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Chapter I

Introduction

Low density cellular solids, particularly metallic ones, are widely used in engineering

applications [3, 10], since they can be designed to have high stiffness-to-mass ratios and

desirable energy absorption characteristics. Cellular structures made from shape memory

alloys (SMA’s) are especially interesting for their potential to deliver superelasticity and

shape memory in a light-weight material. While porous forms of NiTi (Nitinol) have been

produced [11, 19, 20], the difficulty of joining Nitinol to itself has historically prevented

the fabrication of NiTi-based cellular honeycombs with useful adaptive properties. Other

attempts to fabricate SMA honeycombs have been done by mechanical fasteners or gluing

[14, 23], and a few modeling and design studies, focussing mostly on stiffness and poisson

ratio, have been performed [7].

An enabling metallurgical bonding method was discovered recently, however, by [12],

which led to the construction and testing of the first NiTi honeycomb specimens showing

robust properties. Two different cell geometries, hexagonal and wavy-corrugated, were

produced by shape setting NiTi strips into corrugated forms, bonding them together at high

temperature using a Niobium-based braze, and then heat-treating the resulting structures

at moderate temperature. Compressive isothermal experiments on the specimens exhibited

1



superelasticity with over macroscopic 50 % strain recovery [26], and non-isothermal shape

memory experiments demonstrated stress-free recovery of similar macroscopic strains [29].

A low-density cellular architecture made of an SMA has several advantages. The maxi-

mum tensile strain recovery of a monolithic Nitinol polycrystal is in the range of 5 to 8 % in

the low-cycle limit and less than 2.5 % for high cycle loading. These limits can be substan-

tially amplified structurally by exploiting bending of the thin walls in an open cell topology.

Moreover, thermal inertia, which tends to dominate the response time of SMA actuators and

cause hypersensitive superelastic rate-dependencies (see, for example, [18, 27, 28]), scales

with the material’s volume-to-surface ratio and can thus be potentially reduced by adopting

a low-density architecture.

Compared to conventional honeycombs, SMA honeycombs offer potentially new modes

of use. The enhanced shape memory effect could be used in an active mode in thermal actu-

ators, where the very large force capability of monolithic SMAs has been traded for ampli-

fied displacement capability. When used as energy absorbers, most metallic honeycombs

are used as sacrificial elements that are thrown away after one-time use. With SMA hon-

eycombs, however, the enhanced superelasticity can be used as reusable energy absorbers

under overload conditions. This could be a more cost effective alternative if many overload

events (yet still relatively rare) are expected during the life of the structure to be protected.

In addition, this could be important for shape critical components, such as airfoils or control

surfaces of aircraft, where an overload condition results in a tolerable momentary deviation

from the design configuration, but without permanent deformation that would be otherwise

catastrophic in flight.
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This work is aimed at modeling SMA honeycombs under compressive loads, consider-

ing both the superelasticity and the shape memory effect. To our knowledge these are the

FIRST simulations of SMA honeycombs to include large deformation behavior, investigate

stability aspects, and guide the design of potential recoverable energy absorbers or thermal

actuators. This work will focus on quasi-static compression in one load orientation (the

one used in experiments in [26])

This thesis is organized as follows. In Chapter II a superelastic honeycomb with a

hexagonal unit cell is investigated. A thorough investigation of the influence of the different

material properties and the presence of imperfections in the response and the stability of a

finite and infinite honeycomb is performed. All of the work presented in this chapter has

been published in [22].

In Chapter III, the modeling capabilities developed in Chapter II are used to perform a

design study. A family of generalized hexagonal cells is studied and their kinetic energy

absorption capability is computed, constrained to operate within recoverable strain limits

to ensure reusability. Finally, in Chapter IV, a thermo-mechanical SMA material model is

presented that can be used to simulate the shape memory effect in an SMA honeycomb,

along with some analysis and implementation details of it. A few examples are presented

to exhibit it’s behavior and the potential of using such a honeycomb as an actuator.
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Chapter II

Superelastic Honeycombs

2.1 Introduction

The goal of the present chapter is to explore in detail the isothermal, superelastic re-

sponse of a hexagonal unit cell, to investigate the instabilities of the overall honeycomb

structure under compressive loading-unloading, and to study the influence of different ma-

terial properties and imperfections at various scales.

The presentation of the work is outlined as follows. Section 2.2 presents the kinematic

structural model, the material model, and the methods used to establish the stability of the

infinite (using Bloch waves) and finite (perfect and imperfect) honeycombs. Section 2.3

describes the numerical approach and material parameters used. Simulation results are

presented in Section 2.4, which investigates the choice of constitutive model parameters and

then demonstrates the responses of infinite-perfect, finite-perfect and finite geometrically

imperfect honeycomb structures. The section ends with the selection of material parameters

for a finite element simulation of an experiment on a fabricated SMA honeycomb.
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2.2 Modeling

The structural and material models employed in numerical simulations of in-plane com-

pression are presented in this section. The first part presents the geometry of the honeycomb

structure and the kinematics of cell wall deformation. The second part describes the consti-

tutive model for isothermal, superelastic deformations. The last part describes the methods

and criteria to determine stability of infinite-perfect, finite-perfect and finite-imperfect hon-

eycomb structures.

2.2.1 Kinematics

A typical planar section of a perfectly periodic honeycomb, consisting of a regular

hexagonal lattice, is shown in the undeformed (reference) configuration in Figure 2.1(a).

The cell walls have thickness t (except for 2t along the X1 direction) and length L. A

cutout of a periodic unit cell is also shown in the figure, which is used for stability calcu-

lations discussed later in Section 2.2.3. In all simulations of this chapter the aspect ratio of

cell wall thickness to length was fixed at t/L = 1/30, corresponding to one of the hexag-

onal honeycombs presented in [26]. Upon in-plane mechanical compression (for now, we

consider loading along the X2-axis), the cell walls deform primarily through bending with

some axial loading, so each ligament is idealized as a small strain, nonlinear beam capable

of sustaining arbitrarily large displacements and rotations. The structural model has already

been presented elsewhere (see [33]), but for completeness, a brief description is included

below.

Consider an initially straight beam of length l and thickness t as shown in Figure 2.1(b)
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Figure 2.1: (a) Reference configuration geometry and global coordinates (X1, X2) of the
perfect SMA honeycomb. The honeycomb is compressed along the X2 direc-
tion. The magnified view is the periodic unit cell used in stability calculations
for the infinite-perfect honeycomb. (b) Kinematics of cell-wall deformations
with respect to local coordinates (x, y), showing displacements (v, w) between
reference configuration (AB) and current configuration (A′B′).

(with unit out-of-plane width). During loading, a material point initially at local axial

coordinate x on the beam’s undeformed mid-line (dotted line) moves to a new position

on the deformed mid-line by displacements v(x) and w(x) along the local tangential (x)

and normal (y) directions of the initial configuration, respectively. By adopting the clas-

sic Bernoulli-Euler assumption where cross-sections normal to the undeformed mid-line

remain normal in its deformed counterpart and undergo small strain extension, the axial

strain of a material point with initial local coordinates (x, y) is given by

ε(x, y) = e(x) + yκ(x), (2.1)
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where the mid-line axial strain e(x) and the bending curvature κ(x) are expressed in terms

of the displacements v(x) and w(x) by

e =

[
(1 +

dv

dx
)2 + (

dw

dx
)2

]1/2

− 1,

κ =

[
dw

dx

d2v

dx2
− (1 +

dv

dx
)
d2w

dx2

]
/

[
(1 +

dv

dx
)2 + (

dw

dx
)2

]
. (2.2)

The contribution of internal virtual work from each ligament in the weak form of the equi-

librium equations is given by

δW I
l =

∫ l

0

(Nδe+Mδκ) dx; with N ≡
∫ t/2

−t/2
σ dy, and M ≡

∫ t/2

−t/2
σy dy, (2.3)

whereN(x) andM(x) are the axial force and bending moment resultants, respectively, and

σ(x, y) is the local axial stress in the cell wall. The Euler-Lagrange equations correspond-

ing to (2.1)–(2.3) have been shown to coincide with the exact equilibrium equations of the

beam in the current configuration, thus making this structural theory a consistent one (the

interested reader is referred to [31] for a detailed discussion).

2.2.2 Constitutive Model

Since only isothermal deformations of the SMA honeycomb are presently considered

(consistent with slow superelastic loading-unloading), a small strain, one-dimensional,

rate-independent, isothermal, hysteretic, constitutive model is described below. As is com-

mon in SMA modeling, an internal variable formulation is used to describe the extent

of stress-induced phase transformation. The uniaxial constitutive model employed here
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has only one internal variable ξ ∈ [0, 1], which represents the martensite phase fraction

at a material point (x, y). Pure austenite (A) and pure martensite, either tensile M+ or

compressive M−, are represented by ξ = 0 and ξ = 1, respectively1. We note that the

constitutive model has similarities to a conventional elasto-plastic constitutive law, but it

has important differences in that the internal field variable is bounded in our case, unlike

plasticity, and the unloading behavior is quite different, leading to superelasticity in our

case. Both differences lead to interesting stability changes in the honeycomb structure, as

will be shown in Section 2.4, where stability can be lost but then regained as phase trans-

formation saturates in either direction. Furthermore, this model can be readily generalized

to include temperature-induced transformations and consequent shape memory behavior,

although this is left for future work.

In its simplest form the constitutive law for the local stress, σ(x, y), is

σ =


E(ε− β+ξ), for ε ≥ 0

E(ε− β−ξ), for ε < 0

(2.4)

where ε(x, y) is the local fiber strain corresponding to eq. (2.1) and ξ(x, y) is the local fiber

martensite phase fraction. The remaining parameters are material constants, in which, E

is the effective uniaxial elastic modulus2 (phase independent, here) and β+ and β− are the

1We assume that the temperature is sufficiently high such that M− and M+ never exist simultaneously at
any material point.

2We have assumed the local stress to be purely uniaxial, so E is to be interpreted as the Young’s modulus
if the ligament out-of-plane depth is small. If the ligament depth cannot be neglected, as is the case for the
actual honeycomb specimen considered later, it can alternatively be interpreted approximately as the modulus
for cylindrical plate bending, E/(1 − ν2), consistent with our 2-D context. In any case, the results in this
work are presented in dimensionless form where stresses have been normalized by E.
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respective transformation strains (material constants) in tension and compression3. Allow-

ing different transformation behavior in compression vs. tension provides the flexibility to

capture tension-compression asymmetry, which is a known phenomenon in textured SMA

polycrystals [8]. For elastic loading-unloading the internal variable ξ remains constant, i.e.,

ξ̇ = 0 (where ˙( ) denotes the time derivative d( )/dt). The onset of phase transformation

during mechanical loading from A → M occurs at a nucleation strain of ε+
n in tension

(ε > 0 and ε̇ > 0) or ε−n in compression (ε < 0 and ε̇ < 0). Phase transformation evolves

along two-phase stress paths (see Figure 2.2) according to

σ =



σ̂+
l (ξ), for A→M+

σ̂+
u (ξ), for A←M+

σ̂−u (ξ), for A←M−

σ̂−l (ξ), for A→M−,

(2.5)

where subscripts l and u refer to “loading” and “unloading”, respectively, in the sense that

“loading” is associated with the direction A→ M (either M+ or M−). Phase transforma-

tion hysteresis is parameterized with material constants ∆σ+
A , ∆σ+

M , ∆σ−A , ∆σ−M . Loading

and unloading paths are related by

σ̂+
l (ξ) = σ̂+

u (ξ) + (1− ξ)∆σ+
A + ξ∆σ+

M

σ̂−u (ξ) = σ̂−l (ξ) + (1− ξ)∆σ−A + ξ∆σ−M (2.6)

3From here on, quantities associated with the tensile or compressive behavior are denoted by a + or −
superscript, respectively. Absence of the + or − superscript means that the parameter applies to both tensile
and compressive parts of the constitutive behavior.
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where ∆σ+
M (∆σ−M ) is related to ∆σ+

A (∆σ−A) and the loading, unloading tangent moduli in

tension (compression) E+
l , E+

u (E−l , E−u ) by

∆σ+
M = ∆σ+

A + β+
[
1/(1/E+

l − 1/E)− 1/(1/E+
u − 1/E)

]
∆σ−M = ∆σ−A + β−

[
1/(1/E−l − 1/E)− 1/(1/E−u − 1/E)

]
(2.7)

For simplicity the functions σ̂(ξ), are chosen such that the tangent moduli during the load-

ing (El) or unloading (Eu) phase transformation are material constants4. Consequently

ξ̇ =



E − E+
l

E

ε̇

β+
: if ε̇ > 0, σ = σ̂+

l (ξ), and ξ < 1

E − E+
u

E

ε̇

β+
: if ε̇ < 0, σ = σ̂+

u (ξ), and ξ > 0

E − E−l
E

ε̇

β−
: if ε̇ < 0, σ = σ̂−l (ξ), and ξ < 1

E − E−u
E

ε̇

β−
: if ε̇ > 0, σ = σ̂−u (ξ), and ξ > 0

(2.8)

All the constants involved in the definition of the constitutive law are shown in Figure 2.2.

Specific values of the material constants will be chosen in Section 2.4.

4When E+
u = E+

l (E−
u = E−

l ) the corresponding tangent modulus during phase transformation is de-
noted by E+

t (E−
t ).
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Figure 2.2: Uniaxial superelastic response of SMA material and associated constitutive pa-
rameters. SubscriptsA orM refer to Austenite or Martensite while superscripts
(·)+ or (·)− indicate association with tensile or compressive response, respec-
tively.

2.2.3 Stability of the SMA Honeycomb Structure

A deep understanding of the behavior of the SMA honeycomb structure requires the

investigation of its stability. Specifically, we seek the stability of the principal solutions of

the infinite and finite perfect structures, both having equilibrium solutions where all unit

cells undergo identical (periodic) deformations. The stability of the former is studied with

the help of Bloch wave representation theory while the stability of the latter includes the

effects of boundary conditions on the finite structure. Both are key ingredients to help

explain the behavior of the actual finite, imperfect SMA structure.

Based on the constitutive model formulated, we are interested in the stability of the

principal equilibrium path of a rate-independent, yet path-dependent, “elastoplastic” solid.

Following [15], the stability of the rate-independent solid considered here is governed by
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the criterion of positive definiteness of the quadratic functional 5,6

ϕ(λ,∆u) = ∆u∗•K(λ)•∆u, (2.9)

where K is the incremental stiffness matrix of the structure evaluated at an equilibrium

solution along the principal path, which is a function of the scalar parameter λ, and ∆u

is any kinematically admissible generalized displacement perturbation (i.e. contains dis-

placement as well as rotation degrees of freedom).

Stability of the Infinite, Perfect Honeycomb

Making use of the periodicity of the principal solution and using static condensation to

eliminate internal degrees of freedom (DOFs) of the unit cell, the stability of the infinite

structure requires the positive definiteness of the quadratic form defined on the unit cell

ϕ̂(λ,∆u) =
6∑

i,j=1

∆u∗i •Kij(λ)•∆uj, (2.10)

where the 4 × 4 stiffness matrix Kij is associated with the generalized force perturbation

at boundary node i of the unit cell due to generalized displacement perturbation ∆uj at

boundary node j (see again Figure 2.1(a) for the numbering of the six exterior unit cell

nodes). The stability investigation further requires the Bloch wave representation theory

5From here on bold-face symbols denote vectors and matrices while a (•) denotes a simple contraction
(inner product).

6The superscript (∗) denotes complex conjugation of the transpose quantity. The extension to the complex
domain of the quadratic form associated with the stability of the structure enables the efficient use of the Bloch
wave representation theorem.
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for the displacement perturbations, since it probes all wavelengths and directions. This ap-

proach simplifies the problem considerably, since it requires only the incremental response

of the unit cell. Although the corresponding methodology is explained in detail in [32] for

rectangular grillages, [33] for hexagonal honeycomb structures and [30] for the continuum

case, a brief description is included here for completeness.

From Bloch wave representation theory the generalized displacement perturbation ∆u

takes the form

∆u(X1, X2) = exp [i (ω1X1 + ω2X2)]p(X1, X2), (2.11)

where i =
√
−1, ωI is the wavenumber of the perturbation along the direction XI , and

p(X) is a doubly periodic complex-valued vector function of the spatial coordinates X1

andX2 with periods equal to the unit cell dimensions, i.e. p(X1, X2) = p(X1+m1L1, X2+

m2L2) for any pair of integers (m1, m2).

From (2.11) one deduces the following relation between the displacement perturbations

at the boundary nodes


∆u4

∆u5

∆u6

 =


0 0 exp(−iω1L1)I

0 exp(iω2L2)I 0

exp(−iω1L1 + iω2L2)I 0 0




∆u1

∆u2

∆u3


(2.12)

where 0 and I are 4 × 4 null and identity matrices, respectively. The above equation can
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be rewritten in the more concise form

∆uβ = A(ω1L1, ω2L2)•∆uα (2.13)

where the 12 × 1 vectors ∆uα, ∆uβ and the 12 × 12 matrix A(ω1L1, ω2L2), which re-

lates ∆uβ to ∆uα, are given in (2.12). Using the definition for ϕ̂ in (2.9) and the above

introduced grouping of boundary perturbations ∆uj , j = 1, ...6 into the two sets ∆uα and

∆uβ , one can rewrite

ϕ̂ =

[
∆u∗α ∆u∗β

] Kαα(λ) Kαβ(λ)

Kβα(λ) Kββ(λ)


 ∆uα

∆uβ

 (2.14)

where the 12 × 12 submatrices Kαα = KT
αα, Kαβ = KT

βα, Kββ = KT
ββ are formed by

grouping the correspondingKij’s.

Upon substituting (2.13) into (2.14), the stability problem for the infinite perfect struc-

ture reduces to checking the positive definiteness of the following quadratic form

ϕ̂ = ∆u∗α•K̂(λ;ω1L1, ω2L2)•∆uα

K̂ ≡Kαα +Kαβ
•A+A∗•Kβα +A∗•Kββ

•A (2.15)

where A∗ denotes the adjoint of A (i.e. the complex conjugate of its transpose). From the

symmetry properties ofKαα,Kαβ ,Kβα,Kββ one can verify that the stiffness matrix K̂ is

Hermitian (K̂ = K̂
∗
) and thus has real eigenvalues. This reduces the stability investigation

of an infinite, perfectly periodic structure to that of an equivalent but simpler problem
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involving half the boundary of the unit cell.

The case of a perturbation that has LI translational symmetry along the XI direction,

i.e. ωILI = 0 for I = 1 or 2, admits from (2.12) a rigid body translation in theXI direction,

i.e. ∆uiI = const. for i = 1, ..6, I = 1 or 2. This case is included in the general numerical

algorithm described above by imposing, in addition to (2.12) the condition ∆u1I = 0 for

I = 1 or 2.

The scalar parameter λ is a monotonically increasing “time-like” parameter that char-

acterizes the deformed configuration of the unit cell in the infinite, perfect structure (λ = 0

corresponds to undeformed, stress-free configuration). If, for a given value of λ,

K̂(λ;ω1L1, ω2L2) is positive definite for all dimensionless wave-numbers (ω1L1, ω2L2) ∈

(0, 2π)× (0, 2π) the configuration corresponding to λ is stable. Consequently for each pair

(ω1L1, ω2L2), a minimum load λm(ω1L1, ω2L2) may be found at which K̂ looses positive

definiteness. The critical load λc at which the structure first looses stability in a monotoni-

cally loading process, is the infimum7 (i.e. the highest lower bound) of λm over the Fourier

domain (0, 2π)× (0, 2π).

A remark about the nature of the eigenmode corresponding to the critical load λc is

in order at this point. The surface λm(ω1L1, ω2L2) might exhibit a singular point at the

origin (0, 0). The physical reason for this singularity is the fact that in the neighbor-

hood of (0, 0) one finds, by inspecting (2.12) two different types of modes: (1) the finite

wavelength modes for (ω1L1, ω2L2) = (0, 0) with period one unit cell ∆u(X) = p(X)

7The concept of infimum is needed in view of a potential singularity at (0, 0) of λm(ω1L1, ω2L2), defined
in the open domain (0, 2π)× (0, 2π). The value of λm(ω1L1, ω2L2) as (ω1L1, ω2L2)→ (0+, 0+) depends
on the ratio ω1L1/ω2L2 and one must consider λm along all radial paths near (0, 0) to find λc
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and (2) the infinite wavelength modes for (ω1L1, ω2L2) → (0+, 0+) that are associated

with nearly uniform modes with respect to the unit cell dimensions. When the lowest

point of the λm(ω1L1, ω2L2) surface is away from (0, 0) the finite wavelength eigenmode

requires no special numerical considerations. In the case when the infimum occurs as

(ω1L1, ω2L2) → (0+, 0+) the critical mode may be a long wavelength one and another

numerical technique is needed. Stability is checked in this case by the positive definite-

ness of the structure’s homogenized incremental moduli (for proof see [9]). Consequently

the structure’s stability in the neighborhood of (ω1L1, ω2L2) = (0, 0) is checked by two

different, but complementary calculations.

A final remark: the methodology discussed here pertains to the onset of the first insta-

bility at λc during the loading of the structure starting at λ = 0 and is based on calculating

λm(ω1L1, ω2L2), the minimum value of λ at which K̂(λ;ω1L1, ω2L2) in (2.15) loses its

positive definiteness. In general the structure might regain its stability upon further loading

for adequately high values of λ > λC . The corresponding critical load λC , where stabil-

ity is regained, can be determined in a similar fashion by finding the supremum (i.e. the

lowest upper bound) of λM(ω1L1, ω2L2) over (0, 2π) × (0, 2π) where λM is the largest

load parameter above which K̂(λ;ω1L1, ω2L2) regains positive definiteness for a given

(ω1L1, ω2L2).

Stability of the Finite Honeycomb

The stability of the finite structures, perfect or imperfect, is a simpler task that depends

on checking the positive definiteness of the entire structure’s tangent stiffness matrixK(λ)
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(see (2.9)). Since this matrix is always available as part of the incremental Newton-Raphson

procedure, checking for positive definiteness is a straightforward task that requires the di-

agonal matrixD of the LDU decomposition ofK. A matrixD with all positive diagonal

entries corresponds to a stable structure.

2.3 Numerical Approach

The model described in the previous section is employed to predict the response of the

SMA honeycomb under a uniaxial compression load-unload cycle along the X2 direction.

This section includes a presentation of selected constitutive parameters, the finite element

discretization used, and a description of the numerical algorithm

2.3.1 Constitutive Parameters

Three different types of uniaxial constitutive laws are used in this study: a symmetric

tension–compression law (Model 1), a more realistic asymmetric law to capture the be-

havior of textured polycrystals (Model 2), and a model calibrated to a specific honeycomb

experiment (Model 3). Table 2.1 provides specific parameters used as base cases for the

parameter study that follows. When studying the influence of a specific parameter on the

SMA honeycomb response, the values of the parameter that are different from the base case

value appearing in the table will be indicated on the corresponding response curve.
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Table 2.1: Constitutive models

Model 1 Model 2 Model 3
EA = E+

M = E−M 1 1 75 GPa
E+
l 0.05 0.05 11.25 GPa

E+
u 0.05 0.05 10.3646 GPa

E−l 0.05 0.15 15 GPa
E−u 0.05 0.15 16.2766 GPa
β+ 0.0418 0.0418 0.031025
β− -0.0418 -0.02125 -0.0184
ε+
n 0.006 0.006 0.0035
ε−n -0.006 -0.012 -0.007

∆σ+
A 0.002 0.002 0.1875 GPa

∆σ−A 0.002 0.002 0.2625 GPa

2.3.2 Finite Element Discretization and Numerical Algorithm

The numerical algorithm employed in the subsequent calculations is based on the finite

element method (FEM) and the discretization of the 1-D beam model given in eqs. (2.1)

– (2.3). Our FEM model was implemented in the FEAP research software framework, [6].

The approach is a fairly standard incremental procedure; however, a few relevant details

are presented here.

Each cell wall was divided into 20 elements of equal length, except for the calcula-

tions for the special case Et = 0 which required 160 equal length elements to capture the

concentration of curvature near the two ends of each deforming ligament. Within each ele-

ment, a Hermitian cubic interpolation was used for the displacements v(x), w(x), resulting

in four degrees of freedom (DOFs) per node, i.e. v(xn), v,x(xn), w(xn), w,x(xn). A four

point Gauss quadrature was used for numerical integrations in the x-direction of each el-

ement. When the principal solution under monotonic loading was of interest, the through
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the thickness integrations were computed analytically (e.g. Figure 2.3 to Figure 2.5). In

subsequent cases when hysteretic solutions were calculated, a 51-point trapezoidal rule

with equi-distant points was used for thickness integrations in the y-direction. This rather

large number of points in the y direction was required to capture the evolution and precise

locations of phase mixture boundaries.

The elements’ translational degrees of freedom v and w must be transformed to the

global coordinate system to enforce displacement continuity at the junction nodes. It can

be shown that the rotation angle ψ satisfies (in local coordinates) tanψ = w,x/(1 + v,x).

Of the several choices that one can impose rotation continuity between adjacent elements

at the junction nodes (three kinematic conditions but four DOFs available) the simplest

one is by imposing continuity of the local derivatives (v,x and w,x), treating these now as

global DOFs, since they still maintain rotary continuity between adjacent beam elements

(see again [33]).

An incremental Newton-Raphson procedure was employed to solve the resulting equa-

tions. In all but the final experiment simulations top and bottom displacement boundary

conditions were enforced directly (by reduction of the equilibrium equations) while lat-

eral edges were unconstrained. For the final simulations of the actual honeycomb structure

a penalty-based contact algorithm with regularized Coulomb friction was used to capture

nonuniform contact and frictional effects of the platens. The loading increment was approx-

imately 0.14 % macroscopic strain for the infinite structures stability calculations, while it

was occasionally lowered to help the convergence of the finite sized structures.
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2.4 Results and Discussion

The results of several FEM simulations are now presented, progressing from the infinite-

perfect honeycomb to the finite-perfect honeycomb and then to the finite-imperfect hon-

eycomb. We proceed incrementally, starting with the infinite-perfect structure, since the

principal path configurations are simple, periodic ones and the analysis gives one a sense

of the “bulk” (many cell) behavior independent of boundary issues. It is a convenient con-

text to perform a parameter study of the material law. The finite-perfect structure cases

help to address the added influence of boundary constraints on the behavior, and the finite-

imperfection structure cases helps to quantify the imperfection sensitivity of the response.

Stability issues and the influence of constitutive parameters are discussed for each case.

The monotonically increasing loading parameter λ of Section 2.2.3 is taken to be δ/H for

loading phase (δ̇ > 0) and 2(δ/H)max − δ/H for unloading (δ̇ < 0) where δ/H is the

macroscopic strain.

2.4.1 Principal Branch of the Infinite, Perfect Honeycomb

We studied the influence of constitutive parameters on the response of the infinite-

perfect honeycomb as shown in Figure 2.3 to Figure 2.8, where at this point, all deforma-

tions were assumed to be cell-periodic. Results are plotted in diagrams of compressive,

dimensionless macroscopic stress F/EA vs. macroscopic strain δ/H . The cross-sectional

area, A, was taken as the total inclusive reference (initial) area of the footprint of the enve-

lope of the honeycomb, to obtain an average-homogenized stress measure. The influence

of material parameters associated with the loading part of the constitutive law, i.e. εn and
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Et, is presented in Figure 2.3 to Figure 2.5, while the influence of the hysteretic part of the

constitutive law is investigated in Figure 2.6 to Figure 2.8. Since all cells deform identically

(cell-periodic) in the principal solution of the infinite-perfect structure, due to the symmetry

of geometry and loading, only a quarter of the unit cell, shown as an insert in these figures,

was required in the calculations. In fact, only the slanted ligament was needed, since the

horizontal cell walls remained unstressed. The different uniaxial constitutive laws used are

shown as inserts in the corresponding figures.

The influence of the nucleation strain εn on the principal solution under loading, for the

case of a symmetric (tension-compression) uniaxial response, is shown in Figure 2.3(a). As

expected, increasing ε+
n = ε−n from 0.002 to 0.010 (centered on the base case of Model 1,

εn = 0.006) results in delaying the deviation of the structure’s response away from the

initial, nearly linear regime. Moreover, while increasing εn raises the stress at the onset

of the A → M transformation, it softens the initial tangent modulus (plateau regime, near

0.1 < δ/H < 0.4). The responses then stiffen at larger macroscopic strains (δ/H > 0.5).

Limit loads, both local maxima and minima, are shown by ∧ and ∨, respectively, in the

figure. Note that no such limit load exists for the lowest value of εn = 0.002. Points

are also shown where the local maximum tensile strain has reached 0.025, a commonly

imposed limit for high cycle fatigue life of Nitinol. This shows the “strain amplification”

achieved by the thin walled honeycomb, since it occurs at macroscopic strains near 0.1.

The initial softening of the response is due to a geometric effect of the deforming cell

walls which results in the appearance, above a certain value of εn, of a local maximum

in the macroscopic stress-strain response, despite the fact that the underlying constitutive
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response of the material is strictly stable, i.e. E > Et > 0.

Figure 2.3(b) shows contours of phase fraction (ξ), local strain (ε), and normalized

local stress (σ/E) in the slanted cell wall at four values of compressive strain (δ/H). It

shows that transformation is concentrated at the ends of the ligament, especially in the cor-

ners. The phase fraction and strain have nearly linear distributions across the thickness, but

the stress has a nonlinear distribution, as one would expect from the constitutive law. We

recognize that the maximum stress at the largest macroscopic compressive strain shown

(δ/H = 0.7) is unrealistically large (near 2 GPa for a typical value of E = 75 GPa), indi-

cating that local plasticity and significant “locked-in” martensite (not modeled here) would

actually exist at such large macroscopic strains, thereby preventing perfect superelasticity

upon unloading.

The usual figures-of-merit for honeycombs made of conventional metals are specific

stiffness and energy absorption capability, but the use of SMAs now allows us to addition-

ally consider the more ambitious goal of recovering the macroscopic strain after significant

deformation. One should, therefore, consider the material’s strain recovery limitations to

ensure macroscopic strain recovery can actually be realized. Figure 2.3(c) plots the max-

imum local tensile strain (εmax), i.e., worst case of all (x, y) points in the structure, as a

function of macroscopic compressive strain (δ/H) for the various parameters of εn. With

relatively large values of εn the maximum local strain is roughly tri-linear. For the base case

of Model 1 (εn = 0.006), the maximum local strain grows linearly until about δ/H = 0.05,

then grows more steeply until about δ/H = 0.18, and then levels off at a lower slope.

At a maximum local strain of 0.025 (approximate high cycle strain limit for NiTi) the
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corresponding macroscopic strain is about 0.094. At a maximum local strain of 0.06 (a

reasonable local strain limit for low cycle operation) the corresponding macroscopic strain

is about 0.417, giving a sense of the strain amplification of the honeycomb structure. Thus,

Fig. 2.3(c) provides guidelines for the range of macroscopic (global) strains that can be

accommodated by local martensitic transformation in the SMA material without incurring

significant plasticity that would otherwise impede reverse transformation upon unloading.

Figure 2.3(c) also shows the advantage of an SMA over a conventional metallic (e.g.

aluminum) honeycomb. Since the yield strain for aluminum is typically of the order of

0.002, the maximum reversible macroscopic strain (elastic range) for an aluminum honey-

comb would be, according to Figure 2.3(c), less than δ/H = 0.02, over 20 times lower than

the corresponding value for an SMA honeycomb of the same geometry (δ/H = 0.417). Al-

ternatively, one could reduce the t/L ratio to keep the conventional honeycomb within its

elastic range, but as noted in [26] this would sacrifice stiffness by a factor of over 1000,

since the stiffness of the honeycomb scales roughly by (t/L)3, thereby making this an

impractical prospect.
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Figure 2.3: (a) Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (δ/H) response of the infinite-perfect hon-
eycomb, based on constitutive Model 1 (right inset), showing the influence of
nucleation strain (εn).
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Figure 2.3: (b) Contours of phase fraction (ξ), local strain (ε), and local stress (σ/E) in the
slanted cell wall (Model 1, εn = 0.006).
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Figure 2.3: (c) Maximum local tensile strain (εmax) as a function of macroscopic compres-
sion (δ/H) for the same constitutive laws of 2.3(a).
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Figure 2.4: Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (δ/H) response of the infinite-perfect hon-
eycomb, based on constitutive Model 1 (right inset), showing the influence of
transformation tangent modulus (Et).

The influence of the transformation tangent modulus Et on the perfect structure’s prin-

cipal loading solution, for the symmetric uniaxial response is presented in Figure 2.4. As

expected, increasing Et/E stiffens uniformly the A → M transformation regime. How-

ever, it is worth noticing that for Et/E = 0 a maximum exists in the macroscopic stress-

strain response soon after the structure deviates from its linear regime. The load maximum

persists even for the case of the strictly monotonic uniaxial response atEt/E = 0.05, albeit

at a larger macroscopic strain. Upon further increase toEt/E = 0.1 the macroscopic stress-

strain response is monotonic (no limit loads), thus implying that the constitutive stiffening

overcomes the geometric softening effect. We should mention here that, not surprisingly,

numerical difficulties were encountered for the case of Et/E = 0. The deformed shape

of the cell involved extreme bending localization at the ends of the slanted wall. The cell

wall’s curvature experienced a sharp change, which required a higher number of elements

160 elements along the cell wall length).
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Figure 2.5: Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (δ/H) response of the infinite-perfect hon-
eycomb, based on asymmetric constitutive Model 2 (right inset), showing the
influence of tensile transformation tangent modulus (E+

t ).

The influence of the tensile transformation tangent modulus E+
t on the infinite-perfect

structure’s principal solution under loading, but for the asymmetric constitutive law (Model 2),

is presented in Figure 2.5. The material’s stiffer response in compression (E−t /E = 0.15),

as compared to tension, resulted in about 25 % higher macroscopic stresses for a given

macroscopic strain than occurs for the its symmetric counterpart in Figure 2.4. Since the

bending of cell walls involves compressive as well as tensile stresses, the higher stiffness

of the compressive transformation zone (E−t /E > E+
t /E) as well as its smaller trans-

formation strain (β− > β+) resulted in a higher macroscopic tangent moduli for a given

macroscopic strain as seen in Figure 2.5 compared to Figure 2.4. Notice that the structure’s

macroscopic stress-strain response shows a limit load only for E+
t /E = 0, but weaker than

in Figure 2.4.

The influence of the amplitude of the hysteresis loop ∆σ for a symmetric uniaxial

material law is presented in Figure 2.6, where unloading for all cases start at macroscopic
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Figure 2.6: Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (δ/H) load-unload responses of the infinite-
perfect honeycomb, based on hysteretic constitutive Model 1 (right inset),
showing the influence of stress hysteresis (∆σ/E). Unloading paths shown
start at macroscopic strains δ/H = 0.3, 0.5, 0.7.

strains δ/H = 0.3, 0.5 and 0.7. Notice that the initial slope of the unloading branch

decreases as the macroscopic strain at unloading increases, due to the resulting geometric

change of the unit cell. Also notice that for the smallest amplitude of hysteresis ∆σ/E =

0.002 the unloading branch starting from the lower strains δ/H = 0.3 and δ/H = 0.5

converge rapidly to the corresponding unloading branch that starts at δ/H = 0.7. As ∆σ

increases, the discrepancies between the different unloading paths progressively increase.

Also, hysteresis values greater than 0.003 eliminate any possibility of limit loads in the

unloading curves.
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Figure 2.7: Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (δ/H) load-unload responses of the infinite-
perfect honeycomb, based on asymmetric, hysteretic constitutive Model 2
(right inset), showing the influence of tensile transformation modulus (E+

t ).
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The influence of the tensile transformation tangent modulusE+
t , but for the asymmetric

constitutive law (Model 2), is presented in Figure 2.7, where as in Figure 2.6, unloadings

at δ/H = 0.3, 0.5 and 0.7 were considered. As expected from the results of Figure 2.5, an

increase in E+
t /E results in an overall stiffer response, occurring at progressively higher

macroscopic stress levels (for the same macroscopic strains). Notice that, similar to Fig-

ure 2.6, the initial slope of the unloading branch decreases with increasing strain at unload-

ing but is independent of E+
t , i.e. unloading branches starting at the same macroscopic

strain are approximately initially parallel to each other, since the deformed geometries are

comparable at this point.
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Figure 2.8: Principal branches of the dimensionless macroscopic compressive stress
(F/EA) vs. compressive strain (δ/H) response of the infinite-perfect hon-
eycomb, based on constitutive Model 1 (right inset), comparing the unloading
response of the hysteretic model with an “elastic” one.

A noteworthy feature of the results presented in Figure 2.6 is the near independence

of the unloading branch on the structure’s deformation history, since all three unloading

branches converge to the same curve, after some initial elastic unloading. To further il-

lustrate the near load-path independence of the principal solution’s unloading branch, Fig-
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ure 2.8 compares, for the symmetric constitutive law, the unloading paths obtained by re-

versing the macroscopic strain at δ/H = 0.3, 0.5 and 0.7 to the loading path of the same

structure with an “elastic” constitutive response that coincides with the unloading branch

of the hysteretic model (see insert of Figure 2.8). The comparison indeed confirms that the

response during active A ↔ M transformation is nearly independent of the loading path,

i.e. the response eventually tends towards a fundamental “outer-loop” response, consistent

with the chosen material law.

2.4.2 Stability of the Infinite, Perfect Honeycomb

The next set of calculations, presented in Figure 2.9 to Figure 2.14 address the stability

of the principal solution of the infinite-perfect structure under displacement (δ/H) control

(stiff loading device) for the same constitutive laws used previously in Figure 2.3 to Fig-

ure 2.8. The full unit cell (shown as an insert in these figures) was now required to perform

the Bloch wave stability calculations. Stable equilibrium paths are indicated with a bold

line, while unstable paths are drawn with a thin line. Limits loads are indicated as before

with ∧ and ∨. Critical points, where the stability of the path changes, are shown with open

circles.

The stability of the loading path of the principal (unit cell-periodic) solution of the

infinite-perfect structure for a symmetric constitutive response, but with different nucle-

ation strains εn, is shown in Figure 2.9. Notice that for sufficiently low εn ≤ 0.001,

the principal solution is stable for all strains. Interestingly, the case of εn = 0.002 has

critical bifurcation points, yet no limit loads. As εn increases further, and the correspond-
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Figure 2.9: Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), re-
sponses for the perfect, infinite honeycomb under δ/H control, showing the
influence of nucleation strain (εn). Stable and unstable segments are indicated
by thick and thin lines, respectively, and stability changes are shown with cir-
cles on the paths.

ing macroscopic tangent modulus softens, an unstable zone appears. At sufficiently large

strains, however, it restabilizes as transformation saturates and the increased material stiff-

ness overwhelms the kinematic softening of the cell. Additionally, note that in each case

for εn ≥ 0.003 the onset of instability precedes the maximum load, i.e., while the response

still has a positive slope, and then the path regains stability after the local minimum. The

presence of an unstable region in the principal solution of the infinite-perfect structure has

important implications for the behavior of finite structures, perfect and imperfect, as will

be seen subsequently.

Some comments are in order about the nature of the critical modes at the two end points

of the unstable zones, i.e., at the first onset of instability and termination of instability along

the principal path. In both cases the critical mode is a long wavelength mode. Figure 2.10
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presents an analysis for the case of Model 1 (base case of Figure 2.9), showing the critical

macroscopic strain as a function of dimensionless wavenumbers (ω1L1, ω2L2), i.e surface

λm(ω1L1, ω2L2) corresponding to the first loss of positive definiteness of K̂ as defined

in sub-section 2.2.3. The onset of instability occurs at δ/H = 0.092 with the minimum

load corresponding to wavenumbers near the origin, indicating a possible long wave length

mode. The origin (ω1L1, ω2L2)→ (0, 0) is a singularity of the Bloch wave analysis, so the

critical mode shown here does not quite reach the origin due to the discretization of wave

numbers used. Consequently, the long wave length mode was confirmed by a separate

analysis of the homogenized moduli. A similar situation occurs at the termination of the

unstable range at δ/H = 0.342, where the instability mode is again a long wavelength one.

At intermediate strains the path is unstable, as shown in Figure 2.9.

These characteristics are typical of the instability of the principal load path in all cases

considered in this chapter. The fact that the eigenmode corresponding to λc is a “global”,

i.e. long wavelength mode, and not a “local” one is due to the particular loading orien-

tation and is perhaps not surprising in view of results by [33] (same geometry, similar

bilinear constitutive law). Other load orientations would likely exhibit instability with re-

spect to modes of finite wavelength. Indeed, in a series of in–plane crushing experiments

of Aluminum honeycomb, [24] compressed the structure along the X1 direction and found

that the corresponding critical mode is a “local” one, a fact that was verified subsequently

by the Bloch wave analysis of [33].

The influence of the tangent modulus Et for the symmetric constitutive law (Model 1)

on the stability of the loading path of the principal solution of the infinite-perfect structure
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is shown in Figure 2.11. As expected, increasing Et/E results in decreasing the extent of

the unstable zone. As seen before, for cases cases Et/E = 0, 0.05 the extent of instability

extends beyond the range of negative slope in the principal path (between limit loads). Even

for the case (Et/E = 0.10), where the path maintains a positive slope, a significant regime

of instability exists. Despite the risk of belaboring a (perhaps) obvious point, we wish to

emphasize here that monotonicity of the principal path is clearly not a sufficient criterion

for stability.

The results in Figure 2.12 demonstrate the stability of the principal solution for the

infinite-perfect structure, but for the asymmetric constitutive response (Model 2). As ex-

pected from the stiffer response of the material in compression, the extent of the unstable

zones is considerably smaller compared to corresponding results in Figure 2.11 for the

same E+
t /E.

The stability for both the loading and the unloading branches of the principal solution

of the infinite perfect structure is presented for the symmetric and asymmetric hysteretic

constitutive laws respectively in Figure 2.13 and Figure 2.14. The influence of hysteresis

∆σ/E (same range as in Figure 2.6) on the stability of the loading-unloading path (using

the symmetric Model 1) is presented in Figure 2.13. Except for the highest value ∆σ/E =

0.0055, instability regions exist in both the loading and unloading paths. Figure 2.14 shows

the the influence of E+
t /E on the stability of the principal solution of the infinite perfect

structure having the same hysteretic, asymmetric constitutive laws (based on Model 2) as in

Figure 2.7. In this case only the loading paths have unstable regions, while all the unloading

paths shown are stable, even for the case where E+
t /E = 0.
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Figure 2.10: Lowest strain (δ/H) as a function of dimensionless wave numbers
(ω1L1, ω2L2) on the onset of instability of the infinite-perfect honeycomb cal-
culated along the principal path with a symmetric, “elastic” constitutive law
(Model 1). The minimum (δ/H = 0.092) occurs as (ω1L1, ω2L2) → (0, 0),
indicating a long wavelength critical mode, which is confirmed from a loss of
ellipticity calculation of the homogenized incremental moduli.
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Figure 2.11: Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), re-
sponses for the perfect, infinite honeycomb under δ/H control, showing the
influence of transformation modulus (Et) using Model 1 as the base case.
Note, multiple changes in stability occur along the response for Et = 0.
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Figure 2.12: Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), re-
sponses for the perfect, infinite honeycomb under δ/H control based on asym-
metric Model 2, showing the influence of tensile transformation modulus
(E+

t ).
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Figure 2.13: Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), load-
unload responses for the perfect, infinite honeycomb under δ/H control,
showing the influence of stress hysteresis (∆σ/E) for symmetric, hysteretic
material.
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Figure 2.14: Stability of macroscopic compressive stress-strain, (F/EA) vs. (δ/H), load-
unload responses for the perfect, infinite honeycomb under δ/H control,
showing the influence of tensile transformation modulus (E+

t ) for asymmetric,
hysteretic material (based on Model 2).
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2.4.3 Response of the Finite, Perfect Honeycomb

Finite element simulations of perfect honeycombs of finite size are presented in Fig-

ure 2.15 and Figure 2.16 to investigate the influence of boundary conditions. The selected

geometry corresponds to the topology (but with an idealized, perfect geometry) and over-

all dimensions of the fabricated specimen used in the isothermal experiment of [26], to be

presented later in Section 2.4.5.

The response of the finite size, perfect structure under uniaxial compression calculated

for a symmetric, hysteretic constitutive law (Model 1) is presented in Figure 2.15. The

loading device was modeled as frictionless. The principal solution of the finite, perfect

structure has all cells deforming identically and hence coincides with the principal solution

of the infinite perfect structure (yet the stress-free lateral edges may have new implications

for stability). For comparison the response of the principal solution for the infinite-perfect

structure is also shown in the same figure. The macroscopic force-displacement loading-

unloading curves for both (infinite and finite) structures are given in Figure 2.15(a). The

infinite honeycomb response has unstable segments during loading and unloading, yet the

finite honeycomb response does not. The responses of the two structures are similar, but

start diverging on the loading and unloading branches near the onset of instability of the

infinite structure. It is not surprising that the responses of the finite-perfect and infinite-

periodic structures coincide again at macroscopic strains well above or below the strain

levels where the paths of the infinite-periodic solution are stable.

A better, quantitative measure of the deviation between the finite and infinite honey-

comb solutions is shown in Figure 2.15(b). The relative L2 norm of the two solutions,
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Figure 2.15: (a) Comparison of compressive loading-unloading responses of the finite (up-
per left inset) and infinite (upper right inset) perfect honeycombs with a sym-
metric, hysteretic constitutive response (Model 1). (b) Relative deviation
‖u− u#‖/‖u#‖ of the finite honeycomb’s deformation (u) from the infinite
honeycomb’s principal path deformation (u#) vs. macroscopic compressive
strain (δ/H). The finite and periodic configurations are shown in insets at
strains 0.2, 0.3 and 0.5 (loading path configurations A1, A2, A3 and the un-
loading path configurations B1 and B2.) (c) Magnified view of configuration
A2 for the finite and infinite (periodic) configurations.

‖u− u#‖/‖u#‖, is plotted against the macroscopic strain, where

‖u#‖2 ≡
∫

cell walls
[v2

#(x) + w2
#(x)]dx,

‖u− u#‖2 ≡
∫

cell walls
[(v(x)− v#(x))2 + (w(x)− w#(x))2]dx, (2.16)

and (v, w) and (v#, w#) are the respective displacements of the finite and infinite (periodic)

honeycombs. The integrals over the cell walls are calculated numerically using the same
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Gaussian quadrature used in the equilibrium calculations.

The deviation of the finite honeycomb’s equilibrium path in Figure 2.15(b) from its pe-

riodic counterpart during loading occurs at δ/H = 0.084, (denoted by ↑ in Figure 2.15(a))

which just precedes the first instability at δ/H = 0.092 encountered of the infinite struc-

ture8. The deviation disappears near δ/H = 0.624 well after the final bifurcation point at

δ/H = 0.328. Upon unloading, deviation between the two paths appears at δ/H = 0.322

soon after the bifurcation point at δ/H = 0.344 and then disappears at δ/H = 0.018 well

after the final bifurcation point at δ/H = 0.099.

The deformed configurations of the finite and infinite honeycombs are shown in Fig-

ure 2.15(b) at five different states: points A1, A2 and A3 on the loading branch (δ/H =

0.20, 0.30, 0.5) and points B2 and B1 (δ/H = 0.30, 0.20) on the unloading branch. The

numerical calculations for the hysteretic, finite sample were obtained by a straightforward

incremental algorithm with small step sizes (typically ∆δ/H between about 3× 10−5 and

9 × 10−5). This standard procedure, without any special modification, was adequate to

allow the finite structure to take a particular, non-periodic, equilibrium path. As can be

seen in the magnified view of state A2 in Figure 2.15(c) the overall shape of the finite

honeycomb takes a roughly trapezoid shape, with cells flattening at the top more than at

the bottom. Of course, other equilibrium paths exist, which are symmetry related to the

calculated equilibrium path. The presence of internal variables in the model introduces

numerical imperfections, thus selecting one of the geometrically equivalent paths. Other

equilibrium paths are likely to exist (after all, the periodic solution has a high number of

8Instability of the finite-perfect structure precedes the onset of instability of the infinite counterpart, since
it is not laterally constrained
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symmetries), but the ease with which numerical solutions were found (without any overt

imperfections included) leads us to believe, although without proof at this time, that the

numerical solution found here is the energetically preferred path in a continuous loading

process of the structure. Furthermore, the deformed patterns obtained are reminiscent of

the configurations observed in experiments [26].
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Figure 2.16: Comparison of compressive loading-unloading responses for the finite (upper
left inset) and infinite (upper right inset) perfect honeycombs with an asym-
metric, hysteretic constitutive response (Model 2).

The mechanical response of the finite honeycomb using the asymmetric constitutive re-

sponse (Model 2) is presented in Figure 2.16. For comparison purposes the results are over-

laid on the stability results for the corresponding infinite periodic case (from Figure 2.14).

As before the finite honeycomb’s force-displacement curve deviates from its periodic coun-

terpart near the onset of first instability. However, a deviation of the finite size structure’s

response from the corresponding periodic results is found on the unloading path as well.

This discrepancy is unexpected, in view of the stability of the entire unloading path of the
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infinite, periodic solution found according to the results in Figure 2.14. However, this mys-

tery can be explained by the presence of the tiny unstable region on the principal unloading

branch of the finite structure. (In fact, this unstable region was not initially detected until a

more detailed calculation was performed with very fine increments.) Interestingly, the in-

finite honeycomb response has an unstable segment during loading but not unloading, yet

the finite honeycomb response is stable during loading but has this short unstable segment

during unloading.

2.4.4 Response of Finite, Imperfect Honeycombs

The influence of imperfections on the response of the actual, finite size structure is

shown in Figure 2.17 and Figure 2.18 for the symmetric and asymmetric constitutive re-

sponse, respectively. The construction of a “hypothetical” imperfect structure was achieved

by randomly perturbing the location of the internal cell junctions of the perfect structure.

Each node of the perfect specimen was displaced within a disc of radius ∆r = ζL (where L

is the unit cell side), where the radius and the angle for the nodal perturbation vector were

chosen randomly in the respective intervals [0,∆r) and [0, 2π).

Figure 2.17(a) shows the macroscopic stress-strain responses of the perfect (ζ = 0)

and two imperfect (ζ = 0.01, 0.1) structures. The paths are similar, undulating about a

plateau stress at intermediate strains, yet all the paths shown are stable everywhere. The

figure reveals little influence of the imperfection for the small imperfection amplitude (ζ =

0.01) but more significant deviations from the perfect responses for the larger amplitude

(ζ = 0.1), especially at large strains (δ/H > 0.5). The same conclusion can be reached
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from Figure 2.17(b), where the relative deviation between the finite and periodic solution

is plotted as a function of macroscopic strain. As expected, the loading-unloading curve

for the smaller imperfection (ζ = 0.01) is closer to the perfect case (ζ = 0) than the

corresponding curve for the larger imperfection (ζ = 0.1). Figure 2.17(b) shows that the

configurations diverge from each other at small macroscopic strains initially (say, δ/H <

0.05), but then tend to converge somewhat toward the perfect case as strains near δ/H =

0.1. The largest differences between the three cases are apparent in Figure 2.17(b) upon

unloading (from δ/H = 0.7 down to about δ/H = 0.2), but then they converge closely to

the perfect case at small strains (δ/H < 0.1).

The comparison of the macroscopic stress-strain response of the finite, perfect (ζ = 0)

and two imperfect (ζ = 0.01, 0.1) structures for the case of the asymmetric constitutive

law (Model 2) is presented in Figure 2.18. Again, all paths shown are stable everywhere,

showing that while the path undulates for much of the path, imperfections help to suppress

the possibility of instability. Consistent with the results of Figure 2.17, there is little dif-

ference between the behavior of the perfect (ζ = 0) and the slightly imperfect (ζ = 0.01)

structures, and a more apparent difference with the more imperfect structure (ζ = 0.1).
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Figure 2.17: (a) Comparison of compressive loading-unloading responses for finite perfect
and imperfect honeycombs (ζ = 0, 0.01, 0.1) with a symmetric, hysteretic
constitutive response (Model 1). (b) Relative deviation ‖u − u#‖/‖u#‖ of
the finite perfect and imperfect honeycomb deformations vs. macroscopic
compressive strain (δ/H).
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Figure 2.18: Comparison of compressive loading-unloading responses for finite perfect and
imperfect honeycombs (ζ = 0, 0.01, 0.1) with an asymmetric, hysteretic con-
stitutive response (Model 2).
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2.4.5 Response of the Fabricated Nitinol Honeycomb

Finally, we turn to superelastic simulations of an actual SMA honeycomb. All the

above presented results pertain to various idealized SMA structures. The following results

are calculated for the actual SMA honeycomb specimen shown in Figure 2.19(a), having

overall in-plane dimensions 40.6×21.5 mm with 4-1/2×7 cells, out-of-plane depth 5.2 mm,

and nominal ligament thickness t = 0.1 mm, except for the double layer bonds at the

horizontal lands. The uniaxial macroscopic stress-strain response to several compressive

load cycles is shown in Figure 2.19(b) (data redrawn from Figure 5 of [26]). The actual

geometry of the specimen in Figure 2.19(a) was digitized as accurately as possible and

was discretized by up to 20 beam elements per ligament. The cell ligaments of the SMA

honeycomb specimen are noticeably curved, especially at the junctions, thus requiring more

finite elements to accurately capture the initial geometry.

The local stress-strain behavior of the as-fabricated honeycomb walls is, unfortunately,

not directly available at this time, and this would be challenging task to obtain for a num-

ber of reasons. The post heat-treated properties are likely different from the virgin NiTi

strip material used in their construction, so one would want properties of wall samples ex-

cised from the honeycomb. One could only hope to get tensile data, not compression data,

since buckling would be difficult to avoid. Obtaining accurate bending data on such small

specimens would also be difficult, and while potentially useful for local bending moment-

curvature behavior, the true stress-strain behavior could still only be inferred indirectly.

Furthermore, the specimen in the experiment exhibited noticeable shakedown behavior (as

is commonly seen in uniaxial experiments of Nitinol, at least for initial loading cycles), and
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some permanent strain existed as the strain increments were increased. Nevertheless, ex-

perimental work to independently obtain meaningful material property data on individual

ligaments will be pursued in the future.

Consequently, we chose cycle 6 of Figure 2.19(b), taken to 30 % strain, to simulate and

performed several trial simulations with different material laws to calibrate Model 3. We

recognize that our uniaxial constitutive model contains a large number of parameters that

can be used to fit the specimen’s response, so no claim is made currently that Model 3 is

necessarily the optimal one. Considering the reasonable agreement with both the mechan-

ical response and the deformation pattern observed in Fig. 2.20, however, indicates that it

is a credible one. Furthermore, Model 3 has certain expected features of NiTi behavior,

namely asymmetric tension-compression behavior with lower transformation stresses and

larger transformation strains in tension vs. compression, yet both having positive tangent

moduli consistent with material that has experienced some shakedown cycling. Overall,

we believe we can proceed with some confidence to investigate the effects of boundary

conditions and geometric imperfections.

Another “sticky” issue is the potential effects of platen-honeycomb friction at the top

and bottom of the specimen, so friction was included in the simulations. A friction coef-

ficient of µ = 0.3 was chosen such that the response of the finite, imperfect honeycomb

reasonably matched the experimental results. This value is considered realistic for the dry,

steel platens used. The same model was simulated frictionless, in order to quantify the

effect of friction as well as to be comparable to the finite sample results presented earlier.

A frictional or standard contact algorithm was used for the two cases respectively, since the
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Figure 2.19: (a) Photograph of Nitinol honeycomb specimen. (b) Experimental isothermal
compressive, displacement-controlled response subjected to load-unload cy-
cles in progressively larger 5 % strain increments (data taken from Figure 5
of [26].)

actual honeycomb top and bottom surfaces were not precisely planar, causing some cells

to contact the platens before others at the initiation of loading. This was the cause of the

concave curvature and delayed upturn in the experimental response near δ/H = 0.01, as

settling occurs between the honeycomb top/bottom ends and the platens. After this “slack”

was exhausted the structure stiffened to a roughly linear response up to about δ/H = 0.05.

The case of µ = 0.3 results in quite satisfactory agreement with the experimental re-

sponse as seen in Figure 2.20(a). Not surprisingly, the presence of friction acts to stiffen

the overall response as shown in the three responses of finite, imperfect honeycombs. The
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response of the infinite-perfect honeycomb is also shown for comparison, being the stiffest

of the structures considered. Obviously, the presence of imperfections is a strong effect,

softening the response considerably compared to the perfect case. All cases were stable for

their entire paths for this choice of constitutive law (Model 3). The case of µ = 0.3 for

the finite, imperfect honeycomb fits the experimental results very well, except for a minor

deviation near δ/H = 0.2 during loading. Similarities are also apparent in Figure 2.20(b)

between the simulated (µ = 0.3) and experimental configurations near the maximum strain,

δ/H = 0.3. The overall shapes are roughly trapezoidal with cells flattened at the top, al-

though the distortion is somewhat more severe in the experiment. Notice that the center

cell in the bottom row is relatively undeformed in both cases. Overall, we consider the

agreement between the simulation and experimental results to be quite satisfactory.
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Figure 2.20: (a) Macroscopic load-unload stress-strain responses: experimental measure-
ment from cycle 6 of Figure 2.19(b) (bold line) and FEM simulations (actual
geometry using Model 3) with two values of friction coefficient, µ = 0 (dot-
ted line), µ = 0.3 (thin solid line). The infinite-perfect honeycomb (upper left
inset) principal path (thin line) is also shown for comparison. (b) Simulated
configuration (µ = 0.3) and experimental image near 30 % strain.
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Chapter III

Design for Energy Absorption

Energy absorbers are used for packaging, crash or blast protection [3] in order to protect

valuable, fragile components/occupants from damaging acceleration/decceleration. The

origins of such accelerations may be a drop from a equipment handler, a parachute drop, a

launch of a rocket, a vehicle crash or from a blast in a military situation. The function of

the energy absorber is to absorb kinetic energy of a moving object (e.g delicate instruments

or an armor plate) without transmitting a large stress. This is conventionally achieved by

the use of hollow tubes, metal honeycombs (loaded parallel to the axis of the hexagonal

cells) or metal foams, due to the long, flat stress-strain curve they exhibit when plastically

crushed. The ideal design should have the greatest absorbed energy per unit volume or

mass (or unit cost) while still not exceeding a given limit in transmitted stress.

While traditional absorbers are capable of offering protection to a valuable object, their

use is limited to a single time, after which they are thrown away. This is because their

attractive flat load-deflection curve comes at the cost of severe irreversible plastic defor-

mation. Therefore, if protection is needed more than once, the damaged element has to

be replaced, a task that could be costly or impossible (e.g for an element on a launched

rocket).
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In this Chapter, the superelasticity of SMA honeycombs is exploited in the design of

energy absorbers, resulting into elements that can be repeatedly crushed without permanent

damage. The simulation methods presented in Chapter II are adopted to examine the per-

formance of different honeycomb designs. Using a parametrized hexagonal unit-cell, charts

are constructed that guide the selection of parameters to accomplish optimal characteristics

(e.g. maximum energy absorption per unit mass of honeycomb).

The design objectives and constraints of such a reusable energy absorption honeycomb

are presented in the first Section. These are followed by the description of the type of

unit cells that were considered in this study. Finally, the results of a parametric study are

presented and conclusions are drawn.

3.1 Design Objectives

The objective of the design study is to specify the unit cell geometry of a honeycomb

such that once crushed in its own plane, it absorbs the maximum kinetic energy per unit

mass or volume1. In addition to absorbing kinetic energy, the honeycomb should satisfy

two more constraints:

1. The honeycomb is not permanently damaged.

2. The maximum reaction force during crushing does not exceed a predefined limit.

1Although both objectives were investigated, only the absorbed energy per unit mass (more precisely
absorbed energy per unit cell’s material volume, which differs by a factor of the solid material’s density) is
presented in the parameter study in Section 3.3. For the absorbed energy per unit volume the reader is invited
to consult Appendix A
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The first requirement is equivalent to a restriction on the maximum local strain seen

anywhere in the honeycomb. A calculation leading to a plot similar to one seen in Fig-

ure 2.3(c) can be used to detect the macroscopic strain
(
δ/H|εmax

)
where this occurs, along

the principal solution. If, however, the structure deviates from the principal path, more

complex deformation modes, possibly exhibiting localizations, are expected. Since these

configurations are difficult to predict due to the continuum of bifurcation points leading to a

myriad of equilibrium paths, a conservative additional restriction is imposed here, namely

not to crush the honeycomb past it’s first bifurcation point. The corresponding macro-

scopic strain is denoted as
(
δ/H|stability

)
, and its prediction is made using the Bloch wave

calculations of a unit cell.

There is an underlying assumption here, namely that the honeycomb is large enough to

be modeled by an infinite one. This may be justified by the encouraging result presented in

Figure 2.15(a), where the first bifurcation points for an infinite and a finite honeycomb are

shown to be very close to each other, even though the finite case considered is only 4× 71
2

cells large. Similar agreement is captured in Figure 2.16 for a different constitutive law.

The second requirement essentially protects adjacent bodies (whose kinetic energy is

being absorbed) from being overloaded. To satisfy this, first the reaction force (per ref-

erence area) of the honeycomb during crushing is monitored and once macroscopic strain

reaches
(
δ/H|εmax

)
or
(
δ/H|stability

)
, the maximum reaction value that has occurred is re-

ported. Therefore, the performance of the honeycomb is ’rated’ and different designs can

be compared.
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Upon determining the maximum allowable macroscopic strain, calculation of the en-

ergy absorbed by the honeycomb is a straightforward task. Specifically, from the dimen-

sionless macroscopic stress - macroscopic strain plot for the unit cell, the dimensionless

energy per unit cell enclosed volume2 is just the area under the curve, namely

W

EV
=

∫ δ/H|max

0

F (u)

EA
du (3.1)

where δ/H|max = min{ δ/H|stability , δ/H|εmax
}. The modulus E appearing here is taken

as the austenite’s modulus of elasticity (EA). The absorbed energy is denoted by W , while

A is the reference area defined by the footprint of the unit cell. In the case when the

dimensionless energy per unit material volume is sought:

W

EVmat
=

1

veff

∫ δ/H|max

0

F (u)

EA
du (3.2)

with veff = volume of material in a cell
overall volume of cell . Equation 3.1 should be used when maximizing absorbed

energy per overall honeycomb volume (homogenized energy density) is of interest, while

Equations 3.2 is useful when maximizing absorbed energy per honeycomb mass (specific

energy). For the latter, Equation 3.2 should be multiplied by E and divided by NiTi density

ρ, thus giving

W

Vmatρ
=

E

veffρ

∫ δ/H|max

0

F (u)

EA
du (3.3)

2To understand which volume is used, consider Figure 2.1(a). The rectangle defined by the diagonal 1-6,
multiplied by the depth gives the enclosed volume of the unit cell.
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Figure 3.1 plots the local strain vs. the macroscopic strain for a unit cell supere-

lastic honeycomb, demonstrating the selection of the limiting macroscopic strain values(
δ/H|εmax

)
and

(
δ/H|stability

)
. Using the minimum of these (denoted as δ/H|max), Fig-

ure 3.2 presents the calculation of the absorbed energy (shaded area) as well as the maxi-

mum dimensionless reaction force.
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δ / H

δ
H εcrit

δ
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εmax

 high cycle limit
0.04

0.08

0.1 0.3 0.70.5

 low cycle limit

δ / H

Figure 3.1: Principal branch of the maximum local strain εmax seen anywhere in the struc-
ture vs. compressive strain (δ/H).

Repeating the above procedure for honeycombs of various shapes or material proper-

ties, a performance table can be constructed, that classifies each honeycomb according to

its dimensionless energy absorption capability and the corresponding maximum dimen-

sionless reaction. This is done later in this chapter, and convenient design contour plots are

presented.
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Figure 3.2: Calculation of the absorbed energy by compressing honeycomb up to
(δ/H)|max.

Depending on the exact function of the honeycomb, other objectives and constraints

could be employed. For example, in thermal actuator or positioning applications maximiz-

ing allowable macroscopic strain could be sought without any further constraints. Or, if

thermal effects are taken into account, a larger material surface area to volume ratio could

be desirable for fast actuation/reset operation.

3.2 Family of Shapes

The basic unit cell can be parametrized to give a family of shapes, covering from simple

hexagonal to auxetic geometries. Two samples of this family are shown in Figures 3.3
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and 3.4, along with the notation used for their dimensions. This generalized cell, while

including as a subcase the standard hexagonal cell used in Chapter II, also can give radically

different shapes (like the reentrant geometry shown in Figure 3.4) and still lend itself for

manageable construction.

t
2t

1 2

3 4

5 6

L1

L2

L

θ>0

l

h
7 8

9 10

Figure 3.3: Sample of unit cell used in parameter study for energy absorption, showing the
definition of some useful parameters. Here a case with θ > 0 is depicted.

Four parameters are necessary to fully describe the cell. A fixed diagonal dimension is

assumed (L = 1), a size measure that is independent of the exact shape of the cell. The

aspect ratio of the unit cell’s circumscribed rectangle is now treated as a free parameter, i.e

r = L2/L1. Lastly, the wall thickness (expressed as t/h) and the angle θ of the slanted

ligament are used to fully describe the cell (a unit out-of-plane depth is assumed). Keeping

the number of cases to study at a relatively low number, the parameter values described in
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Figure 3.4: Sample of unit cell used in parameter study for energy absorption, showing the
definition of some useful parameters. Here a case with θ < 0 is depicted.

Table 3.1 were selected.

Table 3.1: Unit cell geometry parameter values

Parameter Values
L 1
θ ±15◦ ± 30◦

r 0.1 , 0.3 ,
√

3/3 , 0.6 , 0.9 , 1.2 , 1.5 , 1.8 , 2.1 , 2.4 , 2.7 , 3.0
t/h 0.005 , 0.010 , 0.020 , 0.040 , 0.060 , 0.080 , 0.100

One should realize that combinations of very high aspect ratios r with θ < 0 lead to non-

physical geometries (i.e interpenetrating geometries). Those combinations are naturally

excluded from the calculations. It should also be mentioned here that when θ < 0 (re-

entrant cells) an additional constraint has to be added to the ones described in Section 3.1.
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During compression, contact may occur between the joints of the opposing slanted walls.

Although this could be modeled, in reality the two joints would slip towards opposing

(vertical) directions, thus the honeycomb would leave the principal path. This mode could

interact with slips in neighboring cells and lead to an unpredictable global mode for a large

honeycomb. Therefore, consistent with the conservative approach outlined in Section 3.1,

an additional constraint for the re-entrant geometries is to terminate the simulation once

contact occurs.

3.3 Energy Absorption Results

Applying the methodology described in Section 3.1 in honeycombs with all the different

unit cells presented above, and plotting the results leads to a design aid for a honeycomb

energy absorber. These are presented in Figures 3.5–3.12 in the form of contour plots.

Although the objective chosen here is maximization of absorbed energy per unit material

volume, the alternative criterion of absorbed energy per overall volume is considered in

Appendix A. For the study, the basis constitutive law (Model 1, see Section 2.3.1 for

constitutive parameter values) is adopted.

For each of the four values of the angle θ correspond two contour plots. One using a

limiting maximum local strain of 0.025, associated with high cycle loading-unloading, and

one with maximum local strain of 0.05, more appropriate for few harder blows. For the

case of θ = ±30◦, the aspect ratio has to be limited to r ≤ 1.5 to guarantee physically

meaningful shapes (interpenetrating geometries occur otherwise). In total, 42 simulations

were used to construct each of the θ = ±30◦ plots while 77 for the θ = ±15◦ (in total 238
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runs).

Each plot contains contours of dimensionless absorbed energy per unit cell material

volume ( W
EVmat

, solid lines) for different combinations of the thickness (t/h) and cell aspect

ratio (r, y-axis) parameters of the unit cell used. Overlaid on the same plot, contours of the

maximum dimensionless reaction force appear ( F
EA

∣∣
max) as dotted lines.

The designer should start by locating the contour (dotted line) of the maximum allow-

able dimensionless reaction F
EA

∣∣
max. Along this path, the (t/h , r) region with the highest

absorbing dimensionless energy ( W
EVmat

, solid contour lines) is the most desirable one. After

that, the precise values of the (t/h , r) parameters to be selected may be influenced by other

considerations, like thermal performance or any safety margin in the design.

As an example, assume that the optimal energy absorber with a unit cell that has θ = 15◦

is sought. The absorber is to remain operating even after many cycles of loading-unloading,

but the maximum transmitted dimensionless stress is not allowed to exceed 10 ∗ 10−6 (i.e.

F
EA
≤ 10 ∗ 10−6). Consulting Figure 3.5 one locates the dotted contour corresponding to

10 and finds that the plot region with the highest absorbed energy (of 5∗10−6) corresponds

to r = 3 and t.h = 0.04. Any other area either has a lower energy absorbing capacity or

violates the low stress requirement.
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Figure 3.5: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = 15◦. A limiting local strain value of εmax = 0.025 is assumed.
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Figure 3.6: Design chart of dimensionless energyabsorption per unit cell material volume
for cells with θ = 15◦. A limiting local strain value of εmax = 0.050 is assumed.
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Figure 3.7: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = −15◦. A limiting local strain value of εmax = 0.025 is
assumed.
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Figure 3.8: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = −15◦. A limiting local strain value of εmax = 0.050 is
assumed.
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Figure 3.9: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = 30◦. A limiting local strain value of εmax = 0.025 is assumed.
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Figure 3.10: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = 30◦. A limiting local strain value of εmax = 0.050 is
assumed.
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Figure 3.11: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = −30◦. A limiting local strain value of εmax = 0.025 is
assumed.
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Figure 3.12: Design chart of dimensionless energy absorption per unit cell material volume
for cells with θ = −30◦. A limiting local strain value of εmax = 0.050 is
assumed.
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Studying Figure 3.5, which corresponds to cells with θ = 15◦ and a limiting local

strain value of εmax = 0.025, one concludes that for a given limit in reaction force, the

optimal cells have the highest possible aspect ratio r = 3. An exception occurs in the

region with r ≈ 2.5 and t/h ≈ 0.01. Although there is a tendency for short wavelength

instability modes for higher r’s and lower t/h’s, in the aforementioned region exists an

’island’ of long wavelength modes. Since long wavelength modes can be associated with

lower energies than the short wavelength ones, they also probably occur earlier as well,

thus undermining further compression of the cells and energy absorption. Yet, one should

note that the sparsity of parameters grid used in the study is not adequately dense to study

such a small region in detail, thus no conclusive explanation can be given.

As expected, increasing the limiting local strain value at εmax = 0.050 (Figure 3.6),

allows further compression of cells with high thickness ratios t/h. Even then though, the

increased allowed local strain cap is not fully exploited, since instabilities precede.

In the case of θ = −15◦, one immediately deduces that energy absorption per unit

cell material volume is substantially lower (Figures 3.7 and 3.8). These cells are severely

limited by instability. The C-shape of the contours is the result of increase in absorbed

energy (per unit cell’s material volume) as the aspect ratio r increases, and the abrupt

limiting in further compression due to contact for the highest values of r. By the increase

of the allowable local strain value at εmax = 0.050, only few cells with low aspect ratios r

and high thickness ratios t/h benefit.

Superior performance is observed for the cells with θ = 30◦ (Figures 3.9 and 3.10).

Again, cells with high t/h ratios are limited by local strain development in bending lig-
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aments, while for low t/h instability precedes. A striking observation is the high energy

absorption of these cells for t/h = 0.01 compared to the ones with t/h = 0.02. The very

thin walled cells surprisingly showed no instabilities even when compressed down to 0.7

macroscopic strain. For the cells with θ = −30◦ (Figures 3.11 and 3.12) the C-shaped

contours that appear resemble those of their −15◦ counterparts. Same explanation holds.

Overall, superior performance is observed for the cells with θ = 30◦. Overall, the

lightest energy absorber, among the cases studied, would almost certainly have θ = 30◦,

r → 1.5, and t/h dictated from the maximum allowable reaction. Interestingly, this points

towards a rhombic unit cell, but such a case is not considered here.

The guidelines provided above pertain to maximizing absorbed energy per unit cell ma-

terial volume, a figure-of-merit to be adopted when the honeycomb’s mass is of concern.

Alternatively, if limitation of the honeycomb’s volume is of concern, one could maximize

the absorbed energy per unit cell overall volume. Such results are included in Appendix A.

Additionally, the overall poisson ratio of the honeycomb at maximum allowable macro-

scopic strain is shown there (for more details refer to Appendix A).
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Chapter IV

Shape Memory Honeycombs

4.1 Introduction

The previous chapters addressed only the isothermal superelastic behavior of SMA

honeycombs. This chapter presents a first step to extend the material model/FEA to sim-

ulate shape memory behavior of SMA honeycombs that could be used in future actuator

applications and smart structures.

There is an abundance of shape memory alloy constitutive models in the literature.

Roughly categorizing some recent efforts, there are those which use volume fractions of

martensite variants to capture continuum-level behavior [2,13], polycrystalline microstruc-

tural models [21], Ginzburg-Landau models to simulate microstructural evolution [1], and

even quantum-mechanical models to evaluate the relative stability of different crystal struc-

tures [16, 34].

In this chapter, the constitutive law used in the simulations is a 1D phenomenologi-

cal model, similar to the one proposed in [25]. The 1D continuum model is based on a

free energy function that involves two internal field variables (two variants of martensite

phase fractions) and is adequate to capture the SMA behavior in uniaxial experiments. The
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model is based on [4], but is modified to ignore time-dependent effects and to stabilize its

response.

The material is organized as follows: First the SMA constitutive model used is pre-

sented, followed by a discussion of its numerical implementation. The last section presents

results of calculations of an SMA honeycomb structure.

4.2 Constitutive Model

In this section a thermodynamically-based SMA constitutive model is described. The

model is based on a 1-D Helmholtz free energy with two internal variables to identify phase

fractions and is used to model the essentially uniaxial loading of the SMA honeycomb cell

walls. Three phases are considered: two variants of martensite (M+ and M−), with mass

fractions of ξ1 and ξ2 respectively, and austenite (A) with mass fraction ξ3. The model is

based on [4] but has been modified mostly to exclude strain gradient effects and to enable

control of the slope of (isothermal) transformation paths. Also, no rate effects are taken into

account in the version employed here, consistent with the quasi-static thermomechanical

loading of the SMA honeycomb experiments of interest [29].

For simplicity, the tensile and compressive response of the material is assumed to be

the same. Furthermore, the assumption is made that pure austenite and saturated marten-

site (either variant) have the same elastic modulus. While employing an asymmetric in

tension-compression constitutive law would have an effect on a honeycomb’s response (as

demonstrated earlier for the superelastic case, see Chapter II), adopting a different mod-

ulus for pure austenite and pure martensite proved to have a minor effect in the response
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of a compressed honeycomb (at least for the macroscopic strain levels investigated in this

thesis).

In what follows, ξ denotes the phase fraction vector (ξ1, ξ2).

4.2.1 Phase fraction space

Three phases are present: two martensitic, with mass fractions ξ1 and ξ2 and an austenitic

with mass fraction ξ3. These can be represented graphically by a point in the (ξ1, ξ2) space

by a vector ξ, given that mass conservation dictates ξ3 = 1 − ξ1 − ξ2. Each phase can

have a mass fraction from 0 to 1, therefore the admissible region for them is a triangle as

shown in grey in Figure 4.1. In the same figure, the numbering adopted for the vertices and

edges is shown, along with the unit normal and tangential vectors for each edge (useful in

determining phase evolution described later). Thus, pure austenite (A) is mapped on vertex

1, tensile martensite (M+) on vertex 2, compressive martensite (M−) on vertex 3, while

twinned martensite
(
M+/−) with same mass fraction of each variant, is represented by the

point (ξ1, ξ2) = (0.5, 0.5).

As an example of the path followed in ξ space during a phase transformation cycle,

consider the superelastic transformation path modeled in Chapter II. This would take place

along the edges 3 (for tension) and 2 (for compression). A more involved path exhibiting

the shape memory effect is shown in Figure 4.2. Material initially at (ξ1, ξ2) = (0.5, 0.5)

(twinned martensite) is loaded in tension and thus de-twinns (vertex 2). Upon unload-

ing there is no phase transformation, therefore material is still mapped at vertex 2 in the

(ξ1, ξ2) space. Heating transforms martensite into austenite (path from vertex 2 to 1) and
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subsequent cooling brings the material back to twinned martensite.
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A
1 2
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1
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n2

t3

t2

i ........i-th vertex

i ........i-th edge

ni ........i-th unit normal vector

t i ........i-th unit tangential vector

Figure 4.1: Phase fraction space notation used in the text.

4.2.2 Free energy

The specific Helmholtz free energy, a function of small strain ε, temperature T and

internal variables ξ is decomposed into the following additive parts

φ(ε, T, ξ) = φE(ε, ξ) + φC(T, ξ) + φI(ξ) + φT (T ) (4.1)

where φE is the elastic energy, φC is the chemical energy, φI is the temperature-independent

interaction energy, and φT is the phase-independent thermal energy. These are chosen to
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Figure 4.2: Transformation path exhibiting the shape memory effect.

be

φE(ε, ξ) =
βE

%
[ε− (ξ1 − ξ2)β]2

φC(T, ξ) = −(T − TR)(ξ1 + ξ2)∆s

φI(ξ) = cI(1− ξ1 − ξ2)(ξ1 + ξ2) + cII(ξ1 − ξ2)2

φT (T ) = (c0 − s0)(T − TR)− c0T ln
(
T

TR

)
(4.2)

In the above, TR is a reference transformation temperature, ∆s is the specific entropy

change from austenite to martensite which is related to the latent heat of transformation

and is a negative constant, and s0 and c0 are material constants representing the phase-

independent specific entropy and specific heat respectively. The elasticity modulus E used

is that of austenite (i.e E = EA), density is represented by ρ, while β is the transformation

strain (see Figure 2.2 for definition in the asymmetric superelastic case). The constants
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cI and cII allow the adjustment of the isothermal slope of the pseudoelastic as well as

the low-temperature transformation path (detwinning) enabling thus a stable or unstable

mechanical behavior, as will be discussed subsequently.

Satisfaction of the non-negativity of entropy production for the system (see [5]) leads

to the following relations

s = −φ,T = s0 + (ξ1 + ξ2)∆s+ c0 ln

(
T

TR

)
σ = ρφ,ε = E [ε− (ξ1 − ξ2) β]

µ•ξ̇ = −φ,ξ•ξ̇ ≥ 0; µ ≡ −φ,ξ (4.3)

where µ is the chemical driving force with components given by

µ1 =
Eβ

ρ
[ε− (ξ1 − ξ2) β] + ∆s (T − TR)− cI (1− 2ξ1 − 2ξ2)− 2cII (ξ1 − ξ2)

µ2 = −Eβ
ρ

[ε− (ξ1 − ξ2) β] + ∆s (T − TR)− cI (1− 2ξ1 − 2ξ2) + 2cII (ξ1 − ξ2) (4.4)

4.2.3 Kinetic law

The kinetic law adopted confines phase evolution to occur in the direction of the chem-

ical driving force, while keeping phase fractions within the admissible region described in

Section 4.2.1.

For convenience, the unit vector m is defined depending on the current phase fraction

values and the direction of the chemical driving force. If the phase fraction coordinates
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reside in the interior of the admissible region then

m = µ/‖µ‖ (4.5)

where ‖µ‖ ≡ √µ•µ. If the phase fraction coordinates reside on an edge (but not a corner)

of the admissible region, then

m =


µ/‖µ‖ if µ•n(i) < 0

t(i) if µ•n(i) ≥ 0

(4.6)

Please consult Figure 4.1 for notation of unit normals n(i) and unit tangents t(i) used here.

Finally, in the case where the current phase fraction resides in a corner of the admissible

region, then

m =


µ/‖µ‖ if µ•n(i) < 0 and µ•n(j) < 0

t(k) if µ•n(k) ≥ 0 and µ•t(k) > 0 for k = i or j

0 otherwise

(4.7)

From the above it is clear that, in general, the unit vector m points in the direction of

the chemical driving forceµ, unless some phase fraction reaches a maximum (i.e. ξ1 and/or

ξ2 and/or ξ3 = 1 ) and µ still points outwards of the admissible zone. In those cases, m

points along the corresponding edge if µ has a component along that edge, otherwise it is

defined as zero (0).

Now, the kinetic law is defined as
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ξ̇ =


0 if µ•m < µc (no transformation)

km if µ•m = µc (transformation)
(4.8)

The parameter µc (critical driving force) is introduced to model the hysteretic behavior of

the material and is a positive constant. Also, k is a positive quantity (because of the last of

Equations 4.3), the calculation of which is to be described bellow. In contrast to [4], there

is no ”stiffness” appearing in the second equation above, since rate effects are not consid-

ered. Essentially this kinetic law evolves the phase fraction if the magnitude of the driving

force (or its component defined by µ•m if constrained on an edge or corner) exceeds the

critical value µc. Thus, in quasi-static conditions considered here, during transformation it

is µ•m = µc. This leads to a consistency condition, namely

µ̇•m = 0 (4.9)

Substitution of Equation 4.4 in the above expression, results in a differential equation for

the phase fraction ξ. Since during phase transformation it is ξ̇ = km, one gets finally

an algebraic equation to solve for k. More details in the numerical implementation of the

model are given later.

4.2.4 Illustrative examples of material model behavior

A positive tangent modulus along isothermal transformation paths of the material is

a desirable property that facilitates computations. This section investigates the relation

between this property and the corresponding form of the free energy. It should also be noted
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that a positive tangent modulus is not only desirable, but is also experimentally observed in

1D SMA low temperature loading, or even at high temperature loading after some training

of the material [17].

Letting, for now, the temperature-independent interaction energy φI be of general form,

the chemical driving force can be written as

µ1 =
Eβ

ρ
[ε− (ξ1 − ξ2) β] + ∆s (T − TR)− ∂φI/∂ξ1

µ2 = −Eβ
ρ

[ε− (ξ1 − ξ2) β] + ∆s (T − TR)− ∂φI/∂ξ2 (4.10)

For the rest of this subsection, the subscript I in φI will be dropped when partial differ-

entiation is performed, for example φ,1 ≡ ∂φI/∂ξ1. Now, as mentioned after (4.8), during

transformation it is µ•m = µc, thus differentiating

µ̇•m = 0 (4.11)

Combining (4.10) with (4.11) the following result is obtained

ε̇ =

−∆s (m1 −m2) Ṫ −
[
−Eβ

2

ρ
−
(
φ,11m

2
1 + φ,22m

2
2 + 2φ,12m1m2

)]
Eβ

ρ
(m1 −m2)

(4.12)

Now, differentiating the stress relation from (4.3) gives for the slope of the stress-strain

response

σ̇

ε̇
= E

[
1− ξ̇1 − ξ̇2

ε̇

]
(4.13)
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Thus, the tangent modulus along isothermal transformation paths can be computed from

(4.12) and (4.13) by setting Ṫ = 0, i.e

Et ≡
σ̇

ε̇

∣∣∣∣
Ṫ=0

= E

1−

Eβ2

ρ
(m1 −m2)

2

Eβ2

ρ
(m1 −m2)

2 −
(
φ,11m

2
1 + φ,22m

2
2 + 2φ,12m1m2

)
 (4.14)

From the above result, it is clear that the form of the temperature-independent interac-

tion energy φI can be used to tailor the tangent modulus along the isothermal transforma-

tion paths. Requiring that Et > 0 (which, as mentioned, is observed for trained SMA) is

equivalent to (φ,11m
2
1 + φ,22m

2
2 + 2φ,12m1m2) > 0, since m1 and m2 are components of a

unit vector with arbitrary direction. The above requirement can be written also as

∣∣∣∣∣∣∣∣
φ,11 φ,12

φ,21 φ,22

∣∣∣∣∣∣∣∣ ≡ det (Hφ) > 0 and φ,11 > 0 (4.15)

where Hφ is the Hessian of φI (ξ1, ξ2).

For the form of φI adopted in (4.2) the denominator appearing in (4.14) becomes

Eβ2

ρ
(m1 −m2)

2 − 2
[
cI (m1 +m2)

2 − cII (m1 −m2)
2] (4.16)

and it turns out that the requirement stated in (4.15) reduces to

cIcII < 0 and cII − cI > 0 (4.17)

which also means that cII > 0 > cI .
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In order to illustrate the way the values of cI and cII can be used to tailor Et in the

isothermal limit, several transformation paths are considered. First, for high-temperature

transformation of austenite to martensite (A → M+ or A → M− depending if load is

tensile or compressive respectively), one has m1 = 1 and m2 = 0 for A→M+ or m1 = 0

and m2 = 1 for A→M− respectively. In both cases (4.14) gives

EA→M
t = E

1−

Eβ2

ρ

Eβ2

ρ
+ 2 (cII − cI)

 (4.18)

On the other hand, for low temperature isothermal detwinning of martensite one has m1 =

1/
√

2 and m2 = −1/
√

2 (or m1 = −1/
√

2 and m2 = 1/
√

2 for the compressive case) and

(4.14) gives

EM+/−→M
t = E

1−

Eβ2

ρ

Eβ2

ρ
+ 2cII

 (4.19)

Adopting the requirements described from (4.17) guarantees thatEt > 0 for all possible

paths. Note, however, that since cII − cI > cII it is also EA→M
t > EM+/−→M

t .

4.3 Implementation of model

This section gives some details on the numerical implementation of the material model

presented in Section 4.3. For simplicity, only configurations with spatially uniform tem-

peratures are considered.
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4.3.1 Newton-Raphson Scheme

In the absence of applied external forces, i.e. for displacement or temperature imposed

loading, the Principle of Virtual Work for cellular structures with one-dimensional response

considered here, can be written as

∫
σ (ε, T, ξ) δε dV = 0 (4.20)

where the integral is taken first over the thickness of each cell wall and then over the

length of all cell walls for the entire structure. The internal variables ξ are functions of

temperature, strain and their history, i.e ξ = ξ(ε, T, t), where t denotes the fictitious time

of the problem.

After incrementing the load, a perturbed strain and temperature field is assumed, con-

sistent with the essential boundary conditions. The equilibrium statement now is

∫
σ
(
εη, Tη, ξη

)
δε dV = 0 (4.21)

where

εη = ε+ η∆ε

Tη = T + η∆T

ξη(ε, T ) = ξ(εη, Tη) (4.22)
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Linearizing about the previous equilibrium solution requires calculation of

d

dη

∫
σ
(
εη, Tη, ξη

)
δε dV

∣∣∣∣
η=0

(4.23)

with

σ
(
εη, Tη, ξη

)
= Eεη − Eβ (ξη1 − ξη2) (4.24)

In order to calculate
d

dη
ξη the kinetic equation 4.8 is considered (only the nontrivial

case where phase evolution occurs is discussed here). Adopting a forward Euler integration

scheme between the previous equilibrium and the current perturbed state, the kinetic law

gives

ξη − ξ = ∆km (4.25)

where ∆k ≡ ∆tk and ∆t is the time increment. In a similar fashion, the consistency

condition 4.9 implies (
µη − µ

)
•m = 0 (4.26)

or

Eβρ


1

−1

 (εη − ε) + ∆s


1

1

 (Tη − T )

+

 −
Eβ2

ρ
+ 2 (cI − cII)

Eβ2

ρ
+ 2 (cI + cII)

Eβ2

ρ
+ 2 (cI + cII) −Eβ

2

ρ
+ 2 (cI − cII)




ξη1 − ξ1

ξη2 − ξ2


 •m = 0 (4.27)
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The last two equations can be combined to give

∆k = aη∆ε+ bη∆T (4.28)

with

a ≡ −A
C

, b ≡ −B
C

A ≡ Eβ

ρ
(m1 −m2) , B ≡ ∆s (m1 +m2) , C ≡

[
m1 m2

]
[W ]


m1

m2


(4.29)

Therefore now

ξη = ξ + aη∆εm+ b∆Tηm (4.30)

and

d

dη
ξη = a∆ε+ b∆T (4.31)

Using this result, one may now calculate 4.23, since

d

dη
σ
(
εη, Tη, ξη

)∣∣
η=0

= E∆ε+ â∆ε+ b̂∆T (4.32)

where the following definitions are used

â ≡ Eβ (m2 −m1) a , b̂ ≡ Eβ (m2 −m1) b (4.33)
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As a consequence of the above, linearizing 4.21 about the previous equilibrium solution

gives ∫
δε [E + â] ∆ε dV = −

∫
δε
[
σ + b̂∆T

]
dV (4.34)

Upon discretization this leads to the tangent stiffness matrix K, the increments in the dis-

placive degrees of freedom ∆u and the force vector F , thus

K∆u = F (4.35)

4.4 Shape Memory Simulations

4.4.1 1D Element Simulations

A simple 1-dimensional element thermomechanical loading simulation is presented

first, serving two purposes: to exhibit the shape memory behavior of the material model as

well as to help verify the validity of the implementation. In order to isolate the material’s

behavior, only one beam element is used (the same type of element used everywhere else

in this thesis) and is loaded in pure tension.

Material properties used are presented in Table 4.1. Each Gauss point of the element

has 3 material integration points through the thickness since the load is uniform through

the cross section.

The thermomechanical loading process modeled is shown in the strain, temperature and

stress space in Figure 4.3. Initially (t = 0, where t denotes artificial time for the Newton

Raphson procedure), the temperature is below the reference one, namely T/TR = 0.81428.
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Keeping it fixed, the element is loaded mechanically to ε = 0.06 macroscopic strain

using displacement control (t = 1). During this procedure the twinned martensite is

fully detwinned. Subsequently, switching to force control the element is unloaded. At

this point, there is an apparent permanent deformation of the element of ε = 0.0572

macroscopic strain (t = 2). Keeping the axial force to zero, the temperature is raised to

T/TR = 1.17529, resulting in the transformation of the material into austenite while eras-

ing any apparent deformation (t = 3). Now, at this higher temperature, a load-unload cycle

is performed (t = 3–5), demonstrating the superelastic behavior of the material model (dis-

placement control is used again). Finally the temperature is reduced back to the initial one

(T/TR = 0.81428), transforming the material back to twinned martensite and bringing the

element in its exact initial configuration (t = 6). The whole process shown in Figure 4.3

uses 3000 equal load parameter increments.

Table 4.1: Shape memory model material properties: dimensionless groups’ definitions and
given values

Quantity Dimensionless Group Value
E E/E 1
β β 0.0572
ρ ρ/ρ 1

∆s ∆sρTR/E -0.00155443
TR TR/TR 1
cI cIρ/E -0.000065
cII cIIρ/E 0.000027857
µc µcρ/E 0.000093785714

For the above process, the history of the phase fractions is shown in Figure 4.4 in

the (ξ1 , ξ2) space (showing phase changes during corresponding time intervals) and in
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Figure 4.5 for each fraction separately with respect to time.
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Figure 4.3: Shape memory effect and pseudoelastic response exhibited by tensile loading
of one finite element.

Using the chemical driving force equations (4.4) it is easy to compute the exact stress-

strain values of the initiation and saturation of transformations for both twinned martensite

to detwinned one, as well as asutenite to martensite and back to austenite. These points are

denoted in Figure 4.6 with capital letters A–G.

For point A, using the evolution requirementµ•m = µc and settingm =
(√

2/2 , −
√

2/2
)

the corresponding strain can be evaluated for (ξ1 , ξ2) = (0.5 , 0.5). Similarly, for point B

the same equation is used with (ξ1 , ξ2) = (1.0 , 0.0). For the rest of the points, the reader

is invited to consult Table 4.2.
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Table 4.2: Initiation and saturation points for transformation due to mechanical loading of
SMA material

Point Equilibrium equation (m1 , m2) (ξ1 , ξ2) T (σ , ε)

A µ•m = µc
(√

2/2 , −
√

2/2
)

(0.5 , 0.5) 0.81428 (0.001159 , 0.001159)

B µ•m = µc
(√

2/2 , −
√

2/2
)

(1.0 , 0.0) 0.81428 (0.002296 , 0.05950)
C by design (0.0 , 0.0572)
D µ•m = µc (1.0 , 0.0) (0.0 , 0.0) 1.17529 (0.005266 , 0.005266)
E µ•m = µc (1.0 , 0.0) (1.0 , 0.0) 1.17529 (0.008676 , 0.06587)
F µ•m = −µc (1.0 , 0.0) (1.0 , 0.0) 1.17529 (0.005397 , 0.06260)
G µ•m = −µc (1.0 , 0.0) (0.0 , 0.0) 1.17529 (0.001988 , 0.001988)
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Figure 4.4: Phase fractions history presented in phase fraction space, during thermome-
chanical process described in Figure 4.3.
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Figure 4.5: Phase fractions history during process presented in Figure 4.3.
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Figure 4.6: Stress-strain response of 1 element in tension for two different temperatures.
Curve with letters A,B,C corresponds to detwinning of martensite, while
D,E,F,G is at a higher temperature (pseudoelastic behavior).
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4.4.2 Honeycomb Structures Simulations

As illustrative simulations of a shape memory alloy cellular structure, two cases are

considered. First, the principal solution for a hexagonal honeycomb undergoing the same

thermomechanical process as the one described in Section 4.4.1 is calculated. Then, the

simulation is repeated for a finite size SMA honeycomb structure (the 4 × 71
2

used in

the superelastic case), in order to simulate the response along the same thermomechanical

loading cycle.

Principal Solution

As an illustrative example of a shape memory alloy cellular solid, the principal solution

for a hexagonal honeycomb is considered undergoing the same thermomechanical process

as the one described in Section 4.4.1. The result is presented in Figure 4.7.

Since only the principal solution of the honeycomb is of interest, a quarter of its unit

cell is modeled (see inset of Figure 4.7) with 50 elements per wall length L. The same

structural model introduced in Chapter II is used. The top and bottom nodes of the cell

are controlled following the sequential displacement and force control pattern used in the

1D problem considered above. Material properties used are presented in Table 4.1. For

the whole process 9000 loading increments are used. Each element’s Gauss point uses 51

material integration points through the thickness of the beam.

The result of the simulation is presented in Figure 4.7. The high temperature isothermal

response is similar to what has been presented earlier in Chapter II. The loading portion of
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the low temperature part of the simulation resembles that of a superelastic case with mod-

ified material properties. This should not be a surprising finding, since, if the reasonable

assumption of monotonic material loading is made, the relevant part of the SMA constitu-

tive law (namely, part (0,0)-A-B of curve in Figure 4.6) can be represented by the loading

part of a superelastic response (i.e, part (0,0)-D-E of curve in Figure 4.6, but with modified

properties so that D ≡ A and E ≡ B).

For the chosen material parameters and temperature, once unloaded there is an apparent

permanent deformation. That is erased during heating, while cooling brings the model

exactly to its initial state.
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Figure 4.7: Shape memory effect and pseudoelastic response for the principal solution of a
hexagonal honeycomb. One quarter of the unit cell is modeled.
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Response of finite honeycomb

A finite 4 × 71
2

specimen is modeled in the same thermomechanical process the quar-

ter cell underwent above. The result is shown in Figure 4.8. Deformed configurations

of the honeycomb at instances depicted with a numbered tag in this plot, appear in Fig-

ures 4.9,4.10 and 4.11. This time, fewer degrees of freedom were used, namely 10 ele-

ments per wall length L, to reduce computational time. The lower temperature response

was verified with a similar calculation but with 4 times as many elements, while the higher

temperature portion was replicated with sufficient accuracy using a superelastic model from

Chapter II.

The undulations in the loading path of the superelastic response were observed in Chap-

ter II as well, but are exaggerated here because of the scaling in the plotting axes. Initially

the specimen deforms in a uniform configuration (see Figure 4.11, instance 11). How-

ever the structure soon departs from the principal solution and the deformation localizes at

top row of cells (see Figure 4.11, instance 12). It should be noted that, as was the case in

Chapter II, the principal path was abandoned without the need of introducing imperfections

in the model. The presence of internal variables introduces numerical imperfections that

are sufficient to drive the solution along a bifurcated path. Finally, at higher macroscopic

strains, the response reattaches to the principal path (see Figure 4.11, instance 13).

A similar behavior is observed in the low temperature loading path (Figure 4.9). Even

the disappearance of the deviation from the homogeneous solution at high macroscopic

strains is repeated here. The transformation during heating is occurring with a homoge-

neous deformation mode for the honeycomb (Figure 4.10).
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Figure 4.9: Honeycomb deformed configurations for instances 1–5, as these are defined
with numbered tags in Figure 4.8.
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Figure 4.10: Honeycomb deformed configurations for instances 6–10, as these are defined
with numbered tags in Figure 4.8.
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Figure 4.11: Honeycomb deformed configurations for instances 11–15, as these are defined
with numbered tags in Figure 4.8.
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Chapter V

Summary and Conclusions

The recently discovered method for bonding NiTi strips has enabled the fabrication

of thin-walled SMA honeycomb, enhansing the shape memory and superelastic properties

of the material. The high surface area per mass cellular architecture results in remarkable

improvement (over the monolithic case) of the macroscopic superelastic and shape memory

effect, as recent experiments on SMA honeycomb specimens have shown. In this work,

a theoretical framework has been proposed to model the response of SMA honeycombs

exhibiting either superelastic or the shape memory effect.

5.1 Superelastic Behavior of SMA Honeycombs and Design Consider-

ations

In the first part of this work an in-depth numerical study of the response of hexagonal

SMA honeycombs subjected to large macroscopic strain, isothermal compression of vary-

ing amplitudes is presented. The load orientation follows that used in recent experiments.

Simulation and stability analyses were performed using a standard incremental algorithm

in a finite element-based simulation tool with large displacement, small strain (nonlinear)

kinematics, and an isothermal superelastic SMA material model. The study showed how
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key parameters of the local uniaxial constitutive law, such as nucleation strain, phase trans-

formation tangent modulus, and hysteresis amplitude, influence principal responses of the

bulk honeycomb (of infinite extent) and finite honeycombs with initially perfect and imper-

fect geometries. An investigation of the stability of the periodic unit-cell solution for the

infinite structure using Bloch waves provided a key to understanding the response of finite

size specimens, which showed interesting transitions from regular (almost periodic) defor-

mations to localized cell deformations and then back to regular patterns upon continuous

loading (or unloading) paths.

It was found that bifurcation points at the onset λc and termination λC of instabil-

ity, i.e., the critical points of an unstable region in the primary path of the cell-periodic

solutions, were associated with long wavelength modes for all cases considered, while in-

termediate unstable equilibrium points were associated with an array of finite wavelength

modes. These rather remarkable potential changes of stability of the macroscopic response

— due to the SMA’s inherent softening during stress-induced phase transformation and

then stiffening upon phase saturation — has important implications, since they can cause

equilibrium solutions to deviate from the periodic, or nearly periodic, configurations for

significant portions of their loading path.

Also, it has been demonstrated that our simulation tool can be well calibrated to ex-

perimental results, using a material model that captures the uniaxial tension-compression

asymmetry (necessary to properly capture the dominate bending effects of cell walls) and

modeling some frictional effects at the loading platens. Although the local stress-strain re-

sponse of the parent material was not known, the calibrated material model exhibits some
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expected features for trained NiTi SMA.

Beside capturing the overall mechanical response, the simulation tool presented has ob-

vious utility to capture deformed configurations to identify worst case stresses/strains. This

helps to quantify the local-to-global strain amplification (structural performance) and de-

termine potential failure locations (structural reliability). Such a parameter study has been

performed in Chapter III. There it was found that selection of the geometric characteristics

of the unit cell can substantially affect the performance of the whole structure. For exam-

ple, a standard hexagonal honeycomb with r =
√

3/3 and t/h = 0.04 can absorb kinetic

energy of W/EVmat = 5 ∗ 10−6. However a honeycomb with aspect ratio of r = 1.5 and

t/h = 0.03 can improve that figure to W/EVmat = 7.5 ∗ 10−6 while keeping the maximum

reaction force to the same safe level.

Future work could follow several paths. An altered load orientation may reveal more

interesting features of the response and stability properties of the SMA honeycombs. Inves-

tigation of other unit cell shapes, like rhombic and corrugated geometries would be another

possible research direction. However, in corrugated unit cells, modeling of contact has to

be included in the stability calculations when using the Bloch wave method. Combined

with a potential material-level properties tailoring, designs that are much more efficient for

energy absorption.

5.2 Shape Memory Effect in SMA Honeycombs

A 1D constitutive model has been introduced for thermomechanical response of cell

walls, based on [4], which allows for modeling of the material’s transformation paths. By
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using this model, in conjunction with cell wall kinematics presented in Chapter II, a finite

sized SMA honeycomb’s full thermomechanical load cycle has been simulated with the

same mesh density used for the superelastic model.

The macroscopic stress-strain response of a simulated finite honeycomb showed that

the essential characteristics of the shape memory effect are credibly captured. The high

temperature behavior was, as expected, identical to what the superelastic model would

predict. The structure soon starts deviating from the principal solution path as the macro-

scopic strain increases, only to rejoin to it as compression keeps increasing. Qualitatively,

the same behavior was observed in the lower temperature loading path. Of course, loading

and unloading at low temperatures leaves the honeycomb with some apparent permanent

deformation (homogeneous), which is erased as the temperature is increased. Throughout

the heating process, the honeycomb’s deformation mode remains homogeneous, since the

local uniaxial behavior of the material is stable during this process.

It should be noted, though, that the current formulation is constrained to be symmetric

in tension-compression and it always has EA→M
t > EM+/−→M

t . Asymmetry can be easily

introduced, but with the current model EA→M
t < EM+/−→M

t cannot be achieved without

destabilizing the transformation path along some ξ directions.

However, before tackling these problems, a more robust integration of the constitutive

equation should be pursued. Future work could include an investigation of the benefits of

having an implicit integration method, as well as a subsequent generalization of the model

to enable fully tailoring to experimental data.
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Appendix A

Performance of cells using different metrics

The parameter study presented in ChapterIII is performed using maximization of en-

ergy absorption per unit cell’s material volume as the goal. Here, results are presented for

maximizing absorbed energy per unit overall volume (i.e volume of whole cell, including

vacancies of it). These are more useful in space constrained applications.

Incidentally, the results point towards an optimal design that has very similar charac-

teristics to the one suggested from results in Chapter III. Therefore, aiming at high aspect

ratios r is almost always beneficial, while, again, the θ = +30◦ cell is superior to others.
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Figure A.1: Design chart with energy absorption per unit volume for cells with θ = 15◦.
Limiting local strain value of εmax = 0.025 is assumed.
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Figure A.2: Design chart with energy absorption per unit volume for cells with θ = 15◦.
Limiting local strain value of εmax = 0.050 is assumed.
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Figure A.3: Design chart with energy absorption per unit volume for cells with θ = −15◦.
Limiting local strain value of εmax = 0.025 is assumed.
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Figure A.4: Design chart with energy absorption per unit volume for cells with θ = −15◦.
Limiting local strain value of εmax = 0.050 is assumed.
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Figure A.5: Design chart with energy absorption per unit volume for cells with θ = 30◦.
Limiting local strain value of εmax = 0.025 is assumed.
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Figure A.6: Design chart with energy absorption per unit volume for cells with θ = 30◦.
Limiting local strain value of εmax = 0.050 is assumed.
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Figure A.7: Design chart with energy absorption per unit volume for cells with θ = −30◦.
Limiting local strain value of εmax = 0.025 is assumed.
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Figure A.8: Design chart with energy absorption per unit volume for cells with θ = −30◦.
Limiting local strain value of εmax = 0.050 is assumed.
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Along with energy absorption, the poisson ratio is of interest. The instantaneous pois-

son ratio, defined here as the current horizontal expansion over the honeycomb’s vertical

compression, changes during loading-unloading of the honeycomb. The value at the in-

stance of the critical δ/H (i.e. the maximum allowable compression of the honeycomb by

considering limiting local strain, as well as stability and contact issues, see Chapter III),

is plotted in Figures A.9–A.16. This information could be crucial for a multi-functional

design or if operation in a confined area is required. For example, by combining two

honeycombs with negative and positive poisson ratios, a given ratio (even zero) can be

achieved.
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Figure A.9: Design chart with poisson ratio at δ/H|crit for cells with θ = 15◦. Limiting
local strain value of εmax = 0.025 is assumed.
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Figure A.10: Design chart with poisson ratio at δ/H|crit for cells with θ = 15◦. Limiting
local strain value of εmax = 0.050 is assumed.
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Figure A.11: Design chart with poisson ratio at δ/H|crit for cells with θ = −15◦. Limiting
local strain value of εmax = 0.025 is assumed.
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Figure A.12: Design chart with poisson ratio at δ/H|crit for cells with θ = −15◦. Limiting
local strain value of εmax = 0.050 is assumed.
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Figure A.13: Design chart with poisson ratio at δ/H|crit for cells with θ = 30◦. Limiting
local strain value of εmax = 0.025 is assumed.
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Figure A.14: Design chart with poisson ratio at δ/H|crit for cells with θ = 30◦. Limiting
local strain value of εmax = 0.050 is assumed.
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Figure A.15: Design chart with poisson ratio at δ/H|crit for cells with θ = −30◦. Limiting
local strain value of εmax = 0.025 is assumed.

111



0.10.080.060.040.020
0

0.5

1

1.5

t�L

r
-2.

-1.5

-1.

-0.5

Poisson

Figure A.16: Design chart with poisson ratio at δ/H|crit for cells with θ = −30◦. Limiting
local strain value of εmax = 0.050 is assumed.
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