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lightest neutralino Ñ2 for benchmark model B is plotted as a function of α in the
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CHAPTER I

Introduction

The CERN Large Hadron Collider will begin operations by the end of 2009, and

will mark the beginning of a new era of particle physics: one where we expect to

resolve the mechanism responsible for electroweak symmetry breaking, potentially

obtain evidence for new physics beyond the Standard Model, and transition from

a period of model-building and speculation to one focused on measurement and

verification. While the Standard Model (SM) accurately describes the interactions

of observed fundamental particles and forces at energies up to ∼ 1 TeV, several issues

neccesitate the viewpoint that the SM is incomplete and is instead at best an effective

description of a more fundamental theory. Over the last two decades, significant

efforts have been made at attempting to solve these issues, as well as extending

the SM to higher energy scales. Interestingly, while this research has produced

numerous viable models for new physics, none have emerged completely satisfactory

from from either a theoretical or phenomenological perspective. However, among the

possibilities, arguably the most well-motivated model is supersymmetry (SUSY).

SUSY provides a solution to the so-called Hierarchy Problem [1], and allows for

dynamical breaking of the electroweak gauge symmetry [2]. Additionally, the SUSY

interactions allow the gauge couplings to unify at scale MGUT ∼ 2 × 1016 GeV [3],

1
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suggesting that if SUSY is verified, we will immediately understand something about

the nature of physics at energy scales far beyond the reach of experiment. With the

LHC turn-on imminent, the opportunity to test these ideas has finally arrived.

This thesis focuses on the phenomenological challenge of both identifying SUSY at

experiments, and then extracting as much meaningful information regarding its fun-

damental parameters as possible. Specifically, the work presented here is concerned

with the LHC, as well as several astrophysical observation experiments which may

be sensitive to a supersymmetric dark matter. As we will discuss shortly, there is

strong reason to believe that if nature is indeed supersymmetric, it will be observed

at the LHC. Consequently, searches for SUSY are among the primary tasks of the

LHC program. However, much of the work in this area has focused on canonical

scenarios such as mSUGRA [4], which contain underlying assumptions that greatly

reduce the number of unknown parameters. At the LHC, these models often pre-

dict long cascade decay sequences, which may be observable through characteristic

end-point features in invariant mass distributions [5]. Most people expect, however,

that supersymmetry will not present itself in this simple form. It is therefore cru-

cial to explore the implications of SUSY in as many manifestations as possible, in

order to facilitate its identification when data becomes available. The remainder of

this introduction continues with a concise review of the Hierarchy Problem associ-

ated with the Standard Model, and motivates supersymmetry as an elegant solution.

This chapter concludes with a discussion about the challenges associated with SUSY

phenomenology.
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1.1 What we know thus far: The Standard Model

Our current understanding of interactions between the observed fundamental par-

ticles and forces is encapsulated in the Standard Model (SM). The SM has been tested

experimentally to high precision both at LEP, and more recently at the Tevatron up

to energies of approximately 1 TeV. Remarkably, precision measurements at LEP

have tested the SM to below the percent level [6], and therefore with sufficient sen-

sitivity to observe deviations from tree-level predictions that arise from quantum

mechanical effects. Therefore, the SM has been verified as a quantum theory of

particle interactions.

Formally, the SM is a non-abelian gauge theory with invariance under the U(1)Y ×

SU(2)L × SU(3)C symmetry group. Here subscript Y refers to weak hyper-charge,

subscript L left-handedness, and subscript C color charge. The U(1)Y × SU(2)L

gauge group defines the electroweak interactions, while the SU(3)C group defines

the strong interactions (QCD). All matter fields are charged under U(1)Y . The

left-handed helicity component of each lepton and associated lepton-neutrino, and

each “up” and “down” quark pair transform as doublets under SU(2)L, while the

right-handed components are SU(2)L singlets. The SM does not incorporate a right-

handed neutrino. The quarks transform as color triplets under SU(3), while the

leptons remain singlets. Demanding the lagrangian remain invariant under local

transformations necessitates the introduction of spin 1 vector bosons which mediate

the interaction between matter fields (i.e. they enact the rotation between states

within a particular multiplet). These gauge fields realize the fundamental forces

which physically mediate the interactions. It is remarkable that invariance under

certain symmetries not only leads to an organizing principle that configures the
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particle interactions, but also appears to explain the origin of at least three of the

four fundamental forces.

This framework contains several important attributes. First, the most general

form of the SM lagrangian that maintains invariance under U(1)Y ×SU(2)L×SU(3)C

also automatically conserves baryon-number and lepton-number, as observed in na-

ture. Additionally, the particle content is precisely that necessary to ensure can-

cellation of anomalies (these are conditions whereby an interaction satisfies gauge

invariance at tree level, but ultimately is non-invariant as soon as one goes to the

1-loop level). One critical feature of the SM is that it is a chiral theory, meaning

that the left- and right-handed helicity eigenstates of each Dirac fermion reside in

different representations, and thus transform differently under the gauge symmetry.

This behavior protects matter fields from acquiring arbitrarily large masses, since

Dirac mass terms mψ̄ψ = mψ̄LψR +mψLψ̄R are then forbidden by gauge symmetry,

ultimately forcing mass generation through spontaneous symmetry breakdown. In

the SM this is accomplished through the Higgs mechanism [7], whereby a fundamen-

tal scalar doublet Φ is introduced that is allowed to acquire a vacuum expectation

value (vev). This initiates the breaking of the electroweak symmetry U(1)Y ×SU(2)L

down to U(1)EM , thereby preserving the abelian gauge symmetry associated with

electromagnetism, while simultaneously generating masses of order O(EW ) scale as

observed at experiment.

One significant departure from experiment, however, comes from the fact that

neutrinos have been observed to have non-vanishing mass. The SM as described

above incorporates no provision for neutrino masses: A right-handed neutrino field

νR is not included, having not been observed directly. However, neutrino masses

can be accommodated in the SM while still preserving the full gauge symmetry
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through the so-called seesaw mechanism [8], which introduces a new physical scale

at Mnew ∼ 1014 GeV (in this case the scale where it is possible to excite quantum

fluctuations corresponding to a new super-massive neutrino).

Another departure from experiment comes from the fact that astrophysical ob-

servations suggest the presence of non-luminous dark matter (DM) in the universe.

The exact composition of the DM is currently unknown. A well-motivated possibility

is that DM is composed of weakly interacting massive particles (WIMPs). The SM

does not contain a satisfactory DM candidate particle. As we will discuss shortly,

the most promising DM candidate particles are predicted by models that extend the

SM, and which also introduce new physics at often much higher energy scales.

The question of additional structure above ∼ 1 TeV is fundamentally important.

At what scale does this picture of the SM break down, and if it does break down, what

new physics comes into play? The SM as described has a total of 19 free parameters.

These are the three gauge coupling constants, the Higgs-sector parameters µ and λ,

6 quark masses and 3 lepton masses, 3 mixing angles and 1 CP-violating phase, and

the QCD parameter θ. Additionally, we expect new physics near the Planck scale,

Mpl, where it is assumed that gravitational effects will become important. Therefore

one may imagine that the SM, augmented with neutrino masses, should hold all the

way to the Planck scale, with no additional structure other than the Higgs and a

massive neutrino, and that above Mpl new physics enters which then fixes the 19

free parameters of the theory. However, the SM has several unresolved issues, for

which the solutions usually introduce new physics far below the Planck scale. In

what follows we review the most important issue relevant to the work in this thesis,

the Hierarchy Problem.
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1.2 The Hierarchy Problem

The Higgs mechanism of the SM relies on the inclusion of a fundamental scalar (the

Higgs field) which is allowed to acquire a vev and break the electroweak symmetry.

However, at the same time, higher order couplings of this scalar to other massive

fields can actually destabilize the theory. Let us explore this issue with greater detail,

in order to see how it specifically causes problems. Consider the complex scalar Higgs

doublet Φ, parametrized as

(1.1) Φ =




φ+

1√
2
(v + h+ iφ0)




which has a classical potential given by

(1.2) V = µ2Φ†Φ + λ(Φ†Φ)2

Here µ is the scalar mass-squared parameter, and λ a coupling. Electroweak symme-

try breakdown occurs when the minimum of the potential is non-vanishing. This oc-

curs for µ2 < 0, and λ > 0. The minimum occurs at Φ†Φ = v2/2, where v =
√

−µ2/λ.

Setting the Goldstone fields φ+ = φ0 = 0, and expanding about the vacuum, one finds

for the Higgs field h the mass term 2µ2h2 = m2
0h

2, where m0 is the tree-level (bare)

Higgs mass in the absence of additional physics. LEP precision measurements of the

W and Z masses require that the vacuum expectation value 〈φ〉 ≡ v/
√

2 ∼ 174 GeV.

Therefore, assuming a natural Yukawa coupling of O(1) we expect that m2
0 should

be order −(100 GeV )2. Now, the SM provides no prediction for the Higgs mass

parameter itself. (Unitarity of longitudinal WW scattering implies a bound on the

physical Higgs mass mh . 1 TeV.) However, it is necessary to examine corrections

to m2
0 due to contributions from quantum effects that arise from all the fields that
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couple directly or indirectly to the Higgs. For example, considering the Higgs self

coupling

one obtains the correction to m2
0

(1.3) δm2
0 = λ

∫ Λ d4k

(2π)4

1

k2
∼ λ

16π2

∫ Λ

dk2

which is of order λΛ2/16π2 and diverges quadratically with Λ. Thus m2
h = m2

0 +

αλΛ2/16π2, where α is a number of order 1, m0 is the bare mass, and mh is taken as

the physical Higgs mass (we have neglected other possible corrections). Here Λ is a

cut-off which regulates the integral. From the perspective of an effective theory, one

must treat Λ as a physical cut-off, at which point it is expected that new physics will

begin to take over. Were it possible to take Λ → ∞, technology such as dimensional

regularization could be used to remove the divergence. Thus, if we take the SM

to be an effective theory up to some physical threshold Λ, we must assume a finite

cut-off, and the quadratic divergence persists. This scenario leads to an interesting

problem because now the quantum corrections become highly sensitive to the cut-off

scale, which we want to take as high as possible. Taking Λ to be the unification

scale, for example, generates a contribution to δm2
0 that is many orders of magnitude

larger than the fundamental parameter (bare mass) m2
0. Now, let us rewrite the

contribution to mh as

(1.4)
m2

0

Λ2
=
m2

h

Λ2
− α

λ

16π2
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If we take Λ ∼ Mpl ∼ 1019 GeV, and mh ∼ 100 GeV, m2
0/Λ

2 must be tuned to

30 orders of magnitude in order to provide the physical Higgs mass suggested from

measurements. Many consider such extreme fine-tuning to be ’unnatural’. Indeed,

one normally expects corrections due to higher-order quantum effects to only slightly

modify the fundamental parameters (here the bare Higgs mass). In the SM, the

1-loop contribution to the Higgs mass correction comes from [9]

(1.5) δm2
0 =

3Λ2

8π2v2

[
(4m2

t − 2M2
W −M2

Z −m2
0) + O(log

Λ

µ
)

]

where here µ is understood to be the renormalization scale. This correction includes

contributions from the W and Z, the Higgs self coupling above, and the top-quark.

In fact, the largest contribution to δm2
0 comes from the top quark, indicating that the

corrections are sensitive to both the largest mass scales, as well as the physical cut-

off. One may imagine engineering 2M2
W +M2

Z +m2
0 = 4m2

t , which then removes the

quadratic divergence. This is known as the Veltman condition [9]. Unfortunately,

it is guaranteed not to hold at higher orders. Additionally, when Λ & 100 TeV,

undesirable fine-tuning once again is required. One can also imagine simply choosing

a lower cut-off, but then it still becomes necessary to devise new physics which takes

over at that scale.

What then is the natural scale ofmh, and ifmh . 1 TeV, what mechanism protects

it from large quantum corrections? This extreme disparity of scales is known as the

Hierarchy Problem, and significant effort has gone towards attempting to find a

viable solution. A particularly elegant approach is to arrange for a cancellation that

eliminates the quadratic divergences. For example, consider the correction to the

Higgs due to a fermion loop
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One obtains for the correction

(1.6) δm2
0 = −|λf |

8π2

2

Λ2 + · · ·

where again Λ is the physical cut-off of the theory, and λf is the coupling strength

associated with the fermion. The critical feature is that here the fermion loop intro-

duces a minus sign relative to the contribution obtained for the scalar self-coupling

above. This suggests that by introducing a special relationship between bosons and

fermions it is possible cancel out the unwanted quadratic divergences.

1.3 Supersymmetry

By appealing to an idea known as supersymmetry, the cancellation discussed in

the previous section is precisely what occurs. A complete treatment of supersym-

metry is beyond the scope of this modest introduction. The reader is invited to

consult the several excellent references and reviews (see e.g. [10, 11]). Under super-

symmetry (SUSY), one postulates the existence of an additional global symmetry

relating bosonic and fermionic degrees of freedom. Noether’s theorem then implies

that invariance of the action under such symmetry transformations leads a conserved

current, which here is represented by a generic 4-current Jµ
α with spinorial index α.

In this case the current is referred to as a supercurrent. From this it is possible to

construct a conserved charge
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(1.7) Qα =

∫
J0

αd
3x

which becomes the generator of the SUSY transformation

Q |f〉 = |b〉(1.8)

Q |b〉 = |f〉(1.9)

where |b〉 and |f〉 represent bosonic and fermionic states, respectively. The SUSY

generator Qα must have fermionic degrees of freedom because it transforms between

fields with integer-spin and fields that are spinorial (spin 1/2). Thus Q is a spinorial

object, with spin 1/2 and index α. This implies that Q†
α̇ is also a generator of the

symmetry, since spinors are inherently complex objects. It is possible to construct

models where there are N > 1 sets of generators Q, Q†, corresponding to additional

symmetries. These ’extended’ supersymmetry models are not phenomenologically

viable because they are unable to correctly model the chiral properties present in

the SM. In what follows we restrict ourselves to N = 1, or only a single set of

supersymmetry generators.

Now, the single particle states of supersymmetry are grouped into irreducible rep-

resentations of the symmetry transformation known as supermultiplets. These carry

both fermionic and bosonic degrees of freedom by construction. The corresponding

fields are known as superpartners of each other. The generators Qα and Q†
α̇ transform

between the fields within the supermultiplet. The SUSY generators also commute

with the generators of gauge transformations, so the members of a supermultiplet

reside in the same representation of the gauge symmetry, and therefore have identical

charge, weak iso-spin, and color charge.
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Chiral Supermultiplet Spin 0 Spin 1/2

Q (ũL, d̃L) (uL, dL)

quarks, squarks ū ũ∗
R u†

R

d̄ d̃∗R d†R
leptons, sleptons L (ν̃L, ẽL) (νL, eL)

ē ẽ∗R e†R
Higgs, Higgsinos Hu (H+

u , H0
u) (H̃+

u , H̃0
u)

Hd (H−
d , H0

d) (H̃−
d , H̃0

d)

Table 1.1:
Chiral supermultiplets for the MSSM. Superpartner fields are differentiated from their
SM counterparts with a ’∼’.

Gauge Supermultiplet Spin 1/2 Spin 1
gluon, gluino g̃ g

W bosons, winos W̃±, W̃ 0 W±, W 0

B boson, bino B̃0 B0

Table 1.2:
Gauge supermultiplets for the MSSM. Superpartner fields are differentiated from their
SM counterparts with a ’∼’.

The simplest supermultiplet consists of a Weyl fermion containing 2 spin degrees

of freedom, and a complex scalar with 2 additional real degrees of freedom. This

is the only supermultiplet that allows the left- and right-handed helicity eigenstates

to transform differently under the gauge symmetry, and is known as a chiral su-

permultiplet. Another supermultiplet, which is equally fundamental, consists of a

massless vector field containing 2 transverse spin degrees of freedom, and a single

Weyl fermion with again 2 additional degrees of freedom, and is known as a gauge

supermultiplet. These two supermultiplets are irreducible. Other ways of organizing

the particle states can always be reduced to these two fundamental forms. Extending

the SM to incorporate supersymmetry requires organizing the SM fields into various

supermultiplets, and thus requires that each field acquire a superpartner having spin

which differers by 1/2. Tables 1.1 and 1.2 indicate the particle content and organi-

zation of supermultiplets for the so-called minimal example of the supersymmetric

extension of the Standard Model, known as the MSSM.
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The nomenclature used to identify the non-SM superpartners from their SM coun-

terparts involves prepending an ’s-’ for scalar superpartners, and adding the suffix

’-ino’ for fermionic superpartners. Under this convention, the scalar superpartners

of the SM quarks and leptons are known as squarks and sleptons, respectively. Sim-

ilarly, the fermionic superpartners of the gauge bosons are collectively known as

gauginos. The superpartner to the gluon is known as the gluino, while those for the

W and B fields are known as the wino and bino, respectively. In addition, it is nor-

mal to distinguish the non-SM superpartner field symbols by including a ’∼’. From

the tables one can see that gauge multiplets in the SM are combined with multiplets

composed of superpartner fields in order to form a supermultiplet. For example, the

SU(2)L doublet (uL, dL) is combined with another SU(2)L doublet (ũL, d̃L) com-

posed of the squark superpartners to form a supermultiplet labeled here as Q. The

SU(2)L singlet quarks uR and dR are separately combined with new scalar singlets

ũR and d̃R to form two additional supermultiplets. Notice that the subscripts L and

R attached to the symbols for the scalar particles is only part of the particle name,

and does not indicate any sort of helicity projection. This organization scheme is

repeated similarly for the leptons/sleptons, and gauge bosons/gauginos, and for each

family.

Notice that the Higgs sector contains two supermultiplets, each containing a set

of Higgs doublets. Under SUSY it is necessary to include two Higgs supermultiplets

in order to ensure that the interaction lagrangian is invariant under supersymmetry

transformations (one must ensure the superpotential is an analytic function of the

complex scalar fields). Additionally, the model would suffer from a gauge anomaly,

and it turns out that only a Higgs doublet with hypercharge Y = +1/2 can give

mass to +2/3 charged quarks, while a doublet with Y = −1/2 can only give mass to
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−1/3 charged quarks.

The framework described above makes an interesting prediction. In order to

maintain chiral symmetry as required by the SM, the SUSY generators Qα and Q†
α̇

must satisfy the following algebra

{Qα, Q
†
α̇} = −2σµ

αα̇Pµ(1.10)

{Qα, Qβ} = {Q†
α̇, Q

†
β̇
} = 0(1.11)

{P µ, Qα} = {P µ, Q†
α̇} = 0(1.12)

Consider two states |b〉 and |f〉, with mass eigenvalues mb and mf respectively, which

reside in the same supermultiplet. From the relations above one finds [Qα, P
µPµ] = 0.

Then

P µPµQα |b〉 = P µPµ |f〉 = m2
f |f〉(1.13)

= QαP
µPµ |b〉 = m2

bQα |b〉 = m2
b |f〉

Thus, each member of a particular supermultiplet has the same mass. Clearly this is

not allowed phenomenologically, since if supersymmetry were manifest in the particle

spectrum, the superpartners would have all been observed quite some time ago. This

indicates that SUSY must be a broken symmetry in our vacuum.

It is possible to evade such a phenomenological disaster, however. Notice that

for the desired cancellations to occur (which remove the quadratic divergence in

δm2
0), the associated coupling strengths must be properly related to one another.

For example, λ and λ2
f from eqns. (1.3) and (1.6), should be the same magnitude. If

this is not the case the theory will retain residual terms proportional to (λ− λ2
f)Λ

2
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and nothing has been gained. It is possible to introduce a shift which lifts the

undiscovered superpartner masses to levels allowed by current experimental bounds,

while preserving the critical relationships between coupling strengths if we introduce

supersymmetry violating terms to the lagrangian in a careful way. Let us write the

full lagrangian as

(1.14) L =LSUSY + Lsoft

where LSUSY contains all interactions that explicitly preserve supersymmetry, while

Lsoft contains only mass-shift terms for superpartner scalars, pseudo-scalars, gau-

ginos, and trilinear couplings that violate supersymmetry. The free parameters of

Lsoft are known as the ’soft parameters’. Crucially, Lsoft does not contain mass terms

for non-gaugino fermions. Such terms disrupt the cancellation and allows unwanted

quadratic divergences to persist. This so-called ’soft breaking’ of SUSY allows the

critical relationships between the couplings to be maintained, thereby preserving the

cancellation of quadratic divergences for all scalar fields. This scheme introduces

additional divergences but these only scale logarithmically with Λ. For example, if

msoft is the largest mass scale associated with the soft parameters, the contributions

to δm2
0 now go like

(1.15) δm2
0 = m2

soft

[
λ

16π

2

ln(Λ/msoft) + · · ·
]

This provides the greatest motivation for the expectation that at least some of the

superpartners should be detected at the LHC, since msoft cannot be too large or else

we re-introduce large divergences again, and destroy any progress at stabilizing the

scalar fields.
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It may appear that breaking SUSY in this manner is somewhat contrived. How-

ever, it is possible to dynamically generate the Lsoft terms nonperturbatively from

a more fundamental framework, such as string theory (See [10] for a discussion).

The full soft lagrangian for the MSSM is given by

Lsoft = −1

2

(
M3g̃g̃ +M2W̃ W̃ +M1B̃B̃ + c.c.

)

−
(

˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd + c.c.
)

(1.16)

−Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄um2
ū
˜̄u† − ˜̄dm2

d̄
˜̄d† − ˜̄em2

ē
˜̄e†

−m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + c.c.)

where we recognize the superpartners indicated in tables 1.1 and 1.2. The first line

contains M1, M2, and M3, which are the mass parameters for the bino, wino, and

gluino, respectively. The second line contains trilinear coupling terms, where each

of au, ad, and ae is a complex 3 × 3 matrix in family space. The third line contains

mass terms for the squarks and sleptons. Each of the mQ, mL, mū, md̄, and mē

are also complex 3× 3 matrices in family space. In this case they must be hermitian

so that the total lagrangian is remains real. The last line contains the only allowed

mass terms for the Higgsino fields. This lagrangian also assumes the existence of a

separate discrete symmetry known as R-parity. Each particle of the theory carries a

new quantum number given by

(1.17) PR = (−1)3(B−L)+2s

where B and L are lepton- and baryon-number, respectively, and s is the particle

spin. Under this new symmetry, the SM fields all have even R-parity, while the super-
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symmetric partners have odd R-parity. In the MSSM it is assumed that interactions

conserve R-parity. The implications of this are described in what follows.

An interesting feature of this lagrangian is that the interactions allow mixing

between the interaction eigenstates. In other words, the superpartners are not nec-

essarily the mass eigestates of the model. Mixing can occur among the sleptons,

the squarks, as well as the gauginos and Higgsinos. Only the gluino does not mix

with any other field because no other color-octet fermion field exists. Of particular

importance to SUSY phenomenology is the mixing that occurs between the neutral

B̃0, W̃ 0, and H̃0
u/H̃

0
d fields. Diagonalizing the resulting mass matrix yields mass

eigenstates in a new basis denoted as (Ñ1, Ñ2, Ñ3, Ñ4), which are commonly known

as neutralinos. By convention, mÑ1
< mÑ2

< mÑ3
< mÑ4

. The lightest state, Ñ1 is

often also the Lightest Supersymmetric Particle, or LSP. By demanding that inter-

actions conserve R-parity as described above, the LSP must be stable. This allows

the neutralino LSP to have precisely the features required to be a good candidate

for cold dark matter in the universe. The fact that a neutralino LSP is composed

of an admixture of bino, wino, and Higgsino fields leads to rather challenging phe-

nomenological questions, since this admixture affects the abundance of such particles

if produced in the early universe, as well as the nature of new-physics signatures at

colliders.

1.4 The Challenge of SUSY Phenomenology

Combined, the soft breaking terms in eq. (1.16) introduce an additional 105 free

parameters that must ultimately be set by a more fundamental theory. It may appear

that we have taken a step backwards: Relative to the 19 free parameters of the SM,

the MSSM introduces considerable uncertainty into the ultimate form that Lsoft can
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take. In principle, these parameters are calculable from any fundamental theory, such

as string theory. However in order to identify what physics operates at energy scales

where such ideas become important, we must first determine the soft parameters.

Given that we have not observed any of the superpartners, we have significantly

less information from which to constrain the form of Lsoft. Additionally, given that

models of dynamical SUSY breaking that generate the soft terms do so at scales far

beyond the reach of any experiment, we must infer as much as possible only from

low-energy measurements. Ultimately, the mass splittings between the SM fields

and their superpartners are controlled by the soft-parameters in Lsoft. Therefore, a

particular choice of soft parameters gives rise to a low-scale superpartner spectrum,

and thus controls the nature of phenomenology at experiments. By measuring as

much of the spectrum as possible, we hope to gain an understanding of the soft

terms, and ultimately the form of the fundamental SUSY lagrangian. This, in turn,

may then dictate the nature of physics at very high scales, where the soft-parameters

are ultimately generated. Herein lies the core focus of SUSY phenomenology, and

the underlying purpose for the work presented in this thesis. This task is particularly

difficult, however, because the mapping from SUSY parameter space to experimental

signature space is not 1 : 1. More specifically, it is in fact highly likely that differing

choices for the parameters in Lsoft (different models) may yield effectively identical

signatures at experiments like the LHC, despite the fact that the models are distinct

in that they describe completely different physical situations [12]. This problem

is not specific to SUSY model variations either. Several other viable alternatives

that propose to extend the SM may also produce signatures that are extremely

difficult to distinguish from SUSY, or variations within their own framework. This

challenge is collectively known as the ’Inverse Problem’, and no unique solution exists.
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The approach taken in this thesis, and by the community at large, is to explore

the implications of these models at as many experiments as is possible, so one can

constrain the parameter space as thoroughly as possible. Additionally, much work

has gone towards untangling the signatures themselves, so that degenerate signals

become distinct, and can then highlight specific physical scenarios. The work of this

thesis contributes to this effort. In the following chapters we present several novel

approaches to the problem of determining parameters of the fundamental lagrangian

from experimental measurements.

This thesis is organized as follows. In Chapter II we study methods for identifying

the challenging scenario whereby gluino pair production at the LHC gives rise to

up to four top-quarks in the final state. In Chapter III we address the problem

of identifying gaugino mass parameter universality using only simple sets of LHC

signatures. In Chapter IV we depart from the LHC and study the role non-thermally

produced, wino-like dark matter can play in explaining the positron excess reported

by the HEAT and AMS experiments. In Chapter V we revisit the model presented

in Chapter IV in light of the recent PAMELA satellite data, and discuss constraints

on wino-like non-thermal dark matter. Finally, in Chapter VI we present conclusions

and directions for future work.

The discussion in Chapter II is based on [13], done in collaboration with Bobby

Acharya, Gordon Kane, Eric Kuflik, Kerim Suruliz, and Lian-Tao Wang. The discus-

sion of Chapter III is based on [14], done in collaboration with Baris Altunkaynak,

Michael Holmes, Gordon Kane, and Brent Nelson. Chapters IV and V are based on

[15, 16], in collaboration with Gordon Kane, Dan Phalen, Aaron Pierce, and Scott

Watson.



CHAPTER II

Multiple Top-Quark Reconstruction at the LHC

The first step towards identifying and interpreting discoveries at the LHC is to

establish the presence of new physics beyond the Standard Model. In practice, this

will be done using search strategies that are by now well established. However, it

is highly possible, and perhaps probable that new physics will appear in a form

that is very different than what these methods were designed for. In this chapter,

we address the issue of observing and identifying an interesting and particularly

difficult signal for new physics. Specifically, we consider that many scenarios for

new physics at the TeV scale point toward top rich final states at the LHC. Such

scenarios include top compositeness [17], and models in which top partners ensure

the naturalness of electroweak symmetry breaking [18, 19, 20, 21]. Compared with

the Standard Model QCD production of tt̄, top quarks in the final states of new

physics production typically either have very different kinematics [22, 23, 24], or

different event topology [25, 27, 28, 26, 29], which may make it crucial to develop

new techniques to identify them.

Naturalness of the electroweak symmetry breaking typically requires the existence

of a light top partner. Additionally, experimental observations, ranging from the

existence of Cold Dark Matter in the universe to the constraints of electroweak

19
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precision measurements, strongly motivates the existence of a neutral stable particle.

Several scenarios for new physics predict that such particles will be produced at the

LHC. These considerations lead to the recent studies of new physics signals with

tt̄+ 6ET final state [25].

In this chapter, we consider scenarios which also include a gluon partner, such as

the gluino in low energy supersymmetry [18, 30], the KK-gluon in universal extra

dimension models [19], or other octet states [31, 32, 33]. Due to the nature of proton

colliders, production of such color octet gluon partners and their decay typically be-

comes the main channel of new physics signals. Decay products of the gluon partner

typically include an even number of quarks. Combining this scenario with light top

partners, we conclude that a typical signature of production of gluon partners will

be multiple top quarks in the final states.

In the rest of this chapter, we will study this signature using a particular example,

low energy supersymmetry with light gluinos. We will focus on the scenario in

which the squarks are heavier than the gluino and the third generation squarks

are lighter than those of the first two generations. In this case, the gluino will

dominantly decay into top (bottom) quarks. Although not absolutely unavoidable,

this is a generic possibility from the point of view of many models being studied

recently [35, 34, 36, 37]. Heavier first- and second-generation squark masses are

often preferred due to constraints from flavor changing neutral currents [38, 39, 40].

RGE running of scalar masses from the high scale down to the electroweak scale will

tend to push the third generation squark masses significantly lower than those of the

other generations. Large third generation trilinear couplings will also help further

lower one of the stop masses. For earlier studies on gluino decay into third generation

quarks, see Refs. [41, 42, 43, 44, 45, 46, 47].
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In the minimal case, this scenario has only a single, light top partner, t̃R. On

the other hand, we would like to include in our study the possibility that all the

squarks of the full third generation could be light relative to the other two gener-

ations. Therefore, we are led to consider decay channels g̃ → tt̄χ̃0, g̃ → tb̄χ̃±, and

g̃ → bb̄χ̃0. As will be clear from our discussion later, many of the leading order

features of the signature of different combinations of the above decay channels (from

gluino pair production and decay) can be quite similar. Therefore, it is one of the

primary purposes of this chapter to study techniques to distinguish them. We re-

mark that such measurement is crucial for understanding both the spectrum of the

third generation sfermions and the electroweak-inos. For example, if we measure a

non-zero branching ratio for the decay channel g̃ → tb̄χ̃±, then there must be a light

electroweak-ino carrying charge, suggesting that the lightest supersymmetric particle

(LSP) has primarily wino/higgsino composition. Moreover, the relative branching

ratio BR(g̃ → tt̄ + χ̃0)/BR(g̃ → bb̄ + χ̃0) carries important information about the

squark masses. For example, if this ratio is close to 1, it strongly suggests that

left-handed squark masses are lighter than the right-handed ones, mQ̃3
< mt̃R , mb̃R

.

In section 2.2, we will focus on discovering new physics in this class of final states.

Decay of multiple top quarks could lead to b-rich and lepton rich final states. There-

fore, we expect great potential for early discovery. For example, we show that sig-

nificant excesses can be observed in many channels even with just 500 pb−1 of data.

The obvious channel with the best early discovery potential is same-sign dilepton

plus additional b-tags.

In section 2.3, we study the problem of direct reconstruction of top quarks. Large

combinatorics and high probability of object merging are expected due to the large

multiplicity of final state particles. Therefore, while we may gather evidence from
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this study that there are some top quarks in the decay chain of the gluino, similar

to the approaches taken in Ref. [42, 43, 31], the direct reconstruction efficiency for

the top quark is low. We find that while the efficiency for reconstructing a single top

quark candidate approaches 49%, the efficiency to detect three and four candidates

drops dramatically to 1.5% and 0.02%, respectively. As a result, it is less likely we

can measure top multiplicity by direct reconstruction.

We will demonstrate in our study a fitting procedure which could allow us to mea-

sure the branching ratios of different gluino decay channels. We begin by simulating

a number of samples of gluino pair production and decay, each with different final

states, such as tttt, tttb, ttbb, and so on. Then we will fit the relative weights of dif-

ferent samples to match a set of experimental signatures. Of course, without precise

knowledge of the underlying spectrum, choice of the templates will introduce errors

in the estimate of the branching ratios. We studied such effects by using several

templates with different hypotheses for the relevant masses. We conclude that such

a method will allow us to establish important features of gluino branching ratios.

We carry out our study on several benchmark models with relatively low gluino

masses. A detailed scan of the parameter space involving the gluino mass and differ-

ent branching ratios is beyond the scope of this study. The corresponding results for

heavier gluino masses (but with similar decay branching ratio and mass difference

between gluino and the LSP) could be roughly obtained by scaling from the present

result using relative production cross sections. The mass gap between the gluino

and the neutralino or chargino in the next step of the decay chain could also have

important effects as it will affect the detection efficiency of various decay products.

In general, a larger mass gap will enhance the discovery potential. At the same time,

we expect this effect is milder in comparison with the dependence on the gluino mass.
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Model parameters (TeV) Branching ratios
mg̃ mq̃1,2

mt̃1
mt̃2

mb̃1
mb̃2

mÑ,C̃ (g̃ → tt̄) (g̃ → bb̄) (g̃ → tb)

A 0.65 8 1.3 8 2.5 8.1 0.1 0.92 0.07 0
B 0.65 4 0.8 0.93 0.87 4 0.1 0.71 0.27 0
C 0.65 4 0.64 0.9 0.72 4 0.1 0.52 0.47 0
D 0.65 4 0.63 0.9 0.72 4 0.1 0.09 0.22 0.69

Table 2.1:
Model spectra and relevant branching ratios for the benchmark models considered in
this study. The models A, B, and C the only particle state lighter than the gluino is the
LSP, which is taken as a bino-like neutralino by construction. In Model D, the lightest
neutralino and lightest chargino are both winos-like and are therefore nearly degenerate.
We adopt a short hand notation where we omit the explicit mention of the identity of
the electroweak-ino in the decay, as it can always be inferred from the observable particle
content.

We emphasize that our goal in this study is to demonstrate a method which allows

us to extract information of the SUSY spectrum, such as the identity of the LSP

with relatively low integrated luminosity. This is possible mainly because, unlike the

precision measurements of the masses and couplings, our method mainly relies on

inclusive counts and general kinematical features. Moreover, since we do not demand

direct reconstruction, we are able to take advantage of many channels with multiple

leptons. Due to lower background and theoretical uncertainty in comparison with

the pure hadronic channel, we expect to have significant excesses in many of these

channels. After discovery, we expect our method will yield a first set of clues about

the underlying model during the early stages of LHC operation. This discussion is

based on the results found in [13].

2.1 Benchmark Models

We consider four benchmark models in our study. The model spectra and relevant

decay branching ratios are shown in Table 2.1. The gluino mass is fixed at 650 GeV

for each case. For simplicity, in models A, B, and C we consider the scenario that the

gluino decay sequence produces only top and bottom quarks in a single decay step.

This occurs if the only state lighter than the gluino is the LSP, which in models A,B,
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and C is taken to be a bino-like neutralino by setting (|µ|,M2) > M3 > M1. We fix

the lightest neutralino mass at 100 GeV.

Model A represents the simplest example of multi-top physics under these as-

sumptions. By construction, the first- and second-generation squark masses, as well

as the t̃2 and b̃2 masses are all ∼ 8 TeV. Only the b̃1 and t̃1 are light relative to the

other squarks, with the t̃1 the lightest at ∼ 1.3 TeV. Consequently, gluino decays

proceed through an off-shell t̃∗1, resulting in dominant production of four top quarks

in the final state.

In models B and C, the sbottom and stop masses are now sub-TeV and of similar

order, but still more massive than the gluino. This increases the branching fraction

for the decay channel g̃ → bb̄χ̃0
1. Model B has a slightly lighter t̃1 relative to either

sbottom, and therefore exhibits a slightly larger decay fraction to two top quarks.

In Model C the stop and bottom squark masses are adjusted in order to achieve a

nearly even decay fraction to both top and bottom quarks.

We also consider the possibility of a wino-like neutralino LSP. Here we take

(|µ|,M1) > M3 > M2, so that now the only states lighter than the gluino are the

neutralino LSP and the light chargino χ̃±
1 . In this case the lightest chargino is nearly

degenerate with the LSP, and the chargino decay products are too soft to pass se-

lection cuts. Thus, the chargino appears only as missing energy. This scenario is

represented by model D.

In Table 2.1 and the rest of this chapter, we adopt a short-hand notation for

gluino decay by only including top and bottom quarks and not giving explicitly the

electroweak-inos, as it should be evident from the context.
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2.2 Signal Isolation and Backgrounds

We begin by discussing the prospects for signal isolation above Standard Model

background at the LHC. The relatively large b-jet and lepton multiplicity associated

with four-top production provide for potentially striking signatures that are easily

distinguishable above the expected SM background. We find that by requesting ≥ 3

b-tagged jets and at least one lepton, it is possible to achieve signal significance

S/
√
B > 3 for only 500 pb−1 of integrated luminosity. We will demonstrate the

discovery potential in three of the four benchmark models.

One of the important backgrounds from the Standard Model for final states with

many b-tagged jets, several isolated leptons and very high missing ET , is top pair

production, tt̄. The expected cross-section at the LHC for this background is σ = 833

pb (NLO+NLL result [48]). The tt̄ background event samples were produced using

Pythia 6.4 [49].

Process σ [pb] Process σ [pb] Process σ [pb]
tt̄ + 1, 2, 3 jets 833 tb̄Z + 1, 2 jets 0.67 ZW+b + 1, 2 jets 0.48
tt̄Z + 1, 2 jets 0.28 t̄bZ + 1, 2 jets 0.58 ZW−b + 1, 2 jets 0.50

tt̄W− + 1, 2 jets 1.5 tb̄W+ + 1, 2 jets 0.18 ZW+b̄ + 1, 2 jets 0.85
tt̄W+ + 1, 2 jets 3.4 t̄bW− + 1, 2 jets 0.09 ZW−b̄ + 1, 2 jets 0.28

Table 2.2: Standard Model backgrounds and relevant cross sections used.

We have also included in our analysis a set of SM backgrounds involving asso-

ciated production of W/Z bosons with third generation quarks. These contribute

significantly to signals with high lepton multiplicity, or same sign dileptons in the fi-

nal state. As we will see, the latter case is a particularly important discovery channel

early on. All background sources considered, and their respective cross sections are

given in Table 2.2. The parton-level SM background event samples were produced

with Madgraph v.4.2.3 [50], with the exception of the tt̄ background which was pro-



26

duced using Pythia 6.4. The tt̄ cross section was taken from [48], while the cross

sections for the other backgrounds are calculated from Madgraph. The subsequent

parton shower and hadronization were simulated with Pythia 6.4. We have used the

CKKW matching scheme [51] implemented in Madgraph. Events are then passed to

the publicly available detector simulation code PGS-4 [52]. For our study we set the

PGS-4 performance parameters to mimic the behavior of the ATLAS detector. An

overview of the PGS-4 design philosophy and capabilities has been presented at re-

cent workshops [53]. While the program does not include all effects present in a real

detector environment, it is sufficiently accurate for use in phenomenological studies.

The current code is built upon earlier work designed to model the CDF and D0

detectors, and which has been shown to achieve good agreement with experimental

results [54].

The signal event samples, for gluino pair production and decay, were produced

using Pythia 6.4 and have been passed through the same PGS-4 detector simulation.

Appropriate k-factors [55] were applied to the LO signal cross-section calculated by

Pythia to obtain the NLO cross-section.

Basic muon isolation was applied to all samples: If the summed PT in a ∆R = 0.4

cone around the muon is greater than 5 GeV, or the ratio of the ET in a 3 × 3 cell

region of the calorimeter to the muon PT is greater than 0.1125, the muon is merged

with the nearest jet in ∆R.

We have also imposed on both the signal and the background the following selec-

tion cuts

1. 6ET≥ 100 GeV

2. pT ≥ 20 GeV and pseudorapidity |η| < 2.5 for all objects
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Standard Model Background

0b 1b 2b 3b ≥4b
0L 1717.46 3069.29 2091.27 320.54 36.51
1L 783.34 1489.85 998.8 118.42 8.49
OS 41.89 61.82 34.06 4.46 0.01
SS 0.41 0.97 0.44 0.04 -
3L 0.1 0.54 0.24 0.06 -
≥4L - - - - -

Table 2.3:
Number of Standard Model events with n (n = 0..4) b-tagged jets and m (m =
0, 1, OS, SS, 3, 4) leptons for the combined SM background considered. The following
cuts were applied: MET ≥ 100 GeV, at least 4 jets with pT ≥ 50 GeV, all jet and lepton
pT ≥ 20 GeV. The results are normalized to 500 pb−1.

3. At least 4 jets with pT ≥ 50 GeV

Table 2.3 shows the expected number of events from the SM background. We have

classified them according to the number of b-tagged jets and isolated leptons in the

event. Same sign (SS) and opposite sign (OS) di-leptons are separated as they have

very different origins and sizes. We will use the possible excess in these channels to

assess the discovery potential. The results are normalized to 500 pb−1 of integrated

luminosity. Crossed out entries indicate no background events passing the signature

and selection cuts.

Model A Model C Model D

2b 3b ≥4b
1L 166.2 70.9
OS 27.6 19.3 7.3
SS 12.7 9.4 3.1
3L 3.1 2.2 0.8

2b 3b ≥4b
1L 106.5 44.2
OS 13.3 10. 3.9
SS 4.1 2.8 1.
3L 1.1 0.6 0.2

2b 3b ≥4b
1L 98. 37.8
OS 5.6 3.8 1.5
SS 2.9 2.2 0.8
3L 0.2 0.1 0.1

Table 2.4:
Number of signal events passing the selection cuts and containing n b-tagged jets and m
leptons. The selection cuts applied were: MET ≥ 100 GeV, at least 4 jets with pT ≥ 50
GeV, all jet and lepton pT ≥ 20 GeV. The results are normalized to 500 pb−1.

Table 2.4 shows the expected number of signal events with n b-tagged jets and

m isolated leptons (leptons = e±, µ±). Model A, which is predominantly a four top

signal, has significantly more muti-lepton and b-jet events passing selection cuts than

Model C and Model D, which have fewer four top events. Model C exhibits a stronger
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Model A Model C Model D

2b 3b ≥4b
1L 15.3 24.3
OS 4.73 9.12 87.0
SS 19.2 49.4 -
3L 6.44 9.26 -

2b 3b ≥4b
1L 9.79 15.2
OS 2.28 4.73 47.0
SS 6.10 14.5 -
3L 2.35 2.63 -

2b 3b ≥4b
1L 9.00 13.0
OS 0.957 1.79 18.3
SS 4.31 11.3 -
3L 0.418 0.318 -

Table 2.5:
Signal significance S/

√
B, computed for the results in Tables 2.4 and 2.3. The crossed

out entries indicate no background events passing the signature and selection cuts.

signal than Model D, which has very few four top events.

In Table 2.5, we show the signal significance achievable with 500 pb−1 integrated

luminosity. By requesting ≥ 3 b-tagged jets it is possible to observe signal signifi-

cance S/
√
B ≥3 for events with multiple leptons, an excess consistent with multi-top

production. In the single lepton channels, a more detailed study of the background

would be required to properly calculate the expected significance, since there are

likely to be significant background contributions from QCD processes that can fake

lepton production. The same-sign dilepton channel is probably the best channel for

discovery, a finding that is consistent with results in [56]. It can also be observed

that already with 100 pb−1 integrated luminosity a 4 top signal (Model A) may be

established in the same sign dilepton, 3 b-jet channel.

During the early period of LHC data taking, missing energy may not be well

understood since it requires a ’global’ understanding of the ATLAS/CMS detectors.

Therefore missing energy should not necessarily be taken as a reliable tool to discover

new physics at low luminosities. If we do not include the missing energy cut in our

analysis, then QCD backgrounds, particularly bb̄ production, becomes a significant

background to the multi-top signal. Requiring four hard jets, as we have done here,

does reduce the QCD backgrounds since hard jets are less likely to produce isolated

leptons [57]. However, even though the 2-lepton background from QCD might still be

significant, it is unlikely that the 3-lepton QCD background will be more significant
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Model A Model C Model D

2b 3b ≥4b
1L 4.89 8.45
OS 1.08 3.32 7.55
SS 8.09 17.9 31.0
3L 3.16 7.37 -

2b 3b ≥4b
1L 3.22 5.27
OS 0.565 1.79 4.12
SS 2.57 5.87 9.99
3L 1.07 2.14 -

2b 3b ≥4b
1L 3.10 4.62
OS 0.249 0.742 1.56
SS 2.21 4.98 8.78
3L 0.270 0.318 -

Table 2.6:
Signal significance S/

√
B, computed for the results in Tables 2.4 and 2.3 assuming no

MET cut. Significance values ≥ 3 for are still achievable in the ≥ 3 b-jet + same-sign
dilepton channel. The crossed out entries indicate no background events passing the
signature and selection cuts.

than the 4-top signal [57, 58]. Thus, it seems reasonable that discovery could still

be possible without missing energy at integrated luminosities greater than or equal

to 500 pb−1. Table 2.6 shows the signal significance for 500 pb−1 of data, computed

assuming no missing energy cut. Significance values ≥ 3 are still clearly achievable

in the ≥ 3 b-jet + same-sign dilepton channel.

2.3 Direct Reconstruction

Once evidence is obtained for an excess beyond the Standard Model in events with

multiple b-jets and leptons, it is natural to assume that the signal involves production

of multiple top quarks. In order to provide concrete evidence for this, W bosons and

top quarks in the signal should be reconstructed.

In the model under consideration, where each signal event has four top quarks,

the main sources of difficulty in reconstruction are low statistics, large combinatorial

background, and poor object reconstruction due to the extremely complex event

topology. Every tttt event has four W bosons, each of which gives two jets if it

decays hadronically. Furthermore, every top decay itself gives a b-jet. Therefore

the expected number of hard jets arising in a decay with k W bosons decaying

hadronically is 4 + 2k. On top of this there are also jets arising from initial/final

state radiation (ISR/FSR). For comparison, tt̄ all hadronic decays are expected to
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have 6 hard jets on average before ISR/FSR effects are included.

We expect that due to the large number of particles in the final state, the chance

of reconstructible objects (such as jets) overlapping is large, so that the detector will

frequently be unable to accurately reconstruct isolated objects. If two partons are

very close in ∆R (roughly less than twice the diameter of the cone used in the jet

algorithm), the jets coming from the partons are likely to be recombined into a single

jet. Similarly, if a lepton is very close to a jet, it will likely not pass the isolation

requirement. We utilize the standard cone jet reconstruction algorithm implemented

in the PGS simulator, however we reduce the ∆R cone size to 0.4 in line with the

expected performance of the ATLAS detector.

Figure 2.1 shows the distributions of the lowest, 2nd lowest, 3rd lowest, and 4th

lowest ∆R values between reconstructible partons in four top events from benchmark

model A. For comparison, the same information is also shown for Standard Model tt̄

events. Here we define a reconstructible parton as any first/second generation quark

or b-quark. It may be seen in figure 2.1 (a) that in four top events there is a large

likelihood of three to four pairs of overlapping objects, rendering reliable final state

reconstruction difficult.

Direct reconstruction of top quarks in somewhat different decay chains has been

studied in Ref. [42, 43]. We expect a similar study in our case will also yield at least

some evidence that there are indeed top quarks in the event. Rather then presenting

a detailed analysis here, we focus on a somewhat different question. Clearly, in

order to completely measure the branching ratios into different final states involving

different numbers of top and bottom, it is not enough to just reconstruct a certain

top quark. We need to be able to reconstruct all of the top quarks in the event with

reasonable efficiency. However, our study already shows that there is a significant
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Figure 2.1:
Distributions of the lowest four values of separations, ∆R, between reconstructible
partons (which here we take as any first/second generation quark or b-quark) obtained
using the Pythia parton-level (truth) information for benchmark model A. For each
event in the simulation, ∆R was computed for all pairs of reconstructible objects,
ranked, and the lowest four values binned into histograms. The resulting distributions
showing the lowest, 2nd, 3rd, and 4th lowest ∆R values encountered are given for
(a) four-top events of model A, and also (b) hadronic tt̄ decays. All distributions are
normalized to unity. The partons present in four-top events are significantly closer to
one another relative to those in SM tt̄ events, increasing the liklihood of overlap, as well
as a lower reconstruction efficiency.

overlap between different object in this type of signal events. Including additional

combinatorics, we expect a very low efficiency for reconstructing multiple tops.

To gain some estimate of such efficiencies, we study how many tops we can possibly

reconstruct in an event. To proceed, we define a ’top candidate’ to be the combination

of two light-jets (ie non-b-tagged) and one b-tagged jet, where the non-b-tagged dijet

invariant mass satisfies 65 < mjj < 95 GeV, the invariant mass of the b-jet with

any lepton must satisfy mbl > 155 GeV, while the invariant mass with either of the

two non-b-tagged jets must satisfy mbj < 160 GeV. Finally, the invariant mass of the

final three-jet combination must satisfy 125 < mjjb < 225 GeV.

Figure 2.2 shows two distributions for the number of top candidates observed in

our benchmark model A. The first figure, 2.2 (a), includes all possible three-quark

combinations that satisfy the requirements above. The inherent combinatorical back-

ground due to the intense hadronic activity in four-top events is clearly visible. We
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see that the same b-quark can be combined with other partons to form several “top

candidates”. There can be no more than 4 top quarks present in the event, and the

vast majority of ’candiate’ combinations are incorretly chosen. Figure 2.2 (b) shows

the same information except that here we isolate only the distinct jet combinations

of each event. Degeneracies that arise are removed by keeping track of the mass

difference mjjb − mt for each jet triplet, and choosing the set of triplets with the

lowest average difference. From the figure, it is clear that this approach gives a sig-

nificantly more reasonable result. However, notice that the number of reconstructed

candidates drops dramatically as the top multiplicity increases, rendering statistical

analysis essentially impossible without a large integrated luminosity. For compari-

son, in figure 2.2 (c) we show the result obtained for a sample of Standard Model

tt̄ events. Compared to figure 2.2 (b), the tt̄ sample yields no 3-top or 4-top event

candidates, and exhibits an overall distribution that is distincly different from the

result of model A. This suggests that a similar approach may potentially be used to

obtain additional evidence for multi-top production, despite an inability to perform

full statistical reconstruction due to insufficient luminosity. We do not examine the

efficacy of such an approach here, and instead defer such a study to future work.

The study we perform here is not an actual reconstruction of the top quark. A

true reconstruction involves positive identification of the top quark through statis-

tical determination of the top invariant mass. Instead, this study is an estimate of

how many objects obtained from recombining final states can be consistent with a

top quark. We expect this study, though not completely precise, does capture the

main effect of combinatorics and object merging. We observe that the efficiency for

detecting one top quark as defined is approximately 48.5%, for two quarks ∼ 16.7%,

three quarks ∼ 1.5%, and for four quarks ∼ 0.02%.



33

Number of Possible Top-Quark Candidates
0 5 10 15 20

F
ra

ct
io

n
 o

f 
E

ve
n

ts

-210

-110

(a)

Number of Distinct Top Quark Candiates
0 1 2 3 4 5

F
ra

ct
io

n
 o

f 
E

ve
n

ts

-310

-210

-110

(b)

Number of Distinct Top Quark Candiates
0 1 2 3 4 5

F
ra

ct
io

n
 o

f 
E

ve
n

ts

-110

1

(c)

Figure 2.2:
As a demonstration of the combinatoric background, in figure (a) we show the observed
number of possible top ’candidates’ obtained for our benchmark model A. We consider
combinations with one b-jet and two light jets, where the invariant mass falls within the
top mass window, and where the combination satisfies a minimal set of selection criteria
(see text). Due to the combinatorics, the same b-quark can be combined with other
partons to form multiple “top candidates”. In (b) we show the resulting number of top
candidates after attempts are made to remove combinatorics by isolating distinct 3-jet
combinations. For this basic study we only require that events have at least 4 b-tagged
jets. In (c) we show the result obtained for Standard Model tt̄ events. Comparison
with frame (b) reveals a distinct difference from events with multi-top production in
excess of expected Standard Model processes. In particular no 3-top or 4-top events
were observed for the tt̄ sample.
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Further perfections of reconstruction techniques are certainly going to improve

these results and should be pursued. However, it is likely that to extract statistically

significant information based on a full reconstruction will still require large integrated

luminosity.

2.4 Understanding multi-top final states

As we have demonstrated in the previous sections, new physics signals containing

multiple tops can be discovered at the LHC. By direct reconstruction, we expect to

gather evidence that there are indeed top quarks in the signal. However, there are

many possible event topologies which can contribute to our signal. In general, the

gluino can decay into third generation quarks through g̃ → tt̄+ χ̃0
i , g̃ → bb̄+ χ̃0

i , and

g̃ → tb̄+ χ̃±
i . Therefore, final states coming from gluino pair production can involve

from zero to four top quarks, with relative amounts determined by gluino branching

ratios. As we have argued in the introduction, measuring such branching ratios

plays a central role in understanding the properties of superpartners involved. For

example, the relative ratio of g̃ → tt and g̃ → bb could give us important information

about the spectrum of the third generation squarks. At the same time, significant

decay branching ratio of g̃ → tb strongly suggests that either Higgsino or Wino (or

both) is lighter than the gluino.

As demonstrated in the previous section, measuring the branching ratios by di-

rectly reconstructing top quarks suffers from low efficiencies. In this section, we will

instead tackle this question from a different approach. We assume that the new

physics signal has already been discovered in a set of channels, particularly those

with multiple leptons and multiple bottom quarks (Table 2.4). In addition, we as-

sume there are a set of statistically significant experimental observables defined on
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the set of signal events. This general approach can in principle be applied in practice

with an arbitrary set of experimental observables based on availability. Here, we will

only use a limited set of experimental variables:

• 2 b-jets and either OS di-leptons, SS di-leptons, 3 leptons, 4 or more leptons

• 3 b-jets and either 1 lepton, OS di-leptons, SS di-leptons, 3 leptons, 4 or more

leptons

• 4 or more b-jets and either 1 lepton, OS di-leptons, SS di-leptons, 3 leptons, 4

or more leptons

We will consider a general set of decay channels of the gluino which can in principle

contribute to the new physics signal. We will consider as free parameters the relative

branching ratios of those channels whose values are determined by a fit to the above

set of experimental observables. This approach can be viewed as a natural application

of the method proposed in Ref. [61]. The set of possible decay channels are chosen

as follows

(2.1)
g̃g̃ → tt̄χtt̄ g̃g̃ → tt̄χtb̄+ c.c g̃g̃ → tt̄χbb̄

g̃g̃ → tb̄χbb̄+ c.c. g̃g̃ → bb̄χbb̄ g̃g̃ → tb̄χt̄b+ c.c. g̃g̃ → tb̄χtb̄+ c.c.

where χ represents either the lightest neutralino χ̃0
1 in the case of benchmark models

A,B, and C, or the lightest chargino χ̃±
1 in the case of benchmark model D. Recall that

in this case the chargino and neutralino LSP are nearly degenerate, so that transitions

between them will not yield observable decay products. The +c.c. indicates the

charge conjugated process.
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The number of events in the possible g̃g̃ decay channels are given by

ntt̄tt̄ = σg̃g̃LBr(g̃ → tt̄)Br(g̃ → tt̄)

ntt̄tb̄ = σg̃g̃LBr(g̃ → tt̄)Br(g̃ → tb̄)(2.2)

...
...

...

nqqqq = σg̃g̃LBr(g̃ → qq)Br(g̃ → qq).

These number can then be used to estimate the number of observed events with

a particular signature, N sig
obs, which can receive contributions from several channels

listed above with a particular fraction, ǫsigchannel, depending on event topology and

experimental efficiencies. We have

N0b0l
obs = ntt̄tt̄ǫ

0b0l
tt̄tt̄ + ntt̄tb̄ǫ

0b0l
tt̄tb̄ + . . .+ nqqqqǫ

0b0l
qqqq

N1b0l
obs = ntt̄tt̄ǫ

1b0l
tt̄tt̄ + ntt̄tb̄ǫ

1b0l
tt̄tb̄ + . . .+ nqqqqǫ

1b0l
qqqq(2.3)

...
...

...

N4b4l
obs = ntt̄tt̄ǫ

4b4l
tt̄tt̄ + ntt̄tb̄ǫ

4b4l
tt̄tb̄ + . . .+ nqqqqǫ

4b4l
qqqq.

Our procedure is the following: First, we obtain estimates of all signal efficien-

cies ǫsigchannel. Next, we perform a χ2-fit to determine a set of best fit values of

√
σg̃g̃L Brchannel. Note that in order to obtain the branching ratio from these count-

ing signatures, we will need to know the product σg̃g̃L. Such information could be

available independently from other measurements, such as the gluino mass. We will

show later in this section that our method indeed gives us an estimate of this abso-

lute rate. At this moment, we note that we can already derive a lot of information

about the underlying model if we measure the ratio of branching ratios, for which

the dependence on σg̃g̃L drops out.

The key step in this method of fitting to branching ratios is, of course, to obtain
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an estimate for the efficiencies, ǫsigchannel. Here we estimate the efficiencies through

numerical simulation with Pythia/PGS, assuming a particular model, a template,

of the underlying physics. Many factors enter in such an estimate. The existence

of many objects, in particular jets, in the event means that there is a significant

chance for leptons from top decays to be suffiently close to a jet that they fail to pass

the the isolation cut. The assumed b-tagging performance can also affect the result.

Numerical simulation using an appropriate detector simulator that approximates

these effects is therefore unavoidable.

In practice, certain assumptions about the underlying model must be made in

choosing a template. We have already chosen the set of channels to include, based

on information gained from the type of study in the previous section. In addition,

we have to choose the spectrum, the gluino mass and LSP mass, to be used in the

template. To begin with, we will first choose a template model using the actual gluino

mass and LSP mass as the underlying model. We will fit the underlying branching

ratios by using efficiencies obtained by simulating this template and demonstrate

such a fit does give us accurate information of the underlying model. We will then

simulate a set of different templates with different mass hypotheses. We will show

that for the variation of mass hypotheses we have studied, the difference induced for

the fit does not significantly affect our conclusion about the underlying models. Of

course, such a result still leaves the question of whether the range of variation of

mass parameters we have used is too optimistic. Later in this section, we will show

that indeed it is reasonable to expect we can get estimates of mass scales from other

experimental observables so that we can choose our mass hypothesis with an error

within this range. For the continuity of our presentation, we will present our result

for the fits first. Then we will come back to address the question of choosing the
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Figure 2.3: Results for fits of ratio Br(g̃ → tt̄)/Br(g̃ → bb̄) for benchmark Model-B. The left panel
shows the result with the correct mass hypothesis. In the right panel, the efficiencies are
calculated for five different mass templates shown in the legend. The solid horizontal
line gives the actual values of the branching ratios. Errors are 1σ and include errors for
subtracting off the tt̄ background.

mass hypothesis in detail.

Our fit to Br(g̃ → tt̄)/Br(g̃ → bb̄) for benchmark model-B using the correct mass

hypothesis is shown in the left panel of Fig. 2.3. For this and all the other fits

presented in this section, we have required that for a channel to be included in our

fits, there must be at least 1 signal event, and the significance over the tt̄ background

must be greater than 3.

We pause here to briefly describe how error bars are calculated in these and the

other fits presented in this section. Using large statistics for the template model,

the statistical errors for calculating the efficiencies and for determining the number

of events for a given signature are assumed to be much smaller that the expected

Gaussian errors from the LHC data. The only errors we include here are statistical

errors from the minimization procedure. Therefore, the 1σ error for a given branching

ratio is given by the change in the branching ratio required to shift the χ2 one unit

from its value at the minimum. For example, the 1σ error associated with Br(g̃ → tt)
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and Br(g̃ → bb) are given by

(2.4)

δBr(tt) =

(
1

2

∂2χ2

∂Br(tt)2

)−1/2
∣∣∣∣∣
minimum

, δBr(bb) =

(
1

2

∂2χ2

∂Br(bb)2

)−1/2
∣∣∣∣∣
minimum

, etc.

From the left Fig. 2.3, we see that using the correct mass hypothesis, we will

be able to measure the ratio Br(g̃ → tt̄)/Br(g̃ → bb̄) with good accuracy for an

integrated luminosity of ∼ 5−10 fb−1. In particular, we will be able to verify that in

Model B, the gluino decay is dominated by g̃ → tt̄ with a smaller but non-vanishing

branching ratio for g̃ → bb̄.

Next, we want to assess the effect of changing our assumptions of underlying

spectrum. We will assume that although the mass spectrum cannot be precisely

measured, some crude estimates can still be made based on kinematical variables

such as Meff . We will provide justifications for this assumption later in this section.

Therefore, we will consider cases where the gluino mass only deviates from the un-

derlying benchmark model by about 100 GeV. In particular, we use four additional

sets of alternative templates and carry out the same fit. The result in Model B is

shown in the right panel of Fig. 2.3. We see that using different mass hypotheses

does make a visible difference. However, we observe that these differences are not big

enough to dramatically affect the information we will extract from our measurement

of Br(g̃ → tt̄)/Br(g̃ → bb̄). In the case of 3-body gluino decay under consideration,

this ratio is proportional to (mb̃/mt̃)
4. Therefore, we see that using different mass

hypotheses within this range will at most result in a factor two error in the mea-

surement of the ratio of the branching ratios, will induce at most ∼ 20% shift in the

inferred ratio mb̃/mt̃.

Notice that incorrect assumptions about the underlying spectrum do not lead

to significant effects in the fit result when considering at least 1 fb−1 integrated
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Figure 2.4: Results for fits of ratio Br(g̃ → tt̄)/Br(g̃ → bb̄) for benchmark Model-C. The left panel
shows the result with the correct mass hypothesis. In the right panel, the efficiencies are
calculated for five different mass templates shown in the legend. The solid horizontal
line gives the actual values of the branching ratios. Errors are 1σ and include errors for
subtracting off the tt̄ background.

luminosity of data. In all cases we can still extract a good estimate of the squark

hierarchy, as well as the nature of the LSP.

Similar studies are performed for benchmark Model C. The result for Model C is

shown in Fig. 2.4. Accuracies similiar to those obtained for Model B are observed

here for the same integrated luminosity. In particular, we observe that we should

be able to distinguish Model B and C from these results alone with about 5 fb−1 of

integrated luminosity.

As a final note, we add that the ratio Br(g̃ → tt̄)/Br(g̃ → bb̄) is slightly under-

estimated in all cases, even for the correct mass template. This is because the data

actually contains a small percentage of events in which the gluino decayed to first

and second generation quarks. As those decays looks most similar the decay into

two b-jets, the fit tends to slightly overestimate Br(g̃ → bb̄), and therefore underes-

timates Br(g̃ → tt̄)/Br(g̃ → bb̄). In principle it should be possible to calibrate this

procedure and thus eliminate such shifts in the final result. However, this is not nec-

essary since such deviations do not mask the dominant behavior (that decays to top

quarks dominate decays to bottom quarks, for example). It is expected that such



41

æ

æ

æ æ æ æ

100 pb-1 200 pb-1 500 pb-1 1 fb-1 2 fb-1 5 fb-1 10 fb-1 20 fb-1

5

10

15

BrHg� ®tb+t
�
bL�BrHg� ®tt

�
L

ModelD

æ

æ
æ æ æ æ

à

à

à

à
à à à

ì

ì ì ì ì

ò

ò ò

ò
ò ò ò ò

ô ô ô

ô

ô ô ô ô

100 pb-1 200 pb-1 500 pb-1 1 fb-1 2 fb-1 5 fb-1 10 fb-1 20 fb-1

5

10

15

BrHg� ®tb+t
�
bL�BrHg� ®tt

�
L

ModelD

æ
æ
ææææææ

àà
ààààààìììììììì

òò

òòòòòòôôôôôô
2.0 2.5 3.0 3.5 4.0 4.5

0.5

1.0

1.5

2.0

2.5

3.0

ô
mg�= 550 GeV

m Χ= 103 GeV

ò
mg�= 589 GeV

m Χ= 103 GeV

ì
mg�= 644 GeV

m Χ= 103 GeV

à
mg�= 699 GeV

m Χ= 103 GeV

æ
mg�= 755 GeV

m Χ= 103 GeV

Figure 2.5: Results for fits of ratio Br(g̃ → tb̄ + t̄b)/Br(g̃ → tt̄) for benchmark Model-D. The left
panel shows the result with correct mass hypothesis. In the right panel, the efficiencies
are calculated for five different mass templates show in the legend. The solid horizontal
line gives the actual values of the branching ratios. Errors are 1σ and include errors for
subtracting off the tt̄ background.

effects will become non-negligible for scenarios where the 1st- and 2nd-generation

squarks are less massive, and perhaps very close to the gluino. A detailed study of

this more complicated possibility is beyond the scope of this work.

The study of gluino decay for benchmark model D is presented in Fig. 2.5. In this

case, we are interested in ratio Br(g̃ → tb̄ + t̄b)/Br(g̃ → tt̄). For a wino-LSP model

like Model D, we expect this ratio to be large, which can indeed be experimentally

verified with moderate luminosity, as shown in the figure.

We finally consider how well we can chose our mass hypotheses based on available

experimental data. This is certainly an important issue since significantly inaccurate

mass hypotheses lead to misleading results. To begin with, we study the dependence

of our result on the mass hypothesis in more detail.

As the mass gap between the gluino and LSP is tightened, the events will have a

harder time satisfying the missing energy cut we imposed. This more significantly

affects events of the form g̃ → tt + 6ET than g̃ → bb + 6ET , since the tops will use

more of the gluinos’ energy than the bottoms. Thus a tighter mass gap used in our

template results in an underestimation the ratio of efficiencies ǫtt̄tt̄/ǫtt̄bb̄ (see Figure
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Figure 2.6: Dependence of efficiencies on the mass gap Mg̃ −MLSP to pass the missing energy cut,
MET ≥ 100 GeV. This dependance is the dominant effect for the variation of fits on
the mass hypothesis.

2.6). The fitter then adjusts for this low efficiency by fitting more tttt events relative

to ttbb events to the signature counts

(2.5)
Br(g̃g̃ → tt̄tt̄)

Br(g̃g̃ → tt̄bb̄)
≈ Br(g̃ → tt̄)2

2Br(g̃ → tt̄)Br(g̃ → bb̄)
≈ ǫtt̄bb̄
ǫtt̄tt̄

.

Thus, in Models B and C as we increase(decrease) the gluino mass in our templates

we tend to underestimate(overestimate) the branching ratio Br(g̃ → tt̄)/Br(g̃ → bb̄).

We see that the change in the mass gap between gluino and the LSP can account

for most of the variation in the fit result. For example, extrapolation from our study

suggests that if our assumption of gluino mass is off by more than 200 GeV, the

result for benchmark Model B will indeed look similar to that of Model C. However,

since we expect to have significant excess in multiple channels, we observe that we

should also have a significant amount of information about the mass scales, and in

particular the mass gap Mg̃ − MLSP of the new physics particles already at early

stages of LHC running. For example, we would expect simple transverse variables

in channels with multiple leptons (and hence lower Standard Model background)
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Figure 2.7:
Effective mass distribution, of g̃g̃ → t̄tt̄ events for the 5 gluino masses used in fits. The
bars at the bottom show the location of the inner 20% quantile; the highest one is for
the largest gluino mass, the second highest for second largest gluino mass, etc. The
histograms are normalized so that the total area is unity.
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Figure 2.8:
Effective mass distribution, of Models-(A,B,C,D). The bars at the bottom show the
location of the inner 20% quantile. The histograms are normalized so that the total
area is unity.

should already provide some indication of the mass scales involved.

Indeed, visible differences can be seen between different gluino masses when we

histogram the effective mass, Meff , defined as the scalar sum of the transverse mo-

mentum for all objects in the an event

(2.6) Meff =
∑

i

pT,i + 6ET .

To demonstrate this, we plotted the effective mass for g̃g̃ → tt̄tt̄ for the 5 gluino

masses used in fits above, in Figure 2.7. The histogram curves move to lower energies



44

(right to left) as the gluino mass is lowered. There is also a noticeable change in the

effective mass spread, which we quantify as the location of middle 20% quantile. The

bars at the bottom show the location of the inner 20% quantile; the highest one is

for the largest gluino mass, the second highest for second largest gluino mass, etc.

The fact that the bars move right to left as the gluino mass is lowered indicates that

the median effective mass is decreasing, while the fact that the bars are shrinking

indicate the effective mass has less variation as the gluino mass decreases.

This analysis was only carried out for g̃g̃ → tt̄tt̄, so we still need to demonstrate

that the effective mass is also independent of the gluino decay. To do this we plotted

the effective mass for the four models considered in this study, in Figure 2.8. The

bars at the bottom show the spread, from top to bottom, for Model-A, Model-B,

Model-C, and Model-D. As can be seen, the four histogram curves are remarkably

similar, and have no noticeable differences in the median or spread.

Notice that since our fit yields a set of values for
√
σg̃g̃L Brchannel with any given

mass hypothesis, it can by itself provide a consistency check on the hypothesis. In

particular, we can get a lower limit on the gluino pair production cross section, by

summing and squaring the fit values
√
σg̃g̃L Brchannel

(2.7) σg̃g̃ ≥ L−1
∑

(
√
σg̃g̃LBrtt +

√
σg̃g̃LBrbb +

√
σg̃g̃LBrtb)

2

We can obtain cross sections for gluino pair production in the case of decoupled

scalars, and rule out some incorrect gluino masses used in the templates. For exam-

ple, in Model C (see Figure 2.9), we can rule out the mg̃ = 755 GeV mass template

at 200 pb−1 of data at 1σ certainty, and begin to rule out the mg̃ = 700 GeV mass

template at approximately 1 fb−1 of data at 1σ certainty. If the actual gluino is much

lower than 600 GeV then there must be a significant branching fraction of the gluino
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Figure 2.9:
Gluino production cross section obtained by summing the individual branching ratios.
We also show the theoretical cross sections at NNLO for gluino pair production for
masses used in the templates. Notice that at high integrated luminosity we can begin
to rule out heavier mass hypothesis

that is not contributing the channels we used in our fits, such as gluino decays into

first and second generation quarks.

2.5 Summary

We have studied the LHC signals of pair produced light gluinos which decay dom-

inantly through g̃ → tt + χ̃0
1, g̃ → bb + χ̃0

1, and g̃ → tb + χ̃±
1 . We conclude that an

early discovery of new physics in this scenario is possible due to significant excesses

expected in multi-lepton multi-bottom channels. Measuring relative branching ra-

tios of gluino decay into tt, bb and tb channels is essential to extract information

about the underlying model. The crucial step in such a measurement is identify top

multiplicity in the signal events. We show that direct reconstruction, while useful in

gathering evidence for the existence top quark in decay products, is not sufficient to

measure the number of top quarks in the event effectively. We proposed and studied

a method based on fitting a set of branching ratios to a collection of experimental

observables, most of them inclusive counts. Efficiencies for identifying a particular
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final state resulting from certain underlying decay topology are estimated by simu-

lating corresponding templates. We conclude that this method will allow us to learn

about gluino decay branching ratios with roughly 10 fb−1 of integrated luminosity.

We verified that, in combination with earlier information on the mass spectrum of

gluino and the LSP, we can obtain a reliable measurement by choosing appropriate

mass hypotheses. We emphasize that the main advantage of our method is that it

allows us to use a large number of channels, many of them with multiple leptons and

bottoms, in which we expect to see excesses during the early stage of LHC in models

of this sort.

We showed that we can expect to gain enough information about the mass spec-

trum, in particular the mass gap Mg̃ −MLSP, from simple observables like effective

mass and demonstrated that, with our fitting method, it is also possible to obtain

an estimate of the gluino production cross section which in turn gives us very valu-

able information of the gluino mass, which also gives a consistency check of the

assumption we made in our measurement of the branching ratio.

In this work we have considered only benchmark models with only a set of simple

decay chains. More complicated models will certainly contain channels which requires

further study [42, 43]. For example, a decay chain that contains t̃→ bχ̃±
i followed by

χ̃± →Wχ̃0
i has the same set of final state particles as top decay. On the other hand,

we have also only used counting signatures in our fit. Inclusion of more kinematical

variables may improve our ability of discerning other decay topologies. For example,

in the decay of stop mentioned above, the kinematics of b and W will be in general

different from the case of top decay.

One key factor entering our lepton efficiency is the isolation requirement. This is

particularly significant in our case since we expect to have a lot of hadronic activity
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in these top rich events. We have only implemented a simple and commonly used

isolation criterion based on hadronic activity within a narrow cone around the lepton.

However, one can in principle improve and optimize the isolation cuts by including

additional alternative isolation criteria, such as by requiring the invariant mass of

lepton and the hadronic activity mℓ,had > mcut, where mcut is some chosen cut-off

value. This cut is effective since a lepton from heavy flavor decay is typically soft

and therefore gives a small mℓ,had, while it is expected to be larger for accidental

overlap between lepton and jet.



CHAPTER III

Studying Gaugino Mass Unification at the LHC

If supersymmetry is relevant at the electroweak scale there are many reasons to

expect that its presence will be established early on in the LHC program [63]. Indeed,

even some properties of the spectrum, such as the masses and spins of low-lying new

states, may be crudely known even after relatively little integrated luminosity [64,

65, 66]. In Chapter II, we addressed several aspects of identifying scenarios such as

SUSY at the LHC. In this chapter we begin to address the next question: How can we

connect the multiple LHC observations to organizing principles in some (high-energy)

effective Lagrangian of underlying physics?

This secondary problem can be further divided into two sub-problems. The first

has come to be called the Inverse Problem, as discussed in Chapter I. Briefly stated,

the Inverse Problem is the recognition that even in very restrictive model frameworks

it is quite likely that more than one set of model parameters will give predictions for

LHC observations that are in good agreement with the experimental data [12]. Much

recent work has focused on how to address this issue [67, 68, 69, 70, 71], and we will

borrow much of the philosophy and many of the useful techniques from this recent

literature. But our focus here is on what we might call the second sub-problem:

how to turn the ensemble of distinct LHC signatures into a determination of certain

48
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broad properties of the underlying Lagrangian at low energies. Clearly the most

direct attack on this second sub-problem is to perform a global fit to the parameters

of a particular model [72, 73], modulo the degeneracy issue just described above.

Not surprisingly, therefore, the work we will describe here will make significant use

of likelihood fits. But our ultimate goal is to fit to certain broad properties of the

underlying physics itself – and not simply to a particular model of that physics.

We will refine this rather vague-sounding goal in a moment. But it is helpful to

first consider an example of what we mean by the phrase “broad properties of the

underlying physics.” Consider a high energy theorist interested in connecting the

(supersymmetric) physics at the LHC to physics at an even higher energy scale, such

as some underlying string theory. What sort of information would be of most use to

him or her in this pursuit? Would it be a precise measurement of the gluino mass,

or of the mass splitting in the top squark sector, or some other such measurement?

Obtaining such information is (at least in principle) possible at the LHC, but far

more valuable would be knowledge of the size of the supersymmetric µ-parameter

or whether tan β is very small. Such information is far more difficult to obtain at

the LHC [74] but is more correlated with moduli stabilization and/or how the µ-

parameter is generated in string models [75]. For example, this knowledge may tell

us whether the µ-parameter is fundamental in the superpotential or generated via

the Kähler potential as in the Giudice-Masiero mechanism [76]. This, in turn, is

far more powerful in discriminating between potential string constructions than the

gluino mass itself – no matter how accurately it is determined. We might refer to

the genesis of the µ-parameter as a “broad property of the underlying physics.”

If all such key broad properties of the underlying physics were enumerated, it is

our view that one of the most important such properties would be the question of
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gaugino mass universality. That is, the notion that at the energy scale at which

supersymmetry breaking is transmitted to the observable sector, the gauginos of the

minimal supersymmetric Standard Model (MSSM) all acquired soft masses of the

same magnitude. This issue is intimately related to another, perhaps equally impor-

tant issue: the wave-function of the lightest supersymmetric particle, typically the

lightest neutral gaugino. Few properties of the superpartner spectrum have more

far-reaching implications for low-energy phenomenology, the nature of supersymme-

try breaking, and the structure of the underlying physics Lagrangian [77]. If the

theorist could be told only one “result” from the LHC data the answer to the simple

question “Is there evidence for gaugino mass universality?” might well be it. But

these soft parameters are not themselves directly measurable at the LHC [78].1 One

might consider performing a fit to some particular theory, such as minimal supergra-

vity (mSUGRA), in which universal gaugino masses are assumed [81] – or perhaps

to certain models with fixed, non-universal gaugino mass ratios [82, 83]. But we are

not so much interested in whether mSUGRA – or any other particular theory for

which gaugino mass universality is a feature – is a good fit to the data. Rather,

we wish to know whether gaugino mass universality is a property of the underlying

physics independent of all other properties of the model. From this example both the

ambitiousness and the difficulty inherent in our task is clear.

We have therefore decided to begin our attack by considering a concrete parametriza-

tion of non-universalities in soft gaugino masses. Many such frameworks present

themselves, but we will choose a parametrization that has the virtue of also hav-

ing a strong theoretical motivation from string theory. In recent work by Choi and

Nilles [84] soft supersymmetry-breaking gaugino mass patterns were explored in a

1Even a measurement of the physical gluino mass is not a direct measurement of the associated SU(3) soft mass
M3. Quantum corrections to the gluino bare mass can be sizable and their theoretical computation involves a large
set of other MSSM soft parameters [79, 80] – which are also not directly measurable!
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variety of string-motivated contexts. In particular, the so-called “mirage pattern” of

gaugino masses provides an interesting case study in gaugino mass non-universality.

Yet as mentioned above, these soft supersymmetry breaking parameters are not

themselves directly measurable. Linking the soft parameters to the underlying La-

grangian is important, but without the crucial step of linking the parameters to the

data itself it will be impossible to reconstruct the underlying physics from the LHC

observations.

The mirage paradigm gets its name from the fact that should the mirage pattern

of gaugino masses be used as the low-energy boundary condition of the (one-loop)

renormalization group equations then there will exist some high energy scale at which

all three gaugino masses are identical. This unification has nothing to do with grand

unification of gauge groups, however, and the gauge couplings will in general not unify

at this particular energy scale – hence the name “mirage.” The set of all such low-

energy boundary conditions that satisfy the mirage condition defines a one-parameter

family of models. This parameter can be taken to be the mirage unification scale

itself, or some other parameter, such as the ratio between various contributions to

the gaugino soft masses. We note that the minimal supergravity paradigm of soft

supersymmetry breaking is itself a member of this family of models since it is defined

by the property that gaugino masses are universal at the scale Mgut ≃ 2×1016 GeV.

Indeed, in the parametrization we adopt from [84], the gaugino mass ratios at the

electroweak scale take the form

(3.1) M1 : M2 : M3 ≃ (1 + 0.66α) : (2 + 0.2α) : (6 − 1.8α) ,

where the case α = 0 is precisely the unified mSUGRA limit. Note that when we

speak of testing gaugino mass universality, therefore, we do not imagine a common

gaugino soft mass at the low-energy scale. Instead, the “universality” paradigm
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implies the ratios

(3.2) M1 : M2 : M3 ≃ 1 : 2 : 6 .

The goal of this work is to ask whether it is possible to determine that the α parameter

of (3.1) is different from zero – and if so, how.

The theoretical details behind the ratios of (3.1) will be the topic of Section 3.1

in this chapter. These details are largely irrelevant for the analysis that follows

in Sections 3.2 and 3.4, but may nevertheless be of interest to many readers. For

those who are only interested in the methodology we will pursue and the results,

this section can be omitted. At the end of Section 3.1 we will present two bench-

mark scenarios that arise from concrete realizations of the mirage pattern of gaugino

masses in certain classes of string models. In Section 3.2 we discuss how we will go

about attempting to measure the value of the parameter α in (3.1). In Section 3.3

we describe the process that led us to an ensemble of specific LHC observables tar-

geted for precisely this purpose. In Section 3.4 this list of signatures is tested on

a large collection of MSSM models, as well as on our two special benchmarks from

Section 3.1. We will see that the signature lists constructed using the method of

Section 3.2 do an excellent job of detecting the presence of non-universality in the

gaugino soft masses over a very wide array of supersymmetric spectra hierarchies

and mass ranges. Non-universality on the order of 30-50% should become apparent

within the first 10 fb−1 of analyzed data for most supersymmetric models consistent

with current experimental constraints. Detecting non-universality at the 10% level

would require an increase in data by roughly a factor of two. Nevertheless, depending

on the details of the superpartner spectrum, some cases will require far more data

to truly measure the presence of non-universality. Of course all of these statements

must here be understood in the context of the very particular assumptions of this
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study. Some thoughts on how the process can be taken further in the direction of

increased realism are discussed in the concluding section.

Before moving to the body of this work, however, we would like to take a mo-

ment to emphasize a few broad features of the theoretical motivation behind the

parametrization in (3.1). In the limit of very large values for the parameter α the

ratios among the gaugino masses approach those of the anomaly-mediated super-

symmetry breaking (AMSB) paradigm [85, 86]. In fact, the mirage pattern is most

naturally realized in scenarios in which a common contribution to all gaugino masses

is balanced against an equally sizable contribution proportional to the beta-function

coefficients of the three Standard Model gauge groups. Such an outcome arises in

string-motivated contexts, such as KKLT-type moduli stabilization in D-brane mod-

els [87, 88] and Kähler stabilization in heterotic string models [89]. These string-

derived manifestations can also be extended easily to include the presence of gauge

mediation, in which the mirage pattern is maintained in the gaugino sector [90, 91].

Importantly, however, it can arise in non-stringy models, such as deflected anomaly

mediation [92, 93]. We note that in none of these cases is the pure-AMSB limit likely

to be obtained, so our focus here will be on small to moderate values of the parameter

α in (3.1).2 We will further refine these observations in Section 3.1 before turning

our attention to the measurement of the parameter α at the LHC. This discussion is

based on the results found in [14].

3.1 Theoretical Motivation and Background

In this section we wish to understand the origin of the mass ratios in (3.1) from first

principles. We will treat the mirage mass pattern here in complete generality, without

2In any event, the phenomenology of the AMSB scenario is sufficiently distinct from the models we will consider
that distinguishing between them should not be difficult [94].
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any reference to its possible origin from string-theoretic considerations. This short

section concludes with two specific sets of soft parameters, both of which represent

models with the mirage gaugino mass pattern (though the physics behind the rest

of their soft supersymmetry breaking parameters are quite different).

Let us begin by imagining a situation in which there are two contributions to the

soft supersymmetry breaking gaugino masses. We assume that these contributions

arise at some effective high-energy scale at which supersymmetry breaking is trans-

mitted from some hidden sector to the observable sector. Let us refer to this scale

as simply the ultraviolet scale Λuv. It is traditional in phenomenological treatments

to take this scale to be the GUT scale at which gauge couplings unify, but in string

constructions one might choose a different (possibly higher scale) at which the super-

gravity approximation for the effective Lagrangian becomes valid. We will further

assume that one contribution to gaugino masses is universal in nature while the other

contribution is proportional to the beta-function coefficient of the Standard Model

gauge group. More specifically, consider the universal piece to be given by

(3.3) Muniv
a (Λuv) = Mu ,

where a = 1, 2, 3 labels the Standard Model gauge group factors Ga and Mu rep-

resents some mass scale in the theory. The second piece is the so-called anomaly

mediated piece, which arises from loop diagrams involving the auxiliary scalar field

of supergravity [95, 96]. It will take the form

(3.4) MAMSB
a (Λuv) = g2

a (Λuv)
ba

16π2
Mg ,

where the ba are the beta-function coefficients for the Standard Model gauge groups.

In our conventions these are given by

(3.5) ba = −(3Ca −
∑

i

Ci
a),
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where Ca, C
i
a are the quadratic Casimir operators for the gauge group Ga, respec-

tively, in the adjoint representation and in the representation of the matter fields Φi

charged under that group.3 For the Standard Model these are

(3.6) {b1, b2, b3} =

{
33

5
, 1,−3

}
.

Note that if we take Λuv = Λgut then we have

(3.7) g2
1 (Λuv) = g2

2 (Λuv) = g2
3 (Λuv) = g2

gut
≃ 1

2
.

The mass scale Mg is common to all three gauge groups; the subscript is meant

to indicate that the contribution in (3.4) is related to the gravitino mass. The full

gaugino mass at the high energy boundary condition scale is therefore

(3.8) Ma (Λuv) = Muniv
a (Λuv) +MAMSB

a (Λuv) = Mu + g2
a (Λuv)

ba
16π2

Mg .

Now imagine evolving the boundary conditions in (3.8) to some low-energy scale

Λew via the (one-loop) renormalization group equations (RGEs). For the anomaly-

generated piece of (3.4) we need only replace the gauge coupling with the value at

the appropriate scale

(3.9) MAMSB
a (Λew) = g2

a (Λew)
ba

16π2
Mg ,

while for the universal piece we can use the fact that Ma/g
2
a is a constant for the

one-loop RGEs. After some manipulation this yields

(3.10) Muniv
a (Λew) = Mu

[
1 − g2

a (Λew)
ba
8π2

ln

(
Λuv

Λew

)]
.

Combining (3.10) and (3.9) gives the low scale expression

(3.11) Ma (Λew) = Mu



1 − g2

a (Λew)
ba
8π2

ln

(
Λuv

Λew

)
1 − 1

2

Mg

Mu ln
(

Λuv

Λew

)






 .

3The convention chosen in (3.5) is opposite of the one chosen in [97].
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For gaugino masses to be unified at the low scale Λew then the quantity in the square

brackets in (3.11) must be engineered to vanish. This can be achieved with a judicious

choice of the values Mu and Mg for a particular high-energy input scale Λuv. Put

differently, for a given Λuv (such as the GUT scale) and a given overall scale Mu,

there is a one-parameter family of models defined by the choice Mg.

It is possible, however, to find a more convenient parametrization of the family of

gaugino mass patterns defined by (3.11). Consider defining the parameter α by

(3.12) α =
Mg

Mu ln (Λuv/Λew)
,

so that (3.11) becomes

(3.13) Ma (Λew) = Mu

[
1 −

(
1 − α

2

)
g2

a (Λew)
ba
8π2

ln

(
Λuv

Λew

)]

and the requirement of universality at the scale Λew now implies α = 2. Normalizing

the three gaugino masses by M1 (Λew) |α=0 and evaluating the gauge couplings at a

scale Λew = 1000 GeV we obtain the mirage ratios

(3.14) M1 : M2 : M3 = (1.0 + 0.66α) : (1.93 + 0.19α) : (5.87 − 1.76α) ,

for Λuv = Λgut, in good agreement with the expression in (3.1).

Let us generalize the parametrization in (3.12) once more. Instead of defining

the parameter in terms of the starting and stoping points in the RG evolution of

the gaugino mass parameters, we will fix them in terms of mass scales in the theory

itself. Thus we follow the convention of Choi et al. [98] and define

(3.15) α ≡ Mg

Mu ln (Mpl/Mg)
,

where Mpl is the reduced Planck mass Mpl = 2.4 × 1018 GeV. Our parametrization

is now divorced from the boundary condition scales of the RG flow and can be



57

fixed in advance. The choice of mass parameters in the logarithm of (3.15) may

seem arbitrary – and at this point it is indeed completely arbitrary – but they have

been chosen so as to make better contact with string constructions. Inserting (3.15)

into (3.11) yields

Ma (Λew) = Mu

{
1 − g2

a (Λew)
ba
8π2

[
ln

(
Λuv

Λew

)
− α

2
ln

(
Mpl

Mg

)]}

= Mu

{
1 − g2

a (Λew)
ba
8π2

[
ln

(
Λuv (Mg/Mpl)

α/2

Λew

)]}
.(3.16)

Comparing this expression with (3.10) it is clear if gauge couplings unify at a scale

Λuv = Λgut, then we should expect the soft supersymmetry breaking gaugino masses

to unify at an effective scale given by

(3.17) Λmir = Λgut

(
Mg

Mpl

)α/2

.

We see that our parametrization in terms of α is indeed equivalent to a parametriza-

tion in terms of the effective unification scale, as suggested in the introduction.

The value of α as defined in (3.12) or (3.15) can be crudely thought of as the

ratio of the anomaly contribution to the universal contribution to gaugino masses.

Indeed, the limit α → 0 is the limit of the minimal supergravity paradigm, while

α→ ∞ is the AMSB limit. But as (3.8) makes clear, these two contributions will be

of comparable size only if Mg is at least an order of magnitude larger than Mu. We

could therefore have chosen a parametrization based on the ratio r = Mg/Mu, with

interesting values being in the range r ≃ O(10 − 100). But such a parametrization

spoils the simple relation with the mirage unification scale (3.17). Furthermore, the

introduction of the factor ln(Mpl/Mg) in (3.15) provides the needed large factor,

taking a value of ln(Mpl/Mg) ≃ 35 for Mg ≃ 1 TeV. To obtain the mirage pattern

it is therefore necessary for the underlying theory to generate some large number

c ≃ ln(Mpl/Mg) ≃ 30.
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Parameter Point A Point B Parameter Point A Point B
α 0.3 1.0 m2

Q3
(1507)2 (430.9)2

Mg 1.5 TeV 16.3 TeV m2
U3

(1504)2 (610.3)2

M1 198.7 851.6 m2
D3

(1505)2 (352.2)2

M2 172.1 553.3 mc̃R
, m2

L3
(1503)2 (381.6)2

M3 154.6 339.1 m2
E3

(1502)2 (407.9)2

At 193.0 1309 m2
Q1,2

(1508)2 (208.4)2

Ab 205.3 1084 m2
U1,2

(1506)2 (302.7)2

Aτ 188.4 1248 m2
D1,2

(1505)2 (347.0)2

m2
Hu

(1500)2 (752.0)2 m2
L1,2

(1503)2 (379.8)2

m2
Hd

(1503)2 (388.7)2 m2
E1,2

(1502)2 (404.5)2

Table 3.1:
Soft Term Inputs. Initial values of supersymmetry breaking soft terms in GeV at the
initial scale given by Λuv = 2 × 1016 GeV. Both points are taken to have µ > 0 and
tanβ = 10. The actual value of tanβ is fixed in the electroweak symmetry-breaking
conditions.

In Table 3.1 we have collected the necessary soft supersymmetry-breaking param-

eters to completely specify two benchmark points for further analysis in what follows.

Here we will simply indicate that point A represents a heterotic string model with

Kähler stabilization of the dilaton which was studied in detail in [97]. This particular

example has a value of α = 0.3. Point B is an example from a class of Type IIB

string compactifications with fluxes which was studied in [98]. This second example

has a value α = 1.0. Both are examples of the mirage pattern of gaugino masses,

having mirage unification scales of Λmir = 2.0× 1014 GeV and Λmir = 1.5× 109 GeV,

respectively. Note that these soft supersymmetry breaking terms are taken to be

specified at the GUT energy scale of ΛGUT = 2.0 × 1016 GeV and must be evolved

to electroweak scale energies through the renormalization group equations.

3.2 Determining α: Methodology

3.2.1 Setting Up the Problem

As mentioned in the introduction, the ultimate goal of this avenue of study is to

determine whether or not soft supersymmetry breaking gaugino masses obey some

sort of universality condition independent of all other facts about the supersym-
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metric model. In order to approach this goal we have begun by asking a simpler

question: assuming the world is defined by the MSSM with gaugino masses obeying

the relation (3.1), how well can we determine the value of the parameter α. At the

very least we would like to be able to establish that α 6= 0 with a relatively small

amount of integrated luminosity. The first step in such an incremental approach is

to demonstrate that some set of “targeted observables” [72] (we will call them “sig-

natures” in what follows) is sensitive to small changes in the value of the parameter

α in a world where all other parameters which define the SUSY model are kept fixed.

In subsequent work we intend to relax this strong constraint and treat the issue of

gaugino mass universality more generally. Despite the lack of realism we feel this is

a logical point of departure – very much in the spirit of the “slopes” of the Snow-

mass Points and Slopes [99] and other such benchmark studies. Thus, where the

Snowmass benchmarks talk of slopes, we will here speak of “model lines” in which

all parameters are kept fixed but the value of α is varied in a controlled manner.

To construct a model line we must specify the supersymmetric model in all as-

pects other than the gaugino sector. The MSSM is completely specified by 105

distinct parameters, but only a small subset are in any way relevant for the deter-

mination of LHC collider observables [74]. We will therefore choose a simplified set

of 17 parameters as in the two benchmark models of Table 3.1

(3.18)






tanβ, m2
Hu
, m2

Hd

M3, At, Ab, Aτ

mQ1,2
, mU1,2

, mD1,2
, mL1,2

, mE1,2

mQ3
, mU3

, mD3
, mL3

, mE3






.

The parameters in (3.18) are understood to be taken at the electroweak scale (specifi-

cally Λew = 1000 GeV) so no renormalization group evolution is required. The gluino
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soft mass M3 will set the overall scale for the gaugino mass sector. The other two

gaugino masses M1 and M2 are then determined relative to M3 via (3.14). A model

line will take the inputs of (3.18) and then construct a family of theories by varying

the parameter α from α = 0 (the mSUGRA limit) to some non-zero value in even

increments.

For each point along the model line we pass the model parameters to PYTHIA

6.4 [49] for spectrum calculation and event generation. Events are then sent to

the PGS4 [100] package to simulate the detector response. Additional details of the

analysis will be presented in later sections. The end result of our procedure is a set of

observable quantities that have been designed and (at least crudely) optimized so as

to be effective at separating α = 0 from other points along the model line in the least

amount of integrated luminosity possible. In Section 3.2.2 we describe the manner

in which we perform this separation between models. The signature lists, and the

analysis behind their construction, is presented in Section 3.3. In Section 3.4 we will

demonstrate the effectiveness of these signature lists on a large sample of randomly

generated model lines and provide some deeper insight on why the whole procedure

works by examining our benchmarks in greater detail.

3.2.2 Distinguishability

The technique we will employ to distinguish between candidate theories using

LHC observables was suggested in [72] and subsequently refined in [12]. The basic

premise is to construct a variable similar to a traditional chi-square statistic

(3.19) (∆SAB)2 =
1

n

∑

i

[
SA

i − SB
i

δSAB
i

]2

,

where S is some observable quantity (or signature). The index i = 1, . . . , n labels

these signatures, with n being the total number of signatures considered. The la-
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bels A and B indicate two distinct theories which give rise to the signature sets SA
i

and SB
i , respectively. Finally, the error term δSAB

i is an appropriately-constructed

measure of the uncertainty of the term in the numerator, i.e. the difference between

the signatures. In this work we will always define a signature S as an observation

interpreted as a count (or number) and denote it with capital N . One example is

the number of same-sign, same-flavor lepton pairs in a certain amount of integrated

luminosity. Another example is taking the invariant mass of all such pairs and form-

ing a histogram of the results, then integrating from some minimum value to some

maximum value to obtain a number. In principle there can be an infinite number of

signatures defined in this manner. In practice experimentalists will consider a finite

number and many such signatures are redundant.

We can identify any signature Ni with an effective cross section σ̄i via the relation

(3.20) σ̄i = Ni/L ,

where L is the integrated luminosity. We refer to this as an effective cross-section as

it is defined by the counting signature Ni which contains in its definition such things

as the geometric cuts that are performed on the data, the detector efficiencies, and

so forth. Furthermore these effective cross sections, whether inferred from actual

data or simulated data, are subject to statistical fluctuations. As we increase the

integrated luminosity we expect that this effective cross section σ̄i (as inferred from

the data) converges to an “exact” cross section σi given by

(3.21) σi = lim
L→∞

σ̄i .

These exact cross sections are (at least in principle) calculable predictions of a par-

ticular theory, making them the more natural quantities to use when trying to dis-

tinguish between theories. The transformation in (3.20) allows for a comparison



62

of two signatures with differing amounts of integrated luminosity. This will prove

useful in cases where the experimental data is presented after a limited amount of

integrated luminosity LA, but the simulation being compared to the data involves

a much higher integrated luminosity LB. Using these notions we can re-express our

chi-square variable (∆SAB)2 in terms of the cross sections

(3.22) (∆SAB)2 =
1

n

∑

i

[
σ̄A

i − σ̄B
i

δσ̄AB
i

]2

.

We will assume that the errors associated with the signatures Ni are purely statistical

in nature and that the integrated luminosities LA and LB are precisely known, so

that

(3.23) δσ̄AB
i =

√
(δσ̄A

i )2 + (δσ̄B
i )2 =

√
σ̄A

i /LA + σ̄B
i /LB ,

and therefore (∆SAB)2 is given by

(3.24) (∆SAB)2 =
1

n

∑

i

[
σ̄A

i − σ̄B
i√

σ̄A
i /LA + σ̄B

i /LB

]2

,

where each cross section includes the (common) Standard Model background, i.e.

σ̄i = σ̄susy

i + σ̄sm.

The variable (∆SAB)2 forms a measure of the distance between any two theories

in the space of signatures defined by the Si. We can use this metric on signature

space to answer the following question: how far apart should two sets of signatures

SA
i and SB

i be before we conclude that theories A and B are truly distinct? The

original criterion used in [12] was as follows. Imagine taking any supersymmetric

theory and performing a collider simulation. Now choose a new random number

seed and repeat the simulation. Due to random fluctuations we expect that even

the same set of input parameters, after simulation and event reconstruction, will

produce a slightly different set of signatures. That is, we expect (∆SAA)2 6= 0 since
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it involves the effective cross-sections as extracted from the simulated data. Now

repeat the simulation a large number of times, each with a different random number

seed. Use (3.24) to compute the distance of each new simulation with the original

simulation in signature space. The set of all (∆SAA)2 values so constructed will form

a distribution. Find the value of (∆SAA)2
∣∣
95

in this distribution which represents

the 95th percentile of the distribution. This might be taken as a measure of the

uncertainty in “distance” measurements associated with statistical fluctuations.

This procedure for defining distinguishability is unwieldy in a number of respects.

Determining the threshold for separating models by (∆SAB)2 > (∆SAA)2
∣∣
95

is com-

putationally intensive as it requires many repeated simulations of the same model

(as well as the Standard Model background). More importantly, the “brute force”

determination of (∆SAA)2
∣∣
95

is particular to model A as well as the list of signatures

used in (3.24). Each change in either the model parameters or the signature mix de-

mands a new determination of the threshold for distinguishability. We will therefore

propose a new criterion that has the benefit of being analytically calculable with a

form that is universal to any pair of models and any set of signatures.

To do that let us reconsider the quantum fluctuations. At a finite integrated

luminosity L we can describe the outcome of a counting experiment as a Poisson

distribution approximated by a normal distribution (this is a good approximation

for approximately 10 counts or more), which can be expressed as

(3.25) Ni = Lσi +
√
Lσi Z .

Here Z is a standard random variable, i.e. a random variable having a normal dis-

tribution centered at 0 with a standard deviation of 1. Note that by introducing

statistical fluctuations via the variable Z we can replace σ̄i in (3.25) with the exact

cross section. Equation (3.25) then merely states the well known fact that the dis-
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tribution in measured values Ni should form a normal distribution about the value

Lσi. To combine two such distributions N1 and N2 we may write

Ntot =
(
Lσ1 +

√
Lσ1Z1

)
+
(
Lσ2 +

√
Lσ2Z2

)

≡ LσT +
√
LσTZ,(3.26)

where Z is a new standard random variable and σT = σ1 + σ2 is the total cross-

section. This relation follows from the property that for two normally distributed

random variables x and y, with means µx and µy and standard deviations σx and σy,

respectively, the combination x + y is also a normally distributed random variable

with new mean µ = µx + µy and standard deviation σ =
√
σ2

x + σ2
y . In practice, σ1

might be the contribution to a particular final state arising from Standard Model pro-

cesses while σ2 might be the contribution arising from production of supersymmetric

particles.

With the above in mind we can re-visit the definition (3.24) and obtain an analytic

approximation for the distribution in (∆SAB)2 values by using random variables to

represent the signatures. The measured cross sections can be related to the exact

cross sections via

(3.27) σ̄A
i = NA

i /LA = σA
i +

√
σA

i /LA ZA ,

with a similar expression for the model B. Substituting (3.27) into (3.24) gives

(∆SAB)2 =
1

n

∑

i

[
σA

i − σB
i +

√
σA

i

LA
+

σB
i

LB
Z

]2

σA
i

LA
+

σB
i

LB
+
√

1
L2

A

σA
i

LA + 1
L2

B

σB
i

LBZ ′

≈ 1

n

∑

i


 σA

i − σB
i√

σA
i

LA
+

σB
i

LB

+ Z




2

,(3.28)

where we have combined ZA and ZB into the random variables Z and Z ′ and have

assumed that LA and LB are sufficiently large to be able to neglect the term pro-
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portional to Z ′. In this limit we immediately see that (∆SAB)2 is itself a random

variable with a probability distribution for the quantity (∆SAB)2 given by

(3.29) P (∆S2) = nχ2
n,λ(n∆S2) ,

where χ2
n,λ is the non-central chi-squared distribution for n degrees of freedom4, and

λ is the so-called non-centrality parameter, which is given by

(3.30) λ =
∑

i

(σA
i − σB

i )2

σA
i /LA + σB

i /LB

,

Here the σi represent exact cross sections. Parameter λ represents the degree to

which the distribution of outcomes for ∆SAB for two differing models A and B is

distinct from the distribution of outcomes for the null hypothesis ∆SAA. We will

address the significance of λ shortly. This result is actually what we expect since

the original (∆SAB)2 in (3.24) is essentially a chi-square like function. Note that

since the σi in the distribution of (3.28) are exact, we have the anticipated result

that fluctuations of the quantity (∆SAA)2 should be given by the central chi-square

distribution χ2
n(0). We note, however, that the derivation of (3.28) implicitly assumed

that the signatures Si which we consider are uncorrelated – or more precisely that

the fluctuations in these signatures are uncorrelated. We will have more to say about

signature correlations in Section 3.3 below. We now have a measure of separation in

signature space that is related to well known functions in probability theory.5

Armed with this technology, let us return to the issue of distinguishing a model

from itself. From (3.28), (3.29) and (3.30) it is apparent that all the physics behind

the distribution of possible (∆SAB)2 values is contained in the values of λ and n.

In particular the distribution of possible (∆SAA)2 values (a central chi-square distri-

4If we had chosen to define the separation variable (3.19) without the factor of 1/n we would have found that the
distribution of (∆SAB)2 values was exactly given by the non-central chi-square distribution. The two are related by
a simple change of variables.

5In fact, the non-central chi-square distribution is related to the regularized confluent geometric functions .



66

0

0

1

1

2

2 3

3

4

4

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

γ 5
=

 2
.2

1

γ 3
=

 2
.6

0

p = 95% Threshold

s2∆

P
ro

b
ab

ili
ty

 D
is

tr
ib

u
ti

o
n

 F
u

n
ct

io
n

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

γ 1
=

 3
.8

4

γ 10
=

 1
.8

3

Figure 3.1: Plot of distribution in (∆SAA)2 values. The top panel plots the probability distribution
function (3.29) for λ = 0 and n = 1, 3, 5 and 10. The lower panel plots the cumulative
distribution function – the absolute probability for obtaining that value of (∆S)2. The
95% percent threshold is indicated by the horizontal lines, and the corresponding values
of (∆S)2

∣∣
95th

are indicated by the marked values of γn(0.95).

bution) should depend only on the number n of signatures considered – not on the

model point nor on the nature of those signatures. When comparing a model with

itself we can therefore dispense with the subscript and write (∆SAA)2 = (∆S)2. We

plot the probability distribution P (∆S)2 of (3.29) for λ = 0 and various values of

n in the top panel of Figure 3.1. We have also plotted the cumulative distribution

function for the same n values in the lower panel of Figure 3.1. To rule out the null

hypothesis (i.e. the hypothesis that models A and B are in fact the same model) to a

level of confidence p requires demanding that (∆S)2 is larger than the p-th percentile

value for the distribution (3.29) for the appropriate n value. For example, if we use

the criterion from [12] and require (∆SAB)2 > (∆S)2
∣∣
95th

then p = 0.95. We have
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Confidence Level p
n 0.95 0.975 0.99 0.999

1 3.84 5.02 6.64 10.83
2 3.00 3.69 4.61 6.91
3 2.61 3.12 3.78 5.42
4 2.37 2.79 3.32 4.62
5 2.21 2.57 3.02 4.10
6 2.10 2.41 2.80 3.74
7 2.01 2.29 2.64 3.48
8 1.94 2.19 2.51 3.27
9 1.88 2.11 2.41 3.10
10 1.83 2.05 2.32 2.96

Table 3.2:
List of γn(p) values for various values of the parameters n and p. The value γn(p)
represents the position of the p-th percentile in the distribution of P (∆S)2 for any list
of n signatures. For example, if we consider a list of 10 signatures, then the quan-
tity (∆SAB)2 formed by these ten measurements must be larger than 1.83 to say that
models A and B are distinct, with 95% confidence. If we demand 99% confidence this
threshold becomes 2.32.

indicated this value for the cumulative distribution function by the horizontal dashed

line in Figure 3.1. In general we will denote this particular value of (∆S)2
∣∣
p

for each

value of n by the symbol γn(p). It can be found via the cumulative distribution

function as in Figure 3.1, or by numerically solving the equation

(3.31) Γ
(n

2
,
n

2
γn(p)

)
= Γ

(n
2

)
(1 − p) ,

where Γ(n) is Euler’s gamma function and Γ(n,m) is the incomplete gamma function.

A summary of these values for smaller n values is given in Table 3.2. If we measure

our n signatures, extract the cross-sections, form (∆SAB)2 and the number is greater

than γn(p) then we can say that the null hypothesis can be ruled out at a level of

confidence given by p×100%. The value of this critical (∆S)2
∣∣
p

= γn(p) is a universal

number determined only by our choice of p value and the number of signatures n

that we choose to consider.

If, however, our measurement gives (∆SAB)2 < γn(p) then we cannot say the

two models are distinct, at least not at the confidence level p. But they may still

be separate models and we were simply unfortunate, with statistical fluctuations
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Figure 3.2: Plot of distribution in (∆SAB)2 values for n = 3 and various λ. The probability
distribution function (3.29) for λ = 0, 5, 15 and 35 is plotted for the case of n = 3.
The curves are normalized such that the total area under each distribution remains
unity. Note that the peak in the distribution moves to larger values of (∆SAB)2 as the
non-centrality parameter λ is increased.

producing a small value of (∆SAB)2. If we accumulate more data and measure

(∆SAB)2 again, we may find a different result. To quantify the probability that two

different models A and B will give a particular value of (∆SAB)2 requires the use

of the non-central chi-square distribution in (3.29). The degree of non-centrality is

given by the quantity λ in (3.30). Clearly, the more distinct the predictions σA
i and

σB
i are from one another, the larger this number will be. In Figure 3.2 we plot the

distribution for (∆SAB)2 for n = 3 signatures and several values of λ. As expected,

the larger this parameter is, the more likely we are to find large values of (∆SAB)2.

Let us assume for the moment that “model A” is the experimental data, which

corresponds to an integrated luminosity of Lexp. Our “model B” can then be a simu-

lation with integrated luminosity Lsim = qLexp. We might imagine that q can be ar-
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bitrarily large, limited only by computational resources.6 We can then rewrite (3.30)

as

(3.32) λ = Lexp
∑

i

(σA
i − σB

i )2

σA
i + 1

q
σB

i

.

From this expression it is clear that we can expect the value of this parameter λ to

increase as experimental data is collected. The larger the value of Lexp the less likely

it becomes to find a particularly small value of (∆SAB)2. This confirms our basic

intuition that given any observable (or set of observables) for which the two models

predict different values then with sufficient integrated luminosity it should always be

possible to distinguish the models to arbitrary degree of confidence.

For any given value of λ 6= 0, the probability that a measurement of (∆SAB)2 will

fluctuate to a value so small that it is not possible to separate two distinct models

(to confidence level p) is simply the fraction of the probability distribution in (3.29)

that lies to the left of the value γn(p). If we wish to be at least 95% certain that our

measurements will correctly recognize that two different models are indeed distinct

we must require

(3.33) P =

∫ ∞

γn(p)

nχ2
n,λ(n∆S2

AB) d(∆S2
AB) =

∫ ∞

nγn(p)

χ2
n,λ(y) dy ≥ 0.95 .

Since the value of the integral P in (3.33) decreases monotonically as λ increases the

value of this parameter which makes (3.33) an equality is the minimum non-centrality

value λmin(n, p) such that the two models can be distinguished.

In other words for two distinct models A and B, any combination of n experimen-

tal signatures such that λ > λmin(n, p = 0.95) will be effective in demonstrating that

the two models are indeed different 95% of the time, with a confidence level of 95%.

6Among other benefits of a large value for q would be the reduction in uncertainties arising from the simulation
side of the comparison, i.e. assuming that the simulation perfectly captures both the physics and the detector
response, the remaining uncertainty would be that associated with the experimental observation associated with σA

i .
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Confidence Level p
n 0.95 0.975 0.99 0.999

1 12.99 17.65 24.03 40.71
2 15.44 20.55 27.41 44.99
3 17.17 22.60 29.83 48.10
4 18.57 24.27 31.79 50.66
5 19.78 25.71 33.50 52.88
6 20.86 26.99 35.02 54.88
7 21.84 28.16 36.41 56.71
8 22.74 29.25 37.69 58.40
9 23.59 30.26 38.89 59.99
10 24.39 31.21 40.02 61.48

Table 3.3:
List of λmin(n, p) values for various values of the parameters n and p. A distribution
such as those in Figure 3.2 with λ = λmin(n, p) will have precisely the fraction p of its
total area at larger values of (∆SAB)2 than the corresponding critical value γn(p) from
Table 3.2. A graphical example of this statement is shown in Figure 3.3.

We have successfully reduced the problem to an exercise in pure mathematics, as

these λmin(n, p) values can be calculated analytically without regard to the physics

involved. A collection of values for small values of n are given in Table 3.3. Note

that as we increase n the necessary value λmin increases, reflecting the fact that as

more observations are made we should expect that it will become increasingly likely

that at least one will show a large deviation. Indeed, the quantity λ can be thought

of as a measure of the overall distance from (∆SAB)2 = 0 in the n-dimensional sig-

nature space in units of the variances. As an example, again consider the case where

n = 3. For this value of n the corresponding γ3(0.95) = 2.61 value can be found

from Table 3.2, while we can find λmin(3, 0.95) = 17.17 from Table 3.3. We plot the

distributions (3.29) for {n, λ} = {3, 0} and {3, 17.17} simultaneously in Figure 3.3.

By construction, the area of the non-central distribution to the left of the indicated

value of ((∆SAB)2) = 2.61 will be precisely 5% of the total area.

Having reached the end of our somewhat lengthy digression on probability theory

we now return to the physics issue at hand. The requirement that λ ≥ λmin(n, p)

can be translated into a condition on the signature set and/or luminosity via the
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Figure 3.3: Determination of λmin for the case n = 3. The plot shows an example of the distribution
of (∆SAB)2 for n = 3. The curve on the left represents λ = 0 case, i.e. values we will
get when we compare a model to itself. 95% of the possible outcomes of this comparison
are below 2.605 which is shown on the plot. The curve on the right has λ = 17.17 and
95% of the curve is beyond 2.605. As λ increases, this curve moves further to the right
and gets flatter.

definition in (3.32). Let us make one final notational definition

(3.34) RAB =
∑

i

(RAB)i =
∑

i

(σA
i − σB

i )2

σA
i + 1

q
σB

i

where RAB has the units of a cross section. Our condition for 95% certainty that

we will be able to separate two truly distinct models at the 95% confidence level

becomes

(3.35) Lexp ≥ λmin(n, 0.95)

RAB
.

Given two models A and B and a selection of n signatures both λmin(n, 0.95) and RAB

are completely determined. Therefore the minimum amount of integrated luminosity

needed to separate the models experimentally will be given by

(3.36) Lmin(p) =
λmin(n, p)

RAB
.

We will be using (3.36) repeatedly throughout the rest of this chapter. A well-chosen
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set of signatures will be the set that makes the resulting value of Lmin determined

from (3.36) as small as it can possibly be.

3.3 Signature Selection

Following the discussion in Section 3.2.2 we are in a position to define the goal

behind our signature selection more precisely. We wish to select a set of n signatures

Si such that the quantity Lmin(p) as defined in (3.36), for a given value of p, is as

small as it can possibly be over the widest possible array of model pairs A and B.

We must also do our best to ensure that the n signatures we choose to consider are

reasonably uncorrelated with one another so that the statistical treatment of the

preceding section is applicable. We will address the latter issue below, but let us

first turn our attention to the matter of optimizing the signature list.

3.3.1 Optimization of Signature Choice

As stated in Section 3.2, in this work we define a signature as an observable that

is interpreted a count (recorded number of events), or one that simply represents

an intensity (a single numerical value). An example of the first case is the number

of same-sign dileptons events observed for a given integrated luminosity. Another

is the number of events containing 1 lepton, and 3 b-tagged jets with transverse

momentum larger than 50 GeV. Numerous variations of this class of signature are

possible. The second case is obtained by integrating a statistical distribution over a

defined range. For example the inclusive invariant mass distribution of a set of events

may be integrated over a specific range of energy. The resulting value represents

another potential signature. The same can be done for any other useful statistical

observable.

We took as our starting point an extremely large initial set of possible signatures.
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These included all the counting signatures and most of the kinematic distributions

used in [12], all of the signatures of [101], several “classic” observables common in the

literature [102] and several more which we constructed ourselves. Removing redun-

dant instances of the same signature this yielded 46 independent counting signatures

and 82 kinematic distributions represented by histograms, for 128 signatures in total.

We might naively think that the best strategy is to include all of these signatures

in the analysis (neglecting for now the issue of possible correlations among them).

In fact, if the goal is statistically separating two models, the optimal strategy is

generally to choose a rather small subset of the total signatures. Let us understand

why that is the case. To do so we need a quantitative way of establish an absolute

measure of the “power” of any given signature to separate two models A and B.

This can be provided by considering the condition in (3.36). For any signature Si we

can define an individual (Lmin)i by

(3.37) (Lmin)i = λmin(1, p)
σA

i + 1
q
σB

i

(σA
i − σB

i )2
,

where, for example, λmin(1, 0.95) = 12.99. This quantity is exactly the integrated

luminosity required to separate models A and B, to confidence level p, by using the

single observable Si. For a list of N signatures it is possible to construct N such

(Lmin)i values and order them from smallest value (most powerful) to largest value

(least powerful). If we take any subset n of these, then the requisite Lmin that results

from considering all n simultaneously is given by

(3.38) Lmin =
λmin(n, p)

λmin(1, p)

{
(Lmin)

−1
1 + (Lmin)

−1
2 + · · · + (Lmin)

−1
n

}−1
.

Referring back to Table 3.3 we see that the ratio λmin(n, p)/λmin(1, p) grows with n.

This indicates that as we add signatures with ever diminishing (Lmin)i values we will

eventually encounter a point of negative returns, where the resulting overall Lmin
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Figure 3.4: An example of finding an “optimal” signature list. By sequentially ordering the calcu-
lated (Lmin)i values for any particular pair of models in ascending order, it is always
possible to find the optimal set of signatures for that pair by applying (3.38). In this
particular example the minimum value of Lmin is found after combining just the first 12
signatures. After just the best six signatures we are already within 20% of the optimal
value, as indicated by the shaded band.

starts to grow again.

As more signatures are added, the threshold for adding the next signature in the

list gets steadily stronger. For a particular pair of models, A and B, it is always

possible to find the optimal list of signatures from among a given grand set by

ordering the resulting (Lmin)i values and adding them sequentially until a minimum

of Lmin is observed. To do so, we note that kinematic distributions must be converted

into counts (and all counts are then converted into effective cross sections). This

conversion requires specifying an integration range for each histogram. The choice of

this range can itself be optimized, by considering each integration range as a separate

signature and choosing the values such that (Lmin)i is minimized.

Figure 3.4, based on an actual pair of models from one of our model lines, rep-

resents the outcome of just such an optimization procedure. In this case a clearly



75

optimal signature set is given by the 12 signatures represented by the circled point,

which yields Lmin = 2.4 fb−1. The situation in Figure 3.4 is typical of the many ex-

amples we studied: the optimal signature set usually consisted of O(10) signatures.

If we are willing to settle for a luminosity just 20% higher than this minimal value

then we need only O(5) signatures, typically.7 This 20% range is indicated by the

shaded band in Figure 3.4. Of course this “optimal” set of signatures {Si} is only

optimal for the specific pair of models A and B. We must repeat this optimization

procedure on a large collection of model pairs and form a suitable average of the

results in order to find a set of signatures {Si} that best approximates the truly

optimal set over the widest possible set of model pairs {A,B}. The lists we will

present at the end of this section represent the results of just such a procedure.

3.3.2 Correlations

We must now address the issue of correlations. To be able to use the analytic

results of our statistical presentation of the problem in Section 3.2.2 we must be

careful to only choose signatures from a list in which all the members are uncorrelated

with one another. This immediately suggests a dilemma: once a signature is chosen,

many others in the grand set will now be excluded for being correlated with the first.

This complicates the process of optimization considerably – the task now becomes to

perform the above optimization procedure over the largest possible list of uncorrelated

(or at least minimally correlated) signatures. To find the correlation between any

two signatures Si and Sj it is sufficient to construct their correlation coefficient ρij ,

given by

(3.39) ρij =
cov(i, j)

var(i)var(j)
= lim

N→∞

1
N

∑
k

[
σ̄k

i − σi

] [
σ̄k

j − σj

]
√

1
N

∑
k

[
σ̄k

i − σi

]2√ 1
N

∑
k

[
σ̄k

j − σj

]2 ,

7It is interesting to compare this to the results of [12] in which the effective dimension of signature space was
found to be also O(5) to O(10).
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Object Minimum pT Minimum |η|
Photon 20 GeV 2.0
Electron 20 GeV 2.0
Muon 20 GeV 2.0
Tau 20 GeV 2.4
Jet 50 GeV 3.0

Table 3.4:
Initial cuts to keep an object in the event record. After event reconstruction using the
package PGS4 we apply additional cuts to the individual objects in the event record.
Detector objects that fail to meet the above criteria are removed from the event record
and do not enter our signature analysis. These cuts are applied to all analysis described
in this work.

where the σ̄k represent the individual results obtained from each of the N cross

section measurements, labeled by the index k.

In our analysis we estimated the entries in the 128 × 128 dimensional matrix

of (3.39) in the following crude manner. We began with a simple MSSM model

specified by a parameter set as in (3.18), with gaugino masses having the unified ratios

of (3.2). We simulated this model N = 2000 times, each time with a different random

number seed. The simulation involved generating 5 fb−1 of events using PYTHIA 6.4,

which were passed to the detector simulator PGS4. After simulating the detector

response and object reconstruction the default level-one triggers included in the PGS4

detector simulation were applied. Further object-level cuts were then performed, as

summarized in Table 3.4. After these object-specific cuts we then applied an event-

level cut on the surviving detector objects similar to those used in [12]. Specifically

we required all events to have missing transverse energy 6ET > 150 GeV, transverse

sphericity ST > 0.1, and HT > 600 GeV (400 GeV for events with 2 or more leptons)

where HT = 6ET +
∑

Jets p
jet
T . Once all cuts were applied the grand list of 128 signatures

was then computed for each run, and from these signatures the covariance matrix

in (3.39) was constructed. All histograms and counting signatures were constructed

and analyzed using the ROOT-based analysis package Parvicursor [103].

Not surprisingly, many of the signatures considered in our grand list of 128 ob-
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servables were highly correlated with one another. For example, the distribution of

transverse momenta for the hardest jet in any event was correlated with the overall

effective mass of the jets in the events (defined as the scalar sum of all jet pT val-

ues: Meff =
∑

Jets p
jet
T ). Both were correlated with the distribution of HT values for

the events, and so forth. The consistency of our approach would then require that

only a subset of these signatures can be included. One way to eliminate correlations

is to partition the experimental data into mutually-exclusive subsets through some

topological criteria such as the number of jets and/or leptons. For example, the

distribution of HT values in the set having any number of jets and zero leptons will

be uncorrelated with the same signature in the set having any number of jets and

at least one lepton. Our analysis indicated that this partitioning strategy has its

limitations, however. The resolving power of any given signature tends to diminish

as the set it is applied to is made ever more exclusive. This is in part due to the

diminishing cross-section associated with the more exclusive final state (recall that

our metric for evaluating signatures is proportional to the cross-section). It is also

the case that the statistical error associated with extracting these cross-section val-

ues from the counts will grow as the number of events drops. We were thus led to

consider a very simple two-fold partitioning of the data:

(3.40)
Njets ≤ 4 versus Njets ≥ 5,

Nleptons = 0 versus Nleptons ≥ 1.

This choice of data partitioning is reflected in the signature tables at the end of this

section.

In practice, it will likely be necessary to accept some level of correlation among the

final set of chosen signatures. We do not address the issue of what effect allowing

large correlations will have on our approach. However, we expect that allowing
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Description Min Value Max Value

1 M
any

eff = 6ET +
P

all p
all
T [All events] 1250 GeV End

Table 3.5:
Signature List A. The effective mass formed from the transverse momenta of all objects
in the event (including the missing transverse energy) was the single most effective
signature of the 128 signatures we investigated. Since this “list” is a single item it was
not necessary to partition the data in any way. For this distribution we integrate from
the minimum value of 1250 GeV to the end of the distribution.

increased correlations will lead to an underestimation of Lmin. Consider that Lmin

is computed using only a single signature. If Lmin is then re-computed using two

signatures, where each is exactly the single signature used in the first case, we see

that the two signatures are 100% correlated, and from equation (3.36) one finds

an artificially lower value of Lmin despite introducing no additional discriminatory

information.

3.3.3 Final Signature Choices

By utilizing the optimization procedure discussed in the previous sections we

produced several example signature sets, which we then applied to our problem of

distinguishing a model with α = 0 from one with α 6= 0. The results of this analysis

will appear in the next section. Here we discuss the signature sets themselves.

To begin, we constructed a large number of model families in the manner described

in Section 3.2.1, each involving the range −0.5 ≤ α ≤ 1.0 for the parameter α in steps

of ∆α = 0.05. For each point along these model lines we generated 100,000 events

using PYTHIA 6.4 and PGS4. To this we added an appropriately-weighted Standard

Model background sample consisting of 5 fb−1 each of t/t̄ and b/b̄ pair production,

high-pT QCD dijet production, single W± and Z-boson production, pair production

of electroweak gauge bosons (W+W−, W± Z and Z Z), and Drell-Yan processes.

To examine which of our 128 signatures would be effective in measuring the value

of the parameter α we fixed “model A” to be the point on each of the model lines
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Description Min Value Max Value

1 M
jets

eff [0 leptons, ≥ 5 jets] 1100 GeV End
2 M

any

eff [0 leptons, ≤ 4 jets] 1450 GeV End
3 M

any

eff [≥ 1 leptons, ≤ 4 jets] 1550 GeV End
4 pT (Hardest Lepton) [≥ 1 lepton, ≥ 5 jets] 150 GeV End

5 M
jets
inv [0 leptons, ≤ 4 jets] 0 GeV 850 GeV

Table 3.6:
Signature List B. The collection of our most effective observables, restricted to the case
where the maximum correlation between any two of these signatures is 10%. Note that
the jet-based effective mass variables would normally be highly-correlated if we had not
partitioned the data according to (3.40). For these distributions we integrate from “Min
Value” to “Max Value”.

with α = 0 and then treated each point along the line with α 6= 0 as a candidate

“model B.” As discussed in Section 3.3.1, each model line we investigated – and each

α value along that line – gave slightly different sets of maximally effective signatures.

The lists we will present in Tables 3.5, 3.6 and 3.7 represent an ensemble average

over these model lines, restricted to some maximum level of correlation ǫ. In what

follows we present example signature lists assuming ǫ = 10% and ǫ = 30%.

Let us begin with Table 3.5, which gives the single most effective signature at

separating models with different values of the parameter α. It is the effective mass

formed from all objects in the event

(3.41) Many
eff = 6ET +

∑

all

pall
T ,

where we form the distribution from all events which pass our initial cuts. That this

one signature would be the most powerful is not a surprise given the way we have set

up the problem. It is the most inclusive possible signature one can imagine (apart

from the overall event rate itself) and therefore has the largest overall cross-section.

Furthermore, the variable in (3.41) is sensitive to the mass differences between the

gluino mass and the lighter electroweak gauginos – precisely the quantity that is

governed by the parameter α. Yet as we will see in Section 3.4 this one signature

can often fail to be effective at all in certain circumstances, resulting in a rather
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large required Lmin to be able to separate α = 0 from non-vanishing cases. In

addition it is built from precisely the detector objects that suffer the most from

experimental uncertainty. This suggests a larger and more varied set of signatures

would be preferable.

We next consider the five signatures in Table 3.6. These signatures were chosen by

taking our most effective observables and restricting ourselves to that set for which

ǫ = 10%. We again see the totally inclusive effective mass variable of (3.41) as well

as the more traditional effective mass variable, M jets
eff , defined via (3.41) but with

the scalar sum of pT values now running over the jets only. We now include the

pT of the hardest lepton in events with at least one lepton and five or more jets,

as well as the invariant mass M jets
inv of the jets in events with zero leptons and 4 or

less jets. The various jet-based effective mass variables would normally be highly

correlated with one another if we were not forming them from disjoint partitions of

the overall data set. The favoring of jet-based observables to those based on leptons

is again largely due to the fact that jet-based signatures will have larger effective

cross-sections for reasonable values of the SUSY parameters in (3.18) than leptonic

signatures. The best signatures are those which track the narrowing gap between

the gluino mass and the electroweak gauginos and the narrowing gap between the

lightest chargino/second-lightest neutralino mass and the LSP mass. In this case the

first leptonic signature to appear – the transverse momentum of the leading lepton

in events with at least one lepton – is an example of just such a signature.

Finally, let us consider the larger ensemble of signatures in Table 3.7. In this final

set we have relaxed our concern over the issue of correlated signatures, allowing as

much as 30% correlation between any two signatures in the list. This allows for a

larger number as well as a wider variety of observables to be included. As we will see
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Description Min Value Max Value
Counting Signatures

1 Nℓ [≥ 1 leptons, ≤ 4 jets]

2 Nℓ+ℓ− [M ℓ+ℓ−

inv = MZ ± 5 GeV]
3 NB [≥ 2 B-jets]

[0 leptons, ≤ 4 jets]
4 M

any

eff 1000 GeV End

5 M
jets
inv 750 GeV End

6 6ET 500 GeV End
[0 leptons, ≥ 5 jets]

7 M
any

eff 1250 GeV 3500 GeV
8 rjet [3 jets > 200 GeV] 0.25 1.0
9 pT (4th Hardest Jet) 125 GeV End
10 6ET /M

any

eff 0.0 0.25
[≥ 1 leptons, ≥ 5 jets]

11 6ET /M
any

eff 0.0 0.25
12 pT (Hardest Lepton) 150 GeV End
13 pT (4th Hardest Jet) 125 GeV End

14 6ET + M
jets

eff 1250 GeV End

Table 3.7:
Signature List C. In this collection of signatures we have allowed the maximum correla-
tion between any two signatures to be as high as 30%. Note that some of the signatures
are normalized signatures, (#8, #10 and #11), while the first three are truly count-
ing signatures. A description of each of these observables is given in the text. For all
distributions we integrate from “Min Value” to “Max Value”.

in Section 3.4 this can be very important in some cases in which the supersymmetric

model has unusual properties, or in cases where the two α values being considered

give rise to different mass orderings (or hierarchies) in the superpartner spectrum. In

displaying the signatures in Table 3.7 we find it convenient to group them according

to the partition of the data being considered. Note that the counting signatures are

taken over the entire data set.

The first counting signature is simply the total size of the partition from (3.40) in

which the events have at least one lepton and 4 or less jets. This was the only observ-

able taken on this data set that made our list of the most effective observables. The

next two signatures are related to “spoiler” modes for the trilepton signal. Note that

the trilepton signal itself did not make the list: this is a wonderful discovery mode

for supersymmetry, but the event rates between a model with α = 0 and one with

non-vanishing α were always very similar (and low). This made the trilepton count-
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ing signature ineffective at distinguishing between models. By contrast, counting the

number of b-jet pairs (a proxy for counting on-shell Higgs bosons) or the number

of opposite-sign electron or muon pairs whose invariant mass was within 5 GeV of

the Z-mass (a proxy for counting on-shell Z-bosons) were excellent signatures for

separating models from time to time. This was especially true when the two models

in question had very different values of α such that the mass differences between Ñ2

and Ñ1 were quite different in the two cases. We will give specific examples of such

outcomes in Section 3.4.

The following three sections of Table 3.7 involve some of the same types of observ-

ables as in the previous tables, with a few notable changes and surprises. First note

that several of the observables in Table 3.7 involve some sort of normalization. In

particular numbers 8, 10 and 11. Our estimate of the correlations among signatures

found that the fluctuations of these normalized signatures tended to be less corre-

lated with other observables for that partition than the un-normalized quantities.

However, normalizing signatures in this way also tended to reduce their ability to

distinguish models. Signature #8 is defined as the following ratio

(3.42) rjet ≡
pjet3

T + pjet4
T

pjet1
T + pjet2

T

where pjet i
T is the transverse momentum of the i-th hardest jet in the event. For

this signature we require that there be at least three jets with pT > 200 GeV. This

signature, like the pT of the hardest lepton or the pT of the 4th hardest jet, was

effective at capturing the increasing softness of the products of cascade decays as the

value of α was increased away from α = 0.

Let us note that Lists A, B and C are not mutually disjoint. For example, sig-

natures 4, 5 and 12 of Table 3.7 also appear in Table 3.6. The signature mix is

determined by attempting to minimize Lmin via the formula in (3.38) while attempt-
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ing to keep the correlations between any pair of signatures below the targets set

above in the text. As mentioned earlier, larger lists are not always better – the more

signatures one adds, the larger the likelihood that some pair will be correlated with

one another to an unsatisfactory amount. Furthermore, when signatures are added

which are only occasionally useful, the resolving power of the ensemble can actually

be degraded since the statistical threshold defined by λmin in Table 3.3 grows with

the number of signatures.

We will see some examples of this perverse effect in the next section in which we

will examine the effectiveness of these three lists. We will do this first against our

benchmark models from Section 3.1 and then against a large ensemble of random

MSSM model lines. Before doing so let us note that by fixing a particular set of n

signatures in every instance – and indeed, with the fixed integration ranges indicated

in the Tables – we are very likely to often be far from the optimal signature mix and

integration ranges. That is, we should not expect to achieve the absolute Lmin value

of Figure 3.4 for any particular pair or points along a model line. If we have chosen

our signature list well, however, then we can hope that the result of adding the

contributions of all n signatures using (3.38) will be close to the optimal Lmin value

over a large array of model pairs.

3.4 Analysis Results

In this section we will examine how well our signature lists in Tables 3.5, 3.6 and 3.7

perform in measuring the value of the parameter α which appears in (3.1). Recall

that, for simplicity, our specific goal is to distinguish between a model with α = 0

and another with all other soft terms held equal, but with α 6= 0. We would like

to do this with the least amount of data (or integrated luminosity) as possible for
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Parameter Point A Point B Parameter Point A Point B
m eN1

85.5 338.7 mt̃1
844.7 379.9

m eN2
147.9 440.2 mt̃2

1232 739.1

m eN3
485.3 622.8 mc̃L

, mũL
1518 811.7

m eN4
494.0 634.3 mc̃R

, mũR
1520 793.3

m eC
±

1

147.7 440.1 mb̃1
1224 676.8

m eC
±

2

494.9 635.0 mb̃2
1507 782.4

mg̃ 510.0 818.0 ms̃L
, md̃L

1520 815.4

µ 476.1 625.2 ms̃R
, md̃R

1520 793.5

mh 115.2 119.5 mτ̃1
1487 500.4

mA 1557 807.4 mτ̃2
1495 540.4

mH0 1557 806.8 mµ̃L
, mẽL

1500 545.1
mH± 1559 811.1 mµ̃R

, mẽR
1501 514.6

Table 3.8:
Low energy physical masses for benchmark points. Low energy physical masses (in units
of GeV) are given at the scale 1 TeV. All points are taken to have µ > 0. The actual
value of tanβ is fixed in the electroweak symmetry-breaking conditions.

the smallest values of α possible. We will first demonstrate how the lists perform on

our benchmark cases before turning to an analysis of their performance on a large

ensemble of randomly-generated supersymmetric models.

3.4.1 Benchmark Models Analysis

We begin with the theory-motivated benchmark models briefly mentioned at the

end of Section 3.1. The input values for the soft supersymmetry-breaking parameters

are listed in Table 3.1 at the very end of Section 3.1. To remind the reader, model A

is an example of a heterotic string compactification with Kähler stabilization of

the dilaton while model B is an example of a Type IIB string model with flux

compactification. Each of these examples predicts a particular value of α as a function

of other parameters in the theory; specifically, model A predicts α ≃ 0.3, while

model B predicts α ≃ 1.

The input values of Table 3.1 were evolved from the input scale Λuv = 2×1016 GeV

to the electroweak scale of 1 TeV by solving the renormalization group equations.

For this we use the computer package SuSpect [104], utilizing two-loop running for
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all parameters except for the gaugino masses. For these we use one-loop RGEs only

in order to maintain the parametrization for the gaugino soft parameters in terms of

α given by (3.1). Once run to the low scale the physical spectra and mixings of the

models were computed by SuSpect. The result of this process for our two benchmark

models is given in Table 3.8.

From here we performed a simulation using the combined package of PYTHIA +

PGS4 as described in Section 3.3. For each of these two models a model-line was

generated by varying the parameter α from α = 0 to α = 1, in increments of 0.05,

while keeping all other soft parameters fixed. Along these model lines the gluino

soft mass M3 was held constant to set the overall scale, and the two parameters

M1 and M2 were varied according to the ratios in (3.1). For each point 500,000

events were generated using the L1 trigger options in PGS4. After applying further

initial cuts as described in Section 3.3 the signatures associated with each of the

three lists in Tables 3.5, 3.6 and 3.7 were constructed. We then used the criterion for

distinguishability described in Section 3.2.2 to determine the minimum luminosity

Lmin needed to separate α = 0 from all other points along the line.

The results of this analysis are presented in the top panels of Figure 3.5. The plot

on the left corresponds to benchmark model A while the one on the right corresponds

to benchmark model B. The vertical axis shows the minimum luminosity needed to

separate a given α 6= 0 scenario from the unified case of α = 0. The three shaded

regions represent the three model lists we used to analyze the data. At the lower

edge of each region is the value of Lmin as calculated using the relations in (3.37)

and (3.38). The upper edge of each region represents an estimate of the 1 sigma

upper bound on the calculated value of Lmin caused by statistical fluctuations (i.e.

the fact that the cross-sections extracted from the data or simulation are not the true
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Figure 3.5:
Lmin as a function of α for the two benchmark models. The three shaded regions
correspond to the three signature lists as indicated by the legend. The lower bound
of each shaded region indicates the minimum integrated luminosity Lmin needed to
separate the model with the specified α from α = 0 (top panels) or the predicted value
of α (lower panels). The upper bound of the shaded region represents an estimate of the
1 sigma upper bound on the calculated value of Lmin caused by statistical fluctuations.

cross-sections for each signature). The lower panels in Figure 3.5 represent the same

analysis, but now each of the two models are compared to their predicted values:

α = 0.3 for model A and α = 1.0 for model B. With the exception of the straw-

man List A in the case of benchmark model A, all the lists do an adequate job of

distinguishing points along these alpha-lines with moderate amounts of integrated

luminosity. Naturally, as the two points being compared approach one another the

signature difference between them become smaller and the needed Lmin increases. It

is instructive to consider the case of model A to understand why some approaches

to extracting the parameter α succeed and others fail.

Model A has nearly universal scalar masses at a rather high scale of approxi-
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mately 1.5 TeV, yet the light gluino makes this the model with the higher overall

cross-section. All supersymmetric observables in this benchmark model are there-

fore dominated by gluino pair production and their eventual cascade decays through

highly off-shell squarks. In the analysis the gluino mass is kept constant along

an alpha-line, so the cross-section for the dominant process gg → g̃g̃ is fixed at

σ(gg → g̃g̃) = 13.4 pb for this alpha-line. Any signatures related to this variable

will depend on α only via the change in the gluino branching fractions, which are

nearly constant as a function of the parameter α.8 Blunt signatures like the total

Meff variable of (3.41) indicate roughly the total production cross-section and crude

mass scale of the superpartner being predominantly produced. This is an example

in which the most inclusive possible observable is simply too inclusive to detect the

change in gaugino mass ratios. For this one must consider processes that produce

electroweak gauginos, which are subdominant by as much as a factor of ten in the

case of benchmark model A.

Further compounding the problems for the inclusive signature of List A is the fact

that the count rate for this particular final state is varying only very slowly with α.

Despite the fact that this count rate can be quite large in this model, the resulting

value of Lmin is high because the ∆SAB value for this particular signature is very near

zero. As a result, small statistical fluctuations in the data or the simulation result

in large fluctuations in the resulting value of Lmin needed to truly separate different

values of the parameter α. This reflects itself in both the width of the shaded region

in the left panels of Figure 3.5 and in the volatility of the extracted value itself.

In Figure 3.6 we plot the distribution of the List A variable (3.41) in benchmark

model A for the case of α = 0 (solid line) and α = 1 (dashed line). Above our

8Only the highly suppressed three-body decay g̃ → C̃1qq̄′ with q and q̄′ representing third-generation quarks
shows any significant dependence on the value of the parameter α for this benchmark model.
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Figure 3.6:
Distribution of the variable Many

eff from signature List A for benchmark model A. Solid
filled histogram is the case for α = 0, dotted histogram is the case for α = 1. The
lower bound for the integration region is indicated by the dotted line at 1250 GeV. The
sharp lower bound in the distribution is an artefact of the event-level cuts imposed on
the data as described in Section 3.3. In this case the failure of List A to separate the
two cases is apparent: the difference between the two histograms is negligible above the
value Many

eff = 1250 GeV. The resolving power would improve dramatically if this lower
bound was relaxed to Many

eff = 500 GeV, as demonstrated in Figure 3.7.

integration cut of 1250 GeV there is very little difference between the distributions,

even for this extreme case. However, it is clear that some discrimination power is

available had we chosen a different lower bound for integration. When the lower

bound on this particular variable is relaxed to 500 GeV the inclusive Meff variable

becomes competitive with the other signature lists, as shown in Figure 3.7.

Benchmark model A therefore provides us with an example where the proce-

dure of optimizing the signature list over a wide ensemble of models has produced

a prescription that is most definitely not optimal for this particular case. Once a

particular model framework is established it will of course be possible to tailor anal-

ysis techniques to optimize the statistical power of any given signature. But for our

quasi-model-independent analysis we must forgo optimization in favor of generality.
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Figure 3.7:
Lmin as a function of α for benchmark model A with relaxed lower bound on Many

eff .
The three shaded regions correspond to the three signature lists as in the upper left
panel of Figure 3.5. In this case the lower bound of the integration range for the single
observable of List A has been relaxed to 500 GeV.

Nevertheless, we gain resolving power by simply expanding the list of signatures to

include those which are more sensitive to the changes in the lower-mass electroweak

gaugino spectrum. Returning to the left panels of Figure 3.5 it is clear that Lists B

and C do far better at measuring the parameter α than the single Meff variable alone.

For example, the jet invariant mass variables in both lists, as well as the normalized

6ET signatures and pT (Jet4) observable of List C are much more sensitive to changes

in α for this benchmark model than the observable in (3.41).

But note the reduction in resolving power that occurs when we choose the largest

signature list. As discussed in Section 3.3, it is clear that the largest possible signa-

ture list is not always the most effective at separating two theories. In this particular

example many of the additional observables in List C are not at all helpful in sep-

arating different α values – particularly the counting variables for which the total
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Figure 3.8:
Distribution of the variable Many

eff from signature List A for benchmark model B. Solid
filled histogram is the case for α = 0, dotted histogram is the case for α = 1. The lower
bound for the integration region is indicated by the dotted line at 1250 GeV. The sharp
lower bound in the distribution is an artefact of the event-level cuts imposed on the
data as described in Section 3.3.

rates are low and the differences across the alpha-line are small. These additional

variables were designed to be most effective when the mass hierarchies in the super-

partner spectrum change as the value of α is modified, so that dramatic changes in

production rates and/or branching ratios occur. Such threshold effects do not occur

over the α range probed in benchmark model A, but do in fact occur for benchmark

model B. This is clearly evident in the right panels of Figure 3.5, where additional

resolving power is obtained when using the expanded signature List C.

We note that the single inclusive variable of (3.41) is much more effective in

benchmark model B in part because the production cross-sections for all SU(3)-

charged superpartners are roughly equal in magnitude. The inclusive Meff variable

no longer tracks the mass and decay products of a single heavy state so variations
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Figure 3.9:
Values of (RAB)i for the five signatures of List B as a function of α for benchmark
model B. The ability of each individual signature from List B to resolve the case α = 0
from the indicated value of α is given by the height of the curve (RAB)i in the above
plots. In the left panel we display signature 1 (solid curve) and signature 5 (dashed
curve). In the right panel we display signature 2 (solid curve), signature 3 (dashed
curve) and signature 4 (dotted curve).

with the parameter α are now more prominent. This is shown in Figure 3.8, which

should be compared to the case of model A in Figure 3.6. Note that the total area

under the two curves in Figure 3.8 is nearly identical, highlighting the need to choose

a wise value of the lower bound on the integration region to achieve a high degree

of differentiation. Model B is similar to the randomly-generated models we used to

design our signature lists and thus the chosen value of 1250 GeV for this particular

observable is close to what would be the optimal choice for this particular model

comparison.

Despite the lower overall cross-section for the supersymmetric signal in benchmark

model B, the three signature lists succeed in distinguishing the case α = 0 from non-

vanishing cases with far less integrated luminosity. In large part this is due to the

richness of the particle spectrum for this model. The superpartner masses given in

Table 3.8 are for the case α = 1. As α approaches zero the masses of the lighter

neutralinos and lightest chargino fall relative to that of the gluinos and squarks
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Figure 3.10:
Branching fractions for principal decay modes of lightest stop (left panel) and lightest
chargino (right panel) as a function of α for benchmark model B. In the left panel the
decay modes are t̃1 → Ñ1t (dashed curve), t̃1 → C̃+

1 b (solid curve), and t̃1 → Ñ1c
(dashed curve). In the right panel the decay modes are C̃1 → Ñ1W (solid curve) and
C̃1 → t̃1b̄ (dashed curve).

(which remain constant). Along this alpha-line several important thresholds are

crossed, resulting in dramatic changes in the relevant branching fractions for the

heavier states. The mix of signatures in List B and List C that contribute most

strongly to the resolving power of the overall list changes as we move along the

alpha-line. For example, consider the (RAB)i values of (3.34) for the five signatures

of List B. We plot these values in Figure 3.9 for model A corresponding to α = 0

and model B corresponding to the indicated value of α 6= 0.

To understand these curves, we first note that the dominant SUSY production

processes in benchmark model B are the pair production of stops and associated

production of light squarks with a gluino. The branching fraction for three of the

more important decay modes of the stop are plotted versus the parameter α in the

left panel of Figure 3.10. For values of α <∼ 0.35, when both the chargino C̃1 and

the LSP Ñ1 are sufficiently light, the direct two-body decay into the LSP and a

top quark is dominant. About 50% of the time the W-bosons from the top decays

on both sides of the events will decay hadronically and the event will be captured

by the first observable in List B. For the intermediate region 0.35 <∼ α <∼ 0.6 the
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stop decays predominantly via t̃1 → C̃1b and the final state topology is determined

by the subsequent decay of the chargino. The branching fractions for the primary

decay channels of the chargino C̃1 are given in the right panel of Figure 3.10. In this

intermediate α region the chargino is decaying primarily to a W-boson, populating

all of the signatures in List B.

For larger values of α >∼ 0.6 the chargino C̃1 and the LSP Ñ1 are now massive

enough that the only decay channel available for the stops is the process t̃1 →

Ñ1c, producing 6ET and two jets only. These events are captured by the second

and (especially) fifth observables in List B, as evidenced by their rapid growth in

significance. For α >∼ 0.7 charginos that are directly produced (or produced through

cascade decays of heavier squarks) will now decay into stops via C̃1 → t̃1b → Ñ1cb.

This boosts the resolving power of the signatures with lepton vetoes relative to the

other signatures in List B.

Similar arguments explain the behavior of the expanded list of observables in

List C. Here we will only take a moment to mention the counting signatures which

make their first appearance in our analysis. Generally speaking, counting signa-

tures are sensitive only to the total cross-section for the final state being counted.

Changes in the pT of Standard Model particles produced in cascades are washed out,

making them less useful for comparing different gaugino mass hierarchies. Counting

signatures are therefore only effective when the two α values being compared corre-

spond to different decay patterns altogether. This happens in several instances in

benchmark model B, as we indicated above. The counting signatures in List C are

specifically designed to consider changes in the decay table for the next-to-lightest

neutralino Ñ2 – particularly the appearance of the so-called “spoiler” modes for the

classic trilepton signal. In the left panel of Figure 3.11 the primary decay modes of
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Figure 3.11:
Branching fraction for next-to-lightest neutralino (left) and (RAB)i values for key
counting signatures from List C (right). The branching fraction of the next-to-lightest
neutralino Ñ2 for benchmark model B is plotted as a function of α in the left panel.
The decay modes are Ñ2 → Ñ1 h (dashed curve) and Ñ2 → Ñ1 Z (solid curve). In the
right panel the (RAB)i values for the inclusive leptonic counting signature (signature 1
– solid curve) and the inclusive B-jet counting signature (signature 3 – dashed curve)
are plotted as function of α.

the next-to-lightest neutralino Ñ2 are given. We observe that both of the on-shell

decays Ñ2 → Ñ1h and Ñ2 → Ñ1Z are available for this state when α <∼ 0.7, with

the Higgs mode peaking around α ≃ 0.6 before becoming kinematically inaccessible.

This changeover is reflected in the Ri values for the leptonic counting signature and

the B-jet counting signature of List C, as shown in the right panel of Figure 3.11.

Note that the light stop in benchmark model B makes this a very B-jet rich point.

In fact, this particular counting signature is one of the most effective observables in

List C along the alpha-line for this point.
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Input Parameter Range Variation
400 GeV ≥ M3 ≥ 800 GeV 5 steps
400 GeV ≥ µ ≥ 1000 GeV 5 steps

300 GeV ≥ (mẽL,R
, mτ̃L,R

) ≥ 700 GeV 5 steps
500 GeV ≥ (mQ̃L

, mq̃L
, mt̃L,R

, mb̃L,R) ≥ 1000 GeV 5 steps

tan β = 10 Fixed
mA = 1000 GeV Fixed

Aτ , At, Ab, Ae, Au, Ad = 0 Fixed

Table 3.9:
MSSM soft parameters ranges and variation steps used to generate controlled sample.
These values are given at the electroweak scale. For each choice of MSSM input, the
gaugino unification parameter α was varied in four steps, from α = 0 to α = 1.0

3.4.2 Analysis of a Large Set of Model Variations

We next examine the efficacy of our method by testing it on a large sample of

varying model points. We will do this in two steps: first on a controlled sample

of models and subsequently on a random collection of model lines. Ranges for the

MSSM input parameters and variation steps used for our controlled sample are given

in Table 3.9. Only M3, ml̃, mq̃, and µ were allowed to vary across 5 uniform steps.

All other soft parameters were held constant. The gaugino universality parameter α

was also varied in 4 steps from α = 0, to 0.33, 0.66, and 1.0. These choices discretize

the range of parameter space into 2500 individual model points. Note that the

parameters of Table 3.9 are given at the low-energy electroweak scale. We emphasize

the fact that in this first step we have chosen to sample the parameter space on a

discrete grid rather than sampling it randomly. While a truly random sampling is

necessary for ultimately testing our method, we here wish to study the performance

of our signature sets as key parameters are varied. Our discrete grid is designed

to keep the overall supersymmetric production rate roughly fixed, allowing for a

more straightforward comparison of Lmin values. This course sampling also allows a

large degree of model variation while keeping computation time to a minimum. Our

analysis of a random collection of models will appear at the end of this subsection.
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Largest Production Channel
Mode α = 0 α = 0.33 α = 0.66 α = 1.0

gg → g̃g̃ 44.6% 45.2% 42.9% 44.8%
fg → q̃Rg̃ 31.1% 30.2% 33.1% 35.7%
fg → q̃Lg̃ 24.3% 25.5% 23.9% 19.4%

Second Largest Production Channel
Mode α = 0 α = 0.33 α = 0.66 α = 1.0

gg → g̃g̃ 2.7% 2.1% 2.8% 1.4%
fg → q̃Rg̃ 42.0% 48.8% 47.5% 45.2%
fg → q̃Lg̃ 42.0% 47.1% 49.6% 53.3%

fifj → χ̃0
2χ̃

±
1 13.2% 1.9% - -

Table 3.10:
Dominant production modes across all model variations. At a given α choice, the up-
per table indicates the percentage of models for which these modes had the largest
cross section, while the lower table indicates the percentage for which the modes had
the second-largest cross-section. All models exhibit predominantly gluino pair produc-
tion, or gluino-quark associated production. A small fraction of α = 0 models exhibit
neutralino-chargino pair production. This mode ’switches off’ as α is increased from
zero, as the gaugino masses increase.

Simulated data for the model points was generated with the following procedure.

For each model, the SuSpect partner code SusyHIT [105] was used to compute the

low-scale spectrum from the input MSSM soft terms. No renormalization group

evolution was necessary because the input parameters were given at the electroweak

scale. As before PYTHIA + PGS4 was used to simulate the detector response for each

point. A check was performed to ensure that each model point had a neutralino

LSP, and also that each α ≥ 0 model point simulated had an associated α = 0

counterpart, so that the minimum luminosity required to distinguish between the

two models, Lmin, could be computed. Only models satisfying these requirements

were retained for analysis. Exactly 1449 model pairs (α = 0 and α 6= 0) were retained

after applying this selection procedure.

Table 3.10 gives the dominant production modes across the entire set of model

variations. The upper table indicates the mode and percentage of models, for a

given α choice, that occur with the largest cross-section. The lower table gives the

same information for the modes that occur with the second-largest cross-section.
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The majority of models exhibit squark-gluino associated production, or gluino pair

production as the dominant production mechanism. Approximately 13% of α = 0

models, and about 2% of α = 0.33 models have neutralino-chargino production as

the second most dominant mode.

The particle decay behavior varies throughout the range of model simulations.

However, gluino decays are largely insensitive to changes in α. For the case α = 0,

approximately 68% of models have g̃ → χ̃±
1 + q̄q′ as the primary decay channel (the

channel having the largest branching fraction), while 31% of models have instead

g̃ → b̃1 + b as the primary channel. The α = 0.33 and 0.66 models exhibit similar

ratios. The α = 1.0 models show a slight variation, with the distribution shifting to

70% and ∼30% respectively. For all α values, approximately 68% of model variations

also exhibit g̃ → χ̃±
1 + q̄q′ as the dominant secondary channel (having the second-

largest branching fraction), while 30% have decays to an on-shell second-generation

squark + quark as the secondary channel.

The first- and second-generation squark decays are equally insensitive to variations

in α. For all α, approximately 50% of models indicate q̃L → g̃+q is the primary decay

channel, while the other 50% have χ̃±
1 + q′ as the primary channel. This is also the

dominant secondary channel in 48% of the models. Another 40% have χ̃0
2 + q as the

secondary channel. The q̃R are slightly different, with approximately 62% of models

indicating q̃R → g̃ + q as the primary channel, and another 37% q̃R → χ̃0
1 + q. This

is also the dominant secondary channel in 63% of models, with χ̃0
2 + q the secondary

channel for another 32%, and the remaining 5% having → g̃ + q.

Due to dependence on the gaugino mass parameters, the chargino decays are

significantly more sensitive to variations of α. For the α = 0 case, approximately

74% of models have χ̃±
1 → W± + χ̃0

1 as the primary decay channel. Another 25%



98

α = 0.33 α = 0.66 α = 1.0
Lmin value List A List B List C List A List B List C List A List B List C

≤ 1 fb−1 115 206 282 271 417 474 410 475 484

≤ 2 fb−1 35 93 86 52 36 10 38 9 0

≤ 4 fb−1 49 57 42 52 35 2 24 0 0

≤ 10 fb−1 42 73 50 48 8 0 10 0 0

≤ 100 fb−1 130 40 8 72 0 0 2 0 0

> 100 fb−1 98 0 0 1 0 0 0 0 0

Table 3.11:
Minimum integrated luminosity Lmin to separate α = 0 from α 6= 0 in controlled
model sample. Distribution of Lmin values for the three signature sets of Tables 3.5,
3.6 and 3.7. In each case we are comparing the indicated value of α with the case α = 0
for the same set of background model parameters.

have χ̃± → χ̃0
1 + q̄ + q′ as the primary channel (here the quarks are from the first or

second generation), while the remaining 1% have instead χ̃± → χ̃0
1 + τ + ντ . As α

increases these three decay channels persist, however their distribution across each

set of models begins to change, and additional channels begin to appear. For the

α = 0.33 case, the above channels occur in 65%, 31%, and 1% of models, respectively.

However, now the remaining 3% of models have χ̃±
1 → τ̃±1 +ντ as the primary channel.

The χ̃± → χ̃0
1 + q̄+ q′ channel is the dominant secondary channel for all α variations.

The χ̃0
2 decay behavior is similarly diverse. For case α = 0, approximately 39% of

models have χ̃0
2 → χ̃0

1+qq̄ as the primary decay channel, while 23% have χ̃0
2 → χ̃0

1+Z
0,

28% have χ̃0
2 → χ̃0

1 + h0, and another 10% have χ̃0
2 → χ̃0

1 + τ+τ− as the primary

channel. This distribution shifts slightly for α = 0.33 to 40%, 26%, 18%, and 13%,

respectively. Here, another 3% of models have χ̃0
2 → τ̃±1 +τ as the dominant channel.

For α = 0.66 it is shifted further to 46%, 18%, 15%, 15%, where here the remaining

3.4% of models now having χ̃0
2 → ν̃eL + νe as the primary channel. For α = 1.0, the

Z0 and h0 decays occur less frequently, with only 8% and 5% of models having these

as the primary channel. The χ̃0
1 + qq̄, χ̃0

1 + τ+τ−, and τ̃±1 + τ channels appear with

the largest branching fraction in 56%, 19%, and 9% of models, respectively.

As with the benchmark models, we analyze the 1449 model pairs using the three
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signature sets given in Tables 3.5, 3.6 and 3.7. Due to the large number of model

points we present results statistically in the form of the observed distribution of Lmin.

Table 3.11 shows the minimum luminosity required to distinguish between models

with α = 0 and those with α 6= 0 when using, respectively, signature Lists A, B and C.

Considering the case of α = 0.33 first, signature List A is able to successfully resolve

a large number of model pairs with fairly low luminosity. However, only 241 out of

the 469 model variations analyzed for this value of α can be resolved with less than

10 fb−1. Signature Lists B and C exhibit significantly stronger resolving power, with

List B able to distinguish 429 variations, and List C 461 out of the 469 total model

variations considered. Both Lists B and C allow the majority of model variations to

be distinguished with ≤ 4 fb−1 integrated luminosity, however List C exhibits the

best performance overall, as it is able to distinguish the models with a consistently

lower luminosity requirement. For the α = 0.66 models, all three signature sets allow

the majority of model points to be distinguished from α = 0 with less than 4 fb−1

integrated luminosity. Only List A was unable to resolve all model variations with

less than 10 fb−1, as 73 out of 496 models required higher luminosity. Signature

List C exhibits the best performance, allowing nearly all model variations to be

resolved with ≤ 2 fb−1. The α = 1.0 models are sufficiently different from the α = 0

case that all three of the signature sets are able to distinguish the two cases with

exceptionally low luminosity. Signature List C again exhibits the best performance,

allowing all models to be distinguished with less than 1 fb−1 of data.

We can understand these results by examining the individual (RAB)i response of

each signature. From equation (3.36), the minimum luminosity required to distin-

guish two models, A and B, is inversely proportional to RAB, which is the sum of the

individual (RAB)i values of each signature. Because (RAB)i reflects the sensitivity of
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Figure 3.12:
Distribution of (RAB) values for signature List A. The distribution of RAB values for
the single signature of List A is given for the parameter sets α = 0.33, α = 0.66, and
α = 1.0. In each case we are comparing the indicated value of α with the case α = 0
for the same set of background model parameters. Note that larger values of RAB

imply lower values of Lmin.

the i-th signature to changes between models A and B (a larger (RAB)i value being

more sensitive), signatures that have high sensitivity to physical changes associated

with α provide a greater contribution to the total RAB, and thus reduce the Lmin

requirement.

The distribution of RAB values for the single signature of List A is shown in

Figure 3.12. For the α = 0.33 case the distribution is localized to relatively low

values of RAB. For the α = 0.66 and α = 1.0 cases the distribution begins to spread

out, with many models having significantly larger RAB values. This indicates the

signature is becoming increasingly more sensitive to the differences brought on by

changes in α as this parameter is increased. However, with only a single signature it

is not possible to guarantee that it will be as effective for other models as it is in this
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Figure 3.13:
Distribution of (RAB)i values for signature List B [α = 0.33 versus α = 0]. The
distribution of (RAB)i values for the five signatures of List B is given for the case of
comparing α = 0 with α = 0.33. For the definition of the five signatures, see Table 3.6.

example. In order for this approach to work across a broad range of potential physics

scenarios it is advantageous to adopt a combination of signatures, where each may

be sensitive to one or more aspects of a particular class of models.

Figures 3.13 and 3.14 show the distributions of (RAB)i obtained for the five signa-

tures of signature List B. Each figure represents five histograms where the variable

being considered is log10[(Rab)i], with the comparison being between α = 0 and

α = 0.33 in Figure 3.13 and between α = 0 and α = 1 in Figure 3.14. In a similar

fashion to the single signature of List A, the distributions are in general clustered

at low (RAB)i for α = 0.33, and begin to spread out considerably, taking on much

larger values as α increases. Comparing the individual distributions to those in the

single signature of List A, the overall spread of values is not significantly different.

However, recall that RAB is the sum of the individual (RAB)i values. Therefore we
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Figure 3.14:
Distribution of (RAB)i values for signature List B [α = 1 versus α = 0]. The distribu-
tion of (RAB)i values for the five signatures of List B is given for the case of comparing
α = 0 with α = 1. For the definition of the five signatures, see Table 3.6.

gain a significant enhancement by simply including additional signatures. A similar

effect occurs with the larger set of signatures in List C. As we saw in Section 3.2,

however, there is ultimately a point of negative returns and a maximum efficacy is

obtained.

Thus far we have presented the results of our approach in terms of the minimum

integrated luminosity required to resolve two model classes (α = 0 and α 6= 0) using

our set of optimized signatures. To understand why this approach works, it is useful

to examine the signature results themselves. Figures 3.15 and 3.16 show examples of

two-dimensional slices of the signature space “footprint” for our large set of model

variations. In these figures the results have been normalized to 5 fb−1 of data.

Figure 3.15 compares the count rates for the third and fourth signatures of List B

for the case α = 0 versus α = 0.66 (left panel) and α = 1 (right panel). Figure 3.16
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Figure 3.15:
Footprint-style plot for a pair of signatures from List B. Total counts for signature
#3 versus signature #4 of List B is given for the case α = 0 (green triangles) α 6= 0
(black squares). The cases shown are for α = 0 versus α = 0.33 (top panel), α = 0.66
(middle panel) and α = 1 (bottom panel). The axes measure the number of events for
which the kinematic quantity was in the range given in Table 3.6. Larger values of the
non-universality parameter α correspond to a greater degree of separation between the
two model “footprints.”
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Footprint-style plot for a pair of signatures from List C. Total counts for signature
#11 versus signature #13 of List C is given for the case α = 0 (green triangles) α 6= 0
(black squares). The cases shown are for α = 0 versus α = 0.33 (top panel), α = 0.66
(middle panel) and α = 1 (bottom panel). The axes measure the number of events for
which the kinematic quantity was in the range given in Table 3.7. Larger values of the
non-universality parameter α correspond to a greater degree of separation between the
two model “footprints.”
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compares the count rates for signatures #11 and #13 of List C for the case α = 0

versus α = 0.66 (left panel) and α = 1 (right panel). In this case the two signatures

are both taken from the set of events containing at least one lepton and five or more

jets (see Table 3.7). We have chosen this pair for the dramatic separation that can

be achieved, though similar results can be obtained with other pairs of signatures.

The power of our inclusive signature list approach lies in the choice of signatures

and their ability to remain highly sensitive to changes in the physical behavior of

each model. This feature is reflected qualitatively in the visual clustering of the data

points, which become progressively more distinct as the parameter α is increased. As

the regions separate it becomes increasingly less likely that a model from one class

can be confused with a model from the other class, even when considering statistical

fluctuations. In our approach this manifests itself when one computes RAB, which

reflects the “distance” in signature space between the two models under comparison,

and which becomes large when the models are sufficiently different from one another.

The idea of using repeated pairings of targeted observables in order to separate

model classes was studied in previous “footprint-style” analyses [106, 107, 108]. If

we consider the universal gaugino mass scenario (i.e. α = 0) as a “model,” and the

case of non-universal gaugino masses as a separate model, then a set of signatures

will be truly targeted at this particular model feature if the set of all such two-

dimensional planes implies complete separation between the models. With this in

mind it is interesting to examine distinguishability between the two values of α from

a somewhat different perspective. Adopting the approach of [108] we can ask how

many degeneracies exist between the two classes of models, where by degeneracy

we mean two models that exist at different points in the microscopic parameter

space, but occupy the same point in signature space (up to statistical fluctuations).



106

If it is possible, through application of one or more signatures, to ensure that no

degeneracies exist we can claim to that it is possible to completely discriminate

between the two classes.

As an example of how this idea can be applied, we can consider the analysis

performed in [108]. Let one particular value of the parameter α (such as α = 0) be

“model A” and let some other value of the parameter α be “model B.” Choose any

pair of signatures in one of the signature lists. From our controlled sample we can

choose an individual case Bj ∈ B and compute the quantity (∆SAiBj
)2 between that

particular point and all the points Ai ∈ A for this pair of signatures. If the value

for all such (∆SAiBj
)2 is always greater than the two-signature threshold given by

γ2(0.95) in Table 3.2 we will claim the point Bj has been separated from the entire

footprint of model A. We can then repeat this exercise over all cases of model B. The

number of cases of model B that have not been separated from the entire footprint

of model A we will denote as NBA. This is a type of degeneracy count for model B

with respect to model A. Clearly the process can be performed for model A with

respect to model B, producing a degeneracy count NAB. In general we expect these

two numbers to be roughly equivalent in magnitude, but not necessarily precisely

equal.

If either NAB or NBA are non-vanishing then the two footprints are not yet disjoint

in the multi-dimensional signature space. We can then choose any other pair of

signatures and repeat the procedure, this time restricting Ai and Bj to run only over

the degenerate cases. If we have chosen a good set of signatures the quantities NAB

and NBA should rapidly converge to zero as the algorithm is successively applied.

The results of performing this exercise on the controlled model sample generated

by the parameters of Table 3.9 is shown in Figure 3.17. In the left panel we show
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Figure 3.17:
Degeneracy counts for List B (left panel) and List C (right panel). The relative de-
generacy counts NAB and NBA that result from successive application of pairs of
signatures from List B and List C are plotted for our controlled model sample. In each
case model A is the case with α = 0 while model B is the case with the indicated value
of α 6= 0. Once all model pairs have been applied the total degeneracy count vanishes
for both lists and for all values of α 6= 0.

the successive values of NAB and NBA as pairs of signatures from List B are used

to compute the separability parameter (∆SAB)2, while the right panel uses pairs of

signatures from List C. In both cases “model A” represents the set of models with

α = 0, while “model B” represents the case with the indicated value of α = 0.33,

0.66 and 1.0. For all three values of the parameter α the lists do an excellent job of

converging towards NAB = NBA = 0 after only a few pairings are considered. This

suggests that the signature lists of Tables 3.6 and 3.7 should be able to reveal the

departure of the gaugino soft masses from the universal ratios on a truly general

supersymmetric model with a high degree of reliability and in a small amount of
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Figure 3.18: Efficiencies of the three signature lists. The ability of the three signature lists to
separate the case α = 0.1 from α = 0 is indicated in the top pair of plots and the
simpler case α = 0.3 from α = 0 in the bottom pair of plots. On the left, the percentage
of cases that could be distinguished using each of the three signature lists of Tables 3.5,
3.6 and 3.7 is given as a function of integrated luminosity in units of fb−1. On the
right the same percentage is shown as a function of the number of supersymmetric
events. The 95% separability threshold is indicated by the dashed horizontal line.

integrated luminosity.

To honestly confirm this hypothesis we must generate a more random set of mod-

els. After all, the signature lists of Tables 3.5, 3.6 and 3.7 were constructed precisely

with the sorts of models of our controlled sample in mind. But as we saw in Sec-

tion 3.4.1, models such as benchmark model A can prove more challenging for our

analysis algorithm. To allow for the possibility of more perverse cases than those of

our controlled sample, an additional set of 500 models were generated with six points

on the α-lines ranging from 0 to 0.5. In this case a 16-dimensional parameter space

defined by the quantities in (3.18) was considered. Specifically, slepton and squark

masses were allowed to vary in the range 300 GeV to 1200 GeV with the masses of
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Figure 3.19: Lmin and Nmin required to detect α 6= 0 for 95% of the random models.

the first and second generation scalars kept equal. The gaugino mass scale given by

M3 and the µ-parameter were also allowed to vary in this range. The pseudoscalar

Higgs mass mA was fixed to be 850 GeV and the value of tanβ was allowed to vary

from 2 to 50. If all points along the α-line satisfied all experimental constraints

on the superpartner mass spectrum, then 100,000 events were generated for each of

the six points along the α-line in the manner described in Section 3.2. Using this

data the value of Lmin was computing using (3.37) and (3.38) for each of our three

signature sets.

The results of this analysis are given in Figures 3.18 and 3.19. Figure 3.18 con-

siders the ability of our signature lists to separate the case α = 0.1 from α = 0 (top

pair of plots) and the simpler case α = 0.3 from α = 0 (bottom pair of plots). On

the left, the percentage of cases that could be distinguished using each of the three
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signature lists of Tables 3.5, 3.6 and 3.7 is given as a function of integrated luminosity

in units of fb−1. Since the random model sample includes examples with very dif-

ferent superpartner mass scales, the overall supersymmetric production cross-section

varies much more across this sample than in the controlled model sample described

above. We therefore take this into account by plotting the same percentage in terms

of the number of supersymmetric events on the right side of Figure 3.18. The 95%

separability threshold is indicated by the dashed horizontal line. Even using our

best set of signatures (List C) it will require nearly 100 fb−1 to be able to detect

non-universality at the level of α ≃ 0.1 for an arbitrary supersymmetric model. Yet

for the vast majority of models the departure from universality should become ap-

parent after just 10-20 fb−1. Departures from universality at the level of α ≃ 0.3

should be apparent using this method for most supersymmetric models after just a

few fb−1. In Figure 3.19 the integrated luminosity (or number of supersymmetric

events) needed to detect α 6= 0 for 95% of our random models is given as a function

of the five non-vanishing α values simulated.

3.5 Summary

If supersymmetry is discovered at the LHC the high energy community will be

blessed with a large number of new superpartners whose masses and interactions

will need to be measured. At the same time the community will be challenged by

a large model space with many Lagrangian parameters which cannot themselves be

directly measured experimentally. Undoubtedly performing global fits of the many

observables to the parameter space of certain privileged and well-defined benchmark

models will be of great help in making sense of this embarrassment of richness. But

recent work suggests that unless these models are determined by very few parameters
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it is likely (if not perhaps inevitable) that multiple points in the parameter space

will fit the data well. It then becomes an interesting question to ask whether it is

possible to fit to certain model characteristics rather than to any particular model

itself.

In our opinion one of the most important such characteristic is the pattern of

soft supersymmetry-breaking gaugino masses. No other property of the low-energy

soft Lagrangian is more easily linked to underlying high-scale physics, particularly

if that high-scale physics is of a string-theoretic origin. Only the related issue of

the wavefunction of the LSP is of more importance to low-energy physics and cos-

mology. We are thus interested in asking whether we can identify the presence of

non-universalities in the gaugino sector independent of all other properties of the su-

perpartner spectrum. The manner by which any such undertaking can be tackled is

by no means clear – though neither is it clear that such an undertaking is inherently

impossible. In the present work we have decided to begin this process with a sim-

ple parametrization of the gaugino masses determined by a single parameter which

can be thought of as the ratio of bulk gravity and anomaly contributions to gaugino

masses. We developed model “lines” in the spirit of previous benchmark studies such

as the Snowmass Points & Slopes in which only the single non-universality parameter

is varied. By understanding how the observable physics at the LHC is affected by

this parameter – and then repeating the analysis many times with the other super-

symmetric parameters varied – we can learn which LHC signatures are most directly

“targeted” at this important underlying characteristic.

Our procedure depends on certain analytic results that improve on the methods

first introduced concretely by Arkani-Hamed et al. These analytic results in turn

depend on the assumption that the signatures considered have fluctuations which
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are largely uncorrelated with one another. This severely limits the type of signa-

ture ensembles one might construct. Yet this restriction does not imply a loss of

resolving power, as the “optimal” signature list is rarely the largest possible list one

can imagine. Our analysis has suggested two signatures ensembles which perform

remarkable well at the task of measuring the value of the non-universality parameter

we introduce. Broadly speaking, we find that a non-universality at the 10% level

can be measured with 10-20 fb−1 of integrated luminosity over approximately 80%

of the supersymmetric parameter space relevant for LHC observables. If we are in-

terested in measurements at only the 30% level these numbers change to 5-10 fb−1

over approximately 95% of the relevant parameter space.

This is remarkable progress, but the task we set out for ourselves is admittedly still

somewhat artificial. There are two independent mass ratios that can be constructed

from the three soft supersymmetry breaking gaugino masses – our parametrization

is therefore not fully general. It would be of great interest to study more general

departures from non-universality to see if the optimal signature lists change substan-

tially. Of greater import is the need to perform a Monte Carlo simulation in order to

compare a candidate model to the “data” at the LHC. To perform such a compar-

ison we must assume knowledge of all input parameters apart from the one we are

attempting to measure. While this is a common practice in benchmark studies at

colliders, it is far from the reality that theorists and experimentalists will encounter

in the early stages of the LHC era. Our study demonstrated the efficacy of certain

targeted observables in extracting the non-universality parameter α while keeping

all other parameters fixed for the two models. This is quite a strong assumption and

future work should relax this constraint. In other words, one would like to distin-

guish between two models (with different values of α) even if the other parameters
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for the two models are not the same. There are many directions by which this may

be pursued. For example, in the current analysis we have not allowed ourselves

any knowledge of the mass spectrum, though analysis of kinematic end-points will

certainly provide some information in this regard early on in LHC data-taking. In

addition, techniques such as the use of on-shell effective theories [61] might provide

sufficient information about the dominant production and decay modes for new mass

eigenstates to allow an approximation to our analysis to be performed before the full

mass spectrum is reconstructed. We hope to pursue both avenues for introducing

greater realism in future work.



CHAPTER IV

Indirect Detection of Non-Thermal Neutralino Dark Matter

While astrophysical measurements have precisely determined the amount of dark

matter in our universe, we do not yet know its identity. At present one could imagine

that the dark matter is a weakly interacting massive particle (WIMP), an axion, or

something more exotic. This situation should change, perhaps soon. If the dark

matter is indeed a WIMP, evidence for it could be found both at the Large Hadron

Collider (LHC) and a host of dark matter detection experiments, both direct and

indirect.

In this chapter, we depart from the LHC and explore the implications for SUSY

at astrophysical experiments that may be sensitive to annihilations of dark matter

in the galaxy. We will assume that the dark matter is a WIMP, in particular the

lightest supersymmetric particle (LSP). The identity of the LSP depends on the de-

tails of supersymmetry breaking. Determining its identity will be a necessary step

towards understanding the cosmological history of our universe, and an important

clue towards the determination of the underlying theory. As discussed in Chapter I

a phenomenologically attractive candidate is the lightest neutralino. We concentrate

on a case that is both physically well-motivated and potentially gives large signals

for dark matter indirect detection: a non-thermally produced LSP with large anni-

114
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hilation cross section. This scenario does not require additional anomalously large

astrophysical “boost factors” to produce interesting signals.

By now, a large literature on the indirect detection of dark matter exists. For

reviews, see [109, 110]. We will place particular emphasis on a dark matter interpre-

tation of positrons, for earlier work on this subject see, e.g., [111, 112, 113, 114].

For the LHC to provide complementary data on the dark matter[115, 116], it must

be kinematically accessible. Often, the dark matter is most efficiently searched for in

the cascade decays of colored particles. However, there can be a large gap between

the dark matter mass and the lightest colored particle. In models with gaugino mass

unification, there is roughly a factor of seven between the WIMP candidate mass

and the gluino mass. In anomaly mediated models of supersymmetry breaking, the

ratio is a factor of nine; in other models with non-universal gaugino masses, it can

be a factor of a few. Thus, if the gluino is to be produced copiously (say with a mass

less than 2 TeV), the dark matter should not be too heavy. In this chapter, we will

focus on a light mass region where the LSP is a wino with a mass of a few hundred

GeV. This discussion is based on the results found in [16].

4.1 Thermal vs. Non-Thermal Production

Often, SUSY dark matter candidates are assumed to be produced from the pri-

mordial thermal plasma in the early stages of the universe (see e.g. [109] for a

review). Under this assumption, the relic density of the LSP depends inversely on

the annihilation cross section. For a neutralino, χ, one finds [117, 118]:

(4.1) Ωχh
2 ≈ 0.1

(
3 × 10−26cm3s−1

〈σAv〉

)

For the case of a light neutralino LSP (a few hundred GeV or less), this typically

restricts the neutralino to have a substantial bino component as pure wino and
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Higgsino states (co)-annihilate very effectively to weak gauge bosons. But precisely

because of the smaller annihilation cross section, the annihilation signals from bino-

like dark matter can be disappointingly small unless one appeals to large “boost

factors.” This issue is further exacerbated by the fact that bino annihilations are

p-wave suppressed in the early universe, and are thus suppressed by powers of the

final state masses today. If, as is often the case, the final state is b-quarks, the

annihilation rate in our galaxy can be very small.

Models with gaugino mass unification often do typically give rise to a bino LSP,

with its associated small annihilation cross section. One is then challenged to reduce

the relic density to the observed value. However, if one does not assume a simple uni-

fication of gaugino masses at the high scale, other possibilities arise, well-motivated

by top-down models of supersymmetry breaking. One attractive possibility is a wino

LSP. This naturally occurs in theories where anomaly mediation gives the dominant

contribution to the gaugino masses[119]. It also occurs in string compactifications,

see, e.g. [36]. This type of dark matter can also occur in the simplest models of

split-supersymmetry [120, 121], where the gauginos get anomaly mediated masses

(with attendant loop suppression), but scalars receive large masses, suppressed only

by the Planck scale.

A light wino has a large annihilation cross section, which is good for indirect de-

tection, but also implies a small thermal relic abundance. The solution to recovering

the correct relic abundance comes from non-thermal production. Often, the very

same models that predict a wino LSP also provide mechanisms by which the LSP is

produced non-thermally. If particles decay into the wino below its freeze-out temper-

ature, this can provide the correct relic abundance[122]. Excellent candidates for the

decaying particle include gravitinos and weakly coupled moduli [123, 125, 124]. Non-
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thermal production of dark matter leads to WIMPs with larger cross sections, since

the standard thermal relic abundance calculation no longer applies. Since the flux of

anti-particles coming from dark matter annihilations depends linearly on the cross

section, this implies that non-thermal production of dark matter may lead to larger

fluxes that may be detectable in current and future indirect detection experiments.1

In the remainder of the chapter, we review elements that enter any discussion of

the indirect detection of dark matter. First, we briefly review basics of cosmic ray

propagation, as well as the form of the source term arising from dark matter annihila-

tion. We then discuss constraints from both anti-protons and synchrotron radiation.

We then discuss prospects for observations of non-thermally produced wino dark mat-

ter in positrons and gamma rays. With both PAMELA (a Payload for Antimatter

Matter Exploration and Light-nuclei Astrophysics) and FGST (Fermi Gamma-ray

Space Telescope) in orbit, these two signals are particularly timely. Throughout, we

attempt to point out where astrophysical assumptions enter. Finally, we comment

on implications for the LHC, and briefly discuss implications for direct detection and

indirect searches for dark matter via neutrinos.

4.2 Cosmic Rays

4.2.1 Production

Our emphasis will be on the identification of high energy cosmic rays from dark

matter annihilation. However, disentangling this component relies on an understand-

ing of the other components of cosmic rays. Cosmic rays can be observed directly,

e.g. from supernova ejecta (primaries). Alternately, these cosmic rays can interact

with the interstellar medium producing secondaries. Both components contribute

1While we will concentrate on wino dark matter, the results are a bit more general. In the region of interest, the
winos annihilate nearly exclusively to W bosons. So, basically what we are probing is a dark matter candidate that
annihilates to W ’s with a given cross section.
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to the cosmic ray background, and typically have a flux that is a power-law as a

function of their kinetic energy. This is an anticipated property of cosmic rays of

astrophysical origin.

The annihilation products of a dark matter particle will be associated with a given

energy scale (its mass), and thus can conceivably be distinguished from power law

backgrounds. These annihilations will act as a source term:

(4.2) Q =
1

2

(
ρ(r)

mχ

)2

〈σv〉dN
dp

(p),

where ρ(r) is the dark matter profile, and dN
dp

(p) is the spectrum of stable particles

resulting from the annihilation. We simulated dN
dp

(p) using PYTHIA [49] and altered

the dark matter source code in GALPROP[126] to accept this as input.

When looking at most indirect signals of dark matter, the profile of the dark

matter is an important ingredient. N-body simulations seem to favor cusped profiles

at the center of the galaxy such as the Navarro-Frenk-White (NFW) [127] and Merritt

[128] profiles, while dynamical observations of galaxies seem to favor cored profiles

of the isothermal variety [129]. Current dark matter simulations do not yet include

the effects of baryons. Baryons dominate the gravitational potential in the center of

our galaxy, so we find it prudent to consider three dark matter profiles. The first is

the Navarro-Frenk-White profile:

(4.3) ρ(r) = ρ⊙

(r⊙
r

)(1 + (r⊙/rs)

1 + (r/rs)

)2

,

with rs = 20 kpc, where r⊙ = 8.5 kpc is the galactocentric distance of the sun and

ρ⊙ = 0.3 GeV/cm3 is the local dark matter density. The second is the isothermal

profile

(4.4) ρ(r) = ρ⊙
1 + (r⊙/rs)

2

1 + (r/rs)
2 ,



119

with rs = 3.5 kpc, and finally the Merritt et al. profile

(4.5) ρ(r) = ρ⊙ exp

[
−
(

2

α

)
rα − rα

⊙
rα
s

]
,

with α = 0.17 and rs = 25 kpc.

4.2.2 Cosmic Ray Propagation

Charged particles from dark matter annihilation must traverse part of the galaxy

before arriving at detectors near Earth. This propagation has a non-trivial effect on

the form of the signal.

Annihilations will take place in both the galactic plane and the dark matter halo.

Once these particles are produced, they will either become confined by the galactic

magnetic field to an approximately cylindrical region or escape the galaxy forever.

Their propagation may be described by a diffusion equation, whose details we will

now review. Some of the parameters entering this equation are uncertain, and will

give rise to uncertainties in the observed dark matter signals.

In modeling propagation of cosmic rays through the galaxy, we will assume cylin-

drical symmetry (Fig. 4.1). We will adopt a cylinder with height 2L, and some

maximum radius R. The stars and dust will be confined to the galactic plane z = 0.

The dark matter halo has a spherical symmetry. The particles are allowed to freely

escape at the boundaries, and propagation within the cylinder is described by the

diffusion-loss equation [126]:

∂

∂t

dn

dp
(~x, t, p) = ~∇ · (Dxx(~x, E, t)~∇

dn

dp
− ~V

dn

dp
) − ∂

∂p
(ṗ
dn

dp
− p

3
(~∇ · ~V )

dn

dp
)

+
∂

∂p
(p2Dpp

∂

∂p
(

1

p2

dn

dp
)) +Q(~x, t, p).(4.6)

The Diffusion coefficient: Cosmic rays diffuse out of the galaxy by scattering off
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Figure 4.1: The diffusion zone (cylinder) is taken to have a height 2L, with L in the range of 4-12
kpc [133], whereas the radial direction is taken as Rh = 20 kpc (see figure 1). Most of
the interstellar gas is confined to the galactic plane at z = 0, which represents a slice
through the cylinder and has a height of 2h = 100 pc. Our solar system is then located
in this plane at a distance of around r0 = 8.5 kpc from the galactic center. All of this
is enveloped by a spherically symmetric dark matter halo.
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inhomogeneities in the magnetic field. The diffusion coefficient

(4.7) Dxx = βK0

( R
R0

)δ

,

is a function of the rigidity R ≡ p/Z where Z is the atomic number. K0 is a constant,

R0 is some reference rigidity, β is velocity, and δ is the scaling with respect to the

momentum. We take a default value K0 = 5.8 × 1028 cm2 s−1. The scaling, δ, is set

by the spectrum of magneto-hydrodynamic turbulence in the interstellar medium. It

is 0.33 for a Kolmogorov type spectrum, and 0.5 for a Kraichnan type spectrum[130].

Values in this region are reasonable. The dependence on β can be understood simply:

higher β increases collisions with the inhomogeneities, and hence the diffusion.

Energy Loss: The energy loss, ṗ, comes from several sources: bremsstrahlung,

Coulombic interactions with ionized gasses, inverse Compton scattering with starlight

and with the CMB, and synchrotron radiation. Inverse Compton scattering and

synchrotron radiation are the largest contributors to energy loss for electrons and

positrons and not important for anti-protons. In the case of electrons the energy loss

time is sometimes parametrized by τ , with ṗ ∝ p2/τ . A typical value is τ ≈ 1016 sec.

Re-acceleration: Re-acceleration comes from second order Fermi processes and

is described as diffusion in momentum space. It enters the diffusion equation via

the term proportional to Dpp in Eqn. (4.6). If magnetic fields move randomly in a

galaxy, cosmic rays can be speed up when reflected from a magnetic mirror coming

them. Likewise, they are slowed down by reflecting from a mirror moving away. The

diffusion coefficient Dxx and the re-acceleration coefficient Dpp are related via the

Alfvén velocity [131]. These magnetic field waves are moving slowly with respect to

higher energy cosmic rays, so re-acceleration only will affect the low energy cosmic

rays.

Convection: The convection current ~V can be thought of as a wind streaming in



122

the z direction outward from the galactic plane. It is due to the outgoing plasmas

from the galaxy, and in our galaxy can be thought of as coming from cosmic rays

accelerating the plasma [132]. For the case of positrons, convection and annihilations

in the disk can be neglected.

Source terms and radioactive decays: For astrophysical sources, the source term

Q is expected to proportional to a power law ∝ p−γ localized in the galactic plane.

It may also contain sources and sinks due to unstable cosmic rays.

We will employ GALPROP [126] for numerical solutions to the diffusion-loss equa-

tion.

4.2.3 Some Uncertainties

Measurements of the boron to carbon ratio help to fix the ratio of primary to

secondary cosmic rays. Boron is produced purely as a secondary, while carbon is

mostly primary. This observation helps fix both the height of the diffusion zone

and the diffusion parameters K0 and δ. However, there can exist a large degeneracy

between these parameters[134, 135]. Increasing the height of the diffusion zone traps

more cosmic rays. This can be compensated by a simultaneous change in the diffusion

parameter that allows cosmic rays to quickly escape the galactic plane. Since anti-

protons of a non-dark matter origin are produced in the galactic plane as secondaries,

just as boron is, this apparent degeneracy of parameters does not give rise to a large

uncertainty in the background prediction. Once the primary flux of protons is fixed

(measured), the B/C ratio gives a rather precise prediction for the (astrophysical)

anti-proton flux.

Unfortunately, the dark matter does not share the same independence of the astro-

physical parameters. Depending upon which set of diffusion parameters are chosen,

different dark matter signals result. The reason is that dark matter annihilations
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are not confined to the galactic plane. Rather, they occur throughout the halo, and

increasing the diffusion zone includes more primary cosmic rays from dark matter.

This change in L is not completely compensated by an increase in the diffusion out

of the galactic plane as in the case of the background. Moreover, this increase in the

height of the diffusion zone will affect positrons and anti-protons differently, as we

will discuss in the following sections.

4.3 Experimental Constraints on Non-thermal Neutralinos

In this section we use GALPROP [126] to numerically solve the propagation equa-

tion (4.6) and find the expected flux of positrons and anti-protons, as well as the syn-

chrotron radiation coming from the annihilation products of neutralino dark matter.

When appropriate, we have checked these results explicitly using DarkSUSY [136],

and found similar results for similar values of the astrophysical parameters. We dis-

cuss the possibility of neutralino dark matter annihilations to explain an excess of

positrons as suggested by the HEAT [137, 138] and AMS-01[139] data, while simul-

taneously respecting the observed flux of anti-protons as measured by BESS [140].

At present, the anti-protons do not show any peculiar spectral features (though their

flux is perhaps somewhat lower than expected). We use this data to set bounds. We

also discuss bounds on the neutralino annihilation cross section from synchrotron ra-

diation in the “WMAP haze” [141, 142, 143] obtained from the WMAP3 data [144],

and discuss implications for the FGST experiment.

4.3.1 Anti-Proton Bounds

Before attempting to fit the HEAT data (or make predictions for the PAMELA

experiment), we must take into account bounds from anti-protons. We will compare

to the BESS 95 + 97 data [140] taken at the solar minimum, and modulate the
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interstellar spectrum with a potential of 550 MV. More recent data from both the

1998 BESS data[145] and the BESS-Polar data [146] will have a different modulation

potential but display the same trends. In Figure 4.2, we show the anti-proton flux

for varying mass of the wino-like neutralino. As expected, increasing the mass of

the wino pushes the spectrum to slightly harder energies. The dominant effect,

however, is that an increase in the wino mass results in a decrease in the annihilation

cross section as well as number density in the profile, which changes the overall

normalization of the curve. Apparently, a wino mass of 150 GeV gives too high a

flux, but 200 GeV is (marginally) consistent.
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Figure 4.2: The flux in anti-protons for varying neutralino mass (mχ = 150, 200, 300 GeV). We
have taken a diffusion zone height of L = 4 kpc.

As can be seen in Figure 4.3, these constraints are sensitive to the diffusion zone

height. Here, we fix the neutralino mass at 200 GeV, and vary the diffusion height, L.

Clearly the diffusion height directly affects the anti-proton flux. Again, we see that

for a height of L = 4 kpc, mχ = 200 GeV is accommodated by the anti-proton data,

but for larger diffusion cylinders, heavier winos would be required to be consistent
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with the anti-proton data.
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Figure 4.3: The flux in anti-protons for varying height of the diffusion zone cylinder with and NFW
dark matter profile. We have taken a mχ = 200 GeV wino.

This minimum allowed wino mass is also a function of the dark matter distribution

in the galaxy. Because anti-protons do not lose energy very efficiently (relative, to

say, positrons), they come to us from a large region, and can potentially sample the

inner portion of the galaxy, where the dark matter distribution can vary dramatically

among different choices of profile. To assess the dependence of the profile on potential

dark matter flux from anti-protons, we varied the profile in Fig. 4.4. Note that going

from an NFW profile to another profile changes the flux of anti-protons from the

dark matter particle by roughly ±15%.

Our investigation of the anti-proton flux indicates that a pure wino of approxi-

mately 200 GeV is consistent with the data. To achieve significantly lower masses,

one would have to push the astrophysical uncertainties. A 150 GeV pure Higgsino,

however, is consistent with the data. At this mass, its annihilation cross section is

approximately one order of magnitude below that of the wino.
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Figure 4.4: The flux of anti-protons is shown using different dark matter distributions. We have
fixed L = 4 kpc, and the wino mass to be mX = 200 GeV. Since the anti-protons
may sample the inner region of the galaxy, the cuspiness of the profile does effect the
anti-proton flux.

4.3.2 Synchrotron Radiation

An excess of synchrotron radiation in the WMAP three year data [144], par-

ticularly significant for angles south of the galactic plane, has been suggested by

subtracting out known foregrounds[141, 142, 143]. The residual component has a

harder spectrum than other known sources for microwave emission, and has been

dubbed the WMAP haze. Thus it seems that there is an unknown source of rela-

tivistic electrons and positrons moving in the galactic magnetic field, contributing

to synchrotron emission. These electrons and positron could potentially come from

dark matter [142].

While the exact interpretation of the haze is unclear at present, at minimum

one should at least check that any potential dark matter candidate does not super-

saturate the amount of synchrotron radiation. This has been noted by Hooper [147],
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who uses this observation to potentially place bounds on dark matter candidates.

Here, we briefly revisit these bounds and semi-quantitatively discuss the astrophysical

uncertainties that enter them.2

First, we discuss the particles that contribute to the WMAP bands. These elec-

trons have energy greater than 5 GeV. This can be shown by analyzing the equation

for synchrotron emission. We use the formula of [149],

(4.8) ǫS(ν, γ) =
4π

√
3e2νB

c
x2(K4/3(x)K1/3(x) −

3

5
x(K2

4/3(x) −K2
1/3(x)))

with

(4.9) x =
ν

3γ2νB

,

γ is the boost factor, and the critical frequency is νB = eB/2πmec. Here, Kn is the

modified Bessel function of order n. This formula gives the synchrotron emission of

the electron into all angles, averaged over an isotropic pitch angle distribution of the

electrons with the magnetic field.

Figure 4.5 shows the amount of synchrotron radiation into the 22 GHz band as a

function of the electron energy for a few different values of the magnetic field. This

band is observed by WMAP, and it gives the most statistically significant contribu-

tion to the haze. Error bars in other bands are larger. Emission from energies below

5 GeV is negligible. This demonstrates the link between the haze and high-energy

electrons and positrons. Thus, the excess in the HEAT data and the synchrotron

emission can be linked to the relativistic electrons of similar energy. Indeed, any

positron excess from a future experiment will potentially contribute to the haze at

some level. If both the haze and positron excess arise from dark matter, then recon-

ciling them will probe the astrophysical parameters of our galaxy.
2It should be noted that very strong bounds from X-rays might result if strong B-fields exist near the black hole

near the galactic center[148]. We do not pursue these bounds further here.
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Figure 4.5: Power radiated into 22 GHz as a function of electron energy for different values of
the galactic magnetic field. Notice that for energies below 5 GeV, there is negligible
radiation.

As a point of reference, [147] argues that a pure wino that gives the full dark matter

abundance would be excluded by the haze unless its mass exceeds 700 GeV. This is

a very strong bound, and as we will see, would largely preclude any interpretation

of any current or future excess in positrons as simple supersymmetric dark matter.

Central to placing this bound is an understanding of how electrons and positrons

lose energy within the galaxy. This is controlled by the relative importance of the

radiation field and magnetic field in the region of interest. Large magnetic fields

will cause the energy loss due to synchrotron radiation to dominate (and hence yield

strong bounds from the haze). Large radiation fields will cause inverse Compton

scattering to dominate. Reference [147] assumes a relationship between the energy

density in the magnetic field and in the radiation field as: UB/(UB + Urad) ∼ 0.26.

With a naive equipartition relation one would find this ratio ∼ 0.5. There is no

tight argument for equipartition between these two contributions. However, it is not



129

unlikely that this relation should roughly hold at least approximately. After all, the

B-field is related to cosmic rays, whose source is astrophysical objects. These, in

turn, should roughly trace that radiation distribution.3

Having argued that the bound will sensitively depend on the choice of the magnetic

and radiation field, we set about to semi-quantitatively investigate this effect by

using a different initial set of assumptions. Our view is that our starting point is

not obviously less motivated than that of [147]. Our results might then give some

indication of the size of the astrophysical uncertainties. Alternately, if one wishes to

have a light dark matter particle with large cross section, our discussion will tell you

what properties the galaxy must have to accommodate such a candidate.

To find the synchrotron sky map arising from our dark matter annihilation, we

use GALPROP 50.1 [126] for the propagation of our dark matter derived electrons.

We use the parameters K0 = 5.8×1028 cm2 /s, δ = 0.5 (consistent with a Kraichnan

spectrum of interstellar turbulence) [130], and L = 4 kpc, but find our results are

relatively insensitive to these choices. Other choices for propagation parameters yield

changes of roughly 10% in the results. The energy loss term is set by the relativistic

Klein-Nisha cross section of cosmic rays on the interstellar radiation field combined

with the synchrotron radiation from the magnetic field. The injection spectrum of

dark matter is modified to accept input from PYTHIA 6.4 [49]. Following [143], we

average emission over 20 degrees in longitude. For the interstellar radiation field, we

use the fields from [150, 151] that are provided with the GALPROP package. We

model the magnetic field by an exponential decay

(4.10) B(r, z) = B0e
−|r|/r0−|z|/z0.

We chose the characteristic distance r0 such that the local magnetic field is 3µG,
3We thank Dan Hooper for discussion of this point.
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and chose z0 such that the field falls off quickly away from the galactic plane that

is supposed to be responsible for creating this field. Also, we will use equation

4.8 to find the synchrotron radiation. With sky-map in hand, following the same

approach as [147], we use the synchrotron data of [142] to constrain possible dark

matter candidates. Again, we do not assume a thermal history, and instead impose

that our dark matter candidates make up all the relic density by fiat. We find a

90% confidence level upper bound on the annihilation cross section by using a χ2

fit, allowing the addition of a constant background synchrotron piece, independent

of angle from the galactic center (relating to possible uncertainty in the subtraction

procedure of Finkbeiner, et al.). 4

It should be noted that we do not recalculate the residual haze for each choice of

the magnetic field. However, since the approach of [142] was simply to derive the

haze by doing a comparison of sky-maps close to and away from the core, we view

this as a reasonable first approximation.

For a cuspy profile, most of the dark matter annihilations will happen in the

galactic core. These then propagate outward until they are in the region we are

looking at, 1 - 3 kpc from the center. They then radiate into the frequency band

observed. Taking the approach outlined above, with z0 = 2 kpc, we find the results

in the top panel of Fig. 4.6. In particular, for a pure wino, for an NFW profile we find

the bound of 300 GeV, much less stringent than the original bounds from [147]. This

is dominantly due to our choice of radiation field maps [150, 151]. For these maps,

UB/(UB + Urad) ∼ 0.1 for B0 = 10 µG in the inner few kpc. A larger value for this

ratio pushes us towards the limits of [147]. If an even smaller B field were present,

near the galactic center, perhaps as small as 5 µG, this would further degrade the

4Unlike [147], we impose the fit over the entire interval from 5 to 35 degrees south of the galactic plane.
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limits to the point where the bounds from anti-protons become competitive with (or

exceed) these bounds.

Finally, we briefly discuss the effect of the z profile of the magnetic field. It is not

clear exactly what form the z dependence of the B field should take. Taking z0=

1 kpc again loosens the bound relative to our default choice of z0= 2 kpc. This is

shown in the lower panel of Fig. 4.6. Here, the bound on the pure wino dark matter

only excludes 125 GeV wino dark matter, even for the relatively peaked NFW profile.

In short, the local B-field (i.e. where synchrotron radiation is being measured) has

a large effect on the size of the synchrotron radiation signal.

Figure 4.6 also shows the dependence on the galactic profile. Those that have a

steeper rise towards the galactic center will give a larger contribution to synchrotron

radiation. If the profile is somewhat softer than NFW then the bound is further

weakened (this effect was also very clearly shown in [147] where a flat and NFW

profile were shown). If the less-peaked isothermal profile is chosen, for example, all

bounds due to synchrotron radiation are eliminated, even in the case where the B

field falls off with z relatively slowly.

Also shown in the figure are the annihilation cross sections for pure wino and

pure Higgsino at low velocity. For masses above MW , both types of dark matter will

annihilate almost exclusively to W bosons. Thus, discussions of γ-rays, synchrotron,

p̄ and positron signals will be identical for wino and Higgsino dark matter of the

same mass, once this cross section difference is accounted for.

There is a very clear relationship between the halo profile and what types of

experiments are best suited to look for dark matter. If the halo is quite peaked

towards the center of our galaxy, then experiments that look for photons from this

region, either gamma rays or synchrotron, will be best suited to find the dark matter.
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If, however, the dark matter distribution rises more slowly, then it is no longer clear

that the center of the galaxy is the best place to look. Indeed, one can then look for

electrons and positrons directly (perhaps from annihilation to W bosons), rather than

looking for indirect by-products of annihilation (synchrotron, or continuum gamma

rays). We now discuss this possibility.

4.3.3 Positrons

In the case of positrons, it is useful to consider the positron fraction, which includes

both the primary flux of positrons Φprim
e+ as well as the background Φsec

e+ and the

analogous fluxes for electrons, i.e.

(4.11) Φ =
Φprim

e+ + Φsec
e+

Φprim
e+ + Φsec

e+ + Φprim
e− + Φsec

e−

,

as this ratio allows for cancellation of systematic errors and the effects of solar mod-

ulation (if we assume no charge bias). Preliminary indications from PAMELA data

[152] indicate, however, that this charge bias may be important for low energies.

Since the dark matter signals we will consider will involve production of electron and

positrons at multi-GeV energies, we believe charge bias should be safely negligible

in this regime.

In Figure 4.7, we consider a purely wino-like neutralino for masses in the range

150−300 GeV. We have also included in the figure the data from the 1994 and 1995

HEAT missions [137, 138], as well as the data from AMS-01 [139]. The background

curve is generated using the parameters of [153], with an Alfvén velocity of 20 km/s.

At present the data begins to deviate from the background curve around 10 GeV,

though the error bars are still large.

One might be able to determine the mass of the WIMP from this data. We see

that the spectrum peaks slightly below mχ/2. This arises from annihilation to W-
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Figure 4.6: Bounds on the annihilation cross section into W+W− from synchrotron radiation. We
have used the propagation parameters described in the text and only vary the magnetic
field properties here.
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Figure 4.7: The positron flux from annihilations of non-thermally produced wino-like neutralinos
for varying masses (mχ = 150, 200, 300 GeV) keeping and NFW profile. We have also
included the data from the 1994-95 HEAT balloon based observations [137, 138] and
measurements from AMS-01 [139].

boson pairs and then subsequent decays to e+/e− near threshold. At present, there

is no turn-over in the data. If PAMELA sees a turn-over in the data, then this would

make a indirect measurement of the WIMP mass. A pure wino of up to 400 GeV

might be eventually observed by PAMELA (see [114, 154]).

We find similar results for neutralinos that contain some bino or Higgsino com-

ponent in addition to the wino, however in the case of the bino-like neutralino this

can not be too large, otherwise the dark matter will not make a large contribution

above the background.

For the case of p̄ and synchrotron radiation, there were important astrophysical

uncertainties. In particular, the distribution of of dark matter in the halo had a

strong effect on the synchrotron bounds. The size of the cylindrical region to which

the dark matter annihilation products are confined by the galactic magnetic field has

a large effect on the p̄ flux.
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These two systematics have a much smaller effect on the signal from positrons.

The reason is that positrons come from nearby: the typical diffusion length is only

a few kpc. Errors in the background are typically much larger than the differences

induced in the signal by astrophysical uncertainties. In this section we adopt the

NFW halo profile as our canonical choice, noting that we find no significant changes

for other profiles. Changing the height of the diffusion cylinder also does not have a

very large effect on the positron ratio. We investigated the same cylinder height as

shown in the anti-proton section, and again found variations that were small when

compared with other uncertainties in the astrophysical backgrounds.

Re-acceleration can have an effect on the positron signal, however. In Figure 4.8

that using different backgrounds compatible with B/C will vary the positron signal

as well. We have used backgrounds with varying Alfvén velocities from [153]. The

change in Alfvén velocity affects the low energy spectrum. Once the low energy

background is normalized to data, this affects the prediction at high energies.

In all our discussions, we have not assumed any “boost factor”. If there is some

additional substructure in the halo within the diffusion length of the positrons, it

is possible to enhance this signal somewhat. However, this substructure could also

affect the signal in anti-protons, though not in a precisely identical way as they have

a different diffusion length.

4.3.4 Gamma Rays

Dark matter annihilations can produce gamma rays in two ways: either via con-

tinuum production through decays of pions in hadronic decay products or directly.

Typically, direct annihilations to gamma rays are loop suppressed. Here, we will

concentrate on the continuum gamma ray flux, expected to be most relevant for

FGST.
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Figure 4.8: The positron ratio is shown for two different background curves, with (dashed) and
without (solid) a Dark Matter contribution. The two background curves correspond
to different values of the Alfvén velocity, v = 20 km/s (red/dark) and v = 35 km/s
(green/light).

Since photon signals are independent of the propagation parameters for cosmic

rays in the galaxy, the sky-map of gamma rays from dark matter annihilations di-

rectly trace the density profile. The flux of gamma rays is given by

(4.12) ΦDM(E,ψ) =
1

2

〈σv〉
4π

∫

l.o.s.

dl(ψ)
ρ(l)2

m2
χ

∑

i

dnγi

dE
Bi,

where the sum is over the different annihilation channels. Bi is the branching frac-

tion;
dnγi

dE
is the gamma ray yield, and the integral is over the line of sight. In our

calculation of the continuum gamma rays from pions, we take Bi = 1 for the W+W−

final state and zero, otherwise.

EGRET has looked at these signals in the 30 MeV - 50 GeV range, and has

found no signals (see however [155]). FGST has recently launched and will have an

increased sensitivity over this range. It will also extend observations to 300 GeV.

Recently, [156], updated the work of [157], and studied of the sensitivity of FGST to
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different dark matter models. Here we discuss the implications of these studies for

non-thermal wino dark matter.

The results of Fig. 6 of [156] can be interpreted to place bounds on light winos.

In particular, in the case of an NFW profile, wino masses below ≈ 300 GeV should

have already been observed by EGRET. For an isothermal profile, the bounds are

much weaker, less than 150 GeV. In this case, the strongest bound at present comes

from the anti-proton flux.

Given the relatively small masses found in the previous section necessary to ex-

plain the HEAT or AMS-01 data (or a future large excess at PAMELA), it is fair to

say that there is already some tension between positron signals (if interpreted as dark

matter) and the absence of a signal in γ rays if the profile is NFW (or cuspier). If the

profile is somewhat softer than NFW, however, then it is possible to accommodate

both results. A reduction in the astrophysical factor

(4.13) J ≡
∫

l.o.s.

dl(ψ)
ρ(l)2

m2
χ

,

by a factor of ≈ six below its NFW value is necessary for EGRET to accommodate

a 200 GeV wino and has no effect on positrons. The improved sensitivity of FGST

suggests that an observation in gamma rays is in fact likely for such a WIMP. The

study [156] suggest that a pure wino up to 500 GeV could be observed by FGST at

3σ after 5 years of running, assuming an NFW profile.

Here, we have focused exclusively on the bounds (and potentially signals) coming

from our own galaxy. This approach will depend on the ability to successfully sub-

tract away point sources and other diffuse backgrounds[158]. To avoid these sources,

dwarf galaxies might be competitive places to look depending on their dark matter

profiles.
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4.4 Summary

A non-thermally produced wino is a well-motivated candidate for the dark matter

observed in our universe. Its large annihilation cross section could potentially allow it

to explain the suggestion of an excess from HEAT/AMS-01, which has recently been

confirmed by PAMELA [160]. However, to avoid conflict with bounds from gamma

rays (and perhaps synchrotron radiation), the dark matter distribution cannot be

too highly peaked towards the center. There is already some tension in the case of

an NFW profile. This fact suggests that if the PAMELA excess in positrons comes

from dark matter, FGST should follow with a confirmation.

Any candidate detection by PAMELA and FGST will need to be examined in the

context of direct detection experiments. We do not do that here, since the pure wino

LSP suggested by the present positron excess gives signals well below the current sen-

sitivity of the current direct detection experiments. However, adding an admixture

of Higgsino to the neutralino allows an increase in the direct detection cross section

(via the w̃ − h̃− h coupling). An increased Higgsino content also increases the cap-

ture cross section on the sun, allowing for a possible indirect detection via neutrinos.

Thus, signals in these types of experiments could help to probe the Higgsino content

of the LSP.

At the LHC, a pure wino of a few hundred GeV by itself may be difficult to observe

via direct production. However, it may be possible to find it in decays or associated

production. The sensitivity of this modes depends on the mass of the lightest colored

mode. In minimal models of anomaly mediation [119], the ratio of the wino mass

to the gluino mass is a factor of nine. So a 200 GeV wino implies a 1.8 TeV gluino,

which might preclude an early discovery. However, if the mass difference is smaller,
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as occurs in some models of non-thermal production then it might be possible to

determine the wino nature of the LSP by looking for charged tracks, as recently

studied in [159]. More generally, several LHC signatures will depend on the mass

and type of the LSP, so we expect that careful studies will be able to test whether a

candidate seen in indirect data is also present in LHC data.



CHAPTER V

The PAMELA Positron Excess and Constraints on Wino-like

Dark Matter

Recently, the PAMELA collaboration (a Payload for Anti-Matter Exploration and

Light-nuclei Astrophysics) released preliminary results [160] indicating an excess of

cosmic ray positrons above the 10 GeV energy range. This confirms earlier results

from HEAT [137, 138] and AMS-01 [139], which had already received some initial

interest from theorists, e.g., [161, 162, 163].

One possible explanation for the positron excess is the annihilation of weakly

interacting massive particles (WIMPS) in the galaxy. A spate of new particle physics

models have been proposed, in part to fit the detailed features of the PAMELA

data [164, 165]. However, it is worth exploring in detail whether a well-established

candidate (such as the neutralino) could plausibly fit the data. As discussed in

Chapter IV, for this explanation to be valid the neutralinos would need to have a

larger cross section than dark matter of thermal origin.

In light of the preliminary findings of PAMELA, we revisit the non-thermal neu-

tralino model considered in Chapter IV, as well as those in [166, 123, 163], to de-

termine whether they could account for the excess1. We find a wino-like neutralino

with mass roughly 200 GeV comes close to accounting for the excess, but only if

1See also a recent discussion in [167].

140
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unconventional assumptions about the underlying distribution of the dark matter or

the propagation of its annihilation products are made. Without such modifications,

a light supersymmetric particle appears unable to account for the data. In part, the

purpose of this paper is to point out the places where the sources of tension arise for

this explanation, while simultaneously highlighting the types of astrophysical mod-

ifications that would need to be made to accomodate the data. Such a candidate

is well motivated theoretically. For example, a wino LSP arises in theories where

the anomaly–mediated[168] contribution to the gaugino masses dominates, includ-

ing simple realizations of split supersymmetry, and the string constructions where

M-theory is compactified on a G2 manifold[169].

A pure-wino 200 GeV neutralino annihilates dominantly to W -bosons, with a

cross section 〈σv〉 = 2× 10−24 cm3 s−1. It is remarkable that this cross section is

approximately the correct one needed to explain the size of the signal in the data.

Masses somewhat below 200 GeV could conceivably explain the spectrum from the

positron data, but such candidates come into sharper conflict with the existing limits

from anti-protons and gamma rays. Even at 200 GeV, a wino has tension with the

existing data, a fact implicit in [170, 171]. In fact, taking the data at face value,

such a candidate is excluded. In the following, we will show how close the 200

GeV neutralino comes to the current data, given the present understanding of the

astrophysics. Given the inherent astrophysical uncertainties, it is not unreasonable

to think the 200 GeV case might ultimately be consistent with existing positron,

anti-proton and γ-ray data. Neutralino masses much larger than this give a bad fit

to the PAMELA results unless very large astrophysical boost factors are employed

[172]. This discussion is based on the results found in [15].
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5.1 Positron Excess from Neutralino Dark Matter

Dark matter annihilations produce a differential flux of cosmic rays per unit time,

energy and volume as

(5.1) Q(E, ~x) =
1

2
〈σxv〉

(
ρx(~x)

mx

)2∑

i

Bi
dN i

dE
,

where E is kinetic energy of the cosmic rays, 〈σxv〉 is the thermally averaged annihi-

lation cross section and velocity of the non-relativistic dark matter, Bi and dN i/dE

are the branching ratios and fragmentation functions, and the sum is taken over all

annihilation channels which contain positrons in the final state. The observed flux

of cosmic rays is then found by propagating the source of Eq. (5.1), along with any

astrophysical sources of cosmic rays (background) to the Earth. There are three

sources of uncertainty for the prediction of any Dark Matter signal: the dark matter

distribution, the propagation of its annihilation products, and the role of astrophys-

ical backgrounds.

Unless otherwise stated, we restrict our attention to the commonly adopted Navarro-

Frenk-White (NFW) profile [127]. This distribution is spherically symmetric and has

the form:

(5.2) ρ(r) = ρ⊙

(r⊙
r

)(1 + (r⊙/rs)

1 + (r/rs)

)2

,

with rs = 20 kpc, where r⊙ = 8.5 kpc is the galactocentric distance of the sun and

ρ⊙ = 0.3 GeV/cm3 is the local dark matter density. Any reasonable profile will not

effect the positrons appreciably, since they are mostly local. However, constraints

from EGRET (and predictions for FGST) are directly effected by this choice, as well

as fluxes from anti-protons. While the choice of profile does not appreciably effect

the positron spectrum, the local sub-structure (clumpiness) of the dark matter, could

have important effects, as we will soon discuss.
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Figure 5.1:
Positron flux ratio for Wino-like Neutralino with a mass of 200 GeV, normalized to the
local relic density. We set the height of the propagation region at 4 kpc and consider
varying values for the energy loss rate (τ = 1, 2, 5) in units of 1016 s. The solid bottom
line represents a conventional astrophysical background [174].

For propagation of the cosmic rays resulting from WIMP annihilations we use

DARKSUSY [173] and GALPROP [126], to numerically solve for the fluxes. We

vary the propagation parameters to examine how well a light neutralino can account

for the positron excess. As standard values we take a diffusion coefficient of K =

3 × 1027ǫ0.6 cm2 s−1, a half height for the confinement region of L = 4 kpc, and an

energy loss time of τ = 1016 s. For the astrophysical background in positrons we

adopt the power-law Φ = (4.5ǫ0.7) / (1 + 650ǫ2.3 + 1500ǫ4.2) from [174], where ǫ is the

energy in units of GeV.

For comparing theoretical predictions for positrons with the data, it is customary

to consider the positron fraction, which includes both contributions from dark mat-
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ter ΦDM
e+ as well as the astrophysical background Φbkg

e+ and the analogous fluxes for

electrons, i.e.

(5.3) Φ =
ΦDM

e+ + Φbkg
e+

ΦDM
e+ + Φbkg

e+ + ΦDM
e− + Φbkg

e−

,

Our results for a 200 GeV particle that annihilates to W bosons appear in Figure

5.1. We have set the annihilation cross section, by assuming that the particle is a

pure wino. The preliminary data of PAMELA are also shown [160], along side the

anticipated signal in the presence of a 200 GeV wino2. The bottom (solid) curve

represents the astrophysical background. The next higher curve represents the 200

GeV wino for the NFW halo profile and default propagation parameters discussed

above. The dark matter signal does not provide a convincing explanation for the

excess reported by PAMELA.

However, we find that by varying the rate of energy loss of the positrons a better

fit to the data is possible. Positrons lose energy via synchrotron radiaton and via in-

verse compoton scattering off diffuse starlight and the cosmic microwave background.

These energy losses are parameterized by the energy loss time τ . At the energies of

interest this is dominated by the interaction of the positrons with starlight. While

have seen that the typically chosen default value of τ = 1016 s gives a poor fit to the

data, claims in the literature [176], indicate that there are theoretical uncertainties

in τ at the level of a factor of 2. So, we provide a curve for τ = 2 × 1016 s, still a

poor fit. A τ = 5×1016 s gives a qualitatively good fit to the data. It is unclear that

such a value is consistent with extant maps of starlight[177]. To clarify whether a

neutralino could fit the data, it is important to determine this with certainty.

2Below 10 GeV, the effects of charge bias on the solar modulation are expected to be non-negligible. We have
checked that solar modulation [175] can bring the PAMELA data into improved agreement with the theoretical
estimate, but do not attempt a detailed accounting of the solar modulation which would require additional detailed
data on the solar B field. As the dark matter signal is dominant at higher energies, we focus on the region above 10
GeV where these effects are not important.
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The distribution of the Dark Matter could also significantly impact the fit. De-

pending on the distribution of the dark matter (e.g., if there are significant over

densities of the Dark Matter close by) astrophysical boost factors could also contain

a dependence on the energy (see e.g. [178]). This would largely mimic the effects of a

change in τ , and could act to change the spectrum from the dark matter annihilation.

An extreme example of this effect appeared recently in [172], where a local clump of

800 GeV wino Dark Matter was able to give the desired spectrum. We stress that

the results appearing in Figure 5.1 do not include any astrophysical boost factors.

In summary, allowing for uncertainties in the energy loss rate and/or allowing

for a small energy dependent boost factor may lead to an effective value of τ that

could allow the 200 GeV candidate to account for the excess reported by PAMELA.

Without invoking these uncertainties, an additional source of positrons is required.

5.2 Existing Constraints

Strong bounds are set by existing data from γ-ray and anti-proton measurements.

However both suffer from a number of uncertainties.

5.2.1 Gamma Ray Constraints

We begin with a brief review of γ-ray fluxes coming from dark matter annihila-

tions, which are sensitive to both the halo profile and the diffuse γ-ray background.

We then discuss existing constraints coming from the Energetic Gamma Ray Exper-

iment Telescope (EGRET), which observed γ-rays coming from the galactic center.
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5.2.1.1 Overview of γ-rays from dark matter Annihilation

We are interested in the continuum energy spectrum of gamma-ray flux coming

from neutralino annihilations. The differential flux is given by

d2Φγ

dΩdEγ

=
〈σv〉
8πm2

χ

∑

f

dNf

dEγ

Bf

∫

l.o.s

ρ2(l)dl(ψ),(5.4)

which is in units of photons/cm2/s/GeV/steradian (sr).

The first factor depends only on the particle physics. 〈σv〉 is the thermally av-

eraged product of the annihilation cross section. dNf/dEγ is the differential photon

yield for a particular decay with branching ratio Bf , and the sum is taken over all

relevant decays. The second piece contains the distribution of dark matter, where

ρ(l) is the dark matter halo density profile and the integral is performed along the

line of sight that originates from our location in the galaxy and continues through

the full extent of the halo at an angle ψ relative to the ray passing through the

galactic-center.

To isolate astrophysical uncertainties it is convenient to introduce the dimension-

less function J(ψ)

J(ψ) ≡ 1

r⊙ρ2
⊙

∫

l.o.s

ρ2(l)dl(ψ).(5.5)

Ground and satellite based detectors will observe a finite patch of the sky with a

given angular resolution. Therefore, when comparing theoretical predictions with

what may be detected, we should average J over the minimum angular resolution of

the detector,

(5.6) 〈J〉 =
1

∆Ω

∫
J(ψ)dΩ

where ∆Ω is the angular resolution (in steradians). This value is dictated by the

experiment, e.g. this corresponds to ∆Ω = 10−3 sr for EGRET, and ∆Ω = 10−5
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Profile EGRET & FGST
Ground Based (∆Ω = 10−5 sr)
(∆Ω = 10−3 sr)

Isotherm 30 30
NFW 1, 214 12, 644

Einasto 1, 561 5, 607

Table 5.1: The averaged line of site integral 〈J〉 to the galactic center for the NFW, Einasto, and
Isothermal profiles with EGRET and FGST minimal resolution.

sr for FGST. Given the minimum angular resolution, the dark matter profile, and

the source location we can perform the average in (5.6) using e.g. DarkSUSY. Some

results for the line of sight integral to the galactic center appear in Table 1. An

examination of Table 1 shows that the difference between a flat profile (Isothermal

Cored) and NFW for EGRET can introduce two orders of magnitude difference in

the signal. We also show the 〈J〉 for the Einasto profile, which has recently been

favored by N-body simulations [179].

While isothermal cores are now disfavored by N-body simulations, it is still fair

to say that the current lack of knowledge of the halo profile induces a large error in

the predicted flux from the galactic center.

Using the expression for the flux (5.4) and averaging over the angular acceptance,

the differential flux measured in the detector is

dΦγ

dEγ

= 9.40 × 10−12

( 〈σv〉
10−27cm3 · s−1

)

×
(

100 GeV

mχ

)2∑

f

dNf

dEγ
Bf 〈J〉∆Ω,(5.7)

which is in units of photons/cm2/s/GeV.

γ-ray signals from dark matter annihilations must compete with the diffuse γ-ray

background. These include inverse Compton scattering of electrons with galactic

radiation and bremsstrahlung processes from accelerated charges [180]. Thus, uncer-

tainties in the propagation of cosmic rays and in the composition of the ISM (e.g. the
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distribution and density of hydrogen) lead to uncertainties in the expected diffuse

background. It is vital to understand the diffuse background in order to confirm (or

deny) the existence of dark matter annihilations and to distinguish between different

theoretical predictions.

At the present level of understanding, the differential flux for the diffuse γ-ray

background may be fitted by a power-law of the form [181]

(5.8)
d2Φbg

γ

dΩdEγ
=

(
d2Φbg

γ

dΩdEγ

)

0

(
Eγ

1GeV

)α

,

with α = −2.72 and a normalization
(
d2Φbg

γ /dΩdEγ

)
0

= 6 × 10−5.

5.2.1.2 Constraints from EGRET

EGRET completed nine years of observations in June of 2000 and was sensitive to

γ-rays in the energy range 30 MeV - 30 GeV. Using (5.8) for the diffuse background

near the galactic center and integrating over the angular resolution of EGRET (∆Ω =

10−3) for the energy range of interest (1 GeV . Eγ . 30 GeV) we find a background

flux of Φbg
γ ≃ 10−8 photons cm−2 s−1. For dark matter candidates that give a flux

in excess of this, EGRET should have detected a signal. From (5.4), a neutralino

annihilating to W -bosons with a mass of a couple hundred GeV and cross section

〈σv〉 ≈ 10−24 cm3 s−1 yields a flux comparable to the background Φdm
γ ≃ 4 × 10−8

photons cm−2 s−1. This gives the first indication of the tension between a 200 GeV

wino and the EGRET data. Of course, this result depends on the dark matter profile

– assumed here to be NFW.

Extracting robust constraints on dark matter candidates from EGRET is subtle

for reasons extending beyond the choice of the profile: there are uncertainties in both

the diffuse background, as well as the EGRET data itself.

EGRET has detected a possible excess above 1 GeV in all sky directions. Address-
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ing the discrepancy between the expected diffuse background and the EGRET data

has been considered by a number of authors [182, 185, 183, 184, 180, 187, 186, 135].

These authors have argued for explanations that range from the possibility of anni-

hilating dark matter3 [186] to systematic errors in the EGRET experiment [187].

A key challenge for addressing the possible excess is developing an accurate model

of the astrophysical background. This is particularly challenging given the inability to

disentangle various components. These include the weak extragalactic contribution

to the diffuse background, as well as a number of possible unresolved point sources

[182, 156]. Due to the uncertainties, proposed models for the background can vary

significantly. Compared to the background in Eqn. (5.8),

The ‘conventional’ GALPROP model [126] assumes a larger contribution from

inverse Compton scattering, giving a higher contribution to the background and

therefore to any signal that would be seen by EGRET. Yet other choices of back-

ground exist, including the ’Optimized’ background [126], chosen to fit the EGRET

excess without any additional Dark Matter component. At present, the take-home

message is that there are large uncertainties in the astrophysical background.

In addition to the uncertainties associated with the diffuse background and the

halo profile, there are other reasons for concern in regards to the quality of the

EGRET data. Indeed, EGRET was only designed to operate for two of its nine year

mission and an aging spark chamber introduced time-dependent uncertainties and

systematic errors into the high end data products [188]. In [187] is was found that

the most likely explanation of the EGRET excess was an error in the estimation of

the EGRET sensitivity at energies above a GeV. This was argued to be convincing

given that the ‘excess’ is seen in all sky directions, not just towards the galactic

3This explanation relies on a non-standard (anisotropic) choice for the halo profile, and seems to be at odds with
other sources of indirect detection [135].
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center.

With these caveats in mind, we use the EGRET data to constrain the 200 GeV

wino. We state the constraint as a bound on the 〈J〉. Assuming EGRET correctly

measured the background above a GeV and using the data from [189] to determine

the diffuse background, we find that a 200 GeV wino has an annihilation cross section

too large by a factor of three for an NFW profile – for a softer profile 〈J〉 ≃ 380

this would not be the case. These findings agree with already existing bounds in the

literature [190, 182, 156]. However, we have also found that using the lower choice

for the diffuse background in Eqn. (5.8) implies that the 200 GeV wino is already

marginally consistent with the EGRET data for the NFW profile4.

For now, it seems reasonable to consider the close proximity of the 200 GeV dark

matter to the current bounds set by EGRET encouraging, since we will see in Section

5.3 that the improvements of FGST should clarify the situation.

5.2.2 Anti-Proton Bounds

Measurements of cosmic ray anti-proton fluxes can also be used to put constraints

on light neutralino candidates. In fact, the PAMELA experiment will measure anti-

proton fluxes in the energy range 80 MeV - 190 GeV. It has already reported early

data [191] which seems consistent with and extends earlier results, e.g. [145, 140, 146].

Taken at face value, the anti-proton data would appear to exclude a 200 GeV

wino as an explanation of the PAMELA data, see e.g. [170]. However, anti-proton

constraints suffer from theoretical uncertainties in cosmic ray propagation, as has

been demonstrated in [192] (see also the discussion in [135]). One approach to bound

the uncertainties and set propagation parameters for anti-protons is to parametrically

fit models to well measured secondary/primary fluxes such as the Boron to Carbon

4See [70] for a similar approach to dealing with uncertainties in the diffuse background and bounds on neutralinos
coming from EGRET and FGST.
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Figure 5.2:
The anti-proton flux ratio for a 200 GeV wino-like neutralino as a function of kinetic
energy. The lowest curve represents the conventional astrophysical background, whereas
the remaining curves are the signal plus background for the 200 GeV candidate. These
curves are the flux from dark matter annihilations given different choices for propagation
model – all of which have been parametrically fixed by matching to the well known
spectrum of secondary/primary fluxes (e.g. B/C ratio) [192].
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Figure 5.3:
Positron flux ratio for a wino-like neutralino with a mass of 200 GeV. The lowest curve
represents the astrophysical background, whereas the remaining curves are the flux
ratio for (large) energy loss rate of τ = 5 × 1016 s and varying propagation model (as
discussed in the text).

(B/C) ratio. In [192] it was found that this technique suffers from a number of

degeneracies. These degeneracies arise from the fact that the effective size of the

confining region in which the cosmic rays propagate and the amount of energy lost

to diffuse processes can be varied in combination, giving a good fit to the B/C ratio

for a variety of values.

For the 200 GeV candidate we consider here, and assuming an NFW profile, the

uncertainties in the propagation can lead to variations in the Dark Matter induced

anti-proton flux by as much as an order of magnitude. This can be seen in Figure

5.2, where we present the dark matter signal for the benchmark propagation models

appearing in [192] that yield the minimum and maximum anti-proton signal. Both
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models are consistent with the B/C ratio. The order of magnitude variation in

the theoretical prediction might cause the reader to be hesitant to conclude a 200

GeV wino is excluded from the data. At present, even for the minimal choice of

propagation model, the 200 GeV candidate still gives a prediction that is about two

times that expected from the recent observations of PAMELA [191]. If a 200 GeV

wino is to explain the data, there must be additional problems with the models used

to propagate the anti-protons.

Variation of the propagation parameters will also influence the positron spectrum.

Once the anti-proton flux is minimized, what happens to the positrons? This effect

is not that pronounced, primarily because the high-energy positrons relevant for

PAMELA originate within a couple kpc of Earth. Propagation uncertainties are

thus reduced relative to those for anti-protons. Fig. 5.3 shows the effect on positrons

of using the “min” and “max” models used for Fig. 5.2.

5.3 Future Probes and Predictions for FGST

As we have mentioned, PAMELA will probe positron cosmic rays from 50 MeV

up to an estimated 270 GeV. Thus, if a light wino-like neutralino is responsible for

the positron excess, PAMELA must see a turn-over in the data, as can be seen from

Figure 5.1.

The ATIC experiment [193] has also reported an excess of cosmic ray electrons

above roughly 300 GeV. The wino candidate we describe here could not be responsible

for this excess. If the 200 GeV wino indeed accounts for the PAMELA excess, another

explanation would be required for the ATIC data.

We now consider the ability of FGST to detect the 200 GeV wino invoked above

We focus on measurements of the galactic center, though measurements of the halo
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could be useful if progress is made in understanding the backgrounds there in de-

tail. In particular [194, 195] discuss the possibility to detect DM annihilations from

galactic substructure (sub-halos dispersed throughout the primary halo), which is

suggested by certain N-body simulations. FGST may be able to resolve this struc-

ture.

FGST will offer a significant improvement over EGRET, probing energies from 20

MeV to 300 GeV with an angular resolution of around 0.1 degrees (≈ 10−5 sr). The

improved angular resolution will not only allow for separation of the point sources

detected by EGRET, but the increased sensitivity will allow for a better opportunity

to distinguish dark matter annihilation signals from the diffuse background. For the

energy range of interest (around 1 GeV . Eγ . 300 GeV) one finds a background flux

from (5.8) of around Φbg
γ ≃ 10−10 photons cm−2 s−1 at a FGST angular acceptance

of 10−5 sr. Compared with the EGRET result of ΦEGRET
γ ≃ 10−8 photons cm−2

s−1, this allows for an improved sensitivity by two orders of magnitude in terms of

resolving signal from background. As in the case of EGRET, the diffuse background

and halo profile are both sources of significant uncertainty. The better resolution

and ability of FGST to resolve point sources should improve our knowledge of the

diffuse background.

For our predictions for FGST we consider an 0.5◦× 0.5◦ region about the galactic

center assuming an NFW profile and averaging with a minimum resolution set by

FGST (i.e. 10−5 sr). We have considered a number of choices for modeling the

diffuse background. We find that for both a low choice of background given by the

power-law with normalization in (5.8), as well as for higher backgrounds such as the

‘conventional’ and ‘optimized’ backgrounds mentioned above, that FGST will report

a signal early. We find for the conventional background and a 200 GeV wino that
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Figure 5.4: The differential flux for the 200 GeV wino-like neutralino and an NFW profile averaged
over the minimum angular resolution of FGST (i.e. ∆Ω = 10−5 sr) and integrated over
a 0.5◦ × 0.5◦ region around the galactic center. For the diffuse background we take
the ‘conventional’ galprop model discussed in the text. The error bars represent the
statistical uncertainty after one year of observations and do not account for systematical
uncertainties.

a variation in the halo profile down to 〈J〉 ≃ 70 in the region about the galactic

center can still result in a detectable signal for FGST at the 5σ level within the

first year of observation. In Figure 5.4 we present the prediction for the 200 GeV

wino with an NFW profile, again after only one year of data. The error bars reflect

statistical uncertainties. FGST should be capable of observing the products of wino

annihilation after the first year.
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5.4 Summary

The PAMELA group [160] has reported a robust excess in galactic positrons with

energy above about 10 GeV, compared to those expected from known astrophysical

sources. This is consistent with earlier reported excesses from [137, 138, 139]. The

source that produces postirons will likely produce antiprotons and γ-rays. No unam-

biguous excess in these channels has been observed, which provides constraints on a

dark matter interpretation.

Only if standard assumptions about the propagation of cosmic rays are relaxed can

the excess in positrons arise from galactic annihilation of winos, the superpartners

of W bosons. Although there are apparent conflicts with anti-protons and gammas,

given the astrophysical uncertainties it is likely premature to assume the wino in-

terpretation is completely excluded. Further investigation of these uncertainties is a

topic for future work. Fortunately, data from FGST and further data from PAMELA

will help to clarify the picture soon. Later data from AMS-02 will also help.

If the PAMELA excess is indeed due to a well-motivated wino LSP, the implica-

tions are remarkable. We would learn what the dark matter of our universe is. It

would be the discovery of supersymmetry, telling us something about the resolution

to the hierarchy problem. It would imply a number of superpartners will likely be

seen at LHC, confirming the result. And we would be learning that the universe had

a non-thermal cosmological history that we can probe.
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Conclusions

This thesis focused on studying how supersymmetry can be observed at both the

LHC, as well as several astrophysical observation experiments that may be indirectly

sensitive to dark matter. We presented several novel approaches to the problem of

extracting meaningful information about the fundamental SUSY parameters, even

when the signal is difficult to recover at the LHC. Additionally, we explored bounds

on SUSY models of non-thermal dark matter from recent astrophysical observation

experiments.

In Chapter II we considered a different and well-motivated example of gluino pair

production at the LHC, where each gluino can have a large decay fraction to two

top quarks and the neutralino LSP. This results in events with four top quarks and

large missing energy in the final state. We found this scenario can be observed in

excess of the SM background with only a few hundred pb−1 integrated luminosity,

potentially allowing for rapid discovery. However, an inherently large jet multiplicity

and increased combinatorical backgrounds make direct reconstruction of top quarks

extremely inefficient. We demonstrated a robust approach whereby four-top events

are identified by fitting counting-signature measurements to various hypotheses for

the underlying physics model.

157
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In chapter III we investigated the problem of identifying gaugino mass unification

from LHC measurements. Specifically we examine the scenario known as mirage-

mediation, which incorporates both gravity- and anomaly-mediation. The relative

contribution of each mechanism is controlled by a single parameter α. In the limit

α→ 0 one recovers the mSUGRA relation for the low-scale gaugino mass parameters

associated with universal boundary conditions, M1 : M2 : M3 = 1 : 2 : 6. For

α > 0 one departs from universality and eventually approaches anomaly mediation.

We showed that by utilizing a χ2-like metric on the space of a specific set of LHC

signatures, it is possible to detect non-universality to roughly α ≃ 0.3 with only a

few fb−1 for the majority of the parameter space.

In Chapter IV we argued that the positron excess reported by HEAT may be

explained by a 200 GeV wino LSP. A wino LSP is well-motivated, and arises naturally

in models based on anomaly mediation, as well as string-models compactified on a

G2 manifold. However, a wino WIMP annihilates far too efficiently to account for

the observed relic abundance Ωh2 assuming a thermal history. Verification of this

scenario would be remarkable, as it would indicate the existence of a non-thermal

source of DM. However, in Chapter V we revisited this scenario, and also argued that

such a WIMP does not convincingly model the more recent PAMELA measurements

if conventional astrophysical propagation parameters are assumed. Even if one is

able to model the positron emission, tension appears with the anti-proton data, which

appear to follow the conventional background assumption while the DM annihilation

should produce a detectable excess.
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6.1 Future Directions

A potential avenue for future work is to focus on using the techniques presented

here to determine the nature of the LSP. The properties of a neutralino LSP are con-

trolled by SUSY-breaking. Specifically, the soft-breaking lagrangian permits mixing

between the gauginos and higgsinos, resulting in a mass-eigenstate wavefunction for

the neutralino that consists of an admixture of the electroweak-inos. The composi-

tion of this admixture has significant implications for both the form of useful collider

signatures at the LHC, and also the cosmological properties that a LSP WIMP may

have. Therefore, determination of the LSP wavefunction is crucial to understanding

our cosmological history as well as the nature of SUSY breaking. With the LHC set

to begin operations later this year, and a host of other direct and indirect-detection

experiments ongoing and planned, it may very soon be possible to achieve this goal.

This research program should tackle two primary objectives:

1. Find a robust technique for distinguishing the composition of a LSP WIMP

using measurements at LHC.

2. Determine the role a LSP WIMP plays in explaining the apparent excesses ob-

served in several recent indirect-detection experiments (e.g. ATIC, HEAT, and

PAMELA), by performing a thorough investigation of the theoretical uncertain-

ties and assumptions associated with these models.

A viable approach to achieving the first objective is to utilize a footprint-style

analysis similar to that presented in Chapter III to distinguish various LSP compo-

sitions. Due to the nature of hadron collisions, production of colored gluinos and

squarks is expected to dominate at the LHC. If supersymmetry maintains R-parity

invariance, these will be produced in pairs and immediately undergo a sequence of
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decays that terminates with the creation of a stable LSP. The LSP itself escapes

direct detection due to its weak coupling to ordinary matter. However, the branch-

ing ratios involved in the decays - and therefore also the collider signatures - are

sensitive to the low scale spectrum, as well as the LSP composition. Thus, it should

be possible to identify signatures exhibiting high sensitivity to the LSP composition

and utilize them to differentiate various admixtures.

While our study focused on detecting small variations from universality, the ap-

proach is clearly also sensitive to the neutralino LSP wavefunction, since its composi-

tion depends on the relative values of M1, M2, and also the higgsino mass parameter

µ. Thus it should be possible to readily extend this analysis in a model-independent

fashion and examine much wider variations in these parameters, corresponding to

bino, wino, as well as higgsino LSP examples. Following success at this stage, the

study can be extended further to show distinguishability between more complicated

admixtures.

The second objective can be achieved by thoroughly studying the apparent ex-

cesses in the ATIC [193] and HEAT [137] /PAMELA [160] positron data and their

relation to dark matter annihilation. As discussed in Chapter V numerous studies

appeared [164, 165] that attempt to explain the positron excess as the result of WIMP

annihilations in the galactic halo. Intrinsic to these studies, however, is significant

theoretical uncertainty, both in the astrophysical assumptions regarding cosmic-ray

propagation and background sources, as well as in the computation of particle fluxes

from DM annihilation (for example we do not understand exactly how the DM is

distributed throughout the galaxy). While future measurements will help resolve

these issues, if we are to believe that DM is indeed the LSP, it is then prudent to

consider that the observed excesses may be only partially due to DM annihilation,



161

and explore the constraints from not only indirect-detection, but also direct detec-

tion experiments (e.g. Xenon100, CDMS) as well as astrophysical explanations, such

as local pulsars [196]. This objective is deeply related to the first, as it is essential

to verify that DM properties obtained from measurements at different experiments

are fully consistent with one another.

Successful completion of this effort will result in a greater understanding of how

properties of a neutralino LSP can be probed at the LHC. Most importantly, a stan-

dard technique will be developed that will allow experimentalists to quickly deter-

mine the composition of the LSP using relatively little data. Because the principles

associated with this method are not limited to the LSP, additional knowledge will be

obtained regarding detection of additional superpartners. This information can then

be used in conjunction with available and forthcoming astrophysical measurements

to further constrain the properties of DM, and to identify the role the LSP plays in

explaining its origin.
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