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1 Introduction

In this paper, we analyze how income, stock market, and interest rate risk affect the

purchase of life insurance and pension annuities over the life cycle in a continuous

time setting. We expand prior literature on pension annuities and life insurance by

simultaneously considering income, stock market, and interest rate risk as the main

sources of uncertainty over the life cycle apart from mortality risk. Mortality risk

has two different outcomes. On the one hand, the investor can run out of savings

and fall into poverty before dying. In this case, the investor can neither consume

nor bequeath her heirs (longevity risk). On the other hand, the investor can die too

early without consuming enough of her savings in case she has not a bequest motive

or she can perish without having built up sufficient wealth to leave an appropriate

legacy for her heirs. The latter is also known as brevity risk.

While in the past only wealthy individuals were concerned with personal financial

planning, today everyone has to accumulate wealth and manage her assets effectively

to meet the consumption and bequest liabilities that arise during her lifetime. Per-

sonal finance particularly becomes critical for everyone’s individual welfare in light

of the demographic shifts eroding and undermining public PAYGO systems. Until

recently several employers have taken on longevity and investment risk by providing

defined benefit solutions to their workers. Today’s employees have to increasingly

bear the investment risk when electing a certain defined contribution 401k plan

from their employer’s menu. Ideal candidates for the efficient management of con-

sumption (bequest-) liabilities are pension annuities (life insurance). Both products

have appealing return and payoff characteristics since their pricing is either con-

tingent on surviving (pension annuities) or on dying (life insurance). Compared

to an investment in mutual funds, the consumption possibilities are higher when

annuitizing, while the bequest potential increases when purchasing life insurance.

In case the individual annuitizes, the investor surrenders bequest potential, while

the investor gives up consumption possibilities when purchasing life insurance. If

the investor purchases a life insurance, the premium is taken out of the investor’s

financial wealth. As already demonstrated by Richard (1975), the investor controls

her legacy by finding the right balance between savings and life insurance early in
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life and seeks the appropriate split between financial wealth and pension annuities

during the later stage of her life cycle. So the key point of interest is to know when

the investor should switch from life insurance to pension annuities in order to satisfy

both her desire to consume and her wish to bequeath her heirs and what wealth level

triggers the short position in life insurance.

Even though the selection of life insurance and pension annuities is a challenging

task in a world where mortality is the sole source of risk (see Yaari, 1965 or Pliska

and Ye, 2007), there are many other sources of risk influencing both the timing

and the extent to which life insurance and pension annuities are purchased. Labor

income is probably the most influential exogenous factor determining the timing

of pension annuities (see e.g. Horneff, Maurer, and Stamos, 2008a). By the same

token, labor income also influences the level of savings and therefore the overall

demand for life insurance.

Not only does labor income have a considerable impact on the purchase of life

insurance and pension annuities, but the influence on the asset allocation within

the investor’s financial wealth is also considerable. Studies such as Cocco, Gomes,

and Maenhout (2005), Duffie, Fleming, Soner, and Zariphopoulou (1997), Gomes

and Michaelides (2005), Heaton and Lucas (1997), Koo (1998), Viceira (2001), and

several more consider stochastic income. Several of these studies find labor income

to be more closely related to bonds than to stocks. Therefore, human capital acts

partly as a substitute for bonds. In turn, the optimal stock fraction of financial

wealth decreases over the life cycle as the fraction of human capital declines in the

investor’s total augmented wealth. Augmented wealth is composed of both financial

wealth and human capital. This is why we pay particular attention to modeling the

investor’s labor income.

Correlation between the innovations of the stock return and the income growth

had only a limited impact on the overall asset allocation because previous studies

considered a single risky asset and a constant investment opportunity set. Munk

and Sørensen (2007) show that correlation particularly matters if the investor faces

a stochastic investment opportunity set with correlated interest rate risk.

There are numerous other studies looking only at interest rate risk in isolation.

Other studies analyzing dynamic asset allocation in the presence of interest rate
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risk include Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira (2001),

Deelstra, Graselli and Koehl (2000), Liu (2007), Sangvinatsos and Wachter (2005),

and many more. Since the interest rate dynamics are also important for determining

the value of the investor’s human capital, we find it particularly interesting to analyze

its impact on the decision when to buy pension annuities and when to purchase life

insurance.

Indeed, the literature on life insurance and pension annuities is vast. Early work

on life insurance in a financial context includes Campbell (1980), Fischer (1973),

Hakansson (1969), Hurd (1989), Lewis (1989), Yaari (1965). While previous stud-

ies analyze in which way mortality, utility, strength of bequest, risk aversion, and

intertemporal elasticity of substitution influence the demand for life insurance, the

articles are not written in the spirit of modern portfolio choice models.

In many studies, pension annuities are analyzed separately as most products

involve life long payments. For portfolio choice studies including gradual annuitiza-

tion only we refer the interested reader to Milevsky and Young (2007) and Horneff,

Maurer, and Stamos (2008a, 2008b)

Only a few articles consider the timing of life insurance and pension annuities

simultaneously. Richard (1975) is a pioneering study modeling life insurance in the

framework of modern portfolio choice. Dybvig and Liu (2004) consider a model with

flexible retirement dates by endogenizing the leisure decision while the investor can

purchase life insurance and pension annuities. Huang, Milevsky, and Wang (2005)

as well as Huang and Milevsky (2008) consider a consumption function including

the bread winner and her respective heirs, where the model includes the bread win-

ner’s risky labor income and stochastic capital markets. Pliska and Ye (2007) model

an economy with no risk sources except the uncertainty surrounding the investor’s

remaining lifetime. However, their study looks at pre-retirement behavior only. Pur-

cal (2003) analyzes the interaction of life insurance and unspanned income in the

presence of a stochastic stock market. Kraft and Steffensen (2008) generalize the

Richard’s (1975) results by assuming a multistage Markovian framework including

uncertain lifetime and disability but they do not consider capital market risks and

therefore disregard the individual’s investment decision. In essence, we extend the

analysis of Munk and Sørensen (2007) to uncertain lifetime and insurance products
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and the article by Richard (1975) to stochastic labor income and interest rate risk

by using Pliska and Ye’s (2007) model which only considers riskless bonds and life

insurance. Compared to Huang and Milevsky (2008), we assume an age dependent

income process and introduce interest rate risk. Interest rate risk is important be-

cause it influences the demand for mortality contingent claims, expands the stochas-

tic investment opportunity set for capital markets, and influences the pattern of the

labor income process.

First, we develop our stochastic model before we analyze the case of spanned in-

come. Then we proceed to the case of unspanned income. A final chapter concludes.

2 The Model

2.1 Uncertain Lifetime and Preferences

We assume that the investor is alive at time t = 0 and the investor’s age at death

(lifetime) is a non-negative continuous random variable T on the probability space

(Ω,F , P ) (c.f. to Pliska and Ye, 2007). In our model, we suppose that the random

variable T has a probability distribution with underlying probability density function

f̄(t) and a cumulative distribution function F̄ (t):

F̄ (t) = P (T < t)) =

∫ t

0

f̄(u)du. (1)

The function S(t) is also known as the survivor function and is therefore defined as

the probability that the age at death (survival time) is greater than or equal to t:

S(t) = P (T ≥ t)) = 1− F̄ (t). (2)

The survivor function can be used to compute the probability that the individual

lives from time zero to some time beyond t. The force of mortality or hazard rate

is the instantaneous ’death rate’ for the investor when she has survived until time t

and is given by:

λ(t) ≡ lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)

∆t
=
f̄(t)

S(t)
= − d

dt
ln(S(t)). (3)
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Thus, the survivor function can be simply restated as:

S(t) = exp

(
−
∫ t

0

λ(u)du

)
. (4)

In the remainder, we use a parametric function for the force of moratlity. We choose

the Makeham-Gompertz law of mortality because of its widespread use in the finance

and insurance literature (see e.g. Milevsky and Young, 2007).

λ(t) = ϑ+
1

χ
exp

(
t− ξ
χ

)
. (5)

The parameters ϑ, ξ, and χ determine the shape of the force of mortality function.

While ξ is the mode of the remaining lifetime, the parameter χ can be interpreted

as a dispersion parameter of the distribution. The constant ϑ aims at capturing the

component of the death rate that can be attributed to accidents. The exponentially

increasing portion of (5) reflects natural causes of death over the life cycle.

Under the risk neutral measure λt turns out to be equal to the hazard rate µt.

Interestingly, the hazard rate µt is used by the insurance companies to price their

products. Therefore, the heterogeneous beliefs about individual survival probabili-

ties affect the value of human capital in the market place.1

In the setup of our optimization problem, we are concerned with maximizing the

investor’s expected utility from lifetime consumption U(ct, t), from bequest V (υt, t),

and from final wealth L(Wω, ω). Here, ω represents the truncated lifetime and can

be interpreted as the last year of financial planning during the investor’s life. In

turn, the indirect utility function J is given by:

J(W, y, r, t) =

max
(c,θQ,θB ,θM ,x)ω∧Tt

Et

[∫ ω∧T
t

U(cs, s)ds+ V (υT , T )I{T≤ω} + L(W (ω))I{T>ω} | Ft
]
,

(6)

where cs denotes the consumption at time s, υT is the legacy the investor leaves at

death, and Wω is the final wealth.
1Insurance companies usually assume a different mortality table to adjust the survival probabilities
to reflect adverse selection. While λt is used to weight the utility from consumption and bequest
potential in the optimization problem, µt describes the force of mortality used to price insurance
products.
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The optimization problem is dependent on several state variables such as the

level of cash on hand W , income y, the short rate r, and age t. The state variable

cash on hand W can be influenced by the controls consumption c, stock investment

θQ, bond holdings θB, cash or money market holdings θM , and the amount of life

insurance x. The controls are both time and state dependent.

We have to include the final wealth or cash on hand Wω in order to find a closed

form solution for our problem.

Richard (1975) chooses an artificial terminal condition for his optimization prob-

lem. In his case, the integral for determining the indirect utility function is not

defined at the very end because the integrand becomes infinite. Technically, the

resulting closed form expression is not the solution to the stated optimization prob-

lem. Yet, there are different ways of addressing this issue. For instance, Pliska and

Ye (2007) state their problem in a mathematically correct manner by introducing

some fixed investment horizon. They interpret this particular point in time as the

beginning of the retirement period.2 If the investor considered in Pliska and Ye

(2007) lives up to her terminal date, she is granted the remaining wealth for the

periods to come. We have also thought of another solution to the problem in as

much as we can assume that the investor leaves neither bequest nor wealth to live

on for the periods after the financial planning horizon. The resulting solution would

be very similar to the one of Richard’s (1975) article.3 However, we prefer the final

wealth condition as it appears to be more economically sound. Most probably, the

investor is happy to receive a lump sum to cover her care giving expenses at the

very end of the financial planning horizon.

In the literature, Dybvig and Liu (2004), for instance, evade any problems re-

lated to the indirect utility function by using a fixed hazard rate. However, a fixed

hazard rate is a questionable assumption both from an economic and biological

standpoint as the investor cannot age in their model and has the same expected

lifetime throughout her entire existence. Huang, Milevsky, and Wang (2005), for ex-

ample, avoid the bequest completely by modeling a consumption function including

the bread winner as well as her heirs.

Turning to our original problem, we can rewrite (6) in the following way because
2A detailed derivation can be found in Ye (2006).
3The results of this alternative problem are available upon request.
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we assume that T is independent of the filtration F:

J(W, y, r, t) = max
(c,θQ,θB ,θM ,x)ωt

Et

[∫ ω
t

S(ω)
S(t)

U(cs, s)ds

+
∫ ω
t

S(u)
S(t)

λ(u)
∫ u
t
U(cs, s)dsdu+

∫ ω
t

S(u)
S(t)

λ(u)V (υu, u)du+ S(ω)
S(t)

L(W (ω)) | Ft
]
.

(7)

Applying Fubini Tonelli’s theorem and swapping the order of integration, we get:

J(W, y, r, t) = max
(c,θQ,θB ,θM ,x)ωt

Et

[∫ ω
t

S(s)
S(t)

[U(cs, s)ds+ λ(s)V (υs, s)] ds

+S(ω)
S(t)

L(W (ω)) | Ft
]
.

(8)

In the remainder, we assume that the investor has CRRA preferences for consump-

tion, bequest, and final wealth.

U(ct, t) = m(t)
c1−γt

1−γ , V (υt, t) = m(t)
υ1−γ
t

1−γ , L(Wω, ω) = m(ω)W
1−γ
ω

1−γ , (9)

where γ is the level of risk aversion which is greater than one. The subjective

discount rate m(t) is equal to e−ϕt, where the rate of time preference is ϕ.

In the following sections, we will define the dynamics of each state variable

separately. One state variable can be omitted because of scale independence. Later

on, we will reduce the state space to normalized cash on hand as an income multiple,

the level of the short rate r, and age t.

For now, we consider the state variable cash on hand W before normalization

because we want to express the short positions in terms of absolute values rather

than relative figures.

2.2 Financial Markets

The bond market is modeled according to Vasicek (1977) in which the short rate

spans the whole term structure of interest rates.

dr = κ(r̄ − rt)dt− σrdzr, (10)

where κ determines the speed driving the current short rate rt to its long run mean r̄

and where zr is a one dimensional standard Brownian motion and σr is the volatility
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of the short rate process. The price of a zero bond Bs
t can be represented by an

affine function:

Bs
t ≡ Bs(rt, t) = e−a(s−t)−b(s−t)rt , (11)

where s is the initial maturity.

b(τ) = 1
κ
(1− e−κτ )

a(τ) = R∞(τ − b(τ)) + σ2
r

4κ
b(τ)2

R∞ = r̄ + σrφr
κ
− σ2

r

2κ2 ,

(12)

where τ determines the time to maturity of a bond at time t, R∞ is the asymptotic

long rate representing the yield of a zero coupon bond as maturity goes to infinity,

and φr is the market price of risk. The dynamics of the bond price can be stated as:

dBt

Bt

= (rt + σB(rt, t)φr)dt+ σB(rt, t)dzr, (13)

where σB(rt, t) is the bond return volatility. In general, the bond return volatility

depends on both the level of the short rate and the time-to-maturity. In this model,

the bond return has a perfect negative instantaneous correlation with the interest

rate ρBr = −1. Even though the affine interest model has only one source of

uncertainty, the Vasicek model allows for all shapes of term structures observed

empirically: normal, flat, and inverted term structures.

As far as stock markets are concerned, we assume that the individual can invest

in a single non-dividend paying stock index that obeys a price process Q of the

following nature:

dQt

Qt

= (rt + ψ)dt+ σQ(ρQBdzr +
√

1− ρ2
QBdzQ) (14)

The expected return on equity is equal to rt plus the constant equity premium

ψ. The innovations of the stock and the bond process are correlated where the

correlation is given by ρQB. Here, σQ represents the volatility of the stock return.

To simplify the notation for the sections to come, we combine the bond and stock

price dynamics in Pt = (Bt, Qt)
T by using matrix notation. We have to multiply

the lower triangular matrix found by Cholesky decomposition by the vector of the
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two standard Brownian motions Z = (zr, zQ)T .

Σ(rt, t) =

σB(rt, t) 0

σQρQB σQ
√

1− ρ2
QB

 (15)

dPt = diag(Pt)[(rt1 + Σ(rt, t)Φ)dt+ Σ(rt, t)dZt], (16)

where Φ = (φr, φQ)T is the vector of market risk premiums and φQ is the market

risk premium of stocks which is defined as:

φQ =
1√

1− ρ2
QB

(
ψ

σQ
− ρQBφr

)
(17)

2.3 Insurance Markets

In the insurance market used in this model, the investor can buy or sell instantaneous

term life insurance as in Richard (1975). Instantaneous term life insurance means

that the investor can only purchase death insurance for the next second. The investor

has to pay a premium of xt to ensure that her heirs receive an amount of xt
µt

at her

death, where µt is the hazard rate the insurance company uses to price the term life

insurance:

µt = λt + ιt, (18)

where ι is the incremental load factor increasing the standard hazard rate at time

t. The incremental load factor is supposed to fulfill the following condition:

D(t) =

∫ ω

t

ι(s)ds <∞, (19)

where D are the total costs. If the investor dies immediately, her heirs receive

her accumulated cash on hand plus the payout from the instantaneous term life

insurance as a legacy υt.

υt = Wt +
xt
µt
, (20)

whereWt is the cash on hand. Again, we show the dynamics ofWt after introducing

all other decision and state variables. Surviving the next second, the investor has to
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repurchase instantaneous term life insurance in order to hedge the liability arising

from her bequest motive for the following second. Indeed, life insurance is cheap

for a wage earner. Here is an example: The US female investor is 35 years old

and she has just purchased a life insurance for USD 100. Her hazard rate is 0.265

percent at that time. In turn, her death benefit amounts to USD 37,736. So we

do not expect an extensively large cash outflow for life insurance at the early stage

of her life cycle. Only a small fraction of her wealth goes towards funding the

additional legacy. Modeling life insurance in this way does not only cover death

insurance but also annuities. Theoretically, death insurance is just the flip side of

an annuity. The investor has to pay a premium when she is alive while her heirs

receive a death benefit in case she perishes. If the investor shorts the term life

insurance, she will receive the premium as a benefit when she is alive and will have

to pay the death benefit as the annuity premium from her legacy. In real world, a

life annuity is a financial contract between a buyer (annuitant) and a seller (insurer)

that pays out a periodic amount for as long as the buyer is alive, in exchange for

an initial premium (Brown et al., 2001). However, there is a similar product out

in the insurance market known as reverse mortgage. A reverse mortgage works as

follows: A reverse mortgage is used to release the home equity in a property as a

loan given in multiple payments to the home owner. Indeed, the multiple payments

can be a life annuity spelling out how much the house owner receives for as long

as she stays alive. The homeowner’s obligation is deferred until the owner dies. So

the premium is paid only at death. The home equity value works as collateral for

the remaining time. Still the annuity payments are life long to limit the adverse

selection in the insurance market (see Brugiavini, 1993). Arguably one cannot find

the exact same payoff structure of short positions in term life insurance in real life.

However, it works as an excellent simplification and shows similar characteristics

of a reverse mortgage with life annuity payments. In turn, the introduction of life

long payments necessitates the numerical solution of a combined optimal control

and stopping time problem (see Milevsky and Young, 2007).

10



2.4 Labor Income

In the remainder, we use a tractable model of labor income by assuming that the in-

vestor as a wage earner receives a continuous non-negative income from non-financial

sources throughout her lifetime. The income rate is yt at time t. Identical to Munk

and Sørensen (2007) we assume that yt evolves according to the stochastic differen-

tial equation:

dyt = yt

[
(ζ0(t) + ζ1rt)dt+ σy

[
ρTyPdZ +

√
(1− ρ2

yB − ρ̂2
yQ)dzy

]]
for t ∈ [0,min{ω, T}],

(21)

where ζ0 is the time dependent drift term and ζ1 denotes the the sensitivity of the

wage rate with respect to the short rate. Here zy is a one-dimensional standard

Brownian motion, ρyP = (ρyB, ρ̂yQ)T is the vector of correlations, and where

ρ̂yQ =
ρyQ − ρQBρyB√

1− ρ2
QB

. (22)

The coefficients in front of the standard Brownian motions can be found by applying

the Cholesky-Crout algorithm to the covariance matrix. The drift term of the income

process is also influenced by the level of the short rate to reflect the impact of the

business cycles on the general wage level.

3 Spanned Income

3.1 Optimal Policies

In order to derive the optimal policies for the individual, we need to consider the

dynamic budget constraint. The holdings in the money market account θM are given

as the residual after subtracting other investments from the current cash on hand

defined below. The residual value is determined by θM = Wt − θQ − θB. Given the

optimal consumption, investment, and insurance strategy, the wealth evolution can
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be written as:

dWt = (Wtrt + ΘTΣ(rt, t)Φ− ct − xt + yt)dt+ ΘTΣ(rt, t)dz

for t ∈ [0,min{ω, T}],
(23)

where Θ = (θB, θQ)T . Applying Ito’s Lemma to (8), we find the following Hamilton-

Jacobi-Bellman (HJB) equation. For simplicity, state dependencies are dropped.

λtJ = sup
(c,θQ,θB ,θM ,x)

{
U(ct, t) + λtV (υt, t) + Jt + JW [rtWt + ΘTΣΦ− ct − xt + yt]

+1
2
JWWΘTΣΣTΘ + Jrκ[r̄ − rt] + 1

2
Jrrσ

2
r + Jyy(ζ0 + ζ1rt)

+1
2
Jyyy

2σ2
y − JWrΘ

TΣe1σr + JWyyσyΘTΣρyP + Jryyρyrσyσr } ,
(24)

where e1 = (1, 0)T and the terminal condition is J(W, y, r, ω) = L(W,ω).

The first order condition with respect to consumption is the typical standard

envelope condition: the incremental utility from saving cash on hand is equal to

the incremental value of consuming cash on hand immediately. A similar envelope

condition holds for the bequest.

U ′(ct) = JW (Wt, yt, rt, t)

λt
µt
· V ′(υt) = JW (Wt, yt, rt, t).

(25)

The individual purchases as much insurance from the current cash on hand as nec-

essary to equate the incremental utility increase relative to the gain of having more

cash on hand available for future periods to come. It is a surprising but well known

result that the new asset class life insurance is more closely related to the optimal

consumption strategy than it is to alternative investment strategies such as stocks,

bonds, and money market. The optimality condition suggests that the individual

reacts to changes in the state variables. Solving for the optimal consumption rate

and level of life insurance, we obtain the following optimal controls:

c∗ = (JW/m(t))−
1
γ

x∗ = µt

(
µtJW
λtm(t)

)− 1
γ − µtWt.

(26)
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The optimal investment strategy is given by:

Θ∗ = − JW
JWW

(Σ(rt, t)
T )−1Φ− JWy

JWW

yσy(Σ(rt, t)
T )−1ρyP +

JWr

JWW

σr
σB(rt, t)

e1. (27)

The first part of the optimal investment controls corresponds to the standard mean-

variance optimal portfolio. The second term of (27) refers to the hedge against

variations of the income, while the last part of the optimal control stems from the

hedge against interest rate changes. Given the optimality conditions, we can exactly

determine the controls for a certain (W, y, r, t) quadruple in the state space if we

obtain a functional expression for J(W, y, r, t). The value function is homogeneous

of the degree (1− γ) in wealth. In case of the Vasicek interest rate specification, a

closed form solution can be found. Whenever income is spanned and no portfolio

constraints are in place, income can be replicated by financial assets. The present

value of future income is simply considered as part of the investor’s augmented

wealth. The individual has a total augmented wealth of Wt +H(yt, rt, t). Here, the

income rate is spanned by the financial assets available if the correlations obey the

following relationship:

ρ2
yB + ρ̂2

yQ = 1

ρyQ + ρQBρyr = ±
√

(1− ρ2
yr)(1− ρ2

QB).
(28)

Due to the CRRA function and the assumptions made previously, we can write the

indirect utility function with labor income as:

J(W, y, r, t) = J(W +H(y, r, t), r, t). (29)

J(W, y, r, t) =
1

1− γ
m(t)g(r, t)γ(W +H(y, r, t))1−γ. (30)

In addition, we can propose the following guess (30) for the function J(W, y, r, t).

What remains to be done is to find a functional expression for g(r, t) and to price the

individual’s income. First, we derive the function g(r, t) for our guess in equation

(30) in appendix (A) Value Function. We also price the income stream under the

risk neutral measure (see appendix (B) Human Capital for details). The function
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g(r, t) can be stated in the following way:

g(r, t) =
∫ ω
t
k(s)f(s− t)Bs(rt, t)

γ−1
γ ds+ f(ω − t)Bω(rt, t)

γ−1
γ ,

f(τ̂) = exp
(
−ϕ
γ
(τ̂) + 1−γ

γ
D̄(τ̂) + 1−γ

2γ2 ‖Φ‖2τ̂

+1−γ
γ2

(
(r̄ −R∞)(τ̂ − b(τ̂))− σ2

r

4κ
b(τ̂)2

))
,

k(s) =

[(
1
µs

) 1−γ
γ
λ

1
γ
s + 1

]
, D̄(τ̂) =

∫ τ̂
0

(
µu − λu

1−γ

)
du,

(31)

where τ̂ is the time horizon. The function g(r, t) looks similar to a bond pricing

formula. The first part is scaled by the time dependent coefficients k(s) and f(τ̂),

and nonlinearly transformed by γ−1
γ
. The last part of the sum is multiplied by the

function f(τ̂) only, while the zero bond Bω is raised to the power of γ−1
γ
.

H(y, r, t) = EQ
[∫ ω

t
S̄(s)

S̄(t)
ys exp−

∫ s
t rudu ds

]
H(y, r, t) =

∫ ω
t

S̄(s)

S̄(t)
yth(t, s)(Bs(r, t))1−ζ1ds

lnh(t, s) =
∫ s
t

(
ζ0(u)− σy(u)ρTyPΦ− (ζ1 − 1)σy(u)ρyBσrb(s− u)

)
du

+ζ1(ζ1 − 1) σ2
r

2κ2 ((s− t)− b(s− t)− κ
2
b(s− t)2),

(32)

where S̄ is the survivor function including the hazard rate under the risk neutral

measure. Human capital shows similarity to a defaultable bond. The bond price

has been scaled by the function h(t, s) and transformed by (1− ζ1).

3.2 Optimal Demand for Life Insurance or Pension Annuity

Even though the closed form solution is found for the special case when income

can be replicated by financial assets, it is instructive to analyze the solution more

carefully to gain some economic insight.

Equation (33) shows that the optimal insurance demand does not only depend

on all four state variables (W, y, r, t) but also on all parameters involved in the

entire optimization problem. Augmented wealth and the function g(r, t) determine

the optimal insurance strategy to a large extent. The overall absolute insurance

demand heavily depends on the weights assigned by the hazard rate µ to price the
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life insurance. The older the investor and the higher the hazard rate is, the larger

are the cash flows related to the demand for life insurance.

x∗ = µt

(
µt
λt

)− 1
γ Wt +H(y, r, t)

g(r, t)
− µtWt. (33)

The value of x∗ can be positive or negative. If the sign of x∗ is negative, the individual

has a positive demand for pension annuities. The demand for pension annuities will

be positive if the investor shorts life insurance. The investor is induced to short life

insurance whenever:

µt

(
µt
λt

)− 1
γ Wt +H(y, r, t)

g(r, t)
< µtWt. (34)

Wealth has to be larger than the scaled value of augmented wealth consisting of

human capital and financial wealth. The annuity demand becomes greater whenever

eitherWt rises or the value of human capital declines. In general it is not clear which

effect the short rate has on the demand for life insurance because in equation (33

the nominator as well as the denominator are dependent on the short rate. For two

cases, the direction is obvious. If the coefficient of relative risk aversion γ > 1 and

the short rate sensitivity of the wage rate ζ1 < 1, than the demand for life insurance

decreases for increasing short rates. Further, if γ > 1 and ζ1 > 1, than the demand

for life insurance is increasing for rising short rates.

4 Unspanned Income

4.1 Optimal Policies

For computational convenience only, we rewrite the HJB from (24) by considering

the following changes: First, we take the rate of time preference ϕ to the left hand

side of the equation. Second we have to redefine the utility function as:

Ū(ct, t) =
c1−γt

1−γ

V̄ (υ, t) =
υ1−γ
t

1−γ

(35)
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Third, we replace the final condition by J(W, y, r, ω) = Wω
1−ρ

1−ρ . The new HJB is in

line with Purcal (2003) and similar to the one used in Milevsky and Young (2007).

Since we use CRRA utility, we find that the utility function is homogeneous of

degree 1− γ in (W , y) and therefore we can rewrite the indirect utility function as:

J(W, r, y, t) = y1−γF

(
W

y
, r, t

)
(36)

We define η as the wealth-to-income ratio W
y
and express controls c and x normalized

with income as ĉ and x̂. In order to give some illustrative examples for the case of

unspanned income, we have to solve and optimize the PDE in (37) after replacing

the indirect utility function J(W, r, y, t) by F (η, r, t).

((λt + ϕ)− (1− γ)(ζ0 + ζ1r) + 1
2
γ(1− γ)σ2

y) F = sup
(ĉ,Π,x̂)

{
Ū(ĉ, t) + λtV̄ (υ̂, t)

+Ft + Fr(κ[r̄ − r] + (1− γ)ρyrσyσr] + Fη([1− ĉ− x̂+ rη + ηΠTΣΦ]

−ζ0η − ζ1rη + γησ2
y − γησyΠTΣρyP ) + 1

2
η2Fηη[Π

TΣΣTΠ + σ2
y(t)− 2σyΠ

TρyP ]

+1
2
Frrσ

2
r − ηFηrσr(ΠTΣe1 + ρyrσy) } ,

(37)

where Π is the vector of portfolio weights. We also stipulate that the bond and equity

weights have to add up to one (πQ + πB = 1) to avoid excessive money market

borrowings. We optimize and solve the HJB (37) by adopting the optimization

method used in Brennan et al. (1997).4

4.2 Calibration

We calibrate our entire model to asset returns, income profiles, and survival proba-

bilities found in US data. In our stylized analysis, we assume symmetric mortality

beliefs µt=λt by fitting the standard hazard rate λ to the 2000 Population Ba-

sic mortality table for US females. Applying non-linear least square, we fit the

Makeham-Gompertz force of mortality so that the estimated parameters turn out

to be ξ = 87.24, χ = 10.54, and ϑ = 0.001. In terms of the preference function, we

choose a moderately risk averse investor with a coefficient of risk aversion equal to

γ = 4. Her rate of time preference is ϕ = 0.03.
4Greater detail on the numerical methods can be found in Appendix C.
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Parameters
Utility Interest Rate Stocks Income Covariance

B Q Y

ξ 87.24 κ 0.5 ψ 0.04 ζ̄0 0.025 σ2
B 0 0

χ 10.54 r̄ 0.02 σQ 0.2 ζ1 0.25 0 σ2
Q 0

ϑ 0.001 φr 0 σy 0.1 0 0 σ2
y

ϕ 0.03 σr 0.02
γ 4

Table 1: Parameters and Calibration. This table specifies the parameters of the
utility function, the hazard rate, interest model, stock, and income process.

In order to incorporate life-cycle variations in labor income, we consider an age-

dependent income growth rate. The expected growth rate ζ̄0 is 2.5 percent per year

as long as the investor works. However, if the level of the short rate is equal to 10

percent, then the income rate doubles to 5 percent because we set ζ1 acting as a

business cycle indicator to 0.25. When the investor enters retirement, the income

growth rate ζ̄0 drops to 0 percent. Along these lines, we assume that the income

volatility is equal to 10 percent during worklife while the volatility becomes zero at

the beginning of the retirement period.

ζ0(t) =

ζ̄0(t) if 20 ≤ t ≤ 65

0 if t > 65

(38)

Our benchmark parameters for the stock market are in line with Cocco, Gomes,

and Maenhout (2005), Gomes and Michealides (2005) as well as Munk and Sørensen

(2007) and many others. The risk premium of ψ = 4 percent is frequently quoted

in the literature and reflects the forward looking equity premium over the risk free

rate. In our model the risk free rate is equal to the short rate model given by the

Vasicek term structure model. The standard deviation for the stock price is set at

20 percent. This falls into the range of historical volatilities found for major US

stock market indexes such as the S&P500.

The parameters for the short rate process are taken from Munk and Sørensen

(2007) as there is no sufficient data on real bonds available. The speed κ to the long

term mean is exactly 50 percent. The standard deviation of the short rate process

and the long term short rate are set to 2 percent respectively. We assume a market
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price of risk φr = 0. For our numerical analysis, we also suppose that the investor

can only access a 10 year government bond paying real interest.5

We set the correlations of the innovations between the financial and non-financial

growth rates ρBy=ρQy = 0 to zero in order to avoid covariance effects in our analysis.

The same is true for the correlation between the innovations of stock and bond

returns ρQB = 0.

4.3 Numerical Illustration of Insurance Demand

In this section, we illustrate the demand for life insurance and pension annuities over

the life cycle. Graph (A) of figure (1) depicts the long and short positions in life

insurance as fractions of η. Not surprisingly do life insurances play an important role

for small levels of cash on hand. The higher the level of cash on hand, the more is

the investor induced to switch to short positions because she has sufficient financial

wealth levels in order to bequeath her heirs. The overall insurance demand changes

considerably over the life cycle. The total fraction used for life insurance purchases

and pension annuities early in life is still limited. This is because premiums of life

insurances are extremely cheap as we have seen in the section on insurance markets.

On the flip side, short positions are very expensive because they limit the bequest

potential which is not sufficiently backed by financial savings. When the investor

becomes older, she purchases substantially more pension annuities by shortening life

insurance. At the late stage of her life cycle, the investor buys more life contingent

products with a higher fraction of η than before because she is more likely to die the

next period. Graph (B) of figure (1) shows the insurance demand for an 80 year old

female investor along the dimensions normalized cash on hand and short rate level.

We find only a marginal influence of the short rate level on the overall demand of

life insurance under the current parameterizations of our asset and income model.

Probably one reason can be found in the way we model the business cycle effects on

income. In our model, the short rate also influences the growth rate of our income

process during the retirement period. Here we have offsetting effects because the

short rate enters human capital as well as the value function. The numerical analysis
5This is a common assumption in the literature. Confer to Munk and Sørensen (2007) for more
details.
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Figure 1: Demand for Pension Annuities and Life Insurance. Graph (A) and
(B) assume the parameters from table (1) and uses the optimization given in (37). Graph
(A) displays the insurance demand as a fraction of η over the life cycle. The short rate is
assumed to be 3.25 percent. Graph (B) shows the insurance demand as a fraction of η for
a female investor of age 80.
Source: Author’s computations

deviates from the analytical analysis because we assume zero correlation between

the innovations of financial and non-financial growth rates.

5 Conclusion

In this paper, we solve a life cycle model with life insurance and pension annuities

analytically for the complete market case. Our model assumes a stochastic wage

earner with CRRA preferences whose lifetime is random. The investor has to decide

among short and long positions in life insurance, stocks, bonds, and money market

investment when facing a risky stock market and interest rate risk. We also derive

some numerical insight into a realistically calibrated case when income is unspanned.

The optimal life annuity demand depends on all state variables (wealth, income,

short rate, and age) as well as all parameters under consideration. The insurance

demand is particularly dependent on age. The older the individual, the higher the

hazard rate, the greater the absolute demand for life insurance products. The lower

the investor’s human capital and the higher her financial wealth is, the more likely

the investor shifts from life insurance into pension annuities. We find a substantial

impact of normalized cash on hand with respect to the insurance rules but we dis-

cover a considerably small influence of the short rate on the demand of life insurance

if we reasonably calibrate our asset and income model.
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6 Appendix (A): Value Function

Using the fact that the utility function is homogenous to the degree (1 − γ) in

augmented wealth, the PDE can be simplified to:

0 = k(t)−
[(
−rt − ‖Φ‖

2

2γ

)
1−γ
γ

+ 1−γ
γ

(
λt

1−γ − µt
)

+ ϕ
γ

]
g(rt, t)

+gt +
[
κ[r̄ − rt]− 1−γ

γ
φrσr

]
gr(rt, t) + 1

2
grr(rt, t)σ

2
r ,

(39)

where k(t)is represented by:

k(t) =

[(
1

µt

) 1−γ
γ

λ
1
γ

t + 1

]
. (40)

First, we define the following integral:

D̄(τ̂) =

∫ τ̂

0

(
µu −

λu
1− γ

)
du, (41)

where τ̂ is the time horizon. Then, we use as an educated guess of the following

function:

g(r, t) =∫ ω
t
k(s) exp

[
−ϕ
γ
(s− t) + 1−γ

γ
D̄(s− t) + 1−γ

γ
A1(s− t) + 1−γ

γ
A2(s− t)rt

]
ds

+ exp
[
−ϕ
γ
(ω − t) + 1−γ

γ
D̄(ω − t) + 1−γ

γ
A1(ω − t) + 1−γ

γ
A2(ω − t)rt

]
,

j(rt, τ̂) =
[
−ϕ
γ
(τ̂) + 1−γ

γ
D̄(τ̂) + 1−γ

γ
A1(τ̂) + 1−γ

γ
A2(τ̂)rt

]
.

(42)

Now, we have to compute the partial derivatives with respect to r, rr, and t:

gr(rt, t) = 1−γ
γ

∫ ω
t
k(s)(A2(s− t)ej(rt,s−t)ds+ 1−γ

γ
A2(ω − t)ej(rt,ω−t)

grr(rt, t) =
(

1−γ
γ

)2 ∫ ω
t
k(s)A2

2(s− t)ej(rt,s−t)ds+
(

1−γ
γ

)2

A2
2(ω − t)ej(rt,ω−t)

∂g
∂t

(rt, t) =
∫ ω
t
k(s)ej(rt,s−t)

[
ϕ
γ

+ 1−γ
γ

(−A′1 − A
′
2rt) + (1−γ)

γ

(
λt

1−γ − µt
)]
ds− k(t)

+ej(rt,ω−t)
[
ϕ
γ

+ 1−γ
γ

(−A′1 − A
′
2rt) + (1−γ)

γ

(
λt

1−γ − µt
)]
.

(43)

Plugging the derivatives into equation (39), we arrive at a new PDE. The new PDE

is consistent if A1, A2 and the corresponding derivatives fullfil the following PDE
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themselves:

0 = rt + 1
2γ
‖Φ‖2 − A′1 − A

′
2rt +

(
κ(r̄ − rt)− 1−γ

γ
φrσr

)
A2 + 1−γ

2γ
σ2
rA

2
2. (44)

The PDE (44) has to hold for all combinations of r and t. We can obtain a system of

two ordinary equations with the initial conditions A1(0) = A2(0) = 0 (cf. to Munk,

2005). The first ordinary differential equation is given by:

A
′
2 = 1− κA2(τ̂). (45)

Considering the initial condition A2(0) = 0, we can rewrite A2:

A2 = 1
κ

(
1− e−κ(τ̂)

)
= b(τ̂). (46)

Including the initial condition A1(0) = 0, the second ordinary differential equation

can be immediately put as:

A1 = 1
2γ
‖Φ‖2(τ̂) + (κr̄ − 1−γ

γ
σrφr)

∫ τ̂
0
b(s)ds+ 1−γ

2γ
σ2
r

∫ τ̂
0
b(s)2ds. (47)

The remaining integrals can be solved analytically:

A1 = 1
2γ
‖Φ‖2(τ̂) + (r̄ + 1−γ

2κ2γ
[σ2
r − 2κσrφr])((τ̂)− b(τ̂))

−1−γ
4κγ

σ2
rb(τ̂)2.

(48)

Plugging A1 and A2 into (44) and rearranging terms, we find the following solution

for the function g(r, t):

g(r, t) =
∫ ω
t
k(s)f(s− t)Bs(rt, t)

γ−1
γ ds+ f(ω − t)Bω(rt, t)

γ−1
γ

f(τ̂) = exp
(
−ϕ
γ
(τ̂) + 1−γ

γ
D̄(τ̂) + 1−γ

2γ2 ‖Φ‖2τ̂

+1−γ
γ2

(
(r̄ −R∞)(τ̂ − b(τ̂))− σ2

r

4κ
b(τ̂)2

))
k(s) =

[(
1
µs

) 1−γ
γ
λ

1
γ
s + 1

]
.

(49)
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.

7 Appendix (B): Human Capital

Human capital can be computed as the present value of the income stream under

the Q-measure

H(y, r, t) = EQ
[∫ ω

t
S̄(s)

S̄(t)
yse
−

∫ s
t rududs

]
, (50)

where the survivor function S̄ includes the hazard rate under the risk neutral mea-

sure. We consider the dynamics of the function eκtrt under the Q measure:

deκtrt = eκt(κrtdt+ [κ(r̄ − rt) + σrφr]dt)− σreκtdẑrt. (51)

Integrating and transforming, we find that:

ru = e−κ[u−t]rt + κr̄+σrφr
κ

(
1− e−κ[u−t])− ∫ u

t
σre
−κ[u−v]dẑrv. (52)

Integrating once more, we get:

∫ s
t
rudu =

(
rt − κr̄+σrφr

κ

)
b(s− t) + κr̄+σrφr

κ
(s− t)−

∫ s
t
σrb(s− u)dẑru. (53)

Labor dynamics under the Q measure are given by:

dyt = yt[(ζ0(t)− σy(t)ρTyPΦ + ζ1rt)dt+ σy(ρyBdẑrt + ρ̂yQdẑQt)]. (54)

Integrating, we find the following expression:

ys = yt exp[
∫ s
t

(
ζ0(u)− σy(u)ρTyPΦ + ζ1ru − 1

2
σy(u)2

)
du

+
∫ s
t
σy(u)ρyBdẑru +

∫ s
t
σy(u)ρ̂yQdẑQu].

(55)

Combining the previous equations (53) and (55):

ys exp−
∫ s
t rudu = yt exp(

∫ s
t

(
ζ0(u)− σy(u)ρTyPΦ− 1

2
σy(u)2

)
du

+(ζ1 − 1)(rt − κr̄+σrφr
κ

)b(s− t) + κr̄+σrφr
κ

(ζ1 − 1)(s− t)

+
∫ s
t

(σy(u)ρyB − (ζ1 − 1)σrb(s− u))dẑru +
∫ s
t
σy(u)ρ̂yQdẑQu.

(56)
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Taking the expected value and rearranging, we get:

H(y, r, t) = EQ
[∫ ω

t
S̄(s)

S̄(t)
yse
−

∫ s
t rududs

]
H(y, r, t) =

∫ ω
t

S̄(s)

S̄(t)
yth(t, s)(Bs(r, t))1−ζ1ds

lnh(t, s) =
∫ s
t

(
ζ0(u)− σy(u)ρTyPΦ− (ζ1 − 1)σy(u)ρyBσrb(s− u)

)
du

+ζ1(ζ1 − 1) σ2
r

2κ2 ((s− t)− b(s− t)− κ
2
b(s− t)2).

(57)
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8 Appendix (C): Numerical Methods

We solve the nonlinear PDE (37) by applying an explicit finite difference scheme

for equally spaced arrays defining the (η, r, t)-state-space. The grid points are

given as: (ηi,rj,tn | i = 1,...,I; j = 1,...,I; n = 1,...,N). For each interval, we use

some fixed positive spacing values ∆η, ∆ r, and ∆ t determining how coarse the

grid is in each dimension. We denote the approximated value function by Fi,j,n at

the grid point (ηi, rj, tn). We approximate the derivatives by finite differences. In

0
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Figure 2: Illustrative Coefficient Array. This illustration assumes an 5 by 5 dis-
cretization of the (η, r)-space at time N − 1. In the remainder, we will refer to this array
as matrix MN−1

Source: Author’s computations

our computational efforts, we use an upwind-scheme to stabilize the finite difference

approach. Derivatives of the first order and mixed derivatives change according

to the sign of their coefficients (+/−) in the state-space we span. Indeed this is

necessary because of the complexity we have to deal with when computing the value

function. The definitions in (58) show how we approximate the various derivatives

involved in solving the PDE in (37). For each combination (i,j) we fill out an array

we denote as matrix Mn, where n stands for the point in time. In total we obtain a

matrix Mn which is of size (IxJ ,IxJ). The matrix M has several borders where we
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assume the state space to start or to end respectively. At each border, we adjust the

coefficient matrix by linearly extrapolating the function (37) to obtain the transition

probabilities of exceeding the borderlines marked by the inner arrays of matrix Mn.

Ft =
Fi,j,n+1−Fi,j,n

∆t

Fηη =
Fi+1,j,n−2Fi,j,n+Fi−1,j,n

(∆η)2 Frr =
Fi,j+1,n−2Fi,j,n+Fi,j−1,n

(∆r)2

F+
η =

Fi+1,j,n−Fi,j,n
(∆η)

F−η =
Fi,j,n−Fi−1,j,n

(∆η)

F+
r =

Fi,j+1,n−Fi,j,n
(∆r)

F−r =
Fi,j,n−Fi,j−1,n

(∆r)

F+
ηr = 1

2

Fi+1,j+1,n−Fi,j+1,n
(∆η)

−
Fi+1,j,n−Fi,j,n

(∆η)

(∆r)
+ 1

2

Fi,j,n−Fi−1,j,n
(∆η)

−
Fi,j−1,n−Fi−1,j−1,n

(∆η)

(∆r)

F−ηr = 1
2

Fi,j+1,n−Fi−1,j+1,n
(∆η)

−
Fi,j,n−Fi−1,j,n

(∆η)

(∆r)
+ 1

2

Fi+1,j,n−Fi,j,n
(∆η)

−
Fi+1,j−1,n−Fi,j−1,n

(∆η)

(∆r)

(58)

Figure (2) depicts the matrix M of size (5x5,5x5) at time N − 1. As one can infer

from the graph, the matrix is only of limited bandwidth and can be easily inverted

since we want to solve the set of equations given by MnFn = dn at time n, where

the vector dn of size (IxJ,1) includes constants and future values of Fn+1. For the

optimization procedure, we use the approach described by Brennan et al. (1997)

which is similar to the controlled markov chain methods discussed in Kushner and

Dupuis (2001). In order to optimize (37), we first plug an ad-hoc guess of the optimal

controls into the PDE we want to solve for. After obtaining the value function by

means of the finite difference method, we compute the first order conditions to

find the optimal controls given the previous value function at time point n. After

obtaining the first estimate of the optimal controls, we take the new values of the

optimal controls and plough them back into the value function at same point in time

n as before. Then we solve again for the value function at time n. This iterated

process is continued until the value function has converged to its optimum. Usually,

we only need two iterative steps to find both the optimal controls and the optimized

value function. Then we can move forward to the next point in time n − 1 and do

the whole procedure over again. For our problem under consideration, we used a

state space (η, r, t) of (15,5,81) on a equidistant grid. The lower value of η is set to

0.5 and the upper value to 20. The interval for the short rate lies between 0.01 and

0.1.
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