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Abstract

The bouncing gaits of terrestrial animals (hopping, running, trotting) can be modeled as a
hybrid dynamic system, with spring-mass dynamics during stance and ballistic motion during
the aerial phase. We used a simple hopping robot controlled by an artificial neural oscillator to
test the ability of the neural oscillator to adaptively drive this hybrid dynamic system. The
robot had a single joint, actuated by an artificial pneumatic muscle in series with a tendon
spring. We examined how the oscillator-robot system responded to variation in two neural
control parameters: descending neural drive and neuromuscular gain. We also tested the
ability of the oscillator-robot system to adapt to variations in mechanical properties by
changing the series and parallel spring stiffnesses. Across a 100-fold variation in both
supraspinal gain and muscle gain, hopping frequency changed by less than 10%. The neural
oscillator consistently drove the system at the resonant half-period for the stance phase, and
adapted to a new resonant half-period when the muscle series and parallel stiffnesses were
altered. Passive cycling of elastic energy in the tendon accounted for 70-79% of the
mechanical work done during each hop cycle. Our results demonstrate that hopping dynamics
were largely determined by the intrinsic properties of the mechanical system, not the specific
choice of neural oscillator parameters. The findings provide the first evidence that an artificial
neural oscillator will drive a hybrid dynamic system at partial resonance.

(Some figures in this article are in colour only in the electronic version)

Introduction

In hopping, running and trotting gaits, humans and all
terrestrial animals use a similar ‘bouncing’ motion for
economic locomotion [1-3]. A simple model describes
the fundamental characteristics of these bouncing gaits
remarkably well. The model is a hybrid dynamic system,
comprising spring-mass dynamics during stance and ballistic
motion during the aerial phases [4]. The stance phase requires
the majority of muscle force and work to redirect the motion of
the body. Consequently, most of the metabolic energy cost of
locomotion is also associated with stance [5—8]. Spring-mass
dynamics during stance can improve locomotor economy by
cycling mechanical energy in elastic tissues and minimizing
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active muscle work [1, 9]. In particular, long tendons of distal
limb muscles, such as the Achilles tendon in humans, play a
key role in storing and returning elastic energy during bouncing
gaits [10].

Humans can adjust their overall effective leg stiffness
to hop or run at different stride frequencies [11, 12], but
they have a preferred leg stiffness when allowed to freely
choose their movement dynamics [11, 13]. When human
hopping or running is perturbed by compliant surfaces (i.e.
series compliance) [14-16] or elastic leg braces (i.e. parallel
compliance) [17], subjects adjust leg stiffness to maintain the
same overall effective system stiffness. This results in a similar
contact period across conditions. Some have argued that the
contact period choice is related to neural reflex dynamics
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[18, 19], but other studies have pointed toward a mechanical
explanation [20-22]. When a damped spring-mass system
is rebounding off the ground, there is a time of contact with
the surface that requires the least amount of energy input to
maintain steady state because it takes advantage of the resonant
frequency of vibration [22]. Driving an oscillating mechanical
system at its natural frequency requires less mechanical energy
input than driving the system at alternative frequencies. The
relative importance of mechanical and neural factors in shaping
hopping and running dynamics is unclear.

The neuromechanical control of locomotion is facilitated
by rhythmic neural networks known as central pattern
generators. Central pattern generators are collections
of neurons that generate the basic pattern for rhythmic
movements. They exhibit common behavioral features such
as the generation of rhythmic motor output in the absence
of rhythmic input and entrainment to sensory feedback [23,
24]. These basic features are also demonstrated by artificial
neural oscillators, systems of nonlinear equations that exhibit
oscillatory behavior. Researchers have used a plethora of
different mathematical equations to model neural oscillator
function [25-33]. The behavior produced when coupling these
artificial neural oscillators to a mechanical system is similar for
many different specific formulations, suggesting that there are
general characteristics of rhythmic neuromechanical systems
[34-37].

Several key features of artificial neural oscillators make
them desirable for bio-inspired control of robots. They provide
robust and versatile control over a wide range of conditions.
Neural oscillators produce stable limit cycles that are robust
to transient perturbations yet flexible in adapting to sensory
feedback [38, 39]. As a result, they can generate locomotion
that automatically changes gait and adjusts to perturbations to
move effectively through a variable environment [25, 26, 28,
40-43]. Importantly, neural oscillators entrain to the dynamics
of the mechanical system, driving the system at its resonant
frequency [33, 34, 36, 37]. Theoretically, this could minimize
the energetic cost of locomotion for legged robots. It also
reduces the need for trajectory planning and precise knowledge
of mechanical system properties (e.g., mass, stiffness).

Although several studies have reported how artificial
neural oscillators entrain to continuous dynamic systems (such
as pendulums), their performance in driving discontinuous
hybrid dynamic systems (i.e. spring-mass systems with
separate stance and aerial phases) is not established. Hybrid
dynamic systems do not have a single resonant frequency
because their dynamics shift between governing sets of
equations. The dynamics of hybrid systems can be
quite complex, prohibiting complete analytical solutions
in mathematical models unless many simplifications and
constraints are applied [44]. Ijspeert and colleagues
demonstrated that an artificial neural oscillator (i.e. Hopf
oscillator) can drive a simulated spring-mass hopper with
hybrid dynamics [45]. They also found that the adaptive
artificial neural oscillator adopts a hopping frequency that
maximizes a measure of hopper economy [45]. However,
they did not perform a thorough mechanical analysis of their
simulation so it is unclear how the neural oscillator interacted
with the mechanical dynamics.

We built a simple hopping robot with hybrid dynamics so
that we could test the ability of an artificial neural oscillator to
adaptively entrain to a hybrid system. Our neuromechanical
system consisted of a single reciprocal inhibition oscillator
(Matsuoka oscillator) coupled to a hopping robot actuated at
a single ankle joint. We used two approaches to test the
adaptive capabilities of the artificial neural oscillator. First,
we examined whether the entrainment of the oscillator-robot
system is robust across changes in two control parameters:
descending neural drive and muscle gain. Second, we tested
the ability of the neuromechanical system to adapt to variation
in mechanical properties by altering the resonant frequency of
the stance phase via changes in the in-series and in-parallel
spring stiffnesses. We hypothesized that the artificial neural
oscillator would drive the mechanical system in resonance for
the ground contact phase. The aerial phase has no resonance
due to the dynamics of projectile motion.

We chose to test the system response to descending neural
drive and muscle gain because these are two control parameters
with well-understood physiological analogs. In vertebrate
animals, locomotion is initiated by descending neural drive
from the mesencephalic locomotor region (MLR) of the
midbrain [46, 47]. Increased strength of the descending signal
from the MLR results in increased frequency and amplitude of
rhythmic motor output with abrupt transitions between gaits.
In this manner, the brain can govern speed, amplitude and
mode of movement. In our simple neuromechanical system,
altering the descending signal strength was a way to test if
the robot maintained similar hopping dynamics with changes
in general excitation. The second control signal, muscle
gain, represents the excitation—contraction coupling between
the nervous system and muscle. This relationship can vary
under physiological conditions such as muscle fatigue [48,
49]. By altering the muscle gain, we examined the ability
of the oscillator to adapt to changes in the neuromechanical
transfer dynamics. With this parameter, we could test whether
the system maintains similar hopping dynamics with changes
in the neuromuscular gain.

Methods

Hopper design

We designed the robot to represent general aspects of lower
limb mechanics during human hopping. It was composed of
wooden foot and shank segments joined by a metal hinge joint
with one degree of freedom to simulate a simplified ankle.
While a hinge joint does not match the true complexity of
the ankle joint, it replicates the primary motion of this joint
in the sagittal plane during hopping. Neoprene padding on
the foot section provided better grip upon landing and light
damping to diminish high frequency vibration. This created
a more biologically realistic model of the human foot, which
employs considerable tissue padding to cushion foot impact
[50]. The robot is stabilized in the medio-lateral plane through
its attachment to a wooden supporting beam to limit motion to
vertical hopping (figure 1). The top of the shank was secured to
the beam by a hinge joint, allowing free motion in the sagittal
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Figure 1. The hopping robot. The artificial muscle was connected
to a pneumatic system which regulated air flow into and out of the
muscle. The ‘tendon’ was a metal extension spring. The ankle was a
metal hinge joint with a single degree of freedom allowing motion
in the sagittal plane.

plane. The beam was attached to a static base through another
hinge joint.

The ankle joint was actuated for plantar flexion by an
artificial muscle—tendon unit, consisting of a pneumatic muscle
and metal extension spring connected in series. The muscle
was attached to the proximal shank by an L-bracket and the
spring (Century Spring Corp., Los Angeles, CA) inserted
via an eyebolt onto the superior, posterior aspect of the foot
(figure 1). A single-axis compression load cell (Omegadyne,
Sunbury, OH), placed between the L-bracket attachment and
the superior end of the muscle, allowed measurement of
muscle-tendon force over the course of each hop cycle.
While the artificial muscle—tendon unit provided ankle plantar
flexion, antagonistic dorsiflexion was mediated by a passive
spring (elastic band) attached to the anterior side of the shank
and foot. We did not include active dorsiflexion for the robot
because we wanted the simplest system that could test our
hypothesis. Pilot data collections with the robot including an
artificial pneumatic muscle controlled by the flexor half-center
of the artificial neural oscillator demonstrated qualitatively
similar behavior as when an elastic rubber band was used for
passive dorsiflexion.

The artificial pneumatic muscle was constructed in the
same manner as that used for previous studies on pneumatically
powered ankle—foot orthoses [51-53]. The body of the
muscle consisted of latex tubing for the inner air bladder and
braided polyester sheathing for the outer shell. Four parallel
proportional pressure regulators (MAC Valves, Inc., Wixom,
MI) supplied compressed air (0-6.2 bar) to each artificial
muscle via nylon tubing. An analog-controlled solenoid valve
(MAC Valves, Inc., Wixom, MI) was placed in parallel with
the air supply tubing to facilitate exhaust. Air was supplied
to the artificial muscle through a regulated air supply through
standard pneumatic fittings. We controlled the air pressure to
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Figure 2. Artificial neural oscillator schematic. Ankle angle served
as the sensory feedback signal. Oscillator output included both
flexor and extensor muscle activation signals. For our testing, only
the plantar flexor oscillator half-center was used. Dorsiflexion on
the robot was achieved by a passive rubber spring.

the muscle through a real-time computer interface (ISPACE
Inc., Northville, MI; 1000 Hz) that received its control signal
from the neural oscillator output. The artificial muscle had a
similar force bandwidth (2.4 Hz) as human skeletal muscle
(2.2 Hz) [52, 54]. The effective mass of the robot was
approximately 3.6 kg.

Artificial neural oscillator

The neural circuitry of a central pattern generator (CPG)
was modeled using the dynamic equations for a simplified
reciprocal inhibition oscillator developed by Matsuoka
(figure 2) [31, 55]. The neural oscillator model was governed
by the following set of differential equations:

11X = —x1 — v — nlxelt +k — hjlg;1*
0 = —v + [x]*

Tk = —xp — Bua — 1Y+ k= hjlg;]”
Tl = —vy + [x2]*

yi = [x]*

T; = G;yi,

where 7, and 7, are time constants of the inner state and
adaptation effect, respectively, which adjust the shape and
intrinsic frequency of the oscillator, 7 is a constant that affects
the reciprocal inhibition between the two neurons, f is a
constant involved in the recurrent inhibition of each neuron, k&
is the tonic descending signal strength and g is the feedback
input (i.e. joint angle) with a corresponding gain 4. The
value x; is a discontinuous term, where [x;]* is the positive
part of x; and used as the output signal from the oscillator,
vi. T is the final control signal (i.e. voltage) sent to the
pressure regulator and is the product of y; and muscle gain,
G. This control signal can be thought of as analogous to an
electromyography linear envelope [56]. The base value for
each of the model parameters was chosen using guidelines
developed by Williamson through a rigorous analysis of the
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Table 1. Base parameter values used for the neural oscillator
(unitless).

Parameter  Value
Ty 0.02
T, 0.04
B 2.5
k 3.0
h 5.0
G 10.0

controller properties [57, 58] (table 1). The values of 7,
and 7, were set to provide an intrinsic oscillator frequency
approximately one-half the resonant mechanical frequency of
the hopper in the standard spring configuration. The precise
intrinsic frequency of the oscillator is unlikely to influence
the results, however, because this oscillator has been found
to robustly entrain to the mechanical system over a wide
frequency range [58]. The tonic descending signal represents
descending neural drive from the midbrain [46, 47]. Based
on the assumption that & would influence system dynamics
in a manner consistent with biological data, we expected
increased descending drive to produce increased frequency
and/or amplitude of motor output. Muscle gain (G) represents
the neuromechanical transformation between neural signal and
contraction dynamics.

We used the Matsuoka artificial neural oscillator because
of its simplicity, demonstrated robustness and adaptability, and
wide use in neuromechanical modeling and adaptive robotics
[25, 31, 37-43, 55, 57, 59]. However, as discussed in the
introduction, previous experiments have found similar system
behavior using a number of different oscillators.

Experimental procedure

Two separate experimental manipulations were performed to
evaluate the ability of the neural oscillator to provide robust and
adaptive control of the hopping robot. First, we manipulated
oscillator control parameters to examine the sensitivity of
the neuromechancial system. Second, we manipulated the
properties of the mechanical system to examine the ability of
the neural oscillator to drive the system over a range of stance-
phase resonant frequencies. We varied the stiffness of the
muscle—tendon unit by altering the arrangement of in-series
and in-parallel springs, described in detail below.

In the first experimental manipulation, we varied the tonic
descending signal strength (k) and muscle gain (G) parameters
and analyzed the resulting system performance. The standard
spring setup was used as depicted in figure 1 (tendon spring
of 2.7 kN m™"). The k and G values were individually varied
over a range of 0.1 to 100. The value of each parameter was
increased exponentially, resulting in at least ten trials for each
varied parameter. For each trial, all model parameters were
fixed except the current variable under investigation (either k or
G) (table 1). With increasing G, the hopping dynamics rapidly
reached a consistent pattern that was robust to further changes
in G. Because tonic drive (k) exhibited a less sharp saturation,
more values of k were tested to resolve the point at which the
hopping dynamics reached a consistent pattern. Kinetic and

kinematic data were collected for five continuous seconds after
allowing the robot to first reach steady state hopping.

In the second experiment we examined system
performance under conditions of varying muscle—tendon
stiffness, manipulated by changing the arrangement of springs
in parallel and in series. First, we tested four different springs
(1.7, 2.7, 4.1, 6.7 kN m™") in the standard arrangement,
changing the in-series stiffness (figure 1). The springs were
of equal length and differed minimally in mass (0.147, 0.16,
0.19, 0.19 kg). In a second spring arrangement, we used the
2.7 kN m~! spring in series with the artificial muscle and
added one of the four springs of differing stiffness in parallel.
The second spring was attached (via rigid cables) in parallel
to the muscle—tendon unit, so that the two were positioned
bisymmetrically about the center point on the posterior side of
the shank section. This arrangement of the parallel spring was
intended to mimic previous experiments of humans hopping
in place with an elastic ankle—foot orthosis [17].

Data collection

An eight-camera motion analysis system (Motion Analysis,
Santa Rosa, CA) was used to record segment and joint
kinematics at 120 Hz. We placed reflective markers on the
toe and heel of the foot, at the proximal and distal ends of
the artificial muscle, at the center of rotation of the ankle joint
and in a triad of markers on the anterior face of the shank.
We measured the ankle angle in the sagittal plane using an
electrogoniometer (Biometric Ltd, Ladysmith, VA). This angle
served as the neural oscillator feedback signal, which was the
sole input to the computer controller. We positioned the hopper
device over a force plate and collected ground reaction force
(GRF) data at 1200 Hz (Advanced Mechanical Technology,
Watertown, MA).

Data analysis

The data were filtered and processed using commercial
software programs (Visual3D, C-Motion, Rockville, MD;
MATLAB, Mathworks). Data were filtered using a fourth-
order zero-lag Butterworth low-pass filter with a 15 Hz cutoff
frequency. Individual hop cycles were defined as the time
from ground contact to subsequent ground contact, determined
from the GRF data. The data for all complete hop cycles in
each 5 s trial were aligned and averaged at each time point to
generate a single average hop cycle. Incomplete hop cycles
were excluded from analysis. The number of complete hop
cycles in the 5 s recording period varied between 9 and 14
depending on hop frequency.

Calculations

For each hopping cycle, we measured and calculated a
number of traditional biomechanical variables. We determined
hopping frequency, stance duration and aerial phase duration
from the ground reaction force data. We calculated the
displacement of the tendon spring by dividing the muscle—
tendon force (measured with the load cell) by the spring
stiffness. We used kinematic markers on the proximal and
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Figure 3. Measurements of the half-period of vibration for passive free vibration without an aerial phase and for active hopping.

(A) Example of amplitude of ankle angle versus time in free vibration testing. The time duration of a given cycle half-period is the value of
interest. (B) Example of vertical ground reaction force (VGRF) versus time during hopping. Points are identified on each force curve where
the data equal bodyweight of the robot. The half-period of vibration during the stance phase is the period of time that the ground reaction

force is above the bodyweight threshold.

distal ends of the muscle to record muscle displacement. We
calculated the mechanical power of the muscle and tendon by
multiplying their respective velocities by the muscle-tendon
force. By integrating the power curve with respect to time,
we calculated mechanical work. To evaluate the efficiency
of the system, we calculated the fraction of total mechanical
work done passively through energy cycling in the spring and
actively by the artificial muscle.

To test whether the artificial neural oscillator drove
the hopper at the stance phase resonant frequency, we
compared the half-period of the stance phase (time duration
for bodyweight to bodyweight in the ground reaction
force) with the half-period measured during free vibration
(figure 3). The mathematics for determining the half-period of
the stance phase is explained more extensively by Cavagna
et al [60]. The mathematics for determining the half-
period of free vibration is explained more extensively by
Tongue [61].

Results

Changes in the tonic descending drive (k) and muscle gain
(G) had similar qualitative effects on hopping mechanics. At
values lower than 0.1 for either parameter, the robot did not
hop with an aerial phase. Between values of 0.1 and 1, hopping
mechanics were very sensitive to both parameters. The control
signal generated by the artificial neural oscillator at these
parameter values was of low amplitude and peaked later in
the hop cycle (figures 4 and 5). At slightly higher levels of
tonic descending drive and muscle gain, the control signal
occurred earlier in the hop cycle and saturated in amplitude
(figures 4 and 5). As a result of the earlier control signal
in the hop cycle, the peak muscle—tendon force, peak ground
reaction force and duration of the aerial phase were greater
at higher values of tonic descending drive and muscle gain
(figures 6 and 7). A longer aerial phase indicates that the robot
jumped higher, because the robot undergoes simple ballistic
motion in this phase.

Hopping mechanics showed little variation with changes
in descending drive or muscle gain over the parameter range
of 1-100. For this 100-fold change in parameter values, the
artificial muscle developed force while shortening to produce
positive power and the tendon underwent stretch and recoil

(figures 4 and 5). Stance duration, hopping frequency, peak
force and displacement of the ankle, muscle and tendon
maintained relatively constant values (figures 6 and 7).
Hopping mechanics remain especially constant with altered
muscle gain (G). Hopping frequency changed by 5% (1.88—
1.98 Hz) and ground contact time changed by 4% (0.258-
0.269 s) over this 100-fold range in G (figure 7). Increments in
tonic drive (k) over this range leads to small increments in peak
muscle-tendon force, and corresponding small increments
in aerial time and decrements in hop frequency (figure 6).
However, given the 100-fold range in k, these changes are
modest. Hopping frequency changed by less than 10% (1.85—
2.01 Hz) and ground contact time changed by less than 13%
(0.234-0.269 s). Over the 100-fold range in both parameters,
elastic energy storage in the tendon spring accounted for 70—
79% of the total mechanical work done by the muscle-tendon
system (muscle contributed 21-30%) (figures 6 and 7).

The neural oscillator consistently drove the robot at the
resonant half-period of the stance phase. We manipulated
the resonant half-period by changing the stiffness of the in-
series spring (figure 8(A)) and by adding a parallel spring
of varying stiffnesses (figure 8(B)). This resulted in resonant
half-periods ranging between 0.13 and 0.19 s for the in-series
arrangement and 0.12 and 0.16 s for parallel arrangement.
The experimentally measured half-period based on ground
force data (figure 3(B)) consistently matched the resonant half-
period of the robot. The slope of the least squares linear
regression fit between these variables was 1.05 (R? = 0.93) for
the single-spring setup and 1.02 (R? = 0.95) for the parallel-
spring setup. This indicates that the robot was consistently
driven at stance phase resonance.

Discussion

Hopping dynamics were primarily dependent on the intrinsic
mechanical properties of the robot.  Muscle gain and
supraspinal gain were varied over 100-fold, but the hopping
frequency and ground contact time varied by less than 10 and
13%, respectively. The artificial neural oscillator entrained
to the natural frequency of the mechanics to achieve stance
phase resonance. When the intrinsic mechanical properties of
the robot were altered by changing the spring arrangement, the
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Figure 4. Effect of descending tonic drive (k) on hop cycle dynamics. (A) Muscle control signal, (B) ground reaction force, (C) load cell

force, (D) muscle and spring displacement and (E) muscle and spring power. In (D) and (E), solid lines are for the spring and dashed lines
are for the muscle. As tonic drive increased, the robot progressed toward consistent hop dynamics that were insensitive to further increases
in k. Waveforms are the mean of hops in a 5 s trial. Initial ground contact is at 0% of the hop cycle.

14 i 100, i 3001
(A) Control Signal (B) Ground Reaction Force (©) Load Cell Force
—G=0.1
75 ——FG=0.5
—G=38
—G=10
Volts \ Force 50 // g . ——G=20
V) (N) N\
a
25 \
0 / \ RN
0 /,
2 . . . ] -10 L L L 0 . . —
0 25 50 75 100 25 50 75 100 0 25 50 75 100
Time (% Hop Cycle) Time (% Hop Cycle) Time (% Hop Cycle)
(D) N (E) )
0.16 Muscle and Spring Displacement 2001 Muscle and Spring Power
0.12
0.08
Length /
(m)
0.04
0
0.04 -200

o 2

5 50 75
Time (% Hop Cycle)

25 50
Time (% Hop Cycle)

75 100
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(D) muscle and spring displacement and (E) muscle and spring power. In (D) and (E), solid lines are for the spring and dashed lines are for
the muscle. The robot progressed toward consistent hop dynamics that were insensitive to further increases in G. Waveforms are the mean of
hops in a 5 s trial. Initial ground contact is at 0% of the hop cycle.

In contrast to our expectations, changes in descending
neural drive had little effect on robot hopping dynamics.

neural oscillator consistently drove the system at the resonant
half-period of the stance phase (figure 8).
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Figure 7. The effect of muscle gain on hopping mechanics.

(A) Ground contact and aerial time, (B) hopping frequency, (C)
ground reaction force, (D) load cell force, (E) ankle angular
displacement, (F) spring and muscle displacement and (G) spring
and muscle mechanical work. Values for muscle gain are displayed
on a log axis. Values are the means + s.e.m.
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Figure 8. Comparison of half-period of vibration during stance
phase with the resonant half-period of free vibration. A line with
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was driven at stance resonance. The dashed line indicates the least
squares linear regression fit of the experimental data. (A) Data
acquired using the standard spring setup as shown in figure 1 and
changing the stiffness of the spring tendon. (B) Data acquired using
a parallel spring in addition to the standard setup of the robot,
changing the stiffness of the parallel spring. Values are the means &
s.e.m.

Studies on vertebrate locomotion have revealed that
increases in descending neural drive produce stronger muscle
contractions during stance, higher frequency movements and
can lead to abrupt transitions in gait [46, 47, 80]. This hybrid
dynamic robot does not have a single resonant frequency
because the dynamics of the stance and aerial phases are
discontinuous. Aerial phase duration depends only on the
vertical take-off velocity at the end of stance. We expected
that increases in neural drive would increase take-off velocity,
resulting in a longer aerial phase and lower hopping frequency.
Hopping mechanics were sensitive over a small range of
parameter values, but a 100-fold change in the parameter had
little effect above the value of 1. The relative consistency
of movement dynamics likely resulted from the constrained
mechanical structure. Our robot represented a simple hopping
system consisting of one single degree of freedom joint and
one actuator. Although gait changes were not possible, it was
possible to maintain stance phase resonance while altering
aerial phase duration and hopping frequency. It is not clear
why the system maintained such consistent dynamics across
changes in descending neural drive.

The robot greatly relied on elastic energy storage and
return during hopping. At muscle gain and supraspinal gain
parameters greater than 1, the ankle extensor muscle did not
change length for the first half of stance and then contracted
to produce positive work during the second half of stance
(figures 4 and 5). In contrast, the tendon lengthened during
the first half of stance and shortened during the second half
of stance (figures 4 and 5). These behaviors are similar to
those of the human triceps surae and Achilles’ tendon during
hopping and running [62-64].

The robot demonstrated an important difference between
its behavior and that of humans. When humans hop with added
parallel spring stiffness using an ankle—foot orthosis, they
maintain the same ground contact time as they used without the
device [17]. In contrast, our robot exhibited variable ground
contact times with a similar manipulation. This adjustment
allowed the robot to maintain stance phase resonance. Several
factors could explain this difference between human and
robot, all relating to the greater complexity of the human
neuromechanical system.

Humans might maintain stance phase resonance with
added parallel elasticity by adjusting their movement patterns
subtly rather than altering their ground contact time. The more
complex, nonlinear musculoskeletal dynamics of humans and
other animals can be altered by limb posture, muscle co-
activation and choices in synergist muscle activation [65-70].
The choice of a constant ground contact time both with and
without an elastic orthosis may have benefits related to muscle
activation dynamics, muscle efficiency or metabolic cost
[5, 71-73].

Another potential explanation for the difference between
human and robot is the simplistic model of the robot nervous
system. Humans, like all vertebrates, have a hierarchical
neural control architecture that integrates brain function, spinal
networks and reflex feedback [74, 75]. In particular, reflexive
excitation from stretch and load-dependent proprioceptors
contribute substantially to extensor muscle activation during
stance [18, 19, 77, 78]. There may be an optimal ground
contact time based on the timing of reflex pathways and
the inherent system mechanics (e.g. gravity, body mass)
for stability [79]. Our results do not provide a definitive
explanation for the differences between robot and human, but
they do present possibilities for designing future experiments.

An alternative modeling approach for the analysis of
bouncing gait dynamics would be to rely entirely on
computer simulations. A key advantage to building an actual
physical device is that it benefits from accurate ‘physics
for free’. All computer models and simulations rely on
simplifying assumptions about mechanical properties and
dynamics. Physical models allow testing and validation of
these mathematical models, and often reveal aspects of the
system that otherwise would have been missed [81]. For this
reason, numerous groups have used robots as research tools
for understanding the basic principles of human and animal
locomotor mechanics [8§2—-86]. In addition, the ability to both
see a system in action and quantify its mechanical performance
often provides more convincing evidence for the model than
simulation alone. Robotic models serve as an important tool
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for engaging students in research and increasing the impact of
biomechanical studies, because robots have widespread appeal
and strong presence in popular culture.

Our biologically inspired robot also has important
implications for the design and control of robots. Previous
work has demonstrated the robust and adaptive performance
of neural oscillators for controlling simple resonant systems
[33, 36-38]. However, few studies have investigated the
dynamics of neural oscillators coupled to hybrid dynamics
systems, which do not have a single resonant frequency. A
recent study has demonstrated that a simple adaptive neural
oscillator model can drive a hopping quadrupedal robot at
its resonant frequency [45]. However, no previous study has
included a detailed analysis of locomotor mechanics while
driven by a neural oscillator. Our results demonstrate that
the Matsuoka oscillator drives the mechanical system at the
ground contact resonance during hopping (figure 8). Analysis
of locomotor mechanics reveals that this allows approximately
75% of the mechanical work to be done by passive energy
cycling in the tendon spring (figures 6 and 7). This result
suggests that neural oscillator control, when appropriately
coupled to the mechanical system, could improve efficiency
in a wide array of robotic applications. Furthermore, the
neural oscillator was able to adapt to the change in spring
stiffness without the need for hand tuning of control parameters
(figure 8). This is consistent with previous studies that
suggest that neural oscillators produce stabile motor output
that eliminates the need for trajectory planning and precise
knowledge of mechanical system properties [25, 33, 38, 39,
41, 45]. Thus, neural oscillators can provide robust, adaptable
and economic control of hybrid dynamic systems.

One potential limitation to artificial neural oscillator
control is that some behaviors require motion at non-resonant
frequencies. However, networks of coupled neural oscillators
can allow a wider range of behaviors and locomotor modes,
with gait transitions automatically controlled by system
dynamics [26, 28]. Additionally, a hierarchical control
structure could allow the neural oscillator rhythm to be
adjusted by higher level control, as observed in animals [74,
75].  Such control architectures, although more complex,
would still reap the benefits of stable oscillator dynamics:
automatic entrainment and integration of sensory feedback,
and economic locomotion without trajectory planning.

Conclusion

Biomimetic robots help reveal basic principles of
neuromechanical integration and provide insight into
human and animal movement. The very simple

neuromechanical hopping system studied here demonstrates
the ability of artificial neural oscillators to provide robust,
adaptive and economic control of hybrid dynamic systems.
More anthropomorphic robot designs with similar control
architecture could be important tools to investigate the
neuromechanical integration for dynamically stable running.
Yet, addition of multiple joints, actuators and neural oscillators
will immensely increase the system complexity.  The
greatest insight is gained from neuromechanical models that

incorporate the minimal complexity necessary for the desired
system behavior. Consequently, an important goal of future
work will be to identify the minimal neuromechanical system
necessary to obtain stable forward bouncing locomotion.
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