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Abstract Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity
field are studied. We investigate the four equilibrium points in this gravity field. We see that
close relation exists between the stability of these equilibria and the existence and stability
of their nearby periodic orbits. We check the periodic orbits with non-zero periods. In our
searching procedure for these periodic orbits, we remove the two unity eigenvalues from
the state transition matrix to find a robust, non-singular linear map to solve for the periodic
orbits. The algorithm convergeswell, especially for stable periodic orbits. Using the searching
procedure, which is relatively automatic, we find five basic families of periodic orbits in the
rotating second degree and order gravity field for planar motion, and discuss their existence
and stability at different central body rotation rates.
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1 INTRODUCTION

Periodic orbits in the three body problem have now been studied in both theory and application for several
decades (Szebehely 1967; Richardson 1980; Kulkarni 2006). Periodic orbits around asteroids begin to be
investigated more recently. The study of periodic orbits around an irregularly shaped, uniformly rotating
asteroid can help us understand the nature of orbital dynamics around asteroids in general. Practically, the
study gives insight into conditions of general stability in planned orbital motion. Stable periodic orbits can
be directly used for missions and even unstable periodic orbits, if stabilized, can be used to realize safe close
proximity orbital missions. Scheeres et al. (1996, 2000) calculated and analyzed some families of periodic
orbits for a number of specific asteroids. This paper studies periodic orbits around asteroids in general by
modeling the asteroid perturbation potential with the most significant gravity coefficients, C 20 and C22

(see Hu & Scheeres 2002, 2004). Stability analysis of these orbits is performed using Floquet’s theorem.
A previous version was presented at the Ninth International Space Conference of Pacific-basin Societies,
2001, Pasadena, California.

First, we analyze the four equilibrium points in the rotating 2nd degree and order gravity field. Two
of these are always unstable, the other two can be stable or unstable, depending on the rotation rate of the
central body, ωT , the two gravity coefficients, C20 and C22, and its mass (Hu & Scheeres 2004). We find
that the stability of these equilibria has close relation with the existence and stability of their nearby periodic
orbits.

Next, we compute families of periodic orbits. In our searching procedure, we remove the two unity
eigenvalues from the state transition matrix (STM) to find a robust, non-singular linear map to solve for the
periodic orbits. The algorithm converges well, especially for stable periodic orbits. As we give the initial
variations a Jacobi constraint, the procedure automatically searches for a periodic orbit at a fixed energy
level.

By calculating the STM for the periodic orbit, we find the characteristic multipliers which are an index
of stability of the periodic orbit. These are used to test the stability of the periodic orbit.
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Then, by using an essentially automatic searching procedure for periodic orbits, we find five basic
families of periodic orbits and discuss their existence and stability at different central body rotation rates.
We call these five basic families, near direct, far direct, 1:1 resonant, 1:2 resonant and retrograde periodic
orbits. There are also other “special” periodic orbits which lie between these basic periodic orbit families.

2 SPACECRAFT MODEL

There are thousands of asteroids in our solar system, most of them are irregular in shape and with different
rotating rates (Perko 2000). The coupling of the mass distribution of a distended asteroid and its rotation
makes the orbit dynamics fundamentally different from that of slightly elliptical bodies, such as the Earth
and other major planets in the solar system.

For our basic model we assume an attracting body with gravitational parameter µ and a 2nd degree and
order gravity field. We assume that the body-fixed coordinate axes are aligned along the body’s principal
moments of inertia along axes x, y and z ordered by Ixx ≤ Iyy ≤ Izz . With this orientation the 2nd
degree and order gravity field can be specified by two coefficients, C 20 ≤ 0 and C22 ≥ 0. The relations
between the gravity coefficients and the principal moments of inertia of the body (normalized by the body
mass) are: C20 = −1/2 (2Izz − Ixx − Iyy) , C22 = 1/4 (Iyy − Ixx). Finally, we assume that the asteroid
is in uniform rotation about its maximum moment of inertia (the z-axis) with a rotation rate ω T and a
corresponding rotation period T = 2π/ωT .

Many methods have been used for the orbital motion about an oblate planet (or gravity field with
C20 term only). Most studies that have included the equatorial ellipticity of the central body (i.e., the C 22

gravity term) have made the assumption that the ellipticity is small, as is appropriate for planets in the solar
system. Our current problem is a significant departure, however, in that it considers values of the C 22 gravity
coefficient that are significantly larger than those found for all solar system planets, making this analysis
applicable to asteroids and comets which can have large values of equatorial ellipticity and different rotation
rates.

2.1 Equations of Motion

The motion of a spacecraft in the body-fixed, rotating frame is defined as the solution to the equations of
motion:

ẍ − 2ωT ẏ = ω2
T x − µ

r3
x +

∂U2

∂x
, (1)

ÿ + 2ωT ẋ = ω2
T y − µ

r3
y +

∂U2

∂y
, (2)

z̈ = − µ

r3
z +

∂U2

∂z
, (3)

where r =
√

x2 + y2 + z2. The gravitational force potential of 2nd degree and order in the body-fixed
frame is

U2 =
µ

r3

[
C20

(
1 − 3

2
cos2 δ

)
+ 3C22 cos2 δ cos 2λ

]
, (4)

where δ is the particle’s latitude and λ is its longitude. It can be easily shown that the above system can
be expressed as a Hamiltonian system if we assume q = [x y z]T , p = [px py pz]T = [ẋ − ωT y, ẏ +
ωT x, ż]T .

2.2 Gravity Potential and its Derivatives

To calculate the state transition matrix, we need to know the second order partial derivatives of the gravity
potential. The effective potential function in Cartesian coordinates is

U =
1
2
ω2

T (x2 + y2) +
µ

r
− µC20(x2 + y2 − 2z2)

2r5
+

3µC22(x2 − y2)
r5

. (5)
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The first order partial derivatives of the potential are

Ux = ω2
T x − µx
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2r7
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. . . (6)

The second order partial derivatives of the potential are
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T − µ

r3
+
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2.3 State Transition Matrix

Assume the system

ẋ = f (x) for x ∈ Rn , (8)

has a periodic orbit Γ of period T . Γ : x = γ(t), 0 ≤ t ≤ T , γ(t + T ) = γ(t). The linearization of
Equation (8) about its periodic orbit Γ is

δẋ = A (t) δx , (9)

where A(t) = ∂f(γ(t))/∂x. A state transition matrix for Equation (9) is a nonsingular matrix Φ(t) which
satisfies the matrix differential equation,

Φ̇ = A(t)Φ . (10)

For our system, the periodic matrix A is

A(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Uxx Uxy Uxz 0 2ωT 0
Uyx Uyy Uyz −2ωT 0 0
Uzx Uzy Uzz 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ . (11)

As we see the terms in matrix A(t), Uxz = Uyz = Uzx = Uzy = 0 for planar motion (z = 0). This linear
system can be decoupled by a linear transformation.

3 SEARCHING FOR PERIODIC ORBITS

Scheeres (2000) gave a general procedure to find periodic orbits near a given periodic orbit with a slightly
different energy. Here we follow a similar idea, which reduces the state transition matrix (STM) from a
6×6 to a 4×4 matrix by removing the two unity eigenvalue associated with a periodic orbit in a time
invariant system, then we can reduce our 4×4 STM Φ(T ) into a 2×2 matrix Φ rr(T ). By giving a constraint
to the initial value variation which keeps the Jacobi integral constant, we find an automatic approach to
computing periodic orbits, which is an application of the Poincaré mapping. The Poincaré surface we used
here is y0 = 0, ẏ0 �= 0, y(T ) = 0. The computation of these orbits requires a precision integration routine
and a set of programs which allow one to force the end-points of an orbit to join up.
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3.1 STM Dimension Reduction

At the initial condition y0 = 0, δy0 = 0, and at the first return to the Poincaré surface y(T ) = 0, δy(T +
δT ) = 0. The system is expressed as

⎡
⎢⎣

δx(T + δT )
δy(T + δT )
δẋ(T + δT )
δẏ(T + δT )

⎤
⎥⎦ = Φ(T )

⎡
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δx0

δy0

δẋ0

δẏ0

⎤
⎥⎦ +

⎡
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ẋ(T )
ẏ(T )
ẍ(T )
ÿ(T )

⎤
⎥⎦ δT . (12)

The condition δy(T + δT ) = 0 allows us to solve the δT necessary to stay on the Poincaré surface. Then
we can reduce our system to

⎡
⎣ δx(T + δT )

δẋ(T + δT )
δẏ(T + δT )

⎤
⎦ =

⎡
⎣ φr11(T ) φr12(T ) φr13(T )

φr21(T ) φr22(T ) φr23(T )
φr31(T ) φr32(T ) φr33(T )

⎤
⎦

⎡
⎣ δx0

δẋ0

δẏ0

⎤
⎦ , (13)

where

φr11(T ) = φ11(T ) − ẋ(T )
ẏ(T )

φ21(T ) . . . (14)

The Jacobi integral is restated as

J =
1
2
(ẋ2 + ẏ2 + ż2) − 1

2
ω2

T (x2 + y2) − µ

r
− U2 . (15)

If we restrict J to one value, then δJ = 0.
In the Poincaré surface δy = 0, ∂J/∂ẏ = ẏ �= 0, allowing us to solve for δẏ as

δẏ = − 1
∂J
∂ẏ

(
∂J

∂x
δx +

∂J

∂ẋ
δẋ

)
. (16)

Evaluated at the initial conditions we can find the necessary variation in ẏ 0 to keep J constant.
This allows a final reduction, equivalent to removing the two unity eigenvalues from the original 4×4

STM,

[
δx(T + δT )
δẋ(T + δT )

]
=

[
φrr11(T ) φrr12(T )
φrr21(T ) φrr22(T )

] [
δx0

δẋ0

]

≡ Φrr(T )
[

δx0

δẋ0

]
, (17)

where

φrr11(T ) = φr11(T ) − ∂J/∂x0

ẏ0
φr13(T ) . . . (18)

For periodic orbits, there are some properties of the reduced order map Φ rr(T ). First, φr11φr22 −
φr12φr21 = 1 due to volume conservation in phase space. Secondly, if our periodic orbit has ẋ 0 = 0, then
φr11 = φr22 due to symmetry of the orbit about the x-axis. A similar discussion can be found in Hénon
(1973) for three body problem.
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3.2 Search Procedure

If the initial condition is (x0, ẋ0), and its first return is (x1, ẋ1), we wish to choose the correction δx0, δẋ0,
to drive [

x1 + δx1

ẋ1 + δẋ1

]
→

[
x0 + δx0

ẋ0 + δẋ0

]
. (19)

To do this we solve for the correction that makes this occur for our linear system. Then the new initial
condition can be written as[

x0n

ẋ0n

]
=

[
x0

ẋ0

]
+ [I − Φrr(T )]−1

[
x1 − x0

ẋ1 − ẋ0

]
. (20)

By imposing the Jacobi integral invariant on the initial condition variation, using Equation (15), we have
ẏ0n by the following relationship when x0 > 0,

ẏ0n = ±
√

2
(

J − 1
2
ẋ2

0n +
1
2
ω2

T x2
0n +

µ

x0n
− µ

2x3
0n

C20 +
3µ

x3
0n

C22

)
. (21)

Thus, Equation (15) indicates

J(x0n, y0n = 0, ẋ0n, ẏ0n) = J(x0, y0 = 0, ẋ0, ẏ0) . (22)

There exist relations between the properties of the periodic orbit and the algorithm. If at the first return
(x1, ẋ1) is too far from (x0, ẋ0), the searching algorithm diverges, and a periodic orbit does not exist near
(x0, ẋ0) for the given Jacobi integral. If det |I − Φrr(T )| ≈0, the periodic orbit is at a critical point from
stable to unstable, and at this point the searching program usually fails. We use these properties to modify
our searching programby adding some limitations on the searching step size and recursive counting number,
which makes our program more “automatic”.

4 STABILITY ANALYSIS

Given a periodic orbit, we can use the Floquet Theorem to determine its stability by calculating its state
transition matrix Φ(t) and its characteristic multipliers. If all its characteristic multipliers eλjT ≤ 1, then
the periodic orbit is stable.

4.1 Characteristic Multipliers

For a periodic matrix A(t), we have the following result known as Floquet’s Theorem (see Perko 1991).
If A(t) is a continuous, T -periodic matrix, then for all t ∈ R any state transition matrix solution for
Equation (9) can be written in the form Φ(t) = Q(t)eBt, where Q(t) is a nonsingular, differentiable, T -
periodic matrix and B is a constant matrix. Furthermore, if Φ(0) = I , then Q(0) = I . The eigenvalues of
eBT are given by eλjT where λj , j = 1, ..., n, are eigenvalues of the matrix B.

The eigenvalues of B, λj are called characteristic exponents of periodic orbit γ(t) and the eigenvalues
of eBT , eλjT are called characteristic multipliers of γ(t).

It can be shown that one of the characteristic exponents of periodic orbit γ(t) is always zero, i.e. one of
the characteristic multipliers is always 1, but for Hamiltonian systems there exist two unity multipliers since
if η is an eigenvalue of Φ(t) for a Hamiltonian system, its inverse η−1, complex conjugate η̄, and inverse
complex conjugate η̄−1 are also its eigenvalues.

The product of all the characteristic multipliers is
6∏

i=1

eλiT = e

(∑6

i=1
λi

)
T = |Φ(T )| = e

∫
T

0
tr(A(q))dq = e0 = 1 . (23)

Thus, two characteristic multipliers of the periodic orbit are unity, since the dynamics of the uniformly
rotating problem is Hamiltonian.

At the orbit period T , Q(T ) = I , eBT = Φ(T ) whose eigenvalues are the characteristic multiplies
of the periodic orbits according to the Floquet’s theorem. The calculated characteristic multipliers e λiT of
the periodic orbits in Figure 1 are listed in Table 1. The two unity eigenvalues of the STM indicate the
periodicity of the orbit, while the other two are just the index of stability of the periodic orbit. We see that
only the near circular periodic orbits are stable, and all the other orbits are unstable.
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Fig. 1 Examples of periodic orbits when the initial value of x0 ranging from 1.1 to 1.6, y0=0, and ẋ0=0. For
asteroid 4769 Castalia µ = 9.40×10−8 km3 s−2, C20 = −7.275×10−2 km2, C22 = 2.984×10−2 km2,
ωT = 4.2883 × 10−4 radius s−1. The four equilibria are (±0.9070, 0) and (0,±0.7019). We note that the
minimum radius of the lobe orbits are less than the dimension of the asteroid, and are shown for theoretical
interest only.

Table 1 The Calculated Characteristic Multipliers eλiT of the Periodic Orbits in Fig. 1

orbit description x0 λ1 λ2 λ3 λ4

(1) small lobe 1.1 90.50 0.0110 1.0 1.0
(2) large lobe 1.1 126.6 0.0079 1.0 1.0
(3) double lobes 1.4 1275 0.00078 1.0 1.0
(4) near ellipse 1.4 42.46 0.0236 1.0 1.0
(5) near circle 1.6 –0.846–0.533i –0.846+0.533i 1.0 1.0

4.2 Characteristic Equation

Since the system is Hamiltonian, the characteristic multipliers have a specific structure. The characteristic
equation of the state transition matrix Φ(T ) for planar orbits is

(η2 − (ka + 1/ka)η + 1)(η2 − 2kbη + 1) = 0 , (24)

where eλiT = ηi, and ka and kb are two real numbers. Equation (24) describes the structure of the
characteristic multiplies for our system, if eλ1T = ka, e−λ1T = 1/ka, eλ2T = kb + i

√
1 − k2

b ,
eλ̄2T = kb − i

√
1 − k2

b , −1 ≤ ka ≤ 1, −1 ≤ kb ≤ 1. For example, a stable near circular orbit, ka = 1,
|kb| < 1 and an unstable lobe or elliptic orbit |ka| < 1, kb = 1. We note that for a real number, its complex
conjugate is itself; and for a complex number on the unit-circle, its inverse is its conjugate.

Another way to analyze the stability of a periodic orbit is to calculate the coefficients of the charac-
teristic equation without solving for the multipliers, and define a “stability index” which is similar to the
variable −(ka + 1/ka) or −2kb in Equation (24). This method was presented in Szebehely (1967), where
it was used for the restricted three body problem with two equal mass primaries. When (k a + 1/ka) > 2,
kb = 1 the periodic orbit is unstable; when ka + 1/ka = 2, |kb| < 1 the periodic orbit is stable.

Considering the out of plane stability in planar motion, we can decompose the full six by six STMs into
a 4×4 in-plane STM Φ and a 2×2 out-of-plane STM Φ z .

Similarly we can have Φz(T ) and its characteristic equation for a periodic orbit,

η2
z − 2kcηz + 1 = 0 . (25)

Normally, −1 < kc < 1, which means that the periodic orbit is stable in the out-of-plane direction, but
some retrograde periodic orbits when their radii are close to the central body are in-plane stable and out-
of-plane unstable. This result is compatible with the secular motion analysis for a slowly rotating central
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body (Hu & Scheeres 2002). The variable k c in Equation (25) corresponds to the “vertical stability index”
in Hénon (1973), where he gave a discussion of the out-of-plane stability of periodic orbits in the restricted
three body problem.

5 FAMILIES OF PERIODIC ORBITS

Figure 1 shows some periodic orbits, which are all direct orbits in inertial space, for asteroid 4769 Castalia.
For retrograde orbits there always exist stable, near-circular periodic orbits, but for direct orbits the case
is different. For example in our particular case, when x0 = 1.3 and x0 = 1.4 there will not be any near
circular direct periodic orbits. This corresponds to the resonant region from 1:1 to 2:1 in Figure 5. When
the orbit radius is large enough, say x0 ≥ 1.6, direct near-circular periodic orbits exist as a continuous
family along the x-axis. Additionally, at some radii, for example at x 0 = 1.1 and x0 = 1.4, by changing the
energy level, we can find more than one periodic orbit. Figure 2 shows examples of periodic orbits when the
central body rotates slowly. When the central body rotates fast, some of these periodic orbits will disappear
or change their stability character.
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Fig. 2 Examples of periodic orbits when the central body rotates slowly, at 1/7th of the rotation rate of the
asteroid Castalia. The four equilibrium points are (±2.9673, 0) and (0,±2.9076).

5.1 Equilibrium Points

In essence, the equilibrium points are special kinds of periodic orbits of period T = 0. By analyzing
the eigenvalues Ar at the equilibrium points, we can understand the stability and existence of the nearby
periodic orbits. Similar to the results for an ellipsoidal central body, it can be shown that the equilibrium
point along the x-axis always has an unstable saddle manifold and a center manifold. The equilibrium point
along the y-axis is stable when the central body rotates slowly, and has two center manifolds. These points
become unstable when the central body rotates fast enough, and then there will be one stable spiral manifold
and one unstable spiral manifold.

The stability condition is (Hu & Scheeres 2004)

r2
s + C20 − 162C22 > 0 , (26)

where the radius of a synchronous orbit when C20 = C22 = 0 is rs = (µ/ω2
T )1/3.

5.2 Classification

The family of direct, equatorial, near circular and body-fixed periodic orbits have two branches, one near
the asteroid (the small circle in Fig. 2), the other far from the asteroid (the large circle in Fig. 2). The near
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branch (with its n � ωT ) disappears when the central body rotates fast. The far branch (n 	 ω T ) always
exists and when the central body rotates fast it gets closer to the central body. The direct periodic orbits of
both the near and far branches are usually stable when exist.

Between these two branches of direct periodic orbits are the 1:1 and 1:2 resonant periodic orbits. The
1:1 resonant orbits, whose mean motion rate n = ωT (see Fig. 2), also have two branches. Their existence
and stability have a close relationship with the equilibrium point analysis, as shown in Section 5.1.

One branch of the 1:1 resonant periodic orbit is around the equilibrium points along the short equatorial
axis (y-axis), which is present and stable when (see Equation (26))

ωT < µ1/2/(−C20 + 162C22)3/4 . (27)

The equilibrium point at the y-axis has two center manifolds, so nearby periodic orbits are present and
stable. When the central body rotates faster, this equilibrium point has one stable and one unstable spiral
manifold, then no periodic orbits exist near this equilibrium.

The other branch of the 1:1 periodic orbits is around the equilibrium point along the long equatorial axis
(x-axis), which is always present, but unstable. See Figure 1 for the fast rotation case. Since the equilibrium
points along the x-axis have a center and a saddle manifold, periodic orbits exist near the equilibrium point
but are unstable.

For the Earth, C22 and ωT are very small and the 1:1 resonant orbits can be very large, even encircling
three of the four equilibriums, and their stability can also change. For example, in the family of 1:1 periodic
orbits near the equilibrium point (xeq, 0), the smaller one is unstable, while the large one including the three
equilibrium points (xeq,0), (0,±yeq) is stable (Lara 2000).

The near branch of direct periodic orbits meets the 1:2 resonant periodic orbit family and disappears
as its radius increases. The 1:2 resonant orbit with mean motion n = 2ωT is present and stable when the
central body rotates slowly. The shape of the 1:2 resonant orbits can be seen in Figure 2, and it changes
for different values of the Jacobi integral. The 1:2 resonant orbits also exist along the y-axis. Figure 2 just
shows one 1:2 resonant orbit along the x-axis.

Retrograde, near circular periodic orbits in the equatorial plane move in the opposite sense of the
asteroid rotation. In general, such retrograde orbits are stable and exist at almost all radii.

Between the above basic families of periodic orbits, there exist some special periodic orbits. For ex-
ample, at the boundary between the 1:1 resonant and far direct periodic orbits there is a family of double
lobe periodic orbits (Figs. 1 and 2). Their stability character also changes from stable to unstable as ω T

increases.
One special periodic orbit is seen in the middle of Figure 2 between the 1:1 and 1:2 resonant orbits: it

is a smooth, triangular periodic orbit but is not symmetric about the x-axis, and by the initial assumption
it is perpendicular to the x-axis. The result can serve as an example of how well our searching procedure
works.

5.3 Distribution

Figure 3 shows the families of periodic orbit for a specific asteroid. The upper-left branch is the near-direct
periodic orbits, continuing down are the 1:2 resonant orbits. The upper-right branch are the far-direct orbits.
The bottom branch is the retrograde periodic orbits. In the middle are the 1:1 resonant, double lobe, smooth-
triangle-like periodic orbits, etc. As the central body rotates faster, the whole curve will translate to the left,
and the old left part of the curve will disappear.

Figure 4 shows another example of periodic orbits in a slowly rotating case. We find that the direct, 1:1
and 1:2 resonant periodic orbits also exist, but the critical boundary periodic orbits are different.

Figure 5 shows a critical line between stable and unstable near circular quasi-periodic orbits at different
ωT in inertial space and their relation to the mean resonant orbits when ωT /n∗ is a ratio of two integers. The
stable orbits defined in the plots are the orbits whose semi-major axis and eccentricity are nearly constant
on average, which means the energy and angular momentum of the orbit do not change on average. Their
orientation may change, like the well known J2 perturbation orbits around the Earth. If there are large
changes in semi-major axis and eccentricity within an orbit, we regard this as unstable. We find in this
picture when the line is crossed, the system is in a region with a more strongly varying semi-major axis and
eccentricity. The near direct periodic orbit exists in the lower-left region where (n − ω T )/ωT � 1, which
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means n � 2ωT , and the far direct periodic orbit exists in the upper-right region when (ω T − n)/n � 1,
which means ωT � 2n. The retrograde orbits exist when ωT < 0. In the middle are the resonant lines,
we see that the 1:2 resonant line acts like a thin wall which prevents the near direct periodic orbit from
crossing it. We can prove that the near circular 1:2 periodic orbit is unstable in eccentricity. A 1:2 periodic
orbit exists and is stable with relatively large eccentricity. We will publish these results based upon further
analysis.
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Fig. 3 Families of periodic orbit in the slowly rotating case corresponding to Fig. 2
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Fig. 4 Examples of periodic orbits at 1/10th of the rotation rate of asteroid Castalia.

For the near direct and some retrograde periodic orbits near the central body, when the central body
rotates slowly, (n−ωT )/ωT � 1, secular perturbationsmake important contributions to the periodic motion
(Hu & Scheeres 2002).

5.4 Summary

We have found some basic families of periodic orbits around asteroids. The existence and stability of these
families may change for different rotation rates. Table 2 lists the parameters of these periodic orbit families.
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Fig. 5 Boundary line between “stable” and “unstable” regions of near circular, direct orbits in inertial space
and their relation to resonant orbits when ωT /n is a ratio of two integers. We find there are jumps at the
resonances. The plot is made using the Castalia model with a varying rotation rate. For the actual asteroid,
ωT = 4.2883 × 10−4 radius s−1.

Table 2 A Summary of the Properties of Periodic Orbit Families

periodic orbit eccentricity stability existence
near direct e≈0 stable n � 2ωT > 0
far direct e≈0 stable ωT � 2n > 0
1:1 around yeq e�=0 stable Equation (27)
1:1 around xeq e�=0 unstable always
1:2 resonant e�=0 stable n ≈ 2ωT

retrograde e≈0 stable n < 0
special orbit e�=0 stable/unstable critical boundary

We note that some of the periodic orbits we discussed here have similarities to the periodic orbits of
the restricted three body problem, and that all the periodic orbits checked, except the 1:2 resonant orbits,
are the first return maps. There may be other periodic orbits which are second or third return maps similar
to the three body problem as shown in Szebehely (1967).

6 CONCLUSIONS AND DISCUSSION

Periodic orbits in an arbitrary 2nd degree and order uniformly rotating gravity field are studied. Equilibria
can be regarded as periodic orbits with period zero. We see that the stability of these equilibria has a close
relation with the existence and stability of their nearby periodic orbits. If the equilibrium manifolds have
two centers, then nearby periodic orbits are present and stable; if the equilibrium manifolds are spiral, then
periodic orbits do not exist; and if the equilibrium point has one center and one saddle manifold, then
periodic orbits are present but unstable. By using a quasi-automatic searching procedure for periodic orbits,
we have found five basic families of periodic orbits and checked their existence and stability at different
central body rotation rates. There exist other periodic orbits, and they can be analyzed also by the above
procedure. In this paper we focus on periodic orbits in planar motion. We find that retrograde periodic
orbits are always stable and can be directly used as mission orbits. For applications of others periodic
orbits, exquisite control should be taken with the long term evolution.
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