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CHAPTER I

Introduction

This thesis is focused on identifying the model structure using penalized regres-

sion methods and its application to designed experiments or bioinformatics. The

primary topics include variable selection with heredity constraints and ranking vari-

ables according to their strength of association with a response. Below, I will briefly

describe the major components of my thesis.

1.1 Variable Selection with Heredity Constraints

The variable selection problem plays an important role as the presence of a large

number of candidate predictors occur in a wide variety of scientific fields. For ex-

ample, in microarray analysis, the number of predictors to be analyzed is far higher

than the sample size.

By selecting a subset of important variables, one wants to achieve accurate pre-

dictions and interpretable models. Traditional variable selection methods include

forward/backward stepwise regression and all-subsets regression. A drawback of

these traditional methods is that they are discrete and unstable processes; a small

change in the data could lead to a completely different conclusion selecting a different

subset of variables as addressed by [8].

The Lasso [56], on the other hand, by penalizing the L1 norm of the coefficients,

1
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shrinks some of the coefficient estimates to zeros by penalizing the L1 norm of the

coefficients, so it can estimate the coefficients and select variables at the same time.

Due to the L1 regularization, it introduces bias in the estimates but can reduce the

variance of the estimates, so that the mean squared error can be reduced due to the

bias-variance tradeoff. The Lasso is a more stable procedure than the traditional

methods above.

In this thesis, a regression model that includes main terms and their interaction

terms is considered. There can be some model structures in that setting; some sets

of predictors may be assumed to be grouped (group structures), while some terms

are supposed to be included for other terms to be included (order restrictions). We

focus on order restrictions here.

One may want to include a higher order term in a model only when the corre-

sponding lower order terms are also in the model. This is called marginality in linear

models [43] and heredity principle in designed experiments [29]. Justifications of

this heredity principle are presented in Chapter II. The Lasso and other traditional

variable selection methods do not consider this type of order restriction; they treat

all variables “flatly”. A variable selection that incorporates the order restriction is

proposed in Chapter II. It is also shown that the proposed method has theoretically

“oracle” properties.

1.2 Penalized Regression Methods and Ranking Variables by Their Strength
of Association with a Response

There has been extensive research on variable selection and prediction in regression.

Variable selection focuses on differentiating non-zero effects from zero effects, while

prediction focuses on accurately predicting a response in the new data. In this thesis,

a different approach is considered, which focuses on ranking predictors according to
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the size of their effects on a response. This approach may have implications in genetic

association studies and other analyses involving regression methods with weak effects

and collinear regressors. Especially, in the genetic mapping application, it would be

useful to focus on ranking predictors because one would be interested in prioritizing

the genetic variants that have the highest association with the trait of interest for

further investigation.

One could use a univariate analysis to rank the genetic variants as a pre-screening

tool, but the univariate approach does not consider the combined effects of more

than one variant. To take into account the presence of other variants, multiple linear

regression can be used. However, in genetic data, it is common to have highly corre-

lated predictors, and multiple linear regression is known to perform unsatisfactorily

in that situation.

Regularization is often used to improve the multiple linear regression when strong

collinearity is present. With the perspective of ranking accuracy, three types of

regularized regression methods were considered in this thesis: ridge regression, the

Lasso, and the elastic net. They have been studied in various ways, but have not been

rigourously studied for the purpose of ranking the effects. The ranking behavior of the

regularization methods are analyzed in detail for two- or three-predictor cases. The

three methods are applied to simulated data that mimic the correlation structures

in SNP genotypes and then compared in terms of ranking performance.



CHAPTER II

Variable Selection with Strong Heredity Constraint and Its
Oracle Property

In this chapter, a variable selection method based on the L1 regularization that

simultaneously fits a regression model and identifies important interaction terms

is proposed. Unlike most of the existing variable selection methods, the proposed

method automatically enforces the heredity constraint, i.e., an interaction term can

be included in the model only if the corresponding main terms are also included in

the model. Furthermore, we extend our method to generalized linear models, and

show that it performs as well as if the true model were given in advance, i.e., the

oracle property [21, 22]. Numerical results on both simulation data and real data

indicate that the proposed method tends to select relevant variables and remove

irrelevant variables more effectively and provide better prediction performance than

previous work [56, 67, 69].

2.1 Introduction

Consider the usual regression situation: we have training data (x1, y1), . . ., (xi, yi),

. . ., (xn, yn), where xi = (xi1, . . . , xij, . . . , xip) are the predictors and yi is the re-

sponse. To model the response y in terms of the predictors x1, . . . , xp, one may

4
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consider the linear model:

y = β0 + β1x1 + · · ·+ βpxp + ε,

where ε is the error term. In many important practical problems, however, the main

terms x1, . . . , xp alone may not be enough to capture the relationship between the

response and the predictors, and higher order interactions are often of interest to

scientific researchers. For example, many complex diseases, such as cancer, involve

multiple genetic and environmental risk factors, and scientists are particularly inter-

ested in assessing gene-gene and gene-environment interactions.

In this chapter, a regression model with main terms and all possible two-way

interaction terms is considered, i.e.,

(2.1) y = β0 + β1x1 + · · ·+ βpxp + α12(x1x2) + α13(x1x3) + · · ·+ αp−1,p(xp−1xp) + ε.

The goal here is to find out which terms, especially which interaction terms, have

an important effect on the response. For example, x1, . . . , xp may represent differ-

ent genetic factors, y may represent a certain phenotype, and we are interested in

deciphering how these genetic factors “work together” to determine the phenotype.

Later, we extend the setting to generalized linear models and develop an asymptotic

theory there.

There are two important challenges in this problem: prediction accuracy and inter-

pretation. We would like our model to accurately predict the future data. Prediction

accuracy can often be improved by shrinking the regression coefficients. Shrinkage

sacrifices unbiasedness to reduce the variance of the predicted value and hence may

improve the overall prediction accuracy. Interpretability is often realized via variable

selection. With a large number of variables (including both the main terms and the
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interaction terms), possibly larger than the number of observations, we often would

like to determine a smaller subset that exhibits the strongest effects.

Variable selection has been studied extensively in the literature, for example, see

[7], [56], [21]. In particular, the Lasso [56] has gained much attention in recent years.

The Lasso criterion penalizes the L1-norm of the regression coefficients to achieve a

sparse model:

(2.2) min
βj ,αjj′

n∑
i=1

(
yi − β0 −

∑
j

βjxij −
∑
j<j′

αjj′(xijxij′)
)2

+ λ
(∑

j

|βj|+
∑
j<j′

|αjj′ |
)
.

The L1-norm penalty can shrink some of the fitted coefficients to be exactly

zero when making the tuning parameter sufficiently large. However, the Lasso and

other methods mentioned above are for the case when the candidate variables can

be treated individually or “flatly.” When interaction terms exist, there is a natural

hierarchy among the variables, i.e., an interaction term can be included in the model

only if both of the corresponding main terms are also included in the model. This

is referred to as the marginality in generalized linear models [43, 45] or the strong

heredity in the analysis of designed experiments [29]. Justifications of effect heredity

can be found in [11, 34]. Although it is possible that the true model contains only an

interaction term but not the corresponding main terms, it is a relatively rare case.

Moreover, a linear transformation of predictors would result in getting the main

terms in the model. A generic variable selection method does not enforce the heredity

constraint, that is, it may select an interaction term but not the corresponding main

terms, and such models are difficult to interpret in practice.

In this chapter, we extend the Lasso method so that it simultaneously fits the

regression model and identifies interaction terms obeying the strong heredity con-

straint. Furthermore, we show that when the regularization parameters are appropri-

ately chosen, our new method has the oracle property [21] and [22], i.e., it performs
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as well as if the correct underlying model were given in advance. Such theoretical

property has not been previously studied for variable selection with heredity con-

straints.

[67] and [69] also address the variable selection problem with heredity/marginality

constraints. [67] extends the LARS algorithm [18] and enforces the constraint that if

an interaction term is to be selected, its “parents,” i.e., the corresponding main terms,

are either already in the model, or selected together with the interaction term. The

criterion for selecting a variable or a set of variables (in the case of selecting an inter-

action term and its parents) is an “averaged correlation” between the residual vector

and the variable or the linear space spanned by the set of variables. [69] suggests

a so-called Composite Absolute Penalty (CAP) to enforce the heredity/marginality

constraint. In particular, they propose:

min
βj ,αjj′

n∑
i=1

(
yi − β0 −

∑
j

βjxij −
∑
j<j′

αjj′(xijxij′)
)2

+λ ·
(

max(|β1|, |α12|, . . . , |α1p|)

+ max(|β2|, |α12|, |α23|, . . . , |α2p|)

+ · · ·

+ max(|βp|, |α1p|, . . . , |αp−1,p|)

+
∑
j<j′

|αjj′|
)
.

Note that each vector in the “max(·)” contains a main term and all its “descen-

dants”; if the coefficient for an interaction term is nonzero, there is no increase in

the penalty for letting the coefficients of the corresponding main terms move away

from zero. Hence if an interaction term is selected, the corresponding main terms

are also automatically selected.

However, there are some possible drawbacks with these two methods. For exam-
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ple, [69] found in their simulation study that CAP tends to perform worse than the

Lasso in terms of prediction accuracy when the interaction effects are relatively large

compared to the main effects. The same problem may also occur for [67], because

they select a set of variables based on an “average” criterion. If an interaction effect

is large while the corresponding main effects are relatively small, the “average” cri-

terion may fail to select the set (of the interaction term and the corresponding main

terms) into the model. As we will see in the next sections, our new method does not

suffer from this drawback. It regulates the main effects and the interaction effects

separately, while still maintaining the heredity/marginality constraint. Numerical

results indicate that our method performs well on a wide range of relative sizes for

the main effects and the interaction effects.

The rest of this chapter is organized as follows. In Section 2.2, we introduce our

new model and an algorithm to fit the model. Asymptotic properties are studied

in Section 2.3, and numerical results are in Section 2.4 and 2.5. We conclude this

chapter with Section 2.6.

2.2 Strong Heredity Interaction Model

In this section, we extend the Lasso method for selecting interaction terms while

at the same time keeping the strong heredity constraint. We call our model the

strong heredity interaction model (SHIM). After introducing the model in Section

2.2.1, we develop an algorithm to compute the SHIM estimate in Section 2.2.2. We

then extend SHIM to generalized linear models in Section 2.2.3.

2.2.1 Model

We re-parameterize the coefficients for the interaction terms αjj′ , j < j′, j, j′ =

1, . . . , p, as αjj′ = γjj′βjβj′ , and consider the following model:
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(2.3)

g(x) = β0+β1x1+· · ·+βpxp+γ12β1β2(x1x2)+γ13β1β3(x1x3)+· · ·+γp−1,pβp−1βp(xp−1xp).

Notice the difference in the coefficients of the interaction terms between (2.1)

and (2.3). In (2.3), the coefficient for the interaction term (xjxj′) is expressed as

the product of γjj′ , βj and βj′ , instead of a single parameter αjj′ . By writing the

coefficient as a product, the model itself enforces the heredity constraint. That is,

whenever the coefficient for either xj or xj′ , i.e., βj or βj′ , is equal to zero, the

coefficient for the interaction term (xjxj′) is automatically set to zero; vice versa, if

the coefficient for (xjxj′) is not equal to zero, it implies that both βj and βj′ are not

equal to zero.

For the purpose of variable selection, we consider the following penalized least

squares criterion:

(2.4) min
βj ,γjj′

n∑
i=1

(yi − g(xi))
2 + λβ

(
|β1|+ · · ·+ |βp|

)
+ λγ

(
|γ12|+ · · ·+ |γp−1,p|

)
,

where g(x) is from (2.3), and the penalty is the L1-norm of the parameters, as in the

Lasso (2.2). There are two tuning parameters, λβ and λγ. The first tuning parameter

λβ controls the estimates at the main effect level: if βj is shrunken to zero, variable xj

and all its “descendants,” i.e., the corresponding interaction terms that involve xj are

removed from the model. The second tuning parameter λγ controls the estimates at

the interaction effect level: if βj and βj′ are not equal to zero but the corresponding

interaction effect is not strong, γjj′ still has the possibility of being zero; so it has

the flexibility of selecting only the main terms.

To further improve the criterion (2.4), we apply the adaptive idea which has

been used extensively in the literature, including [7], [70], [60], [68], i.e., to penalize
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different parameters differently. We consider

(2.5)

min
βj ,γjj′

n∑
i=1

(yi−g(xi))
2 +λβ

(
wβ1 |β1|+ · · ·+wβp |βp|

)
+λγ

(
wγ12|γ12|+ · · ·+wγp−1,p|γp−1,p|

)
,

where wβj and wγjj′ are pre-specified weights. The intuition is that if the effect of

a variable is strong, we would like the corresponding weight to be small, hence

the corresponding parameter is lightly penalized. If the effect of a variable is not

strong, we would like the corresponding weight to be large, hence the corresponding

parameter is heavily penalized. How to pre-specify the weights wβj and wγjj′ from the

data is discussed below.

Computing Adaptive Weights

Regarding the adaptive weights wβj and wγjj′ for the regression parameters in (2.5),

we consider three possibilities:

1. Set all the weights equal to 1. We denote this as “plain.”

2. Following [7] and [70], we can compute the weights using the ordinary least

squares (OLS) estimates from the training observations:

wβj =

∣∣∣∣∣ 1

β̂OLSj

∣∣∣∣∣ , wγjj′ =

∣∣∣∣∣ β̂OLSj · β̂OLSj′

α̂OLSjj′

∣∣∣∣∣
where β̂OLSj and α̂OLSjj′ are the corresponding OLS estimates. We denote this as

“Adaptive(OLS).”

3. When n < p, the OLS estimates are not available, we can compute the weights

using the ridge regression estimates, i.e., replacing all the above OLS estimates

with the ridge regression estimates, and we denote this as “Adaptive(Ridge).”
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2.2.2 Algorithm

To estimate the parameters βj and γjj′ , we can use an iterative approach, i.e., we

first fix βj and estimate γjj′ , then we fix γjj′ and estimate βj, and we iterate between

these steps until the SHIM criterion converges based on the relative difference of

criterion values for the two estimates from two consecutive iterations. Since at each

step, the value of the objective function (2.5) decreases, the solution is guaranteed

to converge.

When βj, j = 1, . . . , p, are fixed, (2.5) becomes a Lasso problem, hence we can

use either the Lars/Lasso algorithm [18] or a quadratic programming package to effi-

ciently solve for γjj′ , j < j′. When γjj′ , j < j′, are fixed, we can sequentially solve for

βj: for each j = 1, . . . , p, we fix γjj′ , j < j′, and β[−j] = (β1, . . . , βj−1, βj+1, . . . , βp),

then (2.5) becomes a simple Lasso problem with only one parameter βj, and we can

solve it with a closed form formula. We note that the sequential strategy of fixing

(p−1) βj’s and solving for the other βj is similar to the shooting algorithm in [26, 25].

In summary, the algorithm proceeds as follows:

1. (Standardization) Center y. Center and normalize each term xj, xjxj′ , j < j′,

j, j′ = 1, . . . , p.

2. (Initialization) Initialize β̂
(0)
j and γ̂

(0)
jj′ , j < j′, j, j′ = 1, . . . , p, with some plau-

sible values. For example, we can use the least square estimates or the simple

regression estimates by regressing the response y on each of the terms. Let

m = 1.

3. (Update γ̂jj′) Let

ỹi = yi − β̂(m−1)
1 xi1 − · · · − β̂(m−1)

p xip, i = 1, . . . , n

x̃i,jj′ = β̂
(m−1)
j β̂

(m−1)
j′ (xijxij′), i = 1, . . . , n; j < j′, j, j′ = 1, . . . , p
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then

γ̂
(m)
jj′ = arg min

γjj′

n∑
i=1

(
ỹi −

∑
j<j′

γjj′x̃i,jj′
)2

+ λγ
∑
j<j′

wγjj′ |γjj′|.

4. (Update β̂j)

• Let β̂
(m)
j = β̂

(m−1)
j , j = 1, . . . , p.

• For each j in 1, . . . , p, let

ỹi = yi −
∑
j′ 6=j

β̂
(m)
j′ xij′ −

∑
j′<j′′, j′,j′′ 6=j

β̂
(m)
j′ β̂

(m)
j′′ (xij′xij′′), i = 1, . . . , n

x̃i = xij +
∑
j′<j

γ̂
(m)
j′j β̂

(m)
j′ (xij′xij) +

∑
j′>j

γ̂
(m)
jj′ β̂

(m)
j′ (xijxij′), i = 1, . . . , n

then

β̂
(m)
j = arg min

βj

n∑
i=1

(ỹi − βjx̃i)2 + λβw
β
j |βj|.

5. Compute the relative difference between Qn

(
θ̂

(m−1))
and Qn

(
θ̂

(m))
:

∆(m) =

∣∣∣ Qn

(
θ̂

(m−1))
−Qn

(
θ̂

(m)) ∣∣∣∣∣∣ Qn

(
θ̂

(m−1)) ∣∣∣ ,

where

Qn(θ) =
n∑
i=1

(yi−g(xi))
2+λβ

(
wβ1 |β1|+· · ·+wβp |βp|

)
+λγ

(
wγ12|γ12|+· · ·+wγp−1,p|γp−1,p|

)
,

for θ = (β1, . . . , βp, γ12, . . . , γp−1,p).

6. Stop the algorithm if ∆(m) is small enough. Otherwise, let m = m + 1 and go

back to step 2.

2.2.3 Extension to Generalized Linear Models

The SHIM method can be naturally extended to likelihood based generalized

linear models. Assume that the data V i = {(xi, yi)}, i = 1, . . . , n are collected
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independently. Conditioning on xi, suppose Yi has a density f(g(xi), yi), where g is

a known link function with main terms and all possible interaction terms:

g(x) = β0 + β1x1 + · · ·+ βpxp + α12(x1x2) + α13(x1x3) + · · ·+ αp−1,p(xp−1xp)

= β0 + β1x1 + · · ·+ βpxp + γ12β1β2(x1x2) + · · ·+ γp−1,pβp−1βp(xp−1xp).(2.6)

As before, for the purpose of variable selection, we consider the following penalized

negative log-likelihood criterion:

(2.7)

min
βj ,γjj′

−
n∑
i=1

`(g(xi), yi)+λβ(wβ1 |β1|+· · ·+wβp |βp|)+λγ(w
γ
12|γ12|+· · ·+wγp−1,p|γp−1,p|),

where `(·, ·) = log f(·, ·) is the conditional log-likelihood of Y . Similar to what we

suggested in Section 2.2.1, one can specify the weights wβj and wγjj′ using un-penalized

maximum likelihood estimates or L2-penalized maximum likelihood estimates. Later

in Section 2.3, we show that under certain regularity conditions, using those un-

penalized maximum likelihood estimates for specifying the weights guarantees that

SHIM possesses the asymptotic oracle property.

2.3 Asymptotic Oracle Property

In this section, we study the asymptotic behavior of SHIM based on the general-

ized linear model setting introduced in Section 2.2.3. In Section 2.3.1, we consider

the asymptotic properties of SHIM estimates when the sample size n approaches

to infinity. Furthermore, in Section 2.3.2, we consider the asymptotic properties of

SHIM estimates when the number of covariates pn also increases as the sample size

n increases.
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2.3.1 Asymptotic Oracle Property When n→∞

We show that when the number of predictors is fixed and the sample size ap-

proaches to infinity, SHIM possesses the oracle property under certain regularity

conditions, that is, it performs as well as if the true model were known in advance

[21].

Problem Setup

Let β∗j and α∗jj′ denote the underlying true parameters. We further assume that

the true model obeys the strong heredity constraint: α∗jj′ = 0 if β∗j = 0 or β∗j′ = 0.

Let θ∗ = (β∗T,γ∗T)T where

γ∗jj′ =


α∗

jj′

β∗j β
∗
j′

if β∗j 6= 0 and β∗j′ 6= 0

0 otherwise

.

We consider the SHIM estimates θ̂n:

(2.8)

θ̂n = arg min
θ
Qn(θ) = arg min

θ
−

n∑
i=1

`(g(xi), yi) + n

p∑
j=1

λβj |βj|+ n
∑
k<k′

λγkk′ |γkk′|,

where g is defined in (2.6). Note that Qn(θ) in (2.8) is equivalent to the criterion in

(2.7) by letting λβj = 1
n
λβw

β
j and λγkk′ = 1

n
λγw

γ
kk′ . Furthermore, we define

A1 = {j : β∗j 6= 0}, A2 = {(k, k′) : γ∗kk′ 6= 0}, A = A1 ∪ A2,

i.e., A1 contains the indices for main terms whose true coefficients are nonzero, and

A2 contains the indices for interaction terms whose true coefficients are nonzero. Let

an = max{λβj , λ
γ
kk′ : j ∈ A1, (k, k′) ∈ A2}

bn = min{λβj , λ
γ
kk′ : j ∈ Ac1, (k, k′) ∈ Ac2, k, k′ ∈ A1}
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Notice that to compute bn, we do not consider every case of γ∗kk′ = 0, i.e., (k, k′) ∈ Ac2.

Instead, we only consider the cases where γ∗kk′ is zero and the two corresponding β∗k

and β∗k′ are nonzero, i.e., (k, k′) ∈ Ac2 and k, k′ ∈ A1.

Oracle Property of SHIM

The asymptotic properties of SHIM when the sample size increases are described

in the following lemma and theorems. The regularity conditions (C1)-(C3) and the

proofs are given in Appendix A.

Lemma II.1. Assume that an = o(1) as n → ∞. Then under the regularity condi-

tions (C1)-(C3), there exists a local minimizer θ̂n of Qn(θ) such that ||θ̂n − θ∗|| =

Op(n
−1/2 + an).

Lemma II.1 implies that if the tuning parameters λβj and λγkk′ associated with the

nonzero coefficients converge to 0 at a rate faster than n−1/2, then there exists a local

minimizer of Qn(θ), which is
√
n-consistent.

Theorem II.2. (Sparsity) Assume that
√
nbn →∞ and the local minimizer θ̂n given

in Lemma II.1 satisfies ||θ̂n−θ∗|| = Op(n
−1/2). Then under the regularity conditions

(C1)-(C3),

P (β̂Ac
1

= 0)→ 1 and P (γ̂Ac
2

= 0)→ 1.

Theorem II.2 shows that SHIM can consistently remove the noise terms with

probability tending to 1. Specifically, when the tuning parameters for the nonzero

coefficients converge to 0 faster than n−1/2 and those for zero coefficients are big

enough so that
√
nan → 0 and

√
nbn → ∞, then Lemma II.1 and Theorem II.2

imply that the
√
n-consistent estimator θ̂n satisfies P (θ̂Ac = 0)→ 1.

Theorem II.3. (Asymptotic normality) Assume that
√
nan → 0 and

√
nbn → ∞.
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Then under the regularity conditions (C1)-(C3), the component θ̂A of the local min-

imizer θ̂n given in Lemma II.1 satisfies

√
n(θ̂A − θ∗A)→d N(0, I−1(θ∗A)),

where I(θ∗A) is the Fisher information matrix of θA at θA = θ∗A assuming that

θ∗Ac = 0 is known in advance.

In Theorem II.3, we find that the SHIM estimates for nonzero coefficients in the

true model have the same asymptotic distribution as they would have if the zero

coefficients were known in advance. Therefore, based on Theorem II.2 and Theorem

II.3, we can conclude that asymptotically SHIM performs as well as if the true

underlying model were given in advance, i.e., it has the oracle property (Fan and Li,

2001), when the tuning parameters satisfy the conditions
√
nan → 0 and

√
nbn →∞.

Now the remaining question is how we specify the adaptive weights so that the

conditions
√
nan → 0 and

√
nbn → ∞ are satisfied. It turns out that the Adap-

tive(MLE) weights introduced in Section 2.2.1 satisfy those conditions. Following

the idea in [61], let

λβj =
log(n)

n
λβw

β
j =

log(n)

n
λβ

∣∣∣∣∣ 1

β̂MLE
j

∣∣∣∣∣ ,
λγkk′ =

log(n)

n
λγw

γ
kk′ =

log(n)

n
λγ

∣∣∣∣∣ β̂MLE
k · β̂MLE

k′

α̂MLE
kk′

∣∣∣∣∣ .
Using the fact that β̂

MLE
and α̂MLE are

√
n-consistent estimates of β∗ and α∗, it

can be easily shown that the tuning parameters λβj and λγkk′ defined above satisfy

the conditions for the oracle property. Therefore, we can conclude that by tuning

the two regularization parameters λβ and λγ and using the pre-specified weights

Adaptive(MLE), SHIM asymptotically possesses the oracle property.
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2.3.2 Asymptotic Oracle Property When pn →∞ as n→∞

In this section, we consider the asymptotic behavior of SHIM when the number

of predictors pn is allowed to approach infinity as well as the sample size n. Similar

as in [22], we show that under certain regularity conditions, SHIM still possesses the

oracle property.

We first re-define some notations because now the number of predictors pn changes

with the sample size n. We denote the total number of parameters qn = (pn+1)pn/2.

We add a subscript n to V , f(·, ·) and θ to denote that these quantities now change

with n. Similarly for A1, A2 and A which are defined in Section 2.3.1, and we let

sn = |An|.

Oracle Property of SHIM

The asymptotic properties of SHIM when the number of predictors increases as

well as the sample size are described in the following lemma and theorems. The

regularity conditions (C4-C6) and the proofs are given in Appendix A.

Lemma II.4. Assume that the density fn(V n,θ
∗
n) satisfies the regularity conditions

(C4-C6). If
√
nan → 0 and q5

n/n→ 0 as n→∞, then there exists a local minimizer

θ̂n of Qn(θn) such that

‖θ̂n − θ∗n‖ = Op(
√
qn(n−1/2 + an)).

Theorem II.5. Suppose that the density fn(V n,θ
∗
n) satisfies the regularity condi-

tions (C4-C6). If
√
nqnan → 0,

√
n/qnbn → ∞, and q5

n/n → 0 as n → ∞, then

with probability tending to 1, the
√
n/qn-consistent local minimizer θ̂n in Lemma

II.4 satisfies the following:

(a) (Sparsity) θ̂nAc
n

= 0;
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(b) (Asymptotic normality)

√
nAnI

1/2
n (θ∗nAn

)(θ̂nAn − θ∗nAn
)→d N(0,G),

where An is an arbitrary m× sn matrix with a finite m such that AnA
T

n → G

and G is a m × m nonnegative symmetric matrix and In(θ∗nAn
) is the Fisher

information matrix of θnAn at θnAn = θ∗nAn
.

Note that because the dimension of θ̂nAn approaches to infinity as the sample

size n grows, for asymptotic normality of SHIM estimates, we consider an arbitrary

linear combination Anθ̂nAn , where An is an arbitrary m× sn matrix with a finite m.

Similar as in Section 2.3.1, now the remaining question is whether the Adap-

tive(MLE) weights introduced in Section 2.2.1 satisfy the conditions for the oracle

property. Let

λβnj =
log(n) qn

n
λβw

β
j =

log(n) qn
n

λβ

∣∣∣∣∣ 1

β̂MLE
j

∣∣∣∣∣ ,
λγn,kk′ =

log(n) qn
n

λγw
γ
kk′ =

log(n) qn
n

λγ

∣∣∣∣∣ β̂MLE
k · β̂MLE

k′

α̂MLE
kk′

∣∣∣∣∣ .
Using the fact that β̂

MLE
and α̂MLE are

√
n/qn-consistent estimates of β∗ and α∗

and assuming q4
n/n→ 0, it can be easily shown that the tuning parameters λβnj and

λγn,kk′ defined above satisfy the conditions for the oracle property:
√
nqnan → 0 and√

n/qnbn → ∞. Therefore, we can conclude that by tuning the two regularization

parameters λβ and λγ and using the pre-specified weights Adaptive(MLE), SHIM

asymptotically possesses the oracle property.

2.4 Simulation Study

2.4.1 Regression models with random normal covariates

In this section, we use simulation data to demonstrate the efficacy of SHIM, and

compare the results with those of the Lasso, a method that does not guarantee the
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heredity constraint. Furthermore, we compare the performance of SHIM with two

other methods, [69] and [67], which also address the variable selection problem with

heredity constraint.

Table 2.1: Simulation study: coefficients of the true models
x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4

Case 1 7 2 1 1 0 0 0 0 0 0
Case 2 7 2 1 1 1.0 0 0 0.5 0.4 0.1
Case 3 7 2 1 1 7 7 7 2 2 1
Case 4 7 2 1 1 14 14 14 4 4 2
Case 5 0 0 0 0 7 7 7 2 2 1

We mimicked and extended the simulations in [69]. There are p = 10 predictors

with only the first 4 affecting the response. The total number of candidate terms (in-

cluding all possible two-way interaction terms) is p+p(p−1)/2 = 55. Each of the 10

predictors is normally distributed with mean zero and variance one. The 10 predic-

tors are generated either independently or with correlation Corr(Xj, Xj′) = 0.5|j−j
′|.

With each of independent predictors and correlated predictors, we considered five

different cases with coefficients shown in Table 2.1. The signal to noise ratio (SNR)

was set to 4.0 in every case.

Case 1 is a model with no interaction effect; Case 2 is a model with interaction

effects of moderate size; Case 3 represents a model with interaction effects of large

size; and Case 4 is a model where the size of interaction effects is larger than that of

the main effects. Case 5 is a model that does not even obey the heredity constraint.

We generated n = 200 training observations from each of the above models and

10, 000 test observations. To select the tuning parameters λ’s for SHIM, we con-

sidered three criteria: GCV, BIC, and the validation error on a validation set with
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m = 200 observations.

GCV(λ1, λ2) =
σ̂2

(λ1,λ2)

(1− df(λ1,λ2)/n)2

BIC(λ1, λ2) = log σ̂2
(λ1,λ2) + df(λ1,λ2) log n/n

Validation Error(λ1, λ2) =
1

m

m∑
i=1

(yval
i − f̂(λ1,λ2)(x

val
i ))2

where σ̂2
(λ1,λ2) = 1

n

∑n
i=1(yi − f̂(λ1,λ2)(xi))

2 and df(λ1,λ2) = the degree of freedom for

(λ1, λ2). We simulated 100 replicates and in each replicate, we considered the three

pairs of the (λ1, λ2)’s that minimize GCV, BIC, and a validation error respectively.

In the following sections, we compare our method SHIM with other methods in

terms of the prediction accuracy and the variable selection performance.

Prediction Performance

We first compare the prediction accuracy of SHIM with those of other methods:

oracle, OLS, Lasso, CAP, and CARDS. “oracle” refers to the OLS applied only to the

relevant terms, which serves as an optimal bench mark. CAP and CARDS refer to

the two previous works, [69] and [67] respectively, which address the variable selection

problem with heredity constraint. The latter extends the LARS algorithm [18], and

the former suggests a Composite Absolute Penalty (CAP) in order to enforce the

heredity constraint.

We compute the mean squared error (MSE) with a test set with 10, 000 obser-

vations for measuring the prediction accuracy. Figure 2.1 and Figure 2.2 show the

boxplots of the 100 MSEs from 100 replicates when the tuning parameters are cho-

sen based on validation error and GCV, in independent cases and correlated cases,

respectively. For the Lasso, SHIM, CAP and CARDS, we choose to plot the results

based on validation error because we find the prediction accuracy is the best when

validation error is used to select tuning parameters among the three criteria. We
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also plot the results based on GCV for a comparison because it performs second-

best and a validation set is not always available in real data sets. In Figure 2.1,

ALASSO-1 and ASHIM-1 refer to the adaptive Lasso and the adaptive SHIM with

the weights based on OLS estimates; in Figure 2.2, ALASSO-2 and ASHIM-2 refer

to the adaptive Lasso and the adaptive SHIM with the weights based on ridge re-

gression estimates. The results based on OLS estimates are not shown in Figure 2.2,

because they are often not good estimates in correlated cases.

Both figures show both Lasso and SHIM perform much better than OLS; this

illustrates that some regularization or shrinkage is crucial for prediction accuracy.

Furthermore, SHIM seems to perform consistently better than the Lasso. We can

also see that the adaptive weights often help us improve the prediction accuracy for

both SHIM and the Lasso, when the validation error is used.

Comparing SHIM (non-adaptive version) with the two other previous works, CAP

[69] and CARDS [67], we can see that the prediction accuracy of SHIM is consistently

better than CARDS and CAP in both independent and correlated cases, especially

when the effect of interaction terms increases.

Variable Selection Performance

We also compare the variable selection performance of SHIM with those of the

other methods.

We define “underfitted”, “correctly-fitted”, and “overfitted” models following [62].

Suppose that we have q candidate terms and there are only q0 ≤ q number of relevant

terms in a true model. And let IF = {1, 2, . . . , q} denote the index set of the full

model; IT = {j1, j2, . . . , jq0} denote the index set of the true model; I denote the

index set of the selected model based on any method. Then we define a model as a

underfitted model when IT * I, an overfitted model when IT  I, and a correctly-
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fitted model when I = IT .

In Table 2.2, we present those results for SHIM and the other methods, Lasso,

CAP [69] and CARDS [67]. These results are based on the tuning parameters selected

by minimizing BIC. We choose to show the results based on BIC because they have

the best variable selection performance among the three criteria in our simulation.

[62], [59] and [68] show similar results in their papers.

Table 2.2 shows that SHIM and adaptive SHIM tend to select the correct model

more often than other methods, since they have the highest number of correctly-

fitted models among all methods in most cases. When this is not the case: None of

the methods can find the exactly correct models (Case 2), because they would easily

miss some of the weak interaction effects, or the methods that enforce the heredity

constraint are not supposed to perform well because the true model does not satisfy

the heredity constraint (Case 5). In addition, all methods perform similarly, when

there is no interaction effect in the true model (Case 1).

We can confirm our conclusion in Figure 2.3 and 2.4. In the two figures, we plot

(1-specificity, sensitivity) of the selected models based on BIC. In each replicate, the

sensitivity is defined as the proportion of the number of selected relevant terms to the

number of relevant terms and specificity is defined as the proportion of the number

of excluded irrelevant terms to the number of irrelevant terms.

Each dot in the figures corresponds to each pair of (1-specificity, sensitivity) from

one replicate so we should have 100 dots in each plot. If the selected models contain

relevant terms and remove irrelevant terms effectively, we would expect the dots to

be located at the upper left corner of the plots, as it would mean both sensitivity

and specificity are close to 1 simultaneously. We can see that four methods work

similarly in Case 1 and 2 where the effects of interaction terms are small. For Case
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Table 2.2: Simulation results: variable selection based on BIC. “Underfitted”, “Correctly-fitted”
and “Overfitted” represent the numbers of replicates that are underfitted, correctly-
fitted and overfitted among the 100 replicates. “ALASSO” and “ASHIM” refer to the
adaptive Lasso and the adaptive SHIM with the OLS weights for independent cases and
the Ridge weights for correlated cases; “CAP” refers to [69] and “CARDS” refers to [67].

LASSO ALASSO SHIM ASHIM CAP CARDS
Independent Cases

Underfitted 21 30 3 14 23 14
Case 1 Correctly-fitted 23 27 17 49 42 44

Overfitted 56 43 80 37 35 42
Underfitted 100 100 98 98 97 99

Case 2 Correctly-fitted 0 0 0 0 1 0
Overfitted 0 0 2 2 2 1
Underfitted 93 97 17 20 41 59

Case 3 Correctly-fitted 0 0 78 78 17 13
Overfitted 7 3 5 2 42 28
Underfitted 99 100 10 19 29 44

Case 4 Correctly-fitted 0 0 87 76 12 17
Overfitted 1 0 3 5 59 39
Underfitted 50 64 1 6 29 42

Case 5 Correctly-fitted 2 10 0 0 0 0
Overfitted 48 26 99 94 71 58

Correlated Cases
Underfitted 18 48 22 65 19 17

Case 1 Correctly-fitted 38 26 53 31 54 61
Overfitted 44 26 25 4 27 22
Underfitted 95 100 88 93 85 93

Case 2 Correctly-fitted 1 0 0 1 1 3
Overfitted 4 0 12 6 14 4
Underfitted 91 99 9 27 22 44

Case 3 Correctly-fitted 1 0 88 68 29 36
Overfitted 8 1 3 5 49 20
Underfitted 98 100 3 22 16 33

Case 4 Correctly-fitted 0 0 97 72 31 38
Overfitted 2 0 0 6 53 29
Underfitted 59 83 1 14 16 33

Case 5 Correctly-fitted 15 6 0 0 0 0
Overfitted 26 11 99 86 84 67
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3, 4 and 5, however, SHIM selects better models more often than the Lasso, CAP

and CARDS, as we can see the points for SHIM are more concentrated at the upper

left corner of the plots.

2.4.2 Analyzing Designed Experiments Using SHIM

In designed experiments, economic considerations may compel the investigator to

use few experiments (runs). Many efficient experimental designs have been proposed

in the literature. Among them fractional factorial designs are thoroughly studied

and widely used. While the design of experiments literature is replete with research

on the construction of the efficient designs, the methodologies of analysis have not

received the same amount of attention. Traditional analysis methods (e.g., stepwise,

all subset) continue to be a dominating choice for researchers in the DOE area. Wu

and Hamada [65] stated three principles in the analysis of the designed experiment:

effect sparsity (i.e., only a few of all candidate factors are active), effect hierarchy

(e.g., main effects are more likely to be significant than two-factor interactions), and

effect heredity (e.g., two-factor interaction x1x2 should be in the model only if the

main effects x1 and x2 are also in the model).

The proposed method appears to be particularly suitable for analyzing the de-

signed experiments, as SHIM encourages effect sparsity and requires effect heredity

in the model. In this section we explore the use of SHIM in analyzing designed

experiments. We consider a simulation study, in which a minimum-aberration 26−2

IV

design was used to generate simulated data. Six two-level factors are studied in a

16-run design, which is defined by x5 = x1x2x3 and x6 = x1x2x4. Similar to those in

Table 2.1, four cases of model are considered and shown in Table 2.3.

To study whether or not SHIM can effectively select the correct model, we gen-

erated 1,000 simulations and recorded (1-specificity, sensitivity) as in Section 2.4.1.
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Table 2.3: DOE example setting: coefficients of the true models.
x1 x2 x3 x1x2 x1x3 x2x3

Case 1 7 2 1 0 0 0
Case 2 7 2 1 1 0 0
Case 3 7 2 1 7 7 7
Case 4 7 2 1 14 14 14

In each simulation, the data are generated by using the true models of Table 2.3,

plus a random error of N(0, 1). We then compare SHIM with three other competing

methods: the Lasso, CARDS, and CAP. The results based on BIC-selected models

are shown in Figure 2.5. It can be seen that SHIM performs consistently better than

other methods in terms of removing irrelevant effects, especially when the heredity

property is stronger in the model (i.e., Case 3 and Case 4).

2.5 Real Data Analysis

In this section, we apply our method SHIM to a real dataset. This dataset was

from [33] for a case-control study of bladder cancer. It consists of the genotypes on

14 loci and the status of smoking behavior for 201 bladder cancer patients and 214

controls. Four of the genotypes are two-level factors, nine are three-level factors and

one is a five-level factor. We represent all genotypes with dummy variables, hence

a total of 4 + 2 × 9 + 4 = 26 dummy variables. The status of smoking behavior is

represented with two predictors: one is a three-level factor (non-smoker, light-smoker,

and heavy-smoker), and the other is a continuous variable, measuring the number

of packs consumed per year. Since the response variable is binary (case/control), we

used the negative binomial log-likelihood as the loss function rather than the squared

error.

We randomly split the data into training (n = 315) and testing (N = 100).

Tuning parameters were chosen via five-fold cross-validation based on the training
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data. Fitted models were evaluated on the testing data, with the classification rule

given by sgn(ĝ(x)).

We considered three cases. In the first case, we used only the genetic information,

i.e., the 14 loci genetic factors. There are a total of 336 candidate terms, including

the main terms and all possible two-way interaction terms (between two different

loci). In the second case, we considered the 14 genetic factors and the categorical

smoke-status. There are a total of 390 candidate terms, including all possible two-

way interaction terms among the genetic factors and the interaction terms between

genetic factors and the categorical smoke-status. In the third case, we replaced the

categorical smoke-status with the continuous smoke-status, where we considered the

interactions between genetic factors and the continuous smoke-status. For compari-

son, we fitted both the Lasso and SHIM in each case. We used Adaptive(Ridge) as

the pre-specified weights because the number of terms is larger than the number of

observations in the first two cases. Misclassification errors, sensitivities and speci-

ficities (all on the test data) of these models are summarized in Table 2.4. As we can

see, the models that use the genetic factors and the continuous smoke-status perform

slightly better than other models in terms of the error rate. This may be heuristically

understood as that the continuous smoke-status contains more information than the

categorical smoke-status.

We then focused on the third case. Terms selected by the adaptive Lasso and

the adaptive SHIM are shown in the upper part of Table 2.5. Notice that both

methods selected the smoke-status PackY ear, GSTM1 and MPO. The Lasso also

selected an interaction term, NQO1× PackY ear, but it does not obey the heredity

constraint; on the other hand, SHIM selected the main term NQO1, but not the

interaction term.
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To further assess the terms that were selected, we applied a bootstrap analysis.

The lower part of Table 2.5 summarizes the terms that were selected with selection

frequency higher than 30% based on B = 100 bootstrap samples. As we can see,

the five terms selected by SHIM using the training data are the only five terms that

had the selection frequency higher than 30% in bootstrap samples. So SHIM is fairly

stable in terms of selecting terms. We can also see that the smoke-status was always

selected, followed immediately by MPO. The interaction term NQO1× PackY ear

was selected half of the time by the Lasso, but never by SHIM; instead, SHIM selected

the main term NQO1 half of the time.

These results seem to be consistent with the findings in [33]. The five terms

selected by SHIM are among the ones that were shown to have a significant effect on

increasing the risk of bladder cancer in [33].

Table 2.4: Real data analysis results: misclassification error, sensitivity and specificity on the test
data

Misclassification Error Sensitivity Specificity
SHIM using the genetic factors
LASSO Plain 0.44 0.48 0.63

Adaptive 0.41 0.52 0.65
SHIM Plain 0.36 0.54 0.73

Adaptive 0.38 0.46 0.77
SHIM using the genetic factors and the categorical smoke-status variable
LASSO Plain 0.35 0.58 0.71

Adaptive 0.37 0.56 0.69
SHIM Plain 0.35 0.65 0.65

Adaptive 0.34 0.65 0.67
SHIM using the genetic factors and the continuous smoke-status variable
LASSO Plain 0.34 0.60 0.71

Adaptive 0.32 0.67 0.69
SHIM Plain 0.33 0.67 0.67

Adaptive 0.32 0.65 0.71
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Table 2.5: Real data analysis results: the upper part lists the terms that were selected using the
training data, and the lower part lists the terms that were selected (with selection fre-
quency higher than 30%) based on 100 bootstrap samples. The numbers in the parenthe-
ses are the corresponding selection frequencies out of B = 100 bootstrap samples. The
Lasso and SHIM were used with the genetic factors and the continuous smoke-status
variable.

Adaptive LASSO Adaptive SHIM
Selected terms using the training data

PackY ear PackY ear
GSTM1 GSTM1
MPO MPO

(NQO1)× (PackY ear) NQO1
— MnSOD

Selected terms using 100 bootstrap samples
PackY ear (100%) PackY ear (100%)
MPO (78%) MPO (82%)

(NQO1)× (PackY ear) (49%) GSTM1 (57%)
GSTM1 (43%) NQO1 (46%)
NQO1 (37%) MnSOD (40%)
MnSOD (36%) — —

(COMT )× (PackY ear) (35%) — —
(MPO)× (PackY ear) (32%) — —

(XRCC1)× (PackY ear) (30%) — —

2.6 Discussion

In this chapter, we have extended the Lasso method for simultaneously fitting a

regression model and identifying interaction terms. The proposed method automat-

ically enforces the heredity constraint. In addition, it enjoys the “oracle” property

under mild regularity conditions. We demonstrate that our new method tends to re-

move irrelevant variables more effectively and provide better prediction performance

than the classical Lasso method, as well as two other more recent work.

The heredity that we have considered in this chapter is the so-called strong hered-

ity, i.e., an interaction term can be included in the model only if both of the corre-

sponding main terms are also included in the model. There is another type of hered-

ity, weak heredity [29], in which only one of the main terms is required to be present

when an interaction term is included in the model. Extending our SHIM framework
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to enforce the weak heredity is straightforward: instead of re-parameterizing the co-

efficient for xjxj′ as the product γjj′βjβj′ , we write it as γjj′(|βj| + |βj′ |). So if the

coefficient for xjxj′ is not equal to zero, it implies that at least one of βj and βj′ is

not equal to zero.
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Figure 2.3: Simulation results: sensitivity and 1 - specificity of the selected models based on BIC
in independent cases. Each dot corresponds to each replicate among 100 replicates.
“CAP” refers to [69] and “CARDS” refers to [67].
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Figure 2.4: Simulation results: sensitivity and 1 - specificity of the selected models based on BIC in
correlated cases. Each dot corresponds to each replicate among 100 replicates. “CAP”
refers to [69] and “CARDS” refers to [67].
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Figure 2.5: DOE example results: sensitivity and 1 - specificity of the selected models based on
BIC. Each dot corresponds to each replicate among 1000 replicates. “CAP” refers to
[69] and “CARDS” refers to Yuan et al. [67].
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2.7 Appendix A

Regularity Conditions for Section 2.3.1

(C1) The observations {V i : i = 1, . . . , n} are independent and identically distributed

with a probability density f(V ,θ), which has a common support. We assume

the density f satisfies the following equations:

Eθ

[
∂ log f(V ,θ)

∂θj

]
= 0 for j = 1, . . . ,

p(p+ 1)

2
,

and

Ijk(θ) = Eθ

[
∂

∂θj
log f(V ,θ)

∂

∂θk
log f(V ,θ)

]

= Eθ

[
− ∂2

∂θj∂θk
log f(V ,θ)

]
.

(C2) The Fisher information matrix

I(θ) = E

[( ∂

∂θ
log f(V ,θ)

)( ∂

∂θ
log f(V ,θ)

)T

]

is finite and positive definite at θ = θ∗.

(C3) There exists an open set ω of Ω that contains the true parameter point θ∗

such that for almost all V the density f(V ,θ) admits all third derivatives

(∂3f(V ,θ))/(∂θj∂θk∂θl) for all θ ∈ ω and any j, k, l = 1, . . . , p(p + 1)/2.

Furthermore, there exist functions Mjkl such that∣∣∣∣∣ ∂3

∂θj∂θk∂θl
log f(V ,θ)

∣∣∣∣∣ ≤Mjkl(V ) for all θ ∈ ω,

where mjkl = Eθ∗ [Mjkl(V )] <∞.

Regularity Conditions for Section 2.3.2

(C4) The observations {V ni : i = 1, . . . , n} are independent and identically dis-

tributed with a probability density fn(V n,θn), which has a common support.
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We assume the density fn satisfies the following equations:

Eθn

[
∂ log fn(V n,θn)

∂θnj

]
= 0 for j = 1, . . . , qn,

and

Ijk(θn) = Eθn

[
∂

∂θnj
log fn(V n,θn)

∂

∂θnk
log fn(V n,θn)

]

= Eθn

[
− ∂2

∂θnj∂θnk
log fn(V n,θn)

]
.

(C5) In(θn) = E[(∂ log fn(V n1,θn)
∂θn

)(∂ log fn(V n1,θn)
∂θn

)
T

] satisfies 0 < C1 < λmin{In(θn)} ≤

λmax{In(θn)} < C2 < ∞ for all n, where λmin(·) and λmax(·) represent the

smallest and the largest eigenvalues of a matrix respectively. Moreover, for any

j, k = 1, 2, . . . , qn,

Eθn

{
∂ log fn(V n1,θn)

∂θnj

∂ log fn(V n1,θn)

∂θnk

}2

< C3 <∞,

and

Eθn

{
∂2 log fn(V n1,θn)

∂θnj∂θnk

}2

< C4 <∞.

(C6) There exists a large open set ωn ⊂ Ωn ∈ Rqn which contains the true param-

eter θ∗n such that for almost all V ni the density admits all third derivatives

∂3fn(V ni,θn)/∂θnj∂θnk∂θnl for all θn ∈ ωn. Furthermore, there are functions

Mnjkl such that ∣∣∣∣∂3 log fn(V ni,θn)

∂θnj∂θnk∂θnl

∣∣∣∣ ≤Mnjkl(V ni)

for all θn ∈ ωn and

EθnM
2
njkl(V ni) < C5 <∞

for all qn, n, and j, k, l.
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Proof of Lemma 1

Let ηn = n−1/2 + an and {θ∗ + ηnδ : ||δ|| ≤ d} be the ball around θ∗, where

δ = (u1, . . . , up, v12, . . . , vp−1,p)
T = (uT,vT)T. Define

Dn(δ) ≡ Qn(θ∗ + ηnδ)−Qn(θ∗).

Let −Ln denote the first term of Qn in (8). For δ that satisfies ||δ|| = d, we have

Dn(δ) = −Ln(θ∗ + ηnδ) + Ln(θ∗) + n
∑
j

λβj
(
|β∗j + ηnuj| − |β∗j |

)
+ n

∑
k<k′

λγkk′
(
|γ∗kk′ + ηnvkk′| − |γ∗kk′|

)
≥ −Ln(θ∗ + ηnδ) + Ln(θ∗) + n

∑
j∈A1

λβj
(
|β∗j + ηnuj| − |β∗j |

)
+ n

∑
(k,k′)∈A2

λγkk′
(
|γ∗kk′ + ηnvkk′| − |γ∗kk′ |

)
≥ −Ln(θ∗ + ηnδ) + Ln(θ∗)− nηn

∑
j∈A1

λβj |uj| − nηn
∑

(k,k′)∈A2

λγkk′ |vkk′|

≥ −Ln(θ∗ + ηnδ) + Ln(θ∗)− nη2
n

(∑
j∈A1

|uj|+
∑

(k,k′)∈A2

|vkk′ |
)

≥ −Ln(θ∗ + ηnδ) + Ln(θ∗)− nη2
n(|A1|+ |A2|)d

= −[∇Ln(θ∗)]T(ηnδ)− 1

2
(ηnδ)T[∇2Ln(θ∗)](ηnδ)(1 + op(1))

−nη2
n(|A1|+ |A2|)d.(2.9)

We split (2.9) into three parts:

A1 = −[∇Ln(θ∗)]T(ηnδ)

A2 = −1

2
(ηnδ)T[∇2Ln(θ∗)](ηnδ)(1 + op(1))

A3 = −nη2
n(|A1|+ |A2|)d
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Then

A1 = −ηn[∇Ln(θ∗)]Tδ

= −
√
nηn

( 1√
n
∇Ln(θ∗)

)T

δ

= −
√
nηn

(√
n

1

n

n∑
i=1

∇ log f(V i,θ)
∣∣∣
θ=θ∗

)T

δ

= −Op(
√
nηn)δ

= −Op(nη
2
n)δ,

A2 =
1

2
nη2

n

{
δT
[
− 1

n
∇2Ln(θ∗)

]
δ
}

(1 + op(1))

=
1

2
nη2

n

{
δT
[
I(θ∗)

]
δ
}

(1 + op(1)) by the weak law of large numbers.

Thus,

Dn(δ) ≥ A1 + A2 + A3

= −nη2
nOp(1)δ +

1

2
nη2

n

{
δT
[
I(θ∗)

]
δ
}

(1 + op(1))− nη2
n(|A1|+ |A2|)d.(2.10)

Notice that A2 dominates the rest terms A1 and A3 and is positive since I(θ) is

positive definite at θ = θ∗ from (C2). Therefore, for any given ε > 0, there exists a

large enough constant d such that

P
{

inf
||δ||=d

Qn(θ∗ + ηnδ) > Qn(θ∗)
}
≥ 1− ε.

This implies that with probability at least 1− ε, there exists a local minimizer in the

ball {θ∗ + ηnδ : ||δ|| ≤ d}. Thus, there exists a local minimizer of Qn(θ) such that

||θ̂n − θ∗|| = Op(ηn).
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Proof of Theorem 1

We first consider P (β̂Ac
1

= 0)→ 1. It is sufficient to show for any j ∈ Ac1

∂Qn(θ̂n)

∂βj
< 0 for − εn < β̂j < 0(2.11)

∂Qn(θ̂n)

∂βj
> 0 for 0 < β̂j < εn(2.12)

with probability tending to 1 where εn = Cn−1/2 and C > 0 is any constant. To

show (2.12), notice

∂Qn(θ̂n)

∂βj
= −Ln(θ̂n)

∂βj
+ nλβj sgn(β̂j)

= −Ln(θ∗)

∂βj
−

p(p+1)
2∑

k=1

∂2Ln(θ∗)

∂βj∂θk
(θ̂k − θ∗k)

−

p(p+1)
2∑

k=1

p(p+1)
2∑
l=1

∂3Ln(θ̃)

∂βj∂θk∂θl
(θ̂k − θ∗k)(θ̂l − θ∗l ) + nλβj sgn(β̂j)

where θ̃ lies between θ̂n and θ∗. By (C1)–(C3) and the condition ‖θ̂n − θ∗‖ =

Op(n
−1/2),

∂Qn(θ̂n)

∂βj
=
√
n
{
Op(1) +

√
nλβj sgn(β̂j)

}
.

As
√
nλβj →∞ for j ∈ Ac1 from the assumption, the sign of ∂Qn(θ̂n)

∂βj
is dominated by

sgn(β̂j). Therefore,

P
[∂Qn(θ̂n)

∂βj
> 0 for 0 < β̂j < εn

]
→ 1 as n→∞.

(2.11) can be shown in the same way.

Next, we prove P (γ̂Ac
2

= 0)→ 1.

• For (k, k′) where (k, k′) ∈ Ac2 and k, k′ ∈ A1: we can prove P (γ̂kk′ = 0)→ 1 by

a similar reasoning.
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• For (k, k′) where (k, k′) ∈ Ac2 and either k or k′ is in Ac1: without loss of

generality, assume that β∗k = 0. Notice that β̂k = 0 implies γ̂kk′ = 0, because if

γ̂kk′ 6= 0, then the value of the loss function does not change but the value of

the penalty function will increase. Since we already have P (β̂k = 0) → 1, we

can conclude P (γ̂kk′ = 0)→ 1 as well.

Proof of Theorem 2

Let Qn(θA) denote the objective function Qn only on the A-component of θ, that

is, Qn(θ) with θAc . Based on Lemma 1 and Theorem 1, we have P
(
θ̂Ac = 0

)
→ 1.

Thus,

P
[
arg min

θA
Qn(θA) =

(
A-component of arg min

θ
Qn(θ)

)]
→ 1.

It means that θ̂A should satisfy

(2.13)
∂Qn(θA)

∂θj

∣∣∣∣
θA=θ̂A

= 0, ∀j ∈ A

with probability tending to 1.

Let Ln(θA) and Pλ(θA) denote the log-likelihood function of θA and the penalty

function of θA respectively so that we have

Qn(θA) = −Ln(θA) + nPλ(θA).

From (2.13), now we have

(2.14) ∇AQn(θ̂A) = −∇ALn(θ̂A) + n∇APλ(θ̂A) = 0,

with probability tending to 1.
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• Consider the first term in (2.14). By the Taylor expansion of −∇ALn(θA) at

θA = θ∗A,

−∇ALn(θ̂A) = −∇ALn(θ∗A)−
[
∇2
ALn(θ∗A) + op(1)

](
θ̂A − θ∗A

)
=
√
n

[
− 1√

n
∇ALn(θ∗A) +

(
− 1

n
∇2
ALn(θ∗A)− op(1)

)√
n(θ̂A − θ∗A)

]

=
√
n

[
− 1√

n
∇ALn(θ∗A) + I(θ∗A)

√
n(θ̂A − θ∗A) + op(1)

]
.

• Consider the second term in (2.14). By the Taylor expansion of n∇APλ(θA) at

θA = θ∗A,

n∇APλ(θ̂A) = n


 λβj sgn(βj)

λγkk′sgn(γkk′)


j∈A1,(k,k′)∈A2

+ op(1)(θ̂A − θ∗A)


=
√
nop(1)

because
√
nan = o(1) and ‖θ̂A − θ∗A‖ = Op(n

−1/2).

Thus,

0 =
√
n

[
− 1√

n
∇ALn(θ∗A) + I(θ∗A)

√
n(θ̂A − θ∗A) + op(1)

]
.

It follows

√
n(θ̂A − θ∗A) = I(θ∗A)−1

√
n

1

n

n∑
i=1

∇A log f(V i,θA) + op(1).

Therefore, by central limit theorem,

√
n(θ̂A − θ∗A)→d N(0, I−1(θ∗A)).
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Proof of Lemma 2

Let ηn =
√
qn(n−1/2 + an) and {θ∗n + ηnδ : ‖δ‖ ≤ d} be the ball around θ∗n, where

δ = (u1, . . . , upn , v12, . . . , vpn−1,pn)T = (uT,vT)T. It is sufficient to show that for any

ε > 0, there is a large constant d such that

P

{
inf
‖δ‖=d

Qn(θ∗n + ηnδ) > Qn(θ∗n)

}
≥ 1− ε,

because it implies that with probability at least 1− ε, there exists a local minimum

in the ball {θ∗n + ηnδ : ‖δ‖ ≤ d}. Define

Dn(δ) ≡ Qn(θ∗n + ηnδ)−Qn(θ∗n).

Let −Ln and nPn denote the first and the second terms of Qn in (9). For any δ

satisfying ||δ|| = d, we have

Dn(δ) = −Ln(θ∗n + ηnδ) + Ln(θ∗n) + nPn(θ∗n + ηnδ)− nPn(θ∗n)

≥ −Ln(θ∗n + ηnδ) + Ln(θ∗n)

+n
{ ∑
j∈An1

λβnj(|βj + ηnuj| − |βj|) +
∑

(k,k′)∈An2

λγn,kk′(|γkk′ + ηnvkk′| − |γkk′ |)
}

≥ −Ln(θ∗n + ηnδ) + Ln(θ∗n)− nηn
{ ∑
j∈An1

λβnj|uj|+
∑

(k,k′)∈An2

λγn,kk′ |vkk′ |
}

≥ −Ln(θ∗n + ηnδ) + Ln(θ∗n)− nηn
{ ∑
j∈An1

an|uj|+
∑

(k,k′)∈An2

an|vkk′ |
}

≥ −Ln(θ∗n + ηnδ) + Ln(θ∗n)− nηn(
√
snan)d

≥ −Ln(θ∗n + ηnδ) + Ln(θ∗n)− nη2
nd.

By Taylor expansion,

Dn(δ) ≥ −∇TLn(θ∗n)(ηnδ)− 1

2
(ηnδ)T∇2Ln(θ∗n)(ηnδ)− 1

6
∇T
{
δT∇2Ln(θ̃n)δ

}
δη3

n − nη2
nd

≡ A1 + A2 + A3 + A4,
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where θ̃n lies between θ∗n + ηnδ and θ∗n. We first consider A1.

|A1| = | − ∇TLn(θ∗n)(ηnδ)|

≤ ηn‖∇TLn(θ∗n)‖‖δ‖

= Op(ηn
√
nqn)d = Op(nη

2
n)d.

Next, since we have

(2.15)
∥∥∥ 1

n
∇2Ln(θ∗n) + In(θ∗n)

∥∥∥ = op

( 1

qn

)
by Chebyshev’s inequality and (C5), we can show that

A2 = −1

2
η2
n

[
δT∇2Ln(θ∗n)δ

]
= −1

2
δT

[
1

n

{
∇2Ln(θ∗n)− E(∇2Ln(θ∗n))

}]
δ · nη2

n −
1

2
δT

1

n
E(∇2Ln(θ∗n))δ · nη2

n

=
1

2
nη2

nδ
TIn(θ∗n)δ − 1

2
nη2

nd
2op(1).

Moreover, by Cauchy-Schwarz inequality, (C6), and the conditions
√
nan → 0 and

q5
n/n→ 0,

|A3| =
∣∣∣−1

6
∇T
{
δT∇2Ln(θ̃n)δ

}
δη3

n

∣∣∣
=

1

6
η3
n

∣∣∣ n∑
i=1

qn∑
j,k,l=1

∂3Ln(θ̃n)

∂θnj∂θnk∂θnl
δjδkδl

∣∣∣
≤ η3

n

n∑
i=1

( qn∑
j,k,l=1

M2
njkl(V ni)

)1/2

‖δ‖3

= nη3
n Op

(
q3/2
n

) (
qnO(1)

)1/2‖δ‖2
= nη2

n Op

(
ηnq

2
n

)
d2

= nη2
nop(1)d2.

A2 dominates the rest terms A1, A3 and A4 for a sufficiently large δ, and is positive

because In(θ∗n) is positive definite by (C5).
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Proof of Theorem 3

Proof of (a)

We first prove P (β̂nj = 0)→ 1 for j ∈ Acn1 as n→∞. It is enough to show that

with probability tending to 1, for any j ∈ Acn1,

∂Qn(θ̂n)

∂βnj
< 0 for − εn < β̂nj < 0(2.16)

∂Qn(θ̂n)

∂βnj
> 0 for 0 < β̂nj < εn(2.17)

where εn = Cn−1/2 and C > 0 is any constant. To show (2.17), we consider a Taylor

expansion of ∂Qn(θ̂n)
∂βnj

at θ = θ∗n.

∂Qn(θ̂n)

∂βnj
= −∂Ln(θ̂n)

∂βnj
+ nλβnjsgn(β̂nj)

= −∂Ln(θ∗n)

∂βnj
−

qn∑
k=1

∂2Ln(θ∗n)

∂βnj∂θnk
(θ̂nk − θ∗nk)

−
qn∑
k=1

qn∑
l=1

∂3Ln(θ̃n)

∂βnj∂θnk∂θnl
(θ̂nk − θ∗nk)(θ̂nl − θ∗nl)

+nλβnjsgn(β̂nj)

≡ I1 + I2 + I3 + I4(2.18)

where θ̃n lies between θ∗n and θ̂n. By Chebyshev’s inequality,

I1 = −
n∑
i=1

∂ log fn(V ni,θ
∗
n)

∂βnj
= Op(

√
n) = Op(

√
nqn).

Next,

I2 = −
qn∑
k=1

∂2Ln(θ∗n)

∂βnj∂θnk
(θ̂nk − θ∗nk)

= −
qn∑
k=1

[
∂2Ln(θ∗n)

∂βnj∂θnk
− E

[∂2Ln(θ∗n)

∂βnj∂θnk

]]
(θ̂nk − θ∗nk)−

qn∑
k=1

E
[∂2Ln(θ∗n)

∂βnj∂θnk

]
(θ̂nk − θ∗nk)

≡ K1 +K2.
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By Cauchy-Schwarz inequality and (C5),

|K1| ≤

[
qn∑
k=1

{∂2Ln(θ∗n)

∂βnj∂θnk
− E

[∂2Ln(θ∗n)

∂βnj∂θnk

]}2
]1/2

‖θ̂n − θ∗n‖

= Op(
√
nqn)Op(

√
qn/n)

= Op(
√
nqn)op(1) = op(

√
nqn).

Again, by Cauchy-Schwarz inequality and (C5),

|K2| = n
∣∣∣ qn∑
k=1

In(θ∗n)(j,k)(θ̂nk − θ
∗
nk)
∣∣∣

≤ n
[ qn∑
k=1

In(θ∗n)2
(j,k)

]1/2[ qn∑
k=1

(θ̂nk − θ∗nk)2
]1/2

= n O(1)Op(
√
qn/n) = Op(

√
nqn).

Therefore, I2 = Op(
√
nqn).

I3 = −
qn∑
k=1

qn∑
l=1

∂3Ln(θ̃n)

∂βnj∂θnk∂θnl
(θ̂nk − θ∗nk)(θ̂nl − θ∗nl)

= −
qn∑
k=1

qn∑
l=1

[
∂3Ln(θ̃n)

∂βnj∂θnk∂θnl
− E

[ ∂3Ln(θ̃n)

∂βnj∂θnk∂θnl

]]
(θ̂nk − θ∗nk)(θ̂nl − θ∗nl)

−
qn∑
k=1

qn∑
l=1

E
[ ∂3Ln(θ̃n)

∂βnj∂θnk∂θnl

]
(θ̂nk − θ∗nk)(θ̂nl − θ∗nl)

≡ K3 +K4.

By Cauchy-Schwarz inequality and (C6),

|K4| ≤

[
qn∑
k=1

qn∑
l=1

n2
{
E
[ ∂3Ln(θ̃n)

∂βnj∂θnk∂θnl

]}2
]1/2

‖θ̂n − θ∗n‖2

≤
[
q2
nn

2C5

]1/2
Op(qn/n)

= Op(q
2
n) = Op(

√
nqn)Op(

√
q3
n/n) = Op(

√
nqn)op(1)

= op(
√
nqn).
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By Cauchy-Schwarz inequality and (C6),

|K3| ≤

[
qn∑
k=1

qn∑
l=1

{ ∂3Ln(θ̃n)

∂βnj∂θnk∂θnl
− E

[ ∂3Ln(θ̃n)

∂βnj∂θnk∂θnl

]}2
]1/2

‖θ̂n − θ∗n‖2

=
[
nq2

nOp(1)
]1/2

Op(qn/n)

= op(
√
nqn).

Thus, I1 + I2 + I3 = Op(
√
nqn). Therefore, returning to (2.18),

∂Qn(θ̂n)

∂βnj
= Op(

√
nqn) + nλβnjsgn(β̂nj)

=
√
nqn

{
Op(1) +

√
n

qn
λβnjsgn(β̂nj)

}
.

Since
√
n/qnbn →∞, sgn(β̂nj) dominates the sign of ∂Qn(θ̂n)

∂βnj
when n is large. There-

fore, for 0 < β̂nj < εn, ∂Qn(θ̂n)
∂βnj

> 0 with probability tending to 1 as n → ∞. (2.16)

can be shown in the same way.

Next, we prove P (γ̂nAc
n2

= 0)→ 1.

• For (k, k′) where (k, k′) ∈ Acn2 and k, k′ ∈ An1: we can prove P (γ̂n,kk′ = 0)→ 1

by a similar reasoning.

• For (k, k′) where (k, k′) ∈ Acn2 and either k or k′ is in Acn1: without loss of

generality, assume that β∗nk = 0. Notice that β̂nk = 0 implies γ̂n,kk′ = 0, because

if γ̂n,kk′ 6= 0, then the value of the loss function does not change but the value

of the penalty function will increase. Since we already have P (β̂nk = 0) → 1,

we can conclude P (γ̂n,kk′ = 0)→ 1 as well.
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Proof of (b)

We want to show that with probability tending to 1,

√
nAnI

1/2
n (θ∗nAn

)(θ̂nAn − θ∗nAn
) =

√
nAnI

−1/2
n (θ∗nAn

)In(θ∗nAn
)(θ̂nAn − θ∗nAn

)

=
√
nAnI

−1/2
n (θ∗nAn

)
{ 1

n
∇Ln(θ∗nAn

) + op(n
−1/2)

}
(2.19)

=
1√
n
AnI

−1/2
n (θ∗nAn

)
n∑
i=1

[
∇Lni(θ∗nAn

)
]

+op(AnI
−1/2
n (θ∗nAn

)1(sn×1))

=
1√
n
AnI

−1/2
n (θ∗nAn

)
n∑
i=1

[
∇Lni(θ∗nAn

)
]

+ op(1)

≡
n∑
i=1

Y ni + op(1)

→d N(0,G),(2.20)

where Y ni = 1√
n
AnI

−1/2
n (θ∗nAn

)
[
∇Lni(θ∗nAn

)
]
. We will show (2.19) and (2.20) in (I)

and (II) respectively.

(I) We want to show In(θ∗nAn
)(θ̂nAn − θ∗nAn

) = 1
n
∇Ln(θ∗nAn

) + op(
1√
n
). We know

that with probability tending to 1,

0 = ∇AnQn(θ̂nAn) = −∇AnLn(θ̂nAn) + n∇AnPλn(θ̂nAn).

By Taylor expansion at θ = θ∗nAn

0 = −∇AnLn(θ∗nAn
)−

[
∇2
An
Ln(θ∗nAn

)
]
(θ̂nAn − θ∗nAn

)

−1

2
(θ̂nAn − θ∗nAn

)
T
[
∇2
An

(
∇AnLn(θ∗nAn

)
)]

(θ̂nAn − θ∗nAn
) + n∇AnPλn(θ∗nAn

).
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Thus,

In(θ∗nAn
)(θ̂nAn − θ∗nAn

) = − 1

n
∇2
An
Ln(θ∗nAn

)(θ̂nAn − θ∗nAn
)

+
{
In(θ∗nAn

) +
1

n
∇2
An
Ln(θ∗nAn

)
}

(θ̂nAn − θ∗nAn
)

=
1

n
∇AnLn(θ∗nAn

)

−1

2

1

n
(θ̂nAn − θ∗nAn

)
T
[
∇2
An

(
∇AnLn(θ∗nAn

)
)]

(θ̂nAn − θ∗nAn
)

−∇AnPλn(θ∗nAn
)

+
{
In(θ∗nAn

) +
1

n
∇2
An
Ln(θ∗nAn

)
}

(θ̂nAn − θ∗nAn
).

Therefore, it is sufficient to show that

−1

2

1

n
(θ̂nAn − θ∗nAn

)
T
[
∇2
An

(
∇AnLn(θ∗nAn

)
)]

(θ̂nAn − θ∗nAn
)−∇AnPλn(θ∗nAn

)

+
{
In(θ∗nAn

) +
1

n
∇2
An
Ln(θ∗nAn

)
}

(θ̂nAn − θ∗nAn
)

≡ B1 +B2 +B3

= op(n
−1/2).

First, by Cauchy-Schwarz inequality and (C6),

‖B1‖2 ≤
1

n2
‖∇2
An

(
∇AnLn(θ∗nAn

)
)
‖2‖θ̂nAn − θ∗nAn

‖4

≤ 1

n2

∑
j,k,l∈An

{ n∑
i=1

Mnjkl(V ni)
}2

‖θ̂nAn − θ∗nAn
‖4

=
1

n2

∑
j,k,l∈An

n2Op(1)Op(
q2
n

n
)

= Op(q
5
n/n

2)

= op(1/n).
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Second, because an = o(1/
√
nqn) from the condition of the theorem,

‖B2‖2 =
∥∥∥(λβn1sgn(β∗n1), . . . , λ

γ
n,(pn−1,pn)sgn(γ∗n,(pn−1,pn)))

T
∥∥∥2

≤ sn

[
max{λβnj, λ

γ
n,kk′ : j ∈ An1, (k, k

′) ∈ An2}
]2

= sna
2
n = sno(1/nqn)

= o(1/n).

Third, based on (2.15), it can be shown that

‖B3‖2 ≤ ‖In(θ∗nAn
) +

1

n
∇2
An
Ln(θ∗nAn

)‖2‖θ̂nAn − θ∗nAn
‖2

= op(1/q
2
n)Op(qn/n) = op(1/nqn)

= op(1/n).

Therefore,

B1 +B2 +B3 = op(n
−1/2).

(II) Now we show
∑n

i=1 Y ni + op(1) →d N(0,G) where Y ni = 1√
n
AnI

−1/2
n (θ∗nAn

)[
∇AnLni(θ

∗
nAn

)
]
. It is enough to show that Y ni, i = 1, . . . , n satisfies the

conditions for Lindeberg-Feller central limit theorem [57]. For any given ε > 0,

by Cauchy-Schwarz inequality,

n∑
i=1

E
[
‖Y ni‖2I{‖Y ni‖ > ε}

]
= nE

[
‖Y n1‖2I{‖Y n1‖ > ε}

]
≤ n

[
E‖Y n1‖4

]1/2[
E(1{‖Y n1‖ > ε})

]1/2
= n B

1/2
4 B

1/2
5 .

B4 =
1

n2
E‖AnI

−1/2
n (θ∗nAn

)∇AnLni(θ
∗
nAn

)‖4

≤ 1

n2
‖AT

nAn‖2‖I−1
n (θ∗nAn

)‖2E[∇T

An
Ln1(θ

∗
nAn

)∇AnLn1(θ
∗
nAn

)]2

=
1

n2
λ2

max(AT

nAn)λ2
max(I−1

n (θ∗nAn
))O(s2

n)

= O(q2
n/n

2).
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By Markov inequality,

B5 = P (‖Y n1‖ > ε)

≤ E‖Y n1‖2

ε2

= O(qn/n).

Therefore,

n∑
i=1

E
[
‖Y ni‖21{‖Y ni‖ > ε}

]
= nO(qn/n)O(

√
qn/n) = o(1).

Moreover,

n∑
i=1

Cov(Y ni) = nCov(Y n1)

= AnI
−1/2
n (θ∗nAn

)E[∇AnLn1(θ
∗
nAn

)∇T

An
Ln1(θ

∗
nAn

)]I−1/2
n (θ∗nAn

)AT

n

= AnA
T

n → G.

Since Y ni, i = 1, . . . , n satisfies the conditions for Lindeberg-Feller central limit the-

orem, we conclude
∑n

i=1 Y ni + op(1)→d N(0,G).



CHAPTER III

Penalized Regression Methods and Ranking Variables by
Their Strength of Association with a Response

Recently regularization using various penalties has been proposed to improve the

performance of prediction and variable selection. In this chapter, a different perspec-

tive on the performance for regularized regression methods is considered - ranking

predictors according to their strength of association with a response. This perspec-

tive can be useful in highlighting the predictor variables that have the largest effect

on a response. It can be practically useful in genetic mapping applications in that one

might want to prioritize genetic variants based on their association with the trait of

interest with taking account of the effects of other variants. Specifically, three regu-

larization methods, ridge regression, the Lasso and the elastic net, are considered for

ranking variables by effect size. First, by analyzing two- or three-predictor cases, the

explicit situations are determined where L1 or L2 regularization improves, decreases,

or has no effect on ranking performance. Then in the simulation studies, the ranking

performance of the three methods were compared in 38 population models based on

various tuning methods. Ridge regression based on L2 regularization outperformed

the two methods that involve the L1 penalty especially when R2 is low. We note

that there are other literatures [44, 40] that also consider estimating ranks. They

consider ranking the subjects such as teachers, schools and so forth based on their

51
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performance using regression approach. However, our approach is different from their

approach in that we consider ranking predictor variables based on their effects on

the response in a regression.

3.1 Introduction

In a genome-wide association study (GWAS), univariate testing is a typical way

to preliminarily find genetic variants that are potentially associated with a trait of

interest. For example, log odds ratios can be used for qualitative traits and Pearson

correlation coefficients for quantitative traits for univariate testing. After Z-scores

or the p-values are obtained from the test, multiple testing adjustments are usually

made to highlight important variants.

Once we find a set of genetic variants that are highly associated with the trait,

we would want to continue by considering how those genetic variants are related

to the trait in a multivariate way. In other words, we would want to know what

is the “unique” effect of each variant on the trait when other variants are taken

account of. Considering the effects of other variants, a variant that had a strong

univariate association with the trait might turn out to be redundant. On the other

hand, a variant that showed a weak univariate association could turn out to have a

significant effect on the trait in a multivariate sense. So we set our goal to prioritize

genetic variants according to their “unique” effects on the trait so that they could be

used further investigation. Rephrasing our goal in a regression setting, it is to rank

predictor variables according to their unique association with a response. Fitting a

multiple linear regression could provide one possible answer for this.

However, there are some difficulties that reside in multiple linear regression: high

correlations that exist between the variants. It is known that OLS performs poorly
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when predictor variables are highly correlated. With highly correlated predictors,

the OLS estimates tend to have high variance resulting in unstable estimates. Due

to the challenges in applying multiple regression in this setting, alternative proce-

dures are often used. For example, the genetic data can be reduced to a count of the

number of high-risk genetic variants per subject, followed by a simple linear regres-

sion or correlation analysis with the trait [63, 36, 2]. While it has some utility for

prediction, it has the disadvantage of failing to provide any insight into the potential

complementary roles of the different genetic variants in terms of their influence on

the trait.

The collinearity problem has been extensively studied in regression, especially in

the context of prediction performance. Specifically, ridge regression moderates the

collinearity problem. By controlling the squared L2 norm of the regression coeffi-

cients while minimizing the squared error loss, ridge regression introduces the bias

in estimating coefficient estimates but reduces the variance of the estimates. So the

mean squared error (MSE) of the coefficient estimates can be substantially reduced

when the predictor variables are moderately or strongly correlated.

A more recent development has been the introduction of new types of penalties

that in some situations perform better than ridge regression. Two notable approaches

are the Lasso [56], which uses an L1 penalty in place of ridge regression’s squared L2

penalty, and the elastic net [72], which uses both L1 and squared L2 penalties. When

using penalties involving the L1 norm, some coefficient estimates can be exactly

zero, allowing variable selection to be carried out as part of coefficient estimation.

In addition, the introduction of exact zeros into the coefficient estimates leads to

better predictive performance when the true regression coefficient vector is “sparse,”

meaning that it contains a substantial fraction of zero or negligible coefficients.
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Penalized regression methods have most commonly been used when the primary

goal is prediction. In genetic mapping studies, prediction can be an important goal,

but the genetic contribution to a trait may be too low for prediction to be of practical

use. A related but distinct goal is to understand which variants contribute unique

information about the trait variation. While regression modeling must be used cau-

tiously in this way (e.g. [5, 24]), it can nevertheless provide additional insight into

the relationships between genetic variants and traits compared to looking exclusively

at univariate relationships [41, 66, 55].

Our goal is to assess the performance of penalized regression methods for ranking

variables according to their unique effects on the response, with a focus on situations

where the R2 is low and substantial collinearity is present. After setting up the

problem and notation in Section 3.2, we consider the 2- and 3-dimensional cases in

Section 3.3 to investigate in what settings L2 regularization improves over OLS and

in what settings L1 regularization improves over L2 regularization or vice versa. In

Section 3.4, simulation results based on various sets of models are shown and the

performance of regularization in effect ranking and prediction is compared for ridge

regression, the Lasso and the elastic net. Section 3.5 discusses possible implications

of our findings for data analysis.

3.2 Model Estimation and Variable Ranking

In this section, the methods that we used to rank variables are elaborated. Algo-

rithms for estimating ridge regression, the Lasso and the elastic net are explained in

Section 3.2.1, the criteria for choosing the regularization parameters are introduced

in Section 3.2.2, and in Section 3.2.3, ranking based on those regression-based meth-

ods are discussed. Finally in Section 3.2.4, the criterion we used to evaluate the
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ranking performance is introduced.

3.2.1 Regression Model Fitting

Let Y = (Y1, . . . , Yn)′ denote the response vector with sample size n, and let

X ∈ Rn×p denote the design matrix containing the data on p predictor variables.

For simplicity, and following convention in ridge regression, we will center Y and all

columns of X, and fit all regression models without an intercept. Ridge regression,

the Lasso, and the elastic net estimate β by minimizing the following loss functions

(3.1)-(3.3), respectively

(3.1) ‖Y −Xβ‖22 + λ2‖β‖22

(3.2) ‖Y −Xβ‖22 + λ1‖β‖1

(3.3) ‖Y −Xβ‖22 + λ1‖β‖1 + λ2‖β‖22.

The L1 and squared L2 norms are defined in the usual way: ‖β‖22 =
∑

j β
2
j and

‖β‖1 =
∑

j |βj|. Since the loss functions are convex, the solutions are unique. For

fixed tuning parameter values, coefficient estimates for the elastic net (3.3) were

obtained using a cyclical coordinate descent method introduced in Friedman et al.

[25]. The Lasso can be solved using the same method since it is a special case of

the elastic net when λ2 = 0. Cyclical coordinate descent starts with initial values

of β̂j. Then for each j = 1, . . . , p, β̂j is updated by minimizing (3.3) while fixing

the values of all other coefficients. This update has a simple closed form. After all
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coefficients are updated, the algorithm repeats the cyclical update until it converges.

For speedup and stability, we start from very large λ1 and λ2 values so that all β̂j

are zero, and for decreasing λ values, we use the solutions for the next largest tuning

parameter as an initial value when calculating the solution for the current tuning

parameters (called pathwise coordinate descent by Friedman et al. [25]). For further

speedup, we restricted the updates to nonzero coefficient estimates between complete

cyclic updates, following [25].

3.2.2 Tuning

To set the value of the tuning parameter λ2 in ridge regression, generalized cross

validation (GCV) [28] is recognized as performing well, and is the only approach

considered here. For the Lasso and elastic net, there is no clearly favored approach

for setting λ1 and/or λ2. we considered AIC, BIC, and a tuning set approach. For

AIC and BIC, a Gaussian likelihood with constant error variance and independent

errors was used. The degrees of freedom was the effective degrees of freedom for ridge

regression tr[(X ′X + λI)−1X ′X], where X contains only the columns corresponding

to non-zero coefficient estimates. For the tuning set approach, two independent

data sets of the same size were generated, and the tuning parameter was set to the

value that optimized the prediction MSE on the second data set when estimating

coefficients on the first data set. We expect the tuning set approach to give results

that are somewhat similar to cross-validation, which we did not use due to the high

computational cost of doing cross-validation in an extensive simulation study. To

actually carry out the tuning, we calculated the criterion (e.g. GCV) at each point

in fixed, finite sets of values. These sets were Λ1 = {0, 10−4, 10−3, . . . , 103, 104, 105}

for λ1, and Λ2 = {0, 10−4, 10−3, . . . , 103, 104, 105} for λ2. For the elastic net, the

Cartesian product Λ1 × Λ2 (i.e. every pair of values) was considered.
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3.2.3 Ranking Regression Effects

Our goal is to rank the variables according to population regression effects βj (for

“signed analysis”) or |βj| (for “magnitude analysis”). For estimating the ranking

based on data, coefficient estimates β̂j or |β̂j| can be used but also one could consider

using some standardized quantity. This will be discussed further below.

Although it is well known that prediction performance benefits from regulariza-

tion, it is not obvious how regularization affects the ranking performance. Under

regularization, the variance of the difference between two coefficient estimates is re-

duced but at the same time, the size of the expected value of the estimate difference

is also reduced. Therefore, the benefit of regularization on the ranking performance

depends on the rate at which those two values shrink.

We assume that predictor variables are standardized so that they have zero mean

and unit variance. Thus, βj/SD(Xj) can be interpreted as the expected change in

the response for each unit change in the original predictor.

We can use coefficient estimates β̂j to rank regression effects, but also we can

consider Z-scores β̂j/SD(β̂j). The motivation for considering Z-scores is that in some

situations using Z-scores might serve to control the estimation variance of coefficient

estimates, although the rank based on the expected Z-scores may be different from

the rank based on the population coefficients βj. Below, we find it is possible that

ranking by Z-scores can be more precise than ranking by coefficient estimates.

To compare the accuracy of ranking by Z-scores and coefficient estimates, we

consider a simple case with two predictors where β1 and β2 are the true coefficients

and β̂1 and β̂2 are their estimates. By translation and scaling, it is sufficient to

consider the case where β2 = 1, |β1| < 1, var(β̂1) = 1, and var(β̂2) = τ 2. Our

question is whether
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β1=-0.5 β1=0 β1=0.5

Figure 3.1: Comparison of using Z-scores versus using coefficient estimates for ranking. The figure
shows the differenceD in (3.5) or (3.6) versus log(τ). The three rows correspond to when
r = −0.5, r = 0 and r = 0.5, and the three columns correspond to when β1 = −0.5,
β1 = 0 and β1 = 0.5



59

(3.4) P (β̂2 > β̂1) < P (β̂2/τ > β̂1),

implying that Z-scores have a higher probability of getting a correct ranking than

coefficient estimates. Assuming that β̂1 and β̂2 are OLS estimates, they are unbiased

and approximately normally distributed. We first assume that the two estimates are

uncorrelated. Treating the probabilities in (3.4) as normal, we can reformulate (3.4)

as (3.5).

(3.5) D ≡ τ−1 − β1√
2
− 1− β1√

1 + τ 2
> 0.

It can be easily shown that (3.5) holds whenever τ < 1, and in some circumstances

(depending on the value of β1), (3.5) also holds when τ > 1. The second row of

Figure 3.1 illustrates this result. They show the difference D in (3.5) versus log(τ)

in uncorrelated cases. We can see that D is positive when log(τ) < 0 in all three

plots. And when β1 is negative as in the left plot, D is non-negative regardless of τ .

Second, we consider what happens when the two estimates β̂1 and β̂2 are corre-

lated. When the correlation between the two estimates is r, it is sufficient to consider

whether

(3.6) D ≡ τ−1 − β1√
2− 2r

− 1− β1√
1 + τ 2 − 2rτ

> 0

to show Z-scores should be used to estimate the ranking. By numerical experiments,

we can obtain similar results for correlated cases. The first row and the third row

of Figure 3.1 illustrate those results. They show the difference D in (3.6) versus

log(τ). We can see that D is positive when log(τ) < 0 in all three plots. And when
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β1 is negative as in the left plot, D is non-negative regardless of τ . It suggests that

ranking by Z-scores is more accurate than ranking by coefficient estimates in wider

variety of situations.

The analysis above is based on signed analysis. Since it is hard to study mag-

nitude analysis analytically due to the effect of the absolute value signs, we used

simulation to compare the performance of z-scores and coefficient estimates. Similar

to signed analysis, we found that Z-scores perform better than coefficient estimates

when τ < 1, that is, the variance of the larger effect is smaller than that of the smaller

effect. It is different from signed analysis that coefficient estimates always seems to

perform better than Z-scores when τ > 1. So for magnitude analysis, the situation is

more balanced and there is no clear advantage or disadvantage to either of the two

approaches. For further analysis below, we consider both ranking by Z-scores and

ranking by coefficient estimates. We emphasize that even when Z-scores are used

to estimate ranking, we evaluate the performance based on accurate ranking of the

actual effects βj or |βj|, not on ranking of the expected Z-scores or the expected

magnitudes of Z-scores.

As a technical point, to calculate the Z-scores we need to be able to calculate the

standard errors of the coefficient estimates. For the elastic net, the standard error

of nonzero coefficient estimates are calculated using the sandwich formula following

Fan and Li [21].

(3.7) ĉov(β̂) = (X ′X + λ2I)−1X ′X(X ′X + λ2I)−1σ̂2,

where X contains only the columns corresponding to non-zero coefficient estimates.

The residual variance σ2 is estimated as the sum of squared residuals divided by

n − df, where df is the degrees of freedom as defined above. The standard errors
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for ridge regression and the Lasso can be calculated from (3.7) as special cases. For

the Lasso and elastic net, a tolerance threshold of 10−6 was set such that coefficient

estimates smaller in magnitude than the threshold were deemed to be exact zeros,

and were not standardized when calculating Z-scores.

3.2.4 Performance Evaluation

The main criterion for ranking performance evaluation was following the concor-

dance score (CS), which is closely related to the Mann-Whitney formulation of the

the area under the Receiver Operating Characteristics (ROC) curve. For signed

analysis with the approach based on Z-scores, the CS is defined as

(3.8)

∑
i 6=j

[
I(zi > zj) · I(βi > βj) + I(zi = zj) · I(βi > βj) · 0.5

]
∑

i 6=j I(βi > βj)
,

where zj is the Z-score (the coefficient estimate divided by its standard error) for

the effect of each predictor variable. For the approach based on coefficient estimates,

zj are replaced with coefficient estimates β̂j. For magnitude analysis, Z-scores zj,

coefficients βj and coefficient estimates β̂j are replaced with their magnitudes.

Note that a CS of 1 corresponds to perfect ranking whereas a CS of 1/2 is expected

from random guessing. Also, note that even when the Lasso estimates for a pair of

coefficients with different values are exactly zeros, the CS still gets 0.5 as it would

get in the case of random guessing. In the sense that the CS does not decrease due to

the ties resulting from zero estimates, the CS is fair to L1 and L2 regularization. We

considered ranking performance under both “oracle tuning,” in which the CS was

maximized over the set of tuning parameters, and ranking performance using data-

adaptive tuning criteria such as AIC, BIC, and GCV. The distribution of CS values

for independent data sets was approximated using simulation. Pairs of methods were
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compared (e.g. the Lasso compared to ridge regression) based on the distribution of

differences in CS values for two methods using the same underlying data set.

For comparison, we also considered predictive performance, based on the mean

squared prediction error on a large (n = 10, 000) independent validation set. In this

case, we also considered oracle tuning, which optimized the prediction error on the

validation set over the tuning parameters, and tuning using the data-driven criteria.

We compared methods based on a relative MSE score

(3.9) rMSE =
MSE1 −MSE2

MSEENO

,

where MSE1 and MSE2 are the MSE values for the two methods, and MSEENO is the

MSE for the elastic net using oracle tuning. Within the class of methods considered

here, MSEENO is the smallest MSE that can be achieved, but it is still larger than

the residual variance var(Y |X).

3.3 Analytic and Numerical Results for Two, Three and Higher Dimen-
sions

In this section, we consider the cases where only two or three predictors exist

in the model to better understand how the regularization of ridge regression and

the Lasso affect the ranking performance. Also, we generalize the results to higher

dimensions when it is possible. In Section 3.3.1, we examine how ridge regression

influences the accuracy of ranking estimation compared to OLS and in Section 3.3.2,

ridge regression is compared with the Lasso.

3.3.1 Comparison of Ridge Regression and OLS

The simulation studies in Section 3.4 show that the ranking performance of ridge

regression is generally good when using data-adaptive tuning. While we note it is
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possible that ridging can help us to accurately estimate the ranking, one might still

wonder in what circumstances the regularization by ridge regression improves the

ranking performance. One might expect that ridging would help us to accurately

rank coefficients when predictors are highly correlated because OLS is expected to

perform poorly in that situation. In the analytical assessment below, however, we

found that multicollinearity is not a sufficient condition for ridging to improve the

ranking performance. The specific situations where ridging improves OLS are not

clearly known. In this section, we consider broad ranges of situations with various

correlation structures of predictors and relative effect sizes and investigate how the

benefit of ridging changes with different settings. We focus on signed analysis based

on coefficient estimates in this section, in which OLS and ridge regression can be

studied analytically.

Below, we show that the effect of ridge regression is different for two-predictor case

and three-predictor case: ridge regression has no effect on ranking performance in the

two-predictor case, while in the three-predictor case, the effect of ridge regression is

complicated and depends on how the third variable relates to the first two variables.

Then, the results are generalized to higher dimensions. Note that these results are

true only when we assume all predictors are standardized so they have zero mean

and unit variance [9].

For the analysis below, assume a linear model in which the error term is indepen-

dent and identically distributed with normal distribution of mean zero and variance

σ2. Let β̂jλ be the estimate of the coefficient βj by ridge regression with a tuning

parameter λ. Assuming βj > βk, let Pjk = P (β̂jλ > β̂kλ) can be calculated using the

bivariate normal distribution of (β̂jλ, β̂kλ), providing the probability that a correct

ranking occurs. Note that the joint distribution of coefficient estimates does not nec-
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essarily have to be bivariate normal, but we just need the assumption that all linear

combinations of coefficient estimates follow a common location/scale family. Also,

note that the CS is the average of these probabilities over all pairs where βj > βk.

Analytic calculations in this section were done using a computer algebra software.

For the two-predictor case, assume that the predictor cross-product matrix has

the form

X ′X = n

 1 r

r 1

 ,

where n is the sample size and r is the correlation coefficient between the two pre-

dictors. Without loss of generality, we assume β1 > β2. This situation is depicted in

Figure 3.2a.

The probability of obtaining a correct ranking, P12 = P (β̂1λ > β̂2λ), can be ana-

lytically calculated based on the bivariate normal sampling distribution of (β̂1λ, β̂2λ).

It can be easily shown that P12 is Φ(T12), where Φ is the standard normal cumulative

distribution function and

T12 = E(β̂1λ − β̂2λ)/SD(β̂1λ − β̂2λ)(3.10)

= (β1 − β2)

√
n(1− r)√

2σ
.(3.11)

Note that T12 does not depend on λ, which means ridging does not affect the prob-

ability of obtaining a correct ranking. In the case of two standardized predictors,

the standard error for β̂1λ and β̂2λ are the same. Therefore, using either coefficient

estimates or Z-scores to estimate the ranks gives the same result for the probability

of getting a correct ranking.

As mentioned earlier in Section 3.2.3, both the expected value and the standard

deviation of β̂1λ − β̂2λ in (3.10) decreases in magnitude as λ increases. Since the

numerator and the denominator shrink at the same time, whether regularization
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Figure 3.2: Schematic depiction of covariate relationships that influence how ridging affects CS. In
a and b, ridging has no effect. In c, ridging can improve, decrease, or have no effect
on ranking performance depending on model parameters. In d, ridging can improve
the performance if coefficient estimates are compared, but has no effect if Z-scores are
compared.

improve ranking accuracy depends on the speeds at which the two values decrease.

In the case of two predictors above, it is not only that they decrease at the same rate

but also the terms related to λ in the numerator and the denominator are canceled.

Next we consider the case of three predictors. First, a special situation is consid-

ered where the third variable is equally correlated to each of the first two variables.

In that case, the predictor cross-product matrix has the form

X ′X = n


1 r s

r 1 s

s s 1

 .

This situation is depicted in Figure 3.2b. In this case the probability of obtaining a

correct rank for the pair of β1 and β2 is again Φ(T12) with T12 as in (3.11). Thus,

ridging does not have any effect on ranking the two variables as in two-predictor

case when the third variable has the same relationships with each of the first two

variables. Note that the standard errors for β̂1λ and β̂2λ are again same, so ranking

by Z-scores and ranking by coefficient estimates give identical results.

It can be analytically shown that this result can be generalized to high dimensional

cases. When r1k = r2k for k 6= 1, 2, the probability of correctly ranking β1 and β2
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is Φ(T12) in which T12 has the same form as (3.11). More generally, if rik = rjk for

k 6= i, j, then the probability of correctly ranking βi and βj does not depend on L2

regularization because Tij = (βi − βj)
√
n(1− rij)/

√
2σ does not depend on λ.

To analytically show that T12 does not depend on λ when r1k = r2k for k 6= 1, 2

in high dimensional cases, we begin by blocking X ′X as follows

X ′X =

 K A′

A J

 ,

where K is a 2× 2 matrix,

K =

 n nr12

nr12 n

 ,

A is a (p − 2) × 2 matrix with two identical columns, and J is a (p − 2) × (p − 2)

strictly positive definite matrix. Also, we can rewrite T12 as

T12(λ) =

[
β′X ′X(X ′X + λI)−1DD′(X ′X + λI)−1X ′Xβ

D′(X ′X + λI)−1X ′X(X ′X + λI)−1D

]1/2

,

where D = (1,−1, 0, . . . , 0)′. We claim that T12(λ) is a constant function of λ when

X ′X has the structure given above.

First, we will use a change of variables from X to Z = XQ to simplify the problem.

Note that if Q is any orthogonal matrix such that QD = D, then the denominator

of T12 is unchanged. This follows by direct calculation. The condition QD = D will

be satisfied if Q has the form

Q =

 I2 0

0 Q2


where Q2 is a (p − 2) × (p − 2) orthogonal matrix. Note also that if we apply such

a transform, then Z ′Z has the same structure as X ′X with regard to the matrix A
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having two identical columns.

Z ′Z =

 K AQ2

Q′2A
′ JQ2


Assume that we factor X2 = USV ′ using the singular value decomposition where

X2 is a n×(p−2) matrix that contains all variables other than the first two variables.

If we take Q2 = V , then the block representation of Z ′Z, as above, has the property

that JQ2 is diagonal. Thus, if we show that T12 is constant in λ when JQ2 is diagonal,

it will follow that T12 is constant as a function of λ for all J . Using the inversion of

block matrices and algebraic calculations, we can show that

T12(λ) =

[
β′QZ ′Z(Z ′Z + λI)−1DD′(Z ′Z + λI)−1Z ′ZQ′β

D′(Z ′Z + λI)−1Z ′Z(Z ′Z + λI)−1D

]1/2

,

is a constant function of λ given that Z ′Z has the structure as above. Therefore, we

now proved that ridging does not affect the probability of correctly ranking β1 and

β2 when r1k = r2k for k 6= 1, 2. Similarly, we can prove that ridging does not affect

the probability of correctly ranking βi and βj when rik = rjk for k 6= i, j. In a special

case where all rij are the same for i 6= j, all Tij(λ) will be constant functions of λ,

so riding would not affect the overall ranking performance.

Returning to the 3-predictor case, as depicted in Figure 3.2c, now we allow a

cross-product matrix to be general as in the form

X ′X = n


1 r12 r13

r12 1 r23

r13 r23 1

 .

In this general setting, the benefit of ridging becomes more clear. Now the expression

for T12 is complicated and depends on all six parameters including three parameters

in β and three parameters in X ′X as well as the regularization parameter λ. The
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Figure 3.3: Shapes of T12(λ) as a function of λ. T12(λ) can have various shapes depending on the
model parameters including correlations between predictors and true effects.

standard errors of β̂1λ and β̂2λ are no longer identical in the general case. In more

detailed discussion below, we focus on ranking by coefficient estimates rather than

Z-scores for simplicity.

By using a computer algebra software, we calculated T12(λ) in general 3-predictor

case. Omitting the lower order terms in λ, T12(λ) has the form

(3.12) T12(λ) =

√
n

({
(β1 − β2)(1− r12) + β3(r13 − r23)

}
λ2 + . . .

)/(
λ3 + . . .

)
σ

√(
2(1− r12)λ4 + . . .

)/(
λ3 + . . .

)2

.

Note that as λ goes to infinity, T12(λ) converges to
√
n
σ

(
(β1 − β2)(1− r12) + β3(r13 −

r23)
)/√

2(1− r12). Also, note that as the sample size n goes to infinity, T12(λ)

converges to infinity, so the probability of getting a correct ranking becomes 1, which

is naturally expected.

Depending on the model parameters in T12(λ), the value of T12(λ) has various

shapes as a function of λ. Figure 3.3 illustrates the shapes of T12(λ). The value of
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T12(λ) can increase, increase then decrease, stay the same, decrease then increase, or

decrease as λ grows. In any case, it converges to a certain value as shown above.

In order to figure out when ridging can improve the performance, we first look at

the sign of T12(∞)−T12(0). If the sign of T12(∞)−T12(0) is positive, it would mean

that at least, the extreme case of ridge regression (this is equivalent to univariate

analysis) has better ranking performance than OLS. We note that the approach of

looking at the sign of T12(∞)−T12(0) can easily miss the cases where some amount of

ridging is helpful but the univariate analysis is worse than OLS. But it could at least

serve as a lower bound of the cases where ridging improves the ranking accuracy.

Although it is straightforward to compute T12(∞)−T12(0) based on (3.12), we re-

expressed T12(λ) by representing β in spherical coordinate to better understand and

determine the situations where L2 regularization improves the ranking performance.

As β is reformulated as

β1 = b cosφ sin θ,

β2 = b sinφ sin θ, where b = ‖β‖

β3 = b cos θ,

T12(λ) can be expressed as a function of the two key quantities, D = r23 − r13 and

Q = (β1 − β2)/β1 and several other quantities defined below. The importance of D

is related to the special situation described above: ridging has no effect on ranking

performance when r13 = r23, i.e., D = 0. Q defines the relative difference between

the two effects β1 and β2 and is intuitively relevant to ranking performance. With

the spherical representation, the quantity Q can be represented as 1 − tanφ. In

addition to D and Q, T12(λ) depends on r12, M = (r13 + r23)/2, b, θ, n and σ2. Note

that the sign of T12(λ) does not depend on b ≥ 0. Moreover, the sign of T12(λ) does
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Figure 3.4: Plots of the sign of T12(∞) − T12(0) on the plane of D versus Q. The black region
represents the cases when the sign of T12(∞) − T12(0) is positive implying ridging
improves the ranking accuracy; the white region represents negative cases; the grey
region represents the infeasible cases due to the non-positive definiteness of X ′X.
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not depend on n and σ2 as n and σ2 only appear as a factor of
√
n/σ in T12(λ).

Therefore, the sign of T12(λ) only depends on D, Q, r12, M and θ.

Besides D and Q, T12(λ) also depends on M and θ. M is the average correlation

between X3 and the two variables X1 and X2 that we focus on. And θ can be

interpreted as a component that regulates the effect size of β3 relative to the effect

sizes of β1 and β2. Intuitively, one would expect that ridging would be less beneficial

when the relative effect size of β3 is small compared to the effect sizes of β1 and β2,

since otherwise ridging could improve the ranking performance when adding a third

variable that has no effect at all.

Returning to the question of determining in what situation ridging improves the

performance, a few examples of the numerical results on the sign of T12(∞)− T12(0)

are shown in Figure 3.4 based on the parameterizations explained above. It shows the

sign of T12(∞)− T12(0) on the plane of D versus Q. The black region represents the

cases when the sign of T12(∞)−T12(0) is positive, implying that ridging improves the

ranking accuracy; the white region represents when it is negative implying ridging

harms or doesn’t improve the ranking performance; the grey region represents the

infeasible cases due to the non-positive definiteness of X ′X. The first row shows

the results for two different r12 values for fixed θ and M ; the second row shows the

results for two different θ values when others are fixed.

By algebraic calculation, it can be shown that the sign of T12(∞)−T12(0) depends

on a quadratic function with respect to D when other values are fixed. We can

confirm this in Figure 3.4: there are at most two sign changes along any horizonal

lines. Furthermore, we can see that there is always a sign change at D = 0. It is

related to the fact that ridging has no effect when the two correlations r13 and r23

are identical as shown in the special case above. It can also be algebraically shown
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that T12(∞)−T12(0) is zero whenever D = 0. Looking at the first row of Figure 3.4,

we can see that for different r12 values, the ranking performance of ridge regression

is different as well as the feasible area based on the positive definiteness of X ′X.

The second row of Figure 3.4 shows results for θ = 0.30π and θ = 0.45π. When

θ = 0.30π, the relative effect size of β3 compared to the effect sizes of β1 and β2

is smaller than when θ = 0.45π. As discussed above, ridging is expected to be less

beneficial when the relative effect size of β3 is small. We can confirm this in Figure

3.4: the black region is larger when θ = 0.45π compared to θ = 0.30π.

As noted above, the approach of looking at the sign of T12(∞)−T12(0) only focuses

on the extreme version of ridge regression when λ =∞ and can miss the cases where

ridging improves the accuracy with a smaller λ but decreases the accuracy with a

larger λ. So now we consider when ridging would improve the ranking performance

with relatively small values of λ. The sign of the derivative of T12(λ) with respect

to λ at λ = 0, i.e. sgn[T ′12(0)], can provide one answer to that question because

it would reveal whether T12(λ) increases or decreases at small values of λ. If either

T12(∞)−T12(0) or T ′12(0) is positive, ridge regression would be guaranteed to improve

the ranking performance with some value of λ, although still we could miss some

cases where ridging improve the accuracy. However, a large fraction of the situations

where ridging improve the performance for some value of λ have at least one of

T12(∞)− T12(0) or T ′12(0) being positive.

Figure 3.5 shows the example results on the sign of T ′12(0). It shows the sign

of T ′12(0) on the plane of D versus Q. As in the results on T12(∞) − T12(0), the

black region represents the cases when T ′12(0) is positive implying ridging improve

the ranking performance for small λ and the white region represents the cases when

T ′12(0) is negative implying ridging doesn’t improve the ranking performance for small
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Figure 3.5: Plots of the sign of T ′
12(0) on the plane of D versus Q. The black region represents the

cases when the sign of T ′
12(0) is positive implying ridging improve the ranking accuracy;

the white region represents negative cases; the grey region represents the infeasible cases
due to the non-positive definiteness of X ′X.
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λ. The first row shows the results for two different r12 values for fixed θ and M ; the

second row shows the results for two different θ values when others are fixed.

Similar to T12(∞)−T12(0) case, it can be shown that the numerator of T ′12(0) is a

quadratic function with respect to D when other values are fixed. The denominator

of T ′12(0) does not affect the sign of T ′12(0) because it is always positive. In Figure

3.5, we can confirm the sign of T ′12(0) depends on a quadratic function of D: there

are at most two sign changes along any horizonal lines. Furthermore, we can see that

there is always a sign change at D = 0, which corresponds to the special case where

ridging has no effect.

Looking at the first row of Figure 3.5, we can see that for different r12 values, the

ranking performance of ridge regression is different as well as the feasible area based

on the positive definiteness of X ′X. The second row of Figure 3.5 shows results

for θ = 0.30π and θ = 0.45π. As discussed above, ridging is expected to be less

beneficial when the relative effect size of β3 is small. It is not necessarily true in the

comparison of the second row in Figure 3.5, but it can be true when we consider the

union of the black regions of Figure 3.4 and Figure 3.5.

Those figures were chosen to illustrate a few examples when ridging would im-

prove the ranking performance, so they do not show all possible cases. To further

summarize the results, the area of the black region where T ′12(0) > 0 (or T ′12(0) > 0,

respectively) was considered. Then the area was numerically minimized over possible

values of θ, M and r12. Based on a fine grid of values for 0 ≤ θ ≤ 2π, −2 ≤ M ≤ 2

and −1 ≤ r12 ≤ 1, the numerical results suggest that the area is equal to or more

than half of the total area, which means ridging “often” improves ranking perfor-

mance over OLS in some sense. We note that the plots were considered to be in the

domain of −4 ≤ Q ≤ 4, but similar results appear to hold for other domain.
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Next, we generalized the results to high dimensional cases by looking at the sign

of T ′12(0) since it is a good way to identify when ridge regression improves the ranking

performance for small values of λ. Recalling that when rik = rjk for k 6= i, j, the

probability of correctly ranking βi and βj does not depend on λ, the CS criterion does

not depend on λ when all correlations between any two variables are same, i.e., the

correlation matrix is an exchangeable matrix. Therefore, strong correlations between

predictors are not sufficient for ridging to be beneficial. Instead, the heterogeneity

in the correlations between covariates plays an important rule on whether ridging

improve the ranking accuracy over OLS.

To further explore this issue, we considered the proportion of models in which the

slopes of T12(λ) at λ = 0 are positive among all possible models in Figure 3.6. That

is, we considered the conditional probabilities

(3.13) E(J(M,β)|D(M) ∈ B)

where M is uniformly distributed on the set of all p × p correlation matrices, and

β is independent of M , and is uniformly distributed on the unit sphere constrained

to β1 > β2. The function J(M,β) is the indicator that in the population defined by

X ′X/n = M , along with the vector of regression coefficients β, the slope of T12(λ) is

positive when evaluated at λ = 0. The scalar-valued function D(M) is the Frobenius

norm of the difference between M and the closest exchangeable matrix to M , and B

is an interval on the positive real line.

If X is a (p + 1) × p iid array of standard normal values, then M = X ′X has a

Wishart distribution with density function

1

2p(p+1)/2Γp((p+ 1)/2)
exp (−trM/2) .
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We can reparameterize M = (Ms,Md), where Ms(i, j) = Mij/
√
MiiMjj and Md(i) =

Mii. By applying the change of variables formula, we can show that the joint density

of Ms,Md has the form πs(Ms) · πd(Md), where

πd(Md) = cd exp(−
∑
i

Md(i)/2) ·
∏
i

Md(i)
(p−1)/2

and πs(Ms) = cs, and cd and cs are constants. This implies that Ms is uniformly dis-

tributed on the set of all correlation matrices. Therefore, we can generate uniformly

distributed correlation matrices with density πs by forming the correlation matrices

from X matrices that are (p+ 1)× p iid arrays of standard normal values.

Assuming that we sample matrices M1, . . . ,Mm from a distribution with den-

sity f(·) and sample β1, . . . , βm from their correct marginal distribution. Then the

conditional expectation in (3.13) can be estimated as

(3.14)
∑
i

J(Mi, β)wi/
∑
i

wi,

where wi = f(Mi)I(D(Mi) ∈ B).

When we sample matrices from the density πs like above, there are few or no

observations with which to form the average if B is close to zero. Thus we need to

consider distributions f with more mass close to exchangeable matrices. Thus we

need to consider distributions f with more mass close to exchangeable matrices. One

way to do this is to consider exchangeable matrices M where Mii = 1 and Mij = x

for i 6= j, with x sampled from some distribution g. This matrix will always be

a correlation matrix if the support of g is (0, 1). More generally, we can consider

matrices of the form λM1 +(1−λ)M2, where M1 is an exchangeable matrix in which

the off-diagonals are simulated from g and M2 is simulated from πs. To estimate the

conditional expectation, we need to evaluate the density from which M was sampled.
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This has the form of a deconvolution

f(M) =

∫
x

g(x)πs ((M − λM1)/(1− λ)) dx.

If we choose g to be uniform on (0, 1), this reduces to

f(M) = cs · L,

where L is the length of the set of x such that M − λM1 is strictly positive definite.

By superimposing the resulting estimates for conditional expectations from λ =

0, 0.5, 0.8, we could obtain a complete map for the proportions of models in which

the slopes of T12(λ) at λ = 0 are positive among all possible models as shown in

Figure 3.6

In Figure 3.6, we can see that when D(M) is small, i.e., when the correlation

matrix is close to an exchangeable matrix, the proportions of models where ridging

improve the ranking performance is close to 1/2, while the proportions increase up to

around 0.8 ∼ 0.85 as D(M) increases. In this respect, ridge regression improves the

ranking performance more often than not and is likely to improve the performance

more often when the correlation matrix of predictors has more heterogeneous off-

diagonal elements.

Finally, we consider a situation depicted in Figure 3.2d, where X2 and X3 are

uncorrelated. It can be algebraically shown that in this situation ridging can affect

the ranking performance when using the approach based on coefficient estimates but

ridging has no effect when using the approach based on Z-scores. It suggests that Z-

scores are a form of regularization, and in some cases no further improvement results

from ridge regression regularization.

We conclude this section with a 3-predictor example that illustrates a situation
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where ridging provides a very substantial improvement in the probability of correctly

ranking β1 and β2 based on β̂1λ and β̂2λ:

(3.15) X ′X = 100


1 0.4 0.4

0.4 1 −0.4

0.4 −0.4 1

 β = (1, 0.8, 0.9)′.

This model has n = 100 observations. Setting the residual variance to give a popu-

lation R2 of 0.4, the value of T12 ranges from 0.4 when λ = 0 to 4.3 when λ = 1000

(corresponding to correct ranking probabilities ranging from 0.66 to nearly 1).

3.3.2 Comparison of Ridge Regression and the Lasso

Having established that ridge regression can improve the ranking performance

more often than not, we next considered how the Lasso and ridge regression perform

compared to each other. It is not straightforward to analytically compare ridge

regression and the Lasso, so in this section we use numerical experiments to explain

the difference between ranking behaviors of the two methods.

A clear difference between the L1 penalty and the squared L2 penalty is their

limiting behavior. When there is no regularization (λ = 0), ridge regression and the

Lasso are equivalent to OLS. And when there is a small amount of regularization with

small values of λ, ridge regression and the Lasso would work similarly. As λ grows,

the coefficient estimates of both methods converge to zero. However, the ranking

by the two methods are not necessarily the same, because the Lasso estimates are

shrunken to exactly zero as λ grows while ridge regression estimates are not. Ranking

by ridge regression estimates is equivalent to ranking by univariate analysis when λ

approaches infinity. On the other hand, as λ approaches infinity, the Lasso point

estimates reach zero, and the CS is 0.5. We conjectured that the difference between
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ranking performance of the Lasso and ridge regression would be partly related to

how well the Lasso can approximate the ranking based on the univariate analysis.

To explore these matters, we considered three examples below. The first example

is the model defined in (3.15) where regularization by ridge regression greatly im-

proves the ranking performance. And the following two models are considered where

ridge regression does not monotonically increase the ranking performance:

(3.16) X ′X = 100


1 0.7 0.3

0.7 1 −0.4

0.3 −0.4 1

 β = (1, 0.8, 1.4)′.

(3.17) X ′X = 100


1 0.5 0.4

0.5 1 −0.3

0.4 −0.3 1

 β = (1,−0.8, 0.7)′.

Figure 3.7 shows ranking results for the three examples. Note that we used R2 =

0.1 for the three examples. Figure 3.7 plots the expected value of CS against the

probability of getting a rank identical to univariate ranking based on ridge regression

(dashed lines) and the Lasso (dotted lines) based on 2000 simulations. The three

rows of plots show the results for the three models defined in (3.15), (3.16) and

(3.17), respectively. The left column shows the results based on ranking by coefficient

estimates and the right column shows the results based on ranking by Z-scores.

First, the the results for the model defined in (3.15) show that both ridge regression

and the Lasso can improve the ranking performance over OLS. They start off from

a point that corresponds to OLS, stay at the same path while increasing, and then

diverge to the two different extreme cases where λ = ∞. Ridge regression, as λ2



81

Rank by β̂ Rank by Z-scores

0 1P(rank=univariate rank)
0.5

1.0

E
(C

S
)

λ1 ,λ2 =0λ1 =∞

λ2 =∞

Ridge

Lasso

0 1P(rank=univariate rank)
0.5

1.0

E
(C

S
)

λ1 ,λ2 =0λ1 =∞

λ2 =∞

Ridge

Lasso

0 1P(rank=univariate rank)
0.5

1.0

E
(C

S
)

λ1 ,λ2 =0

λ1 =∞

λ2 =∞

Ridge

Lasso

0 1P(rank=univariate rank)
0.5

1.0

E
(C

S
)

λ1 ,λ2 =0

λ1 =∞

λ2 =∞

Ridge

Lasso

0 1P(rank=univariate rank)
0.5

1.0

E
(C

S
)

λ1 ,λ2 =0

λ1 =∞

λ2 =∞

Ridge

Lasso

0 1P(rank=univariate rank)
0.5

1.0

E
(C

S
)

λ1 ,λ2 =0

λ1 =∞

λ2 =∞

Ridge

Lasso

Figure 3.7: The expected value of CS versus the probability of getting a rank identical to univariate
ranking. The plots in each row show the results for each model defined in (3.15),
(3.16) and (3.17), respectively. The left column shows the results based on ranking by
coefficient estimates and the right column by Z-scores.
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grows, continues to improve the ranking performance (since the expected value of

CS increases) and also the probability of getting a rank identical the univariate

analysis converges to 1. On the other hand, for the Lasso, the ranking performance

is improved as it becomes more univariate-like, but at some point, it deviates from

the path of ridge regression, and its ranking performance deteriorates to the CS of

0.5 as all estimates will be zero when λ1 =∞. Comparing β̂-based approach and Z-

scores-based approach, they don’t differ much in the patterns. Overall, this example

shows the case where the univariate analysis (λ2 =∞) can rank the variables better

than any regularized regression methods.

Second, the results for the model defined in (3.16) illustrates the case when some

amount of L2 regularization improves the ranking performance but excessive regu-

larization decreases the performance. As in the results for the model in (3.15), the

ranking performance of the Lasso increases as its rank becomes more univariate-like,

but the performance decreases as it starts to become less univariate-like. Again,

ranking by coefficient estimates and ranking by Z-scores have similar results.

Third, the results for the model defined in (3.17) show the case where OLS

(λ1, λ2 = 0) has better ranking performance than any other methods. The ranking

performance of ridge regression decreases as it converges to the univariate ranking.

Ranking by the Lasso initially becomes more univariate-like, however, different from

the previous examples, its ranking performance decreases at the same time. In this

example, both ridge regression and the Lasso cannot improve the ranking perfor-

mance. This situation is a relatively rare case as we showed that ridge regression

can improve the ranking performance more often than not in Section 3.3.1. We note

that in practice nearly optimal points can be selected by adaptive tuning in all three

examples when the sample size is reasonable.
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Figure 3.8: The expected value of CS for each pair among the three pairs when β = (1, 0.3,−0.2)
and (r12, r13, r23) = (0.6,−0.4, 0.3). The left plot shows the results for ridge regression
and the right plot shows the results for the Lasso.

Besides, there is another important difference between L1 regularization and L2

regularization. The Lasso usually has the best ranking performance at the interior

point of λ1 or at λ1 = 0 (it is not possible to achieve the best performance when

λ = ∞ because all coefficient estimates are set to zero). On the other hand, ridge

regression can have the best ranking performance at anywhere of 0 ≤ λ2 ≤ ∞.

In many examples, we could observe that it is possible that the L2 regularization

continues to improve the performance of variable ranking as λ2 increases.

Considering how the optimal value of the regularization parameter can be chosen

in each method, we find it interesting to think about what would be the optimal reg-

ularization parameters for comparing each pair among all possible pairs of variables.

Figure 3.8 shows an example to explore this issue. As in the previous examples, we as-

sumed a three-predictor model with β = (1, 0.3,−0.2), (r12, r13, r23) = (0.6,−0.4, 0.3)

and R2 = 0.1. The plots show the expected value of CS for each pair among the three

pairs. The left plot shows the results for ridge regression and the right plot shows

the results for the Lasso. Ridge regression continues to improve the pairwise ranking
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as λ2 grows, so the optimal λ2 values for all three pairs occur in a wide interval of λ2

values. Meanwhile, the Lasso has the optimal pairwise performance at three different

values of λ1, where the peaks are only partially overlapping. Noting that the overall

CS is the average of the pairwise CSs over all coefficient pairs where βj > βk, the

optimal values of λ for the pairwise CSs should overlap in order to let a single value

of λ give the optimal overall CS. We observed that in general ridge regression tends

to perform well over broader and more overlapping ranges of λ values than the Lasso.

3.4 Simulation Studies

In the previous section, the benefit of L1 and L2 regularization for the ranking perfor-

mance was discussed in two- or three-dimension cases. While interesting aspects of

regularization on the ranking performance were considered, it still remains a question

how they will work in high dimensional models.

3.4.1 Population Models

To understand what happens with higher dimensional models, as described in Table

3.1, seven families of β vectors were defined to consider plausible conditional mean

relationships EYi =
∑

j βjXij between a quantitative trait Y and genetic variants in

X. Each family of population models contains a set of related five or six β vectors,

giving a total of 38 β vectors. We will refer to the kth model in Family q as model

q.k. For each family, the second column in Table 3.1 defines the value of β in terms

of the family parameter. The notation x{n} indicates that the value x is repeated n

times in sequence (numbers not followed by {n} have an implicit {1}). For example,

for Family 1 when α = 0.2 we have

β = (0, 0, 0, 0, 0, 0, 0, 0, 0.2, 1, 0.2, 1, 0, 0, 0, 0, 0, 0, 0, 0)′,
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Family β Range Dim(β)

1 0{8}, α, 1, α, 1, 0{8} α = 0, 0.2, . . . , 1 p = 20
2 (1, 0{k}){5} k = 1, 3, . . . , 9 p = 10, 20, . . . , 50
3 (1, 1, 0{k}){5} k = 1, 3, . . . , 9 p = 15, 25, . . . , 55
4 (1,−1, 0{k}){5} k = 1, 3, . . . , 9 p = 15, 25, . . . , 55
5 (1,−0.5, 0{k}, 1, 0.5, 0{k}){5} k = 0, 2, . . . , 10 p = 20, 40, . . . , 120
6 0, 1/(k − 1), 2/(k − 1), . . . , (k − 2)/(k − 1), 1 k = 2, 4, . . . , 10 p = 2, 4, . . . , 10
7 −0.5,−0.5 + 1/(k − 1), . . . ,−0.5 + (k − 2)/(k − 1), 0.5 k = 2, 4, . . . , 10 p = 2, 4, . . . , 10

Table 3.1: The population structures used to evaluate the performance of regularized regression
methods.

and for Family 2 when k = 2 we have

β = (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0)′.

Based on a particular β vector and genetic data matrix X (generated as described

below), phenotype data was considered to follow a linear model with mean Xβ and

variance σ2, where σ2 was set to provide a given R2 value, describing the proportion

of trait variance explained by the genetic variables. The R2 values were set to either

0.1 or 0.5, with R2 = 0.1 being more representative of what is expected in genetic

analyses of complex traits [23, 58]. The dimension of β in our models ranged up to

120, but most models had less than 50 variants. This is realistic for the number of

genetic variants that might arise in a typical genetic mapping study.

The β vectors were selected to give plausible patterns of effects for SNP’s in one or

a small number of genomic regions. The models range from being very sparse to non-

sparse. For example, Family 2 has only a few non-zero effects that are well-separated

and weakly dependent, while families such as 6 and 7 that have contributions from

nearly all the variants in the model. In addition, some families, for example 3, have

“reinforcing” effects in the sense that positively correlated variants have effects in the

same direction. Families 4 and 5 have “masking” effects that are positively correlated

but have opposite signs.
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3.4.2 Predictor Data

For the predictor data X, we considered two types of data: simulated to match

SNP data from human subjects and data simulated from a simple parametric model.

Our simulated SNP dataset was generated using the GWASimulator program [37]

which simulates biallelic SNP genotypes that have mean and local correlation struc-

ture similar to that in a given set of phased measured genotypes. As the input set

for GWASimulator, we used phased genotypes from the HapMap project [12] for

60 individuals (120 phased chromosomes) in the HapMap CEU sample (Utah resi-

dents with ancestry from northern and western Europe). We then selected from the

GWASimulator output data for the 22518 SNPs on chromosome 1 that were assayed

on the Illumina platform at the Sanger Institute. The data were partitioned into 148

non-overlapping blocks of adjacent SNPs of size 150. SNPs were eliminated if the

minor allele frequency was below 0.05. An iterative procedure was applied to remove

SNP pairs with correlation greater than 0.9: at each step in the procedure, the pair

with the greatest correlation was identified and one SNP in the pair was selected at

random and dropped; the procedure continued until no SNP pairs with correlation

greater than 0.9 remained. If the final block was shorter than the length of β, it was

discarded. Otherwise the initial segment of the block with with length equal to the

length of β was used. Finally, each SNP was standardized to have zero mean and

unit variance.

Our simple parametric model is a Gaussian AR(1) model with a correlation of

0.8 at lag 1. This is continuous data, whereas most measurements of genetic varia-

tion are coded as categories, but since the performance of regression depends on the

correlation structure among the predictors, we believe these results are still relevant.

All simulations are based on 300 replications of a sample involving 500 independent
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Figure 3.9: Comparison of pairwise correlations in GWASimulator data and AR(1) data.

subjects. The iterative procedure described above was applied to the data for elimi-

nating variables that have pairwise correlations above 0.9. Again, predictor variables

were standardized to have zero mean and unit variance.

Although multicollinearity is present in both GWASimulator data and AR(1)

data, the two datasets have somewhat different correlation structures. For each data,

assuming p = 55 as in model 3.5 or model 4.5, the pairwise correlation coefficients

between predictors were calculated. Then the correlations between adjacent predic-

tors, rij for i 6= j and |i− j| < 5, were selected for comparison. For GWASimulator

data, (Q0.05, Q0.25, Q0.50, Q0.75, Q0.95) = (−0.685,−0.282, 0.002, 0.284, 0.680), while

for AR(1) data, (Q0.05, Q0.25, Q0.50, Q0.75, Q0.95) = (0.379, 0.467, 0.594, 0.768, 0.814),

where Qp is (p × 100)th percentile. The boxplots of these correlations are shown

in Figure 3.9. The predictor correlations in GWASimulator data range from about
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−0.9 to 0.9, so the adjacent predictors can be highly correlated in either positive or

negative direction. On the other hand, the adjacent predictors in AR(1) data are

positively correlated and the correlations do not vary as much as the correlations in

GWASimulator data.

In the performance evaluation using GWASimulator data, a set of X matrices

corresponding to a sequence of blocks along chromosome 1 was constructed as de-

scribed above, and for each X matrix, a single Y vector was generated following

each of the 38 population models. Note that the X matrices in this case are not

repeated samples from a fixed underlying distribution. For AR(1) data, independent

and identically distributed X matrices were obtained, and for each X matrix a single

Y vector was generated following each of the 38 population models defined above.

3.4.3 Performance for Variable Ranking

As discussed above, three methods are considered: ridge regression, the Lasso and

the elastic net. In this section, the ranking performance of those three methods are

compared for both AR(1) data and GWASimulator data. For evaluating the ranking

performance, the results based on magnitude analysis with Z-scores are presented,

but we note that the results based on other approaches (either signed analysis or

coefficient estimates instead of Z-scores) are similar to the results below.

Among the two values (0.1 and 0.5) of R2, R2 = 0.1, which more represents a

situation in genetics study, is first considered. For tuning the regularization param-

eters, oracle tuning is first discussed and then data-adaptive tuning is considered.

Oracle tuning can be thought of as the tuning that chooses the optimal performance

that each method can achieve, and data-adaptive tuning would represent the tuning

in which each method’s practical performance is selected.

Under oracle tuning, the elastic net includes both the Lasso and ridge regression
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as special cases, so the CS difference between the elastic net and either of the Lasso or

ridge regression must be non-negative. Figure 3.10 shows the CS differences among

each pair of methods for AR(1) and GWASimulator data. The results are presented

as the boxplots of the CS differences of one method labeled on the upper right margin

relative to another method labeled on the upper left margin. For example, the left

plot in the first row of Figure 3.10 shows the boxplots of the CS of the elastic net

minus the CS of ridge regression. Therefore, a positive difference indicates that

the method on the right side performed better in terms of CS. The results shown

in Figure 3.10 indicate that if nearly optimal tuning is achieved, the elastic net

provides a small benefit relative to ridge regression and a larger benefit relative to

the Lasso, and ridge regression performs somewhat better than the Lasso. For the

comparison of ridge regression to the Lasso, the gains for ridge regression are larger

and somewhat more consistent across models when looking at AR(1) data compared

to GWASimulator data.

Using data-adaptive tuning, the situation changes somewhat. Figure 3.11 shows

the CS differences between each pair of methods using GCV to tune ridge regression

and AIC to tune the Lasso and elastic net procedures. In this situation, ridge regres-

sion outperforms the Lasso as it did in the oracle case, but now ridge regression also

outperforms the elastic net as well. This is presumably due to data-adaptive tuning

being more difficult for the elastic net due to the presence of two tuning parameters.

We also considered BIC and test set tuning for the Lasso and elastic net proce-

dures. These results (not shown) are similar to those shown in Figure 3.11 – ridge

regression outperforms the elastic net and the Lasso, and the elastic net outperforms

the Lasso. Since the test set tuning procedure approximates an upper bound to

optimal data-adaptive tuning, these results suggest that the relatively better perfor-
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Figure 3.10: Pairwise comparisons of CS among the three methods using oracle tuning for AR(1)
data (top) and GWASimulator data (bottom) when R2 = 0.1.
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Figure 3.11: Pairwise comparisons of CS among the three methods using data-adaptive tuning for
AR(1) data (top) and GWASimulator data (bottom) when R2 = 0.1.
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Figure 3.12: The proportions of zero estimates among truly nonzero coefficients (false zero rates)
and among truly zero coefficients (true zero rates) when R2 = 0.1 for AR(1) data. The
true zero rates for Family 7 are not available because the population models in Family
7 are not sparse.

mance of ridge regression is not due to deficiencies in the model selection statistics

or in the approximation to the degrees of freedom.

We also considered the sparsity of the selected estimates for the Lasso and the

elastic net. The Lasso and the elastic net can produce sparse solutions when having

some amount of L1 regularization on coefficients. We initially thought that having

sparse estimates can be beneficial for ranking when the difference between coefficients

is small because the sparse solution could let the smaller coefficient to be estimated

as zero, which would possibly increase CS. Otherwise, it would be hard to estimate

the coefficients of nearly the same sizes in the correct order. Figure 3.12 shows the

proportions of zero estimates among truly nonzero coefficients (false zero rates, the

first row) and among truly zero estimates (true zero rates, the second row) in the

simulation results using AR(1) data. Note that the true zero rates for Family 7
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are not available because the population models in Family 7 do not contain zero

coefficients. The left panel shows the results under oracle tuning and the right panel

shows the results under data-adaptive tuning based on AIC. Under oracle tuning,

both the Lasso and the elastic net performs best when some of the estimates for truly

nonzero coefficients are zero in a few population models. When there are groups of

highly correlated predictors, the Lasso tends to select one variable from a group

[72]. Thus, it is not surprising that a fraction of the false zero rates are positive

for the Lasso. The elastic net, however, practically involves ridge regression and the

Lasso as special cases, and we found that it can improve the ranking performance

by letting some of estimates for truly nonzero coefficients be zero. For example,

for the models in Family 5, the elastic net may improve the CS by estimating the

coefficients of −0.5 or 0.5 as zero, while it may be hard to get the correct ranking

for the pairs of 1 and ±0.5 using non-sparse solutions. Comparing the results under

oracle tuning and data-adaptive tuning, we found that both false zero rates and

true zero rates for the elastic net become unstable when using data-adaptive tuning,

which would decrease the ranking performance of the elastic net under data-adaptive

tuning. As discussed above, this is presumably because it is difficult to tune the two-

dimensional regularization parameters in data-adaptive way. We note that the results

using GWASimulator data are similar to Figure 3.12.

Next we revisited everything discussed above with R2 = 0.5. The results shown

in Figure 3.13 show better ranking performance for ridge regression than the elastic

net for most members of Family 5, and model 1.2. Ridge regression performed better

than the Lasso for a number of models, and was comparable for all others. There is

no model for which either the elastic net or the Lasso has a substantial advantage

over ridge regression. The magnitudes of the differences among the methods tended
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Figure 3.13: Pairwise comparisons of CS among the three methods using data-adaptive tuning for
AR(1) data when R2 = 0.5.

to be smaller with R2 = 0.5 compared to R2 = 0.1. The results shown are for the

AR(1) predictor data; for the GWA predictor data all three methods performed quite

similarly for most of the models. Besides, the false/true zero rates for the Lasso and

elastic net estimates (not shown) were found to be similar to those with R2 = 0.1,

although the false zero rates are lower when R2 = 0.5.

To interpret the results presented in this section, it is helpful to know that most of

the CS variation within each population was due to variation in the design matrices

X, rather than variation in the outcomes Y |X. When the genetic data are sampled

from a population with high correlation between variables, any given sampled design

matrix X can have anywhere from modest to severe collinearity. Since the differential

performance of CS depends strongly on the structure of X ′X, it is not surprising that

sampling variation in X has a major influence on the results. On the other hand,

with a sample size of n = 500 as used throughout our study, once X was sampled,

the variance over repeated Y samples was relatively small.

3.4.4 Performance for Prediction

At present, most genetic analyses focus on identifying gene/trait associations that

can be pursued to identify genetic variants that may have a mechanistic influence
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on the trait. Predictive analysis is of some interest, although genetic variants for

complex traits found to date generally contain too little information for making

meaningful predictions. Here we consider the performance of ridge regression, the

Lasso, and the elastic net for prediction using the same set of simulation populations

as used for assessing variable selection performance. For simplicity, all results shown

use the “tuning set” method for setting the tuning parameters as discussed above.

Figure 3.14 shows the boxplots of rMSE scores defined in (3.9) for R2 = 0.1. In the

rMSE formulation, MSE1 corresponds to one method labeled on the upper left margin

and and MSE2 corresponds to the other method labeled on the upper right margin.

Thus, if the rMSE has positive values, it means the method labeled on the upper right

margin predicts better than the other method. For the both data sets, the elastic

net performs substantially better than either ridge regression or the Lasso. The

comparison between ridge regression and the Lasso is mixed, with ridge regression

performing better for some models and the Lasso performing better for others. Figure

3.15 shows the results for R2 = 0.5. The elastic net continues to dominate both the

Lasso and ridge regression, and now the Lasso generally outperforms ridge regression.

3.5 Discussion

The analytical and numerical results suggest that regularization can substantially

improve the accuracy when ranking variables according to their estimated effect sizes

on the response, and that with realistic sample sizes, the regularization can be tuned

reasonably well in a data-adaptive way. On the other hand, it is notable that it is

possible regularization doesn’t improve the ranking performance at all even when the

predictor variables are highly correlated. Depending on the correlation structures of

predictors and the patterns of true effects, the ranking performance with L1 or L2
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Figure 3.14: Pairwise comparisons of prediction MSE among the three methods under “tuning set”
tuning for AR(1) data (top) and GWASimulator data (bottom) when R2 = 0.1.
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Figure 3.15: Pairwise comparisons of prediction MSE among the three methods under “tuning set”
tuning for AR(1) data (top) and GWASimulator data (bottom) when R2 = 0.5.
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regularization can uniformly decrease as the tuning parameter λ increases, meaning

that the regularization decreases the ranking accuracy compared to OLS. However,

in most of the models that were considered in the simulation studies, regularization

was found to have improvement on ranking performance over OLS.

By focusing on the accuracy of ranking, we focus on a somewhat different per-

spective on model selection performance from other previous work. A substantial

amount of previous work on regularization focused on prediction or variable selec-

tion. For the purpose of variable selection, they focus on figuring out which variables

have zero or nonzero effects. In previous work, it has been shown the regularization

that includes L1 penalty (the Lasso or the elastic net) performs well for prediction

and variable selection by estimating some of the coefficients as zero especially when

the true model is sparse. However, for the purpose of ranking, we could find that

ridge regression can often estimate the ranking more accurately than the L1 regular-

ization, even for the model where the true coefficients include zeros. We note that

for prediction performance, the L1 regularized methods work better than the ridge

regression as in previous work.

Another distinguishing aspect of this work is that, motivated by the application

of genetic mapping, we focused on models with small overall R2 values. In contrast,

much of the previous discussion of regularization and model selection has focused on

settings with higher R2 values, such as 0.7 ([21]) or 0.96 ([56], [21]). In the simulation

studies, it was found that the differences among the methods became smaller as the

R2 value increased.

As we found the L2 regularization can have better ranking performance than the

L1-based methods, several possible explanations about our findings are suggested.

First, the Lasso and the elastic net can shrink some of the coefficient estimates to
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exactly zero resulting in a sparse model. Initially it was thought that the ability

of getting a sparse model would be potentially beneficial, but it turned out that

it is not necessarily true, because the criterion CS is reduced by the ties caused

by zero coefficient estimates unless the true coefficients have ties as well. Second, it

would be more challenging for the L1-based methods tune the regularization, because

the ranking performance varies much between variable pairs – the regularization

parameter that works well for one variable pair might work poorly for other pairs.

Although this can also happen for the ridge regression, it has less harmful effect for

the ridge regression since the CS of the ridge regression does not deteriorate to 0.5

as λ increases. Third, if the univariate ranking is close to the true ranking, ridge

regression can select the univariate ranking by having a large λ, but the L1-based

methods often cannot approximate the univariate ranking well.

We note that the data-adaptive tuning methods used in this work are better

motivated for the purpose of prediction, not for the purpose of ranking. Also, GCV

has been extensively studied for tuning parameters in the ridge regression, but it

is not clear if AIC or BIC is the best criterion for the Lasso or the elastic net.

So one might suspect that the better performance of the ridge regression is due

to the tuning issues. While this can be partly true when using the data-adaptive

tuning, different types of regularization remains to be a major factor when using

the tuning set approach and the oracle tuning. The oracle tuning can be seen as

a conservative upper bound for data-adaptive tuning and the tuning set approach

should approximate efficient data-adaptive tuning. Under both tuning approaches,

ridge regression still performed as well or better than the Lasso. This lends weight

to an explanation that the differential performance results from differences in the

penalty functions themselves. However it is possible that tuning methods targeted
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to the variable ranking problem could be developed that perform better than tuning

methods developed for prediction or estimation of the mean response.

More broadly, there are other challenges for using regression techniques to sort

out unique genetic effects using observational data. An important aspect of genetic

association analysis is that in general, we should not expect the true causal variant

or variants to be directly measured, even for high density genotyping. If a causal

variant were included in the model, ideally the non-causal linked variants would

show minimal effects. This ideal situation illustrates the potential advantage of us-

ing a multiple regression approach to consider the effects of several linked variants.

However in practice, we cannot expect things to work out as in the ideal setting

when there are unmeasured environmental factors, and measurement errors in the

genotypes and trait values. Nevertheless, consideration of the unique effects of ge-

netic variables as estimated using multiple regression analysis has the potential to be

informative at identifying potential causal variants in one or more regions of interest.



CHAPTER IV

Future Work

In Chapter III, we discussed using penalized regression methods for ranking vari-

ables. When using penalized regression methods, choosing tuning parameters is

essential in practice. In the simulation studies, we considered GCV, AIC, BIC and

a tuning set approach for tuning regularization parameters. However, those criteria

are originally designed for prediction performance and variable selection performance.

Therefore, minimizing those criteria does not guarantee the optimal ranking perfor-

mance, although we found that those criteria perform fairly well for selecting the

estimates with good ranking performance.

Nevertheless, a tuning method could be designed for optimizing the ranking per-

formance instead of the prediction performance. It becomes more obvious that the

tuning for prediction is not optimal for ranking when we consider the fact that rank-

ing by univariate analysis is close to optimal in many situations. Assuming we use

ridge regression for ranking variables, the ranking performance would be close to

optimal when λ = ∞. As λ approaches infinity, the ridge regression estimates will

be shrunken to very small values in which ranking by the differences between those

small values is equivalent to ranking by univariate analysis. However, GCV would

not be able to select those small estimates, because they are not likely to have good

101
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prediction performance. Similarly, tuning based on GCV, AIC, BIC and a tuning

set approach would be able to select the model that has the best ranking.

We found L2 regularization performs well for ranking variables when the effects

are weak. However, when some of the effects are strong and the others are weak,

applying L2 regularization would result in large bias in estimating the large effects,

which might potentially decrease the ranking accuracy. To remedy this drawback of

L2 regularization, one could consider using a hybrid of L1 and L2 penalties in which

small coefficients are regularized with L2 penalty and large coefficients are regularized

with L1 penalty to reduce the bias. This type of penalty function is similar to Huber

function [32], and requires additional tuning for choosing the location at which small

and large coefficient are divided for different penalties. This hybrid penalty function

will have the good property of ridge regression for ranking, but will not over-penalize

large coefficients. We note that [46] proposes using the reversed version of Huber

function (“Berhu” function) for a penalty function. Regularization based on Berhu

penalty behaves like the Lasso in the sense that the solutions can be sparse, but

unlike the Lasso, it does not zero out the estimates of highly correlated predictors

and it can select more than n variables when n < p. However, this penalty [46] was

not found to be useful for the purpose of ranking variables, as the sparsity of the

estimates does not improve the ranking performance.
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