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Abstract

The basal ganglia are a set of subcortical nuclei needed for proper action selection and behavior. 

Their dysfunction can lead to serious disorders of movement and motivation, such as Tourette’s 

syndrome and Parkinson’s disease. Striatal fast-spiking interneurons (FSIs) contribute to normal 

action selection by shaping local information processing in the striatum. As part of ongoing 

investigations into striatal microcircuitry, I first developed a new data analysis technique that 

increases our ability to detect and record different striatal cells types. I then applied this 

technique during an investigation of how striatal cells are affected by a psychostimulant 

(amphetamine) or an antipsychotic (eticlopride). These drugs are known to cause behavioral/

psychological changes largely via their effects in the striatum. However, exactly how they do so 

on the microcircuit level is unknown. We found opposing effects on FSI firing rates for these two 

clinically important drugs. Amphetamine significantly increased mean FSI firing rate, while 

eticlopride decreased it. These findings are relevant to understanding the neural effects of 

systemic drug treatments for basal ganglia disorders.

Opposing Effects     2



Contents

Chapter 1: Wavelet Filtering Before Spike Detection Preserves Waveform Shape 5

Method 6

The Wavelet Filter 7

The Wavelet Filter Algorithm 9

Cluster Quality  10

Results 11

Discussion 14

References 15

Tables 18

Figure Captions 18

Figures 21

Chapter 2: Opposing Effects of Amphetamine and Eticlopride on Striatal Fast-Spiking 
Interneuron Firing Rate 27

The Basal Ganglia 27

Striatal Cell Types 28

Predicted Firing Rate Changes 30

Method 31

Electrophysiology 31

Treatment 32

Histology 33

Results 34

Identifying Striatal Cell Types 34

Opposing Firing Rate Changes After Drug Injection 35

Discussion 36

Prior Studies 37

FSI Behavior Does Not Align with a Global Feedforward Inhibition Model 38

Further Directions 40

References 40

Acknowledgment 43

Figure Captions 43

Figures 45

Opposing Effects     3



 This thesis has two chapters. In the first, I develop a filtering method that preserves 

waveform shapes in extracellular recordings. This part has been published in the Journal of 

Neuroscience Methods (Wiltschko et al., 2008).

 Using this method to preprocess striatal electrophysiology data, I then conducted a simple 

experiment to assess the changes in firing rates of striatal fast-spiking interneurons and medium-

spiny neurons after treatment of a psychostimulant, amphetamine, and an antipsychotic, 

eticlopride. This chapter is a manuscript in preparation. 
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Chapter 1: Wavelet Filtering Before Spike Detection Preserves Waveform Shape 

 The removal of unwanted frequencies and artifacts is essential in the analysis of 

electrophysiological data, especially where the data of interest are the time stamps of neuron 

action potentials, also called “spikes.” In addition to high amplitude spikes, typical electrode 

signals include local field potentials (LFPs), instrument noise, and spikes from neurons too 

distant from the recording site to be effectively discriminated. An ideal filtering technique would 

preserve only discriminable spikes without distorting their waveforms, since differences in 

waveform shape are useful in clustering and also provide an important source of information 

about neuronal phenotypes (e.g. Csicsvari et al., 1998; Barthó et al., 2004; Berke et al., 2004). 

Filters commonly used in electrophysiology, such as the Butterworth filter, can be fast to 

compute and possess a maximally  flat  frequency response (Butterworth, 1930). However, they 

possess the undesirable side-effect  of distorting the time-domain, e.g. the shape of action 

potentials. 

 After the data are filtered, they are usually thresholded to locate spike events, and then 

certain features of the extracted spikes are used in a manual or semi-automated clustering 

procedure (Lewicki, 1998). The features to be used in clustering can include spike amplitude, 

valley width, principal components or wavelet decomposition coefficients. Wavelets have 

recently  gained notice as a powerful tool for signal analysis in the neurosciences and have been 

applied in a myriad of ways, including spike detection (Hulata et al., 2002; Nenadic and Burdick, 

2005), cell classification (Cesar and Costa, 1998; Letelier and Weber, 2000; Quiroga et al., 2004) 

and EEG/LFP analysis (Clarençon et al., 1996; Adeli et al., 2003; Markazi et al., 2006; Berke et 

al., 2008). Here, we apply wavelet filtering to “raw” (wide-band) electrode signals as a 
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preprocessing stage before spike detection and sorting. This approach accurately maintains 

waveform shape while removing low frequency field potentials and noise artifacts. We 

demonstrate benefits for the later stages of spike discrimination, compared to the standard 

Butterworth bandpass filter.  

Method

 Algorithms were implemented in the Python language (van Rossum, 1995) using the 

modules NumPy (Oliphant, 2006), SciPy  (for Butterworth filter, as implemented by Jones et al., 

2001), Modular toolkit for Data Processing (for principal components analysis (PCA), as 

implemented by Berkes and Zito, 2007), and PyWavelets (for wavelet transforms, as 

implemented by Wasilewski, 2006). Algorithms were duplicated when necessary in Matlab for 

speed comparisions, using the Wavelet  and Signal Processing toolboxes (Misiti et al., 2000). All 

computations were performed on an AMD Athlon 2.2 GHz Windows XP machine with 4 GB of 

RAM. Electrophysiological data were obtained from tetrodes implanted in two awake freely-

moving animals (one rat, one mouse). For the rat, 46 cells across 5 tetrodes from two separate 

recording sessions were isolated in the striatum, including 30 presumed medium-spiny projection 

cells (Berke et al., 2004). For the mouse, 20 cells were isolated from 2 tetrodes in a single 

session from dorsal hippocampus area CA1, including 17 presumed pyramidal cells. In both 

cases signals were recorded continuously at 31250Hz/channel with hardware filtering with a 

passband of 1Hz to 9000Hz. Spikes (shown with negative voltage up) were sorted manually 

using Offline Sorter (Plexon Inc). For comparison of filter performance we used a 4th order 

Butterworth bandpass filter, with a passband from 300 Hz to 6000 Hz, typical settings for 

neurophysiology  filters. For analyses and visualization, spikes were interpolated by a factor of 
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four then realigned at their peaks. They were then downsampled to their original sampling 

frequency of 31250Hz.

The Wavelet Filter

 We used wavelet multi-level decomposition and reconstruction (WMLDR) as the core of 

our filter. There are many different names for this procedure, including fast wavelet transform, 

fast orthogonal wavelet  transform, multiresolution algorithm, and pyramid algorithm (Addison, 

2002). The algorithm is represented visually  in Figure 1 (for further information, see Daubechies, 

1992 or Addison, 2002). First, the signal is decomposed into frequency  sub-bands (Fig. 1A; Hu 

et al. 2006) by  separate iterative convolution with high- and low-pass wavelet decomposition 

filters (Fig. 1C). For our application, we used pre-computed values of the Daubechies 4 wavelet 

(Daubechies, 1988), as provided by the Matlab wavelet toolbox and the PyWavelets Python 

module. The coefficients containing the higher frequencies of the signal are saved at each 

iteration i as detail coefficients, labeled as cDi. The coefficients containing the lowest 

frequencies, the approximation coefficients, are labeled cAn. Table 1 shows the frequency  content 

of each coefficient set at levels 1-6. The signal is subsequently reconstructed by iteratively 

convolving the approximation coefficients with the low-pass reconstruction filter, convolving the 

detail coefficients with the high-pass reconstruction filter and summing the results (Fig. 1B). The 

reconstruction filters are the time-inverses of the decomposition filters (Fig. 1D), and therefore 

provide a zero-phase-lag reconstruction (for discussion of this point, see Hu et al., 2006). In this 

application, we removed all information about the lowest frequencies in the signal by setting all 

values in cAn to zeros. This has the effect of a high-pass filter after reconstructing the signal. 
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This dampening or zeroing of approximation coefficients is sometimes referred to as  “wavelet 

de-noising” in the signal processing literature. 

One cannot directly specify the cutoff frequency for the wavelet filter. Instead, one 

chooses a level of decomposition n which implicitly defines a high-pass bound. The 

approximation coefficients always contain the lowest frequencies in the signal, up  to some 

frequency fc. The cutoff frequency  of the wavelet filter is then fc, since it is the highest frequency 

not to be contained in the final reconstructed signal. The cutoff frequency is found to be

fc = Nyquist Frequency / 2n

where n is the level of decomposition and the Nyquist frequency is equal to half the data 

sampling rate. Although we did not do this, in practice one could resample the signal before 

WMLDR to yield a specified cutoff frequency. 

 Using the Daubechies 4 wavelet, we performed an n = 6 level decomposition, which 

passes frequencies above 244 Hz given a sampling rate of 31250 Hz. We chose this level after 

comparison of the signal-to-noise ratio (SNR) of spikes and reconstruction quality across various 

levels (Fig. 3B). Although an n = 7 level decomposition provides better clustering quality and 

less waveform distortion, using an n = 6 wavelet filter grants a much higher SNR with small 

losses in clustering ability (Fig. 4). We chose to compare our wavelet filter to a 4-pole 

Butterworth filter with a passband of 300-6000 Hz, since this is one of the most common settings 

of hardware filters, and one of the highest performing, with respect to waveform distortion, SNR, 

and clustering quality (Fig. 4). Using 244 Hz as the Butterworth high-pass cutoff marginally 

decreases signal distortion by minimally smearing the artificial “hump” across time (Fig. 3A, B), 
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but at the cost of further decreasing the SNR (not shown). Overall, the difference between 244Hz 

and 300Hz is not large enough to be relevant here.

The Wavelet Filter Algorithm

Pick a maximum decomposition level, n. Pick a wavelet and its associated decomposition and 

reconstruction filters (Fig. 1C & D). High-pass and low-pass decomposition filters are 

abbreviated as HiD and LoD, respectively. The corresponding reconstruction filters (which are 

the time inverses of the decomposition filters) are labeled as HiR and LoR. Then, for a signal S,

1. Decomposition of the signal. 

 Repeat for each i = {1, 2, ..., n}

• Convolve S with HiD. Keep only the even-indexed elements. Call this cDi and save.

• Convolve S with LoD. Keep only the even-indexed elements. Call this cAi, but do not 

save unless i  = n. Set this to be S.

2. Reconstruction of the signal. 

• Set all coefficients in cAn to 0.

• Initialize Sf = cAn.

Repeat for each i = {n, n - 1, ..., 1},  

• Upsample (Add zeros as even-indexed elements into Sf and cDi).

• Convolve Sf with LoR. Call this cA*.

• Convolve cDi and HiR. Call this cD*.

• Sf = cA* + cD*
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Cluster Quality

To quantify clustering quality, we used two measures as described by  Schmitzer-Torbert et  al. 

(2005). Isolation Distance is a measure of how well-separated a cluster is from the rest of a data 

set and LRatio indicates the distribution of non-cluster spikes around a cluster. 

 The Isolation Distance for cluster c, containing nc spikes, is defined as the squared 

Mahalanobis distance of the ncth closest non-c spike to the center of c. The squared Mahalanobis 

distance is calculated as

€ 

Di,c
2 = (xi −µc )

T (xi −µc )C

−1
∑

where xi is the vector containing features for spike i (3 PCA coefficients per tetrode wire), and µc 

is the mean feature vector for cluster c. ∑c is the covariance matrix of spikes in cluster c. The 

Isolation Distance is not defined when nc is greater than the number of non-cluster spikes. A 

higher value indicates that non-cluster spikes are located farther away. The Mahalanobis distance 

(Mahalanobis, 1936) is used because it helps compensate for ellipse-shaped distributions of 

spikes, i.e. a point  at  any  edge of an ellipse is equidistant from the center of the ellipse using 

Mahalanobis distance. Note that Isolation Distance is not normalized against  cluster size, so that 

clusters with a large number of spikes will tend to have a higher Isolation Distance.

  LRatio is calculated as follows for cluster c:

€ 

L(c) = 1−CDF
Xdf
2 (Di,c

2 )
i∉c
∑

where Di,c2 is the squared Mahalanobis distance between non-c spike i and the center of c and 

€ 

CDF
Xdf
2 is the chi-squared cumulative distribution function describing the distribution of spikes in 
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cluster c. The number of degrees of freedom is equal to the number of features used in the cluster 

space (here we use 3 principal components for each wire in a tetrode, df = 12). Then,

€ 

LRatio(c) =
L(c)
nc

 A low LRatio indicates that there is a relatively empty space between the cluster and other 

spikes in the data set. LRatio positively correlates with Type II errors (false omissions) and 

Isolation Distance negatively  correlates with Type I errors (false positives; Schmitzer-Torbert et 

al., 2005). Therefore, a lower LRatio and a higher Isolation Distance together indicate better 

cluster quality. We tested for a significant  difference between the clustering performance for the 

wavelet- and Butterworth-filtered spikes using the paired Student’s t-test. The number of points 

on which PCA was performed was varied as a window size, centered on the spike peak. To assess 

a possible improvement in spike detection, we calculated the SNR for each neuron. We defined 

the SNR as the peak amplitude of a neuron’s average filtered waveform divided by the standard 

deviation of the entire filtered recording session from which the spikes were extracted. The 

standard deviation was calculated using 60 1-second evenly  distributed samples of the filtered 

data. 

Results

 As found in non-neural applications, WMLDR is an effective means of removing the 

lower frequencies from an electrophysiological signal (Fig. 2), as a preprocessing step  before 

spike detection and sorting. To assess the distortion of waveforms produced by  different filtering 

techniques, we first assigned spikes to single-units using standard Butterworth bandpass filtering 

(4-pole, 300-6000Hz passband), detection via constant threshold, and manual clustering. From 
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these time-stamps, we then re-extracted spike waveforms from continuous data – either the 

original wideband signal (i.e. we took a spike-triggered average of the “raw” voltages) the 

wavelet-filtered, or the Butterworth-filtered signal. For neurons with the most common 

waveform shapes , typical of projection neurons in striatum (Fig. 3Bi, ii; Berke et al 2004) and 

hippocampus (Fig. 3Biii, iv), Butterworth filtering produces a highly distorted “valley” shape, 

while wavelet-filtered signals retain higher fidelity to the original wide-band signal. For briefer 

waveforms that represent likely interneurons, (e.g. Fig. 3Bv, vi) the distortion produced by 

Butterworth filtering was less marked but still typically more pronounced than with wavelet 

filtering. In no case did we observe marked distortion produced by wavelet filtering, although 

there was a slight tendency to produce a lowering of the signal around the spike peak; the extent 

of this effect varied with choice of wavelet decomposition level (Fig. 3C).

 We noticed that part of the distorting effect of Butterworth filtering was to reduce the 

peak height of striatal and hippocampal projection neuron spikes (e.g. Fig. 2). We compared the 

signal-to-noise ratio (SNR) for presumed rat and mouse projection neurons (n=47), and found 

that wavelet filtering produced a significant  increase in SNR over Butterworth filtering (p < 0.05, 

paired t-test). For cells with briefer waveforms (including presumed striatal and hippocampal 

fast-spiking interneurons), the overall difference in SNR was not significant n=19; p = 0.486, 

paired t-test), and a few cases even had higher SNR with Butterworth filtering. This is because 

Butterworth filtering generally  shifts the spike signal towards zero mean, which brings the signal 

closer to an upper threshold for cells with large downward deflections (Fig. 3v, vi). Applying 

both a positive- and negative-threshold would remove this advantage over wavelet filtering.
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 The increased SNR observed for striatal and hippocampal projection neurons with 

wavelet filtering noticeably enhanced cluster separation, when plotting peak height on each wire 

(for example, see Fig. 4). To quantitatively assess this difference between filtering methods on 

spike discriminability, we performed principal components analysis (PCA) on spike waveforms, 

using varying sizes of time window centered on the spike peak. We then measured the extent of 

cluster separation using Isolation Distance and Lratio in principal components space as a function 

of window size (Fig. 5). The best  results were obtained using narrow windows around the peak 

(~350-400µs), with wavelet filtering. This is a useful result for spike sorting, because it indicates  

that only  a narrow window around the spike peak need be extracted for effective cluster 

discrimination in PCA space. 

 We quantified filter performance for a variety  of filter types and parameters (Fig. 6), 

including both high- and band-pass Butterworth filters, higher-order versions of each, and an 

alternative IIR filter (Bessel bandpass). SNR determines the detectability of a spike using a 

constant threshold. An n=6 level wavelet filter outperforms all Butterworth filter types here, 

although the Bessel filter performs equivalently. The wavelet filter demonstrates markedly lower 

waveform distortion than any non-wavelet  filter examined. The clustering performance of the 

wavelet filter, measured by  Isolation Distance, was also significantly higher than the alternatives.  

In choosing a wavelet order, there is a tradeoff between SNR for initial detection and subsequent 

clustering performance. Although a level 6 wavelet filter has the most balanced performance, at 

some computational cost one could obtain even better results by using a level 5 wavelet-filter to 

detect spikes, then clustering them using either unfiltered waveforms or those obtained with a 
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level 7 wavelet-filter. Our results also show among IIR filters, using a Bessel filter is a far better 

option than regular Butterworth filtering. 

 WMLDR is an established algorithm that is computationally efficient (Mallat, 1989). For 

a signal of length N and a high and low-pass filter set each of length K, the total decomposition 

and reconstruction of the signal requires at most 2KN multiplications and additions (Mallat, 

1999), resulting in an operation that  scales linearly with signal length. In our experience, using  

regular desktop computers, the execution time is comparable to Butterworth filtering and much 

less than the duration of the signal being processed even for recordings with >80 simultaneously 

processed channels. Thus,wavelet filtering is clearly  fast enough to be used online for those 

laboratories that either do not wish to save the full high-speed wide-band signal, or that  perform 

real-time spike sorting (e.g. for brain-machine interfaces). 

Discussion

 We have shown several advantages for using wavelet filtering with electrophysiological 

data, compared to current standard methods. WMLDR can faithfully preserve spike shape, which 

is a useful partial indicator of neuronal phenotype. For striatal and hippocampal projection 

neurons, which make up  the great majority of neurons in those regions, wavelet filtered spikes 

exhibit a significantly higher SNR, allowing for easier spike detection and enhanced spike 

discrimination through cluster analysis. The technique is based on relatively simple operations, 

and so is fast enough to be applied online. It is thus reasonable to use it as a pre-processing filter 

before standard threshold-based spike detection methods, which require a signal with the low 

frequencies removed. Alternatively, methods that use wavelet coefficients for spike detection 

(e.g. Nenadic and Burdick, 2005, Hulata et al. 2002) could modify this approach to avoid 
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redundant computation, by performing wavelet decomposition once for both removal of low 

frequencies and spike detection.

 There is room for further refinements of the technique to increase the flexibility  of the 

passband. First, a more subtle wavelet denoising technique might be used. In this paper we 

destroyed all the approximation coefficients, and, by  not computing higher-level, lower-

frequency detail coefficients, we effectively destroyed them as well. Second, we might employ a 

more complex wavelet algorithm called wavelet packet decomposition, along the lines of Hu et 

al., 2006. This is a more computationally intensive alteration of WMLDR can split both the high- 

and low-frequency components of a signal into equally-spaced frequency bands. WMLDR, by 

contrast, only splits the low-frequency  components of a signal. This would enable the 

construction of a wavelet band-pass filter with arbitrarily precise control over the passband, 

although with a higher computational cost than our current approach.
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Tables

Table 1. Frequency content of detail and approximation coefficients at  wavelet decomposition 

levels 1-6, for a signal sampled at 31250Hz.

Coefficients Frequency content

cD1 7812 - 15625 Hz

cD2 3906 - 7812 Hz

cD3 1953 - 3906 Hz

cD4 976 - 1953 Hz

cD5 488 - 976 Hz

cD6 244 - 488 Hz

cA6 0 - 244 Hz

Figure Captions

Figure 1. Schematic description of the wavelet-filtering algorithm. cAi denotes approximation 

coefficients at level i, cDi denotes detail coefficients at  level i. A. Block-diagram representation 

of the decomposition stage of the wavelet filtering algorithm (see Methods). B. Representation of 

the reconstruction phase. C. The decomposition wavelet filters. The high-pass filter is in black 
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labeled as HiD, the low-pass filter is in grey labeled as LoD, and each has 8 coefficients. The y-

axis represents coefficient values. D. The reconstruction wavelet filters. The high-pass filter is in 

black labeled as HiR, and the low-pass filter is in grey labeled as LoR.

Figure 2. Comparison of unfiltered (top), wavelet filtered (middle, level 6 decomposition) and 

Butterworth filtered (bottom, 300-6000 Hz bandpass) traces from the same section of 

continuously recorded striatal tetrode data. Dotted black lines represent  a threshold of 4 times the 

standard deviation calculated across the whole recording session.

Figure 3. Demonstration of the distortions caused by wavelet and Butterworth filtering. A. 

Filtering of a 1 ms Hanning window, to illustrate the general type of distortion caused by each 

filtering method. B. Average spike waveforms for 6 representative cells. Solid black traces are 

wavelet filtered (level 6 decomposition), solid grey traces are Butterworth filtered (300-6000 Hz 

4th order bandpass), and dotted black are unfiltered. Each set of spikes is normalized such that 

the largest spike has height  1 for the purpose of comparing relative shapes.  The SNR is indicated 

by black text on top for wavelet-filtered cells, and grey text on bottom for Butterworth-filtered 

cells. Fast, sharp  waveforms generally benefit in SNR from wavelet-filtering, however, the more 

common, “wider” waveform shapes have consistently  higher SNR when wavelet-filtered. C. 

Average waveform shape of one cell, wavelet filtered with different levels of decomposition. 

Note that level 7 gives a near-perfect  reconstruction of the unfiltered spike shape, but passes 

frequencies above 122 Hz, which reduces SNR during spike extraction. In our analysis, we used 
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level 6, which has a cutoff frequency of 244 Hz and a much improved SNR over level 7, while 

better preserving spike shape than level 5 (Fig. 6).

Figure 4. Comparison of cluster separation for wavelet- and Butterworth-filtered spikes. In this 

example, five cells were recorded simultaneously from a striatal tetrode. Left: The average 

waveform for each cell on each wire of the tetrode (1 ms per wire). Blue and red traces are 

presumed fast-spiking interneurons, while others are medium spiny neurons (MSNs). Middle: 

Isolation Distance of wavelet (W) and Butterworth (B) filtered spikes, calculated using only  the 

peak heights on each tetrode wire. Right: plot  of peak heights for each cluster, showing visibly 

improved separation using wavelet filtering.

Figure 5. Wavelet filtering allows superior cluster separation with fewer data points. To 

determine how much of the spike waveform contributes to clustering performance, PCA was 

performed with varying window sizes (see Methods). Top: Plot of Isolation Distance versus 

window size used to perform PCA. Larger values of Isolation Distance are better. Circles are data 

from wavelet filtered clusters, and triangles are Butterworth filtered. A total of 47 presumed 

projection cells (30 from rat striatum, 17 from mouse hippocampus) across 7 tetrodes over 2 

sessions each were used to compute cluster quality. Crosses above the data points indicate that 

there was a significant difference between the two filtering methods (p < 0.05, paired t-test, 

without correction for multiple comparisons). Middle: Plot of LRatio versus the window size. 

Lower values of LRatio are better. For both measures, the best performance was obtained using 

wavelet filtering using a ~350-400 µs window, corresponding to approximately 11-13 samples at 
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31250Hz. Bottom: a visual representation of the time window used for PCA superimposed of an 

example mean cell waveform (wavelet-filtered in black, Butterworth-filtered in grey).

Figure 6. Quantitative comparison of different filtering methods. Left: The SNR (see Methods) 

determines spike detectability. Middle: Waveform distortion is calculated as the mean squared 

Euclidean distance between each cell’s mean unfiltered waveform and mean filtered waveform 

(n=47 projection cells). The waveforms are normalized such that the unfiltered waveform has 

peak height 1. The Isolation Distance (see Methods) is calculated using 3 PCA coefficients per 

wire (on 4 wires) performed on a 400µs window of the spike, centered on the peak.

Figures
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Figure 2. 
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Figure 4.
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Figure 5.
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Figure 6.
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Chapter 2: Opposing Effects of Amphetamine and Eticlopride on Striatal Fast-Spiking 

Interneuron Firing Rate

 In every organism, there exists a dynamic mass of unmade decisions. At every moment, 

some of these decisions are chosen to be enacted, while others are suppressed. In mammals, a 

group of subcortical nuclei known collectively as the basal ganglia play a vital role in the 

refinement and selection of these unrealized decisions (Mink 1996; Murer et al., 2002; Graybiel 

et al., 2004). The dysfunction these nuclei likely contributes to neurological diseases such as 

Parkinson’s disease, obsessive-compulsive disorder, drug addiction and Tourette’s syndrome 

(Albin et al., 1989; Cummings, 1993; Berke and Hyman, 2000; Leckman et al., 2006). 

The Basal Ganglia

 The basal ganglia span the midbrain, diencephalon and forebrain, and are positioned 

dorsal to the brainstem. They are heavily interconnected and have extensive outputs to the 

thalamus and from cerebral cortex. The cortex provides the main source of input to the basal 

ganglia, synapsing mostly in the striatum. The striatum is the largest nucleus of the basal ganglia 

and serves as the input component and first information processing step. The output of the 

striatum exclusively reaches other nuclei of the basal ganglia, primarily the globus pallidus and 

substantia nigra. The striatum may be divided in several different manners, despite its 

homogenous appearance in simple histology in the rat. The most straightforward division is into 

dorsal and ventral regions. The dorsal striatum is composed of two nuclei, the caudate nucleus 

and the putamen. The ventral striatum contains the ventral portions of the caudate and putamen, 

as well as the nucleus accumbens (Gerfen and Wilson, 1996). One can also divide the striatum 

topographically into three regions based on the type of input it receives from cortex: the 
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sensorimotor, limbic, and associative striatal regions. Sensorimotor striatum receives motor, 

premotor and somatosensory cortical afferents in dorsolateral striatum. Ventromedial striatum 

has connections from limbic areas such as the hippocampus, prelimibic and infralimibic cortices 

and the amygdala. This area also includes the nucleus accumbens. Temporal, prefrontal and 

parietal areas innervate the associative striatal cell population, located in between the 

sensorimotor and limbic regions (Nakano et al., 2000, Voorn et al., 2004). 

 On a smaller scale, the striatum is a neurochemical mosaic, composed of “patches” and 

“matrix.” These unevenly distributed regions are identified by the molecules that cells express 

within their boundaries. The patches are identified mainly by high expression of µ-opioid 

receptors and receive limbic inputs. The matrix characteristically has high acetylcholinesterase 

activity and is innervated by motor and sensory cortex (Gerfen, 1984). Dorsolateral striatum has 

a higher density of matrix areas than medial striatum, whereas ventral striatum is denser in 

patches (Herkenham and Pert, 1981). 

Striatal Cell Types

 The patch-matrix regions provide boundaries restricting dendritic fields of the 

GABAergic medium-spiny neurons (MSNs), the most prevalent cell type of the striatum which 

composes at least 90% of the region’s cell population (Graveland et al., 1985). The MSNs 

support the bulk of information processing in the striatum. They receive extensive innervation 

from cortical axons, but their firing patterns are significantly shaped by striatal interneurons 

(Mallet et al., 2005). There are four known striatal interneuron types: three GABAergic and one 

cholinergic. The best understood class of GABAergic interneuron is the fast-spiking interneuron 

(FSI), which sends axons freely over the patch-matrix boundaries and is perhaps the most 
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powerful source of local inhibition in the striatum (Tepper et al., 2004). These cells contain the 

calcium-binding compound parvalbumin (historically, their defining feature) and are coupled 

electrically by gap-junctions. The exact role of FSIs in striatal computation is unknown, but they 

provide reliable and powerful perisomatic inhibition of MSNs, strongly affecting the occurrence 

and timing of MSN action potentials (Kawaguchi, 1993, 1997; Koos and Tepper, 1999).  

Although MSNs themselves have inhibitory connections to each other, the strength of these 

synapses are extremely weak compared to FSI inhibition (Czubayko & Plenz 2002; Tunstall et 

al., 2002; Plenz, 2003). 

 FSIs are more excitable than MSNs, and so tend to fire sooner after a burst of cortical 

input (Mallet et al., 2005). In order for an MSN to successfully fire an action potential, it must 

avoid FSI inhibition by either firing in a window where FSIs are silent, or overcoming inhibition 

by coincident cortical input. This feedforward inhibition may serve to increase contrast in the 

striatum by suppressing weakly activated MSNs, leaving only strongly selected (and presumably 

appropriate) actions represented in the striatum. 

 In a post-mortem analysis of individuals with severe Tourette's syndrome, FSIs were 

conspicuously less numerous in the striatum compared to healthy controls (Kalanithi et al., 

2005). Leckman and colleagues (2006) suggested that this deficit of FSIs in the striatum would 

lead to a reduced ability to suppress and filter out less-salient details from consciousness, 

manifesting physically as the tics that characterize Tourette’s syndrome. 

 Many psychoactive drugs alter normal dopamine transmission. A therapy to reduce tic 

severity and frequency in Tourette’s remains treatment with classical antipsychotic drugs (major 

tranquilizers) that are dopamine D2 receptor antagonists. The striatum has the highest density of 
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dopamine receptors in the rat brain (Boyson et al., 1986; Weiner et al., 1990) and thus is a major 

site of action for psychoactive drugs. There are two main subtypes of dopamine receptor, and 

each have differing effects on cells. Activation of D1 receptors tend to excite cells, whereas D2 

receptor activation is generally inhibitory.  So, given that the striatum is a target for drug action 

modulating dopamine, it is important to know how striatal FSIs are affected by psychoactive 

drugs, particularly psychostimulants and antipsychotics. 

Predicted Firing Rate Changes

 There has been no published study to our knowledge exploring pharmacological 

modulation of FSIs in awake animals. Here, we examine the changes in firing patterns of FSIs 

after giving either the antipsychotic eticlopride or the psychostimulant amphetamine. Eticlopride 

is a potent dopamine D2-receptor antagonist that induces sedation without catalepsy (Ferrari and 

Giuliani, 1995). Amphetamine is a psychostimulant that increases synaptic dopamine 

concentration through and at high doses can induce tic-like stereotypies that impair the normal 

variety of behavior.

 Do psychostimulants and antipsychotics affect locomotion and stereotypy by specifically 

affecting FSIs? One hypothesized role of the FSI population in the striatum has been that of a 

global feed-forward inhibition network in the striatum acting to specifically suppress unwanted 

locomotor behavior. The striatum is involved in generating locomotor behavior, so we may make 

some simple predictions about FSI firing rate changes after drug administration. Under the global 

feed-forward behavior inhibition hypothesis, we expect FSIs to decrease their firing rate during 

the hyperkinesia induced by amphetamine. Since the rat is more behaviorally active at that time, 

we expect striatal inhibition to be lax. Then, eticlopride administration would increase FSI firing 
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rates, an effect which would help offset the low numbers of FSIs in the Tourette’s-affected 

striatum. So, based on a simple conception of FSIs as a source of global feedforward inhibition 

in the striatum, we expect to see opposing changes in firing rate, with amphetamine decreasing 

FSI firing rate and eticlopride increasing it.

 FSIs and MSNs can be identified by their extracellular waveform (Fig. 1), so their 

activity can be recorded from awake, freely moving animals (Berke et al., 2004). Effectively 

distinguishing these cells is made possible by the new filtering technique described in Chapter 1 

of this thesis. We recorded single-unit activity from the striatum after an amphetamine or 

eticlopride injection and observed opposing changes in FSI firing rate between the two drug 

treatments in directions contrary to our hypothesis. This effect was not mirrored as robustly by 

the MSN population. 

Method

Electrophysiology

 Two Long Evans rats were used. Experiments were performed during the light period of a 

12:12 light/dark housing cycle. Rats were implanted with a 21-probe drive, with 21 

independently lowerable probes, of which 18 are tetrodes and 3 are stereotrodes. Metal alloy 

wires were twisted together in groups of four or two to form tetrodes or stereotrodes. Their tips 

were electroplated with non-cyanide gold to lower impedances. The drive was implanted above 

the right striatum, with 18 probes targeting the caudate-putamen, and 3 targeting the nucleus 

accumbens. Skull screws were implanted in contact with the dura mater as a recording reference. 

Following implantation, probes were lowered to their target location over the course of a week, 

moving greater than 0.3 mm per day for the first week. Once target locations were reached, 
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probes were not moved more than 0.04 mm per day, to not disturb surrounding tissue and 

maintain stable recordings once FSIs were located. Probes were monitored on a 4-channel 

oscilloscope, and were checked daily for putative FSIs, identified by their firing pattern and 

sharp waveform shape. Once a possible FSI was found on a tetrode, it was not moved for as 

many days as the cell remained stable. When a sufficient amount of FSIs were stable across all 

tetrodes, the drug treatment protocol was begun. When recording single units, a wideband signal 

(filtered 1-9000Hz hardware bandpass) was continually digitized during at 31250 Hz using an 

81-channel system built around custom amplifiers (Boston University Electronics Design 

Facility) and custom LabView data acquisition software. Digital video was recorded with the 

same system for one rat.

Treatment

 Rats were allowed a 1-week recovery period after surgery during which tetrodes were 

lowered to target locations and the rat was acclimated to the recording environment. Drug 

treatment began once enough FSIs were stable across all probes. Four unique drug treatments 

were given for each rat, administered IP, never exceeding 0.5 mL per injection. For the first rat, 

the order of treatment is as follows: Day 1, “High Amphetamine,” 2.5 mg/kg. Day 2, “High 

Eticlopride,” 1.0 mg/kg. Day 3 “Low Amphetamine,” 0.5 mg/kg. Day 4, “Low Eticlopride,” 0.2 

mg/kg. For the second rat, the high doses and low doses were swapped. However, analogous 

doses of amphetamine were still administered before eticlopride. 

 Each experiment was 3.5 hours long. Baseline activity was recorded, then a saline 

injection was given at 30 minutes. At 1.5 hours, a drug injection was given, and at 3.5 hours, the 

experiment ended. In all cases, injections with eticlopride induced sedation, and amphetamine 
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injection induced a hyperactive state. After the experiment period, the animal remained in the 

recording environment for less than 45 minutes while tetrodes with no FSIs were moved deeper. 

Rats were recorded for a maximum of 8 days after first drug treatment.

Histology 

 After the drug treatment protocol ended, tetrode locations were lesioned by injection of 

20µA of current for 10 seconds through each probe wire. Rats were then perfused with 4% 

paraformaldehyde (PFA) to facilitate identification of tetrode lesions. The brain was removed 

after perfusion and stored in PFA for 24 hours, then moved to 30% sucrose in 1X PBS. Brains 

were frozen and sliced in a microtome at 20-40 µm and Nissl stained. Slices were imaged with a 

light microscope and camera, and exact final stereotaxic coordinates were found by mapping 

histology slice images onto the Paxinos & Watson brain atlas (5th edition ) using Sqirlz Morph 

software.

Data Analysis

 The continuously digitized signal was wavelet-filtered (Wiltschko et al., 2008) to remove 

the LFP, and then spike detection was performed using a flat threshold on the smoothed 

nonlinear energy (calculated with a 400µs moving window) of the filtered signal 

(Mukhopadhyay and Ray, 1998). Detected waveforms were manually cluster-cut using 

OfflineSorter (Plexon Inc.), then their time stamps and waveforms were exported to Matlab 

through NeuroExplorer for further analysis. Units that were not stable across both injections 

were excluded.

 Firing-rate analysis was performed by binning spikes into 1 minute windows, and then 

smoothing the time-series with a 3-point Gaussian kernel (Figure 2B). The firing rate time-series 
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was then analyzed by experiment block. The saline block began 10 minutes after saline injection, 

and ended right before the drug injection. The drug block began 10 minutes after drug injection, 

and lasted until the end of the recording session. All reported block firing rates are the median 

value of the firing rate time-series.

 We did not use spikes that co-occurred with high-voltage spindles (HVSs). HVSs occur 

when the animal is stationary, but not asleep. Normally silent striatal cells will fire strongly 

during HVSs, and many cells (including FSIs) will drastically alter their firing pattern. The 

occurrence of HVSs after amphetamine is extremely rare, as the animal is constantly moving, 

whereas a rat sedated with eticlopride will exhibit more HVS than at baseline. We therefore 

identified the occurrence of HVSs by manually inspecting spectrograms for each session, and 

used sections of time within each block where no HVSs occurred.

 To test for significant differences in firing rates between saline and drug blocks, the 

Mann-Whitney U Test was used. The time-series from the saline and drug blocks were tested for 

a significant difference for p < 0.01, with a post-hoc Bonferroni correction, where the number of 

samples was taken to be the length of the drug block in minutes.

Results

Identifying Striatal Cell Types

 We made extracellular recordings in the striatum of three rats awake and freely moving 

rats. The data presented here is from two rats; analysis is ongoing for the third. The phenotype of 

single units in striatum can be inferred from the shape of their extracellular waveform. In 

accordance with previous studies (Berke et al., 2004), we used the waveform peak-width at half 

peak height, the peak-to-valley time and firing rate to classify units as either an FSI or an MSN 

Opposing Effects     34



(Fig. 1). FSIs are characterized by narrow peak widths and short peak-to-valley times, with firing 

rates much higher than MSNs. We defined FSIs as having peak widths at half-maximum between 

50 and 200µs, and peak-to-valley times between 100 and 455µs, with a minimum firing rate of 5 

Hz. MSNs had considerably wider waveforms and lower firing rates. Cells were identified as 

MSNs if their peak-width was between 150 and 450µs and peak-to-valley times between 560µs 

and 1500µs. Firing rate was not used to select MSNs. Units that did not fit either criteria were 

left unidentified and not analyzed further in this study. 

Opposing Firing Rate Changes After Drug Injection

 Animals were given either eticlopride or amphetamine by IP injection at a high or low 

dose (see Method). The high and low doses for amphetamine are 2.5 and 0.5 mg/kg, respectively. 

For eticlopride, the high and low doses are 1.0 and 0.2 mg/kg. In this ongoing study, we have not 

yet extracted enough units from low doses to analyze them separately. Therefore, we have 

grouped both low and high doses together for each drug.

 After drug injections, striatal cells changed their firing rates (Figure 2). In contradiction 

with our hypothesis, amphetamine tended to increase firing rates. 25 out of 32 FSIs significantly 

increased their median firing rate (p < 0.01) after amphetamine injection (Figure 3A). 17 out of 

32 MSNs increased their firing rate after amphetamine as well (Figure 3C). The MSNs exhibited 

a smaller proportion of significantly increasing cells, and also showed a much higher fraction of 

cells that had no significant change. Interestingly, the FSIs that decreased rate or showed no 

significant change all had firing rates in the saline block less than 15 Hz, suggesting a possible 

frequency-dependent effect.
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 In response to eticlopride, 8 of 11 FSIs significantly decreased their firing rate, again in 

contradiction with our hypothesis. The MSN population had almost as many cells decrease as 

exhibit no change (13 showed no change, 12 decreased out of 27). Of all 43 FSIs, we recorded 

three over consecutive amphetamine and eticlopride days. All three exhibited the same opposing 

drug effects as the population.

 Rebec and colleagues (e.g. Wang and Rebec, 1993) have segregated the MSN population 

into locomotor-coding and non-locomotor-coding MSNs and shown different responses to drug 

administration between the two. Locomotor-encoding cells tend to increase their firing for 

amphetamine, while the non-locomotor population do not. We did not do any such categorization 

for the MSNs. The FSI population does not require subdivision based on encoding to reveal a 

robust response to drug. 

 Overall, we found no clear relationship between location in striatum and drug effect for 

FSIs (Fig. 4A, B) or MSNs (Fig. 4C, D). The uneven spatial distribution of FSIs and MSNs in 

this data set prevents drawing meaningful links between striatal position and firing rate. 

However, we are in the progress of expanding the data set to include more cells sampled from 

ventral striatum.

Discussion

 Using a novel filtering method that preserves spike-shapes to aid in the identification of 

cells via their extracellular waveform (Wiltschko et al., 2008), we identified two phenotypically 

distinct striatal cell sub-populations. We then completed a simple analysis of their firing rate 

changes in response to systemic psychostimulant or antipsychotic treatment. Amphetamine 

generally increases FSI firing rate, while eticlopride decreases it. MSNs also demonstrate the 
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opposing firing rate changes seen in FSIs, but not nearly as consistently; overall, there are many 

more MSNs than FSIs that show no significant change or a change opposite to the majority.  

Prior Studies

 It has been shown previously that  systemic amphetamine injection generally increases 

striatal cell firing rate (Haracz et al., 1989; Haracz et al., 1993; Wang and Rebec, 1993; Rebec et 

al., 1997; West et al., 1997;  Kish et al., 1999). Some cells exhibit no change, while a small 

proportion of cells decrease their firing rate. Most effort in explaining the variety of response has 

focused on separating MSNs into motor-related and non-motor related cells. MSNs that fire 

preferentially during movement are more likely to be excited by amphetamine injections than 

non-motor related units. This follows naturally from the fact that amphetamine increases 

locomotion. Cells selectively firing during certain kinds of locomotion will obviously be more 

stimulated during amphetamine hyperkinesia. It is likely, however, that a some of the motor 

group of cells analyzed in the literature may be fast-spiking interneurons, or other interneuron 

types. Wang and Rebec (1993) report motor-related neurons with baseline firing rates greater 

than 10 Hz. Some of these high-firing units reach almost a 90 Hz firing rate after amphetamine, 

which is uncharacteristically high in the striatum for anything except an interneuron.

 However, in the current study, we do not explicitly make any groupings based on cell 

firing preferences. The FSI population, identified principally by their extracellular waveform, 

naturally exhibit a robust firing rate change in response to amphetamine and eticlopride. Our data 

show the previously reported heterogeneity in MSN response to amphetamine, but we did not 

attempt to make sub-classifications based on motor or non-motor firing preferences.  An 

overall suppression of firing rate has been seen in previous studies after dopamine depletion. 
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Costa and colleagues (2006) showed that roughly 80% of striatal cells in transgenic dopamine 

transporter knockout mice are depressed by AMPT-induced dopamine depletion. This effect was 

shown in opposition to cortex, where half of recorded cells increased, and half decreased firing 

rates. This study made no sub-groupings of cell by phenotype (interneuron or projection cell) or 

response type (motor or non-motor). Wang and Rebec (1993) found that amphetamine-induced 

excitation of single-units could be reversed by IP injection of haloperidol (an antipsychotic with 

nonspecific D1/D2 receptor antagonism). 

 To our knowledge, this is the first study examining the effects of eticlopride on single-

unit activity in the striatum. We found that eticlopride generally decreased striatal cell firing. 

FSIs were more consistently and strongly inhibited as a population than MSNs. The MSN 

population was weakly inhibited by eticlopride, with more cells showing no significant change 

than a depression. 

FSI Behavior Does Not Align with a Global Feedforward Inhibition Model

 The global feedforward inhibition model of FSI function is only one of many possible 

ways to conceive of the role of FSIs in the striatum. Our hypothesis postulates that FSIs are 

exclusively activated during the suppression of unwanted behavior. So, during periods of 

hyperkinesia induced by amphetamine, we predicted that FSIs would reduce their firing to allow 

for increased behavioral expression. Conversely, during eticlopride sedation, we predicted that 

FSIs would increase their firing rate, due to their role in suppressing locomotion. Clearly, the 

hypothesis is an oversimplification, and even then, our results directly contradict it.

 However, it remains certain that the role of the striatal FSI is to shape MSN firing 

dynamics, following from the fact that FSIs synapse almost exclusively onto MSNs. However, 
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the details of this shaping are not clear. Mallet et al. (2005) show that FSIs are able to exert direct 

inhibition of MSN firing. However, for all sessions where an FSI and MSN were simultaneously 

recorded on the same tetrode, we never found evidence of monosynaptic depression in their 

cross-correlogram (data not shown). A separate unpublished data set recording striatal cells 

during a behavioral task (Gage et al., in preparation) also lacked any such interaction in 

simultaneously recorded FSI-MSN cross-correlograms. Even though the specifics of FSI-MSN 

interactions are not fully elucidated, it is still of interest that FSIs are robustly affected as a 

population by clinically relevant drugs.

 The effect might arise from changes in the cortical signal to FSIs, changes in activity 

within the basal ganglia, and also direct effects on FSI dopamine receptors. Within the basal 

ganglia, an important loop pathway affecting FSIs is the connection from the GP back onto 

striatal interneurons. However, increased striatal dopamine predicts a change in firing rates 

caused by the striatum-GP loop in the opposite direction than we observed. If amphetamine is 

present in the striatum, D2 MSNs would be suppressed via the inhibitory action of the DA D2 

receptor, thus releasing the GP from inhibition. The GP would then inhibit FSIs, suppressing 

their firing. By the same logic, if eticlopride frees D2 MSNs from dopaminergic inhibition, we 

expect to see increased FSI firing rate as theoutcome. For both drugs, we saw the opposite result. 

 Finally, rough striatal location does not seem to explain the variety of effects on FSIs and 

MSNs. However, we did not examine whether a cell was in a patch or a matrix. These two 

neurochemically different areas of striatum respond differently to drug administration, so it is 

possible that some variance in MSN response may be explained by spatial locations that we were 

not able to measure.
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Further Directions

 Costa and colleagues (2006) showed that cells in a dopamine-depleted striatum aligned 

with large fluctuations in the LFP, an effect not present otherwise. We are currently investigating 

changes in spike-timing with respect to both local and spatially distributed striatal rhythms. 

Preliminary results suggest that FSIs can change the rhythms to which they entrain, and also the 

strength of that entrainment after pharmacological manipulation. 
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Figure 1. Identification of striatal cell subpopulations. A. Characteristics from wavelet-filtered 

waveforms were analyzed. In line with previous studies, FSIs were identified as units with peak 

widths at half-maximum between 50 and 200 µs, and peak-to-valley distances between 100 and 

455 µs, with a baseline firing rate greater than 5Hz. MSNs were labeled as cells with peak widths 

between 150 and 450 µs, and peak-to-valley times between 560 and 1500 µs. Units that did not 

fit either criteria were not analyzed. B. Example MSN with a wide peak and long peak-to-valley 

time. C. Example FSI with short peak width and peak-to-valley time. 

Figure 2. Firing rate changes for selected striatal neurons. A. Brain location and mean waveform 

±1 S.D. of one FSI and two MSNs. The same FSI was recorded under both amphetamine and 

eticlopride manipulation. B. Binned firing rates before and after drug treatment. Spikes were 

binned into a time series using a 1 minute window, and then smoothed with a 3-point Gaussian 

kernel. Gaps in the  trace occur when recording was paused to untangle recording cables. Saline 

and drug injections were given at 30 and 90 minutes, respectively. We analyzed firing rates in the 

saline and drug blocks starting 10 minutes after injection. C. Median firing rates after saline 

injection are in green, and drug injection are in red. Error bars indicate median absolute deviation 

and the scale is the same as the firing rate traces. Each change is significant for p < 10-5.

Figure 3. Population firing rate changes. A. Effect of amphetamine on FSI firing rate. Firing rates 

are calculated as the median spikes / s of a binned and smoothed time-series in a treatment block 

(see Methods). Filled circles indicate a significant change between treatments (p < 0.01, Mann-

Whitney U Test), and open circles indicate no significant change. The bar plot summarizes the 
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number of FSIs that fall into the no significant change (NC), significant increase (Incr) or 

decrease (Decr) categories. B. The effect of eticlopride on FSI firing rates C. The effect of 

amphetamine on MSN firing rate. MSNs tend to increase firing rate after amphetamine, but 

much less robustly than FSIs. D. The effect of eticlopride on MSN firing rates. Again, MSNs 

exhibit a weaker but similar trend as FSIs under eticlopride.

Figure 4. Firing rate changes throughout the striatum. A. FSI firing rate changes induced by 

amphetamine and eticlopride. B. FSI firing rate changes for both eticlopride (black) and 

amphetamine (grey) show no clear relation to brain location. Significant changes (see Methods) 

are designated by circles, insignificant changes by triangles.  C. MSN firing rate changes induced 

by amphetamine and eticlopride. D. MSNs also do not show a strong relationship between firing 

rate change and brain location. 
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Figure 3. 
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Figure 4.
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