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Abstract
In this paper, we discuss the necessary and sufficient conditions for the
equivalence of the dynamics of nonholonomic mechanics and variational
nonholonomic (vakonomic) dynamics for certain initial conditions. We
derive a priori results for identifying equivalence and, specializing to Abelian
Chaplygin systems, prove that equivalence results if and only if the constrained
nonholonomic equations are Lagrangian. We eliminate the need to solve the
variational nonholonomic problem when checking equivalence by obtaining
explicit formulae for the system’s multipliers, and then derive conditions under
which the multiplier free Lagrangian gives equivalence of the dynamics. We
consider nonholonomic systems possessing invariant measures, showing when
equivalence and Hamiltonization are the same. We also derive conditions under
which measure-preserving systems exhibit equivalence. We apply the results
to many of the known nonholonomic systems.

PACS numbers: 45.10.−b, 02.30.Yy, 45.20.−d

Introduction

The dynamics of nonholonomic systems is derivable from the Lagrange–D’Alembert (LD)
principle, and is in general not Lagrangian, meaning that the resulting equations of motion are
not the Euler–Lagrange equations of any Lagrangian [3]. That this is so can be attributed to
the effects of the nonintegrable constraints, and how they are treated under the LD principle.
However, instead of applying the LD principle, one may use Lagrange’s multiplier theorem
to incorporate the nonholonomic constraints. Such an application generally leads to different
dynamics, resulting in what is called variational nonholonomic (also vakonomic) dynamics
[16]. Although the LD principle gives the correct (physical) equations of motion, some
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authors have incorrectly claimed that the variational nonholonomic treatment gives the physical
dynamics (see [23] and references therein).

In a sense, the theory of variational nonholonomic dynamics may be viewed as an attempt
to ‘Hamiltonize’ nonholonomic mechanics, so that the equations of motion can be derived
from Hamilton’s principle. There have been many such attempts, approaching the question
from different angles, and we only discuss a few of them here.

The most direct attempt is through comparison of the two methods themselves. The
distinction between variational nonholonomic dynamics and nonholonomic mechanics is
perhaps best described by Hertz’s terminology which describes the former as equations of
‘shortest’ curves, and the latter as equations of ‘straightest’ curves (see [7] and references
therein). Geometrically, this is because variational dynamics are equivalent to optimal control
problems under certain regularity conditions [3, 26], and as such its equations of motion
are geodesics of a Levi-Civita connection. The nonholonomic equations of motion, on the
other hand, are geodesics of a projected connection which is in general not metrizable (hence
eliminating the possibility of viewing them as curves of minimum length). In fact, it is
known that the resulting equations of motion are independent of the method used (Lagrange–
D’Alembert or variational dynamics) if and only if the constraints are integrable [3, 7]. As
a result, many authors have studied the similarities and differences between nonholonomic
mechanics and variational nonholonomic dynamics (see [4, 11, 13, 17, 28]) in an effort to gain
insight into the nonintegrable case.

In a slightly different direction, there has been much work done which casts nonholonomic
systems into Hamiltonian form via classical Hamiltonization (in the sense of Chaplygin’s
reducing multiplier), among which we mention [6] and [15]. The idea here is to reparametrize
time with the aid of an invariant measure for the nonholonomic system such that in the new
time variable the system is Hamiltonian.

Yet another direction is the almost Poisson route, where the authors, (see, e.g. [2, 20,
27, 29]) have written the nonholonomic equations of motion in Hamiltonian form with respect
to an almost Poisson bracket.

Last, we mention the work of [18], where the authors construct canonical equations
for nonholonomic systems by identification with Birkhoff mechanics. Unfortunately, as
the authors themselves point out, the construction no longer preserves the original physical
meaning of the nonholonomic system.

Clearly, these different directions have a common aim: to ‘Hamiltonize’ nonholonomic
systems. As such, they will also have common points of intersection and can each benefit
from results in the other. It is the aim of the paper to explore some of these interrelationships
and draw some connections amongst the different approaches.

We begin in sections 1 and 2 with a review of the relevant dynamics of nonholonomic
and variational nonholonomic systems, respectively. In section 3 we discuss the notions of
conditionally variational nonholonomic systems (in short, the notion that there may exist
certain initial conditions for the Lagrange multipliers of the variational problem for which
all of the nonholonomic trajectories are solutions to the variational nonholonomic problem,
and vice versa), and of partially conditionally variational (systems for which only some but
not all nonholonomic trajectories can be viewed as variational nonholonomic trajectories).
We geometrize the necessary and sufficient conditions originally presented in [28] and derive
results that show a priori that certain systems cannot be conditionally variational. Then,
because many nonholonomic systems are of Chaplygin type, we specialize to these and
prove that Abelian Chaplygin systems are conditionally variational if and only if the reduced
nonholonomic equations are Lagrangian, in addition to providing an explicit formula for the
variational nonholonomic multipliers (which eliminates the need to first completely solve the

2



J. Phys. A: Math. Theor. 41 (2008) 344005 O E Fernandez and A M Bloch

variational nonholonomic problem in order to check the conditions of section 3). We also
show how to eliminate the multipliers in certain cases and provide the conditions under which
the multiplier-free Lagrangian makes the nonholonomic system conditionally variational.
Section 4 then considers nonholonomic systems which possess an invariant measure. There
we prove a theorem relating Hamiltonization [6] to the idea of conditionally variational
systems, and elaborate on some computational simplifications in searching for conditionally
variational systems in proposition 6.

Finally, we conclude in sections 5 and 6 by applying the results to many of the common
nonholonomic systems, showing which systems are conditionally variational, and which are
only partially conditionally variational.

1. Nonholonomic mechanics

For our purposes, we shall consider a nonholonomic system on a configuration manifold Q to
be a pair (L,D), where L : T Q → R is a regular Lagrangian of mechanical type L = T −V ,
where T : T Q → R is the kinetic energy corresponding to a Riemannian metric g on Q, and
V : Q → R is the potential energy, and D is the vector subbundle of T Q defined by the null
space of k independent constraint one-forms ωa [3, 10]. In a neighborhood of each point, one
can choose a local coordinate chart such that ωa and D take the form

ωa = dsa + Aa
α(r, s) drα, (1.1)

D = span
{
∂rα − Aa

α(r, s)∂sa

}
, (1.2)

respectively, where q = (r, s) ∈ Q, and for the remainder of the paper a, b = 1, . . . , k, α, β =
k + 1, . . . , n, where n = dim Q. We will also call n − k the degrees of freedom of the
nonholonomic system.

Now define the vector bundle with coordinates (rα, sa) and projection map π : (rα, sa) →
rα . Introducing the vertical space Vq := ker Tqπ , we can define an Ehresmann connection
Aq : TqQ → Vq represented locally by the vector-valued differential form ωa

A = (
dsa + Aa

α(r, s) drα
)
∂sa . (1.3)

It follows that the horizontal space Hq := ker Aq = D, and that T Q = Vq ⊕ Hq ,
so that we can project a tangent vector onto its vertical and horizontal parts using the
connection. In coordinates, the horizontal projection hor Xq of a vector Xq ∈ TqQ is
the map (ṙα, ṡa) �→ (

ṙα,−Aa
α(r, s)ṙα

)
.

The curvature of A is the vertical-vector-valued-two-form B on Q defined by B(X, Y ) =
−A([hor X, hor Y ]), where the Jacobi-Lie bracket of vector fields on the right-hand side is
obtained by extending the vectors X and Y on Q to vector fields. Moreover, the curvature
can be shown to be independent of the extension of the vector fields [3], and in this form it
becomes apparent that the curvature exactly measures the failure of the horizontal distribution
D to be integrable (in the Frobenius sense).

Now, using an identity1 for the exterior derivative of a one-form, we can express the
curvature as B(X, Y ) = dωa(hor X, hor Y )∂sa , so that the local expression for the curvature is
given by:

B(X, Y )a = Ba
αβXαY β, where Bb

αβ =
(

∂Ab
α

∂rβ
− ∂Ab

β

∂rα
+ Aa

α

∂Ab
β

∂sa
− Aa

β

∂Ab
α

∂sa

)
.

(1.4)

1 For two vector fields X, Y acting on Q, the exterior derivative of the one-form α is (dα)(X, Y ) = X[α(Y )] −
Y [α(X)] − α([X, Y ]).
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Defining the constrained Lagrangian Lc(q, q̇) = L(q, hor q̇), the corresponding
equations of motion for the nonholonomic system are obtained through the Lagrange–
D’Alembert Principle [3], and are given by

δLc = 〈FL,B(q̇, δq)〉, where δLc =
〈
δqα,

∂Lc

∂qα
− d

dt

∂Lc

∂q̇α

〉
, (1.5)

and where 〈, 〉 denotes the pairing between a vector and a dual vector. Here, FL : T Q → T ∗Q
is the fiber derivative, δq is a horizontal variation and B is the curvature regarded as a
vertical-valued two-form. These equations are to be supplemented by the constraint equations
A(q) · q̇ = 0.

Locally, we therefore have the constrained equations of motion along with the constraint
equations given as

d

dt

∂Lc

∂ṙα
− ∂Lc

∂rα
= −

(
∂L

∂ṡb

)
c

Bb
αβ ṙβ − Aa

α

∂Lc

∂sa
, (1.6)

ṡa = −Aa
α(r, s)ṙα, (1.7)

Note that the first term on the right-hand side of (1.6) is the only instance where the ṡb occur.
We can eliminate this through the constraints (1.7), and we shall henceforth denote with a
subscript c any expression for which we have eliminated the fiber dependency by using (1.7).

Equations (1.6) and (1.7) then describe the mechanics of the nonholonomic system (L,D),
and for ease of use later, we henceforth define φa := ṡa + Aa

α(r, s)ṙα , and

�αβ := 〈FL,B(∂rα , ∂rβ )〉. (1.8)

2. Variational nonholonomic dynamics

Consider now the space Q̃ = Q × M , where dim Q = n as before, and dim M = k, and where
locally we denote the extra coordinates of Q̃ by µ1(t), . . . , µk(t). We shall call the µa(t) the
multipliers, and form the augmented Lagrangian LV : T Q̃ → R:

LV = L − µaφ
a. (2.1)

Note that LV is automatically singular, due to the absence of µ̇.
Applying Hamilton’s principle to the augmented Lagrangian then yields the unconstrained

equations of motion

d

dt

∂L

∂q̇J
− ∂L

∂qJ
= µ̇a

∂φa

∂q̇J
+ µa

(
d

dt

∂φa

∂q̇J
− ∂φa

∂qJ

)
, (2.2)

where J = 1, . . . , n, as well as the equations of constraint (1.7), which arise as the Euler–
Lagrange equations of the µa coordinates. This set of equations is sometimes called the
vakonomic equations, after [1] Arnold, Kozlov and Neishtadt who introduced nonholonomic
mechanics under the Lagrange variational point of view. We shall thus prefer to call these
equations the variational nonholonomic equations.

Now, by considering the r and s variables separately, and writing EI for the Euler–
Lagrange operator in the Ith coordinate, we can rewrite (2.2) as

Eα(L) = µ̇aA
a
α + µa

(
d

dt

(
Aa

α

) − ∂Aa
β

∂rα
ṙβ

)
, (2.3)

Ea(L) = µ̇a − µb

∂Ab
α

∂sa
ṙα, (2.4)
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and substituting µ̇a from (2.4) into (2.3), we get

Eα(L) = Aa
αEa(L) + µaB

a
αβ ṙβ . (2.5)

One can then show [3] that by the definition of the constrained Lagrangian, (2.5) can be
re-written in the more suggestive form

Eα(Lc) =
(

µa − ∂L

∂ṡa

)
Ba

αβ ṙβ − Aa
α

∂Lc

∂sa
. (2.6)

These along with the constraint equations (1.7) form the equations of motion for the variational
nonholonomic system, and a simple comparison of (2.6) and (1.6) reveals the extra term
〈µ,B(q̇, δq)〉, from which our analysis of the conditions under which the two equations of
motion coincide will be based.

We should also point out that one can equivalently express the dynamics of variational
nonholonomic systems directly in terms of the constrained Lagrangian Lc, without considering
the Lagrangian equations on the full space Q̃ as we have done in (2.3)–(2.4) (see [11]).
However, we shall see in section 3.3 that equation (2.4) will lead to an a priori determination
of the multipliers µa(t).

3. Conditionally variational nonholonomic systems

In order to specify a unique solution to the variational nonholonomic problem, one must
not only specify the initial values (q0, q̇0), but also the initial values of the multipliers µ0.
However, as we shall see, for certain initial values of the multipliers the trajectories obtained
by solving (1.6) and (2.6) will coincide. In some cases, only some of the nonholonomic
trajectories will coincide with variational trajectories, and in other cases all the nonholonomic
trajectories will coincide with variational ones. To make these ideas more precise, we make
the following definition.

Definition 1. Consider the nonholonomic system (1.6), (1.7) with initial conditions (q0, q̇0),
and the associated variational nonholonomic system (2.6), (1.7) with initial conditions
(q0, q̇0, µ0), where (q0, q̇0) satisfies the constraints (1.7). We make the following definitions:

(1) We shall say that the nonholonomic system is conditionally variational if for every initial
condition (q0, q̇0) there exists an initial condition µ0 such that the solution to (1.6),
(1.7) with initial condition (q0, q̇0) is the same as the solution to (2.6), (1.7) with initial
condition (q0, q̇0, µ0).

(2) We will call a nonholonomic system partially conditionally variational if there exist some
trajectories of the nonholonomic system which are also trajectories of the variational
nonholonomic system, i.e. if there exist some initial data (q0, q̇0) for which there exist
µ0 such that the solution to (1.6), (1.7) with initial condition (q0, q̇0) is the same as the
solution to (2.6), (1.7) with initial condition (q0, q̇0, µ0).

Remark 3.0.1: A nonholonomic system which is conditionally variational can thus be seen as
a variational nonholonomic system with Lagrangian (2.1) and initial condition µ0. We shall
say more about the specifics of how to choose µ0 in proposition 3 below.

3.1. The equivalence conditions

As we have seen, variational nonholonomic systems arise from Hamilton’s principle of
stationary action. Moreover, we have also noted that nonholonomic mechanics cannot be
derived from such a principle, which has led us to introduce the idea of the system being

5



J. Phys. A: Math. Theor. 41 (2008) 344005 O E Fernandez and A M Bloch

conditionally variational. The actual conditions under which the nonholonomic system would
be conditionally variational were originally stated in [28]. There the author shows that the
necessary and sufficient conditions for the equivalence between the two formalisms, in the
notation adopted here, are

µaEJ (φa)δqJ = 0, J = 1, . . . , n, a = 1, . . . , k. (3.1)

These conditions are stated more in the language of analytical mechanics, and for our purposes
we wish to have a more geometric and global view of them. The equivalent geometric condition
we shall come to has already been hinted at near the end of section 2, where we observed the
difference in the two formalisms to depend on the multipliers and the curvature.

To that end, we can geometrize these conditions by first using the constraints (1.7) to
relate (3.1) to the curvature (1.4) of the Ehresmann connection A

EJ (φa) dqJ = Ba
αβ ṙβ drα = dωa(q̇, ·). (3.2)

Moreover, contracting with the vector δqJ ∂qJ and pre-multiplying by µa gives:

µaEJ (φa)δqJ = µa dωa(q̇, δq). (3.3)

Comparing the right-hand side of the preceding with the vertical-vector-valued-two-form
definition of curvature given in (1.4), we arrive at the geometric necessary and sufficient
conditions for a nonholonomic system to be conditionally variational (see also [13]).

Proposition 2. The nonholonomic system (1.6), (1.7) is conditionally variational with
Lagrangian (2.1) if and only if

〈µ,B(q̇, δq)〉 = 0. (3.4)

Remark 3.1.1: Since the curvature is vertical-vector-valued, proposition 2 intuitively says
that a nonholonomic system is conditionally variational whenever the one-form µ = µa dsa

is annihilated by B(q̇, δq). In the two degree of freedom case (n − k = 2) with k constraints,
(3.4) reads µaB

a
n−1,nq̇

2 = −µaB
a
n−1,nq̇

1 = 0, and in this special case these two conditions are
satisfied if and only if � := µaB

a
n−1,n = 0.

We shall call the conditions (3.4) the equivalence conditions, as originally named in
[28]. Proposition 2 then confirms that the extra term in (2.6) must vanish in order for the
nonholonomic system (1.6) to be conditionally variational. Moreover, the computations above
show how to obtain the conditions starting from the analytical mechanics viewpoint of [28],
where the equivalence conditions first appeared.

Verifying (3.4) is often impractical though, since the conditions depend on the variational
nonholonomic multipliers which are a priori unknown, thus requiring one to solve the
variational dynamics explicitly. Our contributions remove this need in special cases, in
addition to showing how to verify equivalence simply by inspection of the nonholonomic
system.

3.2. Chaplygin systems

We now specialize to the so-called Chaplygin nonholonomic systems, partly motivated by
the fact that most of the known physical examples of nonholonomic systems can be cast [3]
as Chaplygin systems (for example, the vertical rolling disc, the Chaplygin sleigh and the
bowling ball), but also because these types of systems possess many interesting properties
which will simplify our investigations.

Geometrically, a Chaplygin nonholonomic system [3, 10] is a triple (L,D,G) where
L : T Q → R is a G-invariant regular Lagrangian with respect to the lifted action on T Q, and
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the nonholonomic constraints are determined by the horizontal distribution D of a principal
connection A on the principal G-bundle π : Q → Q/G associated with a free and proper
action 	 of G on Q. Such a definition is referred to by Koiller [19] as a non-Abelian Chaplygin
system. The Abelian Chaplygin case we shall take to be when the configuration space Q is
a product of copies of S1 and R, with the connection coefficients in (1.7) depending only on
the r variables, and the Lagrangian L of section 1 being cyclic in the s variables. As we shall
see below these additional simplifications will allow us to re-interpret the conditions (3.4) in
a much more natural way.

3.3. Abelian Chaplygin systems

Suppose now that we are considering an Abelian Chaplygin nonholonomic system. The
curvature (1.4) then simplifies to just the difference of the first two terms, and the last term on
the right-hand side of (1.6) also vanishes. Thus, the equations of motion (1.6) reduce to the
simpler form

Eα(Lc) = Fγβαṙγ ṙβ, (3.5)

where the Fγβα are the components of �αβ from the end of section 1, i.e. �αβ =(
gbγ − gbaA

a
γ

)
Bb

αβ ṙγ =: Fγαβ ṙγ . In this modified form, it becomes easier to state the
first main result.

Proposition 3. Suppose the nonholonomic system (1.6), (1.7) is (Abelian) Chaplygin. Then
we have the following:

(1) The variational nonholonomic multipliers are given by:

µa =
(

∂L

∂ṡa

)
c

+ Ca, a = 1, . . . , k, (3.6)

where the subscript denotes that we have used the constraints to eliminate the ṡb, and
where the Ca are integration constants.

(2) The system is conditionally variational if and only if the constrained nonholonomic
equations (1.6) are Lagrangian.

(3) The property of being conditionally variational is unaffected by the addition of a potential
function dependent on only the coordinates.

(4) The equivalence condition (3.4) reduces to the following conditions:

Fααβ = 0 ∀ α 	= β, (3.7)

Fαβγ + Fβαγ = 0 for each γ,∀ α < β, α, β 	= γ. (3.8)

Consider now a general nonholonomic system (not necessarily Chaplygin) as in section 1.
Then:

(5) Such a system with three generalized coordinates and one constraint is not conditionally
variational.

Proof. For (1), consider the vakonomic momentum pV
a := ∂LV /∂ṡa = (∂L/∂ṡa) − µa ,

and note that ∂L/∂sa = 0 by the Abelian Chaplygin assumption. Then by (2.4) we have
ṗV

a = 0, from which the claim follows by integration and substitution of the constraints (see
also remark 1 below).

For (2), the reduced equations (3.5) are Lagrangian when the right-hand side vanishes,
which happens when �αβṙβ = 0 ∀ α. These are precisely the conditions (3.4) after taking
into account (3.6). Conversely, suppose that the system is conditionally variational. Then by
(3.4) the constrained equations (3.5) are Lagrangian.
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For (3), simply note that if the added potential V is independent of q̇, then the multipliers
µa from part (1) of the proposition are unchanged, and so is condition (3.4). Thus, the system
remains conditionally variational provided it was originally conditionally variational.

For (4), using (2) the system is conditionally variational when the right-hand side of (3.5)
vanishes. Since the Fγβα are only functions of rα , and Fαββ = 0 ∀ α, β, these together imply
that the coefficients of the products ṙγ ṙβ must vanish as stated.

For (5), by way of contradiction suppose it is conditionally variational. Then this
means that (3.4) reads µBn−1,n = 0 (taking into account remark 3.1.1). By assumption,
the system is nonholonomic, meaning that it is not variational, so that µ is nonzero. Thus, the
condition reduces to Bn−1,n = 0, which means that the system must actually be holonomic, in
contradiction. �

Remarks:

(1) Part (5) applies in the Chaplygin case as well. As such, it prevents some common
nonholonomic systems from being conditionally variational simply by inspection: the
knife edge, the Chaplygin sleigh, the Heisenberg free particle, and the Euler–Poincare–
Suslov system on SO(3) (for details see [3]) to name a few.

(2) Part (1) of the proposition allows one to determine the variational nonholonomic
multipliers explicitly without having to solve the variational problem first. However
as we noted in our definition of conditionally variational, these multipliers require initial
conditions to be specified uniquely. To obtain the most general choice of the initial
conditions on the µa that maintain the conditionally variational property we substitute
(3.6) into (3.4). We see at once that one needs µa(0) = (∂L/∂ṡa)c(0)∀ a such that
Ba

αβ 	= 0, and µa(0) may be chosen arbitrarily for each a such that Ba
αβ = 0 ∀ α, β.

(3) The previous remark, along with conditions (3.4), now allows us to characterize
conditionally variational systems in terms of the �αβ from (1.8). Namely, the two
statements imply that to be conditionally variational requires �αβ = 0 ∀ α, β.

(4) Part (2) gives perhaps the simplest way to identify conditionally variational systems in the
Abelian Chaplygin case if we already know the system’s constrained equations of motion.

(5) Although verifying the conditions of part (4) might be complex, the two degree of freedom
case falls under remark 3.1.1, which is simpler to handle. Moreover, for a three degree of
freedom system it leaves nine conditions in (4.3) to be checked.

(6) Although not part of proposition 3, it should be clear that given a conditionally variational
nonholonomic system, if we add extra (constrained) coordinates sb to its Lagrangian L and
the extra constraints satisfy Bb

αβ = 0 ∀ α, β, then the new system will still be conditionally
variational. We shall use this observation in analyzing the two-wheeled carriage in
section 5.

Proposition 3 is the first main result which, for Abelian Chaplygin systems, completely
characterizes when such systems are conditionally variational. We shall make use of the
proposition in section 5 to identify some conditionally equivalent systems by example, but
also use the proposition as the backbone in section 4 for the analysis of what relationship
exists between the nonholonomic system’s invariant measure (if it has one) and its being
conditionally variational.

3.4. Non-Abelian Chaplygin systems

In the non-Abelian Chaplygin case, the structure constants of the Lie algebra of G are no
longer all zero. They enter into the curvature, now regarded as a Lie algebra valued two-form,
as described in [3, 10]. The Lagrangian L induces the reduced lagrangian l : T Q/G → R,
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which after substitution of the constraints (1.7) gives us the constrained reduced Lagrangian
lc. By choosing a local trivialization Q = Q/G × G with coordinates (rα, ga) the equations
of motion and constraints are [3]

Eα(lc) =
〈
∂l

∂ξ
,B

〉
α

, (3.9)

ξ = A(r)q̇, (3.10)

where ξ = g−1ġ, with g ∈ G, and A is the unique principal connection whose horizontal
space is the distribution D with curvature B.

Now, to derive the analog of proposition 4 we need the reduced constrained variational
equations. As in the Abelian Chaplygin case, we define the variational nonholonomic reduced
Lagrangian lV = l − µa(ξ − Aq̇)a . Then the Euler–Lagrange equations are [8, 24]

d

dt

(
∂l

∂ξ
− µ

)
= ad∗

ξ

(
∂l

∂ξ
− µ

)
, Eα(lc) =

〈
µ − ∂l

∂ξ
,B

〉
α

, (3.11)

along with (3.10).
We can now compare these equations with (2.6) and write the results of proposition 3

in this context. However, due to the non-Abelian character of the system, some aspects of
proposition 3 no longer hold.

Corollary 4. Suppose that we have a non-Abelian Chaplygin system given by (3.9)–(3.10)
for which the right-hand side of (3.9) vanishes. Then a solution to (3.9), (3.10) with initial
condition (q0, ξ0) is also a solution to the variational nonholonomic system (3.11) with

µb = ∂l

∂ξ
+ Cb, (3.12)

and initial condition (q0, ξ0, µ0), where µ0 and Cb are subject to remark 2 of section 3.3.
Moreover, under this condition part (3) of proposition 3 holds when the added potential is
independent of ξ .

Proof. Suppose that the right-hand side of (3.9) vanishes, and consider a solution to the
non-Abelian system (3.9), (3.10) with initial condition (q0, ξ0). Then the condition (3.4) with
µb chosen as above, taking into account remark 2 of section 3.3, is satisfied. Thus, the solution
to (3.9) is also a solution to (3.11) with µ as in (3.12) and µ0 and Cb subject to remark 2 of
section 3.3. Moreover, the last part of the corollary follows by again observing that (3.4) is
independent of the potential so long as the potential is independent of ξ . �

Clearly non-Abelian Chaplygin systems are more complicated than their Abelian
counterparts. For example, part (1) of proposition 3 no longer applies, and here the variational
multipliers are not given by the fiber derivative a priori. However, corollary 4 provides one
with an alternative to solving the variational nonholonomic non-Abelian problem to check
for equivalence. The corollary shows that if one can find a non-Abelian Chaplygin system
whose constrained reduced Euler–Lagrange equations are Lagrangian, then we can view its
nonholonomic solutions with initial conditions (q0, ξ0) as variational solutions to (3.11) with
initial conditions (q0, ξ0, µ0), taking into account remark 1 of section 3.3 and (3.12).

3.5. Eliminating the multipliers

We have defined and explored the idea of a nonholonomic system being conditionally
variational in the preceding sections, but in the process have sacrificed the regularity of
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the new Lagrangian LV , as we pointed out in section 2. Thus, so far the variational system
with Lagrangian LV fails to describe the nonholonomic system via a regular Lagrangian, even
though it describes it in terms of the dynamics both formalisms produce for certain initial data.
However, we shall see below that this regularity can be regained in the Abelian Chaplygin
case by using a Lagrangian which is only a function of (q, q̇) by eliminating the multipliers
through part (1) of proposition 3.

Suppose then that we again have an Abelian Chaplygin nonholonomic system with regular
mechanical Lagrangian, as in section 1, and consider the variational Lagrangian (2.1)

LV = L − ∂L

∂ṡa
φa. (3.13)

Computing the Euler–Lagrange equations for the r and s variables gives:

0 = Eα(LV ) = Eα(L) +
∂L

∂ṡa
Ba

βαṙβ − Aa
α

(
∂L

∂ṡa

)·
+

[
∂2L

∂rα∂ṡa
φa − (gαaφ

a)·
]

,


⇒ Eα(Lc) = (gαaφ
a)· − ∂2L

∂rα∂ṡa
φa, (3.14)

0 = Ea(LV ) = (
gabφ

b
)·

, 
⇒ (
gabφ

b
)
(t) = gab(0)φb(0), (3.15)

where we remind the reader that all lower case Roman indices range from 1 through k, all
Greek indices range from k + 1 through n, and all capital Roman indices range from 1 through
n, and where gIJ is the inverse of the assumed Riemannian metric g on Q from section 1.

We now see that if the constraints are satisfied initially (as they must be), and gab is
invertible as a sub-matrix of g, then the constraints φa are satisfied for all subsequent times.
If in addition we know that the right-hand side of (3.14) vanishes, then the constrained Euler–
Lagrange equations are Lagrangian, and by proposition 3, part (2) we would then know that
the Abelian nonholonomic Chaplygin system under consideration is actually conditionally
variational with Lagrangian given by (3.13). Moreover, we can easily compute the Hessian of
LV to be the matrix

Hess(LV ) = gV
IJ =

(
gαβ − gαaA

a
β − gβaA

a
α −Aa

αgab

−gacA
c
α gab

)
, (3.16)

which is not automatically singular, as was the case for the L(q, q̇, µ; t) Lagrangian (2.1).
We can thus summarize the preceding to give:

Proposition 5. Suppose that an Abelian Chaplygin nonholonomic system with regular
Lagrangian is known to be conditionally variational, and that in addition the sub-matrix
gab is invertible. Then the nonholonomic mechanics can be derived from Hamilton’s principle
by using the Lagrangian (3.13) and with the initial data satisfying the constraints (1.7).
Moreover, (3.13) will be regular if and only if (3.16) is invertible.

Before discussing proposition 5, we should mention that its origins are rooted in
momentum conservation. Assuming the Hessian (3.16) is invertible we can effect the Legendre
transform and define H : T ∗Q → R as usual

HV (pI , q
I ) = pI q̇

I − LV . (3.17)

We can then examine the momenta conjugate to the s variables

pa := (FLV )a = ∂LV

∂ṡa
= gabφ

b, (3.18)

10
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and from here it is clear that (3.15) is nothing but a statement of the conservation of
momenta. However, proposition 5 shows us that additional conditions are required to translate
this conservation of momentum into a statement about the preservation of the constraints
throughout the motion.

The main accomplishment of this proposition is to enable the description of conditionally
variational nonholonomic systems without the use of the variational multipliers, hence possibly
regaining regularity in the instances in which (3.16) is invertible. In fact, one such instance
where (3.16) is nonsingular is the vertical rolling disc (see section 6).

The proposition also allows one to re-interpret conditionally variational systems as
Hamiltonian systems restricted to certain subsets of phase space. This is because whenever the
hypotheses of the proposition are satisfied, (3.18) shows that enforcing the constraints is the
same as setting pa to zero. Thus, in these cases we can compute the Hamiltonian mechanics
based on (3.17) and restrict to the submanifolds of T ∗Q defined by pa = 0 to recover the
nonholonomic mechanics. In fact, this exactly turns out to be the case for the vertical disc
(see, section 6.1), and is also true for some other systems, though by a different method (see
[14]).

4. Conditionally variational systems, Hamiltonization and invariant measures

Two main differences between nonholonomic and variational nonholonomic systems are their
derivability from stationary action principles, and the question of existence of invariant
measures. Nonholonomic systems are in general not derivable from a stationary action
principle, and also do not, in general, possess invariant measures. Variational nonholonomic
dynamics, on the other hand, can be derived from Hamilton’s principle using the augmented
Lagrangian (2.1) as we have done. Moreover, because the resulting system is Hamiltonian,
it naturally preserves any nonzero constant multiple of the associated standard measure.
However, intuitively nonholonomic systems which do possess invariant measures are in some
sense closer to Hamiltonian systems (for which we have Liouville’s theorem), and thus we
expect them to be closer in structure to variational systems. Indeed we shall see below that in
certain cases, having an invariant measure will render a nonholonomic system conditionally
variational, and also Hamiltonize (in the sense defined below) the nonholonomic system.

4.1. Abelian Chaplygin systems with invariant measures

Consider the nonholonomic system (L,D) from section 1 and assume it is of Abelian
Chaplygin type. We will need the corresponding constrained Hamilton equations in what
follows so we will review them here [3].

By assumption L is regular, so we may pass to the cotangent bundle T ∗Q via the Legendre
transform. One can then write down the constrained Hamilton equations on the constrained
phase space M := FL(D) ⊂ T ∗Q

ṙα = ∂Hc

∂p̃α

, α = k + 1, . . . n, (4.1)

˙̃pα = −∂Hc

∂rα
− �αβ

∂Hc

∂p̃β

, α, β = k + 1, . . . n, (4.2)

ṡa = −Aa
β

∂Hc

∂p̃β

, a = 1, . . . k, (4.3)

11
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where Hc = p̃αṙα − Lc is the constrained Hamiltonian, with p̃α = ∂Lc/∂ṙα the constrained
momenta. Here �αβ from (1.8) is now written in terms of p̃ as

�αβ = (
gbγ − gbaA

a
γ

)
Bb

αβ∂Hc/∂p̃γ = Fγαβ∂Hc/∂p̃γ =: FγαβKδ
γ p̃δ =: Cδ

αβp̃δ, (4.4)

where we have used the definition of Fγαβ from (3.5) in the second equality. These are a
set of 2n − m equations on the submanifold M with induced coordinates (rα, sa, p̃α), where
(4.1)–(4.2) are the Hamiltonian analog of (3.5), and (4.3) represents the constraints (1.7).

We now consider the case when the nonholonomic system possesses an invariant measure.
The conditions for the existence of this invariant measure are well studied [10, 22, 30], but
we shall just assume here that the system already has an invariant measure. If we denote by X
the vector field which solves (4.1)–(4.2) and further assume that the system has an invariant
measure N(r) drα ∧ dp̃α = N(r)ωα , where α = k + 1, . . . , n, and we denote the standard
measure on M by ωα , then by definition LX(Nωk) = 0, where L denotes the Lie derivative.
From this, we have

0 = divNωk (X) = divωk (X) +
1

N
X(N) = ∂ṙα

∂rα
+

∂ ˙̃pα

∂p̃α

+
ṙα

N

∂N

∂rα
. (4.5)

Using (4.1) and (4.2), we have(
1

N

∂N

∂rβ
− ∂�αβ

∂p̃α

)
ṙβ = 0, (4.6)

and from (4.4) we see explicitly that �’s depend linearly on the momenta, so that the quantities
in parentheses in (4.6) depend only on the coordinates. Thus, the only way (4.6) vanishes is
if the parenthetical terms vanish identically

1

N

∂N

∂rβ
− ∂�αβ

∂p̃α

= 0, (4.7)


⇒ 1

N

∂N

∂rβ
− Cα

αβ = 0, α, β = k + 1, . . . , n. (4.8)

Equations (4.8) and (4.4) describe explicitly how the measure density, metric and curvature
arising from the nonholonomic constraints interact. More importantly though, it gives an
explicit relationship between the invariant measure density N and �αβ , which are directly
related to the property of being conditionally variational (see remark 3 of section 3.3).

4.2. Conditionally variational systems and invariant measures

Recall that remark 3 from section 3.3 tells us when a system is conditionally variational, and
it is clear from that remark and (4.7) that only nonholonomic systems with constant measure
densities can hope to be conditionally variational. Although this restricts the set of possible
systems, the vertical rolling disc [3, 22, 30] possesses a constant density invariant measure,
and we shall make use of this in section 5.1 below.

We now wish to rephrase remark 3 from section 3.3 by instead asking under what
conditions the nonholonomic Abelian Chaplygin system is conditionally variational if it is
known to possess an invariant measure N with coordinate-only dependence? The answer is
simple for two-degree of freedom systems, but becomes increasingly complicated with the
number of degrees of freedom, and is given in the following proposition:

Proposition 6. Suppose now that the constrained nonholonomic Abelian Chaplygin system
(4.1)–(4.2) has an invariant measure with constant density N. Then the system satisfies

Cα
αβ = 0. (4.9)

In addition, if the systems has two constraints (k = 2 in (4.3)), and
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(a) Two degrees of freedom, it is also conditionally variational.
(b) Three degrees of freedom, if K5

4 ,K5
3 ,K4

3 	= 0 and the system satisfies the conditions (3.7),
which in this case become

F334 = F335 = F443 = F445 = F553 = F554 = 0, (4.10)

then it is also conditionally variational. For each of the aforementioned Kα
γ which are

zero we must add to (4.10) the condition Fγαβ + Fαγβ = 0, for γ 	= α 	= β. Also, for each
Kα

α which is zero, we may omit the conditions Fγγβ, γ 	= β from (4.10).

Proof. First, we have from (4.8) that having an invariant measure of constant density gives

Cα
αβ = 0. (4.11)

For the two degree of freedom case of part (a), (4.8) becomes (writing � := �34)

1

N

∂N

∂r3
+

∂�

∂p̃4
= 0,

1

N

∂N

∂r4
− ∂�

∂p̃3
= 0. (4.12)

However, a straightforward computation using (4.4) shows that in general, �αβ = ∂�αβ

∂p̃γ
p̃γ .

Applying this here, we see at once that

� = ∂�

∂p̃3
p̃3 +

∂�

∂p̃4
p̃4, 
⇒ � = 1

N

(
p̃3

∂N

∂r4
− p̃4

∂N

∂r3

)
, (4.13)

where the last line follows by (4.12). By assumption of constant N (4.13) then shows that �

vanishes, which by remark 1 of section 3.3 implies that the system is conditionally variational.
For part (b), note that there are n − k equations in (4.11), and (n−k)2

2 (n − k − 3) + (n − k)

equations in (3.8). Thus, for n − k = 3 (the three degree of freedom case) these two give the
same number of equations, and we can write out (4.11) by using the symmetry of g̃

K5
4 (F453 + F543) = − [

K4
3 F343 + K5

3 F353 + K4
4 F443 + K5

5 F553
]
, (4.14)

K5
3 (F354 + F534) = − [

K3
3 F334 + K3

4 F434 + K5
4 F454 + K5

5 F554
]
, (4.15)

K4
3 (F343 + F435) = − [

K3
3 F335 + K4

4 F445 + K3
5 F535 + K4

5 F545
]
. (4.16)

The parenthetical quantities are precisely (3.8) for the three degree of freedom case, and vanish
precisely under the assumptions (4.10), by using Fγαβ = −Fγβα . Moreover, it is clear that
for each K

γ
α in (4.14)–(4.16) which is zero, we must add the extra conditions as stated in

part (b). �

Remark 4.2.1: A similar result to part (b) holds for the greater than three degree of freedom
case, and also for the k > 2 case, by using the same argument starting from (4.11), but is not
very computationally useful.

4.3. Hamiltonization and conditionally variational systems

Another method which has been used with great success to find an almost-Hamiltonian
structure for nonholonomic systems is called Hamiltonization, and dates back to Chaplygin
[9]. This procedure historically grew out of Chaplygin’s reducing multiplier theorem [6],
which defines a new time parameterization τ by dτ = N(r) dt , where N(r) is the density
of the assumed existent invariant measure of the Abelian Chaplygin nonholonomic system,
and states that for two degree of freedom systems, the constrained mechanics (1.6) become
Lagrangian in τ -time (see [6] and [12] for more details).
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Having quantified the exact relationship between conditionally variational systems and
their invariant measures in the previous section, we are now in a position to relate conditionally
variational systems to the process of Hamiltonization.

Proposition 7. Suppose that the constrained Abelian Chaplygin nonholonomic system (1.6),
(1.7) has two degrees of freedom. Then if the system is conditionally variational, it is also
Hamiltonizable. Also, if the system is Hamiltonizable with constant measure density, then it
is also conditionally variational.

Proof. This follows directly from Chaplygin’s reducibility theorem (see theorem 1.2 in [15])
and part (a) of proposition 6. �

Remark 4.3.1: proposition 7 gives a relationship between two as yet unrelated avenues that
both attempt to recover nonholonomic mechanics in Hamiltonian form. The main advantage
is contained in its second statement, for there are numerous examples of Abelian Chaplygin
systems which are Hamiltonizable [6] and whose invariant measure densities are explicitly
known. By considering particular values of the system parameters (i.e. moment of inertia,
mass, etc.) we can then extract the constant measure density cases, and in the two degree of
freedom case then express the nonholonomic system as a conditionally variational one thanks
to proposition 7.

5. Examples: Conditionally variational nonholonomic systems

5.1. The vertical rolling disk

Consider the nonholonomic vertical rolling disc (see [3]) pictured in figure 1 below with
configuration space Q = R

2 × S1 × S1 and parameterized by the coordinates (x, y, θ, ϕ),
where (x, y) is the position of the center of mass of the disc, θ is the angle that a point fixed on
the disc makes with respect to the vertical, and ϕ is measured from the positive x-axis. This
system has Lagrangian and constraints given by

L = 1
2m(ẋ2 + ẏ2) + 1

2I θ̇2 + 1
2J ϕ̇2,

φ1 = ẋ − R cos ϕθ̇ = 0,

φ2 = ẏ − R sin ϕθ̇ = 0,

(5.1)

where m is the mass of the disc, R is its radius, and I, J are the moments of inertia about
the axis perpendicular to the plane of the disc, and about the axis in the plane of the disc,
respectively.

This is an Abelian Chaplygin system with
(
s1, s2, rα

1 , rα
2

) = (x, y, θ, ϕ) and as such
proposition 3 gives

�34 = (−mRẋ sin ϕ + mRẏ cos ϕ)

= mR(−(R cos ϕθ̇) sin ϕ + (R sin ϕθ̇) cos ϕ) = 0 (5.2)

and by remark 3.1.1 this shows that the system is conditionally variational. Moreover, the
variational nonholonomic Lagrangian (3.13) is given by

LV = 1
2m(ẋ2 + ẏ2) + 1

2I θ̇2 + 1
2J ϕ̇2 − mẋ(ẋ − R cos ϕθ̇) − mẏ(ẏ − R sin ϕθ̇)

= − 1
2m(ẋ2 + ẏ2) + 1

2I θ̇2 + 1
2J ϕ̇2 + mRθ̇(ẋ cos ϕ + ẏ sin ϕ). (5.3)

The results of proposition 5 apply here, and thus one could apply the Euler–Lagrange
equations to LV , and by imposing the constraints (5.1) only initially, recover the full
nonholonomic dynamics. It is also worth noting that a straightforward computation of (3.16)
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Figure 1. The vertical penny.

(This figure is in colour only in the electronic version)

shows that LV is regular, unlike in the variational approach wherein we have the extra µ

variables, and there the Lagrangian is automatically singular.
Thus, we have regained regularity and may now pass to the Hamiltonian picture with

momenta defined through the Legendre transform as in (3.18)

px = −mẋ + mR cos ϕθ̇, py = −mẏ + mR sin ϕθ̇,

pθ = I θ̇ + mR (ẋ cos ϕ + ẏ sin ϕ) , pϕ = J ϕ̇.
(5.4)

With these momenta, the constraints (5.1) are simply px = py = 0, and the Hamiltonian
becomes

HV = p2
ϕ

2J
+

1

2mβ

[
m2p2

θ − (a2 sin2 ϕ + Im)p2
x − (a2 cos2 ϕ + Im)p2

y + (a2 sin 2ϕ)pxpy

]
,

(5.5)

where β = a2 + Im, and a = mR. Indeed, we see at once that since H is independent
of x, y and θ , the corresponding momenta are conserved. Moreover, after computing the
associated canonical Hamilton equations and imposing on these the constraints px = py = 0,
a straightforward verification shows that the resulting equations of motion reproduce the
nonholonomic second-order equations of motion.

5.2. The mobile robot with fixed orientation and the two-wheeled carriage

These two examples are variations of the vertical disc. First, consider a mobile robot whose
body maintains a fixed orientation with respect to its environment [10]. It has three wheels
which roll without slipping, with the position of the center of mass at (x, y), the steering angle
θ , and the rotation angle ψ of the wheels. The system’s Lagrangian and constraints are given
by

L = 1
2m(ẋ2 + ẏ2) + 1

2J θ̇2 + 3
2Jwψ̇2,

0 = ẋ sin θ − ẏ cos θ,

Rψ̇ = ẋ cos θ + ẏ sin θ.

(5.6)

where again R denotes the common radius of the three wheels. However, after rewriting the
constraints as

ẋ − R cos θψ̇ = 0, ẏ − R sin θψ̇ = 0, (5.7)
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we see that this system is Abelian Chaplygin, and equivalent to the vertical rolling disc under
the identification J → 3Jw. The calculation showing that condition (3.4) is satisfied is in this
case then identical to (5.2).

Another similar example found in the literature [13, 19] is the two-wheeled carriage.
This system consists of a body with two wheels which roll without slipping. The position
of the center of mass of the ensemble is again denoted (x, y), and the rotation angles of the
two wheels are denoted by φ1 and φ2, with distance between the two wheels denoted by 2w.
Moreover, denote by m the total mass of the system (where we assume both wheels have
equal mass), I the axial moment of inertia of both wheels, J the moment of inertia about a
diameter of both wheels, and R the common radius of both wheels. The system’s Lagrangian
and constraints can be written as [13, 19]

L = 1
2m(ẋ2 + ẏ2) + 1

2J θ̇2 + 1
2I

(
ψ̇2

1 + ψ̇2
2

)
, (5.8)

0 = ẋ sin θ − ẏ cos θ, Rψ̇1 = ẋ cos θ + ẏ sin θ, Rψ̇2 = wθ̇, (5.9)

where we have adopted the definitions ψ1 = (1/2)(φ1 + φ2) and ψ2 = (1/2)(φ1 − φ2) from
[13].

Comparing the system with (5.6), we can view (5.8) as an extension of (5.6) to one
more degree of freedom (with the associated constraint (5.9)). Moreover since (5.9) is
actually a holonomic constraint, remark 6 from section 3.3 applies and this system is therefore
conditionally variational as well.

5.3. Veselova’s system

Veselova’s system describes [6] the motion of a rigid body with a fixed point subject to the
nonholonomic constraint (ω, γ ) = 0, where ω and γ are the body’s angular velocity vector
and unit vector of the space-fixed axis in the frame of reference fixed to the body, respectively.
By using Euler angles, we can write these vectors as

ω = (ψ̇ sin θ sin ϕ + θ̇ cos ϕ, ψ̇ sin θ cos ϕ − θ̇ sin ϕ, ψ̇ cos θ + ϕ̇), (5.10)

γ = (sin θ sin ϕ, sin θ cos ϕ, cos θ), (5.11)

and the equation of constraint is

φ1 = ψ̇ + cos θϕ̇ = 0. (5.12)

It is shown in [6] that this system possesses an invariant measure with density
N = (γ, Iγ )−1/2, where I is the moment of inertia matrix. We may now use remark 4.3.1 to
restrict to a case when the system might be conditionally variational. To that end, restrict to
the case where the moments of inertia are all equal, so that the measure density reduces to a
constant (= I−1/2). The Lagrangian then becomes L = I

2 (ω2
1 + ω2

2 + ω2
3), and the system is

Abelian Chaplygin. Hence the variational nonholonomic multiplier is given by proposition 3

µ = − ∂L

∂ψ̇

= −I (ω1 sin θ sin ϕ + ω2 sin θ cos ϕ + ω3 cos θ)

= −I (ψ̇ + cos θϕ̇), (5.13)

and clearly by using the constraint (5.12) we see that µ = 0, which is a special case of the
condition (3.4).

Note that in this case the system was conditionally variational with vanishing variational
multiplier, which in turn occurs because the nonholonomic constraint (5.12) in the equal
moment of inertia case is actually an integral of the motion.
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6. Examples: partially conditionally variational systems

Having introduced the idea of conditionally variational nonholonomic systems, we have now
seen that such a situation is rare, owing to the restriction (3.4) places on such systems. The
more common case which is still of interest is when only some (and not all) nonholonomic
trajectories can be seen as variational ones. We present several of these examples here.

6.1. The nonholonomic free particle

The nonholonomic free particle is a prime example of a nonholonomic Chaplygin system
which, although it has an invariant measure, is not conditionally variational (which is most
immediately seen from part (5) of proposition 3). However, we may still view some of the
nonholonomic solutions as variational ones.

The system consists of a free particle of mass m in R
3 with position (x, y, z) subject to a

nonholonomic constraint. The Lagrangian and constraint are given by [3]

L = 1
2m(ẋ2 + ẏ2 + ż2), ż = −xẏ. (6.1)

As it stands the system is Abelian Chaplygin with only one constraint, and we may apply the
results of proposition 3 to see that the variational multiplier is given by µ = mż, choosing
C = 0 (see remark 2 of section 3.3). Since this is not identically zero, the system is not
conditionally variational. However, in this case we have, by remark 3.1.1, that � = −mż, and
hence the constrained two degree of freedom system (1.6) has the invariant measure density
N = 1√

1+x2
, as can be verified directly through (4.12). This again verifies that the system is

not conditionally variational, since N is non-constant.
Since the system is not conditionally variational, not all nonholonomic solutions can be

seen as variational ones. However, the solutions (ẋ0t + x0, y0, z0) for which ż = 0 can be seen
as variational ones (for in this case � = 0 from above).

6.2. The Chaplygin sphere

The Chaplygin sphere is a sphere rolling without slipping on a horizontal plane (see [3]) whose
center of mass is at the geometric center, but the principal moments of inertia are distinct. In
Euler angles (θ, ψ, ϕ) the Lagrangian and constraints are

L = I1

2
(θ̇ cos ψ + ϕ̇ sin ψ sin θ)2 +

I2

2
(−θ̇ sin ψ + ϕ̇ cos ψ sin θ)2

+
I3

2
(ψ̇ + ϕ̇ cos θ)2 +

m

2
(ẋ2 + ẏ2),

(6.2)
φ1 = ẋ − θ̇ sin ϕ + ψ̇ cos ϕ sin θ = 0,

φ2 = ẏ + θ̇ cos ϕ + ψ̇ sin ϕ sin θ = 0.

where Ii are the moments of inertia about the qi axes, and the ball is assumed to have mass m.
Now, since q = (x, y, θ, ψ, ϕ), and the constraints and Lagrangian are independent

of x, y, we have an Abelian Chaplygin system. The system also has an invariant measure
whose density is in general non-constant (see [6]). However, the density is constant for
the homogeneous sphere case (in which I1 = I2 = I3 = I ). Thus, the system might be
conditionally variational if it satisfies (4.10). However, a quick computation shows that
Fψθψ = sin θ cos θ , which fails to satisfy (4.10).
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There are still nonholonomic solutions that can be seen as variational ones though. In this
case, the only nonzero components of the Ehresmann connection are

bx
θ = −sin ϕ, bx

ψ = cos ϕ sin θ,

∂bx
θ

∂ϕ
= −cos ϕ,

∂bx
ψ

∂θ
= cos ϕ cos θ,

∂bx
ψ

∂ϕ
= −sin ϕ sin θ,

b
y

θ = cos ϕ, b
y

ψ = sin ϕ sin θ,

∂b
y

θ

∂ϕ
= −sin ϕ,

∂b
y

ψ

∂θ
= sin ϕ cos θ,

∂b
y

ψ

∂ϕ
= cos ϕ sin θ.

(6.3)

Then condition (3.4) becomes the matrix⎛
⎝ mψ̇ sin θ(ϕ̇ + ψ̇ cos θ)

−mθ̇ sin θ(ϕ̇ + ψ̇ cos θ)

−mψ̇θ̇ sin θ + mψ̇θ̇ sin θ

⎞
⎠ = 0. (6.4)

Clearly the last entry of (6.4) vanishes, and a straightforward computation shows that
the variational nonholonomic Euler–Lagrange equation for ϕ reduces to the momentum
conservation law

d

dt

∂L

∂ϕ̇
= 0. (6.5)

Now, for I1 = I2 = I3 (6.5) expresses the conservation law ϕ̇ + ψ̇ cos θ = C, and so for
the homogeneous sphere all the nonholonomic trajectories chosen such that C = 0 initially
will annihilate (6.4). Thus all nonholonomic trajectories which satisfy C = 0 initially can be
seen as variational ones. Moreover, since in this case we cannot view all of the nonholonomic
trajectories as variational ones (only those which have C = 0), then system is not conditionally
variational.

Summarizing, we have thus seen that nonholonomic trajectories can be viewed as
variational trajectories in many very different ways. For the trivial cases, the constraints
may in fact be dynamic nonholonomic constraints [3] (i.e. constants of motion), as in the
case of Veselova’s system restricted to the case of constant measure density. For kinematic
nonholonomic constraints one may only be able to realize some of the nonholonomic
trajectories as variational ones, as in the case of the homogeneous Chaplygin sphere, and
the nonholonomic free particle. Lastly, for kinematic constraints satisfying (3.4) one can
actually view all of the nonholonomic trajectories as variational ones, and the system is then
conditionally variational, as is the case for the vertical rolling disc.

7. Conclusion

As we have seen, the dynamics of the variational nonholonomic formalism in most cases
differs from the mechanics of nonholonomic systems. Variational nonholonomic systems are
by definition Hamiltonian, and carry along with them natural properties (such as measure
preservation) which nonholonomic systems generally fail to satisfy. This is not to say that
there are no instances when the two dynamics coincide (which has largely been the subject of
this paper). However, attempting to directly verify the equivalence conditions of [28] leads
to time consuming calculations of little geometric meaning. Thus, our study into instances
when the two coincide has stressed geometric ideas, as well as simple computational tools to
verify conditions (3.4). Although most of the results are contained in proposition 3, which
only holds for Abelian Chaplygin systems, corollary 4 equally addresses the non-Abelian
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Chaplygin case, and in both cases we have stressed the notion that to a certain extent it is the
structure of the constrained equations which qualifies a system to be conditionally variational.

We originally approached the idea of a system being conditionally variational by
examining the associated variational nonholonomic system on Q̃ in section 2. However,
we showed in section 3.5 that in some cases one can eliminate the multipliers altogether and
still regain the nonholonomic mechanics by restricting to certain initial data. Indeed, we
showed this to be the case for the vertical rolling disc in section 5.1, and a similar situation is
satisfied by other nonholonomic systems which are actually not conditionally variational (see
[14] for more details).

Our final main development was the quantification of how nonholonomic systems
possessing an invariant measure are closer to being Hamiltonian. We showed in proposition
6 under what circumstances the existence of a constant density invariant measure for a given
nonholonomic system gives rise to the system being conditionally variational. Moreover, in
the two degree of freedom case we related this to the procedure of Hamiltonization.

Along the way we have also highlighted the vast array of possibilities for which
nonholonomic and variational nonholonomic systems can have identical trajectories. From the
conditionally variational vertical disc to the zero set of the momentum map for the Chaplygin
sphere, we can see that identical trajectories vary considerably depending on the geometric
properties of the system. In doing so we have hopefully quantified the difference (and
similarity) of nonholonomic and variational nonholonomic dynamics which has sometimes
been a point of confusion [16].
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