . . , wk) of P induce the same orientation if and only if v1∧· · ·∧vk = λw1∧· · ·∧wk

for some λ > 0. Thus, if the orientation of P is given by (v1, . . . , vk), then we define

νP , the k-direction of P , to be

νP :=
v1 ∧ · · · ∧ vk

‖v1 ∧ · · · ∧ vk‖m*

.

For an affine oriented k-plane P , let P0 be the subspace parallel to P that passes

through the origin, i.e., if p ∈ P , then P0 = P − p. In this case, define νP := νP0 .

Given a k-direction ν = v1 ∧ · · · ∧ vk, we say that an affine subspace W of V is a

ν-superplane if Tν ⊂ W0, where W0 is parallel to W and contains the origin.

Lemma II.6. Given a k-vector ν ∈ ΛkV , there is a unique minimal subspace Wν,min

of V for which there exists a representation ν =
∑N

i=1 νi so that Wν,min is a νi-

superplane for all 1 ≤ i ≤ N .

The subspace Wν,min is called the envelope of ν in V .

Proof: Suppose that W and U are both subspaces of minimal dimension as in the

statement of the lemma. Thus, there exist representations

ν =
∑

i

wi
1 ∧ · · · ∧ wi

k =
∑

j

uj
1 ∧ · · · ∧ uj

k,

where span{wi
m} = W and span{ui

m} = U . Let d = dim W ≤ dim U = D and let

` = dim W ∩ U . We will show that ` = d.

Choose a basis v1, . . . , v` of W ∩U . Then choose d−` additional linearly indepen-

dent vectors {w̃1, . . . , w̃d−`} ⊂ W \U so that BW = {w̃1, . . . , w̃d−`, v1, . . . , v`} is a basis

of W . Similarly, choose {ũ1, . . . , ũD−`} ⊂ U\W so that BU = {ũ1, . . . , ũD−`, v1, . . . , v`}

is a basis of U . Note that by construction, the vectors {w̃i} and {ũi} are linearly

independent. We assume the basis vectors all have norm one.
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Thus,

BW+U = {w̃1, . . . , w̃d−`, ũ1, . . . , ũD−`, v1, . . . , v`}

is a basis of W + U , and we have the dual basis

{w̃∗
1, . . . , w̃

∗
d−`, ũ

∗
1, . . . , ũ

∗
D−`, v

∗
1, . . . , v

∗
`}

of the space (W + U)∗, where as usual w̃∗
i (w̃i) = 1 and w̃∗

i (x) = 0 if x is any other

basis element, etc.

Renaming v1 = w̃d−`+1, . . . , vk = w̃d, we have the following basis for ΛkW :

{w̃I = w̃i1 ∧ · · · ∧ w̃ik : I = {1 ≤ i1 < · · · < ik ≤ d}}.

We rewrite ν in terms of this basis:

ν =
∑

i

wi1 ∧ · · · ∧ wik =
∑

I

λIw̃I ,

where λI ∈ R.

To reach a contradiction, suppose that ` � d. Since W was a minimal subspace,

there exists a multi-index I ′ = {1 ≤ i′1 < · · · < i′k ≤ d} with i′1 = 1 where λI′ 6= 0. In

other words, the dual element w̃∗
I′ = w̃∗

i′1
∧ · · · ∧ w̃∗

i′k
has the property that 〈w̃∗

I′ , ν〉 =

λI′ 6= 0. On the other hand, by construction w̃∗
1(x) = 0 for all x ∈ U , so

〈w̃∗
I′ , ν〉 =

〈
w̃∗

I′ ,
∑

j

uj
1 ∧ · · · ∧ uj

k

〉

=
∑

j

〈w̃∗
I′ , u

j
1 ∧ · · · ∧ uj

k〉

= 0,

a contradiction.

Remark II.7. We define the mass* of ~v = (v1, . . . , vk) ∈ [V ]k by

‖~v‖m* := ‖µ(~v)‖m* = ‖v1 ∧ · · · ∧ vk‖m*.
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2.4 John’s theorem

In the remaining chapters, we will often use the fact that up to a factor of
√

k,

the norm of any k-dimensional Banach space is comparable to the Euclidean norm

in Rk.

We may identify a k-dimensional Banach space V k with Rk equipped with a

different norm than the standard Euclidean norm |·|k2. Denoting this norm by |·|V k , we

have V k = (Rk, |·|V k). The closed unit ball in V k is then BV k := {x ∈ Rn : |x|V k ≤ 1}.

Since BV k is a closed symmetric convex set with nonempty interior in Rk, John’s

theorem implies (see [Bal97]) that if E is the maximal ellipsoid contained in BV k ,

then

(2.4) E ⊂ BV k ⊂
√

kE .

This property of the maximal ellipsoid inside BV k , due to Fritz John, implies the

following theorem.

Theorem II.8. Given any k-dimensional Banach space V k, there exists a
√

k-bi-

Lipschitz linear isomorphism L : Rk → V k.

Proof: Let | · |E denote the norm on Rk whose unit ball is the ellipsoid E given

by John’s theorem. The identity map I : (Rk, | · |V k) → (Rk, | · |E) is then a
√

k-bi-

Lipschitz isomorphism. A change of coordinates ϕ mapping the (orthonormal) axes

of E to the standard Euclidean basis vectors will map E to the unit sphere. Under

this change of coordinates, (Rk, | · |E) is Rk with the Euclidean norm. Take L to be

the map ϕ ◦ I.



CHAPTER III

Flat Chains in Banach Spaces

In this section, we review a few definitions and facts about flat chains in Banach

spaces from [Ada08] and prove some lemmas that are needed for our study of partial

forms.

3.1 Polyhedral chains

We start by defining a k-dimensional simplex in a Banach space V .

Definition III.1. A k-dimensional simplex σ in V is the convex hull of k+1 affinely

independent vectors v0, . . . , vk in V , together with an orientation. We call this convex

hull the support of σ. The vectors v0, . . . , vk are the vertices of σ. An orientation of

σ is a choice of orientation of the affine k-plane containing σ.

Any (non-degenerate) oriented k-simplex σ in V lies in a unique oriented affine

k-plane Pσ which we call the k-plane of σ. The k-direction of the k-plane Pσ is

the k-direction of σ, denoted νσ. We note that the k-direction of σ describes the

orientation of σ.

We denote by [v0, . . . , vk] the simplex with vertices v0, . . . , vk and orientation

νσ =
(v1 − v0) ∧ · · · ∧ (vk − v0)

‖(v1 − v0) ∧ · · · ∧ (vk − v0)‖m*

.

13
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The simplex with the same vertices but the opposite orientation is denoted by

−[v0, . . . , vk]. A refinement of the simplex σ is a finite formal sum of simplexes

∑
σi that satisfies the following properties. First, the union of the supports of the

simplexes {σi} must equal the support of σ. Second, the orientation of each simplex

σi must match the orientation of σ. Finally, the simplexes {σi} must be pairwise

disjoint except on sets of k-measure zero.

We can now define the space of polyhedral k-chains in V .

Definition III.2. Consider the free real vector space Sk generated by k-dimensional

oriented simplexes in V . Let Gk be the subspace of Sk generated by elements of

the form σ + (−σ) and σ − ∑
σi, where

∑
σi is a refinement of σ. The space of

polyhedral k-chains in V , denoted Pk(V ), is the quotient Sk/Gk.

The boundary ∂σ of a k-simplex σ = [v0, . . . , vk] is the (k − 1)-chain

∂σ :=
k∑

i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].

Extend the boundary operator is linearly to Sk so that the boundary of the polyhedral

k-chain P =
∑N

i=1 λiσi is

∂P :=
N∑

i=1

λi∂σi.

As usual, ∂∂σ is equivalent to the zero (k − 2)-chain.

The boundary operator descends to an operator ∂ : Pk(V ) → Pk−1(V ) on the

quotient space Pk(V ).

A simple polyhedral k-chain A is an element of Sk/Gk that has convex support

and can be represented as a sum of consistently oriented simplexes with pairwise

disjoint interiors, i.e., A is a convex, oriented polyhedron.

The following definition of k-dimensional mass, denoted | · |k, on simple polyhedral

k-chains is from [Ada08, p. 3].
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Definition III.3. The mass of a 0-dimensional polyhedral chain A in a Banach space

V is |A|0 := inf{∑ |λi| : A =
∑

λiσi}. If A is a simple k-dimensional polyhedral

chain for k > 0, the mass of A is inductively defined to be

(3.1) |A|k := sup
f∈V ∗
‖f‖≤1

∫

R
|A ∩ f−1(x)|k−1 dx.

Here, A∩ f−1(x) is the slice of A by f at x as defined in [Ada08]. For a simple k-

chain A, these slices are again simple chains of dimension k or lower. If the dimension

of a slice is k, then we define the (k − 1)-mass of the slice to be ∞. In this case all

other slices will have mass zero, so
∫
R |A ∩ f−1(x)|k−1 dx = 0. If the dimension of a

slice is less than (k − 1), we define its (k − 1)-dimensional mass to be zero. When

the dimension k is clear we will simply write |A| instead of |A|k.

We note that the quantity |A| does not change if the supremum in equation (3.1)

is instead taken over the smaller set of maps f ∈ V ∗ with ‖f‖ = 1. For every f ∈ V ∗

with 0 < ‖f‖ < 1, the map f̃ := 1
‖f‖f has unit norm and |A∩f−1(x)| = |A∩f̃−1( x

‖f‖)|.

Hence,
∫
R |A ∩ f−1(x)| dx ≤ ∫

R |A ∩ f̃−1(x)| dx, so

|A| = sup
f∈V ∗
‖f‖=1

∫

R
|A ∩ f−1(x)| dx.

Adams proved that the 1-dimensional mass of a simplex [a, b] is its length, |[a, b]| =

|b− a|V .

We extend mass to a norm on all polyhedral k chains in the following way. The

mass of a polyhedral k-chain A is the following infimum, taken over all representations

of A as finite sums of simple chains:

(3.2) |A| := inf{
n∑

i=1

|λi||σi| : A =
n∑

i=1

λiσi}.
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3.2 Haar measure

For a polyhedral chain A, denote by A + p the translation of A by p ∈ V . We

show below that Adams’s mass is translation invariant.

Lemma III.4. For all k ≥ 0, k-dimensional mass is translation invariant on simple

polyhedral chains.

Proof: We use induction on k. Clearly mass is translation invariant for simple 0-

chains. Let k ≥ 1 and let A be a simple polyhedral chain. For any p ∈ V , f ∈ V ∗,

and y ∈ R, the slice of (A+ p) by f at (y + f(p)) is the translation (by p) of the slice

of A by f at y. By the induction hypothesis,

∫

R
|A ∩ f−1(x)|k−1 dx =

∫

R
|(A + p) ∩ f−1(x)|k−1 dx.

Taking the supremum of both sides of the previous equation over all functionals

f ∈ V ∗ with ‖f‖ ≤ 1 gives |A|k = |A + p|k, as desired.

In fact, any sequence of functionals which approaches the supremum for A in

equation (3.1) will also approach the supremum for any translate (A + p) of A.

Corollary III.5. Let k ≥ 1 and A be a simple polyhedral k-chain. Suppose that

(fi) ⊂ V ∗ is a sequence of linear functionals with ‖fi‖ = 1 for all i and that

lim
i→∞

∫

R
|A ∩ f−1

i (x)|k−1 dx = |A|.

Then

lim
i→∞

∫

R
|(A + p) ∩ f−1

i (x)|k−1 dx = |A + p|.

Proof: Suppose that (fi) ⊂ V ∗ is a sequence of linear functionals with ‖fi‖ = 1 so

that

lim
i→∞

∫

R
|A ∩ f−1

i (x)|k−1 dx = |A|.
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Then

|A + p| = sup
g∈V ∗
‖g‖≤1

∫

R
|(A + p) ∩ g−1(x)|k−1 dx

= sup
g∈V ∗
‖g‖≤1

∫

R
|A ∩ g−1(x)|k−1 dx

= lim
i→∞

∫

R
|A ∩ f−1

i (x)|k−1 dx

= lim
i→∞

∫

R
|(A + p) ∩ f−1

i (x)|k−1 dx.

The following is a corollary to Adams’s Scaling Lemma ([Ada08, Lemma 2.4]).

Lemma III.6. Let P be an oriented, affine k-plane, k ≥ 1, and fix a basis {v1, . . . , vk}

of P . Let Q be the parallelepiped with support {∑k
i=1 λivi : 0 ≤ λ ≤ 1} and orienta-

tion v1 ∧ . . .∧ vk. Let (fi) ⊂ V ∗ be a sequence of linear functionals with ‖fi‖ = 1 for

all i so that

lim
i→∞

∫

R
|Q ∩ f−1

i (x)|k−1 dx = |Q|.

For q ∈ R with q > 0, let Qq be the parallelepiped with support {q ∑k
i=1 λivi : 0 ≤

λ ≤ 1} and orientation v1 ∧ . . . ∧ vk. Then |Qq| = qk|Q| and

lim
i→∞

∫

R
|Qq ∩ f−1

i (x)|k−1 dx = |Qq|.

Proof: Let P , Q, Qq, and (fi) ⊂ V ∗ be as in the lemma statement. By the proof of

the Scaling Lemma in [Ada08, p. 5], |Qq| = qk|Q|, and for each f ∈ V ∗ with ‖f‖ = 1,

∫

R
|Qq ∩ f−1(x)|k−1 dx = qk

∫

R
|Q ∩ f−1(x)|k−1 dx.

Hence,

lim
i→∞

∫

R
|Qq ∩ f−1

i (x)|k−1 dx = |Qq|k.
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Proposition III.7. (Construction of Haar measure from mass.) Let P be an ori-

ented, affine k-plane, k ≥ 1, and fix a basis {v1, . . . , vk} of P . Let Q be the par-

allelepiped with support {∑k
i=1 λivi : 0 ≤ λ ≤ 1} and orientation v1 ∧ . . . ∧ vk. Let

(fi) ⊂ V ∗ be a sequence of linear functionals with ‖fi‖ = 1 for all i so that

lim
i→∞

∫

R
|Q ∩ f−1

i (x)|k−1 dx = |Q|k.

If A is a simple polyhedral k-chain in P , then the sequence (fi) also approaches the

supremum of the mass integral for A:

lim
i→∞

∫

R
|A ∩ f−1

i (x)|k−1 dx = |A|k.

Moreover, there exists a Haar measure Mk on P for which Mk(A) = |A|k.

Proof: We use induction on k. For k = 1, the lemma follows from the fact that the

Adams mass of a simple polyhedral chain is its length.

For k > 1, let P , Q, and (fi) ⊂ V ∗ be as in the lemma statement. For q ∈ Q

with q > 0, let Qq be the parallelepiped from Corollary III.6, and let B denote the

countable collection of parallelepipeds

B := {Qq + r1v1 + · · ·+ rkvk : q, r1, . . . , rk ∈ Q}.

Let A be a simple polyhedral k-chain in P . We may represent the interior of A

(denoted int A) as a countable union of elements of B, so that int A =
⋃∞

j=1 Bj where

Bj ∈ B, Bj ⊂ int A, and the sets Bj are pairwise disjoint except on sets of k-measure

zero.

By Fubini’s theorem and the existence of (k − 1)-dimensional Haar measure, for

any f ∈ V ∗ with ‖f‖ = 1 and almost every x ∈ R,

(3.3) |A ∩ f−1(x)|k−1 =
∣∣∣
(⋃

j

Bj

)
∩ f−1(x)

∣∣∣
k−1

=
∑

j

|Bj ∩ f−1(x)|k−1.
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Thus,

|A|k = sup
f∈V ∗
‖f‖=1

∫

R
|A ∩ f−1(x)|k−1 dx

= sup
f∈V ∗
‖f‖=1

∫

R

∑
j

|Bj ∩ f−1(x)|k−1 dx

= sup
f∈V ∗
‖f‖=1

∑
j

∫

R
|Bj ∩ f−1(x)|k−1 dx(3.4)

= lim
i→∞

∑
j

∫

R
|Bj ∩ f−1

i (x)|k−1 dx(3.5)

=
∑

j

lim
i→∞

∫

R
|Bj ∩ f−1

i (x)|k−1 dx(3.6)

=
∑

j

|Bj|.(3.7)

Equations (3.5) and (3.7) follow from Corollary III.6, and equations (3.4) and (3.6)

follow from the Lebesgue Dominated Convergence Theorem.

Also, by equation (3.3),

∑
j

|Bj|k = lim
i→∞

∑
j

∫

R
|Bj ∩ f−1

i (x)|k−1 dx

= lim
i→∞

∫

R

∣∣∣
(⋃

j

Bj

)
∩ f−1(x)

∣∣∣
k−1

dx

= lim
i→∞

∫

R
|A ∩ f−1

i (x)|k−1 dx.

We construct the Haar measureMk on P by Caratheodory’s approach (see [Roy88]),

using the parallelepipeds B instead of the Euclidean rectangles used to construct

Lebesgue measure on Rn. For any set E ⊂ P , we define the outer measure (Mk)∗

by

(Mk)∗(E) := inf{
∑

j∈N
|Bj| : Bj ∈ B, E ⊂

⋃
j

Bj}.

A set E ⊂ P is Mk-measurable if for every S ⊂ P ,

(Mk)∗(S) = (Mk)∗(S ∪ E) + (Mk)∗(S \ E).
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In this case, (Mk)(E) := (Mk)∗(E). By construction, the measure Mk assigns to

any simple polyhedral k-chain a measure equal to the Adams k-dimensional mass of

the chain.

By the uniqueness of the Haar measure, the measure Mk (defined in Proposi-

tion III.7) on any fixed k-plane P is equal to a constant multiple κP of the Hausdorff

measure Hk on P . By Corollary III.5, if the k-planes P and R are parallel, κP = κR,

otherwise the constants κP and κR may be distinct. Since parallel k-planes have the

same spanning k-direction ν, κP depends only on ν, so we refer to this constant as

κν .

The remarks above yield another the interpretation of the mass of an arbitrary

polyhedral chain. If A is a polyhedral chain with representation A =
∑n

i=1 λiσi as a

weighted sum of disjoint simple polyhedral chains σi, A is naturally associated with

a function f : V → R where f is the corresponding weighted sum of characteristic

functions of the simple chains σi,

fA =
∑

λiχ(σi).

Then we have

(3.8) |A| =
∫

fA dMk =
n∑

i=1

|λi| · |σi|,

showing that the infimum in equation (3.2) is not needed if one considers only disjoint

representations of A.

S. Wenger pointed out to the author that the volume norm on a k-dimensional

affine plane in V induced by Gromov’s mass* norm is equal to the volume norm Mk

induced by Adams’s mass norm.

Lemma III.8. (Wenger’s Lemma) Let ν = v1 ∧ · · · ∧ vk be a simple k-vector in

ΛkV , and let A = Aν = {∑k
i=1 tivi : 0 ≤ ti ≤ 1} be the parallelepiped spanned by
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the components of ν with the same orientation as ν. Then the mass* of ν equals the

Adams mass of A, that is,

‖ν‖m* = |A|.

Proof: Let ν = v1 ∧ · · · ∧ vk be a simple k-vector in ΛkV , and let A = Aν be the

parallelepiped spanned by the components {v1, . . . , vk} of ν. By the definition of

Adams mass,

|A| = sup
f1∈V ∗
‖f1‖=1

∫

R
|A ∩ f−1

1 (x1)| dx1

= sup
f1∈V ∗
‖f1‖=1

∫

R
sup

f2∈V ∗
‖f2‖=1

∫

R
|A ∩ f−1

1 (x1) ∩ f−1
2 (x2)| dx2dx1

A priori, the choice of f2 depends on the point x1 ∈ R. Thus

(3.9) sup
f1∈V ∗
‖f1‖=1

∫

R
sup

f2∈V ∗
‖f2‖=1

∫

R
|A ∩ f−1

1 (x1) ∩ f−1
2 (x2)| dx2dx1

≥ sup
f1∈V ∗
‖f1‖=1

sup
f2∈V ∗
‖f2‖=1

∫

R

∫

R
|A ∩ f−1

1 (x1) ∩ f−1
2 (x2)| dx2dx1.

Let PA be the oriented k-plane containing A, and fix a functional f1 ∈ V ∗ with

‖f1‖ = 1. By Proposition III.7 we have equality in (3.9).
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Thus,

|A| = sup
f1∈V ∗
‖f1‖=1

∫

R
· · · sup

fk∈V ∗
‖fk‖=1

∫

R
|A ∩ f−1

1 (x1) ∩ . . . ∩ f−1
k (xk)| dx1 . . . dxk

= sup
f1∈V ∗
‖f1‖=1

· · · sup
fk∈V ∗
‖fk‖=1

∫

R
· · ·

∫

R
|A ∩ f−1

1 (x1) ∩ . . . ∩ f−1
k (xk)| dx1 . . . dxk

= sup
fi∈V ∗
‖fi‖=1
1≤i≤k

∫

R
· · ·

∫

R
|A ∩ f−1

1 (x1) ∩ . . . ∩ f−1
k (xk)| dx1 . . . dxk

= sup
F :V→Rk

F=(f1,...,fk)
fi∈V ∗,‖fi‖=1

∫

Rk

|A ∩ F−1(p)| dp

= sup
F :V→Rk

F=(f1,...,fk)
fi∈V ∗,‖fi‖=1

∫

Rk

χF (A) dp

= sup
F :V→Rk

F=(f1,...,fk)
fi∈V ∗,‖fi‖=1

Lk(F (A)).

In the last equation above, Lk is Lebesgue k-measure on Rk.

For a linear map F : V → Rk, F (A) is the parallelepiped determined by the vectors

F (v1), . . . , F (vk). Hence the Lebesgue measure of F (A) is given by the determinant

of the matrix whose column vectors are F (vi) for i = 1, . . . , k, i.e., Lk(F (A)) =

det(fj(vi)).

Thus,

|A| = sup{Lk(F (A))}

= sup
fi∈V ∗
‖fi‖=1

{det(fj(vi))}

= sup{〈ν, ξ〉 : ξ = f1 ∧ · · · ∧ fk, fj ∈ V ∗, ||fj|| = 1, 1 ≤ j ≤ k}

= ‖ν‖m*.
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In other words, Wenger’s Lemma says that the mass* of a simple k-vector ν is

equal to the mass of the oriented parallelepiped defined by the components of ν,

where the parallelepiped is viewed as a k-chain whose mass is defined as in [Ada08].

3.3 Flat chains

Given a polyhedral k-chain σ, we define the quantity |σ|[ as the following infimum,

taken over all polyhedral (k + 1)-chains τ :

|σ|[ := inf
τ∈Pk+1(V )

{|τ |+ |σ − ∂τ |}.

Adams proved (see [Ada08, p. 13]) that if |Pi − P |[ → 0, then |P | ≤ lim inf |Pi|.

This lower semicontinuity property is then used to prove that | · |[ defines a norm,

called the flat norm, on the space of polyhedral k-chains.

It follows from the definition of the flat norm that for any polyhedral chain σ,

|σ|[ ≤ |σ|.

Lemma III.9. The boundary operator ∂ : Pk(V ) → Pk−1(V ) is bounded in the flat

norm, and ‖∂‖ ≤ 1.

Proof: For any polyhedral k-chain σ, |∂σ|[ ≤ |σ|[. To see this, choose ε > 0 and

find a polyhedral (k + 1)-chain τ so that

|σ|[ ≥ |τ |+ |σ − ∂τ | − ε.

Then

|∂σ|[ ≤ |σ − ∂τ |+ |∂σ − ∂(σ − ∂τ)|

≤ |σ|[ + ε.

Since ε was arbitrary, |∂σ|[ ≤ |σ|[.
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The completion of the space of polyhedral k-chains under the flat norm, denoted

Fk(V ), is the space of flat k-chains. Since the space of polyhedral chains is a linear

space, Fk(V ) equipped with the flat norm is a Banach space.

Since the boundary operator ∂ is bounded in the flat norm on polyhedral chains,

it can be uniquely extended to all flat chains.

3.4 Flat cochains

The space of flat k-cochains, denoted Fk(V ), is the dual space to the Banach space

Fk(V ). Since dual spaces are always complete, one may also consider the space of

flat k-cochains as the space of bounded linear functionals on the space of polyhedral

k-chains. If X is a flat k-cochain and A is a flat k-chain, we denote evaluation of the

functional X on the chain A by 〈X, A〉 := X(A).

The flat norm | · |[ on the space of flat k-cochains is the dual norm to the flat

norm on flat k-chains:

|X|[ := sup{〈X, σ〉 : σ ∈ Fk(V ), |σ|[ ≤ 1}.

There is a natural “coboundary” operator, denoted “d,” on cochains which is the

adjoint of the boundary operator on chains. More specifically, if X is a k-cochain,

then the cochain dX is the (k + 1)-cochain whose action on any (k + 1)-chain τ is

〈dX, τ〉 := 〈X, ∂τ〉.

Proposition III.10. The coboundary operator is a bounded operator d : Fk(V ) →

Fk+1(V ) with |dX|[ ≤ |X|[.

Proof: Let X ∈ Fk(V ). For any τ ∈ Pk+1(V ) with |τ |[ ≤ 1, we have

〈dX, τ〉 = 〈X, ∂τ〉 ≤ |X|[ · |∂τ |[ ≤ |X|[ · |τ |[ ≤ |X|[.
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Hence |dX|[ ≤ |X|[, so the coboundary operator d : Fk(V ) → Fk+1(V ) is bounded.

One can also define comass as the dual norm to mass on polyhedral chains.

Definition III.11. The comass of a cochain X, denoted by |X|, is

|X| := sup{〈X, σ〉 : σ ∈ Pk, |σ| ≤ 1}.

This definition yields another characterization of the flat norm on flat cochains:

Lemma III.12. If X is a flat cochain, then |X|[ = max{|X|, |dX|}.

Proof: Let X ∈ Fk(V ).

We first show that |X|[ ≤ max{|X|, |dX|}. Suppose σ ∈ Pk(V ). Then for all

τ ∈ Pk+1(V ),

〈X, σ〉 = 〈X, σ − ∂τ〉+ 〈X, ∂τ〉

≤ 〈X, σ − ∂τ〉+ 〈dX, τ〉

≤ |X| · |σ − ∂τ |+ |dX| · |τ |

≤ max{|X|, |dX|}(|σ − ∂τ |+ |τ |).

Taking the infimum over all such τ , we have 〈X, σ〉 ≤ max{|X|, |dX|}|σ|[, so |X|[ ≤

max{|X|, |dX|}.

To show the opposite inequality, note that for all ε > 0, there exists σ ∈ Pk(V )

with |σ| ≤ 1 so that

|〈X, σ〉| > |X| − ε.

Since |σ|[ ≤ 1, we also have

|〈X, σ〉| ≤ |X|[.

Hence, |X| − ε < |X|[, and so |X| ≤ |X|[.
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Similarly, for all ε > 0, there exists τ ∈ Pk+1(V ) with |τ | ≤ 1 so that

|〈X, ∂τ〉| = |〈dX, τ〉| > |dX| − ε.

Since |∂τ |[ ≤ |τ | ≤ 1, we also have

|〈X, ∂τ〉| ≤ |X|[.

Hence, |dX|−ε < |X|[, and so |dX| ≤ |X|[. This shows that max{|X|, |dX|} ≤ |X|[.

3.5 Mass distortion under linear maps

Simplexes push forward in a natural way under (injective) linear maps. Let L :

V → W be a linear map between Banach spaces and let σ = [v0, . . . , vk] be a simplex

in V . If L maps the affine plane Pσ into W , then [L(v0), . . . , L(vk)] is a simplex

in W and we define L(σ) := [L(v0), . . . , L(vk)]. If L is not injective on Pσ, then

the image L(σ), when considered as a polyhedral k-chain, is equivalent to the zero

k-chain. We then define the pushforward of a polyhedral k-chain A =
∑

i=1→N λiσi

by L(A) :=
∑

i=1→N λiL(σi).

Moreover, if L is an isomorphism, then L(∂σi) = ∂L(σ) for all i, so L(∂A) =

∂L(A).

The following lemma shows that the mass of a simple polyhedral chain P increases

by a controlled amount under a linear map.

Lemma III.13. Let f : V → W be a linear map between k-dimensional Banach

spaces with operator norm ‖f‖ and let σ be a simple polyhedral k-chain in V . Then

|fσ| ≤ ‖f‖k|σ|.

Proof: We use induction on k. The case k = 0 is trivial. For k > 0, we assume

that f is injective since otherwise, the k-dimensional mass of fσ would be zero. Now
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assume the lemma holds in dimension k−1. Given f : V → W , we associate to every

linear map g̃ ∈ W ∗ with ‖g̃‖ = 1 a map g ∈ V ∗ that has ‖g‖ ≤ 1:

g̃ 7→ g :=
g̃ ◦ f

‖f‖ .

By the definition of mass,

|fσ| = sup
g̃∈W ∗
‖g̃‖=1

∫

R
|fσ ∩ g̃−1(x)| dx

= sup
g̃∈W ∗
‖g̃‖=1

∫

R

∣∣∣∣fσ ∩ f ◦ g−1

(
x

‖f‖
)∣∣∣∣ dx.

By the change of variables z = x
‖f‖ , and the fact that fσ∩(f ◦g−1)(z) = f(σ∩g−1(z)),

we have

|fσ| = sup
g̃∈W ∗
‖g̃‖=1

‖f‖
∫

R
|fσ ∩ (f ◦ g−1)(z)| dz

= sup
g̃∈W ∗
‖g̃‖=1

‖f‖
∫

R
|f(σ ∩ g−1(z))| dz.

Since each g̃ with norm one corresponds to a g with norm at most one, the supremum

in the previous equation gets larger if we take it over all g in V ∗ with norm one:

sup
g̃∈W ∗
‖g̃‖=1

‖f‖
∫

R
|f(σ ∩ g−1(z))| dz ≤ sup

g∈V ∗
‖g‖=1

‖f‖
∫

R
|f(σ ∩ g−1(z))| dz

Each slice f(g−1(z) ∩ σ) is a simple polyhedral (k − 1)-chain, so we apply the

induction hypothesis to obtain

|fσ| ≤ sup
g∈V ∗
‖g‖=1

‖f‖
∫

R
‖f‖k−1|σ ∩ g−1(z)| dz = ‖f‖k · |σ|.

Let P =
∑

λiσi ∈ Pk(V ), where the simple polyhedral chains {σi} have disjoint

interiors. Since |P | =
∑ |λi| · |σi|, we can extend the result of Lemma III.13 to all

polyhedral chains.
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Definition III.14. The fullness of a simplex σ, denoted Θ(σ), is the ratio

Θ(σ) :=
|σ|

diam(σ)k
.

Given this definition of fullness, Lemma III.13 yields the following corollary.

Corollary III.15. Let f : V → W be a linear isomorphism between k-dimensional

Banach spaces and let σ be a k-simplex in V . Then

Θ(fσ) ≥ CΘ(σ),

where C = C(‖f‖, ‖f−1‖, k) > 0 depends only on ‖f‖, ‖f−1‖, and k.

Lemma III.16. Given a linear isomorphism f : V → W between n-dimensional

Banach spaces and a k-dimensional polyhedral chain P ⊂ Pk(V ), f does not increase

the flat norm of P by more than a constant factor:

|fP |[ ≤ C(‖f‖, k)|P |[.

Proof: Let ε > 0. There exists a (k + 1)-chain Q̃ ∈ Pk+1(V ) such that |Q̃|+ |∂Q̃−

P | ≤ |P |[ + ε. By Lemma III.13,

|fQ̃| ≤ ‖f‖k+1|Q̃|

and

|f(∂Q̃− P )| ≤ ‖f‖k|∂Q̃− P |.

Since f and the boundary operator ∂ are both linear and f is an isomorphism,

f(∂Q̃− P ) = ∂(fQ̃)− fP . Thus,

|∂(fQ̃)− fP | ≤ C(‖f‖, k)|∂Q̃− P |.
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Putting these inequalities together gives

|fP |[ ≤ |fQ̃|+ |∂(fQ̃)− fP |

≤ max{‖f‖k, ‖f‖k+1} · (|Q̃|+ |∂Q̃− P |)

≤ C ′(‖f‖, k)(|P |[ + ε).

Since ε was arbitrary, |fP |[ ≤ C ′(‖f‖, k)|P |[.

3.6 The mass of a flat chain

So far we have only used mass for polyhedral chains. In [Ada08], Adams defines

the mass of a flat chain A to be the quantity

|A| := lim inf
Pj→[A

|Pj|.

In other words, |A| is the smallest number with the property that there exists a

sequence (Pj) of polyhedral chains converging to A in the flat norm whose masses

converge to |A|.

By the lower-semicontinuity of mass proven in [Ada08], this definition of mass

agrees with Definition III.3 on polyhedral chains.



CHAPTER IV

Partial Forms

4.1 Motivational remarks

With an eye toward generalization to the Banach space setting, we begin with a

discussion of Wolfe’s duality theorem in Euclidean space. We first recall the definition

of a flat differential form.

Definition IV.1. Let ω : Rn → ΛkRn be a measurable differential k-form, i.e., a

differential form that can be written as ω(x) =
∑

ai1,...,ik(x)dxi1 · · · dxik , where the

sum is taken over all increasing sequences 1 ≤ i1 < · · · < ik ≤ n and the coefficient

functions ai1,...,ik(x) are measurable. If the coefficients are also locally integrable, one

defines the distributional exterior derivative dω of ω to be the (unique) measurable

(k + 1)-form that satisfies

∫

Ω

dω ∧ η = (−1)k+1

∫

Ω

ω ∧ dη

for every smooth compactly supported (n− k− 1)-form η, if such a form exists. We

say that ω is flat if both ‖ω‖∞ < ∞ and ‖dω‖∞ < ∞, where

‖ω‖∞ := ess sup
x∈Rn

‖ω(x)‖comass.

In this case, the flat norm of ω is

‖ω‖[ := max{‖ω‖∞, ‖dω‖∞}.

30
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In the preceding definition, two forms ω and ω′ are equivalent if and only if

‖ω − ω′‖∞ = 0. For more details, see [Whi57] and [Hei05]. Whitney’s proof of this

fact uses a technique similar to Lebesgue differentiation to produce the differential

form associated to a given flat k-cochain.

Let X be a flat k-cochain, and fix a point p ∈ Rn and a k-direction ν ∈ ΛkRn.

Let W be the ν-superplane containing p. Consider sequences (σi) of oriented, η-full

simplexes in W that have p as a vertex, carry the same orientation as W , and whose

diameters decrease toward zero. Let DX(p, ν) be the following limit, if it exists for

every such sequence (σi):

(4.1) DX(p, ν) := lim
i→∞

〈X, σi〉
|σi| ,

Whitney proves that one can obtain a flat differential form from these limits. We

restate this result (Theorem 5A from [Whi57, p. 261]) below.

Theorem IV.2. (Whitney) Let X be a flat k-cochain in Rd, d ≥ k. Then there is

a set Q of full measure in Rd such that for each p ∈ Q, DX(p, ν) is defined for all

k-directions ν, and is extendable to all k-directions ν, giving a k-covector DX(p).

The function DX : Rd → ΛkRd is a bounded, measurable k-form in Rd. Furthermore,

for any k-simplex σ in Rd, DX is a measurable k-form on the affine k-plane Pσ, and

〈X, σ〉 =
∫

σ
DX .

The same facts are true for the cochain dX. Also, ‖DX‖∞ = |X| and ‖DdX‖∞ =

|dX|.

Wolfe’s theorem (Theorem 7a, 7b, and 7c from [Whi57, pp. 263–5]) asserts that we

can isometrically identify the space of flat k-forms with the space of flat k-cochains

in Rn:
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Theorem IV.3. (Wolfe) Suppose that ω is a flat k-form in Rn. Then there exists

a flat differential k-form ω̃ such that ‖ω − ω̃‖∞ = 0 and there exists a unique flat

k-cochain X so that for every simplex σ ⊂ Rn,

∫

σ

ω̃ = 〈X, σ〉.

Furthermore, the flat norms of X and ω are isometric, i.e., ‖ω‖[ = ‖ω̃‖[ = |X|[.

In order to generalize Wolfe’s theorem to the Banach space setting, we must first

define a differential k-form on a Banach space V . One natural definition (see [Fed69,

p. 17]) would be to define a form to be a map ω : V → Hom(ΛkV,R). However, in

order to define a flat form, we desire some notion of equivalence classes of differential

forms, and in a general Banach space there is no natural measure on V that we

can use to construct equivalence classes. More importantly, we would like to use the

Lebesgue differentiation approach outlined above to define the form associated with a

k-cochain. However, this approach only gives a well defined action almost everywhere

on every affine k-plane in the direction of that k-plane. In finite dimensions one can

use Fubini’s theorem to conclude that almost everywhere the action is defined in

every direction (thus proving Theorem IV.2). However, if dim V = ∞, this approach

would not prove even for a single p in V that ω(p)(ν) is defined for every k-vector

ν, which is necessary for all points p in the domain of ω.

4.2 Partial forms

For a classical differential form ω on a Banach space V , given a point p ∈ V , ω(p) is

a linear map from ΛkV to R. By the universal property discussed in Chapter II, this

linear map corresponds to a unique alternating k-linear map on the product space

[V ]k. We overcome the difficulties mentioned in the preceding section by defining
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a partial form to be a certain type of function on a subset of the product space

V × [V ]k.

Let V be a Banach space, and F : U → R a function on a subset U of the product

space V × [V ]k. For a point ~v = (v1, . . . , vk) ∈ [V ]k, define the set U~v ⊂ V by U~v :=

{p ∈ V : (p,~v) ∈ U} and the horizontal slice function by F~v := F (·, ~v) : U~v → R.

For a point p ∈ V , define the set Up ⊂ [V ]k by Up := {ν ∈ [V ]k : (p, ν) ∈ U}. The

vertical slice function is Fp := F (p, ·) : Up → R.

Definition IV.4. Let V be a Banach space, and F : U → R a function on a subset

U of the product space V × [V ]k. The function F is a measurable partial k-form on

V if it satisfies the following three properties.

(i) For each ~v ∈ [V ]k, F~v is a Borel function, i.e., preimages of open sets are Borel.

(ii) For all p ∈ V , Fp is Borel.

(iii) (Multilinearity conditions) For any d-dimensional affine subspace W d ⊂ V with

d ≥ k and almost every point p ∈ W d, the set [W d
0 ]k is in Up and the restriction

of Fp to [W d
0 ]k is alternating and k-linear.

Notation IV.5. Let F be a measurable partial k-form, and p, v1, . . . , vk ∈ V . Denote

T = span{v1, v2, . . . , vk}. If [T ]k is in Up and the restriction of Fp to [T ]k is alternating

and k-linear, then for any x1, . . . , xk and y1, . . . , yk in T with x1 ∧ . . . ∧ xk = y1 ∧

. . . ∧ yk = ν ∈ ΛkT ,

F (p, (x1, . . . , xk)) = F (p, (y1, . . . , yk)),

so we write

F (p, ν) := F (p, (x1, . . . , xk)).
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In the case that V = Rn, the space of measurable partial k-forms coincides with

the space of classical measurable k-forms.

Remark IV.6. Every partial form can be regarded as a collection of differential forms

on finite-dimensional affine subspaces of V that agree almost everywhere on the

overlap of the subspaces.

Let F be a partial k-form on V and let W ⊂ V be a d-dimensional affine subspace

of V with d ≥ k. There exists a Borel function ωW : W → ΛkW0 with the following

property. At almost every point x ∈ W , the k-covector ωW (x) satisfies 〈ωW (x), α〉 =

F (x, α) for all α ∈ ΛkW0. The function ωW is a differential form on the subspace W .

The collection {ωW : W ⊂ V } of these forms has the property that if W and W ′ are

affine subspaces with dim(W ∩W ′) = r ≥ k, then ωW∩W ′ = ωW Hr-a.e. on W ∩W ′.

However, given such a collection of forms on all finite-dimensional affine subspaces

of V , it is not clear whether one can produce a single function which satisfies all the

conditions of a partial form and agrees with each original form almost everywhere

on the domain of the original form.

Given a partial form F : U → R in a Banach space V and an affine subspace W of

V , let U ′ = U ∩ (W × [W0]
k). We define the restriction of F to W to be the function

FW : U ′ → R given by FW (p,~v) = F (p,~v) for all (p,~v) ∈ U ′. We note that almost

everywhere in W , (FW )p is equal to the form ωW (p) from Remark IV.6.

4.3 The comass norm

In this section we endow the space of partial forms with the so-called comass

norm; this norm will be used to define equivalence classes of partial forms and, in

Section 4.7, to define the flat norm on partial forms.

We define the comass, or L∞-norm on partial forms using the k-dimensional affine
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subspaces of V .

Let F be a partial k-form. Fix an oriented k-dimensional affine subspace W ⊂ V .

By property (iii) of a partial form, for almost every point p ∈ W , Fp is alternating

and multilinear on [W ]k. Hence, we may define

(4.2) ‖F‖∞,W := ess sup
p∈W

|Fp((v1, . . . , vk))|,

where v1 ∧ · · · ∧ vk = νW is any representation of the k-direction of W k.

The comass of the partial k-form F is then the following, where the supremum is

taken over all k-dimensional affine subspaces of V :

(4.3) ‖F‖∞ := sup
W k⊂V

‖F‖∞,W k .

Remark IV.7. The norm ‖ · ‖∞ from equation (4.3) does not match the standard

definition of the comass in Euclidean space. Classically, the comass of a k-form

ω : Rn → ΛkRn is defined to be

‖ω‖∞ := ess sup
p∈Rn

‖ω(p)‖comass.

Here ‖ω(p)‖comass represents the Euclidean comass of the k-covector ω(p) as defined

in Appendix A. We note that the classical comass of a k-form in Rn can be strictly

less than the comass of such a form with our definition, as shown in the following

example.

Example IV.8. Let ω : R2 → Λ1R2 be the 1-form

ω((x, y)) = χ{0}(x) dy,

where (x, y) ∈ R2 The partial 1-form F associated to ω (i.e., the partial form F for

which ωp(v) = F (p, v)) is given by

F ((x, y), (a, b)) = b · χ0(x),
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where (x, y) and (a, b) ∈ R2. As a Euclidean 1-form, ‖ω‖∞ = 0, but as a partial

form, ‖F‖∞ = 1.

If F : UF → R and G : UG → R are partial k-forms, let U := UF ∩ UG and define

F + G : U → R by

(F + G)(p,~v) := F (p,~v) + G(p,~v)

for all pairs (p,~v) ∈ U . The function F + G can easily be seen to satisfy conditions

(i)–(iii) of a partial form. Furthermore, if a ∈ R, we define the function aF : UF → R

by

(aF )(p,~v) := a · F (p,~v).

The function aF is also a partial form. We define an equivalence relation on partial

forms that associates two partial k-forms F and G if and only if ‖F −G‖∞ is zero:

F ∼ G ⇔ ‖F −G‖∞ = 0.

Since the comass given by equation (4.3) can be larger than the classical L∞-norm of

a form in Rn, the equivalence classes determined by equation (4.3) are smaller than

those obtained classically.

The following lemma shows that the space of measurable partial k-forms on V

equipped with this equivalence relation is a linear space.

Lemma IV.9. Let F : UF → R and G : UG → R be partial k-forms. Suppose that

F̃ : UF̃ → R and G̃ : UG̃ → R are partial k-forms such that F̃ ∈ [F ] and G̃ ∈ [G].

Then the partial form F̃ + G̃ is in the equivalence class [F + G].

Proof: Define the set U ⊂ V × [V ]k by U := UF ∩ UG ∩ UF̃ ∩ UG̃. For almost every

point p ∈ W and every ~v ∈ [W0]
k, (p,~v) ∈ U , and Fp, Gp, F̃p, and G̃p are alternating

and multilinear in ~v by property (iii) of Definition IV.4. Let H = ((F +G)−(F̃ +G̃)) :
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U → R. For any (p,~v) ∈ U ,

H(p,~v) = (F (p,~v) + G(p,~v))− (F̃ (p,~v) + G̃(p,~v))

= F (p,~v)− F̃ (p,~v) + G(p,~v)− G̃(p,~v)

Let W be a k-dimensional affine subspace of V . Since F̃ ∈ [F ], we have ‖F − F̃‖∞ =

0, so

ess sup
p∈W

{F (p, νW )− F̃ (p, νW )} = 0.

Similarly,

ess sup
p∈W

{G(p, νW )− G̃(p, νW )} = 0.

Hence,

ess sup
p∈W

{H(p, νW )} = ess sup
p∈W

{F (p, νW )− F̃ (p, νW ) + G(p, νW )− G̃(p, νW )} = 0.

We now show that, equipped with the equivalence relation given above, ‖ · ‖∞ is

a norm.

Lemma IV.10. ‖ · ‖∞ is a norm on the space of finite-comass partial k-forms.

Proof: Clearly, ‖λF‖∞ = |λ| ·‖F‖∞ for any λ ∈ R and any partial form F . It is also

clear from the definition of the equivalence relation on partial forms that if ‖F‖∞ = 0

then F is equivalent to the zero form 0 : V × [V ]k → R that maps (p,~v) 7→ 0. To

show the triangle inequality, suppose F and G are partial k-forms. For p ∈ V , denote

as usual by Up the subset of [V ]k for which (F +G)p is defined. Similarly, let U ′
p and

U ′′
p denote the domains of the functions Fp and Gp, respectively. For all p and all

~v ∈ Up,

(F + G)(p,~v) := ω(p,~v) + η(p,~v).
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Thus, for a fixed k-dimensional subspace W k in V with k-direction νW = v1∧· · ·∧vk,

set ~vW = (v1, . . . , vk) so that

‖F + G‖∞,W k = ess sup
p∈W k

{(F + G)p(~vW ) : ~vW ∈ Up}

≤ ess sup
p∈W k

{
Fp(~vW ) : ~vW ∈ U ′

p

}
+ ess sup

p∈W k

{
Gp(~vW ) : ~vW ∈ U ′′

p

}

= ‖F‖∞,W k + ‖G‖∞,W k .

We then have

‖F + G‖∞ := sup
W k⊂V

‖F + G‖∞,W k(4.4)

≤ sup
W k⊂V

‖F‖∞,W n + sup
W k⊂V

‖G‖∞,W n(4.5)

= ‖F‖∞ + ‖G‖∞.(4.6)

This shows that ‖ · ‖∞ satisfies the triangle inequality and is a norm on the space of

partial forms that have finite comass.

The comass of a partial form F bounds the comass of the partial form restricted

to any finite dimensional subspace W n of V : ‖FW n‖∞ ≤ ‖F‖∞.

4.4 Locally integrable partial forms act on polyhedral chains

In order to integrate a partial forms over polyhedral chains, we consider pullbacks

of partial forms under affine transformations.

Definition IV.11. Given a partial k-form F and an affine k-plane P , let L be

an orientation-preserving affine isomorphism from Rk to P . Then F (x, νP ) is well-

defined for almost every x ∈ P . The pullback L∗F is a top-dimensional differential

form on Rk given by the formula

L∗F (y, e1 ∧ · · · ∧ ek) := F (L(y), νP ).
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The pullback L∗F is defined on almost every y ∈ Rk.

Suppose that L̃ is another orientation-preserving affine isomorphism from Rk to

P . The pullback L̃∗F is also a top-dimensional differential form on Rk, and can be

again pulled back under the map T = L̃−1 ◦ L. Then we have

T ∗(L̃∗F )(y) = L̃∗F (T (y)) = F ((L̃ ◦ T )(y), νP ) = F (L(y), νP ) = L∗F (y).

Thus, if L∗F is locally integrable, so is L̃∗F . We use this fact to define a locally

integrable partial k-form.

Definition IV.12. A partial k-form F is locally integrable if for every affine k-plane

P there exists an affine isomorphism LP from Rk to P so that the pullback L∗P F is

locally integrable.

Hence, a locally integrable partial k-form has an intrinsic integral over simple

polyhedral chains σ in V given by these pullbacks. In particular, if P is the k-plane

containing σ, then ∫

σ

F :=

∫

L−1
P σ

L∗F,

where the integral on the right-hand side is taken with respect to Lebesgue k-measure

Lk on Rk. This integral is well defined by the preceding remarks.

Hence, a locally integrable partial k-form F on a Banach space V acts in a natural

way by integration on k-dimensional simplexes σ in V :

〈F, σ〉 :=

∫

σ

F < ∞.

In the following lemma we show that one can actually regard the action of F on σ

as integration in V with respect to Adams’s mass measure (Gromov’s mass*-measure)

on k-dimensional planes.
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Lemma IV.13. If F is a locally integrable partial k-form and σ is a k-simplex in

V , choose ~vσ = (v1, . . . , vk) ∈ [V ]k so that νσ = v1 ∧ · · · ∧ vk. Then

〈F, σ〉 =

∫

σ

F (p,~vσ) dMk(p),

where Mk is the k-dimensional mass* measure on the affine k-plane containing σ.

Proof: Fix an affine isomorphism L from Rk to the affine k-plane P containing σ.

We first use Wenger’s Lemma to calculate the pushforward of the measure Hk under

L; i.e., we calculate the constant C for which L∗Hk = CMk. (Note that C depends

on the k-direction νσ of σ.) Let (e1, . . . , ek) be the standard orthonormal basis of Rk.

Then the measure of the k-simplex [0, e1, . . . , ek] is

1

k!
= Hk[0, e1, . . . , ek] = L∗Hk[L(e1), . . . , L(ek)].

On the other hand, by Wenger’s Lemma, the Adams mass of the simplex

[L(0), L(e1), . . . , L(ek)] is

(4.7) |[L(0), L(e1), . . . , L(ek)]| = 1

k!
‖L(e1) ∧ · · · ∧ L(ek)‖m*.

Since L∗Hk[L(e1), . . . , L(ek)] = C|[L(e1), . . . , L(ek)]|, we conclude that

C =
1

‖L(e1) ∧ · · · ∧ L(ek)‖m*

.

Then

〈F, σ〉 =

∫

L−1σ

L∗F

=

∫

L−1σ

L∗F (q, (e1, . . . , ek)) dHk(q)

=

∫

σ

F (p, L∗(e1, . . . , ek)) d(L∗Hk)(p)

=

∫

σ

F (p, (L(e1), . . . , L(ek))) d(L∗Hk)(p).
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However, for almost all p ∈ σ,

F (p, (L(e1), . . . , L(ek))) = ‖(L(e1), . . . , L(ek))‖m* · F (p,~vσ).

Thus

∫

σ

F (p, (L(e1), . . . , L(ek))) d(L∗Hk)(p) = ‖L(e1) ∧ · · · ∧ L(ek)‖m*

∫

σ

F (p,~vσ) d(L∗Hk)(p)

=

∫

σ

F (p,~vσ) dMk(p),

completing the proof.

Corollary IV.14. For any polyhedral k-chain A,

(4.8) |〈F, A〉| ≤ |A| · ‖F‖∞.

Proof: The statement follows from Lemma IV.13 equation (3.8)

The following lemma shows that if two locally integrable partial forms act identi-

cally (by integration) on all polyhedral chains, the forms are equivalent.

Lemma IV.15. Suppose that F1 and F2 are locally integrable k-forms such that for

all polyhedral k-chains τ , 〈F1, τ〉 = 〈F2, τ〉. Then F1 ∼ F2, i.e., ‖F1 − F2‖∞ = 0.

Proof: Let P be a k-plane with k-direction ν = νP and let L : Rk → P denote the

√
k-bi-Lipschitz linear isomorphism given by Theorem II.8. As in Definition IV.11,

the pullbacks L∗F1 and L∗F2 are measurable, locally integrable functions on Rk. As

classical top-dimensional forms (i.e., functions on Rk), d(L∗F1) = d(L∗F2) = 0.

By assumption, for any polyhedral k-chain τ in Rk,

∫

τ

L∗F1 =

∫

L(τ)

F1 =

∫

L(τ)

F2 =

∫

τ

L∗F2.

The Euclidean flat form (L∗F1 − L∗F2) is identified with the zero cochain via

Wolfe’s theorem (see Section 4.1), since for any τ ,

〈L∗F1 − L∗F2, τ〉 :=

∫

τ

L∗F1 − L∗F2 = 0.
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Again by Wolfe’s theorem, the flat norm of L∗F1−L∗F2 as a flat differential form is

zero, and so

(4.9) ‖L∗F1 − L∗F2‖∞ := ess sup
x∈Rk

{(L∗F1 − L∗F2)(x)} = 0.

Equation (4.9) implies that (F1)ν − (F2)ν = 0 almost everywhere on the affine

k-plane P . Since P was arbitrary, ‖(F1 − F2)‖∞ = 0, so F1 ∼ F2.

4.5 The exterior-d operator

In this section we define the exterior derivative of a locally integrable partial form.

Not every locally integrable partial form will have a derivative, but if the derivative

exists, it is defined (up to equivalence class, see Lemma IV.15) by its action on

polyhedral chains of the appropriate dimension.

Definition IV.16. Suppose that F is a locally integrable k-form. Then dF (if it

exists) is the locally integrable (k+1)-form such that for all polyhedral (k+1)-chains

τ ,

(4.10) 〈dF, τ〉 =

∫

τ

dF =

∫

∂τ

F = 〈F, ∂τ〉.

To show that the exterior-d operator is well defined, suppose that F1 and F2 are

equivalent partial forms (i.e., ‖F1−F2‖∞ = 0) and that dF1 exists. If τ is a (k + 1)-

chain, then F1 = F2 almost everywhere on ∂τ , so 〈dF1, τ〉 = 〈F1, ∂τ〉 = 〈F2, ∂τ〉, so

dF1 is the exterior derivative of F2.

Suppose F and G are locally integrable partial k-forms for which the (k + 1)-

forms dF and dG exist. Since the action of forms on polyhedra is linear, the partial

(k + 1)-form d(F + G) exists and equals the partial (k + 1)-form dF + dG, since for
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all polyhedral (k + 1)-chains τ ,

〈d(F + G), τ〉 := 〈F + G, ∂τ〉

= 〈F, ∂τ〉+ 〈G, ∂τ〉

= 〈dF, τ〉+ 〈dG, τ〉

= 〈dF + dG, τ〉.

Thus, the exterior d operator is linear. Furthermore, equation (4.10) implies that

d2F = d(dF ) ≡ 0, because ∂2τ = ∂(∂τ) ≡ 0 for any polyhedral (k + 1)-chain τ .

Remark IV.17. Our notion of an exterior-d operator is motivated by the concept of a

weak derivative. Recall that for u, v ∈ L1(R), v is the weak derivative of u if for every

continuously differentiable, compactly supported test function ϕ,
∫
R u(t)ϕ′(t) dt =

− ∫
R v(t)ϕ(t) dt.

In the setting of partial forms, we require equation (4.10), that the exterior deriva-

tive satisfy Stokes’s theorem for all test polyhedra.

4.6 The wedge product of partial forms

Let Sn be the symmetric group consisting of all permutations of the set {1, 2, . . . , n}.

If σ is a permutation in Sn, we denote the sign of σ by sgn(σ).

Suppose that F : UF → R is a measurable partial k-form and G : UG → R is a

measurable partial `-form according to Definition IV.4.

Towards defining the wedge product of the forms F and G, we first define a set U ⊂

V × [V ]k+` which will be the domain of this wedge product. A pair (p, (v1, . . . , vk+`))

is in U if and only if for all permutations σ ∈ Sk+`,

(p, (vσ(1), . . . , vσ(k))) ∈ UF and (p, (vσ(k+1), . . . , vσ(k+`))) ∈ UG.
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The function F ∧G : U → R is then defined by the formula

(F ∧G)(p, (v1, . . . , vk+`)) :=(4.11)

1

(k + `)!

∑
σ∈Sk+`

sgn(σ) · F (p, (vσ(1), . . . , vσ(k))) ·G(p, (vσ(k+1), . . . , vσ(k+`))),

where p, v1, . . . , vk+` ∈ V .

We now show that F ∧G satisfies the conditions for a partial form. Property (i)

is clear; for any ~v = (v1, . . . , vk+`) ∈ V k+`, (F ∧ G)~v is a Borel function. To see

property (ii), let p ∈ V . Since both Fp and Gp are Borel, the function (F ∧ G)p is

Borel.

To show property (iii), fix an affine space W d with d ≥ k+`. If span v1, . . . , vk+` ⊂

W d
0 (i.e. W d is a ~v-superplane) then for all permutations σ ∈ Sk+`, W d is both a

(vσ(1), . . . , vσ(k))-superplane and a (vσ(k+1), . . . , vσ(k+`))-superplane. Hence by prop-

erty (iii) for F and G, for almost every p ∈ W d and every ~v ∈ [V ]k+`, the values

F (p, (vσ(1), . . . , vσ(k))) and G(p, (vσ(k+1), . . . , vσ(k+`))) are defined for all permutations

σ ∈ Sk+`, so Hd(W d \ U~v) = 0. Furthermore, by construction, at almost every point

p ∈ W d, (F ∧G)p is alternating and (k + `)-linear on [W d
0 ]k+`.

4.7 The flat norm on the space of partial forms

We are now ready to define the space of flat partial k-forms, denoted Fk(V ).

Definition IV.18. Let F be a partial form for which the exterior derivative dF

exists. The form F is a flat partial form if and only if ‖F‖∞ and ‖dF‖∞ are both

finite.

We note that the definition above implies that flat forms are locally integrable.

Given a flat partial k-form F ∈ Fk(V ), we set

‖F‖[ := max{‖F‖∞, ‖dF‖∞}.
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By the linearity of the exterior-d operator and the fact that comass is a norm on

locally integrable partial forms, ‖ · ‖[ is a norm (called the flat norm) on the space

of flat partial k-forms.

The following lemma discusses restrictions of flat partial forms in a Banach space

to finite-dimensional subspaces.

Lemma IV.19. Let F be a flat partial k-form on the Banach space V and suppose

W is a finite-dimensional subspace with dimension at least (k + 1). Then both FW

and (dF )W can be regarded as classical flat forms FW : W → ΛkW and (dF )W : W →

Λk+1W . Furthermore, the exterior derivative (in the sense of distributions) of FW is

the form (dF )W , i.e., d(FW ) = (dF )W .

Proof: That FW and (dF )W can be regarded as classical flat forms FW : W → ΛkW

and (dF )W : W → Λk+1W follows from property (iii) of Definition IV.4.

Let d be the dimension of W . By pulling back to Rd and applying Wolfe’s theorem

(Theorem IV.3), FW has a well defined trace on every k-dimensional affine subspace

of W and is associated with a unique k-cochain X for which 〈X, σ〉 =
∫

σ
FW . The

exterior derivative of F in the sense of distributions, denoted d(FW ), is a function

d(FW ) : W → Λk+1W that satisfies Stokes’s theorem for any polyhedral (k+1)-chain

τ in W : ∫

τ

d(FW ) =

∫

∂τ

FW

By Wolfe’s theorem (again pulling back to Euclidean space), d(FW ) corresponds
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to a unique flat cochain Y with

〈Y, τ〉 =

∫

τ

d(FW )

=

∫

∂τ

FW

=

∫

∂τ

F

=

∫

τ

dF

=

∫

τ

(dF )W

This shows that d(FW ) = (dF )W as cochains; hence they are equivalent as (k + 1)-

dimensional differential forms.

Corollary IV.20. Let F be a flat partial k-form on the Banach space V and suppose

W is a finite-dimensional subspace with dimension at least (k + 1). Then ‖FW n‖[ ≤

‖F‖[.

Proof: By definition, ‖FW‖∞ ≤ ‖F‖∞ and ‖(dF )W‖∞ ≤ ‖dF‖∞. Thus,

‖FW‖[ = max{‖FW‖∞, ‖d(FW )‖∞}

≤ max{‖FW‖∞, ‖(dF )W‖∞}

≤ max{‖F‖∞, ‖dF‖∞}

= ‖F‖[

In Proposition IV.23 below, we show that the wedge product of flat partial forms

is a flat partial form, a fact which gives the set of flat forms the structure of a graded

algebra. To do this we need the following two lemmas.
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Lemma IV.21. Let F and G be partial k- and `-forms, respectively. Then

‖F ∧G‖∞ ≤ C(k, `)‖F‖∞‖G‖∞,

Proof: It suffices to show that for any (k + `)-dimensional affine subspace W in V ,

‖F ∧G‖∞,W is bounded above by a constant that is independent of W .

Let W ⊂ V be an affine subspace of dimension (k+`). For almost every p ∈ W k+`,

sup{Fp(µ) : µ ∈ ΛkW0, ‖µ‖m* = 1} ≤ ‖F‖∞,W ,

sup{Gp(γ) : γ ∈ λ`W0, ‖γ‖m* = 1} ≤ ‖G‖∞,W ,

and [W0]
k+` is contained in the domain of (F ∧G)p.

Let p be such a point and let ν be a (k + `)-direction. Fix v1, · · · , vk+` in V so

that |vi| = 1 for i = 1, . . . , k + ` and so that ν = v1 ∧ · · · ∧ vk+`. Then for every

permutation σ ∈ Sk+`, vσ(1) ∧ · · · ∧ vσ(k) is a k-direction and vσ(k+1) ∧ · · · ∧ vσ(k+`) is

an `-direction.

Hence,

(F ∧G)p(v1, · · · , vk+`)

=
1

(k + `)!

∑
σ

sgn(σ) · Fp(vσ(1) ∧ . . . ∧ vσ(k)) ·Gp(vσ(k+1) ∧ . . . ∧ vσ(k+`)).

Because the partial forms F and G both have finite comass, for almost every p in

W , (F ∧G)p is defined for every ν ∈ Λk+`W and

(F ∧G)p(v1 ∧ · · · ∧ vk+`)

=
1

(k + `)!

∑
σ

sgn(σ) · Fp(vσ(1) ∧ . . . ∧ vσ(k)) ·Gp(vσ(k+1) ∧ . . . ∧ vσ(k+`))

≤ 1

(k + `)!
C(k, `)

∑
σ

‖Fp‖∞ · ‖Gp‖∞

= C(k, `)‖Fp‖∞ · ‖Gp‖∞
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for every (k + `)-direction v1 ∧ · · · ∧ vk+` in Λk+`W .

This shows that ‖F ∧G‖∞,W k+` ≤ ‖F‖∞,W · ‖G‖∞,W for every (k + `)-dimensional

affine space in V , which proves the lemma.

Lemma IV.22. (Leibniz rule for differential forms.) If F is a flat partial k-form

and G is a flat partial `-form then

d(F ∧G) = dF ∧G + (−1)kF ∧ dG.

Proof: The proof proceeds by reducing to the Euclidean case where the Leibniz

rule holds. Let τ be a (k + ` + 1)-dimensional simplex and W an affine subspace

containing τ . Then (F ∧ G)W = FW ∧ GW , and by Lemma IV.19, d(FW ) = (dF )W

and d(GW ) = (dG)W . We also have the usual equation

d(F ∧G)W = d(FW ) ∧GW + (−1)kFW ∧ d(GW ).

Thus,

〈(d(FW ) ∧GW + (−1)kFW ∧ d(GW )), τ〉 = 〈(F ∧G)W , ∂τ〉.

Hence,

〈(dF ∧G + (−1)kF ∧ dG), τ〉 = 〈(F ∧G), ∂τ〉,

and so d(F ∧G) = dF ∧G + (−1)kF ∧ dG.

Proposition IV.23. Given a flat k-form F and a flat `-form G, the (k + `)-form

F ∧G is flat.

Proof: By Lemma IV.21, ‖F ∧ G‖∞ < ∞. By Lemma IV.22 and the triangle

inequality, ‖d(F ∧G)‖∞ ≤ ‖dF ∧G‖∞ + ‖F ∧ dG‖∞. Since both F and G are flat,

all four of the following quantities are finite: ‖F‖∞, ‖G‖∞, ‖dF‖∞, ‖dG‖∞. Thus,

by again applying Lemma IV.21, ‖d(F ∧G)‖∞ < ∞, and hence F ∧G is flat.
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Remark IV.24. Proposition IV.23 provides a rich source of examples of flat partial

k-forms. Any bounded Lipschitz function f : V → R is a flat 0-form, and for any such

f , df is a flat 1-form. Hence, if f1, . . . , fk are Lipschitz functions, then df1 ∧ · · · ∧ dfk

is a flat partial k-form.



CHAPTER V

Embedding the Space of Flat Partial Forms into the Space
of Flat Cochains

In this section we will define a linear isometric embedding from the space Fk(V )

of flat partial k-forms to the space Fk(V ) of flat k-cochains.

We first note that a locally integrable partial k-form F induces a linear functional

XF on the space PkV of polyhedral k-chains by

〈XF , σ〉 =

∫

σ

F =

∫

σ

F (p,~vσ) dM(p)

for every polyhedral k-chain σ. If F is a flat partial k-form then the induced linear

functional XF is bounded in the flat norm. We define the map Ψ : Fk(V ) → Fk(V )

by F 7→ XF . Note that for τ ∈ Pk+1,

〈XdF , τ〉 =

∫

τ

dF =

∫

∂τ

F = 〈XF , ∂τ〉 = 〈dXF , τ〉,

so XdF = d(XF ).

The map Ψ is clearly a linear map, since the integration action of a form on a

polyhedral chain is linear. We now show that Ψ is an isometry, i.e., that ‖F‖[ =

|XF |[.

Theorem V.1. The map Ψ : Fk(V ) → Fk(V ) defined above is a linear isometric

embedding.

50
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The proof follows directly from Lemma V.2 and Lemma V.4.

Lemma V.2. If F is a flat partial k-form, then |XF |[ ≤ ‖F‖[.

Proof: First, we note that for arbitrary polyhedral chains σ ∈ Pk and τ ∈ Pk+1,

〈XF , σ〉 = 〈XF , σ − ∂τ〉+ 〈XF , ∂τ〉

=

∫

σ−∂τ

F +

∫

∂τ

F

=

∫

σ−∂τ

F +

∫

τ

dF

≤ ‖F‖∞ · |σ − ∂τ |+ ‖dF‖∞ · |τ |

≤ max{‖F‖∞, ‖dF‖∞} · (|σ − ∂τ |+ |τ |).

Since this is true for all τ ∈ Pk+1,

〈F, σ〉 ≤ max{‖F‖∞, ‖dF‖∞} · inf
τ

(|σ − ∂τ |+ |τ |)

≤ ‖F‖[ · |σ|[.

In order to prove the other inequality (|XF |[ ≥ ‖F‖[) we first prove some inter-

mediate results.

Lemma V.3. Let F be a flat partial k-form. Then

sup
W k⊂V

‖F‖∞,W k ≤ |XF |.

Proof: By Definition III.11, |XF | = sup{〈XF , σ〉 : σ ∈ Pk, |σ| ≤ 1}. If we consider

only k-simplexes σ in V , the supremum decreases, so

|XF | ≥ sup{〈XF , σ〉 : σ a simplex, |σ| ≤ 1}

= sup

{〈XF , σ〉
|σ| : σ a simplex

}

≥ sup
W k⊂V

sup
x∈W k

{
lim sup

i→∞

{〈XF , σi〉
|σi| : σi ⊂ W k, σi ↘ x

}}
.(5.1)
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In inequality (5.1), the lim sup is taken over all sequences of simplexes (σi) in W k

containing x as a vertex, with fullness bounded away from zero, and whose diameters

decrease toward zero. This quantity decreases still more if the second supremum is

replaced with an essential supremum:

(5.2) |XF | ≥ sup
W k⊂V

ess sup
x∈W k

{
lim sup

i→∞

{〈XF , σi〉
|σi| : σi ⊂ W k, σi ↘ x

}}
.

As noted in Section 4.7, FW is a top-dimensional form on W = W k with

‖FW‖∞ = ‖F‖∞,W .

We equip W with a Euclidean norm by identifying W with Rk. We denote k-

dimensional Lebesgue measure on W by | · |E := Lk(·). Fix a mass*-k-direction

ν ∈ ΛkW and normalize ν by its Euclidean mass |ν|2 to obtain a Euclidean k-

direction ν
|ν|2 . Define a (top-dimensional) Euclidean k-form FE

W : W → R on W

by

FE
W (x) := FW

(
x,

νW

|νW |2

)
.

By construction, ‖FE
W‖∞ = 1

|νW |E ‖FW‖∞ < ∞. Hence, FE
W is a Euclidean flat form on

W (with the Euclidean norm), so by Wolfe’s theorem (Theorem 7c, [Whi57, p. 265])

FE
W is equivalent to the form F̃E

W defined by

F̃E
W (x) := lim

i→∞

{〈XF , σi〉
|σi|E : σi ⊂ W k, σi ↘ x

}
,

where the limit, which exists for almost every x ∈ W , is taken over all sequences of

simplexes (σi) in W containing x as a vertex, with fullness bounded away from zero,

and whose diameters decrease toward zero. This shows that ‖FE
W‖∞ = ‖F̃E

W‖∞.

Since Wenger’s Lemma (Lemma III.8) implies that |σi|E = |νW |E|σi|, the function

F̃W on W defined by

F̃W (x) := lim
i→∞

{〈XF , σi〉
|σi| : σi ⊂ W k, σi ↘ x

}
= (|νW |E)F̃E

W (x)
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is defined for almost every p ∈ W .

Hence,

‖FW‖∞ = |νW |E · ‖FE
W‖∞

= |νW |E · ‖F̃E
W‖∞

= ‖F̃W‖∞.

Since by equation (5.2), |XF | ≥ ‖F̃W‖∞ = ‖FW‖∞ = ‖F‖∞,W ,

|XF | ≥ sup
W k⊂V

‖F‖∞,W k = ‖F‖∞.

Lemma V.4. ‖F‖[ ≤ ‖XF‖[.

Proof: By the definition of the comass norm ‖ · ‖∞, we have the equality

(5.3) ‖F‖[ = max

{
sup

W k⊂V

‖F‖∞, W k , sup
W k+1⊂V

‖dF‖∞, W k+1

}
.

The terms on the right-hand side of equation (5.3) are bounded above by Lemma V.3:

sup
W k

‖F‖∞, W k ≤ |XF |,

and

sup
W k+1

‖dF‖∞, W k+1 ≤ |XdF | = |dXF |.

Combining the two preceding inequalities with equation (5.3) and applying

Lemma III.12, we have

‖F‖[ ≤ max{|XF |, |dXF |} = |XF |[,

as desired.



CHAPTER VI

Wolfe’s Theorem in a Banach Space

In the last chapter we showed that there is a linear isometric embedding Ψ from

the space Fk(V ) of flat partial k-forms to the space Fk(V ) of flat k-cochains.

The main result of this chapter is the following theorem.

Theorem VI.1. The map Ψ : Fk(V ) → Fk(V ) is surjective.

Theorem I.1, the Banach space analog to Wolfe’s theorem, follows from Theo-

rem VI.1 and the results of the previous chapter.

We will show that Ψ is a surjective map by finding, for each flat k-cochain X, a

flat partial k-form FX with the property that Ψ(FX) = X.

Let X be a flat k-cochain, and fix a point p ∈ V and a k-direction ν ∈ ΛkV . Let

W be the ν-superplane containing p. Consider sequences (σi) of oriented simplexes

in W that satisfy the following three properties:

1. for all i, σi has one vertex at the point p and has the same orientation as W ,

2. as i →∞, |σi| → 0,

3. there exists η > 0 so that Θ(σi) > 0 for all i.

Let DX(p, ν) be the following limit, if it exists for every such sequence (σi) of sim-
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plexes:

(6.1) DX(p, ν) := lim
i→∞

〈X, σi〉
|σi| .

In the case that ν is a nonzero simple k-vector we define DX(p, ν) := |ν|DX

(
p, ν

|ν|
)
;

if ν is the zero vector, we set DX(p, ν) = 0. This construction is analogous to that

of Whitney in the Euclidean case; see Section 4.1.

We now define a set U ⊂ V ×[V ]k and a function FX : U×V k → R, which will turn

out to be the partial form we seek. The set U consists of those pairs (p,~v) for which

the limit DX(p, µ(~v)) exists and is finite. (Recall that µ(v1, . . . , vk) = v1 ∧ · · · ∧ vk.)

The function FX is given by

FX(p,~v) := DX(p, µ(~v)).

Theorem VI.2. FX is a partial k-form.

We begin by proving that the horizontal slices of FX are Borel.

Proposition VI.3. Suppose that X is a flat cochain in a Banach space V . Then

for all (v1, . . . , vk) = ~v ∈ V k the restrictions (FX)~v : U~v → R defined by (FX)~v(p) :=

FX(p,~v) = DX(p, v1 ∧ · · · ∧ vk) are Borel functions.

Proof: We will first show that the set U~v is Borel. Let ~v = (v1, . . . , vk) be a k-

tuple such that ν = v1 ∧ · · · ∧ vk has unit mass. Let σ ⊂ span{v1, . . . , vk} be a

nondegenerate simplex containing the origin. Now, for p ∈ V , let Tpσ denote the

simplex σ translated by p. In particular, Tpσ has fullness Θ(σ) and one vertex at the

point p.

Define the map gσ : V → R by

gσ(p) := 〈X, Tpσ〉,
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and define

g̃σ(p) =
1

|σ|gσ(p).

For any choice of ν and any subsequent choice of σ, we show that the map gσ is

continuous, and hence, that g̃σ is continuous.

For a unit vector ~u ∈ V and δ > 0, set p′ := p + δ~u. Denote by τ the (possibly

degenerate) (k + 1)-dimensional prism that is the convex hull of Tpσ and Tp′σ, and

orient τ to match the orientations of −Tpσ and Tp′σ on those simplexes. We can

bound the flat norm of Tpσ − Tp′σ using the (k + 1)-chain τ :

|Tpσ − Tp′σ|[ ≤ |(Tpσ − Tp′σ)− ∂τ |+ |τ |

≤ Ck[δ(k + 1) diam(σ)k−1 + δ|σ|].

Thus,

|gσ(p)− gσ(p′)| = |〈X, Tpσ〉 − 〈X,Tp′σ〉|

= |〈X, Tpσ − Tp′σ〉|

≤ |X|[ · |Tpσ − Tp′σ|[

≤ |X|[ · Ck((k + 1) diam(σ)k−1 + |σ|) · δ,

so |gσ(p)− gσ(p′)| → 0 as δ → 0.

This shows that gσ is continuous. Since |σ| is constant, the normalized function

g̃σ = 1
|σ|gσ is also continuous, and hence a Borel function.

As a k-dimensional linear subspace of V , Pν is separable. Fix a countable dense

set Q of points in Pν and consider the set of ordered k-tuples of elements in Q.

Define the set Gν to consist of oriented k-simplexes with vertices 0, x1, . . . , xk, where

(x1, . . . , xk) ∈ [Q]k. Note that each oriented simplex with one vertex at zero cor-

responds in a natural way to an equivalence class of k-tuples. Here, two k-tuples
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(v1, . . . , vk) and (w1, . . . , wk) are in the same equivalence class if they contain the

same set of k points and if there exists a permutation σ of sign +1 so that vi = wσ(i)

for all i. Since the set of k-tuples is dense, the (countable) set Gν of simplexes gen-

erated by the set of ordered k-tuples chosen above is also dense (with respect to the

mass norm) in the set {[0, v1, . . . , vk] : v1, . . . , vk ∈ Pν} of simplexes in Pν with one

vertex at 0. To see this, let S = [0, v1, . . . , vk] be a simplex with v1, . . . , vk ∈ Pν

and choose sequences (x1
i ), . . . , (x

k
i ) in Q with xj

i → vj for 1 ≤ j ≤ k. The sequence

(Si) = ([0, x1
i , . . . , x

k
i ]) of simplexes approaches S in Hausdorff measure and hence in

the mass measure.

For η ∈ R+, let Gν,η := {σ ∈ Gν : Θ(σ) ≥ η} and define the function Dη
X : V ×

ΛkV → R by

(6.2) Dη
X(p, ν) := lim inf

m→∞
inf

σ∈Gν,η

|σ|<1/m

g̃σ(p).

Similarly, define D
η

X : V × ΛkV → R by

(6.3) D
η

X(p, ν) := lim sup
m→∞

sup
σ∈Gν,η

|σ|<1/m

g̃σ(p).

For fixed ν and η, the functions Dη
X and D

η

X are Borel functions of p. We see

that the subset of V where Dη
X(·, ν) < ∞ is Borel, so the set where Dη

X(·, ν) = ∞

is also Borel. Similarly, the subset of V where Dη
X(·, ν) > −∞ is Borel, so the set

where Dη
X(·, ν) = −∞ is Borel. In addition, the set in V where Dη

X(·, ν) = D
η

X(·, ν)

is Borel. Thus, the subset

Sν,η := {p ∈ V : −∞ < Dη
X(p, ν) = D

η

X(p, ν) < ∞}

is Borel.

The set U~v (the domain of the function F~v) is clearly contained in Sν,η for all
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η > 0, so

U~v ⊂
∞⋂

`=1

Sν, 1
`
.

On the other hand, suppose p ∈ ⋂∞
`=1 Sν, 1

`
, and let (τi) be a sequence of simplexes

in Pν whose diameters shrink to zero and such that each simplex τi contains the

point p and has fullness greater than η. Approximating each simplex τi in the mass

norm by a sequence of simplexes σi
j and using a diagonalization argument, one can

show that the limit DX(p, ν) exists and equals the limit Dη
X(p, ν) = D

η

X(p, ν). Thus,

U~v ⊃
⋂∞

`=1 Sν, 1
`
, and so

U~v =
∞⋂

`=1

Sν, 1
`
.

This shows that U~v is Borel.

To see that the function F~v is Borel, note that at any point p in U~v, Dη
X(p, ν) =

D
ν

X(p, η) for every fixed η. Hence, we may define the function Dη
X : Eν × ΛkV → R

by

(6.4) Dη
X(p, ν) := lim

m→∞
sup
σ∈G~v

Θ(σ)≥η
|σ|mass<1/m

g̃σ(p).

Since Dη
X(p, ν) is Borel for the fixed k-direction ν and fullness η,

(FX)~v(p) = DX(p, ν) = lim
`→∞

D
1/`
X (p, ν)

is also a Borel function. It follows that (FX)~v is a Borel function for all ~v in V k.

Towards proving Theorem VI.2, we prove the following proposition, which will be

used to prove that FX satisfies properties (ii) and (iii) of a partial form. The propo-

sition, whose proof relies on Theorem II.8, essentially says that if two k-directions

α and β are sufficiently close in the mass* norm, then they can be represented as

α = u1 ∧ · · · ∧ uk and β = v1 ∧ · · · ∧ vk where the components of α are “almost

orthogonal,” as are the components of β, and where for each i, ui is close to vi.
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Proposition VI.4. For k > 0, there exists a constant B = B(k) > 0 depending

only on k so that the following is true. Let α, β be k-directions in ΛkV such that

‖α− β‖m* ≤ B. Then there exist u1, . . . , uk and v1, . . . , vk in V so that

(i) α = u1 ∧ · · · ∧ uk and β = v1 ∧ · · · ∧ vk,

(ii) for all λ1, . . . , λk ∈ R,

|λ1u1 + · · ·+ λkuk|V '
(

k∑
i=1

λ2
i

)1/2

and |λ1v1 + · · ·+ λkvk|V '
(

k∑
i=1

λ2
i

)1/2

,

with similarity constants depending only on k,

(iii) for all i in {1, . . . , k}, |ui − vi|V < c(k)‖α− β‖m*.

Let ν = v1 ∧ · · · ∧ vk be a simple k vector in ΛkV and L : W → V an injective

linear map between finite-dimensional Banach spaces. We denote the vector L(ν) :=

L(v1)∧· · ·∧L(vk). If ν ∈ ΛkV is an arbitrary k-vector with representation ν =
∑

λiνi

where each νi is simple, let L(ν) :=
∑

λiL(νi). Furthermore, suppose ζ ∈ W ∗. We

define Lζ ∈ V ∗ to be the composition Lζ := ζ ◦ L−1.

The following lemma is the first step in proving Proposition VI.4.

Lemma VI.5. Let α and β be k-directions in ΛkV , Pα := span{ui : i = 1, . . . , k},

and Pβ := span{vi : i = 1, . . . , k}. Let V αβ = span{Pα, Pβ} and d = dim V αβ. Let

L : Rd → V αβ be the
√

d-bi-Lipschitz John map from Theorem II.8. Then there exists

a constant C depending only on k so that

(i) 1
C
‖α‖m* ≤ ‖L−1(α)‖m* ≤ C‖α‖m*,

(ii) 1
C
‖α− β‖m* ≤ ‖L−1(α− β)‖m* ≤ C‖α− β‖m*.

Proof: By definition

‖α‖m* = sup{〈α, ξ〉 : ξ = ξ1 ∧ · · · ∧ ξk, ξi ∈ V ∗, |ξi|V ∗ ≤ 1}.
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Suppose that ζi ∈ (Rd)∗ for i = 1, . . . , k all have |ζi|(Rd)∗ ≤ 1. It suffices to show that

|〈L−1(α), ζ1 ∧ · · · ∧ ζk〉| ≤ c(k)‖α‖m*.

Since L is a
√

d-bi-Lipschitz map,

|Lζi|(V αβ)∗ ≤
√

d|ζi|(Rd)∗ ≤
√

d.

By the Hahn-Banach theorem, we may extend each Lζi to a linear functional L̂ζi on

V with |L̂ζi|V ∗ ≤
√

d. Let ξ = L̂ζ1√
d
∧ · · · ∧ L̂ζk√

d
= d−k/2(L̂ζ1 ∧ · · · ∧ L̂ζk). Then the

mass of ξ is bounded by 1:

d−k/2|L̂ζ1 ∧ · · · ∧ L̂ζk|m ≤ d−k/2|L̂ζ1| · · · |L̂ζk| ≤ 1.

Thus we have the following estimate:

|〈L−1(α), ζ1 ∧ · · · ∧ ζk〉| = |〈α, Lζ1 ∧ · · · ∧ Lζk〉|

= |〈α, L̂ζ1 ∧ · · · ∧ L̂ζk〉|

≤ dk/2|〈α, ξ〉|

≤ dk/2‖α‖m*.

Since k ≤ d ≤ 2k, let C = (2k)k/2. Then we have ‖L−1(α)‖m* ≤ C‖α‖m*.

A similar argument using ζi ∈ (V αβ)∗ with |ζi|(V αβ)∗ ≤ 1 for i = 1, . . . , k shows

that for C = (2k)k/2, ‖α‖m* ≤ C‖L−1(α)‖m*. This proves part (i) of the lemma.

Part (ii) is proven in the same manner.

Lemma VI.6. The norms ‖ · ‖m* and | · |2 on ΛkRd, d ≥ k are equivalent up to a

factor that depends only on k and d.

Here, the norm | · |2 refers to the Euclidean mass norm on k-vectors described in

Appendix A.
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Proof: Let {e1, . . . , ed} be the standard orthonormal basis of Rd. Then B = {ei1 ∧

· · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ d} is an orthonormal basis of ΛkRd (with respect to

the norm | · |2) and for every b ∈ B, |b|2 = ‖b‖m* = 1. Let | · |1 denote the L1 norm

on ΛkRd, and let | · |∞ denote the L∞ norm on ΛkRd. By the triangle inequality, for

any ν ∈ ΛkRd,

|ν|1 ≥ ‖ν‖m*.

After uniquely representing ν as
∑

λIbI for bI ∈ B and applying the definition of the

mass* norm we have

‖ν‖m* ≥ max
I
{λI} = |ν|∞.

Thus, by John’s theorem,

1√
C
|ν|2 ≤ |ν|∞ ≤ ‖ν‖m* ≤ |ν|1 ≤

√
C|ν|2,

where C =
(

d
k

)
.

Proof of Proposition VI.4: Throughout the proof, we abuse notation and use c(k)

to denote a constant depending only on k, although the specific constant referred to

may be different in different instances.

As in the Lemma VI.5, let V αβ = span{Pα, Pβ}. Let d ≤ 2k denote the dimension

of V αβ. Let L : Rd → V αβ be the
√

d-bi-Lipschitz John map from Theorem II.8.

Denote the simple k-vectors L−1(α) and L−1(β) by L−1(α) = α′ and L−1(β) = β′,

and let the associated k-directions be α′0 := α′
‖α′‖m*

and β′0 := β′
‖β′‖m*

. By Lemma VI.5,

‖α′ − β′‖m* = ‖L−1(α− β)‖m* ≤ c(k)‖α− β‖m*.

Combined with Lemma VI.6, this implies that

|α′ − β′|2 ≤ c(k)‖α− β‖m*.
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Choose the constant B so that

(6.5) |α′0 − β′0|2 ≤ 1

whenever ‖α − β‖m* ≤ B. Thus, for α and β with ‖α − β‖m* ≤ B, the orthogonal

projection mapping from the plane determined by the k-direction α′0 to the plane

determined by β′0 is an isomorphism. Moreover, by [Whi57, I.15], inequality (6.5)

implies that the angle θ between the k-planes L−1Pβ and L−1Pα satisfies cos θ ≥ 1/2.

We now choose specific representations of the k-directions α′0 and β′0. To do

this, choose an orthonormal basis e1, . . . , ek of the (Euclidean) plane L−1Pα = Pα′

spanned by the components of α′. (Choose this basis so that e1 ∧ · · · ∧ ek has the

same orientation as α′.) Since Wenger’s Lemma implies that ‖e1 ∧ · · · ∧ ek‖m* = 1,

e := e1 ∧ · · · ∧ ek = α′0.

Let p be the Euclidean projection of Rd onto the plane L−1Pβ = Pβ′ , and denote

xi := p(ei) for i = 1, . . . , k. The vectors x1, . . . xk form a basis of PL−1β, which we

normalize as follows:

xi :=
xi

(‖x1 ∧ · · · ∧ xk‖m*)1/k
,

so that ‖x1 ∧ · · · ∧ xk‖m* = 1. Then

x := x1 ∧ · · · ∧ xk = β′0.

Inequality (6.5) allows us to bound the quantity ‖x1 ∧ · · · ∧ xk‖m*; by [Whi57, I.15]

and Wenger’s lemma,

(6.6) ‖x1 ∧ · · · ∧ xk‖m* = ‖p(e1) ∧ · · · ∧ p(ek)‖m* ≥ 1

2
‖e1 ∧ · · · ∧ ek‖m* =

1

2
.

We push the vectors e1, . . . , ek and x1, . . . , xk forward by the map L and re-

normalize to obtain the vectors u1, . . . , uk and v1, . . . , vk from part (i) of the statement

of this proposition: Set ui = Lei
k
√
‖L(e)‖m*

and vi = Lxi
k
√
‖L(x)‖m*

for i = 1, . . . , k.
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By construction, ‖u1∧· · ·∧uk‖m* = 1, so α = u1∧· · ·∧uk. Also, for λ1, . . . λk ∈ R,

|λ1u1 + · · ·+ λkuk|V 'k |L−1(λ1u1 + · · ·+ λkuk)|Rd

= |λ1L
−1(u1) + · · ·+ λkL

−1(uk)|Rd

=

∣∣∣∣∣λ1
e1

k
√
‖L(e)‖m*

+ · · ·+ λk
ek

k
√
‖L(e)‖m*

∣∣∣∣∣
Rd

'k |λ1e1 + · · ·+ λkek|Rd

= c(k)
(∑

λ2
i

)1/2

.

In the preceding sequence, (6.7) follows from Lemma VI.5.

Since v1∧· · ·∧vk has unit mass*, v1∧· · ·∧vk = ±β, and since α and β are close in

mass*, v1∧· · ·∧vk = β. Also, since x is a k-direction in Rd and L is
√

d-bi-Lipschitz,

Lemma VI.5 implies that ‖L(x)‖m* ' c(k)‖x‖m* = c(k). Thus, for λ1, . . . λk ∈ R,

|λivi|V 'k

∣∣∣L−1
∑

λivi

∣∣∣
Rd

=

∣∣∣∣∣
∑

λi
xi

k
√
‖L(x)‖m*

∣∣∣∣∣
Rd

'k

∣∣∣
∑

λixi

∣∣∣
Rd

.

Furthermore, by inequality (6.6), k
√
‖x1 ∧ · · · ∧ xk‖m* ' 1, so

c(k)
∣∣∣
∑

λixi

∣∣∣
Rd

= c(k)

∣∣∣∣∣
∑

λi
xi

k
√
‖x1 ∧ · · · ∧ xk‖m*

∣∣∣∣∣
Rd

'k

∣∣∣
∑

λip(ei)
∣∣∣
Rd

'k

∣∣∣
∑

λiei

∣∣∣
Rd

=
(∑

λ2
i

)1/2

.

This proves part (ii) of the proposition.
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Finally, for each i, we have

|ui − vi|V =

∣∣∣∣∣
Lei

k
√
‖L(e)‖m*

− Lxi

k
√
‖L(x)‖m*

∣∣∣∣∣
V

'k |Lei − Lxi|V(6.7)

'k |ei − xi|Rd

=

∣∣∣∣∣ei − p(ei)
k
√
‖x1 ∧ · · · ∧ xk‖m*

∣∣∣∣∣
Rd

'k |ei − p(ei)|Rd(6.8)

≤ c(k)‖α′ − β′‖m*

≤ c(k)‖α− β‖m*.

Equation (6.7) holds because by Lemma VI.5, both ‖L(e)‖m* and ‖L(x)‖m* are

comparable to 1 with comparability constants depending only on k. Equation (6.8)

again uses the fact that k
√
‖x1 ∧ · · · ∧ xk‖m* ' 1. This shows that

|ui − vi|V < c(k)‖α− β‖m*.

In the situation of Proposition VI.4, we can define a linear map π from Pα onto

the plane Pβ by the following formula:

(6.9) π

(
k∑

i=1

λiui

)
:=

k∑
i=1

λivi.

By Proposition VI.4,

(6.10) |x− π(x)|V < c(k)|x| · ‖α− β‖m*

for all x ∈ Pα.

Lemma VI.7. Let α and β be k-directions in ΛkV so that ‖α − β‖m* is less than

the bound in Proposition VI.4. Suppose that σ ⊂ Pα is an η-full simplex of diameter
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at most 1 and one vertex at 0. Let π be the map given in equation (6.9). Then

(6.11)

∣∣∣∣
π(σ)

|π(σ)| −
σ

|σ|

∣∣∣∣
[

≤ Ck,η · ‖α− β‖m*,

where, in particular, Ck,η does not depend on the mass of σ.

Proof: By the linearity of the map π,

∣∣∣∣
πσ

|πσ| −
σ

|σ|

∣∣∣∣
[

≤
∣∣∣∣

πσ

|πσ| −
πσ

|σ| +
πσ

|σ| −
σ

|σ|

∣∣∣∣
[

≤ |πσ|[ · ||σ| − |πσ||
|πσ| · |σ| +

|πσ − σ|[
|σ|

≤ |πσ| · ||σ| − |πσ||
|πσ| · |σ| +

|πσ − σ|[
|σ|

=
||σ| − |πσ||

|σ| +
|πσ − σ|[
|σ| .

Hence, assuming ‖α− β‖m* is sufficiently small, it suffices to show that ||σ|−|πσ||
|σ| and

|πσ−σ|[
|σ| are each bounded by a constant multiple of ‖α − β‖m* depending only on k

and η.

Part I: We first show that ||σ|−|πσ||
|σ| is bounded above up to a constant factor by

‖α − β‖m*. Let σ = [0, x1, . . . , xk] and πσ = [0, πx1, . . . , πxk]. One may choose

“normalized simplexes” σ′ and πσ′ so that |σ′| = 1 and ||σ′| − |πσ′|| = ||σ|−|πσ||
|σ| as

follows. By the scaling lemma for mass from [Ada08], |λσ| = λk|σ| for any positive

real scalar λ. Thus,

1 =

∣∣∣∣
σ

|σ|

∣∣∣∣ =
∣∣[0, |σ|−1/kx1, . . . , |σ|−1/kxk]

∣∣ ,

and

|πσ|
|σ| =

∣∣∣∣
πσ

|σ|

∣∣∣∣ =
∣∣[0, |σ|−1/kπx1, . . . , |σ|−1/kπxk]

∣∣ .

We denote the vertices of σ′ by {x′i : i = 0 . . . k}, where x′0 = 0 and x′i = |σ|−1/kπxi.

Since

||σ| − |πσ||
|σ| =

∣∣∣∣
|σ|
|σ| −

|πσ|
|σ|

∣∣∣∣ ,
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it suffices to show that the normalized simplexes σ′ := [0, |σ|−1/kx1, . . . , |σ|−1/kxk]

and πσ′ := [0, |σ|−1/kπx1, . . . , |σ|−1/kπxk] are close in mass, which we will accomplish

by bounding the Lipschitz constant of the map π and applying Lemma III.13.

By inequality 6.10,

1− c(k)‖α− β‖m* < |π(z)| < 1 + c(k)‖α− β‖m*

for all z in ∂B(0, 1) ∩ Pα. Thus, we can bound the operator norms of π : Pα → Pβ

and π−1 : Pβ → Pα by

‖π‖ := sup{|π(z)| : z ∈ ∂B(0, 1) ∩ Pα} < 1 + c(k)‖α− β‖m*

and

‖π−1‖ =
1

inf{|π(z)| : z ∈ ∂B(0, 1) ∩ Pα} <
1

1− c(k)‖α− β‖m*

.

First applying Lemma III.13 to the map π, we have

|πσ′| ≤ (1 + c(k)‖α− β‖m*)
k.

On the other hand, we apply Lemma III.13 to the map π−1 to conclude that

|π−1(πσ′)| ≤ ‖π−1‖k|πσ′|

and hence that

|πσ′| ≥ 1

‖π−1‖k
> (1− c(k)‖α− β‖m*)

k.

Thus, ||πσ′| − 1| ≤ C(k) · ‖α− β‖m*, so

||σ| − |πσ||
|σ| = ||σ′| − |πσ′||

= |1− |πσ′||

≤ C(k) · ‖α− β‖m*.

This completes Part I of the proof.
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Part II: For the k-simplex σ = [p0, . . . , pk] and the projection π, let H(σ) be the

(k + 1)-chain (see [Whi57, p. 257]):

H(σ) :=
k∑

i=0

(−1)iτi,

where τi is the (k + 1)-simplex [p0, . . . , pi, π(pi), . . . , π(pk)]. By construction, H(σ)

can be triangulated using (k + 1) simplexes of dimension (k + 1), each of which has

mass at most c(k)‖α−β‖m*·(diam σ)k+1

(k+1)!
, by [Ada08, p. 7] and Wenger’s Lemma.

Similarly, if ∂σ =
∑k+1

j=1 ρj, where {ρj} is a disjoint set of (k − 1)-simplexes, we

define the k-chain H(∂σ) :=
∑

H(ρj), where for each j, H(ρj) can be triangulated

using k simplexes of dimension k, each of which has mass at most c(k)‖α−β‖m*·(diam σ)k

(k)!
.

Since σ − πσ = ∂H(σ) + H(∂σ), we have

|σ − πσ|[ = |∂H(σ) + H(∂σ)|[

≤ |∂H(σ)|[ + |H(∂σ)|[

≤ |H(σ)|+ |H(∂σ)|

≤ c(k)
‖α− β‖m* · (diam σ)k+1

k!
+ (k + 1)c(k)

‖α− β‖m* · (diam σ)k

(k − 1)!

≤ c(k)‖α− β‖m*
|σ|
η

≤ c(k, η)‖α− β‖m*|σ|,

as desired.

Using Lemma VI.7, we can now show that the vertical slices of FX are Borel.

Proposition VI.8. Suppose that X is a flat cochain in a Banach space V . Then for

all p ∈ V the induced maps (FX)p : Up ⊂ V k → R defined by (FX)p(~v) := FX(p,~v) =

DX(p, v1 ∧ · · · ∧ vk) are Borel functions.

Proof: We will show (FX)p is continuous with respect to the product topology on
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[V ]k. Equivalently, we show that DX(p, ν) is continuous with respect to ν in the

mass* norm.

Fix p ∈ V . Suppose that α and β are k-directions in ΛkV for which both DX(p, α)

and DX(p, β) exist and for which ‖α− β‖m* is less than the bound B from Proposi-

tion VI.4. Let π be the projection defined in equation (6.9).

Note that by Lemma III.13, if σ is an η-full simplex lying in Pβ, then π(σ) is a

c(k)η-full simplex in Pα.

Now let (σi) be a sequence of ( 1
ck

η)-full simplexes in Pβ that contain the point

p and whose diameters decrease to zero. Then the corresponding sequence (π(σi))

consists of η-full simplexes in Pα containing the point p with diameters shrinking to

zero.

By Lemma VI.7, for all i ∈ N,

∣∣∣∣
π(σi)

|π(σi)| −
σi

|σi|

∣∣∣∣
[

≤ Ck,η · ‖α− β‖m*.

Since DX(p, α) and DX(p, β) exist, we can evaluate each limit using the sequences

(σi) and (πσi):

|DX(p, α)−DX(p, β)| =

∣∣∣∣ lim
|πσi|↘0

〈X, πσi〉
|πσi| − lim

|σi|↘0

〈X, σi〉
|σi|

∣∣∣∣

= lim
i→∞

∣∣∣∣
〈

X,
πσi

|πσi| −
σi

|σi|
〉∣∣∣∣

≤ lim sup
i→∞

|X|[ ·
∣∣∣∣

πσi

|πσi| −
σi

|σi|

∣∣∣∣
[

≤ |X|[ · Ck,η‖α− β‖m*.

Since DX(p, ν) := c · DX(p, ν/c), the limit DX(p, ·) is continuous in all simple

k-vectors, hence (FX)p is continuous on Up.

If the set Up is also Borel, it follows that (FX)p is a Borel function. We show an

even stronger result, namely, the set Up is closed. Let ~a := (a1, . . . , ak) be a k-tuple
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in V k which is not in Up and let α := a1 ∧ · · · ∧ ak. In particular, the limit DX(p, α)

does not exist.

We show that there exists ε so that for all k-directions β with ‖α − β‖m* < ε,

DX(p, β) is not defined. Now, for some 0 < η < 1, there must be two sequences (σi)

and (τi) of η-full simplexes in Pα containing p whose diameters decrease to zero such

that

〈X, σi〉
|σi| ≤ c < d ≤ 〈X, τi〉

|τi| .

Otherwise, since the flatness of X rules out the possibility that all sequences diverge

to ∞, every such sequence would have to converge to c = d, which contradicts our

assumption that DX(p, α) does not exist.

Let Ck,η be the constant from Lemma VI.7 and B the constant from Lemma VI.4.

Let ε < 1
k

max{|d− c|/2, Ck,η|X|[B}, suppose that ~b := (b1, . . . , bk) is a k-tuple with

associated k-vector β := b1 ∧ · · · ∧ bk such that ‖α− β‖m* < ε/(Ck,η|X|[). The map

π is again the projection defined in equation (6.9). Thus, the sequences (π(σi)) and

(π(τi)) are η′-full sequences, where η′ > 0. Then applying Lemma VI.7, we have

∣∣∣∣
π(σi)

|π(σi)| −
σi

|σi|

∣∣∣∣
[

≤ Ck,η · ‖α− β‖m*,

and hence ∣∣∣∣
〈X, π(σi)〉
|π(σi)| − 〈X, σi〉

|σi|

∣∣∣∣ ≤ Ck,η · ‖α− β‖m* · |X|[ < ε.

Similarly, ∣∣∣∣
〈X, π(τi)〉
|π(τi)| − 〈X, τi〉

|τi|

∣∣∣∣ < ε.

Combining the previous two inequalities, we have

∣∣∣∣
〈X, π(σi)〉
|π(σi)|

∣∣∣∣ ≤ c + ε < d− ε ≤
∣∣∣∣
〈X, π(τi)〉
|π(τi)|

∣∣∣∣ .

Thus, the limit DX(p, β) does not exist, and hence (Up)
c is open.
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Proof of Theorem VI.2: Let X be a flat cochain in a Banach space V .

Propositions VI.3 and VI.8 show that FX satisfies properties (i) and (ii) of a

partial form.

For d ≥ k, fix an affine subspace W d. Since X is a flat k-cochain on V , it can

be restricted to a cochain XW on W d that acts on σ ∈ Pk(W ) by 〈XW , σ〉 := 〈X,σ〉.

We equip ΛkW
d with the Euclidean norm, | · |2, i.e., we identify W d with Rd. We

denote k-dimensional Lebesgue measure on W d by | · |E.

Fix a mass*-k-direction ν ∈ ΛkW
d
0 . Let λ denote the factor by which the Euclidean

mass |ν|2 of ν differs from ‖ν‖m*:

λ =
|ν|2
‖ν‖m*

= |ν|2.

Let µ be the Euclidean k-direction µ := ν
|ν|2 . Now, for any representation of µ as

µ = u1 ∧ · · · ∧ uk, the simplex σµ with vertices {u1, . . . , uk} has Euclidean volume

|σµ|E = 1
k!

. By Wenger’s Lemma, for any representation of ν, the corresponding

simplex σν has Adams mass |σν | = 1
k!

. This implies that for any k-simplex σ parallel

to ν (i.e., any simplex lying in a k-dimensional ν-superplane), we have

|σ|E = λ|σ|.

The cochain XW on Rd(= W d) is flat, so by Wolfe’s theorem, it can be identified

with a (Euclidean) flat k-form βXW
on W d. The form βXW

is obtained by a similar

limit process as in equation (6.1), as follows. For a Euclidean k-direction on W , we

first define the limit DE
XW

(p, ν) by

DE
XW

(p, ν) := lim
i→∞

〈X, σi〉
|σi|E ,

wherever it exists. Here, each simplex σi must contain p and the sequence (σi)

must have fullness bounded away from zero and diameters decreasing to zero. The
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superscript E is used to keep track of the fact that this limit normalizes by the

Euclidean mass of each simplex σi. If 0 6= |ν|2 6= 1, let

DE
XW

(p, ν) := |ν|2DE
XW

(p,
ν

|ν|2 ).

For almost every point p ∈ W we have that βXW
= DE

XW
. By Theorem IV.2, for

almost every point p ∈ W d, for every simple k-vector α ∈ ΛkW
d
0 ,

DE
XW

(p, α) = |α|2 ·DE
XW

(
p,

α

|α|2

)

= λ‖α‖m* ·DE
XW

(
p,

α

|α|2

)

= ‖α‖m* lim
i→∞

λ〈X, σi〉
|σi|E

= ‖α‖m* lim
i→∞

〈X, σi〉
|σi|

= ‖α‖m* ·DX

(
p,

α

‖α‖m*

)

= DX(p, α).

In the above sequence of equations, λ = |α|2
‖α‖m*

By Theorem IV.2, DE
XW

has the property that for almost every point p in W d, the

limit DE
XW

(p, ν) is extendable to a linear function on k-vectors ν in ΛkW
d
0 . Hence,

FX satisfies property (iii) of a partial form.

In the next lemma we prove that the comass of FX is bounded by |X|[.

Lemma VI.9. Let X be a flat cochain. Then ‖FX‖∞ ≤ |X|[.

Proof: For all k-chains σ ∈ V ,

〈X, σ〉
|σ| ≤ |X|[ · |σ|[

|σ| ≤ |X|[.

Thus when defined, DX(p, ν) ≤ |X|[ for all k-directions ν. Let W = W k ⊂ V be a

k-dimensional affine subspace of V . At almost every p ∈ W k, for all (v1, . . . , vk) ∈
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[W0]
k,

FX(p, (v1, . . . , vk)) = ‖v1 ∧ · · · ∧ vk‖m*DX (p, νW )

≤ ‖v1 ∧ · · · ∧ vk‖m*|X|[.

Since

‖FX‖∞,W k = ess sup
p∈W k

(FX)p(v1, . . . , vk)

‖v1 ∧ · · · ∧ vk‖m*

,

it follows that ‖FX‖∞,W k ≤ |X|[, and hence that ‖FX‖∞ ≤ |X|[.

By Theorem IV.2 and the proof of Theorem VI.2, for any simplex σ ⊂ V , the

action of X on σ is given by integration of the partial form FX :

(6.12) 〈X, σ〉 =

∫

σ

FX .

This action can be extended naturally to all polyhedral chains P ∈ Pk(V ).

We now show that FX is flat.

Theorem VI.10. FX is a flat partial k-form.

Proof: By Proposition III.10, |dX|[ ≤ |X|[ < ∞, so the cochain dX is flat. Applying

Theorem VI.2 to the flat cochain dX, we conclude that FdX is a partial (k +1)-form.

Applying Lemma VI.9 to the cochain dX, we have ‖FdX‖∞ ≤ |dX|[. Finally, by

equation (6.12), the integral of FdX over a polyhedral (k + 1)-chain τ is given by

∫
τ
FdX = 〈dX, τ〉, so for all such τ ,

∫

τ

FdX = 〈dX, τ〉 = 〈X, ∂τ〉 =

∫

∂τ

FX .

Thus, FdX = dFX .

Since max{‖FX‖∞, ‖dFX‖∞} ≤ |X|[, FX is a flat partial k-form.

By equation (6.12), Ψ(FX) = X, so we conclude that Ψ is surjective, proving

Theorem VI.1.



CHAPTER VII

Classical Differential Forms

If we start with a flat k-cochain X, then by the results of the previous section, X

can be associated with the partial differential form FX , where FX(p,~v) = DX(p, ν)

for ~v := (v1, . . . , vk) and ν := v1 ∧ · · · ∧ vk.

The domain of FX is the set UX ⊂ V × V k, which is given by

UX := {(p,~v) : DX(p, ν) exists}.

For a given point p ∈ V , we would like to know when DX(p, ν) exists for all simple

k-vectors ν. We define the set ΥX ⊂ V by

ΥX := {p ∈ V : DX(p, ν) exists for all simple ν}.

In ΥX , FX extends to a differential form differential form

ωX : ΥX → ΛkV.

We will show that if V is separable, then the set ΥX is large, in the sense that its

complement is an Aronszajn null set.

For convenience, we recall the definition of an Aronszajn null set (see [BL00]).

For a Banach space V and a nonzero vector y ∈ V , we define the sets

A(y) := {A ⊂ V : A is Borel and H1(A ∩ L) = 0 for all lines L parallel to y}.

73
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If {xn} ⊂ V is a countable (finite or infinite) set of nonzero vectors, then we define

A({xn}) := {A ⊂ V : A is Borel, A = ∪An, where An ∈ A(xn) for all n}.

Note that if {xn} ⊆ {yn} then A({xn}) ⊆ A({yn}).

Definition VII.1. A set A is Aronszajn null if A ∈ ∩A({xn}), where the intersection

is taken over all sequences whose span is dense in V .

Theorem VII.2. Given a flat k-cochain X on a separable Banach space V , the set

V \ΥX is Aronszajn null.

The proof is similar to the proof that the set of Gateaux non-differentiability of a

Lipschitz map from a separable Banach space to a space with the Radon-Nikodym

Property is Aronszajn null (see Theorem 6.42 in [BL00]).

Proof: If ~v = (v1, . . . , vk) ∈ V k, we define DX(p,~v) := DX(p, v1 ∧ · · · ∧ vk). Suppose

{xn} is any sequence of vectors whose span is dense in V . For j ∈ N, define the

subspace

Vj := span{x1, . . . , xj}.

The subset Dj ⊂ V is the “good set” for Vj:

Dj := {p ∈ V : DX(p, ν) is linear on ΛkVj}.

Note that for all j, Vj ⊂ Vj+1 and Dj ⊃ Dj+1.

For y ∈ V , consider the subset of Vj obtained by translating the “bad set” for Vj

by y:

[(V \Dj) + y] ∩ Vj =: Sj.

If p ∈ [(V \Dj) + y], then p− y ∈ V \Dj. Thus there exists ν = v1 ∧ · · · ∧ vk ∈ ΛkV

with the property that the limit DX(p − y, ν) does not exist (or the function is
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not k-linear in the components of ν). Consider the cochain (X − y) defined by

〈X − y, σ〉 := 〈X, σ + y〉. Sj is the set where D(X−y)(p, ν) doesn’t exist for some

ν ∈ ΛkVj or where D(X−y)(p, ν) is not linear in ν. Since (X − y) restricted to Vj is a

flat k-cochain on the finite dimensional space Vj, Whitney’s results [Whi57, p. 254]

show that there exists a flat form ω that is defined almost everywhere in Vj and is

equivalent (equal almost everywhere) to the restriction of D(X−y) on Vj. Hence we

conclude that Sj has Lebesgue measure zero in Vj. By [BL00, Proposition 6.29],

V \Dj ∈ A({x1, . . . , xj}) ⊂ A({xn}).

Then V \ (∩nDn) ∈ A({xn}); as {xn} was arbitrary, V \ (∩nDn) is Aronszajn null.

The fact that both V \Dj and V \ (∩nDn) are Borel (which is necessary for these

sets to be in A({xn})) follows from the fact that Dj is a Borel set for all j ∈ N. (If

j < k, Dj is the empty set.) We note that by definition,

Dj =
⋂

~v∈[Vj ]k

U~v,

where U~v ⊂ V is the set from Definition IV.4. Hence Dj ⊂
⋂

i U~wi
. Let {~wi} be

a countable dense set in [Vj]
k. By the proof of Theorem VI.2, the set Up is closed

for all p ∈ V . If a point p ∈ V is in
⋂∞

i=1 U~wi
, then the sequence {~wi} is a subset

of Up. Since Up is closed and {~wi} is dense in [Vj]
k, Up ⊃ [Vj]

k. This shows that

Dj ⊃
⋂

i U~wi
, so Dj =

⋂
i U~wi

. Since each U~wi
is Borel (Proposition VI.3), Dj is also

Borel.

We will show that V \ ΥX is an Aronszajn null set by proving that V \ ΥX =

V \ (∩nDn), or equivalently, that ΥX = (∩nDn). If a point is in ΥX it must be in

every “good set” Dn, so ΥX ⊂ (∩nDn).

Assume that p ∈ (∩nDn). The limit DX(p, ν) exists for all k-vectors ν = v1 ∧

· · · ∧ vk with v1, . . . , vk ⊂ span{xn}. In other words (v1, . . . , vk) is in Up for all
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v1, . . . , vk ⊂ span{xn}. Since Up is closed and span{xn} is dense in V k, Up = [V ]k.

Thus, p ∈ ΥX , as desired.



CHAPTER VIII

Invariance Under Lipschitz Maps

8.1 Pushing polyhedral chains forward under Lipschitz maps

In order to show that flat partial forms can be pulled back under Lipschitz maps,

we first show that polyhedral chains can be pushed forward to flat chains.

Since every polyhedral k-chain A can be represented as a sum of simple k-chains,

it is enough to show that we can push a simple chain forward. Since we can push

chains forward under linear maps, we approximate our Lipschitz map by a sequence

of appropriately chosen piecewise affine maps. We then show that the sequence

of (polyhedral) images of a simple chain under such a sequence of piecewise affine

approximations converges in the flat norm, and hence defines a flat chain. This

yields a construction of the pushforward of a simple chain which we then extend to

arbitrary chains.

We denote the pushforward of a simplex σ under a linear map by f(σ), or f∗(σ).

Definition VIII.1. Let P be a simple polyhedral k-chain in a Banach space. A

simplicial subdivision of P is a refinement of P consisting of simplexes that are

pairwise disjoint except on their boundaries. A polyhedral subdivision of P is a

refinement of P consisting of simple polyhedral chains that are pairwise disjoint

except on their boundaries. The vertices of a subdivision are the vertices of the

77
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simplexes (or polyhedra) in the refinement. We say that a subdivision has fullness

η > 0 if each simplex (or polyhedron) in the subdivision has fullness at least η.

The mesh of a subdivision is the maximum of the diameters of its simplexes (or

polyhedra).

We mostly use simplicial subdivisions in this chapter; when the type of subdivision

is not specified it is assumed to be simplicial.

Definition VIII.2. Let V and W be Banach spaces, and P ∈ P be a polyhedral

chain. A map f : P → W is piecewise affine if there exists a polyhedral subdivision

of P so that f is affine on any polyhedron in the subdivision.

Definition VIII.3. Suppose that f : Rk → V is a Lipschitz map and σ is a k-

dimensional simplex in Rk. The affine approximation of f with respect to σ is the

unique affine map g from Rk to V that agrees with f on the vertices of σ. If S is

a simplicial subdivision of the simplex σ, then the affine approximation to f with

respect to S is the piecewise-affine map g : σ → V that agrees with f on the vertices

of S and is affine on each simplex in the subdivision S.

Lemma VIII.4. Let σ be a k-simplex in V with an η-full subdivision S for some

η > 0. Suppose that f is a Lipschitz map from σ to W , and that g is the affine

approximation to f with respect to S. Then

Lip(g) ≤ C(k)
Lip(f)

η
,

where C(k) is a constant depending only on k.

Proof: The proof proceeds as in [Whi57, p. 290], using [Ada08, Lemma 3.3] in place

of [Whi57, IV, 15.3].

The following lemma states that Lipschitz maps on simplexes are limits of piece-

wise linear maps under the topology of uniform convergence.
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Lemma VIII.5. Let σ be a k-simplex in V and let f be an L-Lipschitz map from

V to W . Then there exist η > 0 depending only on the fullness of σ and an η-full

sequence of subdivisions Si of σ and a sequence of maps fi : σ → W that satisfy the

following properties:

(i) fi is affine on each subsimplex of Si,

(ii) fi is (c(k, η)L)-Lipschitz,

(iii) ‖fi − f‖∞ → 0 as i →∞.

Proof: Let (Si) be the sequence of standard subdivisions described in [Ada08, p. 9].

By construction, each subsimplex of each subdivision has diameter less than 1/i and

fullness greater than η for some positive η that depends only on Θ(σ). Let fi be

the affine approximation to f with respect to Si. Property (i) is holds by definition.

Property (ii) follows from Lemma VIII.4. To show property (iii), let x ∈ σ. Fix

i ∈ N and let y be a vertex of Si that has minimal distance from x. Then by the

triangle inequality, |fi(x)−f(x)| ≤ |fi(x)−fi(y)|+ |fi(y)−f(x)|. Since y is a vertex

of Si, fi(y) = f(y), so |fi(x) − f(x)| ≤ |fi(x) − fi(y)| + |f(y) − f(x)|. Since f and

fi are Lipschitz, we conclude that |fi(x) − f(x)| ≤ Lip(fi)|x − y| + Lip(f)|x − y| ≤

(Lip(fi) + Lip(f))(1/i). This proves (iii).

We recall the definition of Gâteaux differentiability (see [BL00]).

Definition VIII.6. Let X and Y be Banach spaces and f : X → Y a function. Then

f is Gâteaux differentiable at a point x0 ∈ X if there is a bounded linear operator

T : X → Y such that

T (u) = lim
t→0

f(x0 + tu)− f(x0)

t

for every u ∈ X.
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For fixed x0, u ∈ X, the limit limt→0
f(x0+tu)−f(x0)

t
, if it exists, is defined to be the

directional derivative of f at x0 in the direction u, denoted Df (x0, u).

We now define the Jacobian of a map from Euclidean space to a Banach space:

Definition VIII.7. Let V be a Banach space and f : Rk → V a function that is

Gâteaux differentiable at p ∈ Rk. The Jacobian Jf (p) of f at p is the k-vector

Jf (p) := Df (p, e1) ∧ · · · ∧Df (p, ek),

where the vectors e1, . . . , ek constitute the standard (positively oriented) orthonormal

basis of Rk.

The Euclidean version of the following lemma is [Whi57, Lemma X.5a, p. 295].

Lemma VIII.8. Let A = ΣN
i=1σ

k
i be a polyhedral k-chain in Rk with boundary ∂A =

ΣM
j=1τ

k−1
j , where σi and τj are simple k- and (k − 1)-chains, respectively. Let f and

h be Lipschitz mappings from A to V which are affine on each simplex σk
i and τ k−1

j .

Let L = max{Lip(f), Lip(h)}. Then

|f(A)− h(A)|[ ≤ c(k)‖f − h‖∞ · (Lk|A|+ Lk−1|∂A|),

where c(k) depends only on k.

Recall that simple polyhedral chains need not be simplexes!

Proof: Let I denote the unit interval [0, 1], and let I ×A :=
∑

I × σi, where I ×A

is the Cartesian product as defined in [Whi57, p. 365]. Let F : I × A → V be the

following homotopy between f and h:

F (t, p) = (1− t)f(p) + t · h(p), 0 ≤ t ≤ 1, p ∈ A.

Since the maps f and h are affine on each simplex σi, F is affine on I ×σi for each i.

Then F ({0} × A) = f(A) and F ({1} × A) = h(A). Thus, we may rewrite the chain
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h(A)− f(A) as

h(A)− f(A) = F (I × ∂A) + ∂F (I × A).

Suppose that the point p ∈ A is in the interior of one of the simplexes σk
i . Let

{e1, . . . , ek} be an orthonormal basis of Rk and let e0 be the unit vector along I.

Thus, {e0, e1, . . . , ek} is an orthonormal basis of I × σk
i . Since f is affine in σk

i ,

∣∣∣∣ lim
h→0+

f(p + her)− f(p)

h

∣∣∣∣
V

≤ L

for all r ∈ {1, . . . k}. In other words, the directional derivatives of f at p are bounded

above by L:

|Df(p)(er)|V ≤ L

for r ∈ {1, . . . k}.

The previous inequality is also true for the map h, so by linearity, we can also

bound the norm of DF (t, p)(er) by L:

|DF (t, p)(er)|V = |(1− t)Df(p)(er) + tDh(p)(er)|V ≤ L.

For the derivative in the direction of e0, we have

|DF (t, p)(e0)|V =

∣∣∣∣ lim
h→0+

F (t + h, p)− F (t, p)

h

∣∣∣∣
V

= |h(p)− f(p)|V

≤ ‖f − h‖∞.

Hence, by inequality (2.3) and Definition II.3,

(8.1) ‖JF (t, p)‖m* ≤ kk/2‖f − h‖∞Lk

almost everywhere in I × A.

Since F is affine on I × σi for each i,

(8.2) |F (I × σk
i )| =

∫

I×σk
i

‖JF (x)‖m* dHk+1(x).
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For each τj in ∂A, let Fj denote the restriction of F to I × τj. Then

(8.3) |F (I × τ k−1
j )| =

∫

I×τk−1
j

‖JFj
(x)‖m* dHk(x).

Combining equation (8.2) with inequality (8.1), we have

|F (I × σk
i )| ≤

∫

I×σk
i

(c(k)‖f − h‖∞Lk) dHk+1(p)

= c(k)‖f − h‖∞Lk|σk
i |.

Thus,

|F (I × A)| ≤
M∑
i=1

|F (I × σk
i )|

≤ c(k)‖f − h‖∞Lk|A|.

Analogously, we can combine equation (8.3) with inequality (8.1) to conclude that

|F (I × ∂A)| ≤ c(k)‖f − h‖∞Lk−1|∂A|.

Since F (0, p) = f(p) and F (1, p) = h(p), we have

|h(A)− f(A)|[ = |F (I × ∂A) + ∂F (I × A)|[

≤ |F (I × ∂A)|[ + |∂F (I × A)|[

≤ |F (I × ∂A)|+ |F (I × A)|

≤ c(k)‖f − h‖∞Lk−1|∂A|+ c(k)‖f − h‖∞Lk|A|

= c(k)‖f − h‖∞(Lk−1|∂A|+ Lk|A|).

Proposition VIII.9. Let A be a simplex in Rk and let f : A → V be L-Lipschitz.

Suppose that (gi) and (hi) are sequences of piecewise affine L̃-Lipschitz maps from

A to V such that ‖gi − f‖∞ → 0 and ‖hi − f‖∞ → 0 as i →∞. Then



83

(i) The sequence (gi(A)) is Cauchy in the flat norm, and

(ii) |gi(A)− hi(A)|[ → 0 as i →∞.

Proof: Part (i) of the Proposition follows immediately from Lemma VIII.8. Part (ii)

follows from Lemma VIII.8 and the triangle inequality (which implies that ‖gi −

hi‖∞ → 0 as i → 0).

Definition VIII.10. Let σ ⊂ Rk be a simple polyhedral k-chain and f : Rk → V an

L-Lipschitz map. As in [Ada08, p. 11], there exists a C(k)-full simplex S containing

σ. Let (Si) be a sequence of η-full subdivisions of S whose mesh sizes shrink to

zero as i → ∞, where η > 0 depends only on k. Let fi : σ → V be the affine

approximations to f determined by Si. We define the pushforward of σ by f by the

following limit with respect to the flat norm

f∗(σ) := lim
i→∞

fi(σ).

Lemma VIII.5 and Proposition VIII.9 show that this limit exists and is unique;

hence f∗(σ) is well-defined.

Next, we use isomorphisms between finite-dimensional Banach spaces and Eu-

clidean space to show that simple polyhedral chains push forward under Lipschitz

maps between Banach spaces.

Lemma VIII.11. Let f : W → V be a Lipschitz map between Banach spaces and σ

be a simple k-chain in Pk(W ). Let L1, L2 : Rk → W be injective linear maps so that

σ ⊂ L1(Rn) ∩ L2(Rk). Then

(f ◦ L1)∗(L−1
1 (σ)) = (f ◦ L2)∗(L−1

2 (σ)).

Proof: Let L := Lip(f), K1 := Lip(L1) and K2 := Lip(L2), and let ϕ : Rk → Rk
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be ϕ = L−1
1 ◦ L2. Then Lip(f ◦ L2) ≤ LK2, so the polyhedral chain L−1

2 (σ) pushes

forward under f ◦ L2 as in Definition VIII.10.

There exists a C(k)-full simplex S ⊂ RK containing L−1
2 (σ) and a sequence (Si)

of η-full subdivisions of S whose mesh sizes shrink to zero. We then let (gi : S → V )

be the sequence of affine approximations of f ◦ L2 with respect to Si. Thus,

gi(L
−1
2 (σ)) → (f ◦ L2)∗(L−1

2 (σ))

in the flat norm.

Similarly, the chain L−1
1 (σ) pushes forward to V under f ◦ L1. We will show

that the sequence (gi(L
−1
2 (σ))) gives a polyhedral approximation of this chain, and

therefore that (f ◦ L1)∗(L−1
1 (σ)) = (f ◦ L2)∗(L−1

2 (σ)).

For each i, ϕ(Si) is an η′-full subdivision of L−1
1 (σ), where η′ is independent of i.

Thus,

hi(L
−1
1 (σ)) → f ◦ L1(L

−1
1 (σ))

where (hi) is the sequence of piecewise affine approximations of f ◦ L1 with respect

to the subdivisions (ϕ(Si)). By construction, gi = hi ◦ ϕ, so

gi(L
−1
2 (σ)) = hi ◦ (L−1

1 ◦ L2)(L
−1
2 (σ)) = hi(L

−1
1 (σ)),

as desired.

In the proof above, we note that for each i, gi(L
−1
2 (σ)) = fi(σ), where fi is the

piecewise affine approximation of f with respect to the (full) subdivision L2(Si).

Thus we can define the pushforward of a simple chain in a Banach space as in

Definition VIII.10.

Definition VIII.12. Let σ ⊂ W be a simple polyhedral k-chain and f : W → V an

L-Lipschitz map between Banach spaces. As in [Ada08, p. 11], there exists a C(k)-

full simplex S containing σ. Let (Si) be a sequence of η-full subdivisions of S whose
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mesh sizes shrink to zero as i →∞, where η > 0 depends only on k. Let fi : σ → V

be the affine approximations to f determined by Si. We define the pushforward of

σ by f by the following limit with respect to the flat norm

f∗(σ) := lim
i→∞

fi(σ).

The following lemma will allow us to extend this notion of a pushforward to

arbitrary polyhedral chains.

Lemma VIII.13. Let f : W → V be a Lipschitz map, σ a simple polyhedral chain

in Pk(W ), and
∑

τj a refinement of σ. Then

(i) f∗(σ) + f∗(−σ) = 0,

(ii) f∗(σ)−∑
f∗(τj) = 0

Proof: Let (Si) be a full sequence of subdivisions of σ with mesh size approaching

zero. By definition, f∗(σ) = lim fi(σ), where fi(σ) is the approximation to f with

respect to Si. Since (Si) is also a full sequence of subdivisions of −σ, we have

f∗(−σ) = lim fi(−σ), and since fi is piecewise affine, fi(−σ) = −fi(σ). Thus f∗(σ)+

f∗(−σ) = 0.

For a refinement
∑

τj of σ, let (Ti) be a full sequence of subdivisions of
∑

τj with

mesh size approaching zero. This subdivision is also a subdivision of σ, so for the

affine approximations gi of f with respect to Ti we have

f∗(σ) = lim fi(σ) = lim
∑

fi(τj) = lim fi(
∑

τj) = f∗(
∑

τj).

For a Lipschitz map f : W → V and a polyhedral k-chain A =
∑

λiσi ∈ Pk(V ),

we define

f∗(A) :=
∑

λif∗(σi).
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Lemma VIII.13 shows that this is well-defined.

Lemma VIII.14. Let f : W → V be a Lipschitz map and τ a polyhedral k-chain in

W . Then

f∗(∂τ) = ∂(f∗(τ)).

Proof: Write τ =
∑n

j=1 σj, where σj is a simple polyhedral k-chain. Let (Si) be a

sequence of η-full subdivisions of τ whose mesh sizes approach zero. This subdivision

induces a sequence of subdivisions (Ti) of ∂τ . The sequence (Ti) has fullness bounded

away from zero. This holds because it is true in the case that W is Euclidean. We

push each of the simple summands σj forward to Rk by a
√

k-bi-Lipschitz linear

isomorphism L : Rk → Wσj
as in Theorem II.8 so that by Corollary III.15 the

pushforward (L−1)∗(Si) has fullness C = C(k, η) and conclude that the pushforward

(L−1)∗(Si) induces a full sequence of subdivisions on the boundary ∂((L−1)∗(σj)).

Pushing forward again, this time by the map L and applying Corollary III.15, we

have that (L∗((L−1)∗(Si))) = (Si) induces a full sequence of subdivisions on the

boundary ∂σj, and hence on ∂τ .

Let fi be the sequence of piecewise affine approximations to f with respect to

(Si). Then

f∗(∂τ) = lim fi(∂τ)

= lim ∂(fi(τ))(8.4)

= ∂(lim fi(τ))(8.5)

= ∂(f∗(τ)).

In the preceding sequence, equation (8.4) holds because fi is piecewise affine and

equation (8.5) is a result of the extension of the boundary operator to flat chains.
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Next, we prove a lemma that bounds the flat norm of f∗(A) by a multiple of the

flat norm of A.

Lemma VIII.15. Let A be a polyhedral chain in W and let f : W → V be a Lipschitz

map with Lipschitz constant L. Then |f∗(A)|[ ≤ C(L, k)|A|[, where the constant

C(L, k) depends only on L and k.

Proof: Fix ε > 0, and choose a polyhedral (k + 1)-chain D so that

|A− ∂D|+ |D| ≤ |A|[ + ε.

Then

|f∗(A)|[ = |f∗(A− ∂D + ∂D)|[

= |f∗(A− ∂D) + f∗(∂D)|[(8.6)

≤ |f∗(A− ∂D)|[ + |f∗(∂D)|[

≤ |f∗(A− ∂D)|+ |f∗(D)|.

The k-chain A − ∂D may be represented by
∑

j λjσj, where λj ∈ R and σj is a

simple polyhedral k-chain. By [Ada08, p. 11], each σj lies in an C(k)-full simplex

which we call αj. For each j, let (Sj
i ) denote a standard sequence of subdivisions

of αj whose mesh sizes approach zero. Each subdivision has fullness greater than a

constant depending only on k. As before, we denote by f j
i the piecewise affine map

that is constant on each simplex of the i-th subdivision of σj and agrees with f on

the vertices of the subdivision.

Similarly, the (k + 1)-chain D may be represented by
∑

` µ`τ`, where µ` ∈ R and

τ` is a simple polyhedral k-chain. By [Ada08, p. 11], each σ` lies in an C(k + 1)-

full simplex which we call β`. For each `, let (T`
i) denote a standard sequence of

subdivisions of β` whose mesh sizes approach zero. Each subdivision has fullness
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greater than a constant depending only on k. We denote by f `
i the piecewise affine

map that is constant on each simplex of the i-th subdivision of τ` and agrees with f

on the vertices of the subdivision. Then we have

|f∗(A− ∂D)|+ |f∗(D)| ≤ |f∗(
∑

j

λjσj)|+ |f∗(
∑

`

µ`τ`)|

≤
∑

j

lim inf
i

λj|f j
i (σj)|+

∑

`

lim inf
i

µ`|f `
i (τ`)|(8.7)

≤
∑

j

lim inf
i

λj(Lip(f j
i ))k|σj|+

∑

`

lim inf
i

µ`(Lip(f `
i ))

k+1|τ`|(8.8)

≤ c(k) max{(Lip(f))k, (Lip(f))k+1}(
∑

j

λj|σj|+
∑

`

µ`|τ`|)(8.9)

≤ c(k) max{(Lip(f))k, (Lip(f))k+1}(|A− ∂D|+ |D|)

≤ c(k) max{(Lip(f))k, (Lip(f))k+1}(|A|[ + ε).

Inequality (8.7) is a result of the lower-semicontinuity of the mass norm on polyhedral

chains proven in [Ada08]. Inequality (8.8) is a consequence of Lemma III.13, and

inequality (8.9) follows from the fact that the Lipschitz constants of the maps f j
i and

f `
i can be uniformly bounded by the Lipschitz constant of f (Lemma VIII.4) up to

a factor depending only on k.

Remark VIII.16. The pushforward operation is a functor from the category of Banach

spaces to the category of polyhedral/flat chains in Banach spaces. Specifically, given

a Lipschitz map f : W → V between Banach spaces:

f∗ : Pk(W ) → Fk(V ),

and if g : V → X is another Lipschitz map and τ ∈ Pk(V ),

(g ◦ f)∗(τ) = g∗(f∗(τ)).
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8.2 Pulling flat partial forms back under Lipschitz maps

We have shown that polyhedral chains in a Banach space W push forward under

Lipschitz maps f : W → V .

For such a map f , given a flat partial k-form F on the space V , we define the

pullback f ∗F as follows. Consider the cochain XF = Ψ(F ) associated to F as

in Section V. This cochain pulls back to a flat cochain f ∗XF whose action on a

polyhedral chain P is given by

〈f ∗XF , P 〉 := 〈XF , f∗(P )〉.

By Lemma VIII.15, |f∗(P )|[ ≤ C|P |[, so f ∗XF is a bounded operator on polyhe-

dral chains. Hence f ∗XF has a unique extension to the completion Fk(V ), so f ∗XF

is a flat cochain. By Theorem I.1, f ∗XF corresponds to a flat partial form, which we

define to be the pullback of F under f and denote by f ∗F .

Let f : W → V and g : V → X be Lipschitz maps and let F ∈ Fk(X) be a flat

partial k-form. Then by the functoriality of pushforwards (Remark VIII.16),

(g ◦ f)∗F = f ∗(g∗F )

and the pullback operation defines a contravariant functor from the category of Ba-

nach spaces to the category of flat forms on Banach spaces.

Finally, we note that the pullback operation commutes with exterior differentia-

tion.

Lemma VIII.17. Let f : W → V be a Lipschitz map and X a flat k-cochain in

FkV . Then

f ∗(dX) = d(f ∗(X)).
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Proof: Let τ be a polyhedral (k + 1)-chain in PkW . Then

〈df ∗X, τ〉 = 〈f ∗X, ∂τ〉

= 〈X, f∗(∂τ)〉

= 〈X, ∂(f∗(τ))〉(8.10)

= 〈dX, f∗(τ)〉

= 〈f ∗(dX), τ〉,

where equation (8.10) follows from Lemma VIII.14. Since this holds for all τ , the

cochains f ∗(dX) and d(f ∗(X)) are equal.

Corollary VIII.18. Let f : W → V be a Lipschitz map and ω a flat partial k-form

in FkV . Then

f ∗(dF ) = d(f ∗(F )).
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APPENDIX A

Norms on k-vectors and k-covectors in Euclidean Space

A.1 Mass and Comass in ΛkRn and ΛkRn

This section contains the Euclidean definitions of mass and comass on the spaces

of k-vectors and k-covectors, respectively.

The space ΛkRn naturally inherits an inner product from the inner product on

Rn by

〈a1 ∧ · · · ∧ ak, b1 ∧ · · · ∧ bk〉 = det (〈ai, bj〉) .

Specifically, if {e1, . . . , ek} is an orthonormal basis of Rn, then the
(

n
k

)
elements

{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < · · · < ik ≤ n} form an orthonormal basis of ΛkRn. Denote

the norm induced by this inner product on ΛkRn by | · |2.

In this setting, the comass of a k-covector ω : ΛkRn is defined [Fed69, p. 38–39]

to be

‖ω‖comass := sup{〈ω, ϕ〉 : ϕ ∈ ΛkRn simple, |ϕ|2 ≤ 1}.

The mass of an arbitrary k-vector ν is then defined to be the dual norm to the

comass norm

‖ν‖mass := sup{〈ω, ν〉 : ω ∈ ΛkRn, |ω|comass ≤ 1}.
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A.2 Whitney’s mass and Gromov’s mass* on ΛkRn

By Wenger’s Lemma, in Euclidean space, the mass* of a simple k-vector (as

defined in 2.2) is equal to the mass of a k-vector as defined by Whitney [Whi57, p.

51]. Whitney, however, extends mass (denoted | · |0) to all k-vectors by the formula:

|ν|0 := inf{
∑

i

‖νi‖m* : ν =
∑

νi, νi simple}.

One has |ν|0 ≤ ‖ν‖m* for non-simple ν, but since the space of k-vectors in Euclidean

space is finite dimensional, the norms |ν|0 and ‖ν‖m* are comparable up to a constant

depending only on dimension.
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