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CHAPTER I

Introduction and Background

An agent interacts with its environment by taking actions and receiving observa-

tions from the environment. One can view the environment as a controlled dynamical

system, and an agent can use a model of the system to predict what it will observe

if it takes a sequence of actions. The agent can potentially use these predictions

to determine good courses of action for many different tasks, due to the generality

of the model. This flexibility is one advantage that model-based agents have over

agents that focus on learning how to achieve one particular task.

Given that one wants to build a model of a dynamical system, one must decide

what type of model to build. Before describing some possible model types, I will

formally describe dynamical systems themselves and the general framework for a

model of a dynamical system (Section 1.1). The remainder of this chapter goes on

to describe some existing classes of models, including motivation for using predictive

state representations (PSRs) to model dynamical systems.

This chapter provides the necessary background and motivation for my contribu-

tions, which I describe in the following chapters. These contributions center around

the goal of developing new PSR models that scale well to large, complex dynamical

systems. Section 2.1 motivates the use of PSR models through a model-learning

1
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algorithm that outperforms traditional methods for small systems. However, the

type of PSR model that this algorithm learns is not suited for large systems (Section

3.1). Therefore, I developed new classes of PSRs that are suited for large systems

and algorithms for learning the PSR parameters from an agent’s experience in the

system (Chapters IV, V, and VI).

1.1 Dynamical Systems

My work focuses on discrete-time dynamical systems with a finite set A of discrete

actions and a finite set O of discrete observations. This section formally describes

dynamical systems and a general view of state-based models of dynamical systems.

These descriptions provide the background for describing specific models, including

the predictive state representations that are the focus of my work.

An agent in a dynamical system proceeds in the following fashion: at each time

step τ ∈ {1, 2, 3, . . .}, the agent chooses some action aτ to take and then sees some

observation (vector) oτ . For a given sequence of actions a1 . . . aτ , the agent may

see any of several sequences of observation values o1 . . . oτ ; the dynamical system

stochastically determines the particular sequence that the agent actually sees. While

models could be used in many ways, the models of dynamical systems that I develop

in this dissertation predict the probabilities of seeing different observation sequences

conditioned upon taking some actions.

Of course, the probability of seeing an observation sequence will generally be dif-

ferent depending upon what has already occurred in the system. If τ time steps

have already elapsed in the system, then at each one of those time steps, the agent

took some action and received some observation from the system. The sequence

a1o1a2o2a3o3 . . . aτoτ of these actions and observations is called the history at time
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τ . The probabilities of seeing future observation sequences depend upon all of his-

tory, in general. As time progresses and the agent continues to take actions and see

observations, the length of history will grow without bound. Thus, an agent cannot

literally store all of its history and use that information to calculate the probabilities

of future observations. Instead, an agent can use a model to summarize the infor-

mation from history that is needed to predict the future observations. The general

form of such a model is the topic of the next section.

1.1.1 The General Form of a Model

This section provides a unifying view of state-based models of dynamical systems.

As discussed, a viable model of a system cannot store the entire history (which grows

without bound) but must maintain a summary of history that allows it to make

predictions as if it did have access to the full history. Such a summary is called

state because the future is conditionally independent of history given the state. The

particular form that a model uses to represent state is one aspect that defines a class

of models. Section 1.2 discusses particular state representations; this section is fully

general with respect to state representation.

One can illustrate the progression of a dynamical system model over time with

a directed graphical model. In a directed graphical model, each node in the graph

represents a random variable, and the edges often correspond to a notion of causality

or influence: the distribution of a random variable is influenced by its parents in the

graph. (More formally, a random variable in the graph is conditionally independent

of its non-descendants given its parents.)

Figure 1.1 is a graphical model representation of the progression of a general, state-

based model of a dynamical system, where time moves from left to right. There are

three types of variables in this graph, with one variable of each type for each time
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aτ−1 aτ aτ+1 aτ+2

. . .Oτ Oτ+1 Oτ+2
. . . Oτ−2 Oτ−1

Xτ+1XτXτ−2 Xτ−1

Figure 1.1: A dynamical system at time τ with generic model states Xi, actions ai, and observations
Oi. (The Xi variables are not POMDP states, which are typically depicted in a graphical
model of a dynamical system (cf. Figure 1.3). Rather, for a POMDP model, the Xi

variables would be belief states.) The determinism of the state update function is
indicated by the double arrows. The distribution of the actions is not part of the
dynamical system itself, so the action nodes are shown as squares.

step, starting from the first time step and going out through the infinite future.

The Oi variables are random variables for the observations at each time step i. In

Figure 1.1, the current time step is τ , so the observations through time τ have been

observed (in contrast with the future observations, which are yet to be observed);

this is indicated by the shading of Oi for i ≤ τ .

The ai variables are the actions at each time step i. Note that these actions are

represented as squares in the figure, to indicate that they are not random variables.

However, they do influence the distribution of other nodes in the graph. The actions

are not modeled as random variables because the agent determines their distribution,

not the dynamical system itself. Thus, a model of the dynamical system should not

specify a distribution for the actions, but should be able to account for any action

sequence the agent chooses to take.

Finally, the Xi variables are the model states at each time step i. In order for a

model’s state representation to be of practical use, the model must be able to update

its state to reflect the current history. That is, the model must always be able to
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compute Xτ+1 from Xτ , aτ+1, and oτ+1. (Since the motivation behind a state-based

model is to avoid storing the entire history, the function to compute the new state

Xτ+1 cannot take history as an input, but only the last state Xτ and the most recent

action aτ+1 and observation oτ+1.) I will use the term state update function to refer

to the function that a model uses to compute Xτ+1 from Xτ , aτ+1, and oτ+1.

The state Xi at time i has the following important property: the future observa-

tions Oi+1, . . . are conditionally independent of the historical observations O1, . . . , Oi

given the state Xi. This can be visually verified in the graphical model by noting

that for any j, k > 0, any undirected path between Oi+k and Oi−j must pass through

Xi. This property is necessary because the model does not use history to make pre-

dictions about the future observations; instead of history, it uses its state to make

predictions about the future. In order for the model to make the same predictions

about the future as one would make if the full history were (hypothetically) available,

the future observations must be independent of history given the model state.

There is another important property to note about the Xi variables: the value of

Xi+1 is a deterministic function of the values of Xi, ai+1, and Oi+1. That is, given

Xi, ai+1, and oi+1, there is a single next state Xi+1. This determinism is denoted by

the double arrows in Figure 1.1.

This deterministic update assumption may seem restrictive, but it turns out to

be quite natural when one recalls that the state Xτ+1 is a summary of the history

through time τ +1. When the agent has observed the history through τ +1, it should

have exactly one summary of that history. The deterministic update assumption

simply captures the fact that the model has one state for any given history.

The deterministic update assumption is not a restriction on the class of dynamical

systems that one can model, but rather on the state representation that one uses to
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model the system. Put another way, the dynamical system can be stochastic, but

the model will update its state in a deterministic way, given the latest action and

observation. Figure 1.1 illustrates this: the distribution of Oτ+1 given Xτ and aτ+1

captures the stochasticity of the dynamical system, while the distribution of Xτ+1

given Xτ , aτ+1, and Oτ+1 captures the deterministic update mechanism of the model.

In summary, Figure 1.1 illustrates the general framework for a state-based model

of a dynamical system. Such a model consists of the following:

• the initial state of the system (i.e., X0)

• parameters for updating the state as time progresses (i.e., as the agent takes

actions and receives observations)

• parameters for computing predictions about the future from the current state.

To define a specific class of models, one selects a state representation, a functional

form for updating state, and a functional form for computing predictions. (The

functions for updating state and for computing predictions may be related, so there

may be some overlap between the parameters of these functions.)

1.1.2 The System-dynamics Matrix

Before describing some example model classes, I will present a fully general rep-

resentation of a dynamical system called the system-dynamics matrix, which was

introduced by Singh, James, and Rudary (2004). This representation will aid in the

explanation of PSRs, and it will be used throughout this work to characterize the

complexity of different dynamical systems.

The system-dynamics matrix is a theoretical construct that contains all predic-

tions of the form “What is the probability of seeing oτ+1, oτ+2, . . . oτ+k if I take actions

aτ+1, aτ+2, . . . aτ+k, conditioned upon the fact that my current experience through



7

time τ is a1o1a2o2 . . . aτoτ?” A model of a dynamical system should be able to make

any prediction of this form. These predictions are the numbers that comprise the

system-dynamics matrix, denoted as D. Littman, Sutton, and Singh (2001) intro-

duced some definitions to precisely define these predictions.

Definition 1.1. The agent’s experience a1o1a2o2 . . . aτoτ through the current time

step τ is called the history. I will commonly use the variable h to denote an arbitrary

history.

Definition 1.2. A test is a hypothetical sequence of future actions and observa-

tions aτ+1oτ+1aτ+2oτ+2 . . . aτ+koτ+k. I will commonly use the variable t to denote an

arbitrary test.

Definition 1.3. The prediction for a test t from a history h is the likelihood of

seeing the observations of t when the agent takes the actions of t from the history

h. Letting h = a1o1a2o2 . . . aτoτ and t = aτ+1oτ+1aτ+2oτ+2 . . . aτ+koτ+k, the formal

definition of a prediction is

(1.1) p(t|h)
def

=
τ+k∏

i=τ+1

Pr(oi|a1o1a2o2 . . . ai−1oi−1ai).

It is worth pointing out that the notation for predictions includes the actions of

the test on the left-hand side of the bar (e.g., p(a2o2|a1o1)), but in the conditional

probability notation the actions are listed on the right-hand side of the bar (e.g.,

Pr(o2|a1o1a2)).

The matrix D has one row for each possible history and one column for each

possible test (Figure 1.2). Without loss of generality, the histories and tests are

arranged in length-lexicographical ordering. The correspondence between tests and

columns means that one can use tests to index columns of D. Similarly, one can use
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I list the specific predictions corresponding to several entries in the matrix as examples.
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histories to index rows of D. The entry of D in row h and column t is defined to be

the prediction p(t|h).

It is worth noting that there is a one-to-one correspondence between dynamical

systems and system-dynamics matrices: any D that respects the axioms of probabil-

ity will completely specify a dynamical system, and there exists a unique D for any

dynamical system.

As stated above, a model of the system given by D must be able to compute any

entry of D. Since D has an infinite number of rows and an infinite number of columns,

the only hope for a finite model is if D contains redundant information. Fortunately,

this is indeed the case. For instance, the row of D corresponding to the empty history

is a complete specification of the dynamical system: it specifies the joint distribution

over the next k observations for any k > 0 and any action sequence of length k. Any

other entry in D is determined by this first row. Thus, a model needs to capture only

the information in the empty-history row of D. However, this row still has an infinite

number of columns. Nevertheless, it turns out that for many systems — including

finite-state partially observable Markov decision processes (POMDPs) — there is a

finite portion of D that completely determines the remainder of D, which permits a

finite model of D. I address this topic in further detail in Section 2.2.

Sub-matrices of D form an integral part of many of the contributions presented

throughout this dissertation. I will use the following notation to describe sub-

matrices of D. For a set of tests T = {t1, t2, . . . tk} and a set of histories H =

{h1, h2, . . . hj}, p(T |H) is the matrix of predictions for each test in T from each
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history in H where, as in D, the rows correspond to histories and columns to tests:

(1.2) p(T |H)
def

=













p(t1|h1) p(t2|h1) . . . p(tk|h1)

p(t1|h2) p(t2|h2) . . . p(tk|h2)

...
...

. . .
...

p(t1|hj) p(t2|hj) . . . p(tk|hj)













.

When T consists of a single test, this matrix reduces to a vector:

(1.3) p(t|H)
def

=













p(t|h1)

p(t|h2)

...

p(t|hk)













.

When H is a single history h, p(T |H) = p(T |h) is also a vector. In keeping with

the standard practice in linear algebra, vectors are column vectors unless otherwise

noted. Thus, p(T |h) will denote a column vector, even though it corresponds to part

of a row in D:

(1.4) p(T |h)
def

=













p(t1|h)

p(t2|h)

...

p(tk|h)













.

Hereafter, when talking about a test t = aτ+1oτ+1 . . . aτ+koτ+k, I will often drop

the “τ+” from the subscripts for brevity when there is no risk of confusion with

history (i.e., the first action of the test would be denoted by a1, etc.).

1.2 Model Classes

The system-dynamics matrix is a theoretical construct that is valid for any discrete-

time dynamical system. However, it is not a useful computational model of a system
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because it has infinite size. A model of the dynamical system must capture all of

the information of D with a finite number of parameters. This section describes sev-

eral popular classes of models for discrete-time dynamical systems. For each of these

model classes, I describe its state representation, parameterization, procedure for up-

dating state, and procedure for making predictions about the future. These model

classes can be divided into two sets — predictive and latent state representations —

corresponding to the following two subsections. The final subsection compares the

two sets of models, motivating the use of predictive state representations, which are

the focus of subsequent chapters.

1.2.1 Predictive State Representations

A predictive state representation (PSR) is any model that represents state as a

vector of statistics about future actions and observations. The state vector of a PSR

is called a prediction vector because it is composed of predictions about the future.

Linear PSRs

Linear PSRs are a particular model class that uses a predictive state representa-

tion. They were first introduced by Littman et al. (2001). Linear PSRs are based

upon linear dependencies among columns of the system-dynamics matrix D. Despite

the fact that D has an infinite number of rows and an infinite number of columns, it

has a finite rank n for a broad class of systems, including partially observable Markov

decision processes (described in Section 1.2.2) with a finite number of states. For

any system where D has finite rank n, one can find a set Q of n linearly independent

columns of D such that all other columns are linearly dependent upon Q.1 The tests

corresponding to these columns (also denoted Q) are called minimal linear core tests.

1In linear algebra terms, Q forms a minimal basis of the column space of D.
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Definition 1.4. A set of tests T are linear core tests if and only if there exists a

history-independent vector mt for any test t such that p⊤(T |h)mt = p(t|h) for all

histories h. If |T | = rank(D), then T is a set of minimal linear core tests.

Hereafter, I will drop the “linear” qualifier on core tests.

The prediction vector (i.e., the state vector) of a linear PSR at history h is the

vector of predictions p(Q|h) for some set of minimal core tests Q. This vector of

predictions constitutes state because any prediction about the future can be made

as a history-independent function of the predictions for Q; specifically, p(t|h) =

p⊤(Q|h)mt for any test t.

Furthermore, the linear PSR can efficiently update its state as time progresses.

The update procedure computes the new state p(Q|hao) from the old state p(Q|h)

after taking the action a and seeing the observation o from history h. For any qi ∈ Q,

one can calculate

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=

p⊤(Q|h)maoqi

p⊤(Q|h)mao

.

The parameters needed to perform this computation for any qi, a, o are the mt’s for

each one-step test (ao) and each one-step extension (aoqi) of each core test qi ∈ Q.

These mt’s are called the update parameters of the linear PSR. A linear PSR consists

of these update parameters and the initial prediction vector p(Q|∅).

To write the state update procedure concisely, one can arrange the maoqi
for all i

into a matrix Mao:

Mao
def

=










| | |

maoq1
maoq2

· · · maoqn

| | |










.
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Using this notation, the state update is

(1.5) p⊤(Q|hao) =
p⊤(aoQ|h)

p(ao|h)
=

p⊤(Q|h)Mao

p⊤(Q|h)mao

where p⊤(aoQ|h) denotes the row vector [p(aoq1|h) . . . p(aoqn|h)].

Thus, the parameters of a linear PSR model will include at least the update

parameters and the initial prediction vector. It turns out that these are the only

parameters needed for a complete linear PSR model. To verify this, recall that

a complete model must be able to compute any prediction p(t|h). Since one can

compute p(t|h) from the initial prediction vector and the update parameters (Littman

et al., 2001), they constitute a complete model. To see how this is possible, note

that one can compute p(t|h) as p⊤(Q|h)mt. This prediction vector p(Q|h) can be

computed by starting with p(Q|∅) and performing the state update procedure for

each time step of h, and the required mt for an arbitrary t = a1o1a2o2 . . . akok can

be computed as

(1.6) mt = Ma1o1
Ma2o2

. . . Mak−1ok−1
makok

.

One can verify that this satisfies the definition of mt (i.e., p(t|h) = p⊤(Q|h)mt for

any h) by using the fact that p⊤(Q|h)Mao = p(ao|h)p⊤(Q|hao) (Equation 1.5):

p⊤(Q|h) mt

= p⊤(Q|h) Ma1o1
Ma2o2

. . . Mak−1ok−1
makok

= p(a1o1|h) p⊤(Q|ha1o1) Ma2o2
. . . Mak−1ok−1

makok

= p(a1o1|h) p(a2o2|ha1o1) p⊤(Q|ha1o1a2o2) . . . Mak−1ok−1
makok

...
...

= p(a1o1|h) p(a2o2|ha1o1) . . . . . . p⊤(Q|ha1o1 . . . ak−1ok−1) makok

= p(a1o1|h) p(a2o2|ha1o1) . . . . . . p(akok|ha1o1 . . . ak−1ok−1)
= p(t|h)

where the last step follows by the definition of p(t|h) (Equation 1.1).

Therefore, a linear PSR consists of the update parameters and the initial pre-

diction vector. Together, these can be used to compute any prediction p(t|h), as is

required of a complete model.
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There are some constraints on the parameters that must be satisfied in order for

the predictions made by the linear PSR to satisfy the axioms of probability (e.g.,

certain predictions must sum to 1.0, all predictions must be non-negative, etc.).

These constraints are listed in Appendix B.

Other Predictive State Models

In addition to the linear PSR, several other models use the idea of predictive

state. This section gives a brief description of these models. Rivest and Schapire

(1994) introduced the diversity representation for modeling deterministic systems.

The diversity representation of the state of a system is the set of tests that will

succeed from the current history. (When dealing with deterministic systems, tests

either will or will not succeed. There is no need to talk about the probability of

success, which is either 1.0 or 0.0.) The tests used in the diversity representation are

called end-tests or e-tests.2 An e-test consists of a sequence of actions followed by

an observation, such as a1a2 . . . ako. The prediction for the e-test is the probability

of seeing the observation after taking the sequence of actions.3 Even though there

are an infinite number of e-tests, Rivest and Schapire (1994) showed that there are

a finite number of equivalence classes of e-tests for a finite underlying system. Two

tests are equivalent if they succeed from the same (unobservable) system states. The

authors provide an example of a system where the number of equivalence classes

(which they call the diversity of the system) is the logarithm of the rank of the

system-dynamics matrix, making the diversity representation much more compact

than a linear PSR.4 However, the authors also provide an example system where

2Rudary and Singh (2003) introduced the name “e-test”.
3An e-test prediction can be constructed from the predictions of standard tests, since an e-test

is a special kind of set test (cf. Section A.2).
4On that example system, the factored PSR presented in Chapter V would also have size loga-

rithmic in the rank of the system-dynamics matrix.
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the diversity is exponentially larger than the rank of the system-dynamics matrix.

Thus, the diversity representation may be more compact than a linear PSR for some

deterministic systems, but the linear PSR may be more compact for other systems

(and linear PSRs can model stochastic systems).

The e-test-based PSR (EPSR) introduced by Rudary and Singh (2003) is a pre-

dictive state model that subsumes the diversity representation. The EPSR is based

upon the idea of core e-tests, which are a set Qe of e-tests such that the prediction for

any e-test is a (history-independent) linear function of the predictions for Qe. While

the concept of core e-tests is equally valid in stochastic and deterministic systems

(unlike the diversity representation), there is no known general form for maintaining

the predictions of the core e-tests in stochastic systems. However, in deterministic

systems, Rudary and Singh (2003) showed that one can maintain the predictions for

the core e-tests, making the EPSR a viable model. Furthermore, they showed that

for deterministic systems, the number of core e-tests is no greater than the minimum

of the diversity of the system and the rank of the system-dynamics matrix (i.e., the

number of core tests in the linear PSR). Thus, the EPSR can be exponentially more

compact than a linear PSR, but it is viable only for deterministic systems.

Observable operator models (OOMs) and input/output OOMs (IO-OOMs) (Jaeger,

1998) are types of models for uncontrolled and controlled dynamical systems, re-

spectively. There are interpretable and uninterpretable versions of both OOMs and

IO-OOMs; the interpretable versions use predictive state. For uncontrolled systems,

Singh et al. (2004) showed that OOMs and linear PSRs have equivalent expressive

power — i.e., OOMs with state vectors of size k can model the same systems as

linear PSRs with state vectors of size k. James (2005) presents methods for trans-

lating OOMs to linear PSRs for uncontrolled systems and vice versa. For controlled
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systems, Singh et al. (2004) showed that there are systems that can be modeled by

linear PSRs that cannot be modeled by IO-OOMs. That is, linear PSRs are more

general that IO-OOMs for controlled systems.

Transformed predictive state representations (TPSRs) (Rosencrantz, Gordon, &

Thrun, 2004) are a generalization of linear PSRs where the entries in the state vector

are allowed to be linear combinations of tests’ predictions. In contrast, in the linear

PSR, each entry is a prediction for a single test. Any linear PSR is also a TPSR,

because a single test’s prediction is also a linear combination of tests’ predictions.

Rosencrantz et al. (2004) showed how one can use singular value decomposition to

choose the linear combinations that will form the state of the TPSR. Given a desired

size k for the state vector, the singular value decomposition allows one to easily

choose the best k linear combinations of tests to use as the state vector of the TPSR.

Because the TPSR allows linear combinations of predictions as state vector entries,

the state is no longer a vector of probabilities, so it is not always apparent when

the state is invalid. In contrast, in a linear PSR, one can adjust the state vector

of an approximate model whenever the entries fall outside the [0, 1] range of valid

probabilities.

Temporal-difference networks (TDNets) (Sutton & Tanner, 2004) are both a type

of predictive state model and an algorithm for learning the model. The network part

of the TDNet is a directed graph, where edges denote temporal relationships between

nodes. Each node has some value that changes over time. The values of the nodes

of the TDNet are what comprise the model state. The nodes’ values are defined

as predictions about (functions of) tests, which is what qualifies the TDNet as a

predictive state model. The nodes’ values are defined recursively (by specifying edges

in the network), in order to be amenable to temporal-difference learning algorithms.
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Appendix C shows how the prediction for any test can be defined recursively, so one

can include the prediction for any test as part of the state of a TDNet.

The TDNet architecture is very general, allowing for arbitrary functions of pre-

dictions to be included in the network. However, much of the work with TDNets has

been limited to using e-tests as the nodes in the network. A couple of exceptions to

this are worth noting briefly. Wolfe, James, and Singh (2005) performed some ex-

periments with TDNets that included standard tests as nodes, though the learning

algorithm did not perform very well. Sutton, Rafols, and Koop (2005) included tem-

porally extended predictions in their TDNet by using macro-actions (called options)

in place of regular actions when defining some of their nodes. However, the tests

they were predicting only had observations at the end of the tests, like e-tests.

In addition to allowing very general node definitions, TDNets technically allow

general forms for updating the model state. However, in practice the new state vector

is often computed by multiplying the old state vector by a matrix that depends upon

the most recent action and observation, then passing each entry of that resulting

vector through a sigmoid function (e.g., Sutton & Tanner, 2004; Sutton et al., 2005;

Tanner & Sutton, 2005). This state update form is taken from neural networks;

indeed, TDNets can be viewed as recursive neural networks. However, there are no

guarantees that an accurate TDNet with the linear-sigmoid update even exists for

a given system. This is one of the reasons that I do not address TDNets in great

detail in the rest of this dissertation. In contrast, there exists a perfectly accurate

linear PSR for any system whose system-dynamics matrix has finite rank (Singh et

al., 2004).

Even though my work focuses upon upon discrete-observation systems, it is worth

mentioning some predictive state models that are designed to model systems with
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real-valued observations. These include the predictive linear Gaussian (PLG) model

(Rudary, Singh, & Wingate, 2005) and several extensions and adaptations of the PLG

model (e.g., Wingate & Singh, 2006b, 2006a; Rudary & Singh, 2006), in addition to

the exponential family PSR (Wingate & Singh, 2007, 2008).

1.2.2 Latent State Representations

An alternative to predictive state representation is latent state representation.

The traditional models in reinforcement learning — partially observable Markov de-

cision processes (POMDPs) — fall under the umbrella of latent state representations.

This term describes models that assume that there is some set of latent states such

that the system is always in exactly one of these latent states. However, the agent

will not, in general, get to observe the current latent state of the system. Since the

agent cannot observe the latent state, the state representation of a latent-state model

is a distribution over latent states, representing the probability that the system is in

each latent state given the current history.

It is important to distinguish between the model’s state representation and the

latent states of the system (also called hidden states). To reiterate, the model’s state

representation is a distribution over latent states. This distribution is called the

belief state.

While my research deals with predictive state models, latent-state models provide

a basis of comparison, both for empirical and theoretical results. For example, in

Section 2.1, I will empirically compare the accuracy of learned predictive state models

and learned latent-state models, demonstrating an advantage of using predictive state

models. There are also theorems that relate the sizes of latent-state models and

predictive-state models of the same system, showing that predictive-state models are

comparable in size (James, 2005).
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aτ aτ+1

SτSτ−1 Sτ+1

Oτ Oτ+1

Figure 1.3: The graphical model for two time steps of a POMDP model. The Si are latent states,
the ai are actions, and the Oi are observations. The model states (i.e., the belief states)
are not shown in this figure.

The following sections describe several classes of latent state models that I mention

in subsequent chapters. I provide the details of these latent-state models here for

completeness.

Partially Observable Markov Decision Processes

The first example class is partially observable Markov decision processes (POMDPs)

(Drake, 1962; Astrom, 1965; Monahan, 1982), which are capable of representing

stochastic, partially observable dynamical systems.

A POMDP model describes a system that is in one of a finite set of latent states

at each time step. I use the S variables to denote latent state, in contrast to the X

variables that denote model state in Figure 1.1. The system evolves in the following

way (Figure 1.3): the current latent state Sτ−1 and an action aτ determine the

probability distribution over the next latent state Sτ , and an observation is emitted

according to a probability distribution that depends upon the action aτ and the

new latent state Sτ . At the next time step, this process repeats, with the system

transitioning to a new latent state Sτ+1 from Sτ based upon the action aτ+1; the

next observation depends upon aτ+1 and Sτ+1. This process repeats for every time

step.
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The following formal description of a POMDP describes the model parameters

and the state representation of the model. A POMDP is a tuple (S,A, T ,R,O, Ω)

where

• S is the finite set of latent states

• A is the finite set of actions available to the agent

• T : S × A × S → [0, 1] gives the probability T (S i,Aj,Sk) of transitioning to

Sk ∈ S when taking action Aj from S i ∈ S .

• R : S × A → R gives the expected immediate reward R(S i,Aj) for taking

action Aj from state S i.

• b0 : S → [0, 1] gives the probability b0(S
i) of the system starting in state S i

• O is the finite set of possible observations

• Ω : A×S ×O → [0, 1] gives the probability Ω(Aj,Sk,Oi) of observing Oi ∈ O

after taking action Aj and transitioning to Sk.

In the POMDP literature, the “states” of a POMDP model refer to the latent states

S of the system, while the actual state representation of the POMDP model is a

distribution over latent states called the belief state.

As the agent takes actions in a dynamical system, it will need to update its model

state after every time step. That is, the agent will need to compute the model state

at history hao from the model state at history h, using the model parameters. For a

POMDP model, the agent updates the belief state b(h) for some history h to obtain

a new belief state b(hao) after taking action a and seeing the observation o. The

agent computes b(hao) according to the following equation:

b(hao) =
Oa,oTab(h)

1⊤Oa,oTab(h)
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where Oa,o is a diagonal matrix with Ω(a, i, o) as the ith diagonal element, and the

transition matrix Ta has T (j, a, i) as its (i, j)th entry, and 1 is a vector of 1’s.

In order to be a valid model, the POMDP should be able to compute a prediction

for any test from any history. Equation 1.1 shows that any such prediction can be

made by multiplying together an appropriate set of predictions for length-one tests,

so if the POMDP can make a prediction for any length-one test from any history,

then it can make any prediction. Any one-step prediction p(ao|h) can be computed

as 1⊤Oa,oTab(h),5 so the POMDP model can make any prediction.

Markov Decision Processes

Markov decision processes (MDPs) (Bellman, 1957) are a special case of POMDP

models where the agent gets to observe the state of the system (which is hidden/latent

in the general POMDP) after each time step. This means that the set of observations

is the same as the set of states, and the observation upon transitioning to some state

will simply be that state. For an MDP, the belief state at any history (except the

null history) will be a distribution with all of its mass on one state, since history

reveals the state of the system. Thus, the state representation of the MDP can be

5This matrix product is equal to

∑

Sh

∑

Shao

Pr(o|a, Shao)Pr(Shao|Sh, a)Pr(Sh|h)

where Sh is the latent state after history h and Shao is the latent state after history hao. The
probabilities in this expression are as follows:

• Pr(o|a, Shao) is the probability of observing o after transitioning to state Shao by action a.
This is the Shao diagonal element of Oa,o.

• Pr(Shao|Sh, a) is the probability of transitioning to state Shao from Sh under action a. This
is the element of Ta in the Shao row and Sh column.

• Pr(Sh|h) is the probability of being in state Sh after history h. This is the Sh element of the
vector b(h).

The summations in the expression above marginalize the latent states Sh and Shao, leaving
Pr(o|h, a) = p(ao|h), as desired.
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simplified to the current state of the system.

Updating this state representation is completely straightforward and requires no

parameters: the updated state at hao is just o. As with any complete model, an

MDP can use its parameters to make predictions about any test from any history.

For any history hao of length at least one, the predictions are independent of h given

the most recent observation o. Thus, one can compute the prediction for an arbitrary

test as

p(a1o1a2o2 . . . akok|hao) = T (o, a1, o1)
k∏

i=2

T (oi−1, ai, oi).

To make predictions from the only history h = ∅ of length zero, one conditions upon

the initial latent state S∅:

p(a1o1a2o2 . . . akok|∅) =
∑

S∅∈O

b0(S∅)T (S∅, a1, o1)
k∏

i=2

T (oi−1, ai, oi).

Structured Models

With the models that have been described so far (including the POMDP, MDP,

and linear PSR models), the observation at each time step is a member of a single,

unstructured set of discrete observations O. When the number of possible observa-

tions in a system is very large, the number of parameters required for one of these

models can be intractably large, as the number of parameters is linear in the number

of observations.

However, in many systems, the observation at each time step has some structure

that a model of the system can exploit. For example, the observation at each time

step can often be naturally represented by a vector of several values (each with a

discrete domain), instead of a single value. The size of the joint observation space

(i.e., the number of possible observation vectors) might still be prohibitively large.

However, the number of possible values for a small sub-vector of the observation
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vector is often much less. For instance, if each element of the length-j observation

vector can take on k possible values, the number of observation vectors is kj, ex-

ponential in j. This is in stark contrast to the k2 values that a length-2 sub-vector

could take. With the POMDP, MDP, and linear PSR models, there is a separate set

of parameters for every joint observation value, so the number of parameters is also

exponential in j.

However, there are model classes where the number of parameters is not linear

in the number of joint observations, but in the number of possible sub-vectors of

some length. I describe one such class of models — dynamic Bayesian networks

(DBNs) — in the next section. DBNs are latent-state models, but the factored PSRs

that I describe in Chapter V are a class of predictive-state models that also exploit

structure in observation vectors.

Dynamic Bayesian Networks

Dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989) extend POMDPs

by allowing both the latent state and the observation at each time step to be vec-

tors. For a given system, a DBN model can have significantly fewer parameters than

a POMDP model, because a DBN can capture conditional independencies among

the dimensions of the latent state and observation. These conditional independen-

cies allow compression in the representation of the transition function T and the

observation function Ω, as discussed below.

Formally, a DBN consists of the following:

• the set of latent state vectors S, which is the Cartesian product of m sets

(1S,2 S, . . .m S); each iS is the finite domain of the ith dimension of the latent

state vector.
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• a set of observation vectors O, which is the Cartesian product of z sets (1O,2 O, . . .z O);

each iO is the finite domain of the ith dimension of the observations.

• the set of actions A, the transition function T , reward function R, starting

distribution b0, and observation function Ω. Each of these functions is defined

as for a POMDP but with vector-valued state and observation domains.

The compactness of a DBN over a POMDP comes from its representation of the

functions T , R, and Ω. A DBN represents each of these functions as a product

form in order to exploit conditional independencies among the random variables.

A graphical model such as in Figure 1.4 captures these conditional independencies.

This graph G contains a variable for the actions at times τ and τ + 1, a variable for

each dimension of latent state for time steps τ and τ + 1, and a variable for each

dimension of the observation at τ .6 The conditional independencies in the graph G

lead to the following form for the transition function for action a (i.e., the distribution

of Sτ+1 given Sτ , parameterized by a):

Pr(Sτ+1|Sτ ; a) = Pr(S1
τ+1,S

2
τ+1, . . .S

m
τ+1|S

1
τ ,S

2
τ , . . .Sm

τ ; a)

=
m∏

i=1

Pr(S i
τ+1|Par(S i

τ+1); a)

where Par(S i
τ+1) are the parents of the variable S i

τ+1 in the graph G. To see how the

factored form allows a compact model, consider the following: if the distribution over

Sτ+1 was stored in tabular form for each value of Sτ , one would need |S|(|S|−1) pa-

rameters. Note that |S| =
∏m

i=1 |
iS| grows exponentially in the number of state vari-

ables m. In contrast, the parameters needed for the factored form are just the condi-

tional probability tables (CPTs) that specify the distributions Pr(S i
τ+1|Par(S i

τ+1); a)

for each i. If k is an upper bound on the number of parents and c
def

= maxi |
iS| is the

6The reward at each time step is implicitly included as one of the observation variables.
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Figure 1.4: A time-slice view of a DBN, showing the latent state variables at times τ and τ + 1,
the actions at times τ and τ + 1, and the observation variables at time τ . The condi-
tional independencies between latent state and observation dimensions allow a compact
representation of the transition and observation functions (e.g., Oz

τ is independent of
the other latent state variables given Sm

τ ). The model states (i.e., belief states) are not
shown in this figure; they will not generally be factored (cf. the introduction of Chapter
V).
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largest domain size for any |iS|, then the number of parameters in these CPTs is

less than ck+1m. Note that this is exponential in k, the number of parents, rather

than the number of state variables. The observation function Ω can be similarly

compressed by using a product form. This compression allows DBNs to tractably

represent larger systems than a simple POMDP model. However, even when the

latent state transition function and observation function are factorable, the model

state (i.e., belief state) will generally not be factorable. The introduction to Chapter

V explains this in more detail.

1.2.3 Comparison of State Representations

Now that I have described some examples of latent state models and predictive

state models, in this section I highlight some appealing aspects of using predictive

state models, providing motivation for my work on PSRs in the following chapters.

A primary difference between latent and predictive state lies in the semantics or

definition of the state vector. Latent state representations define the state vector as

a distribution over latent random variable(s). PSRs define the state vector in terms

of actions the agent can take and observations that the agent can see. Thus, a latent

state describes a distribution from which the agent will never get a sample, because

it never observes the latent state (in general). However, a predictive state describes a

distribution over observations, from which the agent can get a sample, thus revealing

information about the distribution described by the state. The motivating hypothesis

behind the work on PSRs is that a state representation defined in terms of an agent’s

observations will enable better models than a state representation defined in terms

that may be meaningful to people but are not defined in terms of the agent’s sensors

or actuators.

One example where this hypothesis has been supported is in the area of learning
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a model from experience. I compared the accuracy of a linear PSR and POMDP

learned from a single trajectory of experience in several simple systems, and found

that the linear PSR was more accurate in making predictions by several orders of

magnitude (Wolfe et al., 2005). I describe these results in more detail in Section

2.1. Rudary and Singh (2006); Rudary et al. (2005) obtained similar results when

comparing PSRs to latent state models in systems with real-valued observations.

This advantage of PSRs over latent state models comes from the fact that the model

parameters are defined in terms of the actions and observations of the agent. On the

other hand, the parameters of a latent state model are defined in terms of the latent

states, which have an unknown (to the agent) relationship to the data (i.e., actions

and observations).

Another motivation for the PSR approach comes from the system-dynamics ma-

trix, which provides some insight into the information that a model’s state must

capture. Recall that state is a summary of history that allows a model to make any

prediction about the future as if the model knew the current history. That is, if one

were to give the model the state (in whatever representation the model was using)

for some history h, then the model must be able to compute any entry in the h row

of the system-dynamics matrix D without knowing what h is. Thus, the state at h

must capture all of the information in the h row of D. From this viewpoint, a PSR

is a very natural model of the system: it captures the information in a row of D by

using some of the entries in that row (or, more generally, a function of some of the

entries in that row). On the other hand, latent state models’ belief state does not

come directly from D, but makes an assumption about the system (i.e., that there

exists a finite set of latent states of the system).7

7The existence of a finite set of latent states in an assumption that is not true for all systems.
As I mention in the next section, James (2005) provides an example system that can be modeled
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Rafols, Ring, Sutton, and Tanner (2005) demonstrate yet another advantage of

using predictive state models, providing evidence that predictive state is useful for

generalization. Generalization involves taking what is known about one particular

situation and applying it to similar situations. For an agent to function well in a

large, complex environment, generalization will be essential, since the agent cannot

possibly learn about every different situation independently but must use what it

has already learned about similar situations.

POMDPs and Linear PSRs

In addition to general differences between PSRs and latent state representations,

there are several specific comparisons to make between linear PSRs and POMDPs.

The introductory paper on linear PSRs (Littman et al., 2001) showed that any system

that could be represented as a POMDP with n latent states could also be represented

as a linear PSR with no more than n core tests. James (2005) extended this result by

providing examples of systems that can be modeled by a linear PSR with n core tests

but not by any POMDP with n latent states (or, in one example, by any POMDP

with any finite number of states). Put another way, the state representation of a

linear PSR model is never larger than the belief state of a POMDP model of the

same system, and in some cases it can be (infinitely) smaller.

Another measure for comparing model sizes is the number of free parameters in

a model. A linear PSR with n core tests needs more parameters than a POMDP

model with n latent states, by roughly a factor of n. If |A| and |O| are the number

of possible actions and observations, respectively, in the system, then a POMDP has

(n − 1) n |A| free parameters for the transition probabilities, (|O| − 1) n |A| free

parameters for the observation probabilities, and n−1 free parameters for the initial

by a finite linear PSR but not by any POMDP with a finite number of latent states.
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belief state, for O(|A| n (n + |O|)) total parameters. A linear PSR has |A| |O| n2

parameters for the Mao matrices, |A| |O| n parameters for the mao vectors, and n

parameters for the initial prediction vector, for O(|A| n (n |O|)) total parameters.

However, not all of these parameters are free parameters; Appendix B lists nec-

essary and sufficient constraints on the linear PSR parameters. One disadvantage of

the linear PSR is that there is no known, finite set of constraints that forms both

necessary and sufficient conditions for potential linear PSR parameters to constitute

a valid linear PSR model. (A valid linear PSR model is a model that makes predic-

tions that are consistent with some system.) In contrast, for a POMDP model there

are a finite number of constraints on the parameters that are easily checked (i.e., the

parameters must be in the range [0.0, 1.0] and certain subsets of parameters must

sum to 1.0).

1.3 Learning a Linear PSR from Experience: Background

This section provides a background on one of the central issues that my work

addresses: “How can an agent use its experience in a dynamical system to build a

model of that system?” Answers to this question take the form of learning algorithms,

which construct a model from the agent’s experience. Different classes of models lend

themselves to different learning algorithms.

The remainder of this section describes the reset algorithm, an existing algorithm

for learning a linear PSR model. I use concepts from the reset algorithm in several

learning algorithms that I develop in later chapters.

The reset algorithm requires multiple trajectories of experience from the initial

state of the system, which can be accomplished by “resetting” the system to its

initial state as needed. In practice, an agent will often not have the ability to reset
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the dynamical system in which it finds itself. This motivates my extension of the

reset algorithm, the suffix-history algorithm (Section 2.1), which does not require

that the agent be able to reset the system. Section 2.1 also includes an empirical

comparison of both the reset and suffix-history algorithms with other model-learning

algorithms, including a POMDP-learning algorithm. Those results help motivate the

use of linear PSR models.

The Reset Algorithm for Learning a Linear PSR

The reset algorithm for learning a linear PSR can be divided into three main

stages:

1. Estimate predictions (i.e., entries of the system-dynamics matrix D) from the

agent’s experience in the system.

2. Using those estimates, find a set of core tests Q. (Recall that the predictions

for the tests Q form the state vector of the linear PSR model.) The algorithm

also finds a set of core histories (defined below) in this stage.

3. Using the estimated predictions, the set of core tests, and the set of core histo-

ries, solve for the parameters of the linear PSR model.

The details of the reset algorithm rely upon the concept of linear core histories.

Just as core tests are useful for analyzing the relationship among columns of D, linear

core histories are useful for analyzing the relationship among rows of D:

Definition 1.5. A set of histories H are called linear core histories if and only if there

exists a test-independent vector wh for any history h such that p(t|h) = p⊤(t|H)wh

for all tests t. If |H| = rank(D), then H is a set of minimal linear core histories.
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As with core tests, I will hereafter drop the “linear” qualifier on core histories.

Analogous to the core tests, a set of histories H are core histories if and only if any

row of D is a linear combination of the H rows, and core histories H are minimal if

and only if the H rows are linearly independent (or equivalently, |H| = rank(D)).

The next part of this sub-section describes the three stages of the reset algorithm

in reverse order:

• First, I describe the computation of the model parameters (i.e., the third stage),

assuming that the estimated predictions from stage 1 are correct (i.e., are equal

to the true values of the predictions), and assuming a valid set of core tests and

histories have been found.

• Second, I describe the process for finding core tests and histories (i.e., the second

stage), assuming that the estimated predictions from stage 1 are correct.

• Finally, I describe the method for estimating predictions from the agent’s ex-

perience (i.e., the first stage), as well as some adjustments that are made to

the other parts of the algorithm to account for the fact that it uses estimated

predictions instead of the true predictions.

Stage 3: Parameter estimation given core tests Q, core histories K, and

the true predictions

The parameters needed to compose a linear PSR are the initial state vector p(Q|∅)

and the m-vectors for several tests. Recall that the m-vector mt for a test t is the

unique vector such that

p(t|h) = p⊤(Q|h)mt
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for all histories h; note that mt does not depend upon h. The parameters for the

linear PSR include the m-vectors for the one-step tests and all one-step extensions

of each core test: {∀a, o, qi ∈ Q : mao,maoqi
}.

One can solve for mt for any test t — including those needed for the linear PSR

parameters — using the following procedure. For any test t, any set of histories K,

and any set of core tests Q,

p(t|K) = p(Q|K)mt.

When K and Q are minimal core histories and tests, respectively, p(Q|K) is invert-

ible,8 so

mt = p(Q|K)−1
p(t|K).

Thus, the reset algorithm uses this equation to solve for the m-vector parame-

ters of the linear PSR, using the true predictions p(Q|K) and {∀a, o, qi ∈ Q :

p(ao|K), p(aoqi|K)}. The only remaining parameters of the linear PSR are the

elements of the initial state vector, p(Q|∅), which are directly available from the

predictions calculated in stage 1.

Stage 2: Finding core tests and histories using the true predictions

The reset algorithm uses an iterative procedure to find core tests and core histories.

On the ith iteration, the algorithm examines a sub-matrix p(Ti|Hi) of D, computing

its rank ri. It then finds ri linearly independent rows and columns of that matrix,

corresponding to some histories H ′
i and tests T ′

i . If ri = ri−1, the procedure stops

and returns T ′
i as the core tests and H ′

i as the core histories. Otherwise, the algo-

rithm computes Ti+1 and Hi+1 as the one-step extensions of T ′
i and H ′

i, respectively.

Specifically, Ti+1
def

={ao, aot : ∀a, o, t ∈ T ′
i} and Hi+1

def

={∅} ∪ {ao, hao : ∀a, o, h ∈ H ′
i}.

8I prove this explicitly in Lemma F.3, found in Section F.1.
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This begins the next iteration. The initial set T1 is all tests of length one, and H1 is

all histories of length one and the null history ∅.

This iterative method for choosing Q and K is not guaranteed to find a full set

of core tests or histories, but the tests or histories that it does find will be linearly

independent (James & Singh, 2004). Despite this limitation, this procedure often

works well in practice, as seen in empirical results using the suffix-history and reset

algorithms (e.g., James & Singh, 2004; Wolfe et al., 2005; Wolfe & Singh, 2006).

The full algorithm: using predictions that are estimated from data

Since the reset algorithm does not have access to the true predictions for the

system, it must estimate the needed predictions from data. The algorithm uses

multiple trajectories of experience to estimate a prediction p(t|h) in the following

way. Let #h be the number of trajectories that begin with h, and let #ht be the

number of trajectories that begin with ht. Let π(h′, a) be the probability that the

agent took action a from history h′.9 Then for a test t = a1o1 . . . akok, the estimated

prediction is

(1.7) p̂(t|h) =
#ht

#h

k∏

i=1

1

π(ha1o1 . . . ai−1oi−1, ai)
.

The first term #ht

#h
estimates the probability that both the actions and observations of

t follow h, which depends upon the agent’s policy for choosing actions. Multiplying

the first term #ht

#h
by the remaining terms cancels out the effect of the agent’s policy,

making p̂(t|h) an unbiased estimator of p(t|h) (Bowling, McCracken, James, Neufeld,

& Wilkinson, 2006). Since the variance of p̂(t|h) is proportional to 1
#h

(Bowling et

al., 2006), the variance of p̂(t|h) goes to 0.0 as the amount of training data increases.

9If the agent’s policy π is available to the learning algorithm, then the algorithm can use the
true policy values π(h′, a) for estimating the predictions. Otherwise, the algorithm approximates
π(h′, a) as the fraction of trajectories where the agent took action a from history h′.
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Therefore, p̂(t|h) is not only an unbiased estimator, but it is also a consistent esti-

mator of p(t|h) (cf. Theorem 9.1 of Wackerly, Mendenhall, and Scheaffer (2002)).

Adapting the core search process to use estimated predictions: If the

algorithm had exact values for predictions, the search for core tests and histories

(i.e., stage 2) could perform strict rank calculations on matrices of predictions to find

linearly independent tests or histories. However, noise in the estimated predictions

p̂(t|h) invalidates strict rank calculations. The reset algorithm uses the singular

values of the estimated prediction matrices to calculate their rank, using a method

from Golub and Van Loan (1996). Appendix D presents the details of how this

method is incorporated into the core search stage of the reset algorithm.

Algorithm Properties

The running time of the reset algorithm is the sum of the running times for its

three stages. For estimating the predictions from data (stage 1), Section 2.2 proves

that the algorithm need not estimate the prediction for any history/test pair with

combined length more than 2n+1, where n is the rank of the system-dynamics matrix.

The algorithm uses the training data to calculate statistics that can then be used to

estimate the predictions for all history/test combinations of length 2n + 1 or less. If

T is the number of time steps of training data, then calculating those statistics takes

time O(Tn). For finding the core tests and histories (stage 2), Appendix D shows

that the running time is O(n5(|A||O|)3), where |A| and |O| are the numbers of possi-

ble actions and observations, respectively. Finally, solving for the model parameters

given the core tests and histories (stage 3) takes time O(n3+n3|A||O|), which is dom-

inated by the running time of finding the core tests and histories (stage 2). Therefore,

the running time of the reset algorithm is polynomial: O(Tn + n5(|A||O|)3). This
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is in stark contrast to the running time of simply listing all of the tests of length n

(i.e., potential core tests), which is exponential in n: O((|A||O|)n).

While the polynomial running time of the reset algorithm is important, it is equally

important that the algorithm learn accurate models. One of the important qualities

of the reset algorithm is that it can learn increasingly accurate PSR models as the

amount of training data increases. Since the estimated predictions are consistent

estimators of the true predictions, the estimated predictions will converge in proba-

bility to the true predictions as the amount of training data grows. With a true set

of core tests Q, a true set of core histories K, and the values of p(Q|∅), p(Q|K), and

{∀a, o, qi : p(ao|K), p(aoqi|K)}, one can solve for the exact PSR parameters. Thus,

the reset algorithm can learn increasingly accurate PSR parameters as its training

data increases.

1.4 Summary

This chapter has laid out some of the fundamental concepts that are used through-

out this work:

• state-based models of dynamical systems

• the systems-dynamics matrix view of a dynamical system

• descriptions of several classes of models for dynamical systems, including linear

PSRs, POMDPs, MDPs, and DBNs.

Each of these models summarizes history using some state representation. The dis-

tinguishing feature of a PSR model is that it represents state as a set of statistics

about future actions and observations. PSRs are a promising method for modeling

dynamical systems, especially with respect to parameter estimation, as their state
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representation is defined in terms of the actions and observations of the agent rather

than latent random variables.

This chapter has also presented the reset algorithm for learning a linear PSR model

of a dynamical system from a set of trajectories of experience in the system. The

reset algorithm estimates the linear PSR parameters from sample statistics of the

experience trajectories. As these sample statistics converge to their true values, the

model parameters learned by the reset algorithm will become increasingly accurate.

Therefore, the reset algorithm does not suffer from local optima, but can learn an

accurate linear PSR in the limit of experience, provided that a valid set of core tests

and histories are found.

The next chapter describes my work in extending the early work on PSRs pre-

sented in this chapter.



CHAPTER II

Linear PSR Contributions

This chapter describes several contributions pertaining to linear PSRs, including

the suffix-history algorithm for parameter estimation of linear PSRs (Section 2.1).

The suffix-history algorithm generalizes the reset algorithm (Section 1.3) to the case

where an agent does not have the ability to reset the system to its initial configu-

ration. This generalization is important because an agent will not have the ability

to reset many real-world systems. Section 2.1 also gives an empirical comparison of

parameter estimation in PSRs and POMDPs on some simple problems; the fact that

the PSR models are generally more accurate motivates the use of predictive state

models instead of latent-state models such as POMDPs.

The other contributions presented in this chapter address the identification of

core histories and core tests, which is an important step in the existing algorithms

for learning a linear PSR model from data. Both the reset and suffix-history algo-

rithms use the same iterative process to find core histories and core tests. On the ith

iteration, histories and tests of length i or less are considered for inclusion as core

histories and core tests. Thus, a bound on the length of histories and tests that

constitute a set of core histories or tests is also a bound on the number of iterations

required in the core search process. This motivates the primary results of Section 2.2,

37
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which provide upper bounds on the lengths of tests and histories that an algorithm

needs to examine in order to find core tests or histories.

2.1 The Suffix-history Algorithm for Parameter Estimation
in Linear PSRs

This section describes the suffix-history algorithm for parameter estimation of lin-

ear PSRs, which was published by Wolfe et al. (2005). This algorithm generalizes the

reset algorithm (Section 1.3) to the case where there is only one trajectory of expe-

rience from which to learn the parameters. This will be the case in many real-world

situations: the agent is placed in some dynamical system (i.e., some environment),

and it interacts with the system for some period of time. It must then build a model

of the system from its experience in the system. Without the ability to reset the

system or start over from the beginning, the agent has but a single trajectory of

experience from the system, and it must use that to build a model.

I describe the suffix-history algorithm by noting how it differs from the reset

algorithm. Recall that the reset algorithm constructs a linear PSR in three main

stages:

1. Estimate predictions about the system from the agent’s experience with the

system.

2. Using those estimates, find a set of core tests Q and core histories K.

3. Using the estimated predictions and the sets of core tests and core histories,

solve for the parameters of the linear PSR model.

Since the difference between the reset and suffix-history algorithms lies in the form

of the agent’s experience in the dynamical system (i.e., many trajectories vs. one

trajectory), only the first stage needs to be adapted. Once the first stage is adapted
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to estimate predictions from a single trajectory of experience, the latter two stages

can proceed as in the reset algorithm, using the estimated predictions just as if they

were calculated from multiple trajectories of experience.

2.1.1 Estimating Predictions from a Single Trajectory of Experience

The way in which the reset algorithm estimates a prediction p(t|h) requires that

the agent has been in history h multiple times. This is not possible when there is

only a single long sequence d = a1o1a2o2 · · · akok of experience available, because

each history occurs at most once in the single sequence d.

The suffix-history algorithm gets around this issue by treating every suffix of d as

if it were a separate trajectory of experience. Specifically, the suffix-history algorithm

estimates p(t|h) using the same method as the reset algorithm, where the suffixes

of d are the trajectories of experience from which p(t|h) is estimated. This method

of using suffixes of the experience d as histories (i.e., trajectories of experience) is

similar to one used by Jaeger (1998) for uncontrolled dynamical systems. While these

methods make efficient use of the data by using each sub-sequence of d to obtain

information about many predictions, the suffix histories are not actually independent

trajectories. Nevertheless, this has not posed a problem empirically (e.g., see Sections

2.1.2 and 5.3), in part because only the first few time steps of each suffix are actually

needed to learn a model. Therefore, if the system D has a stationary distribution

(induced by following a fixed policy), the first few time steps of the suffix histories

that begin far apart in the original, single data sequence can be viewed as trajectories

that are sampled starting from the stationary distribution.

In general, that stationary distribution is not the same as the initial distribution

of the system. Thus, the suffix-history algorithm learns a model of a slightly different

system D′ that has the same dynamics as the original system D, but it has a different
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initial distribution. Theorems 2.1, 2.2, and 2.3 state conditions under which the core

tests and the model-update parameters for D′ are accurate core tests and model-

update parameters for D; that is, only the initial prediction vector will differ between

linear PSR models of D and D′. I provide proofs for Theorems 2.1, 2.2, and 2.3 in

Appendix E.

Theorem 2.1. Let D be a system-dynamics matrix with finite rank n that can be

modeled by a POMDP P with n hidden states. Let P ′ be a POMDP model that is

identical to P except for a different initial belief state, and let D′ be the system-

dynamics matrix generated by the model P ′. If the rank of D′ is also n, then any set

of core tests and update parameters for either D′ or D are valid for both D′ and D.

Theorem 2.2. Let D be a system-dynamics matrix and h∗ be a history of D such

that p(h∗|∅) > 0.0. Let D′ be a system-dynamics matrix such that D′ has the same

dynamics as D, but its null history is identical to history h∗ in D. If rank(D) =

rank(D′), then any set of core tests and update parameters for either D′ or D are

valid for both D′ and D.

There is an additional set of conditions that applies to fully-observable systems.

Specifically, the following theorem states that if one builds a linear PSR of an MDP

that has some initial state distribution, then that PSR will be an accurate model

(after the initial time step) of the system that starts in any one of those possible

initial states (assuming that start state is reachable at some point on or after the

first time step, which will be true if the start state is ever seen as an observation).

Theorem 2.3. Let D be a system-dynamics matrix that can be modeled by an MDP

M with states S. Let b0 be the initial state distribution of M , and let M ′ be an MDP

that is identical to M except for its initial state distribution b′0. If b′0 satisfies the
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Table 2.1: Domain Statistics. The number of actions |A|, the number of observations |O|, and the
number of required core tests |Q| help determine the complexity of each domain.

Domain |A| |O| |Q|
Tiger 3 2 2
Paint 4 2 2

Cheese 4 7 11
Network 4 2 7

Bridge 12 5 5
Shuttle 3 5 7

Maze 4x3 4 6 10

following property — ∀si ∈ S such that b′0(si) > 0, it holds that b0(si) > 0 and si

is reachable at some time t > 0 — then core tests and update parameters for D are

valid core tests and update parameters for the system-dynamics matrix D′ given by

M ′.

2.1.2 Empirical Results

This section presents results from running the suffix-history algorithm to learn

linear PSR models of several simple domains from the POMDP literature that were

collected by Cassandra (1999). These domains were also used to test PSR learning

by James and Singh (2004) and Singh, Littman, Jong, Pardoe, and Stone (2003).

Summary statistics for each domain are presented in Table 2.1.

These experiments evaluate the accuracy of linear PSR models learned from a sin-

gle trajectory of experience using the suffix-history algorithm. I also evaluated three

other model-learning algorithms on these domains, providing a basis of comparison

with the suffix-history algorithm.1 These three algorithms are:

• The expectation-maximization (EM) algorithm (Dempster, Laird, & Rubin,

1977) for learning a POMDP model.

The special case of the EM algorithm for hidden Markov models (HMMs) is

1Wolfe et al. (2005) also compare the suffix-history algorithm with temporal-difference (TD)
learning for TD networks (Sutton & Tanner, 2004), a class of PSR models. The TD networks did
not perform as well as the linear PSRs learned by the suffix-history algorithm.
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often called the Baum-Welch algorithm (Baum, Petrie, Soules, & Weiss, 1970).

The algorithm also applies to POMDPs, which are just HMMs with actions.

Note that the algorithm is given the number of latent states for the POMDP

model, and it is susceptible to local optima, regardless of the amount of experi-

ence available for learning.

• The reset algorithm for learning a linear PSR model.

The reset algorithm requires multiple trajectories of experience. Comparing the

suffix-history algorithm with the reset algorithm demonstrates the empirical

effect of the suffix-history approximation (i.e., treating each suffix of the single

sequence of experience as a trajectory).

• The gradient algorithm (Singh et al., 2003) for learning a linear PSR model

from a single trajectory of experience given a set of core tests.

The gradient algorithm must be given a set of core tests. It begins with some

initial model parameters and performs online adjustments to those parameters

based upon the stochastic gradient of prediction error.

Each algorithm is given a trajectory (or, for the reset algorithm, several trajectories)

of training data and learns a model from that training data.

For simplicity, I generated each training sequence and testing sequence using a

uniform random policy (i.e., at each time step, each action was chosen with equal

probability). One could use another stationary policy2 to generate data for the

suffix-history algorithm, as long as the policy explored the system sufficiently well

(i.e., conditions for at least one of Theorems 2.1, 2.2, or 2.3 should be met).

I evaluated each learned model at every time step of a test sequence, using a

2A non-stationary policy would invalidate Equation 1.7, requiring a significantly different com-
putation and additional information about the agent’s policy in order to estimate predictions.
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squared error of predictions. Specifically, I computed the model’s error at history h

in the test sequence as 1
|O|

∑|O|
i=1(p(aoi|h) − p̂(aoi|h))2, where a is the action chosen

in history h, p̂(aoi|h) is the estimate computed by the learned model, and p(aoi|h) is

the true prediction. This is a normalized version of the measurement used by Singh

et al. (2003) and James and Singh (2004). The error for each trial is the average

(per time step) error over the test sequence. During testing, I bounded the elements

of the learned PSRs’ state vectors in the [0, 1] range of valid probabilities, but I did

not bound the p̂(aoi|h) values in the error calculation (which sometimes fell outside

the [0, 1] range).

I provided the EM algorithm with the true number of latent states in the system

and ran it for 200 iterations or until convergence. I ran 50 independent trials and

averaged the results. For the suffix-history algorithm, I tried three choices for the

free parameter θ, and the best value for each domain is presented. The parameter

θ determines how conservatively the algorithm estimates the rank of a matrix of

estimated predictions (which is used when searching for core tests). The error values

for the reset and gradient algorithms are the values reported in their respective

publications (James and Singh (2004) and Singh et al. (2003)).

Figure 2.1 presents the results from these experiments. The different plots corre-

spond to different domains. James and Singh (2004) did not report the amount of

training data they used for their experiments with the reset algorithm, so the x-axis

has no meaning for that series.

The first comparison to note is between the EM algorithm for learning a POMDP

model and the other three algorithms, which learn linear PSR models. The POMDP

models learned by EM have higher error in every domain than the linear PSRs from

the gradient, reset, and suffix-history algorithms. While in some domains, EM learns
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Figure 2.1: Prediction error of linear PSRs learned by the suffix-history algorithm. The horizontal
dotted line represents the reset algorithm’s results; the amount of training data used
for those results was not reported, so the x-axis has no meaning for that series. For the
cheese domain the error of the reset algorithm is lower than 6× 10−6. The error of the
linear PSRs generally decreases as the amount of training data increases.
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a more accurate model than suffix-history for the smaller training lengths, the error of

the EM models does not decrease very much as the amount of training data increases.

This is in contrast to suffix-history, which learns increasingly accurate linear PSR

models as the amount of training data increases. For the larger amounts of training

data, suffix-history outperforms EM in each of the domains.

Among the linear PSR learning algorithms, suffix-history outperforms the gradient

algorithm on all but the cheese and network domains; this is investigated more

thoroughly below. This achievement of suffix-history is in spite of the fact that the

gradient algorithm is provided with a set of true core tests, while the suffix-history

algorithm must learn a set of core tests from the data. It is also worth noting that

the suffix-history algorithm achieves error as low or lower than the reset algorithm

on four of the seven domains, empirically justifying the approximation of treating

suffixes of the experience trajectory as independent trajectories.

Thus, the suffix-history algorithm can learn linear PSRs that have comparable

error to linear PSRs learned by other algorithms, despite the fact that the other

algorithms either are given a set of core tests (instead of learning them) or assume

that the agent has the ability to reset the system in order to get multiple trajecto-

ries of experience. Furthermore, the linear PSRs learned by suffix-history are more

accurate than POMDP models learned by EM.

Finding enough core tests: Nevertheless, in some domains, the relative

performance of the suffix-history algorithm is better than in other domains. For

example, in the network and cheese domains, the suffix-history algorithm is not as

accurate as the gradient algorithm. In these domains and the maze 4x3 domain, the

suffix-history algorithm does not achieve error as low as does the reset algorithm.

Again, the reset and gradient algorithms are given multiple trajectories of experience
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Table 2.2: Core Test Search Statistics. The Asymptote column denotes the approximate asymp-
tote for the percent of required core tests that the suffix-history algorithm found. The
Training column denotes the approximate smallest amount of training data at which the
algorithm achieved the asymptote value.

Domain |Q| Asymptote Training
Tiger 2 100 % 4000
Paint 2 100 % 4000

Cheese 11 82 % 32000
Network 7 43 % 2048000

Bridge 5 100 % 1024000
Shuttle 7 100 % 1024000

Maze 4x3 10 90 % 1024000

and a full set of core tests, respectively, so it is expected that they would outperform

suffix-history. However, it is worth searching for a general principle to determine

when suffix-history performs better in relation to the other algorithms.

The relative performance of the suffix-history algorithm seems to be determined

by whether or not it finds enough core tests. Generally speaking, the algorithm

found a greater percentage of the required number of core tests as the amount of

training data increased. Table 2.2 lists the approximate asymptote of the percent

of required core tests found as the training size increases, as well as the amount of

training data at which the asymptote was reached. When comparing with the error

plots in Figure 2.1, one can see that the domains for which the algorithm eventually

finds a full set of core tests — tiger, paint, shuttle, and bridge — suffix-history

performs very well. In the cheese domain, where suffix-history did not find all the

core tests and fell well short of the gradient algorithm’s performance, I performed

a separate experiment in which suffix-history was given the number of core tests in

the true model but not the tests themselves. This target number of core tests was

used as the stopping criterion for the iterative core search procedure instead of the

usual stopping criterion (i.e., stopping when the estimates for the system-dynamics

matrix rank were identical on two successive iterations). The graph for the cheese
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Figure 2.2: Prediction error of linear PSRs learned by the suffix-history algorithm for the cheese
maze. The horizontal dotted line represents the reset algorithm’s results; the amount
of training data used for those results was not reported, so the x-axis has no meaning
for that series. This plot adds the “Num. Core Given” series to the results from Figure
2.1, for the trials where the suffix-history algorithm was given the number of core tests
required for a model (but not the tests themselves). That information greatly improved
the accuracy of the models.

domain (Figure 2.2) shows that indeed, when given the number of core tests needed,

suffix-history performs much better (see the points labeled “Num. Core Given”),

comparable with the gradient algorithm.

2.1.3 Summary of Suffix-history Algorithm

The suffix-history algorithm extends the reset algorithm by removing the require-

ment that multiple trajectories of experience are available. Multiple trajectories will

not be available when the agent cannot reset the system to its initial state. For exam-

ple, an agent may simply be placed in a dynamical system and have one contiguous

sequence of experience from which to build a model. The suffix-history algorithm is

able to learn a linear PSR from a single sequence of experience.

The suffix-history algorithm estimates parameters for a system with a different
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initial condition than the system from which the training data was taken. In this

section, I have listed several sets of conditions under which the update parameters

of a linear PSR are the same in both systems, providing proofs for these theorems

in Appendix E.

Empirically, in several domains the suffix-history algorithm learns linear PSRs

that have comparable error to linear PSRs learned by other algorithms, despite the

fact that the other algorithms are either given a set of core tests (instead of learning

them) or assume that the agent has the ability to reset the dynamical system in order

to get multiple trajectories of experience. Furthermore, the linear PSRs learned by

suffix-history are more accurate than POMDP models learned by EM, even though

the EM algorithm is given the number of latent states needed to model the system.

2.2 Bounding the Longest Required Core Test and History

As with the reset algorithm, the suffix-history algorithm iteratively searches tests

and histories of increasing length to find core tests and histories. If there exists a set

of core tests and core histories of length k or less, then the core search algorithm only

needs to complete k iterations. Since each iteration involves several costly singular

value decompositions, the number of iterations has a significant practical impact on

the time it takes to learn a linear PSR model. The results of this section bound the

length of the longest required core history and test; the greater of these two values

is also a bound on the number of iterations needed to find core tests and histories.

In addition to bounding the number of core search iterations, bounds on the

lengths of the longest required core history and test will also define a finite part of

the system-dynamics matrix D that allows one to build a linear PSR model of the

system. In particular, if there is a set of core tests and histories of length k or less,
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one only needs to estimate predictions for tests of length k+1 or less and histories of

length k or less. These predictions are all that is needed to solve for the parameters

of a linear PSR (cf. stage 3 of the reset algorithm, Section 1.3). Therefore, a model-

learning algorithm for a linear PSR will never need to estimate a prediction for a

history/test combination of length greater than 2k+1. For example, this means that

the suffix-history algorithm only needs to keep track of the frequency of sequences

of length 2k + 1 or less. Given an upper bound on k, the suffix-history algorithm

can calculate the frequencies of these sequences online, so the amount of memory

required will not grow with the size of the training data.

The primary results of this section bound the length of the longest required core

history and test in terms of the complexity of the system. There are two different

complexity measures used here: the value of k for kth-order Markov systems defines

how far back in history one must remember in order to predict the future accurately;

and the rank of the system-dynamics matrix corresponds to the number of latent

states in a POMDP model and the number of core tests required in a linear PSR.

Depending upon the dynamical system, either k or the rank of the system-dynamics

matrix may be smaller and may constitute the tighter bound.

For kth-order Markov systems, the longest required core test is no longer than

k (Theorem 2.7 in Section 2.2.2). The bound for the longest required core history

depends upon the initial condition of the system (Theorem 2.10 in Section 2.2.2).

In all systems where rank(D) is some finite value n (including any kth-order Markov

systems), there exists a set of core tests and core histories of length no greater than

n. (Theorems 2.4 and 2.5 in Section 2.2.1). These results supplement the result

from Littman et al. (2001) that provides a bound of n on the length of the longest

required core history or test for POMDP systems with n latent states.
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2.2.1 Bound Based Upon Rank

The following theorems (i.e., Theorems 2.4 and 2.5) show that the rank of the

system-dynamics matrix D is an upper bound on the length of the longest required

core test and history. I prove these theorems in Appendix F.

Theorem 2.4. For any system-dynamics matrix of rank n, there exists some set T

of core tests such that no t ∈ T has length greater than n.

Theorem 2.5. For any system-dynamics matrix of rank n, there exists some set H

of core histories such that no h ∈ H has length greater than n.

Wiewiora (2005) presents an independently-obtained proof sketch of the result

in Theorem 2.4. The proof I present in Appendix F is more rigorous and follows

a different line of argument. That line of argument permits an analogous proof for

core histories (i.e., Theorem 2.5).

2.2.2 Linear PSRs for Markovian Systems

For kth-order Markov systems – where the future is independent of the past given

the k most recent observations – I prove an additional bound on the length of the

longest required core history and test. The bound leverages the following property

of D for Markovian systems:

Lemma 2.6. For a kth-order Markov system, any column t of D is a non-negative

scalar multiple of a single column for a test t′ of length no more than k.

Proof. If t is itself of length no more than k, then the theorem trivially holds. Other-

wise, let t′ be the k-step prefix of t, such that t = t′ak+1ok+1 . . . ak+jok+j. Then for any

history h, p(t|h) = p(t′|h)p(ak+1ok+1 . . . ak+jok+j|ht′). By the Markov property, the

last term p(ak+1ok+1 . . . ak+jok+j|ht′) is equal to p(ak+1ok+1 . . . ak+jok+j|t
′), which is a
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scalar that is independent of h. Thus the t column of D is p(ak+1ok+1 . . . ak+jok+j|t
′)

times the t′ column of D.

Theorem 2.7. For a kth-order Markov system, there exists a set of core tests Q

such that no test in Q has length greater than k.

Proof. Let T be the set of all tests of length k or less. Then T are core tests (though

they may not be a minimal set), because any column of D is a linear combination of

the T columns (Lemma 2.6).

The following bound on the required length of core histories uses the fact that

the predictions from many different histories are exactly the same in a kth-order

Markov system. In particular, any two reachable histories with the same length-k

suffix will have identical predictions (i.e., identical rows in D). A history h is defined

as “reachable” if p(h|∅) > 0.0.

One might think that all reachable histories of length k or less — call them Hk —

would constitute a set of core histories because the row in D for any history longer

than k would be identical to the row for its length-k suffix. However, this is not the

case, because a sequence h may be the length-k suffix of a reachable history h′h even

if h is not itself a reachable history. In this case, the h′h row of D is not necessarily

identical to the row for any history in Hk. Furthermore, in some systems, the h′h

row of D can be linearly independent of the rows for Hk, precluding Hk from being

a valid set of core histories. (A simple example of such a system is a Markov chain

with n > 2 states that starts in state s1 and deterministically transitions from state

si to state si+1 until it reaches an absorbing state sn.) Thus, some systems require

core histories that are longer than k time steps.

I call a sequence h “possible” if there is some history h′ such that p(h|h′) > 0.0.
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Note that all reachable histories are possible sequences, but not the other way around.

The variable τ ∗ in the following definition captures the amount of time that must

pass until all possible length-k sequences have been possible from a reachable history.

Definition 2.8. For a kth-order Markov system D, let Tk be the set of length-k

tests that have non-zero probability of success in at least one history. Let τ ∗ be the

smallest integer such that, for each t ∈ Tk, there is some history ht of length no

greater than τ ∗ such that p(t|ht) > 0.

The following lemma proves that the worst-case value for τ ∗ is the rank of the

system-dynamics matrix.

Lemma 2.9. For a kth-order Markov system D, the value of τ ∗ (as defined in Defi-

nition 2.8) is less than or equal to rank(D).

Proof. The proof is by contradiction. Let n be the rank of D. Suppose there exists

some t of length k such that p(t|h) = 0.0 for all |h| ≤ n but there is some h∗ with

length greater than n such that p(t|h∗) > 0.0. Let K be a set of core histories of

length n or less; Theorem 2.5 (Section 2.2.1) proves that such a set exists. Since K

are core histories, there is some vector wh∗ such that p(t|h∗) = w⊤
h∗p(t|K). However,

by assumption, p(t|K) is a vector of 0’s and p(t|h∗) > 0.0, so there can be no such

wh∗ . Thus, there is no length-k sequence t that is impossible from all histories of

length n or less but is possible from some history of length greater than n. Then

τ ∗ ≤ n by definition.

The following theorem uses the variable τ ∗ to bound the length of core histories

for kth-order Markov systems.

Theorem 2.10. For a kth-order Markov system D, there exists a set of core histories

K such that no history in K has length greater than τ ∗ + k.
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Proof. Let K be all reachable histories of length τ ∗ + k or less. The first step in the

proof is to show that every reachable history h not in K has the same length-k suffix

as some history in K. Since h 6∈ K, it will have some length |h| > τ ∗ + k, so one

can break h into a length-k suffix t and the remainder h′ (i.e., h = h′t). Because h

is reachable, the sequence t is a member of the set Tk of possible length-k sequences

that is used to define τ ∗. By definition of τ ∗, there must be some history h∗ of length

τ ∗ or less such that h∗t is a reachable history. The history h∗t is in K because it

has length less than τ ∗ + k. Since h and h∗t have the same length-k suffix t, this

completes the proof that every reachable history not in K has the same length-k

suffix as some history in K.

This means that any history’s row in D is identical to the row of some history in

K (by the kth-order Markov property). Therefore, K forms a set of core histories

(though not necessarily a minimal set).

If every length-k sequence that can occur is possible from the initial condition

of the system, then τ ∗ = 0, and the bounds on the lengths of core tests and core

histories are both equal to k. Depending on the values of τ ∗, k, and rank(D), either

Theorem 2.10 or Theorem 2.5 may provide the tighter bound on the length of core

histories.

Other Results for Markovian Systems

One might wonder if the parameters of linear PSRs for Markovian systems ex-

hibit any special properties that one could leverage when learning linear PSRs in

Markovian systems. The following results disprove the possibility of two types of

structure: a full set of core tests with the same action or model parameters that

are all non-negative. If there were a full set of core tests with the same action,
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that would provide additional guidance to the core search procedure of the reset and

suffix-history algorithms. The existence of non-negative model parameters might

also be useful when learning linear PSR parameters. However, neither of these types

of structure is required, even in 1st-order Markov systems (i.e., MDPs), as shown by

Theorems 2.11 and 2.12. I prove these theorems in Appendix G.

Theorem 2.7 (Section 2.2.2) proved that there is a set of one-step core tests Q

for any MDP. Theorem 2.11 proves that for some systems, any such Q must contain

tests with different actions.

Theorem 2.11. There exist MDP systems where no set of one-step core tests Q

exists such that each test in Q contains the same action.

Theorem 2.12. There exist MDP systems where, for any set of minimal core tests

Q, there is some action a and observation o such that the parameter vector mao of a

linear PSR contains at least one negative entry.

Theorem 2.13. There exist deterministic MDP systems where, for any set of min-

imal core tests Q, there is some action a and observation o such that the parameter

vector mao of a linear PSR contains at least one negative entry.

2.3 Summary

This chapter has presented several of my contributions to the work on linear PSRs.

Section 2.1 presented the suffix-history algorithm for learning a linear PSR from a

single trajectory of experience, providing evidence that using predictive state can aid

in learning accurate model parameters.

Section 2.2 focused on bounding the length of the longest required core test and

history, proving separate bounds based upon the rank of the system-dynamics matrix

and the order of kth-order Markov systems. These bounds have two immediate
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practical implications: they define a finite portion of the system-dynamics matrix

that an algorithm needs to estimate in order to learn a linear PSR, and they translate

directly into bounds on the number of iterations that the reset and suffix-history

algorithms need to find core tests and histories.



CHAPTER III

General Principles for Modeling Large Systems

Using PSRs

While the PSR approach to learning models of dynamical systems has shown

promise, the results presented thus far have been on simple domains. For domains

of practical interest, the rank of the system-dynamics matrix is too large for learning

and using a linear PSR model (e.g., the rank can grow combinatorially in the number

of objects in the system). Despite this fact, the theory of linear PSRs developed in

the previous chapters is not wasted. On the contrary, it forms the foundation for the

theory of alternative PSR models that I have developed, which I present in Chapters

IV, V, and VI.

When dealing with large systems, learning an exact model is intractable. There

are several alternatives to an exact model, including

1. a model that can make (close to) exact predictions, but from only a subset of

histories;

2. an accurate, partial model that can make (close to) exact predictions about a

subset of tests that are deemed important; predictions about other tests may

never be queried or may be estimated crudely;

56
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3. and an approximate, full model that can make approximate predictions about

any test.

Requiring a model to make predictions from only a subset of histories (Option

1) can reduce the number of core tests needed for a linear PSR model (e.g., James,

Wolfe, & Singh, 2005; Wolfe & Singh, 2006), which also reduces the time needed to

learn the model. The hierarchical PSR that I present in Chapter IV is a specific

model that exploits this fact.

The two sections in this chapter address the other two options in this list — an

accurate, partial model, and an approximate, full model. The results in this chapter

apply generally to all PSR models that would embody these techniques, while I

present specific PSR models that employ these techniques in the upcoming chapters.

3.1 Partial Models

In some modeling tasks, a full model of the system — one that can accurately

make the prediction for any test from any history — may not be required, but

only a partial model is needed. I use the term “partial model” to refer to a model

that makes accurate predictions for a subset of tests. Such a partial model may be

tractable even when an accurate, full model of the dynamical system would be too

large or complex to learn or use. The learnability of a partial model will depend upon

several factors: the dynamical system itself, the set of tests T for which the partial

model should make accurate predictions, and the type of model used as the partial

model. The primary result of this section is the following: for certain types of models,

an accurate, partial model is as difficult to learn as an accurate, full model, for any

non-degenerate dynamical system and set of tests T that the agent wants predicted

accurately. This is because, for those types of models, any partial model that can
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accurately make predictions for a set of tests T will also be able to accurately make

predictions for any test, thereby making it an accurate, full model.

The insight that leads to this result is the following: even though an agent may

require that a partial model needs only to make accurate predictions about some

tests T , in order to make those predictions accurately at any history, the model will

need to be able to maintain accurate state for any history. To maintain accurate

state, the model will need to accurately make any predictions that it uses to update

its state.1 It turns out that for certain classes of models, the accurate predictions

that are used to maintain accurate state can be used to accurately calculate any

prediction about the system.

In particular, there are model classes such as the linear PSR and the POMDP

model that use the prediction p(ao|h) for the most recent action a and observation

o to update their state from history h to history hao. Since the agent could take

any action a from any history, any prediction of the form p(ao|h) could be used to

update the model state.

1Even if a model class uses some predictions about a set of tests Z to update its state, it is
possible that there exists a model M̂ that makes correct predictions for a subset of tests T while
making inaccurate predictions about Z. However, the existence of M̂ would depend upon the
particular system one is modeling (except for degenerate cases such as when T contains no tests).
Nevertheless, assuming that such a M̂ exists, it must fall into one of the following two cases:

• Despite inaccurate predictions for Z, the state of M̂ is always accurate. This would imply
that the state update is actually independent of the likelihood of the last observation (which
is the case in some degenerate systems), or that the inaccuracy of each prediction in Z that
is used to update state is precisely balanced with inaccuracies in other quantities of the state
update (e.g., model parameters). While this latter situation may be possible in some systems,
it is a dubious principle upon which to base a model-learning algorithm, particularly when
one considers that M̂ must make accurate predictions for the tests T .

• The other possibility is that inaccuracies in the predictions that M̂ makes about Z produce
inaccuracies in the state vector of M̂. Again, it would require some system-specific balancing
of inaccuracies in the model parameters in order to use inaccurate state to make accurate
predictions for T from every history.

Since it is unreasonable to presume that there is any model class such that an “accidentally accurate”
M̂ exists for any dynamical system, I will assume the following: any model class that uses some
predictions Z in its state update cannot accurately predict T unless it also accurately predicts Z.
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Definition 3.1. The predictions of the form p(ao|h) for all actions a, observations

o, and histories h are all of the predictions that could be made for all the tests of

length one, so they are called the “one-step predictions.”

The following theorem highlights the fact that accurate one-step predictions can

be used to accurately make any prediction about the system.

Theorem 3.2. Any model that can accurately make any one-step prediction from

any history can accurately make any prediction about the system.

Proof. The prediction for an arbitrary test t = a1o1a2o2 . . . akok from a history h is

the product of predictions for one-step tests from several histories:

p(t|h) =
k∏

i=1

p(aioi|ha1o1a2o2 . . . ai−1oi−1).

Thus, if all of the one-step predictions are accurate, then p(t|h) can be computed

accurately as well.

While this result is not new, and in fact is quite intuitive, it is important to state

explicitly because it eliminates certain model classes from consideration if one wants

to build an accurate, partial model that is smaller than an accurate, full model. In

particular, if a PSR model includes a prediction for a test t in its state, then the

state update calculation

p(t|hao) =
p(aot|h)

p(ao|h)

uses the one-step prediction p(ao|h) for the most recent action and observation.

Using this state update form requires that the model is not partial (i.e., p(ao|h) can

always be computed accurately) or is inaccurate. That is, a partial, accurate, PSR

model cannot use this state update form, which precludes a linear PSR from being

a partial, accurate model.
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This technique of dividing by the probability of the most recent observation is

not unique to PSR models. The state update of a POMDP model also includes

a division by the likelihood of the most recent observation, which implies that a

POMDP cannot be a accurate, partial model without also being an accurate, full

model.

Therefore, when faced with a large dynamical system for which an accurate, full

model is intractable, one must either

• use a model class that does not use one-step predictions in its state update,

• or relax the requirement for accurate predictions

in order to construct a tractable model. This is the case even if one needs the model

to make accurate predictions only for certain tests. Chapters IV, V, and VI each

present alternative PSR models that use combinations of these two techniques to

avoid building a full, accurate model of the system.

3.2 Approximate Predictive State Representation

It is possible to build a predictive state model that uses the one-step predictions

about the most recent action and observation to update its state but is smaller than

a full model. However, as mentioned in the previous section, such a model would

be an approximate model — it would not be able to make the one-step predictions

accurately, which would affect the accuracy of its state and any other predictions that

it makes. The resulting inaccurate predictions may suffice for an agent’s purposes if

the inaccuracy is not too great. This section provides a bound on the inaccuracy of

an approximate PSR model’s state, under certain conditions.

One question of importance when using inaccurate predictions to update the

model state is “Will the inaccuracy or error of the approximated state continue
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to grow larger and larger over time, as the approximations made during the state

update compound upon each other?” This section provides conditions under which

the answer to this question is “no”: the error of an approximate PSR’s state will

not grow over time but remains bounded. The work described in this section was

published by Wolfe, James, and Singh (2008).

For complex systems, the number of simple tests required to form the state of a

PSR is prohibitively large, so one must use some approximate, compact representa-

tion of the predictive state (e.g., a product of factors). An approximate PSR consists

of an approximate state representation and some approximate model M̂ to update

the state. To bound the error in the approximate state, one must first specify how

the state is updated; the update process is illustrated on the left-hand side of Figure

3.1. The approximate predictive state x̃τ−1 at time τ − 1 is updated to get x̃τ in two

steps. The first step passes x̃τ−1 through the update process of M̂ for aτoτ and yields

some predictive state x̂τ . However, x̂τ may not be in the desired compact form, so a

second step is needed to map x̂τ to a predictive state x̃τ that does have the desired

compact form. The function that maps x̂τ to x̃τ is called F .

The quality of approximation of a given x̃τ is measured with respect to the true

predictive state xτ at time τ , which is determined by the true PSR model M (Figure

3.1). The primary result of this section (Theorem 3.6) is a bound on the error of x̃τ

that is independent of τ when M̂ is M ; of course, selecting an M̂ that is optimized

for F will do no worse.

Boyen and Koller (1998) obtained a similar bound for approximate latent-state

models (i.e., DBNs), which I use to obtain the bound for PSRs. In order to formally

apply the bound for approximate latent state models to approximate PSR models,

I define the approximate latent state update, which I follow with an explanation of
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D(σ2 ‖ σ̂2)

ǫ

M PP

D(σ2 ‖ σ̃2)M̂

M

F F
M̂ P̂ P̂

x0

x̃0

σ0 σ1 σ2

σ̃1 σ̃2σ̃0

σ̂1 σ̂2

x1

x̂1

x̃1

x2

x̂2

x̃2

Figure 3.1: The approximation process of an approximate PSR. See text for full details. The belief
states on the right correspond to the predictive states on the left. Arrow style and label
indicates which model or function performs the transformation. The state updates
(performed by the models M, M̂, P, and P̂), are each a function of the most recent
action and observation (omitted for clarity). Note that each σ̃τ is determined by its
correspondence with x̃τ and not necessarily as a function of σ̂τ . The errors shown on
the right side illustrate an F that incurs error ǫ at each time step.

the relationship between predictive state and latent state models.

Approximate latent state models: Latent-state models represent state as

belief state, a distribution over a set of latent states. After each time step τ the

latent state model P calculates the new belief state στ from the most recent action

and observation and the old belief state στ−1. One can pass an approximate belief

state σ̃τ−1 through the true belief state update P to get an estimate σ̂τ of the true στ

(Figure 3.1). Boyen and Koller (1998) showed that the error D(στ ‖ σ̂τ ) is a constant

factor less than the error D(στ−1 ‖ σ̃τ−1), where D(v ‖ w) is the Kullback-Leibler

(KL) divergence of two stochastic vectors v and w: D(v ‖ w)
def

=
∑

i vi
vi

wi
.

Relating predictive state and latent state: I use the error bound on the

approximate belief state update to bound the predictive state error, employing a

belief state approximation procedure that is implicitly defined by the approximate

PSR. The proof associates each x̃τ with some belief state σ̃τ that implies the same

future predictions as x̃τ (Figure 3.1). (In this discussion, I assume the existence of

at least one such σ̃τ for each x̃τ . This is satisfied if each x̃τ lies in the convex hull of

possible predictive states.)

The outcome matrix U (Singh et al., 2004) relates each x̃τ and σ̃τ . The U matrix
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has one row for each latent state and one column for each test in xτ . The (i, j)th

entry is the probability of test j succeeding when starting from latent state i. The

relationship between x̃τ and σ̃τ is that x̃τ = U⊤σ̃τ . Because of this relationship,

when M̂ = M, the fact that x̃τ = U⊤σ̃τ implies x̂τ+1 = U⊤σ̂τ+1 (Littman et al.,

2001). Thus, each predictive state in Figure 3.1 has a corresponding belief state.

Bounding the approximation error in predictive state: Two steps remain

to bound the error in the approximate predictive state x̃τ : 1) bound the error in the

approximate belief state σ̃τ and 2) relate that to the error in x̃τ . The bound for σ̃τ

requires that F meets the following condition:

Definition 3.3. A series x̃0, x̃1, x̃2, . . . of approximate predictive states incurs error

ǫ at each time step τ if for all τ , the implicit, approximate belief states σ̃τ and σ̂τ

corresponding to x̃τ and x̂τ satisfy D(στ ‖ σ̃τ ) − D(στ ‖ σ̂τ ) ≤ ǫ (Figure 3.1).

The remainder of this section assumes that this condition is met. The following

two results are from Boyen and Koller (1998). I use Lemma 3.4 to define the rate of

contraction for Lemma 3.5, which provides the bound on the error of σ̃τ .

(Boyen and Koller (1998)) Lemma 3.4. For any row-stochastic matrix C, let

γC
def

= min
i1,i2

∑

j

min(Ci1j, Ci2j).

Then for any stochastic vectors v and w, D(C⊤v ‖ C⊤w) ≤ (1 − γC)D(v ‖ w).

(Boyen and Koller (1998)) Lemma 3.5. For any τ , Ehτ
[D(στ ‖ σ̃τ )] ≤

ǫ
γ
, where hτ is

the history through time τ and γ
def

= mina γT ⊤
a

, with Ta being the latent state transition

matrix for action a.

I now proceed to define the error of the approximate predictive state x̃τ in terms of

the error of the corresponding approximate belief state σ̃τ . Since x̃τ is not necessarily
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a stochastic vector, one cannot directly use KL divergence to measure its error.

However, x̃τ implies a set of stochastic vectors, one for each unique action sequence

of its core tests. To see this, note that the predictions for all of the possible tests

with a given action sequence must sum to 1. Thus, one can partition the entries of x̃τ

according to their tests’ action sequences. One can implicitly add a complement test

to each partition, which succeeds if and only if no other test in that partition succeeds

(assuming that the action sequence is taken).2 Each partition (with the implicit

complement test) then forms a stochastic vector. For simplicity, I will assume that

all tests in the state vector fall in the same partition; the bound on the KL divergence

of the single partition is easily extended to each of multiple partitions.

Define the error E(x̃τ ) of x̃τ as D(yτ ‖ ỹτ ), where y is just x augmented with

the complement test prediction. To translate KL divergence of belief states to KL

divergence of predictive state, I use the relationship x̃τ = U⊤σ̃τ , where U is the

outcome matrix described earlier. Let V be the matrix formed by adding a column

to U for the complement test. Since V is a stochastic matrix, Lemma 3.4 gives a

contraction rate γV which I use in the bound on E(x̃τ ). This bound (Theorem 3.6) is

the main result of this section, showing that the error of the approximate predictive

state does not grow without bound over time.

Theorem 3.6. For any τ , Ehτ
[E(x̃τ )] ≤ (1 − γV ) ǫ

γ
, where γ

def

= mina γT ⊤
a

.

Proof. By definition of V , Ehτ
[E(x̃τ )] = Ehτ

[D(V ⊤στ ‖ V ⊤σ̃τ )]. By Lemma 3.4, this

quantity is less than or equal to (1− γV )Ehτ
[D(στ ‖ σ̃τ )], which itself is less than or

equal to (1 − γV ) ǫ
γ

because of Lemma 3.5.

In addition to being the first error bound for approximate predictive state repre-

2The complement test is an example of a set test (Wingate, Soni, Wolfe, & Singh, 2007), de-
scribed in Section A.2.
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sentations, Theorem 3.6 has two potential advantages over the corresponding bound

on belief state error (i.e., Lemma 3.5). First, the bound itself is smaller by a factor

of γV . Second, there are a couple of degrees of freedom to obtain a good ǫ: one can

choose the latent-state model P of the system and the belief states σ̃τ (such that

x̃τ = U⊤σ̃τ ) that give the best ǫ, since P and σ̃τ are just tools for theoretical analysis.

3.3 Summary

This chapter has focused upon two possibilities for scaling PSRs to large systems:

building a model that can make accurate predictions about some tests, and building a

model that can make approximate predictions about all tests. I presented conditions

under which the error in the state vector of an approximate PSR will not grow

without bound. In addition, I showed that in order for an accurate, partial model

to be more compact than an accurate, full model, it cannot accurately predict every

one-step test from every history. In particular, this precludes using a linear PSR as

a small, accurate, partial model.



CHAPTER IV

Hierarchical PSRs

As shown in Section 3.1, a straightforward application of linear PSRs will not be a

viable model for large systems, even if an agent needs the model to make predictions

about only a few tests. Both the size of the linear PSR model and the running time

of learning a linear PSR model are polynomial in the rank of the system-dynamics

matrix. Because the rank of the system-dynamics matrix can grow combinatorially

in the number of latent state variables (e.g., state variables in a DBN model) of a

system, learning a linear PSR model will be intractable for systems for which a DBN

model has more than a handful of latent state variables. This is also the case with

learning a POMDP model, where the size of the latent state space is combinatorial

in the number of latent-state variables of a DBN model of the same system.

This chapter introduces hierarchical PSRs (HPSRs), a class of PSR models that

leverages the advantages of linear PSRs (e.g., learnability of small models via the

suffix-history algorithm (Section 2.1)), while avoiding the intractability of learning

a single linear PSR to model the whole system. The work described in this chapter

was published by Wolfe and Singh (2006).

An HPSR is an aggregate model, made up of several component models that make

predictions about the system at different levels of temporal resolution. In particular,

66
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. . . . . .

Oi+1

Oτ+1 Oτ+2 Oτ+4Oτ+3OτOτ−1

Oi Oi+2

Figure 4.1: An illustration of temporal abstraction. The abstract observations are denoted by
the superscripts, while the system observations are denoted by subscripts. Each of the
abstract observations Oi, Oi+1, Oi+2 summarizes several observations from the system,
shown by the dashed lines.

one of the component models is a model of the entire system at a temporally abstract

level. This temporally abstract model can be smaller and easier to learn than a non-

abstract model of the entire system.

A temporal abstraction of a system takes blocks of subsequent actions and obser-

vations and summarizes them with a single step in the abstract view. For example, in

the uncontrolled system depicted in Figure 4.1, the abstract observation Oi+1 sum-

marizes the observations Oτ+1, Oτ+2, Oτ+3. Note that the domain of the temporally

abstract observations . . . , Oi, Oi+1, Oi+2, . . . does not need to be the same as that of

the system observations . . . , Oτ−1, Oτ , Oτ+1, . . .. For instance, a temporal abstraction

of a robot navigating in a building may summarize the many camera images received

while moving to the end of a hallway with the single, simple observation “at the end

of the hall.”

4.1 Definitions

I use options (Sutton, Precup, & Singh, 1999) to formally define a temporal ab-

straction of a dynamical system. An option is a macro-action or temporally ex-
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tended action that specifies a closed-loop way of choosing actions until some (possi-

bly stochastic) stopping condition is met. For instance, an option may specify that

a robot is to move forward until its sensors detect some obstacle within one meter of

its current position. Options can be useful when an agent is planning which action

to take (Sutton et al., 1999), and Perkins and Precup (1999) have shown that op-

tions can be useful in transferring knowledge learned in one environment to similar

environments. These features of options motivate the development of a PSR model

that can make predictions about options.

To distinguish between levels of abstraction in the HPSR, I use the term “prim-

itive” to refer to the actions and observations that an agent takes directly in the

dynamical system, and I use the term “option” or “option-level” to refer to the

higher-level, temporally abstract actions and observations. I call the tests and his-

tories used in previous chapters “primitive tests” and “primitive histories,” to dis-

tinguish from option tests and option histories (defined below).

In addition to the primitive actions, the HPSR model assumes that the agent has

a set of options Ω. Each option ω ∈ Ω has three components:

• a policy that specifies a way of behaving for any history; in general, the policy

is a probability distribution over actions for any history

• a termination condition that assigns a probability to each history, which is the

probability that the option will terminate given that it reached that history

• an initiation set, which is a set of histories from which the option can be started.

Options were defined by Sutton et al. (1999) for MDPs, where state is used in place

of history. In partially observable systems, the latent state of the system is not

observable, so the option policy, termination condition, and initiation set are not
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expressed in terms of latent states, but are instead functions of history. To my

knowledge, this is the first definition for options in partially observable settings.

The upcoming definitions of option histories and option tests provide temporally

abstract counterparts to the primitive histories and tests whose predictions define

a dynamical system. Predictions for these option histories and tests will similarly

define a temporally abstract view of the dynamical system.

Definition 4.1. An option history is a possible sequence of options and observations

ω1o1ω2o2 . . . ωkok from the beginning of time, where oi refers to the last observation

during the execution of option ωi.

In this definition, each oi refers to the last observation during the execution of

option ωi. However, the primary theoretical results about an option-level PSR gen-

eralize in a straightforward fashion to allow oi to be a function of any part of the

primitive sequence during the execution of ωi (and not just the last observation), as

long as that function has a finite set of outputs (see Section H.1 for more details).

In the remainder of this chapter, I assume that oi is the last observation of ωi’s

execution, for concreteness and simplicity.

A critical assumption of the HPSR is that the agent always executes options

until completion (i.e., options are not interrupted). The HPSR also assumes that

the agent is always acting according to some option in the set Ω. This is not a

significant restriction, because any primitive action a can be made available to the

agent by including an option in Ω that simply executes a and then terminates, thereby

creating an option that is equivalent to the primitive action a. However, such options

provide no temporal abstraction over the primitive actions, so if Ω includes options

that are equivalent to each primitive action, the HPSR will be as complex as an

unstructured model (e.g., a linear PSR).
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Because the agent is always acting according to some option, the agent can view

its history (at any point in time) in two ways:

• a high-level view as an option history (through the last completed option)

• a low-level view as a primitive history.1

Note that a particular option history could correspond to any one of several possible

primitive histories. Thus, the option history provides some abstraction from the

primitive history. For example, if an agent were told that it was at option history

ω1o1ω2o2, it would not know the current primitive history, in general.

To make this more concrete, the following example lists some of the primitive-level

histories that could correspond to the option history ω1o1ω2o2, for certain definitions

of the options ω1 and ω2. In the list of these primitive histories, ai denotes the

ith action in the set of possible primitive actions (so the i does not reference time).

Similarly, oi denotes the ith observation in the set of possible primitive observations.

These notation changes apply only for the discussion of this example.

Suppose that the policy of option ω1 chooses actions uniformly randomly, and ω1

deterministically terminates after 2 time steps. Also, let option ω2 always choose

action a1 and terminate with probability 0.9 at each time step. Finally, let the

observations o1 and o2 of the option history have the specific values o1 = o3 and

o2 = o5. Then the option history ω1o1ω2o2 = ω1o3ω
2o5 could correspond to any of

the following primitive histories:

• a1o7a3o3
︸ ︷︷ ︸

ω1o3

a1o5
︸︷︷︸

ω2o5

• a3o6a2o3
︸ ︷︷ ︸

ω1o3

a1o5
︸︷︷︸

ω2o5

1I describe an HPSR with two levels of temporal resolution (primitive and options), but it is
straightforward to add other levels of temporal resolution, such as options Ω′ that have policies
over options Ω, that have policies over primitive actions.
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• a3o6a2o3
︸ ︷︷ ︸

ω1o3

a1o5a1o5
︸ ︷︷ ︸

ω2o5

• a3o6a2o3
︸ ︷︷ ︸

ω1o3

a1o3a1o5
︸ ︷︷ ︸

ω2o5

• a1o2a1o3
︸ ︷︷ ︸

ω1o3

a1o3a1o5a1o2a1o8a1o5
︸ ︷︷ ︸

ω2o5

.

Of course, there are many more primitive histories that could correspond to the

given option history; this is just a sampling of the possibilities. Note that the last

observation of the first option (which is always at the second time step) is o3 in each

of these examples, because the o3 in the option history ω1o3ω
2o5 must match the

primitive observation at the last time step of the execution of ω1. Similarly, the last

observation of the second option is always o5, and the actions of the second option

are always a1. This restriction on the actions of the second option is given by the

policy of ω2.

Thus, knowing that one is in the option history ω1o3ω
2o5 reveals some information

about the primitive history, but the exact primitive history is not revealed by knowing

the option history (in general). This is how the option-level history provides an

abstraction from the primitive-level history. This abstraction does not necessarily

lose important information from history; for example, it may not be important what

observation occurred during the first time step of ω1 as long as it terminates in o3.

The amount of information that an option history hides about the underlying

history can be tailored by adjusting the specificity of the options’ termination condi-

tions and policies. For example, the fact that the policy of ω1 allows for any action

means that knowing ω1o3 reveals nothing about the actions that happened during the

execution of ω1, but it is known that exactly two actions were taken. On the other

hand, the policy of ω2 only takes action a1, but it may take that action any number

of time steps. Again, the definitions of the options determine what information is
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abstracted when using option-level histories instead of primitive-level histories.

Just as option histories are an abstraction of primitive histories, option tests are

an abstraction of primitive tests.

Definition 4.2. An option test is a sequence of options and observations ω1o1 . . . ωkok,

where the observations in the test correspond to the last observation of each option.

I define a prediction for an option test tω
def

=ω1o1 . . . ωkok from an option history

hω similar to a primitive prediction: the probability that o1, . . . , ok are the last

observations, respectively, of the options ω1, . . . , ωk taken from option history hω.

Option Predictions in Terms of Primitive Predictions

In order to prove that one can build a linear PSR model of a system at an option

level, it is important to relate option predictions to primitive predictions. I relate an

option-level prediction p(tω|hω) to primitive-level predictions by conditioning upon

the primitive sequences that underlie the option history and summing over all pos-

sible primitive sequences that underlie the option test. To write an expression for

the option prediction p(tω|hω), let Pr(hω = h|hω) be the probability that h is the

primitive history that underlies hω, and let Pr(t ∧ tω|h, π(tω)) be the probability

that both t and tω concurrently succeed in the same number of time steps following

h, given the policies π(tω) of the option test tω. Then

p(tω|hω) =
∑

h,t

Pr(hω = h|hω)Pr(t ∧ tω|h, π(tω))

where the sum is over all primitive histories h and all primitive tests t.

Because the primitive sequences corresponding to a given option history or test

could have different lengths, different action sequences, and different observation

sequences, the formal relationship between option-level predictions and primitive-

level predictions is somewhat tedious. For an intuitive understanding of the HPSR,
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the details of how option predictions relate to primitive predictions are not strictly

necessary, though I use the precise relationship in proofs of some of the upcoming

theorems. Section H.1 develops the precise expression for an option-level prediction

in terms of primitive-level predictions.

4.2 Extending Linear PSRs to Options

With the definitions of option tests and histories in place, in this section I prove

that one can construct an option-level linear PSR that makes accurate predictions

about only option tests from option histories. This option-level PSR can provide

abstraction over a full system model, making it more compact and easier to learn.

Just as a primitive linear PSR is derived from the primitive system-dynamics

matrix, the option-level PSR is derived from an option-level system-dynamics matrix.

For a given system and a finite set Ω of options, all option predictions can be arranged

in an option-level system dynamics matrix DΩ by listing all option histories for the

rows and all option tests for the columns. The entry of DΩ for a column tω and a

row hω is just the prediction p(tω|hω). Section H.2 shows that this definition of DΩ

forms a valid system-dynamics matrix, which leads to the following theorem.

Theorem 4.3. Let DΩ be an option-level system-dynamics matrix for a finite set of

options Ω. If DΩ has finite rank n, then there exists a finite linear PSR with n core

tests that can accurately make any prediction in DΩ. That is, there is an accurate

linear PSR model of the option-level system.

Proof. This result follows from the fact that there exists a linear PSR with n core

tests that can accurately model any system-dynamics matrix of rank n (Singh et al.,

2004). The fact that DΩ is an abstracted version of another system does not change

this fact, because DΩ is a valid dynamical system (Theorem H.1 in Section H.2).
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Because the number of options is finite and the number of observations is finite, the

number of parameters in a linear PSR model of DΩ is also finite.

The rank of DΩ will play a critical role in learning and using an option-level

model of the system, just as the rank of D is critical when learning and using a

primitive-level model of the system. In particular, the rank of DΩ is an upper bound

on

• the number of core option tests required in the option-level linear PSR

• the length of the option histories and option tests to be examined in order to

find core option histories and core option tests (which are then used to learn

the model parameters)

• the number of iterations that the reset or suffix-history algorithms require to

find core option histories and core option tests.

This latter point is particularly important in practice, as each iteration of searching

for core histories and tests involves several costly singular value decompositions,

making it the primary bottleneck for learning a linear PSR with the suffix-history

and reset algorithms. Furthermore, the number of parameters of a linear PSR is

quadratic in the number of core tests, so the rank of DΩ also affects the size of the

option-level model.

Since the option-level model is an abstract model of the system, one would think

that it would be smaller and easier to learn than a primitive model. That is, one

would think that the rank of DΩ would be smaller than that of D. However, it

turns out that the relationship between rank(DΩ) and rank(D) depends upon the

system and the set of options Ω. The following theorem proves that it is possible for

rank(DΩ) to be greater than rank(D), contrary to first intuition.
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Theorem 4.4. There exists a system D and a set of options Ω such that the option-

level system-dynamics matrix DΩ has greater rank than D.

The proof is by example, in Appendix H. The line of argument is that one can

construct an option policy that is a non-linear function of the prediction vector of

the original system, thus adding to its linear rank. Note that D always contains

enough information to compute DΩ, even though the linear rank of D may be less

than that of DΩ.

Despite the fact that rank(DΩ) can be more than rank(D) in general, if one is

limited to a particular class of options, then rank(DΩ) ≤ rank(D).

Theorem 4.5. Let Ω be a set of options such that neither the termination conditions

nor the policies of the options in Ω depend upon history prior to the execution of

the option. For a primitive system-dynamics matrix D and an option-level system-

dynamics matrix DΩ for Ω, rank(DΩ) ≤ rank(D).

I prove this result in Section H.4. This relationship between rank(D) and rank(DΩ)

is compatible with the intuition that the temporally abstract DΩ should be no more

complex than the full system D. Examples of options with the properties given by

Theorem 4.5 are presented in Section 4.4. The remainder of this chapter will assume

that the options Ω have these properties.

Even though, in the worst case, rank(DΩ) and rank(D) could be equal, Section

4.4 demonstrates empirically that rank(DΩ) can be much less than rank(D). In such

situations, learning a model of DΩ will generally be much more efficient than learning

a full model at the primitive level. This is of particular importance when dealing

with dynamical systems where rank(D) is so large that learning a full model at the

primitive level is intractable, but learning the option-level model may be possible. (I
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present an example of such a system in Section 4.4.) Again, the efficiency of modeling

a system-dynamics matrix with small rank is realized in the search for core tests and

histories, the length of those tests and histories, the processing of training data, and

the size of the linear PSR model (cf. Sections 1.2.1 and 1.3).

4.3 Hierarchical PSRs

A model of DΩ makes predictions about the outcomes of options, providing an

abstract model of the system that can be smaller and easier to learn than a primitive

model of the whole system. However, the DΩ model does not make primitive predic-

tions, which the agent may need in order to learn other options, among other things.

One possibility for getting primitive predictions would be to learn an option-level lin-

ear PSR and a primitive-level linear PSR to make option and primitive predictions,

respectively. However, this is harder than just learning a linear PSR of the primitive

system to begin with. Since learning a linear PSR of the primitive system will be

intractable in many systems of interest, I developed the hierarchical PSR (HPSR)

model, which takes a different approach to making both primitive and option-level

predictions. The remainder of this section describes the HPSR model itself and an

algorithm for learning an HPSR.

4.3.1 The HPSR Model

An HPSR consists of several linear PSRs (Figure 4.2): one high-level model MΩ

that makes predictions about options, and one primitive-level model Mωi for each

option ωi ∈ Ω that makes primitive predictions only while ωi is executing. This limit

on the responsibility of Mωi is important, as it can enable tractable learning of Mωi

even when learning a full primitive-level linear PSR is intractable (cf. Section 4.4).

The agent uses an HPSR in the following way. At the first time step, it chooses
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model’s actions: options

makes option predictions

model’s observations: function of the

primitive observations during the

option’s execution

make primitive predictions

models’ actions: primitive actions

models’ observations:

primitive observations

Hierarchical PSR

option level

primitive level

no sharing of information across levels

Mω|Ω|Mω1 ...

one linear PSR for each option ωi

one linear PSR

MΩ

Figure 4.2: The component models within an HPSR. Each square represents a linear PSR compo-
nent model. There is one temporally abstract, high-level linear PSR that makes option
predictions, and there is one primitive, low-level linear PSR for each option that makes
predictions while its option is executing.

some option ωi to execute and initializes MΩ and Mωi with their respective initial

prediction vectors. At each time step through the termination of ωi, the agent

updates the prediction vector of Mωi according to the standard linear PSR update

procedure and uses Mωi to make predictions about any primitive tests. When ωi

terminates (call this time t∗), the agent updates the prediction vector for MΩ based

upon the last observation of ωi.
2 Also at time t∗, the agent chooses another option ωj

to begin executing. The agent initializes Mωj by asking Mωi to make a prediction

about each of the core tests of Mωj . These predictions are then the prediction vector

for Mωj . Until ωj terminates, Mωj is responsible for any primitive predictions, and

the agent updates its prediction vector at each time step. This process continues as

the agent chooses options to execute.

2Since the agent only updates the high-level model upon options’ termination, it always makes
predictions based upon the state at the most recent option’s termination. This abstraction is
necessary when using a linear PSR as MΩ since it cannot update its states’ predictions about
option tests at every time step without being a full model of the system (Section 3.1).
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4.3.2 The HPSR Component Models

Each linear PSR within an HPSR models some system-dynamics matrix, so I

describe the linear PSR component models by the system-dynamics matrices that

they model. The high-level linear PSR (that makes predictions about options) models

the option-level system-dynamics matrix DΩ that I described previously.

The primitive-level linear PSR for an option ωi ∈ Ω models a system-dynamics

matrix called Dωi , which contains predictions for all primitive tests from a subset

of primitive histories denoted as Hωi

trunc. The fact that Hωi

trunc does not include all

primitive histories is what underlies the divide-and-conquer approach of the HPSR: a

component PSR for a particular option only needs to make predictions from histories

in which that option could be executing. This allows the component models to be

smaller than a whole-system model, but together the component models can make

accurate predictions for the whole system.

The following discussion describes Dωi in more detail. To begin, let Hωi

trunc be

defined as all the possible primitive-level sequences that could be generated by a

partial or full execution of ωi. If an agent picks ωi as its first option to execute, any

history that agent could possibly see up through the termination of ωi is included in

Hωi

trunc. Thus, a model of Dωi can make any prediction during an execution of ωi that

started at the null history of the system. However, in the HPSR, the model Mωi

of Dωi should be able to make any prediction during any execution of ωi, regardless

of when it started. The critical insight that allows the HPSR to overcome this

discrepancy is the following: the dynamics of the system during all executions of ωi

can be learned separately from the parameters that capture the state of the system

at the beginning of a particular execution of ωi.

In linear PSR terms, one can learn the update parameters (Mao and mao) that are
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valid for all executions of ωi; the initial prediction vector is the only part of the model

that differs depending upon the history prior to ωi. When using the HPSR model, an

“initial” prediction vector will be needed each time an option begins. When ωi is the

option that is beginning, the prediction vector of Mωi is initialized from predictions

supplied by the model Mωj whose option ωj just ended, as described above.

In order to learn the update parameters that apply for all executions of ωi, one can

change the initial condition of Dωi from the null history of the system to an empirical

average of all the histories from which ωi was executed.3 Specifically, define f(h) as

the number of times ωi was executed from history h divided by the total number of

times ωi was executed. Then the null history row of Dωi is
∑

h f(h)D(h), where D(h)

is the h row of D. This completely specifies Dωi since the entire system-dynamics

matrix can be computed from the null history row. This includes the rows that

comprise Dωi (i.e., the rows for the histories Hωi

trunc).

Theorems 2.1, 2.2, and 2.3 (introduced in Section 2.1 in the context of the suffix-

history algorithm) establish conditions under which the update parameters learned

for a system with one initial condition (e.g., the system Dωi) will be valid under

different initial conditions (e.g., a particular execution of ωi). The proofs of Theorems

2.1, 2.2, and 2.3 are given in Appendix E.

(Theorem 2.1). Let D be a system-dynamics matrix with finite rank n that can

be modeled by a POMDP P with n hidden states. Let P ′ be a POMDP model that

is identical to P except for a different initial belief state, and let D′ be the system-

dynamics matrix generated by the model P ′. If the rank of D′ is also n, then any set

of core tests and update parameters for either D′ or D are valid for both D′ and D.

3One could potentially use data from options other than ωi to estimate the entries of Dωi as
long as the data was consistent with an execution of ωi. The details of such intra-option learning
are left for future work.
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(Theorem 2.2). Let D be a system-dynamics matrix and h∗ be a history of D

such that p(h∗|∅) > 0.0. Let D′ be a system-dynamics matrix such that D′ has

the same dynamics as D, but its null history is identical to history h∗ in D. If

rank(D) = rank(D′), then any set of core tests and update parameters for either D′

or D are valid for both D′ and D.

The following theorem states that if one builds a linear PSR of an MDP that has

some initial state distribution, then (after the initial time step) that PSR will be an

accurate model of the system that starts in any one of those possible initial states

(assuming that start state is reachable at some point on or after the first time step,

which will be true if the start state is ever seen as an observation in the training

data).

(Theorem 2.3). Let D be a system-dynamics matrix that can be modeled by an

MDP M with states S. Let b0 be the initial state distribution of M , and let M ′ be an

MDP that is identical to M except for its initial state distribution b′0. If b′0 satisfies

the following property — ∀si ∈ S such that b′0(si) > 0, it holds that b0(si) > 0 and

si is reachable at some time t > 0 — then core tests and update parameters for D

are valid core tests and update parameters for the system-dynamics matrix D′ given

by M ′.

4.3.3 Sizes of the HPSR Component Models

As mentioned above, the rank of the system-dynamics matrix that a linear PSR

models plays a very important role in the size of the model and the amount of time

required to learn the model. The HPSR consists of linear PSRs to model DΩ and

each Dωi , so their ranks will determine the learnability of the HPSR: lower ranks lead

to smaller models that are easier to learn. The ranks of DΩ and Dωi will depend not
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only upon the options themselves, but also upon the system D being modeled. For

the option-level model, Theorem 4.5 (Section 4.2) proved that rank(DΩ) ≤ rank(D).

For the primitive-level models, the following theorem establishes an upper bound

on the rank of Dωi in terms of a latent-state model of the system. (Even though

latent-state models can be difficult to learn, they can be useful for theoretical analysis

of the system itself. Results obtained in this way can then be applied to any model

of the system.)

Theorem 4.6. For a dynamical system D that can be modeled by a POMDP with

a set of hidden states S, let Si ⊆ S be the set of hidden states in which ωi could be

executing. Then rank(Dωi) ≤ |Si|.

Proof. The first step is to show that changing the initial belief state of a POMDP

model of D results in a POMDP model of Dωi . Let b(h) be the belief state for history

h in D. Define the initial belief state b′(∅) for Dωi as
∑

h f(h)b(h), where the f(h)

values are those used in the definition of Dωi . The POMDP model with initial belief

state b′(∅) will make the same null-history predictions as in the definition of Dωi .

To see this, note that for any test t, the prediction p(t|h) is a history-independent

linear function of the POMDP belief state (Littman et al., 2001). For a given t, let

wt be a vector such that p(t|h) = w⊤
t b(h) for all histories h. Littman et al. (2001)

showed that wt does not depend upon the initial belief state of the POMDP model.
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Therefore, the null history prediction for t using the new belief state b′(∅) is

p′(t|∅) = w⊤
t b′(∅)

= w⊤
t

(
∑

h

f(h)b(h)

)

=
∑

h

f(h)w⊤
t b(h)

=
∑

h

f(h)p(t|h).

This is equal to the null-history prediction given by the definition of Dωi . Since the

null-history predictions completely define the system, using the initial belief state

b′(∅) results in a valid model of Dωi .

Let b′(h) be the belief state of the POMDP model at history h when starting with

initial belief state b′(∅). That is, b′(h) is the belief state corresponding to the h row

of Dωi .

The next step of the proof is to show that for any h corresponding to a row

of Dωi (i.e., any h ∈ Hωi

trunc), the belief state b′(h) has non-zero elements only for

states in which ωi could be executing after exactly |h| time steps. The proof is by

induction on the length of h. For the base case h = ∅, the belief state b′(∅) is the

convex sum of several belief states b(h). Even though the sum in the definition of

b′(∅) is over all histories, the f(h) values are only non-zero for histories where ωi

was initiated. Therefore, each b(h) corresponding to a non-zero f(h) will only have

non-zero elements for states in which ωi could begin (i.e., states in which ωi could

be executing after exactly |h| = 0 time steps).

For the inductive step, I begin with the fact that b(hao) is proportional to Oa,oTab(h),

using the POMDP notation of Section 1.2.2. Thus, for any s∗ such that the s∗ el-

ement of b(hao) is non-zero, it must be the case that the s∗ element of Tab(h) is
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also non-zero (because Oa,o is a diagonal matrix). The s∗ element of Tab(h) is equal

to
∑

s T (s, a, s∗)[b(h)]s, where [b(h)]s is the element of b(h) corresponding to s. In

order for the sum to be non-zero, there must be some s such that T (s, a, s∗) > 0

and [b(h)]s > 0, because all of the T (s, a, s∗) and b(h) values are non-negative. By

inductive hypothesis, the fact that [b(h)]s > 0 implies that ωi could be in state s after

|h| time steps. Because this theorem is only concerned with hao ∈ Hωi

trunc, the option

ωi has some non-zero probability of taking action a from history h, which means

there is some chance of ωi being in state s∗ after |hao| time steps. This completes

the inductive step.

The remainder of the proof is similar to the bound on rank(D) for POMDPs given

by Singh et al. (2004). Let B be the ∞× |S| matrix such that the jth row is b′(hj),

where hj is the history for the jth row of Dωi . Note that the non-zero entries of these

belief states are only going to be in the columns of B corresponding to the latent

states Si in which ωi could be executing (as shown above). Thus, the rank of B will

be no more than |Si|.

Let T be the set of all tests and let p⊤(T |si) be the row vector of probabilities that

each test in T succeeds from hidden state si ∈ S. Let U be the |S|×∞ matrix formed

by stacking the p⊤(T |si) vectors for each si ∈ S. Then Dωi = BU , by conditioning

upon the hidden state at each history. Thus, rank(Dωi) ≤ rank(B) ≤ |Si|.

Therefore, if an option ωi only traverses a subset of the latent state space, then

the rank of the system-dynamics matrix for that option will depend only on the size

of that subset, rather than the size of the whole latent state space (which determines

the rank of the primitive system-dynamics matrix). So one can use options (in

conjunction with an HPSR) to restrict the portion of the latent state space that one

wishes to model, resulting in smaller primitive-level models within the HPSR.
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For many systems, there is some POMDP model of the system with the same

number of latent states as the rank of D. In such systems, the rank of Dωi is no

more than D (in the worst case, where the option ωi could be in any latent state).

Corollary 4.7. For a system D such that rank(D) = n, if there exists a POMDP

model of D with n latent states then rank(Dωi) ≤ rank(D).

Proof. Even if ωi could be executing in all of the latent states, Theorem 4.6 bounds

the rank of Dωi by the total number of latent states n. Since rank(D) = n,

rank(Dωi) ≤ rank(D).

Because the representational power of POMDP models is so great, Theorem 4.6

covers the vast majority of systems of practical interest. Nevertheless, I also provide

a bound on the rank of Dωi without reference to a POMDP model of the system,

using the following lemma.

Lemma 4.8. Let Di be the rows of D for the histories at which ωi could be initiated,

terminated, or executing. If minimal core tests and update parameters for Di are also

core tests and update parameters for Dωi, then any row of Dωi is a linear combination

of rows of Di.

Proof. Let Q be a set of minimal core tests for Di, with parameters mt for any test t

such that p(t|h) = p⊤(Q|h)mt for any h corresponding to a row in Di. Let M be the

(infinite) matrix with columns corresponding to the mt vectors for every test. Then

the h row of Di is equal to p⊤(Q|h)M . Since the parameters from Di are valid in

Dωi (by assumption), the h row of Dωi is equal to p′⊤(Q|h)M , where p′(·) are the

predictions in Dωi .

Let K be a set of core histories for Di, and let n be the number of core tests Q.

Because Q is a minimal set of core tests in Di, the rows of p(Q|K) form a basis of
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R
n, from which one can form the predictions for the core tests in Dωi . That is, for

any history h, there exists some vector wh such that w⊤
h p(Q|K) = p′⊤(Q|h). Then

the h row of Dωi is equal to

p′⊤(Q|h)M

=w⊤
h p(Q|K)M

=w⊤
h Di(K)

where Di(K) are the K rows of Di.

Because Dωi is formed by combining information from parts of Di, I expect that

the condition of this lemma — minimal core tests for Di are also core for Dωi — will

generally hold true. Then the following theorem provides a worst-case bound on the

rank of Dωi .

Theorem 4.9. Let Di be the rows of D for the histories at which ωi could be initiated,

terminated, or executing. If minimal core tests and update parameters for Di are also

core tests and update parameters for Dωi, then rank(Dωi) ≤ rank(Di) ≤ rank(D).

Proof. The result immediately follows from the fact that each row of Dωi is a linear

combination of rows of Di (Lemma 4.8), which are rows of D.

While the theorems in this section provide upper bounds on the ranks of the

component models in the HPSR, the upcoming experiments demonstrate empirically

that the component model ranks can be much less than that of the original system.

4.3.4 Learning an HPSR

Learning an HPSR consists of learning each of its linear PSR components, each of

which models some system-dynamics matrix. As with learning a single linear PSR, it
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is important to be able to learn the model from a single trajectory of experience, as

that may be all that is available to an agent. One can learn the model of DΩ by using

the suffix-history algorithm (Section 2.1) on the option-level view of the experience.

For each Dωi model, one can use the reset algorithm (Section 1.3) because there are

multiple executions of each option in the training sequence.4 Each time an option

executes, it generates some sequence of primitive actions and observations; these

sequences are the trajectories used by the reset algorithm.

4.4 Experiments

In this section, I present experiments that demonstrate that learning an HPSR

from a single sequence of experience can be faster and more accurate than learning

a single linear PSR. I performed this evaluation on two domains, one of which is an

order of magnitude larger (measured by the rank of the system-dynamics matrix)

than the domains on which I demonstrated the suffix-history algorithm for learn-

ing linear PSRs (Section 2.1.2). Thus, these experiments represent a step toward

modeling complex dynamical systems with PSR models.

Experimental Details: I measured the HPSR’s accuracy in making both

option and primitive predictions as the amount of training data increases. I measured

the amount of training data in primitive-level time steps. I generated both the

training and test sequences by having the agent repeatedly choose from the available

options uniformly at random. The error measure is a mean squared error of one-

step predictions: for primitive-level predictions it is 1
|O|L

∑L

j=1

∑|O|
i=1(p(aj+1oi|hj) −

p̂(aj+1oi|hj))
2, where hj is the history after time step j, aj+1 is the action taken

at time step j + 1 of the testing sequence, L is the number of primitive actions
4As mentioned earlier, even though the different executions of an option ωi may begin from

different states, one can use the trajectories from all executions of ωi to learn the parameters of the
linear PSR Mωi , given that the conditions from one of Theorems 2.1, 2.2, or 2.3 are satisfied.
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taken in the test sequence, p̂(aj+1oi|hj) is the estimate computed by the learned

model, and p(aj+1oi|hj) is the true prediction. This is the same measure used by

Wolfe et al. (2005). The error measure for option predictions is similar, replacing

aj+1 with the (j + 1)st option executed, replacing hj with the history through the

end of the jth option, and replacing L with the number of options taken in the test

sequence. I used a testing sequence of 10000 time steps, during which the entries of

each model’s prediction vector were clipped as needed to fall in the range [0, 1] of

valid probabilities. (I did not clip the predictions that are measured for accuracy,

just the state vector itself.) Both the suffix-history and reset algorithms take a single

parameter which tunes how conservatively they estimate the rank of a sub-matrix of

D. I ran several trials with a broad range of parameters, and I report the results from

the best parameter settings. Finally, because a set of one-step core tests exists for

any MDP (Theorem 2.7 in Section 2.2.2), I modified the core test search algorithm

to only consider one-step tests.

In these experiments, I provided the options to the HPSR learning algorithm (i.e.,

the options themselves were not learned). The options used by the HPSR can have

a significant impact on the learning time for the component models. The number

of latent states in which any option could terminate is the most important aspect

of the options for learning the high-level model in the HPSR (with lower numbers

of states being generally better for learning efficiency). The number of latent states

each option could traverse is the most important aspect of the options when it comes

to learning the low-level models in the HPSR (cf. Theorem 4.6). Şimşek and Barto

(2008) provide an overview of methods for learning options that would lead to efficient

HPSR learning (along with being useful for other types of temporal abstraction).

Rooms Domain Details: The first evaluation domain is an MDP grid world
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Figure 4.3: The rooms domain. The grid squares are the size of the gray blocks, which are
obstacles. The starred locations are the destinations of options, and the circles denote
doors. There are four primitive actions (N, S, E, W), which fail to move the agent with
probability 0.1, and the observation is the square in which the agent lands.

domain with 78 states shown in Figure 4.3. The 11 starred locations are the states

between which the options go. The set of options consisted of options that went from

the hallway star to each other star, and options to go the opposite way. Each of the

five-point stars had an option to get to each other five-point star; similarly, the four-

point stars had options to reach each other. There were 60 options in all. The Marko-

vian property allowed the algorithm to estimate the prediction p(a1o1 . . . ajoj|hao)

as 0 if haoa1o1 . . . ajoj never occurred and p̂(a1o1|o)
∏k

i=2 p̂(aioi|oi−1) otherwise, with

p̂(a1o1|o) being the fraction of times that o1 followed oa1 in the training sequence; this

is a form of intra-option learning, as experience from one option is used to estimate

the behavior of other options.5

Rooms Domain Results: The number of core tests needed for a Dωi model

ranged from 3 to 13, in contrast to the 78 required for a primitive model of the whole

system. The option-level model also needs significantly fewer core tests (11) than a

model of the whole system. As mentioned above, the smaller number of core tests

not only leads to smaller models, but it also helps speed the learning process.

Figure 4.4 shows the accuracy results from learning an HPSR model of this do-

main. The error for the option predictions reaches 0.0, demonstrating that an ab-

5As mentioned earlier, the details of intra-option learning for partially observable domains is left
for future work.
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Figure 4.4: Rooms domain results for the HPSR. Means and medians are taken over those of the
50 trials which did not produce singular core matrices, which prevent the calculation
of the model parameters. “LPSR” denotes the results from a single linear PSR that
models the entire system. The errors in the first two plots are the mean-squared errors
of predictions about options and primitive actions, respectively. Note that the temporal
abstraction afforded by the option-level model results in perfectly accurate predictions
once enough training data is used.
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Figure 4.5: The taxi domain. The squares are different positions in which the taxi (i.e., the
agent) could be, with walls indicated by the thick lines. The letters denote the colored
locations at which a passenger could be picked up or dropped off.
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Figure 4.6: Mean squared error of the learned HPSR in making option predictions in the taxi do-
main. The error is plotted versus the amount of training data (in primitive time steps).
The mean/median is taken over 20 trials. The results illustrate that the predictions are
more accurate for higher amounts of training data.

stract, option-level model can be easy to learn. For the primitive predictions, I

compared the HPSR with a primitive-level linear PSR that models the whole sys-

tem, learned using the suffix-history algorithm. The linear PSR was comparable to

the HPSR for the smaller training lengths, but as the training length increased, its

error stayed nearly constant, several orders of magnitude higher than the HPSR’s

error.

Taxi Domain Details: The second evaluation domain was a modification of the

taxi domain from Dietterich (1998) but without fuel. This domain is a 25-location

grid world with a passenger that can be in the taxi (i.e., the agent) or at one of 4
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colored locations. The passenger also has a destination that is one of the four colors.

The options were to go from each color to each other color, to pickup the passenger,

and to drop off the passenger (14 total options).

Taxi Domain Results: The taxi domain has 500 states and would require

500 core tests to model with a single linear PSR. However, the high-level model

of the system requires 80 core tests, and each primitive model within the HPSR

requires no more than 180 core tests. Learning a linear PSR for the whole system

was computationally impractical due to the high number of core tests required. In

contrast, the learning algorithm for the HPSR was able to learn a model of the

system. The total time for learning HPSR models for five different amounts of

training data (1024000, 2048000, 4096000, 8192000, 16384000) was approximately

four hours on a 2.2GHz desktop PC with 1GB of RAM, including the time to generate

the training data, learn the HPSR models, and evaluate the models’ accuracy. The

accuracy of the option predictions are shown in Figure 4.6. The mean and median

primitive prediction error were between 0.000365 and 0.000395 for all but the smallest

training length (where they were 0.0004575 and 0.0004446, respectively), and a model

was learned on every trial (i.e., no singular core matrices).

Summary of Empirical Results

The HPSR framework is designed to model larger dynamical systems than would

be possible with a single linear PSR. I verified this ability empirically on the 500-state

taxi domain, where the HPSR model makes increasingly accurate predictions as the

amount of training data increases. To compare the accuracy of an HPSR model with

a linear PSR model, I used a smaller domain, though it was still larger than those

previously modeled with linear PSRs. In that rooms domain, the HPSR model was

more accurate than a linear PSR model.
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In the rooms domain, learning all of the component models of an HPSR was

computationally faster than learning a linear PSR for the whole system (which was

intractable for the taxi system). The total time for learning PSR models from eleven

different amounts of training data (1000, 2000, 4000, ..., 1024000 primitive time steps)

was approximately 1 minute for the HPSR models and approximately 15 minutes for

the linear PSR models, including the time to generate the training data, learn the

models, and evaluate the models’ accuracy. However, if many of the options given to

the agent traverse a large portion of the system’s state space, then the Dωi models

could have sizes near that of a model for the whole system, making HPSR learning

slower.

4.5 Related Work

The HPSR is related to hierarchical methods that use different resolutions at

different levels in the hierarchy. There has been much work on hierarchical rein-

forcement learning (Barto and Mahadevan (2003) give a good overview), including

a hierarchical POMDP model (Theocharous, Rohanimanesh, & Mahadevan, 2001).

However, there has been little work combining PSRs and hierarchical methods. (The

multi-mode PSR model described in Chapter VI also combines these two techniques.)

The known related work using PSR models with temporal abstraction is that of

Sutton et al. (2005), who used temporal difference networks (a form of PSR) to

estimate predictions about options. However, they did not show that the options’

predictions are actually computable by their model class. In contrast, I proved that

a linear PSR can make accurate predictions about a class of options (Theorem 4.3).

Similar to the HPSR’s division of primitive histories based upon options, James et

al. (2005) used the idea of dividing up all primitive histories into several sub-matrices
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of D with smaller rank. In their work, the division was done by the last observation

of history, rather than by the last option executing.

4.6 Summary

I proved that a linear PSR can make accurate predictions about a class of options,

forming a temporally abstract model of a system (Theorem 4.3). I also proved

conditions under which the rank of the temporally abstract system, which affects the

learnability and the size of the PSR model, is no more than the rank of the original

system (Theorem 4.5). I demonstrated empirically that the temporally abstract

system can have significantly lower rank — in fact, the difference is enough that

modeling a system at the temporally abstract level was tractable, while modeling

the non-abstract system was intractable.

The HPSR is able to make both temporally abstract and primitive predictions. It

accomplishes this by combining a temporally abstract model with several primitive-

level models, using a divide-and-conquer approach to modeling the system at the

primitive level. This division is done according to a set of options, which can implic-

itly divide a state space for modeling at the primitive level. Empirically, the division

results in primitive-level models that are smaller, more easily learnable, and more

accurate than a single PSR model of the whole system. This enables the HPSR to

model dynamical systems that are too large to model with a linear PSR.



CHAPTER V

Factored PSRs

In order to scale to large systems, models must exploit structure in the system;

an unstructured model would have too many parameters and be too difficult to learn

for large systems. The previous chapter presented the hierarchical PSR (HPSR) as a

compact, structured alternative to the unstructured, linear PSR (which does not scale

well to large dynamical systems). This chapter presents another class of PSRs called

factored PSRs that exploit structure to build a compact model. While the HPSRs

leveraged a temporal structure in the environment, factored PSRs leverage a struc-

ture among the observation dimensions of a dynamical system with vector-valued

observations. In particular, the factored PSRs are designed to exploit conditional in-

dependence between subsets of observation dimensions. One can use a factored PSR

that makes certain conditional independence assumptions even if those assumptions

do not strictly hold in the system. In that case, the factored PSR would be an ap-

proximate model. One of the features of the factored PSR framework is the ability to

trade off model compactness for accuracy by making more or less strict independence

assumptions.

Like DBNs (Section 1.2.2), factored PSRs use a factored form for the joint prob-

ability distribution of a set of random variables. However, the random variables

94
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for the factored PSR are components of observation vectors, whereas the random

variables for a DBN also include latent state variables. This means that the fac-

torization in a DBN is conditioned upon unobservable random variables, while the

factored PSR deals only with actions and observations. This difference turns out to

have a significant impact on the sizes of the models’ state representations.

With a DBN, the state representation is called the belief state, which is a dis-

tribution over possible latent state values. The latent state at a given time step is

represented as several latent state variables (Figure 1.4), and conditional indepen-

dence among the latent state variables and the observation variables is what leads

to the compactness of a DBN model (cf. Section 1.2.2). However, predictions about

latent states or observations many time steps in the future will often be dependent

upon all of the current latent state variables (Boyen & Koller, 1998). The intuition

behind this is the following: consider the ith latent state variable at the current time

step. It will affect some subset of latent state variables at the next time step; that

subset will affect another subset of variables at the following time step; and so on.

Generally speaking, the subset of variables that can be traced back to the ith latent

state variable at the current time step will continue to grow as one looks further

forward in time. Consequently, in general, the belief state of a DBN — which tracks

the joint distribution of the latent state variables — is not factored, and has size

exponential in the number of latent state variables.1 In contrast, the factored PSR

does not reference latent state, but only actions and observations. Thus, its state is

always factored, as seen in the upcoming model description.

In both factored PSRs and DBNs, the factored form can significantly reduce the

model complexity (i.e., the number of parameters) when compared with their non-

1One can use an approximate, factored belief state in a DBN, even if the true belief state is not
factored (cf. Boyen & Koller, 1998).
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factored or flat counterparts (linear PSR and POMDP, respectively). In the extreme

case, this can be a reduction from an exponential number of parameters to a linear

number of parameters (with respect to the number of factors in the model). Not only

is fewer parameters better from a storage standpoint, but it can also result in more

accurate models: large numbers of parameters relative to the amount of training

data can lead to overfitting.

The remainder of this chapter describes factored PSRs, building up the supporting

theory and then describing some empirical results on learning factored PSRs from

data. Both simulated and real-world data is used in these experiments, which include

modeling the complex behavior of cars on a highway. This work has been published

by Wolfe et al. (2008).

A factored PSR models a discrete-time dynamical system with a set of discrete

actions A and a set of n observation variables, each of which has a discrete, finite

domain. At each time step τ , the agent chooses some action aτ ∈ A to execute and

then receives some n-dimensional observation oτ = [o1
τ , o

2
τ , . . . o

n
τ ]. The observations

for several time steps are illustrated in Figure 5.1, where capital O’s are used to

denote random variables, as opposed to lower-case o’s, which denote a particular

instantiation of the random variables.

5.1 A Simple Approximation

I begin describing factored PSRs with a special case: the most compact factored

PSR, which assumes that any two future observation variables in different dimensions

are conditionally independent given history. This is a strong assumption that I will

rescind later when I present factored PSRs in general, but for now it provides a simple

illustration. The conditional independence of the different observation dimensions
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Figure 5.1: The observation variables for each of several time steps in a dynamical system with an
n-dimensional observation vector at each time step. Superscript denotes the dimension
and subscript denotes time. The shading indicates that the observations of history have
been observed, while the unshaded observations of the future are yet to be observed.

means that one can represent predictions about future observation vectors as the

product of predictions for each dimension.

To formally state the conditional independence assumption, I define a set of func-

tions {gi : 1 ≤ i ≤ n} such that gi selects the ith observation dimension from

a history, test, or observation vector. For example, for a test t = a1o1 . . . akok,

gi(t) = a1o
i
1 . . . ako

i
k. The test gi(t) does not specify values for the full observation

vector but only the ith dimension; this leaves the other observation dimensions as

wild cards, so gi(t) is a set test (Wingate et al., 2007). Set tests are so named because

the prediction for a set test is the sum of the predictions of a set of tests: the set

generated by filling in the wild cards with each possible observation value. Thus, the

prediction p(gi(t)|h) for the set test gi(t) is a marginal probability of the observation

variables of gi(t) conditioned upon the history h (Figure 5.2).2

The following equation expresses the assumption that any two future observation

2Section A.2 defines set tests and their predictions in more detail.
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Figure 5.2: The prediction p(g2(t)|h) for a two-step test t. The shaded nodes indicate conditioning
upon the history h, while the box indicates the observation variables that are predicted.

variables in different dimensions are conditionally independent given history:

(5.1) ∀h, t : p(t|h) =
n∏

i=1

p(gi(t)|h),

for any sequence or set test t. This equation suggests a compact state representation:

the compact state would consist of the predictions for several tests of the form gi(t),

which could be combined to compute predictions for exponentially many (non-set)

tests. The set tests to comprise state would be chosen so that their predictions could

be used to compute the predictions for a set of core tests, which form a complete

representation of state (Section 1.2.1). In addition to a factored state representation,

the upcoming Theorem 5.1 will show that a factored model can be used as well, under

the condition of Equation 5.1. This can result in a significantly more compact model

of the system than a full, non-factored model of the entire joint observation space.

In particular, since the number of parameters in a linear PSR model is linear in the

number of possible observations, modeling a single observation dimension instead of

the joint observation space can exponentially reduce the number of parameters in
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the model.

One can use a compact, factored model because Equation 5.1 implies that the

prediction of gi(t) is independent of part of history: the observation dimensions not

selected by gi.

Theorem 5.1. The condition ∀h, t : p(t|h) =
∏n

i=1 p(gi(t)|h) (Equation 5.1) implies

p(gi(t)|h) = p(gi(t)|gi(h)) for all histories h and tests t.

Proof. By the definition of prediction, p(gi(t)|h) = p(hgi(t)|∅)
p(h|∅)

. Apply Equation 5.1 to

both numerator and denominator to get

∏n

j=1 p(gj(hgi(t))|∅)
∏n

j=1 p(gj(h)|∅)
=

p(gi(ht)|∅)

p(gi(h)|∅)
·
∏

j 6=i

p(gj(h)|∅)

p(gj(h)|∅)
.

This step factored out the case i = j where gj(hgi(t)) is gi(ht) from the cases i 6= j

where gj(hgi(t)) = gj(h) (i.e., gi(t) has no overlap with the jth dimension). Then

p(gi(ht)|∅)

p(gi(h)|∅)
· 1 =

p(gi(h)gi(t)|∅)

p(gi(h)|∅)
=

p(gi(t)|gi(h)) p(gi(h)|∅)

p(gi(h)|∅)
= p(gi(t)|gi(h)).

Combining Theorem 5.1 with Equation 5.1 implies p(t|h) =
∏n

i=1 p(gi(t)|gi(h)).

Thus, under the conditional independence assumption of Equation 5.1, each obser-

vation dimension can be modeled completely independently. This is the basis for the

following completely factored model.

A Completely Factored Model: The completely factored model for a dynam-

ical system with n observation dimensions consists of n linear PSRs (M1 . . .Mn).

Even if all of these models require the same number of core tests m as a full model

of the system, the factored PSR model still has significantly fewer parameters than

a full model of the system. If k is the maximum number of values an observation

dimension could take, then the factored model has O(nkm2|A|)) parameters, versus
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O(knm2|A|) for a full model. Note that this is a difference between linear and expo-

nential in the number of observation dimensions n. Fewer parameters means that the

model will (in general) require less data to learn, because there will be less tendency

to overfit the training data.

To be a complete model, the factored model must be able to make predictions

for any test t. The prediction for a test t is computed by obtaining the prediction

for each gi(t) from the respective Mi, multiplying those predictions together as in

Equation 5.1 to get an estimate for p(t|h). The Mi only makes predictions about

observation dimension i, so it can ignore all the observations from history except

dimension i (Theorem 5.1).

Learning this factored model consists of learning each Mi. One learns the Mi

by passing only dimension i of an agent’s experience into a linear PSR learning

algorithm such as the suffix-history algorithm (Section 2.1). Thus, the core tests and

the state update procedure for Mi are restricted to dimension i: at history h, the

prediction vector of Mi is p(Qi|gi(h)) for core tests Qi that are set tests in dimension

i. To update the state of the factored model, each Mi computes

p(q|gi(hao)) = p(q|gi(h)aoi) =
p(aoiq|gi(h))

p(aoi|gi(h))

for each q ∈ Qi upon taking action a and seeing observation o.

As mentioned throughout this dissertation, the number of core tests in a linear

PSR model — equal to the rank of the system-dynamics matrix that it models — is a

crucial factor in determining not only the number of parameters in the model (which

is quadratic in the number of core tests), but also how efficiently the model can be

learned from data (cf. Section 1.3). The number of core tests for Mi is rank(Di),

where Di is a system-dynamics matrix with one row for each gi(h) and one column for

each gi(t); the entry in that row and column is p(gi(t)|gi(h)). Theorem 5.2 (below)
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shows that rank(Di) ≤ rank(D), where D is the system-dynamics matrix of the

whole system. In practice, rank(Di) can be much less than rank(D), as illustrated

in Section 5.3. The lower rank of Di enables the learning of factored PSR models of

systems that are too complex for learning unstructured models (e.g., linear PSRs).

5.2 Factored PSRs

The completely factored model presented in the previous section is based upon

the strong assumption that any two future observation variables in different dimen-

sions are conditionally independent given history (Equation 5.1). This section de-

scribes factored PSRs, a generalization of the completely factored model that does

not make such a strong independence assumption. Like the completely factored

model, a factored PSR consists of n linear PSRs (M1 . . .Mn), one for each obser-

vation dimension. A factored PSR is a generalization of the completely factored

model because each Mi is allowed to model any subset of the observation dimen-

sions that includes dimension i, rather than modeling just dimension i. Let f i be the

function that selects the observation dimensions for Mi, defining f i(a1o1 . . . akok) as

a1f
i(o1) . . . akf

i(ok). One can view f i(h) as selecting somewhere between gi(h) and

the full h.

The learning and state update procedures for a factored PSR with a given (f 1, . . . , fn)

are the same as for the completely factored model, except each gi is replaced with

f i. For making predictions, one will still use Mi to calculate the probability of suc-

cess for observation dimension i. Unlike the completely factored model, here Mi

models more than just dimension i, so its predictions for dimension i can be condi-

tioned upon other dimensions that it models, improving their accuracy (proven in

the upcoming Theorem 5.3).
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Figure 5.3: The prediction for a two-step test. The box illustrates the observation variables that
must be predicted. The scopes of the component models are indicated by the f i.

In order to be a complete model, the factored PSR must have some way to compute

the prediction for any test. As with the fully factored case, a prediction for a test

of k time steps is calculated as the product of kn marginal predictions, one for

each time step-observation dimension pair. However, because there may be overlap

between the observation dimensions of different Mi models, it is more complicated to

compute the prediction for a test with a general factored PSR. The panels of Figure

5.4 illustrate the conditional, marginal predictions that are multiplied together to

get the joint prediction of a two-step test, shown in Figure 5.3. If the marginal

prediction for oi
τ+k was conditioned upon all observations through time τ + k − 1

(including those in the history and those prescribed by the test) and the observation

variables o1
τ+k . . . oi−1

τ+k, then the product of all such marginals would be the exact

joint prediction (by the chain rule of probability). However, the factored PSR makes

each marginal prediction conditioned upon a subset of the preceding observation

variables, thus making an approximate prediction.

Specifically, to make the prediction for a test t = a1o1 . . . akok from some history
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Figure 5.4: The product of each marginal prediction shown here forms a factored PSR’s estimate for
the prediction of the two-step test in Figure 5.3. The scope of each component model
determines the variables upon which each marginal prediction is conditioned (indicated
by the shading), with Mi making the marginal predictions for dimension i.
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h, Mi will compute a probability for oi
τ for each 1 ≤ τ ≤ k. The probability for oi

τ is

conditioned upon f i(hτ−1) and the dimensions of f i(oi
τ ) that are less than i, where

hτ is defined as ha1o1 . . . aτoτ . Formally, this probability is

Pr(f i([o1
τ o2

τ . . . oi
τ ])|f

i(hτ−1)aτ )

Pr(f i([o1
τ o2

τ . . . oi−1
τ ])|f i(hτ−1)aτ )

.

The approximate prediction for p(t|h) from the factored PSR is the product of these

probabilities for each i and each τ .

This prediction method comes from applying the chain rule of probability to the

set {oi
τ : 1 ≤ τ ≤ k, 1 ≤ i ≤ n} in ascending order of τ , and in ascending order of i

within each τ . The choice of ascending i within each τ is arbitrary; another order will

yield a different estimate for p(t|h), in general. One can obtain estimates for p(t|h)

using different orderings from the same factored PSR, smoothing those estimates to

get an overall prediction.

Choosing f i: There is a trade-off to consider when choosing the observation

dimensions that Mi should model, which are determined by f i: having f i select more

of the observation vector can lead to better predictions, but having f i select less of

the observation vector can decrease the model size, which typically makes it easier

to learn. One extreme choice is f i(h) = h, which makes Mi a model for the whole

system. The other extreme choice is f i = gi, which completely ignores information

in the observation dimensions other than i. Upcoming theorems prove two results

about moving between these extremes: Theorem 5.2 shows that decreasing the scope

of f i will never increase the number of core tests for Mi, and thus never increase the

size of the model. Later on in this section, Theorem 5.3 will show that increasing the

scope of f i will not make Mi less accurate in predicting the future of observation

dimension i. To prove these results, I first formalize the notion of scope, illustrated

in Figure 5.5: f i′ has larger scope than f i (written f i ⊆ f i′) if f i(o) is a sub-vector
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Figure 5.5: How the f functions select from the observation vector at time step τ . The dimensions
selected by each function do not need to be contiguous, but are shown that way here
for convenience.

of f i′(o) for any o.

Theorem 5.2 proves that decreasing the scope of f i will never increase the number

of core tests for Mi.

Theorem 5.2. For f i and f i′ with respective system-dynamics matrices Di and Di′,

if f i ⊆ f i′, then rank(Di) ≤ rank(Di′).

Proof. This proof describes matrices V and W such that Di = V Di′W , which implies

rank(Di) ≤ rank(Di′). The matrix V will combine the rows of Di′ , yielding an

intermediate matrix X of predictions that has rows for the histories of Di and columns

for the tests of Di′ . The matrix V exists because the row for any history f i(h) in

X is equal to a linear combination of rows of Di′ . This can be seen by conditioning

upon the observation dimensions of h selected by f i′ but not by f i, denoted as f i+(o)

(Figure 5.5).

The column for any test f i(t) in Di is equivalent to a sum of columns of X because

f i(t) is a set test in X . It has wild cards for the f i+ observations at each time step of

t. Therefore, there exists a matrix W such that Di = XW , which equals V Di′W .

As mentioned earlier, applying this theorem with f i′(h) = h proves that rank(Di) ≤

rank(D) for any f i. (Recall that rank(Di) and rank(D) are the numbers of core tests
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needed for Mi and a full model M, respectively.) Section 5.3 shows that the em-

pirical estimate for rank(Di) can be significantly less than that of rank(Di′), which

supports making the scope of f i small. As mentioned in previous sections, the effi-

ciency of modeling a system-dynamics matrix with small rank is realized in the search

for core tests and histories, the length of those tests and histories, the processing of

training data, and the size of the linear PSR model (cf. Sections 1.2.1 and 1.3).

On the other hand, having f i with a larger scope can give better predictions. The

intuition is that conditioning predictions upon more of history cannot yield worse

predictions, in expectation. Specifically, an f i with larger scope will not increase

the expected Kullback-Leibler divergence of the predictions given f i(h) from the

predictions given the full history h. The Kullback-Leibler (KL) divergence of two

stochastic vectors v and w is defined as

D(v ‖ w)
def

=
∑

i

vi

vi

wi

.

Note that v and w can each be viewed as a probability distribution over a finite

domain. I prove Theorem 5.3 in Appendix I.

Theorem 5.3. For f i ⊆ f i′ and any subset X of future observations,

EH [D(X|H ‖ X|f i(H)) − D(X|H ‖ X|f i′(H))] ≥ 0

where H is the random variable for history of some length.

The theorem compares the difference between the approximation error D(X|H ‖

X|f i(H)) when using f i and the approximation error D(X|H ‖ X|f i′(H)) when

using f i′ . The fact that the expected value is greater than zero means that the

expected error when using f i is greater, because it has smaller scope.
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{Initialize the scopes f i to the completely-factored case}
for i = 1 to n do

f i := {Oi}
end for

M := learn factored PSR(f1, f2, . . . , fn)

repeat

any improvement := false
for i = 1 to n do {loop over the component models}

best new score := −∞
for all dimensions 1 ≤ j ≤ n such that Oj 6∈ f i do

f i
new := f i ∪ {Oj}
Mnew := learn factored PSR(f1, . . . , f i−1, f i

new, f i+1, . . . , fn)
if evaluation score(Mnew) > best new score then

best new scope := f i
new

best new score := evaluation score(Mnew)
best new model := Mnew

end if

end for

if best new score > evaluation score(M) then

any improvement := true
M := best new model
f i := best new scope

end if

end for

until any improvement == false
return M

Figure 5.6: Local search algorithm for learning component model scopes

A Simple Learning Algorithm for Selecting Model Scopes

As mentioned earlier, one can learn a factored PSR from training data by using

existing linear PSR learning algorithms to learn each component model of the fac-

tored PSR. To do so, the scopes (f 1, f 2, . . . , fn) for each of the n component models

must be specified, since they determine what subsets of the observation dimensions

each component model should be trained upon. One could manually select the scopes

for the component models based upon domain knowledge. Alternatively, this section

describes a simple local search algorithm for choosing the component model scopes

automatically from the training data.
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The algorithm (Figure 5.6) is based upon Theorems 5.2 and 5.3, which state

that the simplest factored PSR model will be the one with smallest scopes for its

component models, and more accurate component models can be obtained by adding

observation dimensions to the scopes. In practice, adding dimensions to the scope

will not always lead to a more accurate model, because the additional dimensions

may make the model more complex. When trying to learn the more complex model

from a finite amount of training data, the accuracy may suffer to the point where

the learned component model with smaller scope actually works better within the

factored PSR.

Therefore, the algorithm begins with the simplest factored PSR model — the

completely-factored case, where f i just includes dimension i. The algorithm iterates

through the component models, testing additions to the scope of each component

model in order to improve the accuracy of the overall factored PSR. For each compo-

nent model, the algorithm tests each observation dimension that is not already in the

scope to see if adding it will lead to a more accurate model. The algorithm then adds

to that component model’s scope the dimension that improves accuracy the most. If

none of the additional dimensions improve the accuracy, then the component model’s

scope remains unchanged. This iterative improvement process continues until the al-

gorithm makes a full pass through all of the component models without changing

any scopes.

In order to measure the accuracy of each candidate factored PSR, a portion of the

training data is held out from the data that is used to learn the linear PSR component

models. Each time a component model’s scope is changed, the resulting factored PSR

is evaluated on the held-out data, using the average likelihood of the observation at

each time step as the evaluation measure (i.e., the “evaluation score” function in
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Figure 5.6). The local search algorithm considers the factored PSR with the higher

average likelihood to be the more accurate model. Note that this evaluation measure

does not require an accurate model of the data (in contrast to comparing the model’s

predictions with accurate predictions). This property is important because it allows

the learning algorithm to be used even on complex systems where an accurate model

is not available.

The “learn factored PSR” function in Figure 5.6 consists of learning the compo-

nent linear PSRs with the given scopes, which can be done using the suffix-history

or reset algorithms. Once a component model has been learned for a given scope,

that model can be reused whenever a component model with that scope is requested.

This reuse significantly reduces the most time-consuming portion of the learning pro-

cess — learning the component models — because each call to “learn factored PSR”

(except the initial call) learns at most one component model.

5.3 Experimental Results

This section describes results for learning factored PSRs to model three domains

of varying complexity. The data for the first two domains comes from simulations,

while the data for the last domain comes from cameras overlooking a section of a

highway.

5.3.1 Simulated Domains

The simulated domains provide some empirical illustrations of the factored PSR

theorems on two example systems. The first system is smaller in order to permit

a comparison with exact predictions, while the second system is an example where

approximate models and state representations are required for model learning. Both

systems highlight the trade-off between the accuracy and compactness of a factored
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Figure 5.7: Grid world and traffic domains. The agent in the grid world observes the colors of
four tiles adjacent to its current position. The traffic system has discrete positions for
the cars, illustrated by the grid.

PSR that is made by choosing which observation dimensions each component model

selects (i.e., the choice of each f i). The first few experiments use manually specified

scopes for the component models in order to compare a “baseline,” completely-

factored model that uses f i = gi with an “augmented” model that uses an f i′ with

larger scope. As part of the approximation scheme for the learned models, I clipped

the entries of the prediction vector to fall in [ǫ, 1] after each time step of the testing

sequence. To account for any compounding of the approximation error over time, I

evaluated each learned model throughout a testing sequence on the order of 10000

time steps.

The first system is a grid world (Figure 5.7) in which the agent can move any

of the four cardinal directions and observes the colors of the adjacent floor tiles or

a wall in each of the four cardinal directions (a four-dimensional observation). The

baseline f i selects just the ith observation dimension, while the augmented f i′ also

selects the dimension corresponding to the tile 90 degrees counterclockwise from the

ith dimension. I learned each component model Mi using the suffix-history algorithm

(Wolfe et al., 2005) applied to f i (or f i′) of the agent’s single experience trajectory.

To evaluate the predictive accuracy of the model, I used the mean squared error
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of predictions for one-step tests, where the tests evaluated at time τ were those with

action aτ and any observation (as done by Wolfe et al. (2005)). When making joint

predictions with the augmented model, I used five random orderings for predicting

the observation dimensions to get five estimates for p(t|h). I used the median of these

estimates as the model’s prediction. The results are shown in Figure 5.8. For the

larger training sizes, the augmented model makes better predictions than the baseline

model (as suggested by Theorem 5.3). The augmented model also makes better

predictions than a single linear PSR for the whole system learned using suffix-history

(Figure 5.8). This illustrates that more data can be required to learn a reasonably

accurate full model than to learn a reasonably accurate approximate model (which

is more compact). The increased accuracy of the augmented model over the baseline

model requires more core tests (Figure 5.9), as suggested by Theorem 5.2. This

demonstrates that the factored PSR architecture allows one to choose the scopes of

the component models to trade off model simplicity and accuracy.

I also learned factored PSRs to model a second dynamical system, which simulates

one direction of a three-lane freeway (Figure 5.7). This system simulates the problem

faced by an agent in a vehicle whose goal is to track and predict the movements of

the other vehicles around it. The agent is given the current positions of all cars

within some range, as would be returned from a radar system with multiple sensors.

However, some simplifications were introduced. Cars take discrete positions in this

system, and the field of view is defined relative to the agent’s vehicle: the agent can

see all three lanes for three spaces in front and behind its current location. Since this

work focuses on modeling rather than control, the agent simply maintains a constant

velocity in the middle lane. At each time step, the agent observes only the positions

of each other car in its field of view (i.e., velocities are not given as observations).
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Figure 5.8: Evaluation of the factored PSR
on the grid world. The median
joint prediction error is plotted
versus the training length. The
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factored PSR, and the “Aug-
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where each component model
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core tests for the augmented ver-
sus baseline models. One point
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x = y illustrates that the aug-
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Figure 5.10: Evaluation of the factored PSR on the simulated traffic system. The median marginal
prediction error is plotted versus the training length. The median is taken over fifty
trials. The augmented model realizes the greatest improvement over the completely-
factored (i.e., baseline) model when the most traffic is on the road.

Each car corresponds to a different observation dimension.

Cars enter the field of view stochastically, contingent upon a fixed congestion

threshold θ: no new cars enter the field of view if there are already θ cars in the

field of view. The low, medium, and high traffic levels discussed below correspond

to θ values of two, three, and four, respectively. Each car that enters the field of

view is assigned an unused observation dimension that remains unchanged until it

disappears from the field of view. Each car has a default velocity that it will maintain

unless the car in front of it was going too slowly at the last time step. In that case,

the car will change lanes or slow down, depending on traffic in the neighboring lanes.

Learning a single PSR for the whole system was intractable because the predic-

tion vector would have size combinatorial in the number of cars: a conservative lower

bound on this size is 125,000 for the high traffic setting. The component models in

the factored PSR use much smaller state vectors (cf. Figure 5.11); they automati-

cally exploited the structure among the observation dimensions that results from the

spatially localized interaction between cars.

The baseline scope f i just selects the position of car i; the augmented scope
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Figure 5.11: Simulated traffic system: average number of core tests for the augmented versus base-
line models. One point is plotted for each training sequence length. The marker
shape indicates the level of traffic. The line x = y illustrates that the augmented
model always has more tests.

f i′ also selects the position of the car directly in front of i. A factored PSR for

this system consists of multiple copies of one linear PSR M, since each observation

dimension corresponds to a car of initially unknown default velocity. Each time a

new car i enters the field of view, a new copy Mi of M is initialized. When car i

leaves the field of view, Mi is discarded. To train M, I divided the agent’s single

training sequence into multiple overlapping trajectories: a trajectory begins when a

car enters the field of view and ends the first time the car exits the field of view. I

took the trajectories for car i and passed them through f i (or f i′), then gave them

to the reset algorithm (James & Singh, 2004) to learn the linear PSR M.

Because the joint observation space was so large, I evaluated the accuracy of the

model using marginal predictions for each car: at each time τ , I used the component

model Mi to get an estimate p̂(i, x, τ) of the probability of car i moving to space x at

time τ +1. The error measure is the mean over τ , i, and x of (δx − p̂(i, x, τ))2, where

δx is 1.0 if x is the actual next position of car i and 0.0 otherwise. Note that 0.0

error is not always attainable, since not even the full history will always be sufficient
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to predict the next position of each car. Overall, as with the first example system,

the augmented model made better predictions (Figure 5.10) but required more core

tests (Figure 5.11).

Learning Model Scopes

In the previous experiments, the scopes of the component models within the

factored PSR were manually specified, so the learning algorithm simply consisted of

learning the component models with those given scopes. The experiments in this

section demonstrate that one can use a simple local search algorithm (Figure 5.6) to

automatically learn the scopes of the component models from the data.

For these experiments, the “learn factored PSR” function in Figure 5.6 learned

each component linear PSR using the suffix-history algorithm (Section 2.1). The

suffix-history algorithm was executed with several values of its free parameter (for

estimating matrix ranks), each of which produced a candidate component model.

Each of these candidates was evaluated on the portion of the training data that was

also used for evaluating the overall factored PSRs. The candidate component model

with the highest marginal likelihood for the observation dimensions in its scope was

used as the component model in the factored PSR.

I used the local search algorithm to learn models of the grid world domain for

several different amounts of training data. I evaluated the learned factored PSRs

on a separate testing sequence (not the same data used for evaluating the candidate

models in the local search) using the same mean squared error measure that I used

in the previous experiments with the grid world. These results are shown in Figure

5.12, which also includes the results from the previous experiments with manually-

specified scopes (i.e., the results in Figure 5.8). For the smaller training lengths, the

local search algorithm performs comparably to the models with manually specified
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Figure 5.12: Evaluation of the factored PSR with learned component scopes in the grid world. The
median joint prediction error is plotted versus the training length. This plot includes
the results from Figure 5.8 (with the manually chosen scopes) and adds the results from
the “Local Search” algorithm for automatically choosing the model scopes. The local
search algorithm leads to significantly more accurate models for the larger training
lengths.

scope. For the larger training lengths, the local search algorithm achieves error that

is several orders of magnitude better than the models with manually specified scope.

To demonstrate that the local search algorithm is adjusting its scope selection to

reflect the amount of training data, I measured the average number of observation

dimensions included in the component models of the factored PSR (Figure 5.13).

The average scope increases with the amount of training data, since that additional

data supports the learning of more complex models (i.e., those with larger scope).

Also, this figure shows that the algorithm does not simply exit after creating the

initial model (which would have only one dimension per component model). Rather,

the algorithm is searching over several candidate models, adding multiple dimensions

to the component models.

While the local search algorithm can learn a more accurate model than using a

manually specified scope, the process of searching over several candidate factored
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Figure 5.13: The average number of observation dimensions in the component models learned by
the local search algorithm. The longer training lengths support the use of component
models with larger scope.

PSRs requires additional time. Specifically, for the grid world experiments (running

on a 2.2GHz dual-processor machine with 1GB of RAM), learning the baseline fac-

tored PSR model (i.e., each component model’s scope was manually set to contain

only a single dimension) took approximately 15 minutes. The whole local search

procedure took approximately 95 minutes when using 1,000 time steps of training

data and approximately 255 minutes (4.25 hours) when using 10,000,000 time steps

of training data (because the local search performed more search steps with the

additional training data).

I also tested the local search algorithm upon the simulated traffic system. For

this system, there is only one component model to be learned; different copies of that

component model are used to model different cars.3 I evaluated candidate component

models in the local search procedure according to the average likelihood they assign

to the modeled car moving to its actual next position. The observation dimensions

3Even though the models for the different cars are initialized the same way, as the model for a
car receives observations about that car, it will tailor its predictions based upon the behavior of
that particular car.
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Figure 5.14: Evaluation of the factored PSR with learned component scopes on the simulated traffic
system. The median marginal prediction error is plotted versus the training length.
This plot includes the results from Figure 5.10 (with the manually chosen scopes) and
adds the results from the “Local Search” algorithm for automatically choosing the
model scopes. The local search algorithm does well in the medium and high traffic
cases. For the low traffic, it may be overfitting when searching for the proper model
scopes (see text for discussion).

from which the local search algorithm could select were

• the position of the modeled car (included in the initial/baseline model)

• the position of the closest car in front of the modeled car

• a bit to indicate if there is a car on the left of the modeled car

• a bit to indicate if there is a car on the right of the modeled car.

I ran the local search algorithm upon data from the traffic simulator at each of

the low, medium, and high traffic levels. Figure 5.14 compares the error of factored

PSRs learned using the local search procedure with the error of the factored PSRs

learned in the previous experiments (with manually provided scopes). For the high

traffic system, the local search model has error between that of the two models with

manually specified scopes, with the local search model’s error reaching the better

of the comparison models’ error for the higher amounts of training data. For the

medium traffic system, the local search model performs as well as the better of the

comparison models. For the low traffic system, the local search procedure does not
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Figure 5.15: The fraction of trials on the simulated traffic domain in which each observation dimen-
sion was included in the scope of the model returned by the local search procedure.
The “front,” “left,” and “right” are the observation dimensions for the car in front, to
the left, and to the right of the modeled car (whose position is always included in the
scope).

perform as well as the comparison models, possibly due to overfitting.

In particular, the training data from the low traffic system will have few examples

where cars are side-by-side, so including the observation dimensions that indicate

the presence of cars on the side may increase the average likelihood on the validation

data but actually decrease model accuracy. Indeed, Figure 5.15 illustrates that in

the low traffic case it is not unusual for the local search procedure to include as least

one of the “car on left” or “car on right” observation dimensions, which may explain

why the local search models did not perform as well as the models with the smaller,

manually-specified scopes.

For each of the traffic levels and amounts of training data, Figure 5.15 illustrates

the fraction of trials in which each observation dimension was included in the scope

of the model. Overall, the most commonly selected observation dimension is the

position of the car in front of the one that is being modeled, which fits with the

actual decision procedure that occurs in the simulation and with one’s intuition

about the most important information from history.

In summary, these experiments demonstrate that one can use a basic local search

procedure to learn the scopes of the component models in the factored PSR. In order
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to scale to large numbers of observation dimensions, the algorithm as described in

Figure 5.6 would need some simple modifications. In particular, rather than trying

all possible dimensions to add to a component model’s scope, one could use some

domain-specific knowledge (e.g., locality/neighborhood information about observa-

tion dimensions) to try only a subset of the dimensions. One could also limit the

number of dimensions that are included in any component model’s scope. Both of

these modifications could reduce the number of component models that need to be

learned and evaluated, leading to a significant reduction in running time.

5.3.2 Real-world Traffic Data

The third example domain for the factored PSR experiments is a real-world ver-

sion of the simulated traffic domain presented above. The data was collected as part

of the Next Generation SIMulation (NGSIM) project (U.S. Federal Highway Admin-

istration, 2006b) that captures traffic movement along approximately 500 meters of

six-lane freeway in the San Francisco Bay area (U.S. Federal Highway Administra-

tion, 2006a). This is a rich data set, useful for analyzing many different aspects of

traffic movement (e.g., Lu & Coifman, 2007; Brockfeld & Wagner, 2006). (A video

is available at http://www.youtube.com/watch?v=JjxNu2kbtDI.)

The factored PSR model is built to predict traffic movements relative to a given

reference car (i.e., the car in which the model would be employed). For these ex-

periments, observations are only possible within some field of view that is defined

relative to the front, center point of the reference car. The field of view extends 15

feet on either side, 100 feet behind, and 150 feet in front. Figure 5.16 shows the field

of view of some car at one time point of the data. One can see that, even though

traffic lanes are clearly present, the cars’ positions in the lanes vary significantly.

The factored PSR consists of one component model for each car. The observations
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Figure 5.16: A overhead snapshot from a time step of the NGSIM traffic data. The rectangles are
cars, and the direction of travel is toward the right of the page. The field of view is
defined relative to the car marked by the ’x’.

of the component model were discretized, instantaneous, relative accelerations in the

x (side-to-side) and y (forward-and-back) dimensions. Acceleration values were mea-

sured in feet per second squared. I discretized the y acceleration into bins of width

1; the data ranged from approximately -10 to 10. I discretized the x acceleration into

3 bins: (−∞,−20), [−20, 20], and (20,∞). The threshold of 20 was selected after

noting a correlation in the data between lane changes and spikes in x acceleration of

magnitude 20 or greater.

The data for training the model consists of trajectories of relative accelerations:

for each reference car, one obtains a trajectory of data each time a car passes through

the field of view (or if a car enters the field of view and remains there until the end

of the data). I used each car in the training data as a reference car, adding all the

associated trajectories into the training set for the PSR. I used the NGSIM I-80

traffic data from the 4:00–4:15 time period for training. In both testing and training,

I sub-sampled the original files (which have an observation every 1/10 second) to get

one observation every second.

For testing, I used a subset of the 5:00–5:15 data from the NGSIM I-80 traffic data.

The testing data represents approximately one minute of real time. I evaluated the

factored PSR model on each trajectory for each reference car in the testing data. The

evaluation uses the same error measure as in the simulated traffic system, except that

in this case the model predicts the likelihood of the actual next acceleration (rather
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Figure 5.17: Comparison of the factored PSR with other models in predicting NGSIM traffic data.
The error measure is detailed in the text. Note that 0.0 error is not always attainable,
since not even the full history will always be sufficient to predict the next acceleration
of each car. Thus, this error measure is solely used for comparing models.

than the actual next position, as used for evaluation with the simulated system).

Predictions about position are easily calculated from the predictions of acceleration

and the last observed position and velocity.

I compared the factored PSR with two other classes of models. The first is a

“naive” model that predicts that the acceleration in one second will be the same

as the last observed acceleration. The second class of models are kth order Markov

models for 1 ≤ k ≤ 4, which were trained on the same data that I used to train the

factored PSR.

Figure 5.17 compares the error for each of these models on the testing data. The

naive model does much worse than the other models. The poor performance of the

fourth-order Markov model is likely due to data sparsity in the training set (i.e.,

not all length-four histories are seen in the data). The other Markov models and

the PSR obtained similar error, with the PSR achieving the lowest error. Learning
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a reasonably accurate PSR model of a system as complex as highway traffic is yet

another step in developing PSR models and learning algorithms that an agent can

use to build a model of a complex environment.

5.4 Discussion

Assuming statistical independence is an approximation technique commonly used

to make computation tractable (e.g., Engelhardt, Jordan, & Brenner, 2006; Sandberg

et al., 2001; McCallum & Nigam, 1998). This work on factored PSRs is the first to

use such an independence assumption with predictive state models. The factored

PSR model is a first step in using graphical models techniques to scale PSRs to

complex systems.

5.5 Summary

This chapter presented the factored PSR model and an algorithm for learning

a factored PSR from experience in a dynamical system. The factored PSR is de-

signed to leverage conditional independencies among the observation dimensions.

One may assume conditional independencies that do not strictly hold in the system

in order to construct a model that is learnable but makes approximate predictions.

This property allows one to trade off compactness for accuracy within the factored

PSR framework. In particular, for very large systems, one can make independence

assumptions that simplify the modeling task to the point of being tractable.

The results in this chapter include a proof that making stronger independence

assumptions will not increase the size of the model, and an empirical demonstration

that stronger independence assumptions can decrease the model size and complexity

significantly. This decrease in size permitted me to learn factored PSR models of
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systems that were too complex to model with a single linear PSR. Thus, the factored

PSR represents progress toward modeling complex dynamical systems with PSR

models.



CHAPTER VI

Multi-Mode PSRs

This chapter describes a class of structured PSR models called multi-mode PSRs

(MMPSRs) for modeling uncontrolled dynamical systems that switch between several

modes of operation. The MMPSR makes predictions conditioned upon the current

mode, allowing specialized predictions for each mode. Unlike latent-variable models

like hierarchical HMMs (Fine, Singer, & Tishby, 1998), the MMPSR requires that

the modes be a function of past and future observations. This requirement yields

advantages both when learning and using an MMPSR, as I explain throughout this

chapter.

The particular type of structure that the MMPSR is designed to exploit — the

different modes of operation of the system — distinguishes it from the hierarchi-

cal PSR (Chapter IV) and the factored PSR (Chapter V) models described in the

previous chapters. Thus, the MMPSR may effectively model systems that are not

amenable to either the hierarchical PSR or the factored PSR. I present a detailed

comparison of the MMPSR and the other structured PSR models in Section 7.1,

after I fully describe the MMPSR model.
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predicts observations

predicts modes

given mode

low-level model

high-level model
(linear PSR)

Figure 6.1: The component models in an MMPSR.

6.1 The Multi-Mode PSR (MMPSR)

The MMPSR is inspired by the problem of predicting cars’ movements on a high-

way. One way to predict the movements of a car on the highway would be to

determine what mode of behavior the car was in — e.g., a left lane change, right

lane change, or going straight — and make predictions about the car’s movement

conditioned upon that mode of behavior. The MMPSR makes predictions in this

way using two component models which form a simple, two-level hierarchy (Figure

6.1). When modeling highway traffic, the high-level model predicts the mode of be-

havior, and the low-level model makes predictions about the car’s future positions

conditioned upon the mode of behavior. The remainder of this section formalizes the

MMPSR model in general terms, making it applicable to dynamical systems other

than highway traffic.

6.1.1 Observations and Modes

The MMPSR can model uncontrolled, discrete-time dynamical systems, where the

agent receives some observation Oi at each time step i = 1, 2, . . .. The observations

can be vector-valued and can be discrete or continuous. In addition to the obser-

vations that the agent receives from the dynamical system, the MMPSR requires

that there exists a discrete set of modes the system could be in, and that there is

some mode associated with each time step. The system can be in the same mode for
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ψ(τ − 1), ψ(τ) ψ(τ + 1), ψ(τ + 2), ψ(τ + 3) ψ(τ + 4), . . .

ψi+2 =ψi+1 =ψi =

. . .. . .

ψi ψi+1 ψi+2

Oτ+1 Oτ+2 Oτ+4Oτ+3OτOτ−1

Figure 6.2: How the mode variables relate to the observation variables. The observation at time
τ is Oτ , the ith mode seen since the beginning of time is ψi, and ψ(τ) is the mode at
time τ .

several time steps, so a single mode can be associated with multiple contiguous time

steps (Figure 6.2). I use ψi to denote the ith mode since the beginning of time, and

I use ψ(τ) to denote the mode for the τ time step (Figure 6.2).

What distinguishes MMPSR models from hierarchical latent-variable models (e.g.,

hierarchical HMMs (Fine et al., 1998)) is the fact that the modes are not latent. In-

stead, they are defined in terms of past and possibly future observations. Specif-

ically, the modes used by an MMPSR must satisfy the following recognizability

requirement: There is some finite k such that, for any sequence of observations

O1, . . . , Oτ , Oτ+1, . . . Oτ+k (for any τ ≥ 0), the modes ψ(1), . . . , ψ(τ − 1), ψ(τ) are

known at time τ + k (or before).

Definition 6.1. A mode ψ(τ) is known at time τ ′ (where τ ′ can be greater than τ)

if the definitions of the modes and the observations O1, . . . , Oτ ′ from the beginning

of time through time τ ′ unambiguously determine the value of ψ(τ).

To reiterate, the recognizability requirement differentiates the MMPSR from hi-

erarchical latent-variable models. If one were to incorporate the fact that modes

were recognizable into a hierarchical latent-variable model, one would in effect get
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time τ

time τ + k

?

Figure 6.3: A situation in the traffic system where the mode for the last few time steps of history
is unknown. After moving from the position on the left of the figure at time τ to the
position towards the right at time τ + k, it is unclear if the car is beginning a left lane
change or is just weaving in its lane. These two possibilities will assign different modes
to the time steps τ through τ + k (i.e., “left lane change” vs. “going straight”).

an MMPSR. The recognizability of the modes plays a crucial role in learning an

MMPSR, because the modes for the batch of training data are known. If the modes

were not recognizable, one would have to use the expectation-maximization algorithm

to estimate the latent modes, as is typical with hierarchical latent-variable models.

The MMPSR also exploits the recognizability of the modes when maintaining its

state, as described in Section 6.1.2.

Because the modes can be defined in terms of past and future observations, the

MMPSR is not limited to using history-based modes. A model using history-based

modes would only apply to systems where the current mode ψ(τ) was always known

at time τ . In contrast, the MMPSR can model systems where the agent will not

generally know the mode ψ(τ) until several time steps after τ . The traffic system is

an example system where there are natural modes (e.g., a “left lane change” mode)

that can be defined in terms of past and future observations, but not past observations

alone. During the first few time steps of a left lane change, the mode at those times

is not known from the past observations of the car (Figure 6.3): the car could be in

the “going straight” mode but weaving in its lane, or it could be starting the left

lane change mode. Even though the left lane change mode will not immediately be

known, it can be recognized when the car crosses the lane boundary. Thus, the left

lane change mode can be defined as “The car crossed a lane boundary from right
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to left within the most recent k time steps or it will do so within the next k time

steps.”

Defining the modes in terms of future observations provides a common characteris-

tic with other PSR models, where the state is defined in terms of future observations.

The PSR literature shows that a handful of features of the short-term future can be

very powerful, capturing information from arbitrarily far back in history (Singh et

al., 2004). This motivates the MMPSR’s use of modes that are defined in terms of

past and future observations.

Note that the recognizability requirement is a constraint on the definitions of

the modes and not on the dynamical system itself (although the dynamical system

determines if a set of modes’ definitions meet the requirement). That is, requiring

the modes to be recognizable does not limit the dynamical systems one can model

with an MMPSR. This is because the modes that are defined for use by the MMPSR

do not need to match the modes that the system actually used to generate the data.

I expect that the MMPSR will be most useful when its modes are defined so they

are closely related to the system’s modes for data generation. However, this is not a

strict requirement. Section 6.2.1 includes experiments with an example system that

highlights this point.

In addition to the requirement that modes be known at some point in the future,

the MMPSR makes the following independence assumptions that characterize the

relationship between modes and observations:

1. The observation Oτ+1 is conditionally independent of the history of modes given

the mode at time τ + 1 and the history of observations O1, . . . , Oτ .

2. The future modes ψi+1, . . . are conditionally independent of the observations

through the end of ψi, given the history of modes ψ1, . . . , ψi.
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. . . . . .. . .

. . . . . .. . .

Low-level Model Predictions(b)

High-level Model Predictions(a)

Oτ+1 Oτ+2OτOτ−k

ψi ψi+1ψi−1

ψi−1

Oτ+1 Oτ+2OτOτ−k

ψi ψi+1

Figure 6.4: Predictions made by the component models of the MMPSR. The subscripts for the
modes differ from the observations because each mode will last for several time steps
(so i << τ). The variable that is predicted is shown in the box, while the variables
that are conditioned upon are shaded. (a) The high-level model predicts ψi+1 given the
history of modes (shaded). (b) The low-level model predicts Oτ+1 given the history of
observations and current mode (shaded).

Even if the independence properties do not strictly hold, the MMPSR forms a viable

approximate model, as demonstrated by my empirical results (Section 6.2).

These independence properties lead to the forms of the high and low-level models

within the MMPSR. The low-level model makes predictions for the next observation

given the history of observations and the mode at the next time step (Figure 6.4.b).

The low-level model also predicts the probability of a mode ending at time τ , given

ψ(τ) and the history of observations through time τ . The high-level model makes

predictions for future modes given the history of modes (Figure 6.4.a). Because of
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the second independence assumption, the high-level model can be learned and used

independently from the low-level model; it models the sequence of modes ψ1, ψ2, . . .

while abstracting away details of the observations.

6.1.2 Updating the MMPSR State

The MMPSR updates its state at every time step to reflect the new history.

Suppose for a moment that for all τ , ψ(τ) was known at time τ . Then the high-

level model would update its state whenever a mode ends, using that mode’s value

as its “observation.” The low-level model would update its state after every time

step τ , conditioned upon the most recent observation Oτ and the mode ψ(τ). Even

though ψ(τ) will not always be known at time τ , this process defines the states of

the high and low-level models under the assumption that some hypothetical values

ψ(1), . . . , ψ(τ) are the modes of history. Each sequence of hypothetical values has

some posterior probability given the observations through time τ . The number of

sequences ψ(1), . . . , ψ(τ) with non-zero posterior probability will remain bounded,

even as τ → ∞. Specifically, only one sequence of hypothetical values for the known

modes will have non-zero posterior probability (i.e., the modes’ true values), and only

a finite (and typically small) window of past modes will be unknown, because of the

recognizability requirement.

The MMPSR state at time τ consists of the posterior distribution over the modes

of history ψ(1), . . . , ψ(τ) and the high and low-level model states corresponding to

each sequence ψ(1), . . . , ψ(τ) with non-zero posterior probability. At the next time

step τ + 1, the MMPSR updates its state as follows. The MMPSR computes the

high and low-level models’ states for a given ψ(1), . . . , ψ(τ), ψ(τ + 1) from the high

and low-level models’ states at time τ using the respective model updates. The

MMPSR updates the posterior distribution over modes of history using Bayes’ Rule.
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posterior distribution of modes:

part of MMPSR state at time τ
prediction made by low-level

model (Figure 6.4.b)

Pr(Ψ|O)Pr(ψ(τ + 1)|O,Ψ) ·

Pr(Ψ, ψ(τ + 1)|O,Oτ+1) ∝ Pr(Oτ+1|O,Ψ, ψ(τ + 1)) Pr(Ψ, ψ(τ + 1)|O)

by independence assumption 1

by indep. assump. 2

Pr(ψ(τ + 1)|Ψ)

Pr(Oτ+1|O,ψ(τ + 1))

predicted by low-level model∑

i=0,1 Pr(ψ(τ + 1)|Ψ, Iτ = i) Pr(Iτ = i|ψ(τ), O)

Figure 6.5: Updating the MMPSR’s posterior distribution over the modes of history.

Let O
def

=O1, . . . , Oτ be the observations through time τ and let Ψ
def

=ψ(1), . . . , ψ(τ) be

the modes through time τ . Let Iτ be an indicator variable that is 1 if a mode ends at

time τ and 0 otherwise. The MMPSR computes the updated posterior distribution

Pr(Ψ, ψ(τ + 1)|O,Oτ+1) using the following breakdown, illustrated in Figure 6.5:

Pr(Ψ, ψ(τ + 1)|O,Oτ+1) ∝ Pr(Oτ+1|O, Ψ, ψ(τ + 1)) Pr(Ψ, ψ(τ + 1)|O).

• The first term on the right-hand side is equal to Pr(Oτ+1|O,ψ(τ + 1)), by

independence assumption 1. This is a prediction for the next observation Oτ+1

given the history of observations O and the mode ψ(τ + 1) at the next time

step, which is made by the low-level model (Figure 6.4.b).

• The second term on the right-hand side is equal to Pr(Ψ|O) Pr(ψ(τ +1)|O, Ψ).

The MMPSR computes these two terms as follows:

– The Pr(Ψ|O) term is the posterior distribution over history modes Ψ, which

is part of the MMPSR state at time τ .

– The last probability needed to compute the updated posterior is Pr(ψ(τ +

1)|O, Ψ), which equals Pr(ψ(τ +1)|Ψ) by independence assumption 2. The

MMPSR computes this by marginalizing an indicator variable Iτ that is 1
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if a mode ends at time τ and 0 otherwise:

Pr(ψ(τ + 1)|Ψ) =
∑

i=0,1

Pr(Iτ = i|ψ(τ), O)Pr(ψ(τ + 1)|Ψ, Iτ = i).

The Pr(Iτ = i|ψ(τ), O) predictions are made by the low-level model. The

source of the Pr(ψ(τ + 1)|Ψ, Iτ = i) predictions depends on i.

∗ For i = 0, the mode does not end at τ , so ψ(τ + 1) must equal ψ(τ).

Thus, if ψ(τ + 1) matches the ψ(τ) ∈ Ψ, then Pr(ψ(τ + 1)|Ψ, Iτ = 0) is

1.0; otherwise, it is 0.0.

∗ For i = 1 (i.e, the mode ended at time τ), Pr(ψ(τ + 1)|Ψ, Iτ = 1)

is the prediction for a future mode given a history of modes, which is

computed by the high-level model (Figure 6.4.a).

Because the learned component models of an MMPSR will not be perfectly accu-

rate, the Bayesian posterior update may not assign zero probability to hypothetical

mode values even if they contradict the recognized value for those modes. Thus, in

addition to the Bayesian posterior update, after each time step the MMPSR explic-

itly assigns zero probability to values of the history modes that contradict the known

values, renormalizing the distribution after those changes. In addition, one can use

pruning techniques (e.g., keep only the k most likely sequences of history modes) to

reduce the number of history mode sequences that are maintained in the posterior

distribution.

6.1.3 Making Predictions with the MMPSR Model

If a model can always make predictions about the next observation Oτ+1 given

the history of observations O1, . . . , Oτ , then those predictions can be combined to

make any prediction about the system, including predictions further than one step

in the future. An MMPSR can make predictions about the next observation Oτ+1
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given the history of observations O1, . . . , Oτ in the following way. For any given

values of the modes ψ(1), . . . , ψ(τ +1), the low-level model can directly predict Oτ+1

given O1, . . . , Oτ . Since not all of ψ(1), . . . , ψ(τ + 1) will be known at time τ , the

MMPSR makes predictions about Oτ+1 given O1, . . . , Oτ by marginalizing the modes

that are not known. This marginalization can be done relatively efficiently by using

the distribution over modes that the MMPSR maintains.

To make predictions about observations several time steps in the future, it can

be more efficient to make those predictions directly rather than calculating them

from several next-observation predictions (cf. Singh et al., 2004). For example, in

my empirical results, I include in the MMPSR several regression models to predict

features of the future given the state of the low-level model and the most recent mode.

As with the next-observation predictions, the overall prediction from the MMPSR

marginalizes the unknown modes of history.

6.1.4 Learning an MMPSR

Learning an MMPSR consists of learning the high and low-level component models

from a single sequence of observations (i.e., the training data). The high-level model

is a linear PSR, so it is learned by applying the suffix-history algorithm (Wolfe et al.,

2005) to the sequence of modes of the training data. Note that the recognizability

of the modes ensures that the learning algorithm can correctly and automatically

determine the mode for each time step of the training data (except perhaps a few

time steps at the beginning and/or end of the data).

Learning the low-level model also requires the correct modes of the training data,

since the low-level model makes predictions and updates its state conditioned upon

the corresponding mode. One way to implement this conditional form is to have

separate parameters of the low-level model for each mode. For example, the low-
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level model could consist of several parameterized functions from features of history

(i.e., the state of the low-level model) to predictions about the next observation, with

a separate function for each mode. The function for each respective mode can then

be learned by applying an appropriate regression method to the time steps of training

data that have that mode. This form allows the low-level model to make specialized

predictions for each mode. It is the form I use in the following experiments.

6.2 Experiments

I learned MMPSR models for three systems: a simple random walk system, and

both simulated and real-world highway traffic. The low-level model includes param-

eterized functions for each mode that map features from a finite window of history to

predictions of interest. I learned each function using locally weighted linear regres-

sion (Cleveland, Devlin, & Grosse, 1988), a flexible non-linear function approxima-

tion method. I learned the high-level linear PSR using the suffix-history algorithm

(Wolfe et al., 2005).

Because the modes are defined in terms of observations, the modes of the train-

ing data are known, which is critical in ensuring efficient training of the model. If

the modes were not known, then an iterative estimation procedure would be needed

to estimate the modes (e.g., expectation-maximization), often requiring several it-

erations to converge. At each iteration, the estimated modes would change, so the

low-level model would have to be re-learned. In contrast, the low-level model of the

MMPSR is only learned one time, using the true values of the modes because the

modes are recognizable. For purposes of comparison, it would be possible to adapt

hierarchical HMMs to exploit these modes, but as discussed above this would effec-

tively yield an MMPSR. The comparison would then become a comparison between
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Figure 6.6: The Markov chain to generate the modes for the random walk system.

the suffix-history learning algorithm and the EM learning algorithm, a comparison

which has already been done (Wolfe et al., 2005) with results showing the suffix-

history algorithm to be generally superior. Therefore, I do not evaluate hierarchical

HMMs here.

6.2.1 Random Walk

The empirical evaluation of the MMPSR begins with a simple random walk

system, where the (scalar) observation at each time step is the change in (one-

dimensional) position from the last time step. That change is given by the mode —

which can take on values -1, 0, and 1 — plus mean-zero Gaussian noise. The mode is

determined by a Markov chain, shown in Figure 6.6. The features that comprise the

state of the low-level model are the average observations over the last k time steps

for k ∈ {2, 5, 10}, along with a constant bias feature.

Because of the noise, the modes used to generate the data — call them the gen-

erative modes — cannot be defined in terms of observations. Nevertheless, one can

still define a set of recognizable modes in terms of observations. For the random walk

system, I defined the recognizable mode for time step τ as the mode (-1, 0, or 1) that

is closest to the average observation over five time steps, from τ − 2 through τ + 2.

(Note that this mode definition includes both historical and future observations.)

While there will not be perfect correspondence between the recognizable modes

and the generative modes, there is enough correlation that an MMPSR learned us-

ing the recognizable modes models the system well. Figure 6.7 shows the average
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Figure 6.7: Predicting the current generative mode in the random walk system with an MMPSR.

likelihood that the MMPSR assigns (from its distribution over modes of history) to

each recognizable mode whenever its related generative mode was the (latent) system

mode at that time step. The high and low noise results correspond to using Gaussian

noise with standard deviations 0.5 and 0.25, respectively. Though the higher noise

leads to less certainty about the mode, the MMPSR attributes high probability to

the generative modes for both noise levels.

In addition to tracking the modes well, the MMPSR is also able to predict the

future observations well. Figure 6.8 shows the average error for predicting several

time steps in the future for the high and low-noise systems. The MMPSR consistently

achieves lower error than using locally-weighted linear regression on the entire data

set, which does not explicitly leverage the existence of modes. When the low-level

model is given the true recognized mode, lower error can be obtained, though the

MMPSR already achieves close to that error, especially in the low-noise system.

6.2.2 Traffic

I also learned MMPSRs to model simulated and real-world highway traffic. The

MMPSR predicts the movements of a car given the history of that car and some
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Figure 6.8: Prediction error of the MMPSR and comparison models on the random walk system.
To give a qualitative sense of the error, “Mean Dist.” is the average distance traversed
by the random walk. “True Mode” is the error when the low-level model in the MMPSR
is given the true mode. “Local Reg.” uses locally-weighted linear regression over the
entire data set.

neighboring cars. The observation at each time step consists of the x velocity, y

velocity, and headway for the car being modeled, where headway is the time to

collision with the car in front. I use “x” to refer to the lateral or side-to-side direction,

while “y” refers to the longitudinal or forward direction. The features of history that

composed the state of the low-level model were as follows: average y velocity over

three different windows (the most recent 0.5 seconds, the 0.5 seconds before that,

and the most recent 5 seconds); average x velocity over the most recent 0.5 seconds,

and the 0.5 seconds before that; the x position; the distance to the closest car in

front, and its average y velocity over the last 1.0 seconds; and a constant term. I

used left and right lane changes as two of the modes of behavior for both simulated

and real traffic. I defined a lane change as any 4.0-second window where the car

center crossed a lane boundary at the midpoint of the window.
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Simulated Traffic

The simulated traffic is a continuous-observation version of the simulated traf-

fic system I used in the factored PSR experiments (Section 5.3.1). It consists of

three lanes of traffic, with cars entering the field of view stochastically. (A video

is available at http://www.youtube.com/watch?v=8eHx EzJOs0.) Each car has a

default velocity that it will maintain unless there is a car in the way. In that case,

if there is room in an adjacent lane, the car will change lanes; otherwise, it will slow

down. I added Gaussian noise to the observations of the cars’ positions to emulate

the inherent noise in physical sensors.

In addition to left and right lane change modes, I experimented with several

possible sets of modes for the traffic data, including modes defined in terms of y

velocity, headway, and a combination of y velocity and headway. The results I

present here use left and right lane change modes and two different “stay-in-lane”

modes for cars at different speeds (i.e., fast and slow).

I compare the accuracy of the learned MMPSR with two other prediction methods:

a baseline method that predicts that the car will maintain its last observed velocity,

and locally weighted linear regression trained upon the entire data set. I evaluated

the models based upon their predictions about how far each car would travel in the

y direction over the future 2 and 5 seconds. The MMPSR performed significantly

better than both comparison methods at both the 2 and 5-second horizons (Figure

6.9). (The error for local regression is above the scope of the plot but is listed in

the tables.) It is worth noting that, even in the presence of noisy observations, the

MMPSR achieves less than two percent error, compared to the distance traveled, for

both two and five seconds in the future.

Not only does the MMPSR predict the movement of the cars accurately, it also
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2 sec. L1 Error (feet) Percent Error
MMPSR 4.856 ± 0.722 1.615 ± 0.219
Last Vel. 7.952 ± 0.130 3.397 ± 0.063

Local Reg. 184.165 ± 16.022 94.298 ± 7.105

5 sec. L1 Error (feet) Percent Error
MMPSR 9.172 ± 1.950 1.151 ± 0.278
Last Vel. 19.197 ± 0.527 3.176 ± 0.058

Local Reg. 420.237 ± 62.923 86.694 ± 11.396

Figure 6.9: Error in predicting longitudinal distance traveled for simulated traffic. The MMPSR
achieves the lowest error for predicting both 2 and 5 seconds in the future. The confi-
dence intervals in the tables are two standard deviations, computed across 15 data sets.
The local regression results do not appear in the plot because the error is so high.
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Figure 6.10: Predicting the current mode for simulated traffic. “LLC” and “RLC” are the left
and right lane change modes; “Slow” and “Fast” are the two possible modes if a car is
not making a lane change. Left: likelihood assigned to the true mode by the learned
MMPSR. Right: the distribution of true modes, showing the low prior probability of
the lane change modes.

assigns reasonably high likelihood to the true value of the current mode (Figure

6.10). The low likelihoods for the lane change modes are primarily due to the low

prior probability of those modes (Figure 6.10).

Interstate 80 Traffic

I also learned MMPSRs to model real highway traffic on Interstate 80 (I-80) near

San Francisco. This is the same overall data set used in the factored PSR experiments

(Section 5.3.2), though the subset of the data used in these experiments differed

from the previous experiments. Recall that the data comes from approximately 500

meters of six-lane freeway (U.S. Federal Highway Administration, 2006a). (A video

is available at http://www.youtube.com/watch?v=JjxNu2kbtDI.)

As with the simulated traffic, I ran preliminary experiments with several sets of

mode definitions. Based on the models’ errors in those preliminary experiments, the

experiments presented here use modes determined by the y velocity and the headway

to the car in front, which I discretized into four and three bins, respectively. Along
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Figure 6.11: Predicting the current mode for I-80 traffic. The plot shows the likelihood assigned
to the true (or similar) modes by the learned MMPSR. Regarding the mode labels,
LLC and RLC are left and right lane changes; the other labels “Vk,j” indicate the
mode of a car that falls in the kth velocity bin (4 is fastest) and jth headway bin (3 is
the longest distance to the car in front).

with the two lane change modes, this gives fourteen total modes for the system.

Partly because of the fine distinctions between the modes (cf. the simulated traffic

with only two velocity bins), the MMPSR has more difficulty determining the true

mode than with the previous domains, as seen by the lower likelihoods assigned

to the true modes in Figure 6.11. As with the simulated data, the low likelihoods

assigned to the first two modes — the lane change modes — are primarily due to

a very low prior probability for those modes (Figure 6.12). The likelihood that the

MMPSR assigns to either the true mode or a similar mode (i.e., those that differ

by one notch in velocity or headway, but not both) is significantly higher than the

likelihood assigned to the true mode alone (Figure 6.11).

Even though the MMPSR does not always track the true mode, its predicted

modes are close enough to enable good predictions about the cars’ movements. I
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Figure 6.12: The distribution of true modes in the I-80 traffic, showing the low prior probability of
the lane change modes. Regarding the mode labels, LLC and RLC are left and right
lane changes; the other labels “Vk,j” indicate the mode of a car that falls in the kth

velocity bin (4 is fastest) and jth headway bin (3 is the longest distance to the car in
front).

evaluated these predictions in the same way as for the simulated traffic, including a

comparison with locally-weighted regression and predicting the last velocity. I also

evaluated an MMPSR that uses an “oracle” feature that peers into the future. This

feature is included in the low-level state, even though it will never be available online.

Nevertheless, the oracle MMPSR’s error provides a sense of the best error that could

be achieved. Specifically, the oracle feature is the desired prediction (i.e., the distance

the car will travel) minus the future value of the gap between it and the car it is

following.1

As with the simulated traffic, the MMPSR performed better than both the local-

regression and the last-velocity comparison methods at both the 2 and 5-second

1This evaluation only considers the time points where there is a car in front of the modeled car;
otherwise, the oracle feature is not defined. In the I-80 data set, there is almost always a car in
front, so the vast majority of the data is evaluated.
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MMPSR
Oracle MMPSR
Last Vel.
Factored PSR

2 sec. L1 Error Percent Error
MMPSR 4.185 ± 0.250 6.552 ± 0.228

Oracle MMPSR 3.615 ± 0.123 6.048 ± 0.258
Last Vel. 4.538 ± 0.161 6.601 ± 0.249

Factored PSR 3.705 –
Local Reg. 49.648 ± 2.416 99.258 ± 0.129

5 sec. L1 Error Percent Error
MMPSR 13.827 ± 0.501 9.092 ± 0.424

Oracle MMPSR 9.196 ± 0.263 6.265 ± 0.316
Last Vel. 17.216 ± 0.687 11.187 ± 0.511

Factored PSR 17.273 –
Local Reg. 110.548 ± 5.943 89.432 ± 0.547

Figure 6.13: Error in predicting longitudinal distance traveled for I-80 traffic. The “Oracle
MMPSR” error provides a sense of the best error that could be achieved. Among
the remaining models, the MMPSR achieves the lowest error for predicting 5 seconds
in the future and the second-lowest error for predicting 2 seconds into the future. The
confidence intervals in the tables are two standard deviations, computed across 15
data sets. The local regression results do not appear in the plot because the error is
so high. The results from the factored PSR experiments in Section 5.3.2 are presented
for comparison.
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horizons (Figure 6.13), with a considerable difference at the 5-second horizon. (The

error for local regression is above the scope of the plot but is listed in the tables.)

Although the observations in these experiments are significantly different from those

in the factored PSR experiments in Section 5.3 (which used discretized acceleration

values), for the sake of completeness, Figure 6.13 presents the error of those factored

PSRs in terms of L1 error in distance traveled.2 Although the factored PSR achieves

slightly lower error than the MMPSR for the 2-second predictions, the MMPSR is

significantly better at making 5-second predictions. Also, the error of the MMPSR is

reasonably close to that of the oracle MMPSR, despite all the information contained

in the oracle feature. Finally, it is worth noting that the MMPSR achieves less than

ten percent error (relative to distance traveled), even when predicting five seconds

in the future for cars at highway speeds. In absolute terms, this is only 14 feet, or

roughly one car length.

In addition to evaluating the MMPSR’s predictions about distance traveled in

the forward direction, I also evaluated its predictions about lateral movement. Fig-

ure 6.14 compares the MMPSR, the last-velocity model, and locally-weighted linear

regression. The last-velocity model does the worst, while the MMPSR and local re-

gression models are comparable. The percent error is so high because the true lateral

movement is often small. Thus, small absolute errors can translate to large percent

errors. However, in absolute terms, the average error of the MMPSR is quite small:

less than 1.5 feet for five seconds in the future.

Detailed Analysis

This section presents a more detailed analysis of the error of the MMPSR when

predicting the highway traffic on I-80, looking at the degree to which the high and

2The factored PSR experiments used a different subset of the Interstate 80 data.
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MMPSR
Last Vel.
Local Reg.

2 sec. L1 Error Percent Error
MMPSR 0.678 ± 0.120 99.057 ± 2.656

Local Regression 0.666 ± 0.027 102.652 ± 3.272
Last Velocity 0.908 ± 0.039 105.316 ± 1.918

5 sec. L1 Error Percent Error
MMPSR 1.348 ± 0.214 101.307 ± 4.148

Local Regression 1.301 ± 0.087 99.366 ± 0.352
Last Velocity 2.403 ± 0.103 135.781 ± 4.937

Figure 6.14: Error in predicting lateral movement of I-80 traffic. The last-velocity comparison
model has the highest error, while the MMPSR and local regression models are com-
parable. The confidence intervals in the tables are two standard deviations, computed
across 15 data sets. The percent error is so high because the true lateral movement is
often small, so small absolute errors can still translate to large percent errors.
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low-level models in the MMPSR contribute to the overall error. For this analysis, I

computed the error that would result if the MMPSR (hypothetically) always knew

the true value of the most recent mode ψ(τ) at time τ . This will not actually be

possible when using the model online, but for purposes of analysis I artificially altered

the MMPSR’s posterior distribution over the modes of history so that all the mass

is on the true values of the modes, even when those modes are not known from the

observations through the current time. In the following discussion, I refer to this

artificial scenario as the MMPSR that “always knows the true modes.” If such an

MMPSR achieves error comparable to the standard MMPSR, that would indicate

that the high-level model in the standard MMPSR is performing well, because it

is tracking the modes well enough to make predictions that are comparable to the

predictions made using the true mode values. Thus, the error of an MMPSR that

always knows the true modes is directly attributable to the low-level component

model.

Figure 6.15 compares the error of several models — including a standard MMPSR

and an MMPSR that always knows the true modes — when making predictions about

lateral movement. This figure breaks down the error according to the different modes

of behavior. Recall that there are two modes for the left and right lane changes (LLC

and RLC, respectively); the remaining modes are determined by the car’s velocity

(4 bins labeled V1 through V4) and headway to the car in front (3 bins, labeled 1

through 3). As expected, the lane change modes have the highest error, because they

are the only modes with significant lateral movement. For the left lane changes, the

MMPSR is comparable to the better of the last-velocity and local regression models.

For the right lane changes, the MMPSR does well predicting 5 seconds in the future,

but is slightly worse than the last velocity model for predicting 2 seconds in the
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future. The following analysis explains why this is the case.

The primary factor contributing to the error in the predictions during right lane

changes is the infrequent occurrence of right lane changes (cf. Figure 6.12). Because

the right lane changes are so rare, the MMPSR does not assign very high probabil-

ity to that mode when a right lane change is actually occurring (cf. Figure 6.11).

However, the data in Figure 6.15 for the MMPSR that always knows the true modes

shows that the MMPSR has a good model of both left and right lane changes.

Aside from the lane change modes, the error of the MMPSR that always knows

the true modes is very close to that of the standard MMPSR, both of which are

comparable to the local regression model. The last-velocity model does progressively

worse at higher velocities.

As with the lateral predictions, I also broke down the longitudinal predictions

according to mode, comparing the MMPSR with the other models, including an

MMPSR that always knows the true modes (Figure 6.16). There are a few things to

highlight about these results:

• The error of the local regression model was higher than the scope of these plots.

• Higher-velocity modes generally lead to higher error.

• Modes that occur infrequently (cf. Figure 6.12) tend to have high variance in

the errors.

• The standard MMPSR error is generally close to (or within the error bars of)

the error of an MMPSR that always knows the true modes. This indicates that

the MMPSR is tracking the current mode well enough to make predictions that

rival those made specifically for the car’s actual mode.3

3In some cases, the error when using the modes’ true values is actually higher. One explanation
for this phenomenon is that there may not be adequate training data for some modes. Another
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Figure 6.15: Error in predicting lateral movement of I-80 traffic, broken down by mode of behavior.
For clarity, the models’ errors are offset slightly along the x-axis. Regarding the mode
labels, LLC and RLC are left and right lane changes; the other labels “Vk,j” indicate
the mode of a car that falls in the kth velocity bin (4 is fastest) and jth headway bin (3
is the longest distance to the car in front). Error bars show plus/minus one standard
deviation over 15 data sets. See text for further details.



150

LLC RLC V1,1 V2,1 V3,1 V4,1 V1,2 V2,2 V3,2 V4,2 V1,3 V2,3 V3,3 V4,3
0

2

4

6

8

10

12

Mode of Behavior

M
ea

n 
L1

 E
rr

or
 (

fe
et

)
I−80 Data: Predicting Longitudinal Movement (2 sec.)

 

 

LLC RLC V1,1 V2,1 V3,1 V4,1 V1,2 V2,2 V3,2 V4,2 V1,3 V2,3 V3,3 V4,3
0

5

10

15

20

25

30

I−80 Data: Predicting Longitudinal Movement (5 sec.)

Mode of Behavior

M
ea

n 
L1

 E
rr

or
 (

fe
et

)
MMPSR
MMPSR, Always Knows True Modes
Oracle MMPSR
Last Velocity

Figure 6.16: Error in predicting longitudinal movement of I-80 traffic, broken down by mode of
behavior. For clarity, the models’ errors are offset slightly along the x-axis. Regarding
the mode labels, LLC and RLC are left and right lane changes; the other labels “Vk,j”
indicate the mode of a car that falls in the kth velocity bin (4 is fastest) and jth headway
bin (3 is the longest distance to the car in front). Error bars show plus/minus one
standard deviation over 15 data sets. See text for further details.
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• The oracle feature is particularly helpful when the headway is small (i.e., there

is car close in front). Visual inspection of the data suggests that this is because

of the traffic jams that occur on the highway. The oracle feature reveals if the

traffic will start moving again (which is understandably difficult to predict).

Summary of the MMPSR Results for I-80 Traffic

To summarize, the overall error of the MMPSR for modeling the I-80 traffic data

is quite small: for predicting five seconds in the future, the average lateral error is

less than 1.5 feet and the average longitudinal error is less than 14 feet (roughly

one car length). The lateral error is attributable to both the mode prediction and

the positional predictions of the MMPSR (i.e., both the high and low-level models).

Specifically, when the MMPSR does not have to predict the current mode but is

given the mode’s true value, the lateral error during lane changes is roughly cut in

half. On the other hand, the longitudinal error is primarily due to the low-level

model. Much of this error is likely due to the high variance in the data that results

from noisy camera images and the variation in the way different drivers behave.

6.3 Summary

This chapter describes the MMPSR, a hierarchical model designed for uncon-

trolled systems that switch between modes of behavior. Inspired by PSRs, the modes

are not latent variables but are defined in terms of both historical and future observa-

tions. Because the modes are defined in terms of observations, learning the MMPSR

model is more efficient than if the modes were latent variables. Furthermore, when

using the MMPSR model to make predictions, the MMPSR can adjust its state to re-

flect the true values of the modes because those true values are eventually recognized

possibility is that if a car is near the “border” between two modes of behavior, it may be better to
blend the predictions for those modes than to predict based upon the true mode.
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from the observations. Even though the modes are defined in terms of observations,

they are not restricted to be features of history, which would limit the expressiveness

of the model. Rather, the mode definitions can include future observations; the PSR

literature has shown that features of the short-term future can be very expressive,

capturing information from arbitrarily far back in history. This chapter also intro-

duced a learning algorithm for the MMPSR, using it to learn MMPSR models of

three systems. The MMPSR achieved lower error than comparison methods on all

three systems, including highway traffic on Interstate 80.



CHAPTER VII

Conclusions

When beginning my work on predictive state representations, the state-of-the-

art method for learning a PSR model was the reset algorithm for learning a linear

PSR from multiple sequences of experience in the system (Section 1.3). The first

contribution of this dissertation was the suffix-history algorithm for learning linear

PSR models (Section 2.1), which extends the reset algorithm so that it is able to

use a single sequence of experience for learning a model. This is important because

many agents will not be able to reset their environment to its initial state in order

to obtain multiple sequences of experience, so they will only have a single sequence

of experience. I empirically demonstrated that the suffix-history algorithm is able to

learn more accurate PSR models than the standard learning algorithm for POMDP

models, supporting the use of predictive state models. In addition to the empirical

evaluation, I provided theoretical guarantees about the running times of the suffix-

history and reset algorithms, proving that they have polynomial running time. This

is in spite of the fact that the set of potential core tests (from which the algorithms

choose a set of core tests for the linear PSR model) is exponentially large.

While the suffix-history and reset algorithms work very well on systems for which

the system-dynamics matrix has small rank, both the algorithms and the class of

153
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linear PSR models will scale poorly if applied directly to complex systems, where

the rank can be combinatorially large. Therefore, the primary contributions of this

dissertation center around three classes of PSR models that exploit different types of

structure in complex systems in order to tractably model such systems. These three

classes of structured PSR models — the hierarchical PSR (HPSR, Chapter IV), the

factored PSR (Chapter V), and the multi-mode PSR (MMPSR, Chapter VI) — are

the only known predictive state models that explicitly take advantage of structure in

an environment. The contributions relating to these structured PSR models include

the mathematical formulation of the three model classes along with the development

of a learning algorithm for each class. These learning algorithms (and associated

models) scale to larger systems than the suffix-history and reset algorithms, while

still leveraging the advantage of predictive state for learning accurate models.

7.1 Comparing the Hierarchical PSR, Factored PSR, and
Multi-Mode PSR

Each of the three classes of structured PSR models exploits a different type of

structure. For a given dynamical system, one can choose the type of structured

PSR model that is best suited to that system. For systems with multiple types of

structure, Section 7.2 describes how techniques from the different structured PSR

models can be combined into a single PSR model.

Among the three classes of structured PSR models, only the MMPSR is applicable

to systems with either continuous or discrete observations.1 This flexibility is a result

of allowing for a generic low-level model within the MMPSR. For example, in the case

of continuous observations the low-level model could consist of regression models, or

1There are several predictive state models that have been designed specifically for systems with
continuous observations, mentioned in Section 1.2.1.
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in the case of discrete observations the low-level model could consist of several linear

PSRs (one for each mode). However, the MMPSR is only applicable to uncontrolled

dynamical systems, whereas the HPSR and factored PSR can model controlled or

uncontrolled systems.2

All three of the structured PSR classes are aggregate models, using multiple com-

ponent models in different divide-and-conquer approaches to modeling the overall

system. The component models of the factored PSR make predictions for different

subsets of the observation dimensions in systems with multiple observation dimen-

sions (or variables) at each time step.3 This allows the factored PSR to exploit

conditional independence relationships among the different dimensions, leading to a

smaller model that is easier to learn.

Comparing the HPSR and MMPSR

Both the HPSR (Figure 7.1) and the MMPSR (Figure 7.2) include a high-level

component model that is a temporally abstract model of the system, but they use

different techniques to achieve temporal abstraction. This leads to a couple of fun-

damental differences between the models.

1. The MMPSR and the HPSR differ in the way the component models at differ-

ent levels interact. The high-level model of the MMPSR predicts which modes

will occur in the future. The predictions that the high-level model makes about

the modes affect the predictions that the MMPSR makes about low-level ob-

servations, because the predictions about low-level observations are made by

marginalizing the unknown modes of history according to the predictions made

2Given a set of options in an uncontrolled system, one can use an HPSR just as in a controlled
system. The use of options in uncontrolled systems is discussed in Section 7.1.

3While one could use a factored PSR to model systems with a single observation dimension, the
factored PSR would reduce to a single linear PSR.



156

model’s actions: options

makes option predictions

model’s observations: function of the

primitive observations during the

option’s execution

make primitive predictions

models’ actions: primitive actions

models’ observations:

primitive observations

Hierarchical PSR

option level

primitive level

no sharing of information across levels

Mω|Ω|Mω1 ...

one linear PSR for each option ωi

one linear PSR

MΩ
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option that makes predictions while its option is executing.
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Figure 7.2: A review of the component models in an MMPSR.



157

by the high-level model. In contrast, in the HPSR, the two levels of models

operate completely independently. This is because the low-level predictions of

an HPSR are conditioned upon the options the agent selects, which are known

to the agent and therefore do not need to be predicted.4

2. The MMPSR requires the specification of a set of modes, while the HPSR re-

quires the specification of a set of options. The first distinction between modes

and options that may come to mind is that options deal with actions, whereas

modes are defined in terms of observations. It turns out that this is not re-

ally a fundamental difference between options and modes. Even though I have

only discussed options for controlled systems and modes for uncontrolled sys-

tems, one can also use options in uncontrolled systems and modes in controlled

systems:

• Using modes in controlled systems

I expect that MMPSRs will generalize to controlled systems, where the

mode definitions may include actions as well as observations. Because the

actions are observable, they can be used in the mode definitions while main-

taining the recognizability of the modes (and the associated advantages for

model learning and operation).5

• Using options in uncontrolled systems

First note than an uncontrolled system is equivalent to a controlled system

with only one action. Thus, any option in an uncontrolled system will have

the same policy: “take the only action with probability 1.0.” However,

4Instead of making predictions about which options an agent will choose, the high-level model
in the HPSR predicts the outcomes of options. No such predictions are made in the MMPSR, since
it does not explicitly reference options.

5Allowing modes to depend on actions would mean that the high-level model’s predictions may
depend on the policy of the agent, potentially requiring a more complicated model.
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one can still create multiple distinct options because their initiation and

termination conditions can differ. Thus, choosing an option to execute

amounts to choosing a termination condition and waiting for that condition

to be met.

Now that I have addressed the issue of controlled/uncontrolled applicability,

it remains to describe the actual, fundamental differences between modes and

options. To begin, note that the particular option that is active at a given

point in time is chosen by the agent, whereas the mode at a given time is not

chosen by the agent but is recognized by the agent based upon the observations

(and actions) that it has seen (or will see in the future). This fact leads to two

fundamental differences between the MMPSR and the HPSR:

(a) With an HPSR, the agent is restricted to behaving according to the options

in the specified set. In contrast, even in a controlled version of the MMPSR,

the modes would not restrict the behavior of the agent.

(b) With an MMPSR, the modes must be recognizable from the actions and

observations of the past and future. In contrast, the HPSR does not require

that one be able to recognize which option was being executed at a given

point in time (because the agent knows which option it is executing).

Another fundamental difference between modes and options is that modes can

be defined in terms of both past and future observations. In contrast, the parts

of an option — the initiation condition, the termination condition, and the

policy — are all functions of the past alone. As discussed when describing the

MMPSR (Chapter VI), allowing modes to be defined in terms of the future

provides more flexibility for what constitutes a valid mode. Furthermore, PSRs
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have demonstrated that features of the short-term future can be very powerful,

capturing information from arbitrarily far back in history.

Due to these differences between the MMPSR and HPSR, there are systems where

an MMPSR would naturally capture the system’s structure but an HPSR would not,

and vice versa.

7.2 Combining Techniques from the Structured PSR Models

Many of the component models used in the structured PSRs were linear PSR

models. However, one can use structured PSR models as the component models

within other structured PSRs in order to model a system with multiple kinds of

structure. For example, one could replace any linear PSR component of a factored

PSR with an MMPSR or HPSR, capturing temporally extended structure in the

particular observation dimensions for that component model.

One could also combine structured PSR models by using a factored PSR in place of

a linear PSR component model whenever the observation space is multi-dimensional

instead of single-dimensional. For example, one could modify the HPSR to handle

multi-dimensional option observations, using a factored PSR instead of a linear PSR

as the high-level model in the HPSR. This would facilitate the use of rich option

observations, which can be any function of the actions and observations seen during

the option’s execution. For example, the option observation vector could consist of

indicator bits for seeing the light turn off, hearing the phone ring, hitting a wall,

etc., during the option’s execution. Using a factored PSR as the high-level model in

the HPSR would exploit independence among the option observation variables (e.g.,

hearing the phone ring is independent of seeing the light turn off).
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7.3 Summary of Contributions

In this dissertation, I have developed predictive state models and accompanying

learning algorithms that allow an agent to use its experience in a large, complex

dynamical system to learn a predictive state model of that system. The previously

existing work on PSRs (Chapter I) helps motivate the use of predictive state, but

those linear PSR models and algorithms for learning those models from data do

not scale to large systems (Section 3.1). Therefore, I have introduced new classes

of PSR models and new learning algorithms (Section 2.1 and Chapters IV, V, and

VI) that extend the applicability of PSR models to larger dynamical systems by ex-

ploiting different types of structure in the system. Specifically, the hierarchical PSR

(Chapter IV) exploits temporal structure based upon macro-actions; the factored

PSR (Chapter V) exploits conditional independence of observation variables; and

the multi-mode PSR (Chapter VI) exploits temporal structure based upon recogniz-

able modes of the system. The development of these structured PSR models makes

PSRs a viable possibility for modeling structured dynamical systems, providing an

alternative to using latent-state models such as DBNs.

The previously existing methods for learning PSR models were practically viable

only on small dynamical systems, such as mazes that have about a dozen discrete

locations. In contrast, the developments presented in this dissertation enable the

learning of PSR models of complex dynamical systems such as real-world highway

traffic.
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APPENDIX A

Predictions for Tests

A.1 Sequence Tests

The basic test is a sequence test or s-test or just test for short. An s-test is a possi-

ble sequence of future actions and observations: e.g., t = aτ+1oτ+1aτ+2oτ+2 . . . aτ+koτ+k,

where τ is the current time step. As noted in Section 1.1.2, the prediction for an s-

test t = aτ+1oτ+1aτ+2oτ+2 . . . aτ+koτ+k from a history h = a1o1a2o2 . . . aτoτ is defined

as

(1.1) p(t|h)
def

=
τ+k∏

i=τ+1

Pr(oi|a1o1a2o2 . . . ai−1oi−1ai).

Each of the conditional probabilities in this product is the prediction for a one-step

test, so

p(t|h) =
τ+k∏

i=τ+1

p(aioi|a1o1a2o2 . . . ai−1oi−1).

A.2 Set Tests

A set test is defined as a sequence of alternating individual actions and obser-

vation sets, such as t = aτ+1στ+1aτ+2στ+2 . . . aτ+kστ+k. Such a test succeeds if the

observations at each time step are within their respective sets στ+1 . . . στ+k. Thus,
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the prediction for t from a history h is

(A.1) p(t|h)
def

=
∑

oτ+1∈στ+1,oτ+2∈στ+2,...oτ+k∈στ+k

p(aτ+1oτ+1aτ+2oτ+2 . . . aτ+koτ+k|h).

The following lemma helps establish that one can decompose the prediction for

a set test into a product of predictions for one-step set tests, just as one can do for

s-tests (Section A.1).

Lemma A.1. Let t′ be some test, and let t be the set test t = aτ+1στ+1t
′. Then

p(t|h) = p(aτ+1στ+1t
′|h) = p(aτ+1στ+1|h) · p(t′|haτ+1στ+1)

where conditioning upon στ+1 in the history means that one conditions upon the fact

that oτ+1 was a member of στ+1.

Proof. The set test prediction p(aτ+1στ+1t
′|h) is defined to be

∑

oτ+1∈στ+1

p(aτ+1oτ+1t
′|h)

=
∑

oτ+1∈στ+1

p(aτ+1oτ+1|h)p(t′|haτ+1oτ+1)

= p(aτ+1στ+1|h)
∑

oτ+1∈στ+1

p(aτ+1oτ+1|h)

p(aτ+1στ+1|h)
p(t′|haτ+1oτ+1).

The next step writes out the fraction above as a conditional probability, using Oτ+1

to denote the random variable for the observation at time step τ + 1.

= p(aτ+1στ+1|h)
∑

oτ+1∈στ+1

Pr(Oτ+1 = oτ+1|haτ+1, Oτ+1 ∈ στ+1)p(t′|haτ+1oτ+1)

= p(aτ+1στ+1|h)EOτ+1|haτ+1,Oτ+1∈στ+1
[p(t′|haτ+1oτ+1)]

= p(aτ+1στ+1|h) · p(t′|haτ+1στ+1).

The last step here uses the natural definition of making a prediction given a set

history: the expected value of the prediction for the test from a primitive history,

where the expectation is taken over primitive histories that are consistent with the

set history (i.e., an expectation over observations of the set history).
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Using this lemma, one can decompose the prediction for a set test into a product

of one-step predictions. I drop the τ+ from the actions and observations of the test

for brevity (e.g., a1 is the first action of the test, not necessarily the action at the

first time step).

Theorem A.2. For a set test t = a1σ1a2σ2 . . . akσk, the prediction p(t|h) is equal to

k∏

i=1

p(aiσi|ha1σ1 . . . ai−1σi−1).

Proof. The proof of this result comes from repeatedly applying Lemma A.1.

p(t|h) = p(a1σ1|h)p(a2σ2 . . . akσk|ha1σ1)

= p(a1σ1|h)p(a2σ2|ha1σ1)p(a3σ3 . . . akσk|ha1σ1a2σ2)

...

=
k∏

i=1

p(aiσi|ha1σ1 . . . ai−1σi−1).
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APPENDIX B

Constraints on Linear PSR Parameters

The validity of a set of linear PSR parameters depends upon the predictions

that are generated by those parameters. If the predictions satisfy the axioms of

probability, then the parameters are considered valid. Given some initial state vector

x∅, the predictions made by the parameters {mao,Mao : ∀a, o} are

p(a1o1 . . . aτoτ |∅)
def

=x∅
⊤Ma1o1

Ma2o2
. . . Maτ−1oτ−1

maτ oτ
.(B.1)

The following are necessary and sufficient conditions for the predictions to be

sound:

∀k ≥ 1, ∀t = a1o1 . . . akok, p(t|∅) ≥ 0(B.2)

∀k ≥ 1, ∀a1a2 . . . ak,
∑

o1o2...ok

p(a1o1 . . . akok|∅) = 1(B.3)

∀k ≥ 0, ∀t = a1o1 . . . akok, ∀a, p(t|∅) =
∑

o

p(tao|∅).(B.4)

Note that each one of these equations specifies an infinite set of conditions, since

t and k can each take on an infinite number of values. The remainder of this section

proves that each of Equations B.3 and B.4 are equivalent to a finite set of conditions

(given Equation B.2).

Towards that end, the following theorem proves that Equation B.3 can be replaced
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by

∀a , x∅
⊤

∑

o

mao = 1(B.5)

and the conditions remain both necessary and sufficient for the parameters to be

valid.

Theorem B.1. Equations B.3 and B.5 are equivalent when Equation B.4 holds.

Proof. I start with the left hand side of Equation B.3 and show that it reduces to

the left hand side of Equation B.5 when Equation B.4 holds. Thus they will equal 1

for exactly the same parameters.

For any k ≥ 1 and any a1 . . . ak,

∑

o1...ok

p(a1o1a2o2 . . . akok|∅) =
∑

o1...ok−1

∑

ok

x∅
⊤Ma1o1

. . . Mak−1ok−1
makok

=
∑

o1...ok−1

x∅
⊤Ma1o1

. . . Mak−2ok−2
mak−1ok−1

where the last step applies Equation B.4 for t = a1o1a2o2 . . . ak−1ok−1. Repeatedly

applying Equation B.4 for each prefix a1o1 . . . ak−iok−i reduces the sum to

=
∑

o1

x∅
⊤ma1o1

,

which is just the expression given by the left hand side of Equation B.5.

The next theorem proves that one can replace the infinite set of constraints given

by Equation B.4 with the following finite set of constraints:

∀h ∈ H∗, a, o, a′ , p(hao|∅) =
∑

o′

p(haoa′o′|∅),(B.6)

where H∗ is a minimal basis set of sequences. (If the parameters are valid, then H∗

will be core histories for the system.) The following definition aids in defining H∗:

(B.7) yh
⊤def

=x∅
⊤Ma1o1

Ma2o2
. . . Makok
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for any sequence h = a1o1 . . . akok.

Then H∗ = {h1, . . . , hj} must be such that yh1
, . . . , yhj

forms a minimal basis for

all yh (i.e., for all histories h). That is, yh1
, . . . , yhj

must be linearly independent, and

yh for any h must be linearly dependent upon yh1
, . . . , yhj

. Since each yh vector has

dimension n, one can find a valid H∗ with no more than n elements, which makes

Equation B.6 a finite set of constraints.

Theorem B.2. Equation B.6 is equivalent to Equation B.4 when Equation B.5 holds.

Proof. The first piece of the proof shows that Equation B.6 holds for all h if it holds

for all h ∈ H∗. (The other direction is trivial: if it holds for all h, then it must hold

for h ∈ H∗.)

Let h1, . . . , hj be the histories of H∗, and define ψ as the matrix with ith row equal

to yhi

⊤. Then yh
⊤ = w⊤

h ψ for some vector wh (because yh is linearly dependent upon

{yhi
}).

Thus, for any h = a1o1 . . . akok,

p(hao|∅) = x∅
⊤Ma1o1

Ma2o2
. . . Makok

mao

= yh
⊤mao = w⊤

h ψmao

= w⊤
h













− yh1

⊤ −

− yh2

⊤ −

...

− yhj

⊤ −













mao = w⊤
h













p(h1ao|∅)

p(h2ao|∅)

...

p(hjao|∅)













by definition of the y’s. Using the assumption that Equation B.6 holds for all hi ∈ H∗,
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this is equal to

=
∑

o′

w⊤
h













p(h1aoa′o′|∅)

p(h2aoa′o′|∅)

...

p(hjaoa′o′|∅)













=
∑

o′

w⊤
h ψMaoma′o′ =

∑

o′

yhao
⊤ma′o′ ,

where the last step uses the fact that yhao
⊤ = yh

⊤Mao = (w⊤
h ψ)Mao. The resulting

sum is just
∑

o′ p(haoa′o′|∅), which completes the proof that Equation B.6 being

satisfied for all h ∈ H∗ implies that it is satisfied for all histories.

The remaining part of the proof is to show that Equation B.6 holding for all h

is equivalent to Equation B.4 being satisfied, when Equation B.5 is satisfied. In

particular, Equation B.6 for all histories h (including the null history) is exactly the

same as Equation B.4 holding for all t of length at least 1. The empty test t∅ is

the only test of length less than 1, and Equation B.5 ensures that Equation B.4 is

satisfied for that test.

Finally, note that Equation B.6 is equivalent to

∀h ∈ H∗, a, o, a′ , yh
⊤mao = yh

⊤Mao

∑

o′

ma′o′(B.8)

by definition of yh and p(t|∅). Equation B.8 just expresses the constraint more

directly in terms of the parameters. Notice that one way to satisfy this equation is

when

∀a, o, a′ , mao = Mao

∑

o′

ma′o′ .(B.9)

Corollary B.3. Equation B.9 is equivalent to Equation B.8 when |H∗| = n.

Proof. Let yH∗
⊤ be the matrix with rows equal to yh

⊤ for each h ∈ H∗. Then
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Equation B.8 is equivalent to

∀a, o, a′ , yH∗
⊤mao = yH∗

⊤Mao

∑

o′

ma′o′ .

When |H∗| = n, yH∗
⊤ is an n × n matrix that has full rank: the rows are linearly

independent by definition of H∗. Left-multiplying the equation above by (yH∗
⊤)−1

yields Equation B.9.

In summary, these theorems prove that the following conditions are both necessary

and sufficient for a set of parameters make predictions that satisfy the axioms of

probability:

∀t, a, o , p(tao|∅) = yt
⊤mao ≥ 0(B.10)

∀a , x∅
⊤

∑

o

mao = 1(B.11)

∀h ∈ H∗, a, o, a′ , yh
⊤mao = yh

⊤Mao

∑

o′

ma′o′ .(B.12)

I showed that they are equivalent to the conditions given by Equations B.2, B.3,

and B.4. Each of Equations B.3 and B.4 specifies an infinite set of conditions, and I

replaced each equation with a finite set of conditions.
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APPENDIX C

Representing Tests’ Predictions in TD Networks

For any test t, one can define a node in a TD network such that its value is the

prediction for t. That is, the node’s value at history h is defined to be equal to p(t|h),

for any history h. I prove that this is possible constructively, using induction on the

length |t| of t.

For the base case of |t| = 1, let t = a∗o∗ and let x be a node in the TD network

that is 1 if the most recent observation is o∗ and 0 otherwise. Let y be a node that

is connected to x with an edge that conditions upon a∗ being the most recent action

taken. Then by definition of connections in the TD network, the value of node y at

time k is

E[x(k + 1)|h,Ak+1 = a∗],

where h is the history through time k, x(k + 1) is the random variable for value of

node x at time k + 1, Ak+1 is the random variable for the action at time k + 1, and

the expectation is taken over the value of Ok+1 (i.e., the random variable for the

observation at time k + 1). Since x(k + 1) will be 1 if Ok+1 = o∗ and 0 otherwise,

the value of node y at time k is equal to the probability that Ok+1 = o∗ given h

and Ak+1 = a∗. This is exactly the prediction p(a∗o∗|h) = p(t|h), so the base case is

completed.
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For the inductive step, |t| > 1, so I write t = a∗o∗t′ for some test t′ of length one

or more. By the inductive hypothesis, one can construct a node x in the TD network

whose value at history h is p(t′|h), for all histories. Let y be a node connected to x

by an edge that has both a condition and a function fy. The condition is the same

as in the base case: that a∗ is the most recent action taken. Then the value of node

y at time k is

E[fy(x(k + 1))|h,Ak+1 = a∗]

where h is the history through time k. Define

fy(z) =







z, if Ok+1 = o∗

0, otherwise

.

Next, I expand the expectation in the value of y at time k + 1 by conditioning upon

the event Ok+1 = o∗:

E[fy(x(k + 1))|h,Ak+1 = a∗]

=Pr(Ok+1 = o∗|h,Ak+1 = a∗) · (fy(x(k + 1))|h,Ak+1 = a∗, Ok+1 = o∗)

+Pr(Ok+1 6= o∗|h,Ak+1 = a∗) · E[fy(x(k + 1))|h,Ak+1 = a∗, Ok+1 6= o∗].

Since fy(x(k + 1)) = 0 whenever Ok+1 6= o∗, the second term is equal to zero,

leaving

E[fy(x(k + 1))|h,Ak+1 = a∗]

=Pr(Ok+1 = o∗|h,Ak+1 = a∗) · (fy(x(k + 1))|h,Ak+1 = a∗, Ok+1 = o∗)

=p(a∗o∗|h)(fy(x(k + 1))|h,Ak+1 = a∗, Ok+1 = o∗) (by definition of prediction)

=p(a∗o∗|h)(x(k + 1)|h,Ak+1 = a∗, Ok+1 = o∗) (by definition of fy)

=p(a∗o∗|h)p(t′|ha∗o∗) (by definition of x(k + 1))

=p(a∗o∗t′|h) = p(t|h) (by definition of prediction).
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This completes the inductive step, thereby proving that one can define a node in a

TD network whose value is the prediction for an arbitrary test t.
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APPENDIX D

Details of the Reset Algorithm for Learning a

Linear PSR Model

This section describes the details of how the reset algorithm for learning a linear

PSR (Section 1.3) accounts for noise in the estimated predictions. The main ideas

in this appendix are the work of James and Singh (2004), who introduced the reset

algorithm.

To find core tests and histories, the reset algorithm calculates the rank of dif-

ferent matrices of predictions. Golub and Van Loan (1996) address the problem of

estimating the rank in a noisy matrix, using the singular values of the matrix. The

exact rank of a matrix is the number of non-zero singular values. However, the noise

in the matrix will almost certainly make all of the singular values non-zero. The

method for estimating the rank is designed to separate the singular values that are

non-zero only because of noise from the singular values that are truly non-zero in the

non-noisy matrix. Thus, the estimated rank is the number of singular values that are

greater than some cutoff value σ. For some estimated matrix Â, the cutoff value is

σ
def

=ǫ ‖ Â ‖∞, where ǫ is the average error in the matrix entries. The reset algorithm

calculates ǫ as the product of a user-specified parameter and the average estimated

standard deviation for each entry â in the matrix (i.e.,
√

â(1 − â)n−1, where n is the

number of samples used to calculate â).
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When searching for core tests and histories, the reset algorithm needs to select

linearly independent tests T ′
i and histories H ′

i from respective sets Ti and Hi. The

method for doing this is different when dealing with estimated predictions than when

the true predictions are available. When the true predictions were known, one could

choose T ′
i and H ′

i by finding linearly independent rows and columns of p(Ti|Hi). The

particular linearly independent rows and columns that were selected did not affect

the algorithm because the remaining rows and columns were linearly dependent on

those selected. Furthermore, the rank ri of p(Ti|Hi) was equal to the number of tests

and histories in T ′
i and H ′

i, respectively, as this number is equal to the number of

linearly independent rows and columns of p(Ti|Hi).

When dealing with estimated predictions p̂(Ti|Hi) in place of p(Ti|Hi), these equal-

ities break down. Specifically, the algorithm estimates the rank of p(Ti|Hi) as some

r̂i (as described above). Then it chooses r̂i linearly independent tests and histories

to form T ′
i and H ′

i, respectively. However, because r̂i is not the actual rank of the

noisy, estimated p̂(Ti|Hi) — the noise in p̂(Ti|Hi) will almost certainly make it full

rank, greater than r̂i — even after choosing r̂i tests for T ′
i , there will be tests re-

maining in Ti that are (in the estimated matrix) linearly independent of the selected

T ′
i . Thus, the algorithm must choose which linearly independent tests to put in T ′

i ,

because not all of them can be included. Similarly, the algorithm must choose which

linearly independent histories to put in H ′
i, because some histories that are linearly

independent (in the estimated matrix) must be left out: only r̂i histories will be

included.

Thus, when using estimated predictions, the algorithm seeks to find the r̂i his-

tories and tests that are “most linearly independent”; these will form H ′
i and T ′

i ,

respectively. The original version of the reset algorithm used one method for finding
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these H ′
i and T ′

i ; I have since developed a significantly faster procedure.

D.1 Finding the Most Linearly Independent Rows and Columns

Each procedure has at its core a method for finding the k “most linearly inde-

pendent” columns of some m × n matrix A. In the original procedure of James and

Singh (2004), the columns of A were removed one by one until k columns remained.

To describe the process of removing columns, let Ai be the columns of A remaining

after i columns have been removed. Given Ai, the matrix Ai+1 is constructed by

temporarily removing each column of Ai and calculating the condition number of

the resulting matrix. The column which yielded the lowest condition number when

it was removed is selected as the actual column to remove from Ai to get Ai+1. Note

that, when using a basic singular value decomposition to calculate the condition

number,1 it takes O(m(n− i)(n− i + m)(n− i)) time to figure out which column to

remove from Ai to get Ai+1. Since n−k columns must be removed from A to get the

k most linearly independent columns, this process takes time O((n−k)n2(n+m)m).

In contrast, I developed a new procedure that takes time O(km(k + n)(k + m)),

which has degree four, whereas the previous procedure has degree five. Furthermore,

in the core search algorithm, one would expect k << n, since n will be at least

the size of the joint action/observation space (because Ti and Hi each include the

one-step tests), while k should be no more than the rank of the system dynamics

matrix. Thus, the k terms are practically insignificant when compared with the m

and n terms, making the new procedure even more efficient when compared with the

old procedure.

The new procedure works by selecting the desired k columns of A one by one, as

1Exact algorithms exist for computing the singular value decomposition of an m × n matrix in
time O(m(m + n)n) (cf. Golub & Van Loan, 1996).
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opposed to removing n− k columns one by one. After i columns have been selected,

forming a matrix Ai, the i + 1 column is added to Ai to form Ai+1 by choosing the

column vector that is furthest from the image of Ai (measured in Euclidean distance).

Since the image of Ai is the set of vectors that are linearly dependent upon the

columns of Ai, the column that is furthest from the image of Ai is “most” linearly

independent. Computing the distance from Ai can be done by taking the singular

value decomposition of Ai, which takes O(i(i+m)m) time. Then O((n−i)(im+m2))

multiplications are required to compute the distance of each of the n− i vectors from

the image of Ai. Since k vectors are added, the total running time of finding k linearly

independent columns from an m × n matrix is O(k(k(k + m)m + n(km + m2))) =

O(km(k(k + m) + n(k + m))) = O(km(k + n)(k + m)).

D.2 The Core Search Process with Estimated Predictions

Either of these procedures to find the “most linearly independent” columns can

be used when searching for core tests and histories in the reset algorithm. Each core

search iteration consists of two calls to find the most linearly independent columns

of a matrix. The first call is to find the r̂i most linearly independent columns of

p̂⊤(Ti|Hi); the histories for the selected columns are chosen as H ′
i. The second call is

to find the r̂i most linearly independent columns of p̂(Ti|H
′
i); the tests for the selected

columns are chosen as T ′
i . Because each of Hi and Ti have size O(|A||O|n), where n

is the rank of the system-dynamics matrix,2 the running time of one iteration of the

core search procedure is O(n(|A||O|n)(n+ |A||O|n)(n+ |A||O|n)) = O(n4(|A||O|)3).

Section 2.2 proves that no more than n core search iterations are required, for a total

2These calculations assume that the estimated rank r̂i is never larger than the true rank n of
the system-dynamics matrix. In practice, because r̂i is only an estimate, it can be larger than n.
However, if n (or an upper bound on n) is known to begin with, then r̂i can be capped at that
value.
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running time of O(n5(|A||O|)3) to find the core tests and histories (stage 2).

In practice, the noise in the estimated predictions means that the core histories

K and tests Q found in stage 2 may not yield a well-conditioned matrix p̂(Q|K),

which is needed in stage 3 to solve for the model parameters. Thus, it is helpful

to iteratively remove tests and histories from Q and K until the estimated rank of

p̂(Q|K) is equal to its size. The selection of the tests and histories to remain in Q

and K is done by finding the “most linearly independent” m − 1 rows and columns

of the m × m matrix p̂(Q|K), using either method described above. This will result

in a new Q and K, and a new m− 1×m− 1 matrix p̂(Q|K). If the estimated rank

of this matrix is m − 1, then Q and K are taken as the core tests and histories.

Otherwise, another iteration commences, reducing Q and K by one and checking the

rank of that matrix. When the estimated rank of p̂(Q|K) is equal to the sizes of Q

and K, then those Q and K are the core tests and histories used by stage 3.3

3Note that the running time of this additional loop O(n5) is dominated by the time of the core
search procedure itself.
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APPENDIX E

Linear PSR Parameters for Different Initial

Conditions

The suffix-history algorithm (Section 2.1) takes experience from a system D and

builds a linear PSR model for a different system D′ that is derived from D by changing

the initial condition of the system. Specifically, the initial condition for D′ is the

stationary distribution of D under the agent’s policy during its experience in D.

The learning algorithm for a hierarchical PSR (Chapter IV) also builds a model

of a system D′ that has the same dynamics as D but a different initial condition.

The remainder of this section provides proofs for three sets of conditions under

which core tests and model update parameters for D′ are valid core tests and pa-

rameters for D; only the initial prediction vector of the linear PSR is different. In

the following proofs, I use p(·) and p′(·) to denote predictions for D and D′ re-

spectively. Similarly, Q and Q′ are sets of core tests for D and D′, respectively.

In reading the following proofs, it is useful to recall that for a matrix Z = XY ,

rank(Z) ≤ min(rank(X), rank(Y )).

(Theorem 2.1). Let D be a system-dynamics matrix with finite rank n that can

be modeled by a POMDP P with n hidden states. Let P ′ be a POMDP model that

is identical to P except for a different initial belief state, and let D′ be the system-

dynamics matrix generated by the model P ′. If the rank of D′ is also n, then any set
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of core tests and update parameters for either D′ or D are valid for both D′ and D.

Proof. The proof will show that minimal core tests and update parameters for D′

are valid for D. The other direction — the fact that minimal core tests and update

parameters for D are valid for D′ — follows immediately by swapping D with D′ and

P with P ′. Lemma E.2 provides the generalization from minimal core tests to any

set of core tests.

Let H be the set of all histories. Let B be an ∞ × n matrix where the ith row

is the belief state of P in history hi. Similarly, the ith row of B′ is defined as the

belief state of P ′ in history hi. Let p(Q′|S) = p′(Q′|S) be an n × n matrix1 where

the (i, j)th element is the probability of core test j succeeding from POMDP state i.

(S denotes the set of POMDP states, which are common between P and P ′.) Note

that the ranks of B, B′, p(Q′|S) and p′(Q′|S) are upper bounded by their smallest

dimension n.

Because Q and Q′ are core tests for D and D′, respectively, rank(p(Q|H)) =

rank(p′(Q′|H)) = n. From the equation p(Q|H) = Bp(Q|S), one can see that

rank(B) = n. Similarly, from the equation p′(Q′|H) = B′p(Q′|S) one can see that

rank(p(Q′|S)) = n. Finally, given that p(Q′|H) = Bp(Q′|S), and that p(Q′|S) is a

square matrix with full rank, one obtains that B = p(Q′|H)p−1(Q′|S). This implies

that rank(p(Q′|H)) = n because rank(B) = n and the maximum possible rank of

p(Q′|H) is n. The fact that rank(p(Q′|H)) = n proves that the Q′ columns are

linearly independent in D. Therefore, the set of minimal core tests Q′ for system D′

must also be minimal core tests for the original system D.

The linear PSR update parameters for D′ can be computed from P ′ without ref-

erence to the initial belief state (Littman et al., 2001). Thus, the update parameters

1Because Q′ are minimal core tests for a system with rank n, |Q′| = n.
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computed for D′ and D from the POMDPs P ′ and P will be identical, so parameters

from D′ will be valid for D.

(Theorem 2.2). Let D be a system-dynamics matrix and h∗ be a history of D

such that p(h∗|∅) > 0.0. Let D′ be a system-dynamics matrix such that D′ has

the same dynamics as D, but its null history is identical to history h∗ in D. If

rank(D) = rank(D′), then any set of core tests and update parameters for either D′

or D are valid for both D′ and D.

Proof. The proof assumes that the sets of core tests under consideration are minimal

core tests. Lemma E.2 provides the generalization from minimal core tests to any

set of core tests.

First, note that all the rows of D′ are rows of D: the row of D′ for history h

is identical to the row of D for history h∗h. It immediately follows that minimal

core tests Q for D are still core tests for D′ (because any column is still a linear

function of the Q columns, even after removing rows from D to form D′). Because

rank(D) = rank(D′), Q remains a minimal set of core tests. Finally, the linear

relationships among the columns of D still hold after removing rows to form D′, so

the update parameters from D are valid in D′.

The rest of the proof shows that minimal core tests Q′ and update parameters

from D′ are valid in D. The Q′ columns are linearly independent in D′, and adding

rows to D′ to form D cannot make them linearly dependent, so they remain a set of

n linearly independent columns in D. Thus, Q′ forms a minimal set of core tests in

D.

It then remains to show that the update parameters for D′ are valid for D. Let K ′

denote minimal core histories for D′, and let h∗K ′ denote the corresponding histories
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in D. By assumption, for any test t and history h, p(t|h∗h) = p(t|h). The m vector

in D′ for any test t is equal to mt = p′
−1(Q′|K ′)p′(t|K ′). In the other system D,

mt = p−1(Q′|h∗K ′)p(t|h∗K ′), which is the same as in D′. Since this holds for any

test t, the update parameters found for Q′ in D′ are also update parameters for Q′

in D.

The following lemmas extend results from minimal sets of core tests to general

sets of core tests.

Lemma E.1. Every set of core tests contains a minimal set of core tests.

Proof. Let T be an arbitrary set of core tests for a system whose system-dynamics

matrix has rank n. For a set of core histories K, rank(p(T |K)) = n (Corollary F.4).

Therefore, there exist n linearly independent columns of p(T |K), which correspond

to some tests Q. Because p(Q|K) has rank n (by construction), Q are core tests

(Lemma F.3), and because |Q| = n, they are minimal core tests.

Lemma E.2. If minimal core tests and update parameters are the same between two

systems D and D′, then any core tests and update parameters from one system are

valid in the other.

Proof. Without loss of generality, the proof shows that core tests and update param-

eters from D are valid in D′. Let n be the rank of D, which is also the rank of D′

(because minimal core tests are the same between D and D′). Let T = {t1, t2, . . . , tk}

be core tests in D, with associated update parameters mT,t for any test t such that

∀h, p(t|h) = p⊤(T |h)mT,t.

Let Q be a subset of T that are minimal core tests for D; Lemma E.1 proves the
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existence of such a Q. For any test t, there exists a vector mQ,t such that

∀h, p(t|h) = p⊤(Q|h)mQ,t.

Because T contains Q, which are also minimal core tests in D′ (by assumption), T

is also a set of core tests in D′. Now it remains to show that the update parameters

mT,t for T in D are also valid in D′.

Let

M
def

=










| | |

mQ,t1 mQ,t2 · · · mQ,tk

| | |










.

Then

∀h, p(t|h) = p⊤(T |h)mT,t

= p⊤(Q|h)MmT,t.

Therefore, MmT,t satisfies the definition of mQ,t. Since mQ,t maps the predictions

for minimal core Q to the prediction for t, it is valid in D′ as well as in D. That is,

∀h, p′(t|h) = p′⊤(Q|h)MmT,t.

Furthermore, each column of M is also valid in D′, so p′⊤(Q|h)M = p′⊤(T |h), which

leads to

∀h, p′(t|h) = p′⊤(T |h)mT,t.

Thus, the update parameters mT,t from D are valid in D′.

The following theorem states that if one builds a linear PSR of an MDP that has

some initial state distribution, then (after the initial time step) that PSR will be an

accurate model of the system that starts in any one of those possible initial states,
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as long as that starting state is reachable in the MDP at some point after the initial

time step.

(Theorem 2.3). Let D be a system-dynamics matrix that can be modeled by an

MDP M with states S. Let b0 be the initial state distribution of M , and let M ′ be an

MDP that is identical to M except for its initial state distribution b′0. If b′0 satisfies

the following property — ∀si ∈ S such that b′0(si) > 0, it holds that b0(si) > 0 and

si is reachable at some time t > 0 — then core tests and update parameters for D

are valid core tests and update parameters for the system-dynamics matrix D′ given

by M ′.

Proof. For an MDP system, changing the initial state distribution does not change

any row of the corresponding system-dynamics matrix other than the null history

row, due to the Markovian property, but it may render some histories unreachable

that were previously reachable, or vice versa. (A history h is unreachable if p(h|∅) =

0.0.) The condition ∀si ∈ S, b′0(si) > 0 ⇒ b0(si) > 0 ensures that any reachable

history in D′ is also reachable in D. Thus, if one ignores the null history row, D′ is a

sub-matrix of D, so all columns of D′ are linearly dependent upon those of Q (core

tests for D), in all rows but the null history row. I now show that the null history row

of D′ is a linear combination of the other rows of D′, which implies that the columns

of D′ are linearly dependent upon those of Q, making Q valid core tests for D′. Let

T be the set of all tests and let p(T |si) be the vector of predictions for each test from

state si. For an initial condition b′0, the null history row of D′ is
∑

si∈S b′0(si)p(T |si),

by conditioning upon the starting state. The condition [∀si ∈ S, b′0(si) > 0 ⇒ si

is reachable at some time t > 0] means that each p(T |si) with non-zero weight in

the previous sum is also a row in D′. Thus, the null history row of D′ is a linear

combination of other rows of D′. Finally, since the linear relationships among the
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columns of D′ are the same as those for D, the update parameters from D are valid

in D′.
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APPENDIX F

Auxiliary Results for Bounding Core Test and

History Length

This appendix provides lemmas and notation to support Theorems 2.4 and 2.5 from

Section 2.2.1. These auxiliary results are not necessary for an intuitive understanding

of Theorems 2.4 and 2.5, but are a necessary part of the proofs. Furthermore, several

of the results and techniques used here are sufficiently general that they may provide

insights into properties of linear PSRs or system-dynamics matrices that are unknown

as of yet.

Section F.1 begins with some basic existing properties of core histories and core

tests. The remaining two sections describe some of my contributions to the theory of

linear PSRs: Section F.2 describes a model that is similar to the linear PSR model

but uses a state defined by linearly independent rows of the system-dynamics matrix

(instead of linearly independent columns, like the linear PSR). I use this model to

bound the length of core histories, but it may also be an interesting model itself.

Section F.3 uses the results from the previous two sections to provide the supporting

lemmas for the bounds on core history and test length.
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F.1 Basic Properties of Core Histories and Core Tests

The following properties of core histories and core tests are true because their

rows and columns of D form bases for the row and column spaces of D, respectively.

The fact that the entries of D are predictions does not come to bear in this section.

These properties are rather elementary, and several of them have been derived in

the course of proving existing results about linear PSRs, but they are stated here

explicitly for completeness and for later reference.

In the following proofs, I will use the following fact from linear algebra: for any

matrices AB = C, rank(A) ≥ rank(C) and rank(B) ≥ rank(C). A few special

cases that follow directly from this fact are worth noting explicitly. First, if C is

the product of several matrices, the rank of C is less than or equal to the smallest

rank of any of the matrices in the product. Second, if C is a sub-matrix of some

B, then rank(C) ≤ rank(B), since one can write C = LBR for some matrices

L and R that effectively select the proper rows and columns from B to form C.

Third, if C = B1B2 . . . Bk and any Bi has either rank(C) rows or columns, then

rank(Bi) = rank(C).

Lemma F.1. A set of tests T are core tests if and only if there exists a set of

histories H such that p(T |H) has rank n, where n is the rank of D.

Proof. If T are core tests, then the T columns of D have rank n, since they form a

basis of the column space of D. Therefore, one can find n linearly independent rows of

the T columns; the histories H corresponding to those rows satisfy rank(p(T |H)) = n.

If p(T |H) has rank n for some H, then the T columns of D have rank no less than

n. Since the whole of D has rank n, the T columns must have rank exactly n. Since

they are columns of D that have rank equal to n, they form a basis of the column
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space of D, which makes T a set of core tests.

A similar statement can be made for core histories:

Lemma F.2. A set of histories H are core histories if and only if there exists a set

of tests T such that p(T |H) has rank n, where n is the rank of D.

The proof is analogous to that of Lemma F.1, interchanging “tests” with “histo-

ries” and “rows” with “columns.”

Lemma F.3. The following statements are equivalent for any D with rank n, any

set of histories H, and any set of tests T :

1. rank(p(T |H)) = n

2. H are core histories and T are core tests

3. D = W⊤
H∞

p(T |H)MT∞ for some matrices WH∞ and MT∞ such that W⊤
H∞

p(T |H)

are the T columns of D and p(T |H)MT∞ are the H rows of D.

Proof. First note that (1) ⇒ (2) follows from Lemmas F.1 and F.2. The next step

is to show that (2) ⇒ (3). Let T∞ be the set of all tests and let H∞ be the set of all

histories. Because T are core tests, the T columns form a basis of the column space of

D. That is, for any test t, there exists some mt such that p(t|h) = p⊤(T |h)mt for any

history h. One can define MT∞ as the matrix with one column for each test, where

the column for test t is mt. Then by definition of MT∞ , p(T |H)MT∞ = p(T∞|H) are

the H rows of D.

Similarly, because H are core histories, for any history h there exists some wh

such that p(t|h) = w⊤
h p(t|H). Define WH∞ to have one column for each history, with

the column for history h defined as wh. Then by definition of WH∞ , W⊤
H∞

p(T |H) =

p(T |H∞) are the T columns of D.
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Thus, W⊤
H∞

p(T |H)MT∞ = p(T |H∞)MT∞ = p(T∞|H∞) = D, which completes the

proof that (2) ⇒ (3).

The final step is to show that (3) ⇒ (1). Since rank(D) = rank(W⊤
H∞

p(T |H)MT∞) =

n, rank(p(T |H)) ≥ n, and because p(T |H) is a sub-matrix of D, rank(p(T |H)) ≤ n.

Together, these imply rank(p(T |H)) = n.

Corollary F.4. For any set of core histories H, T is a set of core tests if and only

if rank(p(T |H)) = n. Also, for any set of core tests T , H is a set of core histories if

and only if rank(p(T |H)) = n.

Proof. There are four brief pieces to this proof, each of which follows immediately

from the equivalence of the statements in Lemma F.3:

• Given a set of core histories H, if T is a set of core tests then rank(p(T |H)) = n.

This follows from the fact that (2) ⇒ (1) in Lemma F.3.

• Given a set of core histories H, if rank(p(T |H)) = n, then T is a set of core

tests.

This follows from the fact that (1) ⇒ (2) in Lemma F.3.

• Given a set of core tests T , if H is a set of core histories then rank(p(T |H)) = n.

This follows from the fact that (2) ⇒ (1) in Lemma F.3.

• Given a set of core tests T , if rank(p(T |H)) = n, then H is a set of core

histories.

This follows from the fact that (1) ⇒ (2) in Lemma F.3.
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F.2 A Model Based Upon Linearly Independent Rows of D

This section presents a model that is similar to the linear PSR, but its state is

based upon linearly independent rows of the system-dynamics matrix D (whereas

the linear PSR state is based upon linearly independent columns of D). The idea

behind the model is that any row of the system-dynamics matrix D is a unique

linear combination of the rows for a set of minimal core histories K. The state

representation of the model at history h is that unique vector of weights wh that

specify how to combine the K rows to get the h row of D. That is, w⊤
h p(T |K) =

p⊤(T |h) for any set of tests T .

The remainder of this section describes the state update process – how whao can

be calculated from model parameters and wh – and how the model can make any

prediction from h using wh and the model parameters. These procedures are derived

from the linear PSR state update and prediction procedures. The state represen-

tation and update function of this new model are used in the following section for

bounding the length of core histories.

To derive the state update procedure of calculating whao from wh, let Q be a set

of minimal core tests. Then p⊤(Q|hao) = w⊤
haop(Q|K) by definition of whao, so the

desired w⊤
hao is equal to p⊤(Q|hao)p−1(Q|K). The p⊤(Q|hao) can be broken down

via the linear PSR state update equation:

p⊤(Q|hao) =
p⊤(Q|h)Mao

p⊤(Q|h)mao

=
w⊤

h p(Q|K)Mao

w⊤
h p(Q|K)mao

where the last step used the fact that p⊤(Q|h) = w⊤
h p(Q|K). Then one can use the

fact that Mao = p−1(Q|K)p(aoQ|K) and mao = p−1(Q|K)p(ao|K) to simplify to

p⊤(Q|hao) =
w⊤

h p(Q|K)p−1(Q|K)p(aoQ|K)

w⊤
h p(Q|K)p−1(Q|K)p(ao|K)

=
w⊤

h p(aoQ|K)

w⊤
h p(ao|K)

.
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Plugging this back into the equation for whao shows what model parameters one

needs to update state:

w⊤
hao = p(Q|hao)p−1(Q|K) =

w⊤
h p(aoQ|K)

w⊤
h p(ao|K)

p−1(Q|K) =
w⊤

h Zao

w⊤
h zao

where Zao
def

=p(aoQ|K)p−1(Q|K) and zao
def

=p(ao|K) are the parameters of this new

model, along with the initial state w∅.

Like with a linear PSR, the prediction for any test from history h is a history-

independent linear function of the state wh at history h. For a test t = a1o1a2o2 . . . akok,

the prediction p(t|h) equals

p⊤(Q|h) Ma1o1
Ma2o2

· · · Mak−1ok−1
makok

=w⊤
h p(Q|K) p−1(Q|K)p(a1o1Q|K)p−1(Q|K)p(a2o2Q|K)· · · p−1(Q|K)p(ak−1ok−1Q|K)p−1(Q|K)p(akok|K)

=w⊤
h In Za1o1

· · · Zak−2ok−2
Zak−1ok−1

zakok

=w⊤
h za1o1...akok

.

F.2.1 Properties of the wh

The predictions within the predictive state of a linear PSR are constrained to fall

in the [0, 1] range of valid probabilities. Since the entries of wh are not probabilities,

they do not need to fall in a specified range. However, there is another constraint

that must hold for every wh: its entries must sum to 1.

Let t∗ be a test that always succeeds, i.e., ∀h, p(t∗|h) = 1. One can write

p(t∗|h) =
∑

o∈O p(ao|h). Then ∀h, 1 = p(t∗|h) =
∑

o∈O p(ao|h) =
∑

o∈O w⊤
h zao =

w⊤
h

∑

o∈O p(ao|K) = w⊤
h 1, where 1 is the n × 1 vector of 1’s. This proves that the

elements of wh must sum to 1 for any history:

∀h,w⊤
h 1 = 1.

Another point worth mentioning is that the denominator in the state update

equation (w⊤
h zao) is equal to p(ao|h), just as in the linear PSR update equation.

This follows from the fact that zao = p(ao|K) and w⊤
h p(ao|K) = p(ao|h).



191

F.3 Supporting Lemmas

In this section, I develop the remaining supporting lemmas for Theorems 2.4 and

2.5 from Section 2.2.1 (i.e., bounding the length of core histories and tests). The first

lemmas address core tests, while the remaining lemmas mirror those results for core

histories. Recall that many of the steps in these proofs rely upon the linear algebra

properties listed at the beginning of Section F.1.

Lemma F.5. Let Q be a set of n linear core tests for some D with rank n, and define

mt as the unique solution to p⊤(Q|h)mt = p(t|h) for all histories h. Another set of

n tests T = {t1, . . . , tn} is a set of linear core tests for D if and only if the matrix

MT
def

=










| | |

mt1 mt2 · · · mtn

| | |










has rank n.

Proof. The first step is to show that T are core tests if MT has rank n. For any set

of histories H, p(T |H) = p(Q|H)MT . Since MT is full rank, p(T |H)M−1
T = p(Q|H).

Letting H be a set of core histories, then p(Q|H) has rank n (Lemma F.3 in Section

F.1), which implies that p(T |H) has rank n, which implies that T are core tests

(Corollary F.4 in Section F.1).

The rest of the proof shows that MT has rank n if T are core tests. Letting H be

a set of core histories, p(T |H) = p(Q|H)MT has rank n (Lemma F.3 in Section F.1),

which implies that MT has rank n.

Lemma F.6. Let Mi be the subspace spanned by the set of vectors {mt : |t| ≤ i},

where the mt are defined with respect to the set of core tests Q and |t| denotes the

length of the test t. If rank(D) = n, then for all x ≥ n, dim(Mn) = dim(Mx) = n.
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Proof. The first step is to define an operator F that maps a (possibly infinite) set

of vectors V to another set of vectors F (V ). The operator F is defined such that

F (Mi) = Mi+1 for all i ≥ 1.1

F (V )
def

=span

((
⋃

a,o

{Maov : ∀v ∈ V }

)

∪ V

)

where span denotes the subspace spanned by a set of vectors.

To prove that F (Mi) = Mi+1 for all i ≥ 1, I will first show that any vector in

F (Mi) is also contained in Mi+1. Note that any vector in F (Mi) can be written as a

linear combination of vectors in the set G(Mi)
def

=
(
⋃

a,o{Maov : ∀v ∈ Mi}
)

∪Mi, since

F (Mi) = span(G(Mi)). Now if each g ∈ G(Mi) is in Mi+1, then each f ∈ F (Mi)

is also in Mi+1, because Mi+1 is a subspace: that is, any linear combination (e.g.,

f) of vectors in Mi+1 (e.g., G(Mi)) is also contained in Mi+1. Thus, the problem

is now reduced to showing that each g ∈ G(Mi) is in Mi+1.

By definition of G(Mi), each g ∈ G(Mi) is either contained in Mi itself or is of

the form g = Maov for some v ∈ Mi. If g ∈ Mi, then g ∈ Mi+1, because Mi ⊆ Mi+1

(by definition of Mi). For the other case – g = Maov for some v ∈ Mi – let αv be a

vector such that v = M≤iαv, where the columns of the matrix M≤i are defined as the

mt vectors for all tests of length no greater than i. Then g = Maov = MaoM≤iαv.

Since maot = Maomt for any a, o, t, each column of MaoM≤i is an m-vector for a test

of length no greater than i + 1. Thus g is in the span of the m-vectors for tests of

length no greater than i + 1, which is exactly the definition of Mi+1.

Now that F (Mi) ⊆ Mi+1 has been proven, it remains to show that Mi+1 ⊆

F (Mi). Any vector β ∈ Mi+1 can be written as M≤i+1αβ for some vector αβ. Thus,

if each column of M≤i+1 is in F (Mi), then any β ∈ Mi+1 is also in F (Mi). (As above,

I use the fact that a subspace (e.g., F (Mi)) is closed under linear combination.)

1Each subspace Mi can be viewed as an infinite set of vectors.
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Any column of M≤i+1 is equal to mt for some test t of length no greater than i+1.

If |t| ≤ i, then mt is also a column of M≤i, which implies that mt ∈ Mi ⊆ F (Mi).

If |t| = i + 1, then mt = maot′ = Maomt′ , where t′ is the length-i suffix of t. Since

mt′ ∈ Mi, mt = Maomt′ ∈ F (Mi).

This completes the proof that F (Mi) = Mi+1 for all i ≥ 1. With that fact in

hand, one can justify writing the series of subspaces M1,M2,M3, . . . as F 0, F 1, F 2, . . .,

where F i denotes i applications of F to M1. The remainder of this proof shows that

this series reaches a unique fixed point of R
n (for finite n), and that the smallest i∗

at which the fixed point F i∗ = R
n is obtained is no more than n.

Because the mt vectors for a set of core tests will span R
n (Lemma F.5), there

must be some smallest i∗ for which F i∗ = R
n. Then for all k ≥ i∗, F k = R

n.

Specifically, F k ⊆ R
n because the vectors of F k are n-dimensional, and F k ⊇ R

n

because F k ⊇ F k−1 ⊇ F k−2 · · · ⊇ F i∗ = R
n. (Recall that F k ⊇ F k−1 for all k ≥ 1 by

definition of F .)

It remains to show that i∗ ≤ n. First, note that F i ⊆ F i+1, and F i = F i+1

only for i ≥ i∗ (by uniqueness of the fixed point and definition of i∗), which implies

that F i ⊂ F i+1 for all i < i∗. Since each F i is a subspace F i ⊂ F i+1 implies

dim(F i) < dim(F i+1). Thus the series of dimensions dim(F 0), dim(F 1), dim(F 2), . . .

is strictly increasing until dim(F i∗). Since the series cannot increase greater than n

and it begins with dim(F 0) ≥ 1, it must reach the fixed point of n at i∗ < n. Because

dim(F i) = dim(Mi+1), dim(Mx) = n for all x ≥ n.

(Theorem 2.4). For any system-dynamics matrix of rank n, there exists some set

T of core tests such that any t ∈ T has length no greater than n.

Proof. Lemma F.6 proves that dim(Mn) = n, where the mt vectors in Mn are
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defined with respect to some set of core tests Q. Therefore, there exists a set of

n tests T of length n or shorter such that the mt’s for the tests of T are linearly

independent, which makes T core tests (Lemma F.5).

The remainder of this section proves analogous results for core histories: Lemmas

F.7 and F.8 are the history analogues to Lemmas F.5 and F.6, and Theorem 2.5

gives the bound on the maximum required core history length. The following proofs

for core histories exactly mirror the proofs above for core tests except for the first

portion of Lemma F.8. The proofs use the wh, Zao, and zao notation of the model

presented in Section F.2.

Lemma F.7. Let K be a set of n linear core histories for some D with rank n, and

define wh as the unique solution to w⊤
h p(t|K) = p(t|h) for all tests t. Another set of

n histories H = {h1, . . . , hn} is a set of linear core histories for D if and only if the

matrix

WH
def

=










| | |

wh1
wh2

· · · whn

| | |










has rank n.

Proof. The first step is to show that H are core histories if WH has rank n. For any set

of tests T , p(T |H) = W⊤
H p(T |K). Since WH is full rank, (W⊤

H )−1p(T |H) = p(T |K).

Letting T be a set of core tests, then p(T |K) has rank n (Lemma F.3 in Section

F.1), which implies that p(T |H) has rank n, which implies that H are core histories

(Corollary F.4 in Section F.1).

The rest of the proof shows that WH has rank n if H are core histories. Letting

T be a set of core tests, p(T |H) = W⊤
H p(T |K) has rank n (Lemma F.3 in Section

F.1), which implies that WH has rank n.
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Lemma F.8. Let Wi be the subspace spanned by the set of vectors {wh : |h| ≤ i},

where the wh are defined with respect to a set of core histories K. If rank(D) = n,

then for all x ≥ n, dim(Wn) = dim(Wx) = n.

Proof. Following the analogous proof for core tests (i.e., Lemma F.6), I will define

an operator F such that F (Wi) = Wi+1 for all i ≥ 1. Because whao is a non-linear

function of wh, some additional machinery is required to define F . In particular, I

define a vector vh for any h that is a scalar multiple of wh. Furthermore, vhao is a

linear transformation of vh, which will permit the construction of the operator F .

The vector vh is defined recursively: vhao
def

=Z⊤
aovh with the base case v∅

def

=w∅. Note

that vh = p(h|∅)wh, by induction on the length of h. For the base case h = ∅,

vh = 1wh holds. Then for any h, a, o,

vhao = Z⊤
aovh

= p(h|∅)Z⊤
aowh

= p(h|∅)(w⊤
h p(ao|K))

Z⊤
aowh

w⊤
h p(ao|K)

= p(h|∅)p(ao|h)whao

= p(hao|∅)whao

where the second line employs the inductive hypothesis.

Since each vh is just a scalar multiple of wh (i.e., vh = p(h|∅)wh), the vh’s and

wh’s for a given set of reachable histories2 will always span the same subspace. More

specifically, Wi is equal to the subspace spanned by the vh’s for all |h| ≤ i. Then the

following operator F satisfies F (Wi) = Wi+1 for all i ≥ 1:

F (V )
def

=span

((
⋃

a,o

{Z⊤
aov : ∀v ∈ V }

)

∪ V

)

,

2A history h is reachable if and only if p(h|∅) > 0.0.
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by definition of vh.

The remainder of the proof exactly mirrors the proof of Lemma F.6, replacing Mi

with Wi and using Lemma F.7 to guarantee that the fixed point of the Wi series is

R
n.

(Theorem 2.5). For any system-dynamics matrix of rank n, there exists some set

H of core histories such that any h ∈ H has length no greater than n.

Proof. Lemma F.8 proves that dim(Wn) = n, where the wh vectors in Wn are defined

with respect to some set of core histories K. Therefore, there exists a set of n

histories H of length n or shorter such that the wh’s for the histories of H are

linearly independent, which makes H core histories (Lemma F.7).

These bounds on the length of core tests and histories give a finite portion of

the system-dynamics matrix that is sufficient for building a linear PSR model of the

system: the portion of the system-dynamics matrix for histories of length n of less

and tests of length n + 1 or less (because one needs core test extensions to solve

for the model parameters). Put another way, a learning algorithm only needs to

estimate the predictions for history/test pairs of length 2n + 1 or less.
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APPENDIX G

Proofs for PSR Models of kth-order Markov

Systems

These results use 1st-order Markov systems or MDPs as example systems. The

proofs hinge upon the fact that the transition matrices of an MDP are actually

transposed sub-matrices of the system-dynamics matrix D. Recall that an MDP

consists of an initial state and one transition matrix Ta for each action a. The (i, j)th

entry of Ta is the probability of transitioning from latent state j to latent state i

after taking action a. In an MDP, these probabilities are just predictions in D:

p(a′o′|hao) = [Ta′ ]o′,o. To write this in matrix form, let H be a set of histories that

contains exactly one history ending in each observation, and let Ta be the set of

one-step tests with action a. Then

p(Ta|H) = T ⊤
a .

If T is the union of all the Ta, then define

Z
def

=p(T |H) = [T ⊤
A1 T ⊤

A2 · · · T ⊤
A|A| ].

Note that T contains core tests (Theorem 2.7) and H contains core histories because

each row in D is identical to the row for some h ∈ H (except the null-history row,

which is a linear combination of the Z rows, according to the initial state distribution

of the MDP). This means that the rank of Z is equal to the rank of D (Lemma F.3).
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(Theorem 2.11). There exist MDP systems where no set of one-step core tests Q

exists such that each test in Q contains the same action.

Proof. The proof is by example: an MDP with 3 observations (states) and 2 actions.

Let the initial state always be state 1. Along with that initial state distribution,

the following Z matrix completely defines the system (since it is composed of the

transition matrices for the MDP):










1 0 0
... 0 0.5 0.5

0 0.5 0.5
... 0 0.5 0.5

0 0.5 0.5
... 1 0 0










The left half of Z is the transposed transition matrix for A1 and the right half is

for A2. The whole Z matrix has rank 3, so D has rank 3. Therefore, 3 linear core

tests would be required in a model of this system. Because any row of D corresponds

to a row of Z, columns of Z are linearly independent if and only if the corresponding

columns of D are linearly independent. Therefore, since each transition matrix in

Z only has rank 2, there is no set of 3 one-step core tests that contain the same

action.

(Theorem 2.12). There exist MDP systems where, for any set of minimal core

tests Q, there is some action a and observation o such that the parameter vector mao

of a linear PSR contains at least one negative entry.

Proof. The proof is by example, using the same MDP as above. I will refer to tests

and their columns interchangeably; context will make clear the intended meaning.

Also, I will denote the ith column (from left to right) of the Z matrix above as zi.

The first case to consider is when Q is composed entirely of one-step tests. As

shown above, the three core tests must contain tests from both halves of Z (i.e., tests
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with different actions). There are four distinct columns in Z, and any three of those

columns would constitute a valid core set. There are four such possible core sets:

{z1, z2, z4}, {z1, z2, z5}, {z1, z4, z5}, and {z2, z4, z5}.

• For the {z1, z2, z4} set, the unique mz5
(to form the 5th column) is [0.5, 1.0,−0.5]⊤.

• For the {z1, z2, z5} set, the unique mz4
is [1.0, 2.0,−2.0]⊤.

• For the {z1, z4, z5} set, the unique mz2
is [−0.5, 0.5, 1.0]⊤.

• For the {z2, z4, z5} set, the unique mz1
is [−2.0, 1.0, 2.0]⊤.

Since each of these m vectors contains a negative entry, this completes the case where

Q is composed of one-step tests.

In the general case, let Q = {q1, q2, q3}. Recall that each of these core is a non-

negative scalar multiple of some zi (Lemma 2.6 in Section 2.2.2). Let z(t) be the

zi of which t is a scalar multiple, and let c(t) be that scalar; so t = c(t)z(t). Then

the fact that q1, q2, and q3 are linearly independent means that z(q1) = (c(q1))
−1q1,

z(q2) = (c(q2))
−1q2, and z(q3) = (c(q3))

−1q3 are linearly independent. (Note that

the inverse of each c(qi) is well-defined, because if c(qi) was 0, then qi would be a

vector of 0’s and would not be a core test.) Because they are linearly independent,

Z(Q)
def

={z(q1), z(q2), z(q3)} must be one of the sets of core columns of Z examined

above.

For Z(Q) = {z1, z2, z4}, the mz5
vector would be 1

c(q1)c(q2)c(q3)
[0.5, 1.0,−0.5]⊤. Since

each c(qi) is positive (i.e., a probability), the resulting mz5
vector contains a negative

entry. Similarly,

• for Z(Q) = {z1, z2, z5}, the unique mz4
is 1

c(q1)c(q2)c(q3)
[1.0, 2.0,−2.0]⊤.

• For Z(Q) = {z1, z4, z5}, the unique mz2
is 1

c(q1)c(q2)c(q3)
[−0.5, 0.5, 1.0]⊤.
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• For Z(Q) = {z2, z4, z5}, the unique mz1
is 1

c(q1)c(q2)c(q3)
[−2.0, 1.0, 2.0]⊤.

(Theorem 2.13). There exist deterministic MDP systems where, for any set of min-

imal core tests Q, there is some action a and observation o such that the parameter

vector mao of a linear PSR contains at least one negative entry.

Proof. The proof is by example, using the MDP described by the following Z matrix:










1 0 0
... 0 1 0

0 1 0
... 0 1 0

1 0 0
... 0 0 1










The argument is the same as that of Theorem 2.12, first showing exhaustively

that when Q is all one-step tests, there is always some mt with a negative entry. The

table below shows that, for any set of one-step core, a negative entry is required in

the mt vector for another one-step test. The table lists the column numbers (in Z)

of the core tests, the column number of the “target” test t, and the corresponding

mt, each of which contains a negative entry.

Core Columns Column for t mt

1,2,5 6 [1, 1,−1]⊤

1,2,6 5 [1, 1,−1]⊤

1,5,6 2 [−1, 1, 1]⊤

2,5,6 1 [−1, 1, 1]⊤

The extension from one-step core test sets to any core test set is the same as in

the proof above.



201

APPENDIX H

Proofs for Hierarchical PSRs

This appendix provides theoretical results related to temporal abstraction and PSRs.

The notation and background are given in Chapter IV.

H.1 Defining Option Predictions in Terms of Primitive Pre-
dictions

The purpose of this section is to define the prediction for an option test tω from an

option history hω in terms of primitive predictions. Before examining the prediction

of an option test from an option history, it is helpful to first examine the prediction

for an option test tω = ω1o1 . . . ωkok from a primitive history h. To write this predic-

tion p(tω|h) in terms of primitive predictions, one can condition upon the primitive

sequences underlying each ωi. Note that both the actions and observations of each

primitive sequence are random variables in this context, because the option pol-

icy selects actions stochastically (and the dynamical system still emits observations

stochastically).

To formally define p(tω|h), let τ be the length of the primitive history h. Define

T i as the random variable for the primitive sequence generated by the execution of

ωi. All of the probabilities in this discussion are conditioned upon the fact that the

options ω1ω2 . . . ωk are being executed in order from history h, but this is left out of
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the notation for simplicity.

One can condition upon T 1 to get

p(tω|h) =
∑

t1

Pr(T 1 = t1)Pr(Oτ+|t1| = o1|T 1 = t1)p(ω2o2 . . . ωkok|ht1)(H.1)

where Oτ+|t1| is the random variable for the primitive observation at the last time

step of ω1. There are three terms in the product here, each of which is now examined

in more detail.

• Looking at the term Pr(T 1 = t1), note that the event T 1 = t1 accounts for three

things:

– the actions selected by the option ω1 must match those of t1;

– the observations emitted by the system must match those of t1;

– and the option ω1 must terminate after exactly |t1| time steps.

This breakdown will be seen in the following expansion of the term Pr(T 1 = t1)

using the chain rule of probability. Define β1(h′) as the probability that ω1

terminates in history h′. Without loss of generality, let t1 = a1o1 . . . anon. Then

Pr(T 1 = t1) =Pr(a1|h)Pr(o1|ha1)(1 − β1(ha1o1))

Pr(a2|ha1o1)Pr(o2|ha1o1a2)(1 − β1(ha1o1a2o2))

· · ·

Pr(an|h . . . an−1on−1)Pr(on|h . . . an−1on−1an)β1(h . . . an−1on−1anon)

= (Pr(a1|h) · · ·Pr(an|ha1 . . . an−1on−1))

(Pr(o1|ha1) · · ·Pr(on|ha1 . . . on−1an))

(
(1 − β1(ha1o1)) · · · (1 − β1(ha1o1 . . . an−1on−1))(β

1(ht1))
)
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= (Pr(a1|h) · · ·Pr(an|ha1 . . . an−1on−1))

p(t1|h)

(
(1 − β1(ha1o1)) · · · (1 − β1(ha1o1 . . . an−1on−1))(β

1(ht1))
)
.

Each of the Pr(ai|·) terms is defined by the policy of the option ω1, and the

β1(·) terms are defined by the termination condition of the option ω1. The

remaining term p(t1|h) is a primitive prediction; this equation establishes the

link between primitive and option predictions.

• The term Pr(Oτ+|t1| = o1|T 1 = t1) is next to be examined. Note that, once

one conditions upon some sequence t1 as the value of T 1, the value of Oτ+|t1|

is no longer random. Thus, the term Pr(Oτ+|t1| = o1|T 1 = t1) is either 1 or 0,

depending upon whether or not the last observation of t1 is o1.

Note that one can define more general indicator functions than just checking

if the last observation from ω1 matches o1. One can replace the Pr(Oτ+|t1| =

o1|T 1 = t1) term with an indicator function that takes t1 and returns 1 if it

constitutes a success of ω1o1 and 0 otherwise. However, one must ensure that

the indicator functions are defined such that every primitive sequence t1 with

Pr(T 1 = t1) > 0.0 will be considered a success of ω1o1 for exactly one value of

o1. One way to ensure this is to define a function from primitive sequences t1 to

the option-level observation space (which need not be the same as the primitive

observation space). The indicator functions then correspond to whether or not

that function maps t1 to a given observation value or not.

• Finally, the term p(ω2o2 . . . ωkok|ht1) is the prediction for a length-(k − 1) op-

tion test from a primitive history ht1. One can apply Equation H.1 to write

p(ω2o2 . . . ωkok|ht1) in terms of predictions for length-(k − 2) option tests from
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primitive histories. This recursive definition of p(tω|h) given by Equation H.1

will reach a base case when tω just has one option (i.e., k = 1). In that case,

the term p(ω2o2 . . . ωkok|ht1) from Equation H.1 is just 1, because ω2o2 . . . ωkok

would be an empty test when k = 1.

Exhaustively expanding Equation H.1 into its non-recursive form would result in

an incomprehensible expression. However, the expanded form has only four different

kinds of terms, and the terms of like kind can be grouped together to arrive at an

expression that is more manageable. Three of the four kinds of terms correspond

to (1) the action probabilities, (2) the observation probabilities (i.e., the primitive

test predictions), and (3) the termination probabilities, each of which result from the

expansion of the Pr(T i = ti) part of Equation H.1. The fourth kind of term in the

expanded form comes from the Pr(Oτ+· = oi|·) part of Equation H.1; these terms are

indicator variables that indicate whether or not a given set of primitive sequences is

a success of the option test.

Grouping terms of the same type from the recursive expansion of Equation H.1,

the resulting expression is

p(tω|h) =
∑

t1,t2,...,tk

Π(h; t1, . . . , tk; ω1, . . . , ωk)ψtω(t1, . . . , tk)(H.2)

· β(h; t1, . . . , tk; ω1, . . . , ωk)p(t1t2 . . . tk|h)

where

• Π(h; t1, . . . , tk; ω1, . . . , ωk) is the product of all of the terms of the form Pr(ai|·),

accounting for the policies of the options.

• ψtω(t1, . . . , tk) is the indicator function that tells whether or not the underlying

primitive sequences t1, . . . , tk constitute a success of the option test tω. For
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example, when the success of tω is determined by the last observation of each

option’s execution, the function just returns 1 if the last observations of t1, . . . , tk

match the observations of tω (i.e., the product of the Pr(O· = oi|T i = ti) terms).

• β(h; t1, . . . , tk; ω1, . . . , ωk) is the product of all of the terms containing βi(·) for

any 1 ≤ i ≤ k, accounting for the termination condition of the options.

• and p(t1t2 . . . tk|h) is the primitive prediction which is equal to the product of

all the p(ti|ht1 . . . ti−1) terms.

Now that Equation H.2 has defined the prediction of an option test from a primi-

tive history, one can use this to write the prediction for a option test from an option

history. This is done by conditioning upon the primitive history that underlies a

given option history. Let Pr(hω = h|hω) be the probability that h is the primitive

history through some time τ given that hω is the option history through time τ . One

can use Equation H.2 to define this probability in terms of primitive probabilities.

First, note that

Pr(hω = h|hω) =
Pr(hω = h, hω)

Pr(hω)

where the numerator is the probability of hω succeeding with underlying history h

from the null history, and the denominator is the probability that hω succeeded from

the null history. The denominator is the prediction for an option test hω from a

primitive history ∅ (i.e., the null history), which is given by Equation H.2. The

numerator can be computed by a variation of Equation H.2 where the sum over the

primitive sequences t1 . . . tk is not over all primitive sequences, but only those that
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form a specific sequence t when concatenated together:

Pr(tω = t, tω|h) =
∑

t1,t2,...,tk:t1...tk=t

Π(h; t1, . . . , tk; ω1, . . . , ωk)ψtω(t1, . . . , tk)(H.3)

· β(h; t1, . . . , tk; ω1, . . . , ωk)p(t1t2 . . . tk|h).

Applying this equation with h ← ∅, tω ← hω, and t ← h leads to an expression for

Pr(hω = h, hω) in terms of primitive predictions.

Finally, the prediction for an option test from an option history is found by

conditioning upon the underlying primitive history h:

p(tω|hω) =
∑

h

p(hω = h, hω|∅)

p(hω|∅)
p(tω|h).(H.4)

When combined with the definitions of p(tω|h) and p(hω|∅) from Equation H.2, and

the definition of p(hω = h, hω|∅) from Equation H.3, this Equation H.4 defines an

option prediction in terms of primitive predictions.

H.2 The Validity of the Option-level System-dynamics Ma-
trix DΩ

This section proves the following theorem, which is instrumental in establishing

the ability of a PSR model to make accurate option predictions.

Theorem H.1. The matrix DΩ that consists of the predictions of all option tests

from all option histories is a valid system-dynamics matrix.

Proof. In order to check the validity of a system-dynamics matrix, one can check the

validity of the predictions from the null history row and then ensure that the other

predictions are consistent with the predictions from the null history.

In order for the predictions from the null history to be valid, they must specify a

valid multinomial probability distribution over possible observation sequences for any
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sequence of options. There are also marginal constraints that the predictions must

satisfy in order to be valid. The following list establishes that the option predictions

from the null history are indeed valid.

• All of the predictions must be greater than 0.0. This is true because all of the

terms in Equation H.2 are non-negative, so any p(tω|∅) will be non-negative.

• For any sequence of options ω1 . . . ωk, let T be the set of option tests that have

ω1 . . . ωk as their sequence of options. Then the predictions for all the tests in

T must sum to 1.0. This ensures that the probabilities for the option tests with

ω1 . . . ωk will form a valid multinomial distribution (given the non-negativity

property, shown previously).

The given definition of option predictions satisfies this because any execution of

ω1 . . . ωk will cause exactly one test in T to succeed: the test with observations

that match the last observations of the respective ω1 . . . ωk.

• For any option test tω and any option ω, let T be the set of option tests of the

form tωωo for all observations o. Then the predictions for all the tests in T

must sum to the prediction for tω. One can verify this by expanding the option
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predictions according to Equation H.2:

∑

o

p(tωωo|∅)

=
∑

o

∑

t1,t2,...,tk,tk+1

ψtωωo(t
1, . . . , tk, tk+1)β(∅; t1, . . . , tk, tk+1; ω1, . . . , ωk, ω)

Π(∅; t1, . . . , tk, tk+1; ω1, . . . , ωk, ω)p(t1t2 . . . tktk+1|∅)

=
∑

o

∑

t1,t2,...,tk,tk+1

ψtω(t1, . . . , tk)ψωo(t
k+1)

β(∅; t1, . . . , tk; ω1, . . . , ωk)β(t1 . . . tk; tk+1; ω)

Π(∅; t1, . . . , tk; ω1, . . . , ωk)Π(t1 . . . tk; tk+1; ω)

p(t1t2 . . . tk|∅)p(tk+1|t1t2 . . . tk)

=
∑

t1,t2,...,tk

ψtω(t1, . . . , tk)β(∅; t1, . . . , tk; ω1, . . . , ωk)

· Π(∅; t1, . . . , tk; ω1, . . . , ωk)p(t1t2 . . . tk|∅)

∑

o

∑

tk+1

ψωo(t
k+1)β(t1 . . . tk; tk+1; ω)Π(t1 . . . tk; tk+1; ω)p(tk+1|t1t2 . . . tk)

=
∑

t1,t2,...,tk

ψtω(t1, . . . , tk)β(∅; t1, . . . , tk; ω1, . . . , ωk)

· Π(∅; t1, . . . , tk; ω1, . . . , ωk)p(t1t2 . . . tk|∅)

∑

o

p(ωo|t1 . . . tk).

Since the sum of predictions
∑

o p(ωo|t1 . . . tk) equals 1.0, the above expression

simplifies to p(tω|∅), as desired.

Thus, the null history predictions of DΩ are valid.

It remains to show that the remaining predictions in DΩ are consistent with those

null history predictions. This will be the case if and only if

p(hω|∅)p(tω|hω) = p(hωtω|∅).
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Let hω have length j with option sequence ω1 . . . ωj, and let tω have length k with

option sequence ωj+1ωj+2 . . . ωj+k. The derivation begins with the left-hand side of

the equation above:

p(hω|∅)p(tω|hω)

=p(hω|∅)
∑

h

p(hω = h, hω|∅)

p(hω|∅)
p(tω|h)

=
∑

h

p(hω = h, hω|∅)p(tω|h)

=
∑

h

(
∑

t1,...,tj :t1...tj=h

ψhω(t1, . . . , tj)β(∅; t1, . . . , tj; ω1, . . . , ωj)

· Π(∅; t1, . . . , tj; ω1, . . . , ωj)p(t1 . . . tj|∅)

)

p(tω|h)

=
∑

t1,...,tj

ψhω(t1, . . . , tj)β(∅; t1, . . . , tj; ω1, . . . , ωj)

· Π(∅; t1, . . . , tj; ω1, . . . , ωj)p(t1 . . . tj|∅)p(tω|h)

=
∑

t1,...,tj

ψhω(t1, . . . , tj)β(∅; t1, . . . , tj; ω1, . . . , ωj)

· Π(∅; t1, . . . , tj; ω1, . . . , ωj)p(t1 . . . tj|∅)

∑

tj+1,...,tj+k

ψtω(tj+1, . . . , tj+k)β(t1, . . . , tj; tj+1, . . . , tj+k; ωj+1, . . . , ωj+k)

· Π(t1, . . . , tj; tj+1, . . . , tj+k; ωj+1, . . . , ωj+k)p(tj+1 . . . tj+k|t1 . . . tj)

=
∑

t1,...,tj ,...,tj+k

ψhωtω(t1, . . . , tj, . . . , tj+k)

· β(∅; t1, . . . , tj, . . . , tj+k; ω1, . . . , ωj, . . . , ωj+k)

· Π(∅; t1, . . . , tj, . . . , tj+k; ω1, . . . , ωj, . . . , ωj+k)

· p(t1 . . . tj . . . tj+k|∅)

= p(hωtω|∅).

Therefore, the predictions in DΩ are consistent with the null-history predictions,
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which constitute a valid system. This implies that DΩ is a valid system-dynamics

matrix.

H.3 Option-level System-dynamics Matrix Can Have Larger
Rank

This section proves by example that the option-level system-dynamics matrix DΩ

has greater rank than the original system D (Theorem 4.4).

One can construct a set of options Ω so that DΩ will contain D as a sub-matrix

by allowing Ω to contain an option for each primitive action that just executes that

primitive action and then terminates. Then one can construct an option test tω

whose predictions are linearly independent of all primitive tests (i.e., all columns of

D). Since the matrix DΩ contains the columns of D and the column for tω, its rank

will be larger than D. The primary idea behind the following example is that one

can construct such an tω by using an option policy that is a non-linear function of

the prediction vector.

The primitive-level example system is a POMDP with 2 latent states (s1 and s2);

4 actions, (α, β, swap, and stay); and 4 observations (oα, oβ, o1, o2). Action α always

produces observation oα and leaves the latent state unchanged. Similarly, action β

always produces observation oβ and leaves the latent state unchanged. The swap

action changes the latent state, and stay leaves the latent state unchanged. The

observation after swap or stay depends upon the ending latent state s′: if s′ = s1,

then the observation is o1 with probability p and o2 with probability 1−p. If s′ = s2,

the probabilities are reversed (p for o2 and 1 − p for o1). The initial latent state

distribution is {0.5, 0.5}.

For p = 0.2, the rank of D is 2. One set of core tests for this system is
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{α oα, stay o1}. Consider an option ω with a policy that chooses α in history h

with probability (p(stay o1|h))2 (a non-linear function of the prediction vector), and

chooses β otherwise; after one action, ω terminates. The option test p(ωα|h) is not

a linear function of the prediction vector:

prediction vector

tests → α oα stay o1 ωα

β oβ 1.0 0.5 0.25

histories stay o1 1.0 0.68 0.4624

stay o2 1.0 0.32 0.1024

This rank-3 matrix is a sub-matrix of DΩ, so rank(DΩ) ≥ 3 > rank(D) = 2.

Note that one can define other options that choose α based upon other non-linear

functions of the prediction vector, further increasing the rank of DΩ.

H.4 Bounding rank(DΩ)

This section shows that rank(DΩ) ≤ rank(D) when the options of Ω satisfy two

criteria:

• the option policy depends only on the history since the option began executing

(which still permits it to be a closed-loop policy)

• and the termination condition must only depend upon the history since the

option began executing.

To begin, the following lemma establishes that the vector of predictions for any

set of tests T from an option history hω is a linear combination of the vectors for

the predictions of T from all primitive histories. When T is all primitive tests, the

result shows that replacing the primitive histories of the system-dynamics matrix
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with option histories (and updating the contents of the matrix accordingly) will not

increase the rank of the matrix.

Lemma H.2. Let T be a set of tests (option tests or primitive tests) and let H

be the set of all primitive histories. Let hω be any option history. Then the vector

p⊤(T |hω) = vT
hωp(T |H) for some vector vhω .

Proof. This can be seen by conditioning upon the the primitive history h which

underlies the option history hω. Since p(T |hω) =
∑

h∈H Pr(hω = h)p(T |h), the ith

entry of vhω is the probability that h is the primitive actions/observations of hω.

The next lemma shows that adding a column to D for an option test tω will

not increase the rank of D, because the new column is linearly dependent upon the

columns of D.

Lemma H.3. Let T be the set of all primitive tests and H be all primitive histories,

and let tω be an option test. Then p(tω|H) = p(T |H)vtω for some vector vtω .

Proof. First, consider a single entry of p(tω|H) for the history h. This entry is just

p(tω|h), which one can expand using Equation H.2:

p(tω|h) =
∑

t1,t2,...,tk

Π(h; t1, . . . , tk; ω1, . . . , ωk)ψtω(t1, . . . , tk)

· β(h; t1, . . . , tk; ω1, . . . , ωk)p(t1t2 . . . tk|h),

where tω = ω1o1 . . . ωkok.

Because neither the termination condition nor the policy of any of the options

in tω depends upon history prior to the start of the option, one can drop the h

argument to the Π and β functions. Then the only remaining reference to h is in the

term p(t1t2 . . . tk|h). This is critical, because the entries of vtω cannot depend upon

history.
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To define vtω that satisfies the theorem condition, note that there is one entry

in vtω that corresponds to any primitive test. This is because the multiplication

p(T |H)vtω can be rewritten as

∑

ti∈T

[vtω ]ip(ti|H)

where [vtω ]i is the ith entry of vtω . Thus, if one defines the t entry of vtω to be

∑

t1,t2,...,tk:t1...tk=t

Π(; t1, . . . , tk; ω1, . . . , ωk)ψtω(t1, . . . , tk)β(; t1, . . . , tk; ω1, . . . , ωk)

then p(tω|H) = p(T |H)vtω will hold.

One can use these lemmas to complete the proof about the rank of DΩ.

(Theorem 4.5). Let Ω be a set of options such that neither the termination condi-

tions nor the policies of the options in Ω depend upon history prior to the execution

of the option. For a primitive system-dynamics matrix D and an option-level system-

dynamics matrix DΩ for Ω, rank(DΩ) ≤ rank(D).

Proof. The proof follows from the fact that one can apply two linear transformations

to the matrix D and the result will be the matrix DΩ. Since these transformations are

linear, the rank of the resulting matrix DΩ cannot be greater than the starting matrix

D. The first transformation, which Lemma H.3 shows to be linear, replaces the

primitive tests of D with all option tests. The second transformation, which Lemma

H.2 shows to be linear, replaces the primitive histories with all option histories.

The resulting matrix consists of the predictions for all option tests from all option

histories, which is the definition of DΩ.
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APPENDIX I

Proofs for Factored PSRs

This appendix provides theoretical results related to factored PSRs. The notation

and background are given in Chapter V.

The following fact is used in the theorem about the accuracy of predictions made

by a factored PSR:

Lemma I.1. For random variables Y,B,C, the expectation EB,C [D(Y |B,C ‖ Y ) −

D(Y |B,C ‖ Y |B)] ≥ 0.

Proof. First, note that the difference inside the expectation D(Y |b, c ‖ Y )−D(Y |b, c ‖

Y |b) for B = b, C = c is equal to
∑

y Pr(y|b, c) log2
Pr(y|b)
Pr(y)

, using the definition of KL

divergence. Taking the expectation of this quantity with respect to B,C, one gets

∑

b,c

Pr(b, c)
∑

y

Pr(y|b, c) log2

Pr(y|b)

Pr(y)

=
∑

b,c,y

Pr(b, c, y) log2

(
Pr(y|b)

Pr(y)

Pr(b)Pr(c|y, b)

Pr(b)Pr(c|y, b)

)

=
∑

b,c,y

Pr(b, c, y) log2

Pr(b, c, y)

Pr(y)Pr(b)Pr(c|y, b)
.

This is just the KL divergence

D(Pr(B,C, Y ) ‖ Pr(Y )Pr(B)Pr(C|Y,B))

which is always non-negative.
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(Theorem 5.3). For f i ⊆ f i′ and any subset X of future observations,

EH [D(X|H ‖ X|f i(H)) − D(X|H ‖ X|f i′(H))] ≥ 0

where H is the random variable for history of some length.

Proof. Let Z denote the random variable D(X|H ‖ X|f i(H))−D(X|H ‖ X|f i′(H));

this makes Z a function of the random variable H. Define the following functions to

denote the random variables corresponding to different parts of H: acts selects the

actions, and F i, F i′ , F i+, and F i− each select some observation dimensions, detailed

in Figure 5.5.

Using these definitions, one can apply iterated expectations to get EH [Z] =

Eacts,F i [EF i+,F i− [Z|acts, F i]]. The next step is to show that the inner expectation

is always non-negative, so the whole expression is non-negative. To do this, let f i

and f i′ be realizations of (acts, F i), and (acts, F i, F i+), respectively, consistent with

their definitions in Section 5.2.

Then for a given f i,

EF i+,F i− [Z|f i] = EF i+,F i− [D(X|f i, F i+, F i− ‖ X|f i)−D(X|f i, F i+, F i− ‖ X|f i, F i+)].

One can apply Lemma I.1 directly to this expression to show that it is non-negative,

using the following mapping: Y ← X|f i, B ← F i+, and C ← F i−.
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