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ABSTRACT 

Effective early stage drug toxicity testing is imperative to minimize failures in the 

late clinical stages of the drug development process. Two-dimensional (2D) cell cultures 

have been dominantly used in the preclinical phase drug screening; however, it is 

becoming apparent that they cannot adequately estimate actual toxic effects of drug 

molecules due to the limited capability in restoring original cellular behaviors in three-

dimensional (3D) tissues. As a potential solution to improve the predictive power of in 

vitro screening procedures, this dissertation explored a new opportunity of in vitro tissue 

engineering as a part of the drug development process. 

Besides the biological significance in functional tissue formation, here scaffolds 

should be transparent and support standardized tissue growth. Inverted colloidal crystal 

(ICC) hydrogel scaffolds having standardized 3D structure and materials as well as 

retaining a high analytical capability were developed for this purpose. Uniform size 

spherical pore arrays prepared with cell repulsive polyacrylamide promoted homogenous 

HepG2 liver tissue spheroid formation, while the transparent hydrogel matrix allowed 

convenient characterization of cellular processes. The standardized spheroid culture 

model was successfully applied to the in vitro toxicity testing of CdTe and Au 

nanoparticles. Significantly reduced toxic effects were observed compared to the 

conventional 2D culture attributed by tissue-like morphology and cell phenotypic change 

in the spheroid culture.  
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In addition, ICC scaffolds combined with a layer-by-layer (LBL) surface 

modification technique served as a platform for engineering primary lymphoid tissue, i.e. 

bone marrow and thymus. Under dynamic culture condition, floating hematopoietic stem 

cells (HSCs) could travel deep into the scaffold via interconnecting channels, while they 

were temporarily entrapped due to limited channel size and number. As a result, HSCs 

extensively interacted with stromal cells growing along the LBL coated pore surface. 

Such intimate cell-cell and cell-matrix interaction is the key process in HSCs survival and 

differentiation that was substantiated by ex vivo expansion and B-/T-cell differentiation 

of HSCs.  

Overall this thesis introduces a promising application of in vitro tissue 

engineering as a practical and valuable early stage toxicity testing tool. ICC scaffolds 

exhibited unique advantage in preparation of spheroid culture model and lymphoid tissue 

engineering. Standardized in vitro tissue models established in ICC scaffolds substantiate 

the capability to extend current cellular level cytotoxicity to the tissue level. 
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CHAPTER I 

INTRODUCTION 

 

1.1. Engineered tissue based in vitro drug testing 

The drug development is a prolonged, expensive and complicate process that 

involves multiple-stage screening: (i) Identification and isolation of promising target 

compounds, (ii) Preclinical stage toxicity and efficacy testing of drug candidate 

molecules based on in vitro cellular assays and animal models, (iii) Clinical trials in 

human subjects, (iv) FDA approval and marketing. Average time and cost for launching a 

single drug is usually 10-12 years and $800 million, respectively.[1] (Figure 1.1A)  

To improve such a long and expensive development process, the pharmaceutical 

industry has prodigiously invested in the development of novel technologies such as high 

throughput-screening (HTS)[2], high content analysis (HCA)[3], systems biology[4] etc. 

However, the low productivity issue remains same. For instance, the pharma industry 

heavily invested in HTS technology which is expected to bring 20-fold improvements in 

throughput, but it has yielded few products[5]. Figure 1.1B also shows that over the last 

several years global R&D expenditure increased almost 4 times, but total number of 

Investigational New Drug (IND) application and their acceptance ratio did not change.[6] 
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Vice versa R&D productivity has actually decreased which in turn sharply 

increases the average costs for a new drug development[7].  

 
Figure 1.1 Current drug development process and low productivity issue. (A)  Typical drug 
development process (B) Increased gap between R&D expenditure and IND application over the 
last few years[6].   

 

One obvious reason of the low efficiency is the lack of effective early stage drug 

testing tools that are indicative of drug’s interactions in a human body. Currently 

pharmaceutical industry exclusively relies on in vitro cell-based assays and animal 

studies in the preclinical stage drug testing. However, they are far limited to predict a 

drug’s behavior and toxicity in the body. For example, although animal models have 

made a significant contribution to drug-target validation, essentially they are different 

species from human. Therefore, they often have markedly different pharmacokinetics. 
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The result of this is that time and money are invested in many potential drugs that 

eventually fail late in the testing process. In fact it is quite common that drug candidates 

can fail as late as clinical trials, after spending huge amount of time and money.[8]  

In addition, in vitro cell-based assays have been performed mostly on 2D culture 

substrates such as micro-well plates, tissue culture flasks, and Petri dishes because of the 

convenience, and high cell viability of 2D culture. These conventional 2D cell culture 

systems notably improved the understanding of basic cell biology, but disadvantages lie 

in the using a 2D substrate. In the body, nearly all tissue cells reside in an extracellular 

matrix (ECM) consisting of a complex 3D fibrous meshwork with a wide distribution of 

fibers and gaps that provide complex biochemical and biophysical signals.[9] 

Additionally, each type of cells is embedded in a considerably different 3D 

microenvironment. For example, osteoblasts are located on the surface of bone in a sheet-

like arrangement of cuboidal cells, hepatocytes are closely packed together in the liver in 

hexagonal shaped lobules, and lymphocytes are individually suspended in circulating 

blood or lymphatic vessels.[10] (Figure 1.3A, D & G) The differential niches of stem 

cells are inherently 3D, and their biochemistry and topology strongly affect the 

differentiation process.[11] Two-dimensional substrates are considerably limited in 

emulating those complex 3D microenvironments due to not only the lack of structural 

architecture but also finite material selections. Furthermore, the adaptation of cells to a 

2D rigid substrate requires a dramatic adjustment by the surviving cells because of the 

lack of the unique ECM environment of each cell type. These drawbacks can alter cell 

metabolism and reduce functionality.[12-14] For that reason, 2D culture substrates not 

only fall short of reproducing the complex and dynamic environments of the body, but 
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also are likely to misrepresent findings by forcing cells to adjust to an artificial flat and 

rigid surface.  

The ideal preclinical drug testing tool would be a 3D human cellular assay that 

allow the drug to be tested on human cells organized in a tissue where cells can interact 

as they would in the body. Recent advances in tissue engineering and stem cell research 

suggest potential to realize this idea. Although conventional tissue engineering aims to 

create functional human tissues for the clinical implantation, faithfully prepared human 

tissues also can be directly used for in vitro drug testing. Small pieces of engineered 

human tissues having intermediate stage physiological or pathphysiological complexity 

can significantly improve the predictive power of preclinical stage drug screening as 

bridging in vitro 2D cell culture and in vivo 3D human tissue. (Figure 1.2) Accompanied 

with significant progress in ex vivo manipulation of human stem cells, e.g. expansion and 

directed differentiation, this approach is becoming more feasible.[15, 16] 

 

 
Figure 1.2 Engineered 3D human tissue based drug testing can fill the gap between in vitro 
2D cell culture and in vivo animal & human testing.  
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1.2. Three-dimensional cell culture matrices 

3D cell culture matrices have been introduced to overcome 2D culture limitations. 

Basically they are porous substrates supporting cell growth, organization, and 

differentiation on or within their structure. There is much more architectural and material 

diversity among 3D matrices than among 2D substrates. In part, such a variety of 

biomatrices is due to the large range of tissues and the need to produce cellular supports 

with different physical appearance, porosity, permeability, mechanical characteristics, 

and nano-scale surface morphology. (Figure 1.3)  A variety of fabrication processes and 

biomaterials have been developed or adapted to meet this array of properties. The chosen 

fabrication process specifically affects the resulting matrix architecture. For example, 

electro-spinning[17] and particulate-leaching[18] methods create fibrous-mesh and 

sponge like structures, respectively. Solid free-form (SFF) fabrication techniques[19] can 

manufacture matrices with specific architectures and properties. In addition to fabrication 

processes, biomaterials have expanded the diversity of 3D cell culture matrices.[20, 21] 

The selection of biomaterial is determined by the selected fabrication technique and by 

the particular application of the 3D matrix. For instance, only a few biodegradable 

polymers are available for the purpose of making implantable 3D matrices.[22] In 

addition, engineering materials and fabrication processes can endow 3D cell culture 

matrices with complex functionalities, such as releasing growth factors that induce 

cellular differentiation.[23-25] New material-processing technologies are being 

investigated actively to meet multiple requirements in various applications.  
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Figure 1.3 Comparison of natural cell/tissue morphology cultured on 2D and 3D substrates. 
Natural tissues and cells have distinct 3D organized morphological features; histological images 
of (A) bone and (B) liver[10], and (C) SEM image of thymus[26]. When tissue cells are cultured 
on 2D substrate, they show a similar morphological pattern i.e. stretched; optical microscope 
images of (D) osteoblasts, (E) hepatocytes, and (F) co-culture of lymphocyte-stromal cells[26]. 
Cell morphologies are closer to natural tissue when cultured on 3D matrices; different appearance 
of (G) osteoblasts[27], (H) hepatocytes[28], and (I) mononuclear cells in growing 3D formation.  

 

The eventual goal of artificial 3D cell culture matrix design is to mimic natural 

ECM features sufficiently enough that cells function in the simulated environment as they 

would in vivo. Natural ECM is an intricate interwoven fiber meshwork of collagen and 

elastic fibers, embedded in a highly hydrated gel-like material of glycosaminoglycans, 

proteoglycans, and glycoproteins.[9] The unique compositional and structural 

combination provides appropriate biophysical and biochemical functions, such as 

facilitating the transport of soluble signaling molecules, nutrients, and metabolic wastes, 

and providing mechanical integrity of tissues by absorbing compressive and tensile 

2D Flat Biology

D G 

EB H 

FC I 

3D Matrix Biology 

Natural  

A 

C. Thymus (Immune cells)B. Liver A. Bone 
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stresses.[10] The interaction between cells and ECM is dynamic. For example, ECM 

structure can guide morphological changes and cellular organization[29], and specific 

signaling molecules on ECM can direct cell differentiation into a particular lineage.[30] 

Cells also can respond to their local environment, remodeling local ECM by degrading 

and/or synthesizing new ECM elements.[31] As every tissue has a unique ECM 

environment, 3D cell culture matrix design should imitate certain features of ECM 

specific to each application. Nevertheless, there are also common characteristics to be 

considered, such as high porosity and biocompatibility.[32] In the following section, 

these common features in structural and material aspects will be reviewed focusing on 

structural properties that need to be considered at multiple length scale and essential 

material properties and some functional modification strategies.   

 

1.2.1. Structures 

A multi-scale approach to 3D matrix structure is especially important in 

mimicking living systems, as nature often derives properties from multi-scale or 

hierarchical structures that previously have been difficult to mimic. For example, bone 

has multiple organizational scales that yield superior mechanical properties, from 

interacting nano-scale collagen and hydroxyapatite crystals to micro-scale lamella and 

osteons.[10]  With a growing variety of techniques to manipulate natural and synthetic 

materials, matrix design has become increasingly precise from the macro- to nano-scale. 

Multiple levels of structural control allow for the engineering of unique properties 

including matrix size and shape, pore size and geometry, porosity, pore interconnectivity, 

and surface topology. Here, the multiple scales accessible to 3D matrix design are 
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defined in three categories: macro-scale (10-1 ~ 10-3 m), micro-scale (10-3 ~ 10-6 m) and 

nano-scale (10-6 ~ 10-9 m).   

Macro-scale design 

The macro-scale structure (10-1 ~ 10-3 m) determines such properties of a 3D 

matrix as size and shape. (Figure 1.4A-B)  For in-vitro 3D cell culture applications, the 

size and shape of a matrix can be controlled for convenience and functionality, i.e. fitting 

to a well-plate or bioreactor. In tissue engineering, it is important to match matrix size 

and shape to the anatomical defect. For example, a scaffold for bone tissue engineering 

should have a properly designed macro-scale structure to allow for integration with 

proper adjacent tissues, as well as for generation of properly sized tissue.[33]  

Appropriate design of anatomic shape also is important for cosmetic purposes. A major 

challenge of macro-scale control over implantable scaffolds is that the relevant properties 

(i.e. defect site size and shape) vary from patient-to-patient. One approach to achieve this 

level of design control is to utilize computer-based medical imaging tools such as 

computed tomography (CT), magnetic resonance imaging (MRI) and design strategies 

such as computer-aided design (CAD), become useful in customizing a 3D architecture to 

match a wound site.[19]  This design can be manufactured utilizing SFF fabrication. The 

importance of macroscopic structural design of 3D matrices, along with their fast and 

individualized production, will become more important with increase the potential 

utilization of 3D cell culture matrices in clinical applications.[34-36]  
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Micro-scale design 

Controllability on the micro-scale (10-3 ~ 10-6 m) is valuable to mimic 

microscopic tissue structure, such as the multi-cellular spatial organization within ECM 

proteins. Tissue architecture and function are closely interrelated. For example, blood 

vessels consist of the three distinct layers of endothelium, smooth muscle, and connective 

tissue. A circularly oriented smooth muscle layer surrounded by longitudinally oriented 

inner endothelium and outer connective tissue layers regulates blood flow.[10]  Although 

micro-scale 3D matrix design should be specific for each application, there are also 

general but essential design parameters such as porosity, pore interconnectivity, pore 

geometry, pore size distribution, and some surface topography.  

In addition to the diffusion of nutrients, metabolic wastes, and soluble molecules, 

one of the critical issues in microscale design is the facilitation of mass transport within 

3D matrices to control the efficiency of cell seeding.[32]  The inclusion of sufficiently 

sized open pores and a well-interconnected geometry improves diffusion throughout the 

scaffold interior. Pore geometry and pore size distribution are other critical factors. 

Three-dimensional matrices with similar porosity but dramatically different pore 

geometry, such as fibrous versus spherical pores, can yield different mass transport 

profiles. (Figure 1.4C-D)  A large pore size distribution can lead to areas with poorer 

accessibility, potentially limiting cell seeding and migration efficiency. 

Individual cells recognize structures which have comparable dimension to cellular 

size (10~100 mm).[37]  Therefore, micro-scale surface morphological texture needs to be 

considered among design criteria. Micro-scale surface features can activate certain genes 

and modulate cellular behavior in differentiation or proliferation. For example, 



10 

 

microscopic surface patterns and grooves on 2D surfaces guide neuronal cell 

polarization[38] and myoblast alignment.[39]  Beyond that, there is a poor understanding 

of how the topology of 3D scaffolds affects cell development. For instance, it is difficult 

to answer how the change of fibrous substrate to a support with leached pore morphology 

affects the differentiation of stem cells.  

Micro-scale structural design also affects the mechanical properties of the bulk 

scaffold. Sufficient mechanical properties are important in tissue engineering, in which 

the scaffold may be required to withstand forces generated by the body, and in 3D cell 

culture, in which the matrix must withstand cell attachment forces, handling by scientists, 

and media convection in bioreactors. Oftentimes, a stochastic micro-structural 

architecture, such as those resulting from particulate leaching fabrication techniques, 

requires high porosity to ensure complete interconnectivity. The high porosity sacrifices 

mechanical properties by reducing the amount of material present in the matrix. Precise 

design of matrices, where architecture is optimized to provide complete interconnectivity 

at higher porosities, can improve mechanical strength while preserving effective diffusion.  

Overall, some of the most fundamental matrix design criteria require control on 

the micro-scale. With improving technologies, it is becoming increasingly obvious that 

precise micro-scale design is necessary to maximize these microscale properties. 

Although there are numerous fabrication methods to make 3D matrices with micro-scale 

resolution, only few techniques, such as SFF fabrication[40] provide precise 

controllability over 3D matrix architecture at this scale.  
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Nano-scale design 

Cells interact with ECM via nanoscale proteins, responding to their environment 

by modulating various cellular activities. Therefore, specific attention to matrix design on 

the nano-scale (10-6 ~ 10-9 m) is logical, because most individual ECM components are in 

nano-meter scale. For example, collagen fibrils have a diameter range of 50 to 200 nm, 

and fibronectin are 60 to 70 nm long and 2 to 3 nm thick.[9] 

Aside from the inhibition of nutrient supply by microscale geometry, nano-scale 

structural features provide the most significant influence on cell functions as a part of 

surface topography. This is not surprising because many cell-signaling mechanisms 

involve nano-scale molecules. Nano-scale surface topography has been demonstrated to 

regulate cell adhesion, organization, morphology, and differentiation.[41]  Still, 

compared with surface chemistry, limited 3D nano-scale fabrication techniques leave the 

effects of surface topology insufficiently investigated. Currently, nano-sized 3D surface 

structural features can be achieved in four ways. The first method involves using nano-

materials such as 3D peptide hydrogels directly, entrapping cells in a 3D nano-scale 

fibrous structure.[42, 43] (Figure 1.4E)  The second method incorporates nano-sized 

materials into bulk materials before matrix manufacture.[44] (Figure 1.4F)  A great deal 

of research in bone tissue engineering has focused on integrating nano-sized features into 

scaffolds to improve osteoblasts adhesion, proliferation, and calcium deposition. For 

example, hydroxyapatite nano-particles incorporated into the matrix of poly-L-lactic acid 

(PLLA) scaffolds yielded nano-scale topology that significantly increased protein 

adsorption.[45]  The third method controls processing conditions during fabrication. 

(Figure 1.4G) A nano-scale fibrous structure can be produced on the surface of a 3D 
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matrix through thermally induced phase separation of PLLA solution in organic solvent, 

followed by a crystallization process during freeze drying. Electrospinning techniques 

can also reduce fiber diameter to the nano-scale.[46]  The last approach is post 

fabrication surface treatment or surface coating. (Figure 1.4H)  For example, brief 

exposure of 3D polyester scaffolds to sodium hydroxide created nano-scale surface 

roughness, which improved the adhesion of osteoblasts and chondrocytes.[47]  Although 

the above techniques are successful at generating nano-scale surface structures, feature 

controllability on 3D structures presents a major challenge. 

Proper design of 3D cell culture matrix structure on multiple scales can provide 

distinct features to the matrix, such as macro-scale shape, micro-scale internal 

architecture, and nano-scale surface topology. Therefore, 3D biomatrix design should 

incorporate all scales to mimic the hierarchical structure of natural tissue that is 

correlated with cellular organization and functionality. However, controllability is highly 

dependent on material properties and selected fabrication processing, as will be discussed 

in later sections. Development of processing approaches that will allow freedom in 

choice of macro-, micro-, and nano-scale is one of the most difficult challenges in 3D 

scaffolds that the materials science and nano-technologist communities need to be 

addressed. 
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Figure 1.4 Overview of multi-scale 3D cell culture matrix structure design criteria (A[19]. 
B[48]. C[49].  D[50]. E[43]. F[44]. G[50]. H[51]) 
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1.2.2. Biomaterials 

As researchers are diverging from traditional 2D glass and tissue culture 

polystyrene, cellular responses to the materials are becoming increasingly apparent. 

Many new biomaterials have been developed to mimic the unique characteristics of 

natural ECM. In general, these biomaterials can be divided into four groups: metals, 

ceramics, polymers, and composites.[52]  Among them, polymeric materials receive 

substantial attention because of the great flexibility in designing the composition and 

structure for specific needs. Polymeric materials can be divided into natural and synthetic 

polymers. (Table 1.1)  Innate properties of these natural and synthetic polymers have 

been reviewed extensively elsewhere [22, 52-54], whereas commonly required features to 

design 3D matrices have not been comprehensively examined before. Beyond the 

increased controllability in chemical and physical properties of those synthetic polymers, 

the development of various materials engineering and hybridization techniques emulates 

ECM functions in an artificial environment. Here the key parameters are addressed in 

selecting and engineering polymeric 3D matrix materials from the viewpoint of bulk and 

surface properties. (Figure 1.5) 

Table 1.1 Materials for 3D matrix building 

Synthetic polymers Natural polymers 

Poly (glycolic acid) (PGA), Poly (lactic acid) (PLA) 
Poly (ε-carpolactone) (PCL), Poly (ethylene glycol) (PEG), 
Poly (vinylalchol) (PVA), Poly (propylene fumarate) (PPF), 
Poly(acrylic acid) (PAA), and various copolymers  
e.g. Poly (lactic-co-glycolic acid) (PLGA) 
*Peptide, DNA 

 
Collagen, Gelatin, Hyaluronate 
Glycosaminoglycan, Chitosan 
Alginate, Silk, Fibrin, Matrigel 
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Bulk properties 

Bulk material selection is the first consideration of 3D matrix design because it 

dictates various fundamental properties of the matrix from biological effects to 

processability. Here, several key parameters of bulk materials for matrix design are 

discussed including biocompatibility, wettability, transparency, biodegradability, and 

mechanical properties, as well as examples of bulk material modifications that are used to 

emulate natural ECM.  

Biocompatibility of the bulk material is a critical parameter, because it determines 

the ability of materials to perform their desired functions with appropriate cellular or host 

responses. Biocompatibility can be understood as a graded characteristic, for which the 

requirements change depending on the specific application. The degree of 

biocompatibility can vary from the lack of toxicity with respect to transformed cell 

cultures to the lack of long-term immunological systemic response of the human body. 

The strictest requirements are applied to implantable scaffolds to avoid undesired 

responses, such as a strong immune reaction or fibrous encapsulation. Ideally, the body 

should be able to metabolize degraded substances. Natural materials tend to show better 

biocompatibility than synthetic materials, but their animal sources raise concerns about 

disease transfection. The more relaxed definition of biocompatibility is applied to 3D 

scaffolds to be used ex vivo, but the more complex the cellular system is, the more 

stringent the compatibility requirements are. Fabrication processes that use harsh 

chemicals decrease biocompatibility and sometimes cause matrix toxicity even if the bulk 

materials are biocompatible. 
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Because natural ECM is a fully hydrated gel, wettability is a key 

consideration.[55]  Bulk materials with more hydrophilic chemistry are better at 

mimicking the aqueous in vivo environment. For this reason, hydrogels, networks of 

hydrophilic polymer chains, have been used extensively as 3D matrix materials.[53, 56]  

The hydrogel structure also creates a gradient of soluble signaling molecules within a 3D 

matrix and absorbs mechanical tensions. Nevertheless, poor cell adhesion due to the 

hydrophilicity of hydrogels and the lack of cell binding motifs is a common 

drawback.[53]  These limitations can be overcome by conjugating cell-binding motifs 

such as arginine-glycine-aspartate (RGD) on polymer chains[23] or by coating surfaces 

with bioactive materials post-fabrication.[57]  

Transparency of bulk materials is an important parameter for 3D in vitro 

modeling applications in which cellular behaviors within the 3D matrix require 

microscopic detection. Many sensing and quantification techniques, such as 

immunostaining and enzyme-linked immunosorbent assay, also use optical-based 

instrumentation, including confocal microscopes and micro-plate readers. Thus, 

transparent materials are advantageous to collect optical signals passing through the bulk 

structure without dissipating light beam. One may also consider a broader definition of 

transparency beyond the traditional ultraviolet-visible spectroscopy ultraviolet-visible 

spectroscopy (UV-vis) range of electromagnetic waves between 300 and 800 nm. 

Transparency in the X-ray region is reasonably high for most materials, which will be 

important to use for analysis of cell behavior in 3D scaffolds. X-rays can penetrate to 

depths that are not possible for confocal microscopy images even in the most transparent 

media. However, X-ray contrast of live cells in most 3D matrices is poor. The 
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development of appropriate contrast agents for cells for 3D X-ray tomography using 

nano-particles is a burgeoning research area with much promise.[58-61]  Much 

contribution can be made in this field by further improving image contrast and resolution 

particle delivery to the cells and introducing X-ray ‘‘color’’ with different nano-particles, 

which will greatly improve the research process in 3D scaffolds. 

Controlled biodegradability is an essential requirement for implantable 3D 

scaffolds, because these scaffolds are generally designed to degrade at the rate that in-

growing tissue replaces them. Generally, synthetic materials degrade hydrolytically[62] 

and natural materials undergo an enzymatic degradation process.[63]  Hydrolytic 

degradation is more predictable and adjustable than enzymatic degradation. For example, 

the degradation profile of poly(lactic-co-glycolic acid) (PLGA) scaffolds can be 

manipulated by adjusting the composition and molecular weight of poly(lactic acid) 

(PLA) and poly(glycolic acid) (PGA) polymers.[64]  On the other hand, enzymatic 

degradation of natural materials is more dependent on local enzyme concentration 

secreted from cells.[65]  Thus, the degradation profile and mechanism under 

physiological conditions for scaffold materials, as well as the implantation site and 

desired scaffold function, need to be carefully considered when designing an implantable 

scaffold. 

Mechanical properties of bulk materials represent an important set of 

characteristics to consider in 3D matrix design. First, bulk materials are fundamental 

contributors to the mechanical integrity of 3D matrix structure. This is especially so in 

tissue engineering for structural tissues. For instance, bone regeneration scaffolds may 

endure substantial mechanical stresses immediately after implantation.[66]  If the 



18 

 

scaffold cannot bear sufficient loads, it might fracture before the bone healing process is 

complete; however, excessively strong mechanical properties can damage adjacent bone 

or retard new bone regeneration via stress shielding. This becomes even more 

complicated when bulk materials start to degrade, because the mechanical properties of 

the scaffold should retain integrity and gradually transfer loads to ingrowing bone. 

Therefore, the scaffolds should have mechanical properties resembling those of healthy 

tissue over the period of tissue regeneration. 

Second, the bulk mechanical properties directly shape surface mechanical 

properties, such as surface stiffness or elasticity, which elicit clear cellular responses. For 

example, cells on 2D cultures initially recognize adhesive proteins on the substrate 

through transmembrane integrin receptors receiving mechanical signals, which activate 

actin-filament polymerization and promote focal adhesion formation. Later, cells apply 

traction forces to pull the ligands from a substrate and sense the surface stiffness.[67]  

Recently, a modified fluorescence resonance energy transfer technique was used to 

measure cell tracking forces quantitatively on 2D substrates with different degrees of 

stiffness. It demonstrated that stiffer substrates support preosteoblast proliferation and 

that softer substrates promote differentiation.[68]  In another seminal work, the response 

of human mesenchymal stem cells (hMSCs) on a 2D hydrogel matrix with different 

grades of elasticity was studied. hMSCs displayed a phenotype of neurogenic lineage on 

the softest substrates, a myogenic phenotype on moderately stiff matrices, and an 

osteogenic phenotype on the stiffest substrates.[16]  Even though these results were 

derived from a 2D model system, they provide valuable information for 3D matrix design. 

For example, the timing of different functions of the scaffolds, such as early proliferation 
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and late differentiation, can be developed as a strategy for many tissue regeneration 

applications. A gradual switch from cell proliferation to cell differentiation can be 

obtained by progressive softening of the scaffolds during the biodegradation process. 

Bulk properties are frequently modified to replicate the multi-functional tasks of 

natural ECM on an artificial 3D matrix. There are numerous materials engineering and 

hybridization techniques, but here three distinct strategies are discussed. The first 

approach involves hybridizing natural and synthetic materials to improve the biological 

and physical properties of a 3D matrix. For example, limited bioactivity of synthetic 

materials can be improved by covalently incorporating multifunctional ligands from 

natural materials (e.g., fibronectin, vitronectin, and laminin) onto synthetic polymers. 

[69-71]  Depending on the application the ligand type and concentration can be adjusted. 

Weak mechanical properties of natural materials can be improved by incorporating 

synthetic polymers. Photopolymerizable hyaluronan and collagen conjugated with 

synthetic cross-linkers can be copolymerized with synthetic polymers.[72, 73]  This 

significantly enhances the physical stability of the 3D structure in a controlled manner 

while preserving the inherent biological properties of natural materials. Currently, critical 

concerns are control over the spatial distribution of ligands and their configuration 

change after immobilization in a 3D matrix. 

The second approach is the incorporation of soluble signaling molecules within a 

3D matrix. In nature, the temporal release of soluble signaling molecules from ECM in a 

spatial gradient significantly influences various cellular behaviors. In 2D culture, the 

delivery of soluble signaling molecules is rapid and uniform but lacks a spatial gradient. 

It can be advantageous to create gradient signaling profiles in 3D culture, although 
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diffusion may be considerably impeded. For this purpose, soluble bioactive molecules, 

such as growth factors and deoxyribonucleic acid (DNA) encoded for the desired protein 

synthesis, are mixed in 3D matrix materials.[25, 74]  Often these molecules are pre-

encapsulated within biodegradable polymeric carriers, such as PLGA, for longer periods 

of release with a controlled profile. Encapsulation can also minimize the deformation of 

the 3D configuration of protein during the fabrication process. Moreover, multiple 

components can be secreted at different time points by taking advantage of different 

release kinetics. For example, Richardson et al. developed a dual growth factor–delivery 

system with different release kinetics in PLGA scaffolds: rapid release of vascular 

endothelial growth factor (VEGF) without a carrier and slow release of pre-encapsulated 

platelet-derived growth factor (PDGF).[75]  VEGF first stimulated endothelial cell 

proliferation and channel formation, and PDGF recruited smooth muscle cells around the 

channels, which remodeled and matured the nascent vascular networks. As a result, the 

diameter and density of vessels were significantly greater than those of vessels in single 

growth factor releasing and blank scaffolds. 

The delivery of DNA is also beneficial in maintaining physical integrity and 

enhancing effectiveness, because DNA is merely a 1D linear base sequence; preservation 

of configuration is not as much of a concern. Like proteins, DNA delivery is normally 

combined with viral vectors such as retroviruses and adenoviruses, but non-viral vectors, 

such as cationic polymers and lipid complexes, are also used to deliver the DNA 

sequence to cell nuclei.[76] Current challenges include the improvement of 

controllability in the carrier system and the enhancement of efficacy in delivered 

signaling molecules. 
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The third method that can be used to make an analogous ECM is to hybridize 

biomaterials with various functional nano-materials. For example, bone tissue ECM is 

composed of organic collagen and inorganic hydroxyapatite.[10]  Polymeric materials 

only represent the organic element of bone tissue ECM; therefore, hydroxyapatite nano-

particles are often incorporated, demonstrating greater osteoblastic differentiation than 

polymeric materials alone.[45]  Recently, carbon nanotubes (CNTs) have been used as a 

hybridization material for 3D matrices because of their unique physical and chemical 

properties and flexibility of surface functionalization. The excellent mechanical strength 

of CNTs lends them to be incorporated into scaffolding materials for structural 

reinforcement.[77]  Additionally, the metallic properties of CNTs allow them to be used 

as a contrast enhancement reagent for non-optical-based imaging tools.[78] Electrically 

conductive CNT composite films have also been applied for stimulation of neuron cells 

by electrical pulses.[79, 80]  Moreover, CNTs support neuronal cell outgrowth and 

differentiation because their fibrous or tubular structure is similar to those of neural 

processes with comparable dimensions.[81]  Although great potential exists for using 

nano-materials, several problems should be clarified, such as dispersion in nano-

composite solutions, effective functionalization, biocompatibility, and potential systemic 

effects of nano-colloids in the body. 
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Surface properties 

Surface properties are crucial in controlling interactions between cells and a 

substrate. Although surface properties are often derived from the bulk properties of 

materials, the bulk materials do not entirely define them, because 3D matrices are coated 

with proteins almost immediately after implantation in the body or immersion in culture 

media.[82]  Surface chemistry and topography determine the identity, quantity, and 

conformational change of these adsorbed proteins. 

Surface properties include stiffness, charge, polarity, and chemistry, among a 

multitude of others. For example, the surface charge density determines the amount of 

protein adsorption and resultant cell adhesion.[83]  Greater surface charge brings a 

greater density of protein coating, leading to better cell adhesion.[84]  Positively charged 

surfaces support better osteoblast adhesion than do negatively charged surfaces with 

similar charge density. It is believed that different protein species adhere to the scaffold 

depending on surface charge polarity, causing this distinction.[85]  Surface chemistry 

also modulates the bioactivity of coated proteins by causing different configurations of 

adsorbed proteins. For instance, an equal amount of fibronectin pre-coated on 4 different 

substrate having OH, NH2, COOH, and CH3 functional groups resulted in adherence of 

different configurations of fibronectin and led to a specific class of integrin activation on 

osteoblasts. As a result, OH and NH2 terminated surfaces supported better osteoblastic 

differentiation, alkaline phosphatase activity, and matrix mineralization than COOH and 

CH3 groups.[86]  

Surface properties can be modulated through the attachment of specific functional 

groups or proteins with necessary biological functions to regulate cellular behavior. 



23 

 

Fewer techniques are applicable to 3D substrates than to 2D biological surface 

modification methods because of limited diffusivity within the porous internal structures. 

Layer-by-layer (LBL) surface coating is a promising technique to modify 3D matrix 

surface properties with various materials.[87]  LBL is described as the sequential dipping 

of a substrate into baths of oppositely charged solutions alternating with rinses in water, 

yielding monolayer control over the surface properties of the substrate.[88]  Complex 3D 

porous structures can be coated using the LBL technique as long as there is no serious 

mass transport limitation. Various biomolecules can be incorporated in LBL films with 

minimal loss of bioactivity and can be delivered to cells in a sustained manner by using 

hydrolytically degradable polyelectrolytes.[89]  For example, LBL films containing bone 

morphological protein-2 (BMP-2) and transforming growth factor-b1 (TGF-b1) mediated 

the bone tissue formation of embryonic stem cells.[90] 

Vapor phase deposition is another technique to modify 3D substrates. Because 

this surface-coating process operates in the vapor phase, 3D matrices should be dried 

before processing. In a low-pressure chamber, monomeric compounds diffuse easily into 

the internal area of a 3D matrix, aided by air flow to reinforce diffusivity.[91]  Plasma 

processing has been applied to coat 3D porous PLA scaffolds with amine groups to 

improve embryo 3T3 fibroblast adhesion. Amino groups grafted to the surface promoted 

adsorption of adhesive proteins, approximately doubling the number of cells initially 

adhering to the scaffold.[48] 

Another interesting approach is coating 3D matrix surfaces with natural ECM by 

culturing stromal cells and removing them from the matrix. Because the natural ECM 

consists of a complicated mixture of organic and inorganic components originally 
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produced from cells, scaffolds coated with bone-like ECM secreted by osteoblasts 

significantly enhanced differentiation of rat mesenchymal stem cells (MSCs) into 

osteoblasts.[92] 

There are a large number of criteria for the design of 3D cell culture matrices. On 

a structural level, there are multiple scales of features that influence the matrix function 

on cells, as well as the function of cells residing within the matrix. From a biomaterials 

point of view, bulk and surface properties have to be considered. Although they are not 

mutually exclusive, structural and biomaterial features can be chosen and manipulated 

depending on the desired application of the matrix. As discussed in the next section, 3D 

matrix design becomes increasingly complex depending on the chosen matrix fabrication 

technique, because the technique chosen limits the level of structural control and 

applicable biomaterials. 

 

 

Figure 1.5 Summary of biomaterial considerations 
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1.3. Current fabrication techniques 

Parallel to the development of advanced materials and process engineering, 3D 

matrix formation and fabrication techniques have evolved considerably to manufacture 

more elaborate 3D structures with a broad range of biomaterials. The earliest is the 

encapsulation of cells within a hydrogel matrix. In this culture format, a hydrated nano-

scale fibrous structure similar to natural ECM surrounds cells are completely. Typical 

cellular behaviors, unrecognized on conventional 2D culture, became reproducible in this 

3D culture environment.[93]  Under the tissue-engineering theme, various micro-scale 

3D porous matrix fabrication procedures were introduced. Many types of scaffolds are 

under investigation to construct pilot model tissues for bone[94], cartilage[95], skin[96], 

liver[97], blood vessel[98], and muscle[99].  Computer-assisted fabrication systems 

emerged with the greater necessity for complex and customized 3D matrix structure 

design and manufacture. Currently, the SFF technique, also called rapid prototyping, is 

the most broadly used of computer-assisted methods. SFF ultimately allows for control 

over macroscopic properties, such as scaffold shape, as well as microscopic internal 

architecture.[19]  Conventional microfabrication technologies, such as soft lithography 

and photo lithography, have excellent control over micro-scale structure.[100, 101]  

Nevertheless, these manufacturing processes are limited to constructing freestanding 3D 

matrices. These structures are defined as 2.5D and excluded them from the scope of this 

review, except for a newly emerging multiphoton absorption polymerization (MAP) that 

can create an intricate 3D structure with a high aspect ratio.[102]  

Although all of the fabrication methods have unique advantages, there is no one 

standard or superior fabrication process, and new methods are being researched. In this 
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section, current 3D matrix fabrication techniques are reviewed from the viewpoint of 

structural and materials design criteria and introduce some valuable modifications. 

Selected examples in each 3D matrix are also discussed in terms of in vitro models and 

tissue-engineering applications 

 

1.3.1. 3D Cell entrapment  

Technique 

The process of 3D cell entrapment is conceptually simple. A hydrogel precursor 

solution is mixed with a cell suspension and then quickly gelled using random or self-

assembling polymerization via changes of physical or chemical conditions.[103]  The 

unique advantage of this technique is that cell culture is performed within a 3D 

environment that completely surrounds cells, enabling the delivery of intense signals to 

cells from all directions. 

Structure 

It is difficult to control the 3D matrix structure because of the rapid cell 

entrapment and gelling process. Normally, the mold in which they are formed defines 

macroscale structures. In the case that cell-entrapping precursor solution is dropped into 

an initiator solution, the structure takes on a spherical shape.[104]  There is no distinct 

microporous structure; thus, mass transport mainly depends on slow diffusion through 

submicron-size pores. Still, the high water content (95.0–99.5%) enables sufficient 

exchange of essential biomolecules and metabolic end products to maintain cell viability 

in a limited thickness.[105] On the nanoscale, the interwoven mesh structure is beneficial 



27 

 

for emulating an in vivo physical environment. For example, fiber diameters of 10 to 150 

nm are in a range similar to the size of ECM fibers, providing a similar atmosphere for 

cell growth Pore sizes of 5 to 400 nm are comparable to those of natural ECM, 

reproducing the slow diffusion of soluble molecules to create a gradient signaling profile 

within the 3D matrix.[105] Although the ECM-like environment is an ideal condition for 

cell culture, weak mechanical properties are a major limitation of the exceptionally 

hydrophilic nature of the matrix.  

Biomaterials 

Three-dimensional cell entrapping materials are natural or synthetic hydrogels 

that can undergo fast yet gentle polymerization around cells. The monomeric components 

must be nontoxic and biocompatible, because cells are mixed with the precursor solution 

before gelling. The polymers can be hydrolytically or enzymatically degradable. In 

addition, 3D hydrogel matrices show excellent wettability, and many demonstrate 

superior transparency in the UV-vis range. Surface properties of entrapping hydrogel are 

derived from bulk properties because 3D matrix completely surrounds cells. Stiffness and 

topography of the matrix can be manipulated by adjusting the concentration of monomer 

and cross-linker.  

Natural hydrogels, like Matrigel, fibrin gel, and alginate gel, are commonly 

applied as cell-entrapping materials because of their outstanding biocompatibility and 

mild gelling conditions. However, some of the major drawbacks include poor control of 

gelation kinetics, uncontrolled material composition, and lack of mechanical integrity. 

Matrigel is composed of solubilized basement membrane proteins extracted from a rat 

chondrosarcoma. These soluble proteins undergo self-assembled polymerization when 
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incubated at 37°C, forming a 3D gel.[106] Although Matrigel is an excellent biomaterial 

because of its abundance of natural biological molecules, its heterogeneous and 

unidentified molecular components reduce a degree of experimental control. Additionally, 

the animal-derived source of the material may be contaminated with viruses, potentially 

affecting experimental results. For example, mouse-derived Matrigel is sometimes 

contaminated with a lactate dehydrogenase-elevating virus. Fibrin gel is made by mixing 

two blood coagulation components: fibrinogen and thrombin. Polymerization initiates 

when fibrinogen is converted to fibrin upon addition of thrombin. As fibrin polymerizes, 

interactions between polymers cause gelling into a 3-dimensionally organized clot, 

commonly seen in classic wound healing.[107] Alginate, a family of linear copolymers 

composed of 2 monomers (a-Lguluronic acid and b-D-mannuronic acid), is extracted 

from seaweed. The gelation of alginate occurs by adding ionic cross-linkers or divalent 

cations such as Ca2+, Ba2+, and Sr2+. The quantity and binding affinity of ionic cross-

linkers determine gel properties.[108] (Figure 1.6A-B) 

Synthetic hydrogels have been introduced for greater control over physical and 

chemical properties of 3D culture environments. The homogeneous nature of synthetic 

hydrogels provides much better matrix uniformity and simpler biochemical assays than 

natural hydrogels. Additionally, it significantly promotes reproducibility of experimental 

results. For example, a 3D matrix constructed of simple peptide-based building blocks 

provides a blank background, minimizing noise in biochemical analysis. Thus, an assay 

determining the accumulation of cartilage ECM macromolecules (e.g., proteoglycans and 

glycosaminoglycans) synthesized from differentiated chondrocytes can be performed 

without concern about initial contamination of those molecules in the matrix.[109] 
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Synthetic hydrogels normally are not explicitly bioactive, and harsh polymerization 

conditions (i.e., free radical initiation and limited biocompatibility of monomeric 

components) frequently prevent the use of synthetic hydrogels as cell-entrapping 

materials. 

Currently, three types of synthetic gels are used: poly(ethylene glycol) (PEG), 

peptide, and DNA gels. PEG hydrogel has been used because of its high biocompatibility 

and precise control of reaction kinetics during rapid photopolymerization, providing a 

spatially well-controlled 3D gel for cell entrapment.[110] (Figure 1.6C-D) Peptide gels 

are composed of macroscopically self-assembled synthetic peptides. Small quantities of 

elemental peptides (0.1 ~ 5.0 %) dispersed in water are mixed with a cell suspension, 

which then undergoes a self-assembling process under the right ionic conditions. Self-

assembled peptides generate a stable nano-fibrous structure, entrapping cells. Two types 

of synthetic peptides currently used in this fashion are amyloid-like fibrils[111] and 

peptide amphiphiles.[112] (Figure 1.6E-F) Recently, DNA has been used as a building 

block to construct hydrogels with the invention of an oligonucleotide synthesizer to 

design a specific sequence of DNA and polymerase chain reaction to amplify the DNA. 

Elaborately designed DNA molecules, which have a branched structure with a 

complementary sticky end, can be hybridized to each other via DNA ligase, self-

assembling into a 3D DNA hydrogel.[113, 114]  (Figure 1.6G-H) 

Natural and synthetic polymers are frequently hybridized to compensate for the 

shortcomings each may possess alone. For example, copolymerization of PEG and PEG 

conjugated with natural polymers such as hyaluronan[73], collagen[72], and biological 
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ligands[115] enables better control over the physical and biochemical properties of 

natural and synthetic cell entrapping materials, respectively. 

Modifications 

From a structural manufacturing standpoint, the cell-entrapping technique is based 

on the self-assembly of materials around cells, rather than the shaping of a bulk material 

to a specific architecture. Therefore, modification techniques are focused more on 

engineering unit biomolecules for directed assembly or to induce certain functionality 

than on manufacturing processes. The first example is advanced hybridization of natural 

and synthetic materials to create a cell-responsive 3D culture environment. Here, PEG 

macromers are covalently conjugated with cell adhesive and proteolytic cleavage ligands 

such as matrix metalloproteinase (MMP) degradation sites. [116] Cells cultured within 

this modified PEG-based hydrogel can grow and migrate deep into the matrix, creating 

spaces after local matrix degradation using cell-secreted MMPs. Hybridization also 

allows for a mild polymerization process separate from photopolymerization without 

generating free radicals, called a Michael-type addition reaction. In this process, gelation 

initiates after 2 building groups, end- functionalized macromers and bi-functionalized 

peptides, are mixed as cross-linkers.[117] (Figure 1.6I)  

Another method of materials engineering involves the molecular design of unit 

peptides to have specific functionalities. Versatile alteration of amino acid sequences in 

the hydrophilic peptide head groups provides specific cell-binding or cell-signaling 

environments for the systematic investigation of cell differentiation.[118] (Figure 1.6J) 

The last example is a modification of the cell entrapping process involving a patterned 

multi-cellular organization instead of a random distribution of cells within 3D PEG 
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hydrogel. Positive dielectrophoretic forces generated along a micro-patterned dielectric 

mask direct the 3D spatial organization of cells suspended in a PEG precursor solution 

because of the negative net charge of the cell membrane. After PEG photopolymerization 

under UV light, the cells are fixed in a desired pattern.[119] (Figure 1.6K) 

 

 

 
Figure 1.6 Overview of 3D cell entrapment techniques. (A) Fibroblast cells encapsulating 
alginate micro-spheres[104]. (B) Ionically cross-linked alginate hydrogels with defined 
macroscopic shape transferred from a mold[120]. (C) Photo-polymerized PEG hydrogel.[121] 
(D) Safranin-O stained cartilage cells entrapped in PEG hydrogel.[122] (E) SEM image of a 
peptide amphiphile nanofiber network.[123] (F) Illustration of self-assembled peptide 
amphiphiles forming cylindrical nanotubes.[123] (G) Schematic of DNA hydrogel structure.[124] 
(H) DNA hydrogel made in a cylindrical mold.[114] (I) Scheme for the preparation of MMPs 
sensitive PEG hydrogel.[125] (J) Examples of variation of self-assembling peptide amphiphile 
units.[123] (K) 3D patterned hepatocytes in PEG hydrogel, before (left) and after (right) 
patterning.[119] 
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1.3.2. Polymer processing to obtain porous 3D matrices 

Techniques 

Numerous polymer-processing techniques have been developed to fabricate 3D 

porous matrices with particular applications in tissue engineering. Specific details of each 

method are described extensively elsewhere.[54, 126] Here, representative polymer 

processing techniques that yield 3D matrices with a stochastic architecture are discussed, 

the structures of which are divide into fibrous and sponge-like. The internal structures of 

the 3D matrices discussed here are highly dependent on the chosen fabrication process. 

Matrices with a fibrous structure are typically fabricated using an electro-spinning 

process that can continuously generate micro- or nano-scale diameters of fibers with 

simple set-up, inexpensive handling costs, and versatile material selection. The benefits 

of a 3D fibrous matrix include a high surface-to-volume ratio and a structure similar to 

the 3D fiber network of collagen and elastin in natural ECM. A major hindrance to cell 

culture is that small pores among fibers considerably hamper cell migration. 

All other types of matrices displaying stochastic architecture can be described as 

having a sponge-like structure. Sponge-like 3D substrates have a porosity and surface-to-

volume ratio that is similar to or lower than those of fibrous matrices but larger pores that 

can significantly improve cell seeding and migration. Sponge-like fabrication techniques 

can be divided into 2 groups based on whether a porogen is employed. Freeze-drying and 

gas foaming are widely accepted methods that do not use a porogen. The freeze-drying 

process includes blending a solvent–polymer mixture and an appropriate volume of water 

to form an emulsion. The emulsion is quickly frozen in liquid nitrogen and freeze-dried, 

leaving behind a porous structure where water has been evaporated.[127] The use of 
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organic solvents to dissolve polymer has been recognized as a major hindrance that can 

be avoided with gas foaming. The gas-foaming process involves high-temperature 

compression molding of the polymer to form a solid disk-like structure. The structure is 

then exposed to a high pressure CO2 chamber for several days, during which the gas 

infiltrates the polymer. As the pressure is decreased, the gas escapes the polymer, leaving 

a porous, sponge-like structure.[128] The gas-foaming process is favorable for 

incorporating biological molecules because no organic solvent is used.[75] 

Solvent casting and particulate leaching are representative methods of achieving a 

sponge-like porous matrix with a porogen. The concept behind particulate leaching is to 

mix polymer and solvent with particulates that can be dissolved with a separate solvent. 

Generally, synthetic polymers are dissolved in an organic solvent and mixed with 

porogen particles. Typical porogens include salt or sugar particles, because they are 

insoluble in organic solvents and can be removed by exposure to liquid water. The 

polymer–solvent–particulate mixture is then cast into a mold, and the solvent is 

evaporated, leaving a solid polymer–particulate construct. After exposing the construct to 

the particulate solvent, the remaining polymer will have a porous structure with empty 

cavities where the crystals resided.[18] Again, using an organic solvent is a major 

disadvantage. An important consideration of sponge-like structures is pore 

interconnectivity. In porogen-based techniques, particles in a porogen are frequently 

fused together, by exposure to greater humidity for salt particles or by heat treatment of 

paraffin spheres, to improve pore interconnectivity.[129, 130] Gas-foaming and freeze-

drying processes can incorporate salts or sugar porogens in polymer solution to enhance 

pore interconnectivity as well as to control overall porosity.[131, 132] 
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Structure 

The shape and size of the mold in which it is created or cutting or punching out a 

structure from a larger matrix piece normally determines the macro-scale structure of 3D 

matrices. (Figure 1.7A-B) Scaffolds often have a simple cylindrical or rectangular shape. 

In clinical applications, a patient-specific macro-scale scaffold structure is typically 

achieved by using 3D molds fabricated using computer-assisted fabrication methods; 

more detail will be discussed in the next section.  

Characteristics of the micro-scale structure of fibrous 3D matrices include fiber 

diameter, fiber alignment, and pore size among fibers. (Figure 1.7C-E) Fiber diameter is 

sensitively affected by physical and electrical properties of polymer solution such as 

viscosity and conductivity.[17] Fiber alignment can be achieved by modifying the design 

of the collector (i.e., a high-speed rotating frame)[133] or by using 2 conductive 

electrodes separated by an insulating gap.[134] Pore size can be controlled by co-

spinning of polymer solutions with different degradation kinetics, such as 

polycaprolactone (PCL) and gelatin[135], or by using multi-layer spinning to create 3D 

matrices having micro-fiber (~5-mmdiameter) and nano-fiber (~600-nm diameter) 

layers.[136] Here, by reducing fiber diameter to the nano- scale, nano-scale structural 

features can be achieved. (Figure 1.7I)  

The micro-scale structural characteristics of sponge-like 3D matrices include 

porosity, pore interconnectivity, pore size and geometry, and pore-size distribution. 

(Figure 1.7F–H) The internal architecture of 3D sponge-like matrices manufactured 

without a porogen is entirely dependent on the fabrication process. Although relatively 

thick matrices are achievable, these matrices frequently have uncontrolled architectures 
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and isolated pores that limit cell–cell interactions and full tissue infiltration. A porogen-

based technique can yield a more controllable and interconnected 3D microstructure, but 

the thickness is limited to less than 2 mm.[137] A moderate level of nano-scale structure 

can be controlled using post-fabrication surface treatments.[51] (Figure 1.7J) 

The overall stochastic structure of this type of scaffold contributes to the 

simplicity of its preparation but may not be beneficial in terms of its mechanical and 

mass transport properties. Difficulties also exist with in silico modeling of biological 

processes in it and computer-assisted analysis of the 3D images. 

Biomaterials 

The electrospinning process employs a diverse set of synthetic polymers. 

Combinations of synthetic and natural materials (e.g., collagen, alginate, chitin, and silk) 

and functional nano-materials (e.g., CNTs, DNA, hydroxyapatites, and proteins) are also 

used as jetting materials. Concurrent spinning of different materials on the same collector 

can create scaffolds of multiple materials.[49, 135] Because of the absence of organic 

solvent, many biologically active molecules (e.g., growth factors[75] and DNA[138]) can 

be incorporated into PLGA-based bulk materials for scaffolds fabricated using gas 

foaming. In the solvent casting particulate leaching technique, salt crystals, sugar spheres, 

and paraffin spheres are commonly used as porogen particles. Virtually any material that 

undergoes liquid to solid transition can be used as a bulk material, but synthetic polymers, 

particularly PLA, PGA, and their copolymers, are commonly used. Many functional 

nano-materials and biological molecules can be incorporated with bulk materials and 

combined with carrier systems to protect biological molecules from organic solvents. 
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Still, considering these methods of scaffold preparation, there is an important 

problem that needs to be solved in the preparation of similar matrices with a high content 

of biodegradable inorganic material such as hydroxyapatite. This is important for bone 

implants and manufacturing materials with the stiffness necessary for bone engineering. 

Hybrid organic–inorganic materials with a high content of inorganic material in the 

composite similar to that observed in bone are difficult to make starting from polymer 

solutions. 

Modification 

The flexibility of polymer processing techniques enables the construction of 3D 

structures for specific applications. Teng et al. developed a PLGA-based 3D matrix with 

2 distinct structures to treat spinal cord injuries.[139] The inner and outer regions of the 

3D matrix were fabricated separately and then combined. The inner region, fabricated 

using a salt-leaching process (250- to 500 mm diameter) and consisting of larger pores, 

was seeded with neural stem cells (NSCs). The outer region, with smaller (<50 mm 

diameter) and axially oriented pores, was prepared using a solid–liquid phase-separation 

technique. Axially oriented smaller pores were designed to guide axonal extension and to 

allow proper fluid transport while inhibiting ingrowth of scar tissue. The NSC-seeded 

multi-component scaffolds were implanted into a rat for one year. Rats implanted with 

the scaffolds with NSCs showed significantly better functional recovery than lesion and 

cell-only control groups.[139] (Figure 1.7K) 

Combining polymer processing techniques makes it possible to build 3D matrices 

with multi-scale structural properties. Ma et al. created nano-fibrous scaffolds with 

nanoscale (50–500 nm) fibrous surface textures on a micro-scale pore surface by 
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combining the particulate leaching technique and the phase-separation process.[140] A 

homogeneous mixture of PLLA and an organic solvent infiltrated into paraffin- or sugar-

based porogen undergoes a polymer-rich and polymer-lean phase separation process 

below a critical temperature (-70°C). When freeze-dried, the polymer-lean phase ends, 

and the polymer-rich phase undergoes a crystallization process, generating a randomly 

organized nano-scale fibrous structure. The nano-scale fibrous surface morphology was 

an analogue of type I collagen fibrils on natural ECM, and the micro-scale open porous 

structure overcame the cell-seeding and cell-migration limitation of the electrospun 

matrix.[141] Combined with a modified SFF process, which will be discussed in the next 

section, the final scaffolds could have controlled macro- and micro-scale 3D structures, 

as well as random nano-scale structures, on the walls of the matrix. (Figure 1.7L) 
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Figure 1.7 Overview of polymer processing techniques for obtaining porous structures. 
Macro-scale structure of (A) electrospun fibrous mesh sheet and (B) PLGA scaffolds.[142] 
Micro-scale fibrous structures (C[143], D[144], E[136]) and micro-scale sponge-like structure 
(F-G[145], H[131]). Nano-scale (I) alginate based nanofibers[146] and (J) nano-scale topology 
after surface treatment[147]. Modification of polymer processing techniques: (K) compartmented 
scaffold structures[139], (L) nano-fibrous scaffolds[50], and (M) inverted colloidal crystal 
scaffolds. 
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1.3.3. Computer assisted fabrication  

Technique 

Computer-assisted fabrication has several advantages over non-computer-assisted 

fabrication techniques. Primarily, scaffolds can be manufactured as customized multi-

scale 3D structures, which are essential for clinical applicability. Additionally, 

manufacturing is time effective and economical. Efficient manufacture is essential in 

clinical applications, in which the window for implantation is often critical. Currently, 

SFF fabrication is the most popular and powerful technique to construct 3D matrices with 

this level of design and efficiency.[148] The overall procedure of SFF fabrication 

consists of up to 3 steps: acquiring 2D image slices of a target specimen from CT, MRI, 

quantitative ultrasound, or other nondestructive imaging methods; designing micro-scale 

internal architecture and reconstructing the macro-scale 3D matrix shape using CAD or 

other software; and fabrication of the 3D matrix using automated layer-by-layer 

construction with SFF processes.[19] (Figure 1.8A–C) The 3 main types of SFF 

processing techniques are laser-based, nozzle-based, and printer-based systems. (Figure 

1.8D) Laser-based techniques include photopolymerization and selective laser sintering 

(SLS).  photopolymerization requires the exposure of liquid monomer solution to a UV 

beam, which polymerizes the exposed layer. The specimen, which is sitting on an 

elevator, is then lowered into a vat of monomer to coat the polymerized layer; this new 

monomer layer is then exposed to the UV laser to build the next layer.[149] SLS uses a 

laser beam to scan a powder bed, raising the temperature of the exposed area and 

sintering the powder into a fused solid.[150] Fused deposition modeling (FDM), a 
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nozzle-based technique, extrudes molten scaffold material through a nozzle as it moves in 

the x-y plane, directly building a layer of the scaffold with each sweep across its cross-

section.[151] Another emerging extrusion technique is robocasting, which deposits a 

slurry of ceramic powder, a volatile solvent, and chemical modifiers through a 

syringe.[152] After a layer is deposited, it solidifies as the solvent evaporates, allowing 

for deposition of the next layer. After all layers are deposited, the structure is sintered. 

Three-dimensional printing is a process that deposits a liquid binder solution onto a 

powder bed using an ink jet printer. The binder solution causes powder particles to join 

and harden, forming the 3D matrix in layers.[153] 

Recently, MAP, an advanced form of micro-fabrication technique, has been used 

in 3D matrix fabrication because of its significantly enhanced structural resolution and 

flexibility of architecture design. Here, an ultra-fast multiphoton generating laser beam is 

focused on a microscope objective. It creates local excitation within the focal volume of 

the beam, providing precise polymerization in the confined space.[102] By scanning the 

focal point in a pre-designed pattern, a complex 3D matrix can be constructed. [154-156] 

Structure 

3D matrix structural design for computer-assisted fabrication can be based on 

homogenization theory or CAD to design unit cells with various materials, porosities, and 

internal architectures. These unit cells are then combined for a desired overall 

architecture. This determined architecture is then used as instructions for the 3D printing 

of a matrix. These methods are discussed further below in the context of using SFF 

matrices as modeling tools. 
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An important potential for computer-assisted manufacturing that sets it apart from 

other manufacturing techniques is the ability to construct matrices with specific macro-

scale architecture (shaped for a wound site). Still, the ability to build a matrix layer by 

layer in any 3D configuration is limited in many manufacturing techniques. For example, 

photopolymerization does not use a support material, which limits the possible shapes in 

which the matrices can be constructed.[148] FDM uses a support material, which allows 

for building in any direction and fabricating almost any shape matrix. For many materials, 

control over macroscale structures is limited.  

Micro-scale features can be moderately controlled in that many geometries can be 

constructed, allowing for the design of numerous internal architectures. (Figure 1.8E-G) 

Still, the lack of support material also hinders the fabrication of certain cavity shapes, 

such as spherical or other rounded surfaces. Additionally, control of internal structure on 

the scale of a few hundred microns and smaller is limited because of inherent constraints 

of manufacturing parts (e.g., laser spot size, nozzle diameter, degree of position controller 

handing), as well as material constraints (e.g., particle size of powders). Currently, the 

minimum feature size is restricted to approximately 100 to 500 mm, depending on the 

fabrication process selected.[148, 157]  

Matrices manufactured using SFF do not possess distinct nano-scale features, 

because the minimum resolution of most fabrication techniques is larger than 100 

µm.[19] Most methods of introducing nano-scale features to SFF matrices are post-

fabrication processes. Limited nano-porosity can be introduced into hydroxyapatite 

scaffolds by varying the sintering temperature. Russias et al. demonstrated the 
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precipitation of hydroxyapatite nanoparticles onto the surface of robocast printed 

PLLA/bioglass scaffolds.[158] 

MAP provides an excellent alternative to overcome the limitations of the 

aforementioned methods of computer-assisted fabrication. 3D structures constructed 

using MAP provide excellent control over micro- and nanoscale, although the 3D matrix 

is dependent on a 2D mold.[154] With current techniques, the minimum resolution of one 

volume element exposed using multi-photon absorption (i.e. a voxel) is 100 nm.[102] 

Although MAP has been less investigated than SFF as a 3D cell culture substrate, its 

excellent controllability of structure holds great potential, particularly for the application 

of in vitro 3D model tissue construction. (Figure 1.8H) 

Biomaterials 

Customized hard tissue engineering has traditionally been the most promising 

application of SFF 3D matrices; therefore, the mechanical properties and biodegradability 

of bulk materials are stressed in these scaffold designs. Functional materials, such as 

calcium phosphate particles[159] and hydroxyapatite[160], are often mixed with basic 

bulk materials to mimic bone ECM composition. These composite materials often 

improve the mechanical properties of bulk material.[159] Surface properties have been 

emphasized to a lesser degree because of limited material selection and feature size 

control. Typically, the selected fabrication process determines the choice of applicable 

materials. For example, nozzle-based techniques are limited to synthetic polymers 

because the material is melted before extrusion. Here, PCL is extensively used in a FDM 

system because of its low glass-transition temperature and high decomposition 

temperature.[161] Printing-based processes, such as 3D printing, use mainly PLA, PGA, 
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and PLGA as basic building materials and chloroform as a binding solution.[153] The use 

of organic solvents is a problem with this method. For photopolymerization, the selection 

of precursor solution is limited to materials that can undergo UV polymerization (e.g. 

hydrogels and PPF-based polymeric materials).[162] SLS employs powdered materials 

such as ultra-high-molecular-weight polyethylene[163] and PCL[40]. MAP uses acrylate 

polymers that can undergo radical polymerization, such as PEG-diacrylate, and other 

materials including siloxanes, epoxy resins, and organic–inorganic hybrids.[102] 

Modifications 

Limited material selection and lack of submicron-scale structural resolution are 

the major shortcomings of SFF techniques. Indirect SFF was developed to alleviate these 

restrictions.[164] The original SFF matrix is used as a negative mold to construct a 3D 

structure with a broader range of materials. Wax is commonly used as a molding material 

because 2 types of wax, one for support and one for the mold, can be directly printed and 

easily removed after casting the desired matrix material. Various polymeric materials 

(e.g., PPF, PLA, and PLGA) and their composites with ceramics have been used as 

casting materials. Additional processing of secondary materials, such as phase separation 

of PLLA, can generate sub-micron-level structure.[165] (Figure 1.8I) A negative wax 

mold was fabricated using 3D printing, and PLLA was cast into the mold before phase 

separation at 20°C and dissolving the wax mold. This resulted in a nano-fibrous structure 

on the walls of the matrix that increased proliferation and mineralization of 

preosteoblastic cells.[165] 

Three-dimensional cell printing is an interesting derivation of the SFF process 

used to construct a 3D cell–matrix hybrid structure. With most scaffolds, the method of 
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seeding cells onto scaffolds after fabrication can lead to limited 3D cell distribution and 

depth. A regular ink-jet printer or a SFF robotic platform is remodeled for use in 3D cell 

printing. A cell suspension is mixed into in situ cross-linkable hydrogels (e.g., gelatin, 

agarose, alginate gel) in a cartridge and then printed following a programmed 3D pattern. 

As a result, a 3D cell–matrix hybrid structure is constructed.[166] Cell viability as high as 

90% indicates the ink-jet process conditions are not harsh enough to cause severe 

cytotoxicity.[167, 168]  This 3D cell matrix with a spatially well-organized structure can 

potentially accelerate the organization of cells into a functional tissue. (Figure 1.8J) 

Another way to build a 3D cell–matrix hybrid structure is 3D cell patterning. 

Instead of a typical SFF process, a modified photolithographic technique is used to build 

a patterned 3D cell–matrix construct. A mixture of cells and PEG–hydrogel precursor 

solution is deposited on a 2D surface, and a mask is placed on top so that only the 

unmasked area polymerizes under UV light. Multiple layers of a 3D hydrogel matrix can 

be layered atop previous layers. This method also significantly improves the homogeneity 

of cell distribution within a 3D matrix. Tsang et al. demonstrated a 3D hepatic tissue 

model constructed using this additive photo patterning technique, controlling the matrix 

architecture and optimizing hydrogel chemistry to attain high cell viability and liver-

specific functions.[169] Currently localized cell seeding and spatially organized co-

cultures are areas of active research. (Figure 1.8K) 
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Figure 1.8 Overview of computer assisted 3D matrix fabrication techniques. (A) 2D scanning 
with µ-CT or MRI, image from (http://www.custard.org/~andrew/visualization/introduction/) (B) 
3D image reconstruction and 3D matrix design with CAD software. (C) 3D matrix fabrication by 
SFF equipment. (D) Representative SFF fabrication processes, image from The Worldwide Guide 
to Rapid Prototyping (http://hime.att.net/~castleisland/) (E) Macro-scale scaffold design and 
manufactured by selective laser sintering method.[150] Micro-scale structures fabricated by SFF 
process: (F) selective laser sintering,[40] (G) 3D printing.[151] (H) Nano-scale structure 
prepared using MAP.[154] (I) Indirect fabrication using negative molding: wax mold (left) and 
cast ceramic mold (right).[164] (J) 3D cell printing of hepatocytes with gelatin.[167] (K) 3D cell 
patterning of hepatocytes in PEG hydrogel.[169] 
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1.4. Dissertation framework 

This dissertation explores a new opportunity of in vitro tissue engineering as a 

part of the drug development process. Specifically it aims to create standardized human 

liver and primary lymphoid tissue models for the development of tissue based toxicity 

assays. Multiple studies have indicated that 3D scaffold structure and materials actively 

regulate the growth and differentiation of cells. Various recent efforts have successfully 

demonstrated in vitro tissue models that can recapitulate to some extent tissue level 

physiological behaviors. Nevertheless, practical applications of these models have been 

limited mostly due to batch-to-batch variation of experimental outcomes. One of obvious 

reasons is poorly controlled structure and materials of 3D scaffolds which in turn 

generate heterogeneous culture environment. Under this motivation, my key hypothesis is 

that standardized 3D scaffolds in their structure and materials can significantly improve 

the standardization of engineered tissue model. 

The first part of dissertation is engineering 3D scaffolds that have highly 

regulated 3D structure and material, as well as can mimic both the 3D organization and 

the differentiated function of tissues in the body. In addition, 3D matrix accessibility 

through optical or other imaging tools and processability to precisely control matrix 

properties are other important consideration. Here, the inverted colloidal crystal (ICC) 

geometry and transparent synthetic hydrogel are the selection of the 3D structure and 

material.  

The second part consists of engineering of in vitro 3D tissue models based on ICC 

hydrogel scaffolds. The specific goal is to replicate human primary lymphoid tissues, i.e. 

bone marrow and thymus, and liver tissue spheroids. Besides the functional tissue 
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development, standardization of tissues is equally important for running massively 

reproducible assays. ICC scaffolds promote homogenous and size controlled liver tissue 

spheroid formation.   

The last part is the development of a tissue based in vitro toxicity screening 

platform. Ideally, the assay platform would be formatted to utilize already present 

laboratory equipment and assay reagents for easy acceptance from the pharmaceutical 

industry. In this line, liver tissue spheroid culture model was prepared in a standard 96/48 

micro-well plate, the most commonly utilized in vitro cell based assay format. For this 

part, nanoparticle (NP) toxicity testing based on the standardized liver tissue spheroid 

culture model was demonstrated. (Figure 1.9) 

 

 

Figure 1.9 Dissertation framework 
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CHAPTER II 

INVERTED COLLOIDAL CRYSTAL HYDROGEL SCAFFOLDS 

 

2.1. Introduction  

Scaffolds for in vitro drug development application should have three distinct 

properties: (i) biological significance in creating functional in vitro tissue models; (ii) 

standardized 3D structure and materials for the reproducible and homogenous tissue 

formation; (iii) easy handling and compatibility with existing hardware. Different from 

2D culture substrates providing identical environment to universal cell types, each 

scaffold design should be optimized for the target tissue development. Simultaneously, 

engineered tissues must have a similar level of biological performance in order to 

generate reproducible assay outcomes. Consistent regulation of structural design and 

material properties of scaffolds should be preceded. Indeed standardization of assays is 

essential to realize the practical application of in vitro tissue engineering to the drug 

development process. Lastly engineered tissues need to be integrated into the current 

drug evaluation protocols for easy acceptance in the pharmaceutical industry. For this 

purpose, scaffolds should be transparent and compatible with micro-well plates.   

Traditional scaffolds do not meet these requirements because they are primarily 

designed for clinical implantation. For example, the scaffold geometry fabricated by 
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particulate leaching, gas foaming, freeze-drying, and electro-spinning methods highly 

depends on the process which generates poorly ordered or chaotic structure. Recently, 

rapid prototyping, 3D deposition techniques[19] and multi-photon fabrication[102] were 

developed to construct more controlled 3D architecture assisted by computer-aided 

design and complex robotic equipment. Although these techniques allow researchers to 

design 3D scaffolds with desired properties including porosity, interconnectivity and pore 

size, they are heavily equipment-dependent and suffer from limited material section or 

inadequate resolution. 

Colloidal crystals (CC) are hexagonally packed lattices of uniform spherical 

particles. Inverted colloidal crystal (ICC) is similarly organized structures where the 

spheres are replaced with cavities, while the interstitial spaces are filled. (Figure 2.1A) 

ICC represents an exceptionally dynamic area of research capitalizing on the unique 

spatial organization and diffraction characteristics of sub-micron scale lattices.[170-173] 

Although these structures are primarily designed for applications in optics[174], 

sensors[175] and catalysis[176], when the ICC pores exceed the single cell diameters (D 

> 10~20µm) the same structure can be used as a 3D cell scaffold.  

Highly regulated ICC geometry becomes an exceptionally attractive 3D cell 

culture substrate for in vitro tissue engineering. Such unique ICC structure also can be 

easily and reproducibly prepared without the need for complex computer design 

programs and facilities, by taking advantage of utilizing CCs as a template. In addition, it 

enables to control multi-scale structure design. For example, microscale pore and 

interconnecting channel diameters can be readily regulated by changing bead size and 

annealing condition, respectively. Macroscopic shape and dimension can be tailored via a 
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mold design. In terms of biomaterials, any precursor solution capable of undergoing a 

liquid-to-solid transition while does not dissolve a CC mold can be used. In this thesis, 

polyacrylamide hydrogel is mainly used for scaffolding material because of its 

biocompatibility, transparency and good mechanical stability. (Figure 2.1B) 

Besides the standardized structure and materials, ICC hydrogels open an 

interesting opportunity for a rather unexpected, but tremendously important area of 

science related to cell communication. In particular, the ICC scaffold modulates two 

distinct types of cellular interactions. First, the ICC geometry prepared with cell repulsive 

hydrogel matrix provides an ideal micro-environment for intense cell-cell contacts in 

static culture conditions which in turn promotes multicellular aggregation formation, so 

called spheroid. The spheroid formation restores original tissue-like morphology and 

functions corresponding to the increased cellular interactions that basically depend on the 

size of spheroids.[177]  

Second, under dynamic culture conditions, surface modified ICC scaffolds induce 

intensive cellular interactions between floating and adherent cells. For example, floating 

cells can travel deep into the scaffold while temporarily entrapped in an ICC chamber due 

to the restricted channel size and dimension. As a result, they intimately communicate 

with the adherent cells growing on the surface modified ICC pore surface. Such cellular 

interaction is particularly important for the creation of hematopoietic stem cell (HSC) 

niches in the bone marrow and thymus where they undergo self-renewal and 

differentiation processes[178].  
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This chapter will focus on the fabrication of ICC hydrogel scaffold and the 

characterizations of their structural and physical properties. Specific applications will be 

discussed in following chapters. 

 

 
Figure 2.1 Schematic of ICC scaffold design and engineering parameters. (A) CC (top) and 
ICC (bottom) in photonic crystal research[179]. When the pore size exceeds a single cell 
dimension, the same structure can be used as a tissue engineering scaffold. (B) Schematic of ICC 
scaffold and engineering parameters.  
 

 

2.2. Materials and Methods 

2.2.1. Colloidal crystal construction 

Utilizing uniform size of polystyrene microspheres (D=50-160 µm) 

Polystyrene (PS) spheres with a diameter of 50, 100, 120 and 160µm (Duke 

Scientific, 3x104 particles per milliliter and 1.4~4.8% size distribution) were dispersed in 

isopropanol solution before use. A 0.5ml plastic centrifugation tube was glued on a 

plastic dish and the top of centrifuge tube was cut and connected with a long Pasteur 

glass pipette.  The complex unit was attached on the bottom of a glass beaker, and the 
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glass beaker was placed on the ultra-sonic bath (VWR).  Two drops were released 

through a long Pasteur glass pipette in 15 minute intervals (25 intervals total) under 

gentle agitation generated by the ultra-sonic bath. To reduce thermal motions of the 

spheres, the bath temperature was maintained below 20ºC. After finished dropping, 

isopropanol was evaporated for overnight at 60°C. Prepared colloidal crystals were heat-

treated at 120ºC for 4 hours, which caused partial melting of the beads’ surface. As a 

result, PS microspheres fused together and the free standing colloidal crystal was 

extracted from the mold. Typical dimensions of CCs were 6.4mm in diameter and 

0.5~1mm in thickness. 

Utilizing uniform size soda lime glass microspheres (D=50-330 µm) 

Dried 1g of soda lime glass beads with diameters of 50, 100, 140, 170, 200, 280 

and 330µm (DukeScientific, standard deviation ± 2.2~5.7µm) were dispersed in 5ml of 

ethylene glycol. A borosilicate glass shell vial (D=8mm, H=35mm) (Fisher Scientific) 

connected with a long Pasture glass pipette was used as a mold for CCs preparation. The 

complex unit was inserted in a glass tube (D=10mm, H=75mm) (Fisher Scientific) that 

was halfway immersed in an ultra-sonic water bath, and the inner space of mold was 

filled with ethylene glycol. A few drops of glass bead suspension were released to the 

mold in 20-30 min intervals until the thickness reached approximately 0.5-1mm. After 

complete evaporation of ethylene glycol at 160°C, the CCs were annealed for 4 hours at 

667-690°C depending on the size of beads. Annealed CCs were extracted from the mold.  

Utilizing less uniform size of soda lime glass beads (D=75-300 µm) 

Dried 500 g of soda lime glass beads with three different sizes (≤ 106µm, 150-

212µm and 212-300µm) were purchased from Sigma-Aldrich. Using sieves and a sieve 
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shaker (Fisher scientific) the range of glass beads size was narrowed down in three 

groups: 75-90µm, 160-180µm, and 250-280µm. There are some other sizes, but most of 

beads were in these ranges. CC preparation was the same as the uniform size glass beads.   

2.2.2. ICC hydrogel scaffold fabrication 

ICC preparation with PS CCs 

Hydrogel precursor solution composed of 30wt% acrylamid, 5wt% of N,N 

methylenebisacrylamide (NMBA) cross-linker and 0.5vt% N,N,N',N'-

tetramethylethylenediamine (TEMED) was prepared with N2 purged deionized water. 

The precursor was infiltrated into the colloidal crystal by centrifugation at 5800rpm for 

10~20 minutes. An initiator, 1wt% of potassium peroxide solution was added and 

polymerization occurred in a glass vial. After completing polymerization, the colloidal 

crystal containing the hydrogel part was cut out and scratched with a razor blade to 

remove extra hydrogel covering CCs. Then the hydrogel-CCs were soaked in 

tetrahydrofuran (THF) for 24 hours to dissolve PS beads.  Finally ICC hydrogel scaffolds 

equilibrated in deionized water.   

ICC preparation with glass CCs 

The precursor solution preparation, infiltration, polymerization and removal extra 

hydrogel steps were same as the PS beads case. After that, hydrogel-CCs were immersed 

in 5% (v/v) hydrogen fluoride (HF) solution for 24 hours to dissolve the glass beads. 

Later, ICC scaffolds were sequentially washed with pH 2~3 acid solution for 4~6 hours, 

phosphate buffered saline (PBS) solution for 1 day, and deionized water for 2 days. In 

each washing step, the solutions were changed at least 3~4 times. ICC scaffolds were 
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further freeze-dried to completely remove potentially remaining HF and kept in a dried 

state until used.  

2.2.3. Characterizations 

Confocal microscopy 

Fluorescent ICC hydrogel scaffolds were prepared by adding 0.05wt% of 

fluorescent monomer (Polyfluor 511, Polyscience Inc.) in the hydrogel precursor solution. 

Fluorescent ICC hydrogel scaffolds were transferred to a glass bottom culture dish 

(MatTeck Corporation) and imaged with confocal microscope (Leica SP2) using a 470nm 

excitation laser utilizing 10X and 20X objective lenses.  

Scanning electron microscope (SEM) 

ICC hydrogel scaffolds were fixed in 2% cacodylate-buffered glutardaldehyde for 

2 hours and then washed three times with 0.1M cacodylate buffer for 30 minutes. The 

fixed hydrogel scaffolds were dehydrated through a series of ethanol solutions 

concentrations of 50, 70, 90, 95, and 100% for 10 minutes. Dehydrated samples were 

further freeze-dried overnight and were coated with gold for 180 seconds using a sputter 

coater (Desktop 2, Denton Vacuum Inc.).  Cross-section images of the internal 

architecture were obtained after cutting the sample with a razor blade. Samples were 

observed with a Philips XL30 or FEI Nova Nanolab SEM (The University of Michigan 

Electron Microbeam Analysis Laboratory) 

Micro-computed tomography (µ-CT) 

Colloidal crystals were three-dimensionally imaged by µ-CT to visualize their 

internal packing structure and to calculate porosity. The scan was performed by MS-130 

high-resolution µ-CT scanner (GE Medical Systems) at 15m voxel resolution and 75kV.  
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Porosity calculation 

Porosity of ICC hydrogel scaffold was measured combining an effective cellular 

porosity including only pores larger than single cell size (D=5~15µm) and bulk hydrogel 

porosity. µ-CT based image analysis was applied to calculate the effective cellular 

porosity. First, three-dimensionally rendered CC images were created with MicroView 

(GE Medical Systems). Image threshold levels were automatically adjusted. Then, the 

region of interest (ROI) set to include entire CCs, and the volume fraction of CC within 

the ROI was calculated with MicroView.  

In order to calculate bulk hydrogel porosity, two assumptions were made: (i) 

specific density of water is 1g/cm3 and (ii) pore space in a bulk hydrogel is completely 

filled with water. As comparing the volume and weight of a bulk hydrogel slab in both 

fully hydrated and dehydrated states, total weight of water and hydrogel polymer were 

calculated separated. Based on these data, bulk hydrogel porosity was estimated.  

Mechanical testing 

Compressive moduli of hydrated ICC scaffolds were measured at a constant strain 

rate (10µm/sec) using a mechanical properties tester and 1.1 lb load cell (TestReciurces 

Inc., MN). 
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2.3. Results and Discussion 

2.3.1. Preparation of CCs with microspheres 

The diameter of the spheres commonly used as CCs is around 100-1000nm for the 

purpose of matching the optical band-gap in the visible region. Various methods such as 

electrophoretic deposition[180], solvent evaporation[181], dipping[182], agitation[183, 

184] and most recently spin coating[185] have been developed to construct the highly 

ordered CC structure. In order to utilize the unique geometry of the ICC as a scaffold, the 

sphere size has to be increased to the 10-1000µm range. However, it is difficult to obtain 

the same degree of order with micron scale beads using the methods developed for 

nanoscale spheres, mainly due to their larger volume and heavier mass. Fortunately, 

microsize beads offer two advantages over nanosize spheres. First, the agitation of beads 

by shear force works more effectively because of their larger volume.[186] Second, the 

sedimentation rate is faster due to their greater mass. However, the sedimentation rate 

was often too fast to self-assemble into a closely-packed ordered array. The opposite 

problem, viz., how to retard sedimentation rate, was solved by introducing a Pasture glass 

pipette before beads entered into the mold. The pipette extended sedimentation distance 

and worked as a thin funnel, which caused a bottleneck effect for precipitating beads. 

(Figure 2.2A)   

Once beads precipitated at the bottom of the mold, gentle agitation generated by 

an ultrasonic bath, assisted the movement of beads and positioned them at the lowest 

energy spots. This led to a highly packed and ordered array of spheres. When the bottom 

area was covered with beads, their rugged surface served as a template for the formation 

of the second layer. Since structural defects accumulated from the bottom area, 
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incomplete layers and less ordered arrays were usually observed on the top area. (Figure 

2.2B) 

The sedimentation rate was controlled further by adjusting the concentration of 

beads in the solution and the time interval between injections. For example, decreasing 

the amount of beads and increasing the interval period provided more time for the 

repositioning of precipitated beads. The use of isopropanol for PS beads guaranteed that 

the agitation was not too violent to destroy the whole structure, while its buoyancy made 

it easier for the PS beads to rearrange. Relatively high density of ethylene glycol 

(ρ=1.11g/cm3) (c.f. water ρ=1g/cm3 or isopropanol ρ=0.78g/cm3) was used to retard the 

precipitation speed of high density of glass beads (ρ=2.5g/cm3). 

 

 
Figure 2.2 Colloidal crystal preparation (A) Experimental set-up: A long glass pipette is 
connected to a plastic or a glass tube mold immersed in an ultrasonic water bath. (B) CC 
construction procedure and key driving force in each step.  
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After sedimentation, the solution media were evaporated. During this process, 

capillary force further improved ordered bead packing. Following evaporation, the CCs 

were heat treated which resulted in partial melting of the spheres. This step allowed the 

beads to stick together and on subsequent cooling (re-solidification), junctions were 

created between the spheres setting the structure in place. The resulting free standing CCs 

were strong enough to be easily handled and removed from the mold. These junctions 

later prevented breakage of the crystal lattice during the infiltration of precursor solution 

and ensured the connectivity between spheres and continuity of the chain of pores in the 

final scaffold. The channel diameter was determined at this stage, because the size of 

melted area depended on the annealing temperature. However, too much annealing led to 

the cracking of the CC and/or incomplete precursor solution infiltration. SEM 

investigations of free standing CCs revealed highly ordered hexagonally close-packed 

structure. (Figure 2.3) 

 
Figure 2.3 SEM images of free standing colloidal crystals. Different locations of CCs prepared 
with (A) PS beads (D=100µm) and (B) soda lime glass beads (D=160µm). Regardless of the bead 
sizes, highly ordered 3D packing structure was easily achieved. 
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2.3.2. Preparation of ICC hydrogel scaffolds 

Polyacrylamide hydrogel was selected as a scaffolding material since the hydrogel 

is a broadly used in biomedical research fields due to its biocompatibility, mechanical 

strength, transparency, non-fouling property and cost effectiveness[53, 56, 187]. In 

addition, relatively low viscosity of the precursor solution compared to other natural 

hydrogel such as alginate, fibrinogen, and peptides allows easy and completely 

infiltration into the CCs. Monomer concentration was set low enough to prevent 

incomplete infiltration due to increased viscosity, and simultaneously to prevent 

deformation of the geometry during solvent extraction. Normally PS CCs are floating 

before the precursor solution infiltration due to entrapped air but they precipitate once the 

interstitial space is filled. In case of glass CCs, infiltration of hydrogel precursor solution 

is faster owing to their heavy weight.  

After completion of radical polymerization, the transparent hydrogel including 

CCs was cut out and then CCs surface was scratched multiple times with a razor blade to 

remove excess hydrogel. In fact, the scratching step is critical to ensure open pores in the 

scaffold. PS and glass CC templates were dissolved by THF and HF solution, 

respectively. In THF solution, hydrogel-CCs shrank and turned white while in HF 

solution, hydrogel-CCs remained same. (Figure 2.4) 

 

Figure 2.4 ICC hydrogel scaffold fabrication steps 
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The CC template structure was transferred to the ICC geometry intact. The diameter of 

the beads is directly proportional to the diameter of the resulting cavities. After 

stabilization in aqueous solution, the final hydrogel pore size was moderately (~10%) 

enlarged. This allowed near perfect fitting into a single well of a standard 96 well-plate. 

(Figure 2.7C) Similarly, the size of channels connecting the cavities can be tuned by the 

bead diameter, as the degree of contact upon annealing is greater for larger beads, and 

also by annealing temperature and time. Normally the channel diameters reach around 

20-30% of pore size. (Figure 2.5)   

 

Figure 2.5 SEM images of three different sizes of CCs and ICCs (A) CCs prepared with 50, 
100 and 200µm diameters of glass beads, (B) Hydrogel ICC scaffolds prepared with the three 
different bead sizes. Note that pore sizes in ICC hydrogel scaffolds were significantly shrank after 
dehydration process.  

 

Pore and channel diameters were determined considering the single cell 

dimensions (D=5~20µm) and manufacturing superiority. For example, in our previous 

study of pore size effects, ICC scaffolds having 75 µm pore diameter favored bone 

marrow stromal cells nesting[188]. A 10µm pore diameter was too small for cell seeding, 
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whereas a 160µm pore diameter was too large for effectively cell entrapment. Also, 

O’Zinger et al. investigated osteoblast-like cell cultures on well-defined 2D cavities 

which were analogous to ICC scaffolds, and found that 100µm cavities favored osteoblast 

attachment and growth[189]. Considering these information, the smallest pore size was 

determined as 50µm because its channel size (~10µm) is comparable to a single cell 

dimension. The largest pore diameter was 330µm since the pore size larger than this can 

be manufactured utilizing other fabrication techniques[19], although producing a 

multilayer of spherical hydrogel cavities is still superior.  

Polyacrylamide hydrogel retained excellent transparency which made it easier to 

monitor cellular processes deep inside the scaffold using optical and confocal microscope. 

Normally it was possible to observe the cell growth in ICC scaffolds at a depth greater 

than 500µm under confocal microscope. Transparency of the 3D matrix also improved its 

accessibility to optical-based assays (i.e. absorbance, luminescence or fluorescence) 

which are commonly used in pharmaceutical screenings. In addition, transparency 

enables easy sterilization of the scaffolds under UV light. (Figure 2.6)  

 

Figure 2.6 Transparent and fluoresent ICC hydrogel scaffolds. (A) Optical image of 
transparent ICC scaffold (D=100µm), (B-C) Confocal images of fluoresent monomer included 
ICC hydrogel scaffolds (D=170µm): (B) 2D section and (C) 3D reconstructed image. 
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Besides the standardization, running HTS assays is equally important to obtain 

statistically meaningful data. Currently micro well-plates are the standard format for HTS 

assays in the pharmaceutical industry, biotechnology and other fields. In order to improve 

the compatibility with HTS hardware, the macroscopic dimension of ICC scaffolds was 

tailored to fit with a single well of a 96 well-plate. (Figure 2.7) 

 
Figure 2.7 Optical images of ICC scaffolds compatible with a 96 well-plate. (A) CCs prepared 
with PS beads, (B) ICC hydrogel scaffolds, (C) The scaffold placed in a single well of 96 well-
plate, and (D) Prototype of a 96 well-plate containing ICC hydrogel scaffolds.  

 

2.3.3 Characterization of ICC hydrogel scaffolds 

Porosity 

An ICC hydrogel scaffold includes two different scale of pores; macro-scale pores 

which are larger than cellular dimension (D<10µm) (i.e. effective porosity) and sub-

cellular (D<5µm) scale pores (i.e. bulk hydrogel porosity). (Figure 2.8A) The overall 

porosity of the scaffold should be estimated by combining these two porosities. An 

effective cellular porosity was measured by µ-CT image analysis that is commonly 
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utilized for estimating a fraction of bone in a defined volume, i.e. ROI.[190] The high 

contrast of microspheres, particularly glass beads, with background air produced clear 3D 

rendered images. In order to obtain an inverse volume fraction (i.e. the space of beads in 

the ROI), the protocol was slightly modified as subtracting the calculated percentage 

value from one. The ideal macro-scale porosity is 74%; however, the actual porosity is 

around 68% probably due to some loosely packed spots. (Figure 2.8B-C) 

 
Figure 2.8 Effective cellular porosity calculation via µ-CT image analysis. (A) Row CC 
images of X, Y and Z section. (B) 3D rendered µ-CT image. (C) Define the ROI (yellow volume) 
for porosity calculation. (CCs were prepared with glass beads, D=330µm)  

 

Bulk hydrogel porosity was calculated by measuring the water content in a 

hydrogel slab. As shown in Figure 2.9A, hydrogel matrix has a highly porous structure, 

and in aqueous solution, all these sub-cellular dimension pores are filled with water. 

Therefore, bulk hydrogel porosity can be approximated by calculating the percentage of 

water volume in a hydrogel slab as measuring the weight and volume of a fully hydrated 

and dried the bulk hydrogel slab. A volumetric fraction of water in the hydrogel slab was 

around 97%. (Figure 2.9B)  
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Figure 2.9 Bulk hydrogel porosity calculation via water saturation method (A) SEM image 
of sub-micron scale pores in a bulk hydrogel matrix. (B) Schematic of hydrogel porosity 
calculation procedure.  
 

Mechanical strength 

The compressive modulus of ICC scaffolds was 189.4 ± 5.89 KPa. (Figure 2.10) 

Compared to the mechanical strength of other porous hydrogel substrates, it showed 

stronger mechanical stability[191, 192] due to higher contents of polymer and highly 

ordered pore structure. Indeed the achieved compressive modulus was within the range of 

normal articular cartilage[193], adequate to construct artificial supports of soft tissues. 

 

 
Figure 2.10 Mechanical testing result of ICC hydrogel scaffolds 



65 

Biocompatibility 

Although the biocompatibility of polyacrylamide hydrogel has been extensively 

demonstrated, ICC hydrogel scaffolds can be potentially toxic since the fabrication 

process involves harsh chemicals such as THF and HF. To minimize such chemical 

induced toxic effect, the scaffolds were extensively washed with deionized-water and 

further dried to completely evaporate any chemical residue. According to our in vitro and 

in vivo experimental data in the following chapters, properly washed ICC hydrogel 

scaffolds did not induce any toxic effect, even after implanted into a mice.  

 

2.4. Summary 

The ICC hydrogel scaffold was developed in order to culture and test cells in a 

reproducible manner. The ICC matrix consists of empty spherical cavities arranged in a 

hexagonally array, providing a consistent and fully interconnected structural 3D 

microenvironment. The chosen scaffolding material provides a nontoxic, transparent and 

hydrophilic environment for cell culture. In addition, the hierarchical porosity makes 

possible efficient nutrient transport while providing a large surface area for cell adhesion. 

The scaffold can be provided as a stand-alone substrate or it can be fit into the wells of 

several sizes of well plates, which are the current standard format for HTS used in the 

pharmaceutical industry. Such unique features of ICC scaffolds would significantly 

improve standardized in vitro tissue development. As a result, it will serve as a valuable 

drug testing tool to link early-stage 2D testing to clinical stage human testing.  



66 

 

CHAPTER III 

ENGINEERING HUMAN LIVER TISSUE SPHEROIDS 

 

3.1. Introduction 

3D spheroid culture has been used for in vitro models of various cell types 

including tumor, primary, and stem cells due to distinct advantages: (i) the extensive cell-

cell interactions analogous to the in vivo environment promote the recovery of 3D 

structure/morphology and partial function of the original tissue physiology[29, 177, 194]; 

(ii) the culture can be maintained without vascularization since the diameter permits the 

penetration of oxygen and nutrients up to 200µm inside of the spheroid[195]; (iii) the 

spherical shape is beneficial in simplifying various tissue modeling problems, such as 

diffusion studies for drugs or toxic chemical penetration.[196-198]  

Multiple techniques have been introduced to achieve spheroids. The general 

strategy is to prevent cell-substrate interactions while maximizing cell-cell interactions. 

Typical methods include the hanging drop technique[199], continuous agitation of 

suspension culture in a rotary cell culture vessel[200] or a spinner flask[201], preparation 

of cell repulsive substrates[202], and entrapment within biologically inert 3D hydrogel 

matrices[203, 204]. In these culture conditions, single cells spontaneously self-assemble 

and form a spheroid aggregate. Spheroid formation can be accelerated and controlled by 
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providing external forces (e.g. ultrasound trap[205] and micro-fluidic[206]) or confined 

geometry (e.g. micro-milling[207] and micro-molding[208]). Many of these techniques 

are fairly complex, offer little control over the spheroid diameter, and do not yield high 

numbers of the spheroids.[209, 210]  

There are multitudes of open questions in cell biology involving cellular functions 

that may depend on cluster diameter. Spheroids of small diameters may or may not 

provide proper tissue-level physiological properties due to insufficient numbers of 

interacting cells, while large spheroids can suffer from hypoxia owing to the depletion of 

oxygen at the center.[177] Characterization of these cellular processes has been strongly 

impeded by large deviations in spheroid sizes that create different intensities of cell-cell 

interactions, thereby causing variation in cellular activity levels. Understanding the 

fundamental changes in cell biology with cell cluster size is quite important for tissue 

engineering, basic organ physiology, and drug discovery.[211-213]  

This chapter introduces an ICC hydrogel scaffold-based spheroid culture system 

with conceptual advantages over other 3D matrixes stemming from the CC topology and 

materials selection of the scaffold. First, these scaffolds offer a high yield of spheroids 

with tight control over their diameters. Tight control of aggregate diameters is significant 

when considering assay development since this requires both a high degree of 

optimization and narrow experimental spread to enable discrimination of similar drugs. 

Second, the combination of hydrogel material and specific 3D ICC topology provide a 

unique hierarchical porosity of the cell growth matrix. Third, the described 3D matrixes 

are completely transparent that allow simple monitoring of cellular processes using 

traditional optical techniques while avoiding specialized experimental set-ups required 
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for some other 3D cell cultures. The dimensions of scaffolds were tailored to fit in a 

standard 96 well-plate. Human hepatocarcinoma cell line, HepG2, was selected as a 

model culture system for ICC scaffolds because of its well documented physiology, ease 

of maintenance, and practical usage for drug screening.[214, 215]  

 

3.2. Materials and Methods 

3.2.1. Pocket ICC scaffolds 

CCs were prepared with uniform size glass beads (D=50, 100, 140, 170 and 

200µm, standard deviation ± 2.2-5.7µm). Obtained free-standing CCs were transferred to 

a glass vial (D=8mm, H=5mm) and infiltrated with hydrogel precursor solution by 

centrifugation for 10 minutes at 5500rpm. Polymerization occurs after adding a radical 

initiator (1% (w/w) potassium peroxide) and accelerator (1% (v/w) TEMED). A hydrogel 

slab including CCs was taken out from the glass vial and only bottom side hydrogel was 

removed using a razor blade. The other side of hydrogel was cut out remaining only small 

amount of hydrogel (< 0.5mm). The glass beads were then dissolved with 5% HF 

solution and thoroughly washed sequentially with acid solution, PBS and deionized water. 

In this way, ICC hydrogel scaffolds have open pores only on top side while the bottom 

and edge side pores remain closed. Due to its pocket-like structure, it is named a Pocket 

ICC scaffold. 

3.2.2. Cell culture within ICC scaffolds 

Rehydrated ICC scaffolds were sterilized under UV light and then transferred into 

a 48 or 96 well-plate (Corning, NY). HepG2 human hepatocellular carcinoma cells (HB-
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8065) (ATCC, VA) were maintained with Eagle’s Minimum Essential Medium (EMEM) 

supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin. 

Cells were cultured in T-75 culture flasks at 37°C with 5% CO2 until they reached the 

desired population. Cells were detached from the culture flask using 2.5% Trypsin-EDTA 

solution. The concentration of the collected cell suspension was adjusted to 25x106 

cells/ml and then 5x105 cells in 20 µl was dropped on top of ICC scaffolds. Cell-seeded 

ICC scaffolds were transferred to 48 and 96 well-plate and total culture volume was 

maintained at 1ml and 0.25ml, respectively. Half volume of media (0.5ml and 0.125ml) 

was changed every day. For 2D cell culture, 48 or 96 well-plates were used and 1x105 

cells were seeded and the half volume of culture media was changed daily.   

3.2.3. Characterization of spheroid formation 

Initial cell seeding profile and the diameter of mature spheroids were imaged 

using an inverted optical microscope with imaging software (QImaging). The number of 

cells initially seeded was further analyzed using ImageJ (NIH) software. 

3D characterization of cell aggregation process was characterized using confocal 

microscope. For confocal imaging, HepG2 cells were stained with 5µM of fluorescent 

chloromethyl derivatives dye (CMRA CellTracer, Invitrogen) prior to seeding or after 

forming mature spheroids. During seven days, spheroid formation process on ICC 

scaffold was imaged. In addition, cell viability was observed using a Live/Dead Viability 

Kit (Invitrogen) under the confocal microscope. 

Morphological evolution of single spheroid was characterized under SEM. Cell-

scaffold samples were collected at different culture points (Day1, Day3, Day5, and Day7) 

and fixed with 2.5% glutaraldehyde solution. Fixed samples were dehydrated through 
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immersion into a series of ethanol solutions. After gold sputter coating, these samples 

were observed under SEM (FEI Nova Nanolab). Some samples were cut into several 

pieces before the dehydration step using a vibratome or a razor blade to observe the 

inside structure of spheroids. Histological sectioning and hematoxylin and eosin (H&E) 

staining were performed by the Tissue Core of the University of Michigan 

Comprehensive Cancer Center.  

3.2.4. Liver specific functional assays 

Albumin secretion 

Albumin secretion from HepG2 spheroids with different sizes was characterized 

by a sandwich enzyme-linked immunosorbent assay (ELSIA) using a human albumin 

ELISA kit (Bethyl Laboratories, Montgomery, TX). 500µl of culture medium was 

collected every 24 hours and kept until analysis. Sample media was diluted 10 times and 

the standard curve was prepared using a reference human albumin. The assay result was 

normalized by total DNA.  

Induced Cytochrome P450 (CYP450) activity 

The spheroid culture was maintained for 5 days and the 2D culture was reached 

approximately 80% confluence before introducing an induction reagent, a 1µM of 3-

Methlycholanthrene in William E Media for 3 days. The induction media was changed 

every 24 hours. As control groups, 0.1% Dimethyl sulfoxide (DMSO) and pure William 

E medium treated samples were also prepared. CYP450 activity was measured by the 

ethoxyresorufin-O-deethlylase (EROD) assay. The induction media was changed to a 

500µl of 8µM 7-ethoxyresorufin and 40µM Dicumarol in William E Media. After 3 

hours incubation, the media and cells/spheroid-scaffolds were separately collected. The 



71 

cells/spheroid-scaffolds were homogenized using the same way for dsDNA assay sample 

preparation. EROD activity from both the media and cells/spheroid-scaffolds 

homogenized solution activity was measured by the microplate reader. Also the DNA 

content from the homogenized solution was quantitated and used for normalizing the 

EROD assay results. 

DNA quantification 

Total DNA content of both 2D and spheroid cultures were measured using a 

PicoGreen dsDNA assay kit (Invitrogen).  A spheroid-scaffold from 3D culture and a 

trypinzed cell suspension from 2D culture were transferred into a 1.5ml centrifuge tube, 

and 500µl of 1x cell lyses buffer (Promega) was added. The cells and scaffolds were 

destroyed under a brief (5-10 seconds) sonication. Sample solutions were centrifuged for 

5 minutes at 1,000rpm and 25µl of supernatant solution was collected for DNA 

quantification. After adding assay reagents, fluorescent intensity at 590nm by the 

excitation at 540nm was measured by a Synergy2 microplate reader (BioTek, VT).    

Statistical analysis 

Measurement of pore sizes and spheroid diameters were completed in triplicate 

with five scaffolds in each group. Comparisons between multiple groups were performed 

with one-way ANOVA using SPSS software.  
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3.3. Results and Discussion 

3.3.1. Pocket ICC scaffold design 

Standardization of spheroid diameters and total cell numbers are critical issues in 

obtaining reproducible analytical results from the 3D spheroid culture. The biological 

activity of a spheroid is closely related to the size of its diameter.[216] For instance, 

spheroids having excessively small diameters would not have the proper tissue level of 

physiological properties and would instead remain at the cellular level due to the lack of 

cell-cell interactions. Increasingly large diameters cause cells at the center of the spheroid 

to suffer from hypoxia and inadequate nutrient transport owing to the limited diffusion of 

oxygen and nutrients.[177] As a result, a significant portion of cells ultimately undergo 

necrosis. Therefore, to achieve a homogeneous and meaningful level of biological 

properties, spheroids should have appropriate diameters with the narrowest size 

distribution possible. Also, total cell numbers need to be consistently regulated for the 

convincing quantification of intra- and extra-cellular proteins because these assay results 

are intrinsically dependent on the number of cells involved.  

The ICC topology created with a cell-repulsive hydrogel matrix exhibits excellent 

physical and chemical properties for spheroid formation with a narrow size distribution 

while also retaining a high optical analytic capability. However, open porous ICC 

scaffold design releases a significant amount of cells right after seeding from the bottom 

or edge side pores, which caused difficulty in controlling the total cell number within the 

scaffold. Moreover, the released cells grew in a 2D environment on the bottom of the 

well-plate, hindering the reproducibility of the experiment and reducing the 3D culture 

effect. (Figure 3.1A&C) To circumvent this issue, the ICC scaffold design was slightly 
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modified to have open pores only on the top side, which is used for cell seeding, while 

pores on the bottom and edge planes are enclosed by bulk hydrogel to reduce the chance 

for cell loss. (Figure 3.1B&D) Although macroscale pores are sealed, sufficient oxygen 

and nutrient exchange is still maintained in the scaffold due to the presence of submicron 

scale pores in the bulk hydrogel.  

 

 

Figure 3.1 Comparison of cell seeding effect between open and pocket ICC scaffolds. (A) 
Open ICC scaffold loses a significant number of cells right after seeding: (left) schematic and 
(right) experimental images. (B) A pocket ICC scaffold considerably reduces cell loss through its 
closed bottom and edge plane pores: (left) schematic and (right) experimental images. 
Quantitative comparison of cell loss issue between (C) open and (D) pocket ICC scaffolds. Since 
cell proliferation in ICC scaffolds is considerably retarded compared to the cells on well-plates, 
after 5 days of culture, the amount of cells growing on a well-plate became similar to the amount 
of cells growing in open ICC scaffold. (n=5 for each time point)  
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3.3.2. Liver tissue spheroid formation  

The initial cell seeding profile and the subsequent 3D cell aggregation process 

were characterized. The transparency of hydrogel matrix was beneficial to using confocal 

microscopy for this task. Homogeneous cell seeding was easily achievable with the 

inoculation of a dense cell suspension on top of slightly dehydrated scaffolds. The 

equally-sized spherical cavities promoted the distribution of consistent cell count within 

each pore. Non-fouling polyacrylamide hydrogel pores facilitate an initial cell 

aggregation followed by intensive cell-cell interactions while minimizing cell-substrate 

interaction. As a result, cells gradually self-assemble and form solid 3D spheroids over a 

period of 5 days. (Figure 3.2A)  

Morphological changes during spheroid formation in the scaffolds can be 

categorized by several phases. (Figure 3.2) In the initial phase, cell aggregates are 

generally 2D in respect to curved surfaces of the pores and individual cells are easily 

distinguishable (Day 1). Subsequently, cell sheets begin to coalesce driven by cell-cell 

interactions (Day 2-3). Afterward, cell aggregates acquire a nearly perfect spherical shape 

(Day 3-5), but individual cells remain identifiable. In the final phase, past Day 5 of 

culture, cell aggregates mature and form solid spheroids coated with an ECM protein 

layer appearing as a smooth surface; individual cells are no longer recognizable. After 

that, no significant change in cellular morphology or spheroid size was observed.  
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Figure 3.2 Characterization of the spheroid formation process. (A) Three dimensionally 
reconstructed confocal images of HepG2 spheroid formation in hydrogel ICC scaffolds on Day 1, 
Day 3 and Day 5 culture (Scale bar is 200µm). (B) SEM images of different stages of spheroids 
and large scale image of mature spheroids in an ICC scaffold. Individual cells aggregate and the 
surface morphology gradually changes. Once they form solid spheroids, it becomes hard to 
distinguish individual cells in the spheroid.  
 
 

Once spheroids develop, all the cells remain within the pore because the 

diameters of spheroids become larger than the channel size. (Figure. 3.3)  Such “ship-in-

a-bottle” effect is quite convenient for in situ confocal imaging of spheroid because the 

transparent matrix restricts spheroid mobility and accurately indexes their position, which 

is quite important for understanding spatio-temporal dynamic processes of intra and inter-

cellular interactions during organized spheroid formation. In addition, it can significantly 

improve the quality of 3D spheroid-based assay results by keeping the total amount of 

cells constant. At the same time, the proximity of hundreds of such spheroids to each 

other and their interconnectivity via ICC channels is a significant step toward simulation 

of actual liver tissue where functional unit of liver tissues i.e. liver lobules are connected 
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by a network of blood vessels[10]. Greater similarity of responses than those in 2D and 

some other spheroid cultures to liver tissue should be expected.  

 

 

Figure 3.3 HepG2 spheroids entrapped in ICC pores (ship-in-a-bottle effect). (A) 3D 
reconstructed confocal microscopic images of ICC scaffolds and mature spheroids entrapped in 
an ICC pore. Fluorescent monomer was used to visualize transparent hydrogel scaffold. (B) (Left) 
Geometrical model of ICC scaffold and entrapped spheroids; spheroids formed on 2nd and 3rd tiers 
of ICC scaffold can stay in the pore while having sufficient empty space for mass transport. 
(Right) 3D stacked confocal image of 250µm in depth from top and cross-section views. 
Numbers 3 and 2 represent spheroids forming in a 3rd and 2nd layer of ICC pore, respectively. 
HepG2 cells were prestained before seeding. 
 

3.3.3. Spheroid characterization 

Cell viability in the exterior and, most importantly, interior parts of mature 

spheroids were characterized by live-dead staining and observation of cell behavior. 

Fluorescence confocal microscopy revealed excellent viability of HepG2 cells within the 
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penetration depth of the stains (22.6±3.4µm); however, no fluorescent signal was 

detected in the center of spheroids for either the live or dead stains. Since effective 

diffusion coefficient of dyes in tissue is fairly low ca. 10-11 m2/s[195], there is a limited 

permeation of reagents inside the cell cluster. Indeed this phenomenon suggested a new 

challenge in 3D cultures because imaging was restricted though used scaffolding material 

was transparent. This issue can be temporarily solved by labeling cells before engineering. 

For example, when scaffolds were seeded with pre-stained cells, it was possible to obtain 

optical images in the middle of the spheroids through the ICC matrix with excellent 

homogeneity of fluorescent intensity. (Figure 3.4) Under these conditions, real-time 

visualization of spheroids at different depths and specific locations[213] would be 

possible. 

 

Figure 3.4 Comparison of confocal slicing of single spheroid between post- and pre-staining.  
(A) Cells in a spheroid were stained right before confocal imaging. The center of spheroid 
appeared as dark due to the diffusion limit of dye molecules. (B) Cells were stained before 
spheroid formation. The cells residing at the center of the spheroid can be imaged and they 
showed homogeneous fluorescent intensity in the same Z-plane. (Z=75µm and the scale bar is 
80µm)  
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The cell viability at the center of spheroids was also directly confirmed by 

transferring individual spheroids to a 2D tissue culture plate where they disassembled and 

fully spread in a few days. (Figure 3.5) The cells residing in the inner part of spheroid are 

not only alive[217], but also retain capability to migrate and repopulate. 

 

Figure 3.5 Direct confirmation of cell viability in spheroid culture.  (A) After 7 days of 
culture, several spheroids formed on the top tier of ICC pores not completely entrapped in ICC 
pores were released out from the scaffold on purpose. (B) Released spheroids started to interact 
with the surface of a 2D tissue culture plate. (C) After 24 hours of culture, the spheroid largely 
spread and densely packed cells at the center of the spheroid appeared darker compared to the 
spread cells growing on the 2D culture substrate. (D) After 2-3 days of culture, the spheroid was 
entirely disassembled and the spreading area became larger. (Scale bar is 200µm) 

 

To obtain more detailed information about the internal structure of spheroids, the 

mature spheroids were histologically sectioned and stained by H&E.  One can see that the 

interior is fully occupied by densely packed cells and a distinct membrane of ECM 

protein surrounds the outermost region of spheroids. (Figure 3.6A) This ECM layer and 

tight cell-cell junctions slow down the diffusion of the dye/drug/nutrient molecule into 
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the spheroid, which is the obvious difference compared to 2D culture and is important for 

understanding the mechanisms drug delivery, metabolism and hypoxia.[196, 218] 

In addition, a continuous and extensive network of channels exists inside the 

spheroid. Most of these channels open to the outer fluid through pores on the surface of 

the spheroid which frequently appeared in SEM imaging. (Figure 3.6B) These conduits 

are homologous to bile canaliculi structures visualized in in vivo liver tissues. The 

diameter of the channels and openings in spheroids prepared in hydrogel ICC scaffolds 

(2-3µm) coincides very well with reported dimensions of bile canaliculi, 1-3µm 

diameter.[219] Overall, the diffusion conditions and auxiliary self-organization of cells in 

spheroids provide a more adequate description of the actual tissue than 2D cultures. 

 
Figure 3.6 Single spheroid characterizations. (A) Histologically sectioned and H&E stained 
spheroid after 7 days of culture. The surface of spheroid is covered by a thin ECM layer (Arrow 
1). There is an extensive network of channels inside spheroids. Arrow 2 indicates the opening 
pores of the channels on the surface of spheroids. (B) SEM images confirm ECM layer (left) and 
the opening of the channel (right) from mature spheroids. To characterize the ECM layer, the 
spheroid was sliced using a vibratome.    
 

3.3.4. Spheroid size control corresponding to ICC pore diameters 

Preparation of uniformly sized spheroids is critical for the consistent evaluation of 

the relationships between cell cluster diameter and biological activity. Homogeneous 

spheroid size is also important because diffusion limitations vary with spheroid 

dimensions that might or might not affect the target assays. In this respect, the 
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possibilities to control the size of spheroids in ICC scaffolds and investigate these 

relationships represent an interesting opportunity for fundamental cell biology. To 

address whether the pore sizes can control spheroid diameter with desirable precision, we 

prepared five different ICC scaffolds (D=50, 100, 140, 170 and 200µm groups), and 

seeded the same number of cells. (Figure 3.7)  

 

Figure 3.7 Different pore size of pocket ICC scaffolds and initial cell seeding profile (A) 50, 
100 and 200µm pore diameters of pocket ICC scaffolds. Arrows indicate pocket wall in each 
scaffold. (B) Initial cell seeding profile of three different pore sizes. Image analysis results 
revealed that a single cell has a diameter of 10-15µm, and approximately 8 ± 4, 37 ± 6, and 160 ± 
15 cells were seeded in each pores of ICC scaffolds having 50, 100, and 200µm pore dimensions, 
respectively. 

 

At the stage of spheroid maturity (5 days of culture), the dependence of spheroid 

diameter and their size uniformity on the ICC pore size was evaluated. We observed the 

formation of 46.5±8.1, 87.8±16.0, 120.9±14.4, 141.8±19.5, and 151.6±20.0 µm spheroids 

in scaffolds with 59.5±1.9, 108.2±3.9, 154.8±4.0, 183.5±7.2, and 218.6±6.1 µm pores, 

respectively. Indeed, a fine level of control (P<0.0005) over the diameter can be exerted. 
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Typically, the spheroid diameters reached around 77% of pore diameters or 50% of a 

pore volume. (Figure 3.8) When the ICC pore becomes too large, i.e. above 170µm, other 

mechanisms, such as nutrient delivery to the interior cells, apparently begin to play a 

greater role than space restriction and the spheroid diameter becomes less dependent on 

ICC pore size remaining fairly uniform.  

 

 
 
Figure 3.8 HepG2 Spheroid size control corresponding to pore dimensions of ICC scaffolds. 
The pore size is normally 10% larger than the bead dimension. Each group has significantly 
different pore sizes (n=50, * p<0.0005). Spheroid diameters reach approximately 78% of pore 
size except in the 200µm group (69.4%). Except in the 170µm and 200µm groups (*** p>0.01), 
each group has a significantly different sizes of spheroids. (** p<0.0005) (Five scaffolds were 
used in each group and 74-86 spheroid sizes were measured.)  
 

3.3.5. Spheroid size dependent liver specific functions 

Having the set of scaffolds with different pore diameters as a tool for systematic 

study, the dependence of albumin secretion rate and induced CYP450 activity were 

investigated from cell cluster size for three different sizes of spheroid cultures, i.e. 50, 

100 and 200µm groups, and compared the results to a typical 2D culture. As shown in 
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Figure 3.9A, the initial albumin secretion rate in all 3D groups was significantly reduced 

compared to the 2D case, but it rapidly recovered over the culture period. On the other 

hand, there was only moderate increase in 2D substrates over the cell culture period. The 

50µm group showed the fastest increment and became closer to the 2D culture level only 

after 2~3 days of culture. The albumin secretion rate in 100 and 200µm groups became 

comparable to the 2D case after one week of culture, and there was no significant 

difference between the two groups. Three points should be made from the comparison of 

albumin secretion rates in the 2D, 50, 100, and 200μm cultures: (i) Contrary to what 

might be inferred from previous studies[219, 220], all experimental groups revealed the 

general trend that at least the initial albumin secretion become initially suppressed rather 

than augmented in 3D cultures. In fact, this is not surprising because most of the cellular 

energy in Day 1-3 is probably consumed by forming multicellular spheroids and tissue 

infrastructure inside them, such as bile canaliculi. Gradual enhancement of albumin 

secretion following spheroid formation infers that cellular protein synthesis capability is 

recovered once they form stable spheroids; (ii) Smaller spheroids take less time to form, 

and hence, one can observe substantially steeper growth of albumin secretion (Day 1-3) 

in the 50µm group compared to the 100 and 200µm groups; (iii) Production of albumin 

exhibited only moderate, if any, rise in 2D culture. Fast rise and plateau after 3 days was 

observed in the 50µm group, and a continuous increase over a period of 8 days was seen 

in the 100 and 200µm groups. This suggests that phenotypic change gradually occurs in 

spheroid culture, whereas the same cellular phenotype maintains in 2D culture.[221] 

Similarity of albumin production rate after should not be used as an indication of 

phenotype identity.  
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Induced CYP450 activity was measured by an EROD assay after 5 days of culture. 

(Figure 3.9B) Since a significant amount of transformed substrate remained in 

cell/scaffold lysate solution of 3D culture, not only sample media, but also hydrogel 

matrices and spheroids were characterized. Similar to the albumin secretion results, 

EROD activity in 2D culture was higher than in all 3D cultures, and the 50µm group 

showed superior CYP450 induction to the 100 and 200µm groups. Considering the data 

on albumin secretion and mitochondrial activity in spheroids[218], the trends in EROD 

assays should be interpreted in relation to metabolic activity of cells rather than direct 

consequence of culture formats. The key parameter here should be the surface area to 

volume ratio, which increases for smaller spheroids. The percentage of cells inside the 

spheroid with a characteristically low metabolic rate increases for larger spheroid 

diameters. 

 
Figure 3.9 Testing liver tissue specific functions from HepG2 spheroid and 2D culture. (A) 
Normalized albumin secretion rate by total dsDNA content in a 24 hours period. (B) Normalized 
induced CYP450 assay result with total dsDNA content after 5 days of culture. Each bar is 
composed of EROD activity from the culture medium (yellow) and the solution of homogenized 
cells/scaffolds (green). The remaining portion of resorufin within the cells in 2D culture was 
negligible (4%), while a substantial amount of resorufin remained in the cells and the hydrogel 
matrix in 3D cultures (~30%). (* Comparison between 2D culture and all 3D cultures (P<0.005), 
** between 50µm and 200µm group (P<0.05), *** between 100µm and 200µm group (P>0.05), 
representative data from three independent experiments, N=4~8) 
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Discussing cell metabolism in spheroids, one also needs to point out that 

diffusivity of oxygen is quite high with effective diffusion coefficients of 3.4 x 10-10 

m2/s[195]. The diffusion limit of oxygen in tissues is around 150-200µm[222], so cells 

within spheroids of a diameter up to 300-400µm are not expected to suffer from hypoxia, 

while the diameters of the spheroids used here are 48-150µm. Hypoxia cannot be the 

reason for the reduction of metabolic rate. The underlying reasons behind the trend of 

reduction of cellular activity in 3D arrangements can be several: (i) Extensive cell-cell 

contacts in clusters can signal the cells to reduce metabolic rate; (ii) The diffusion of 

albumin, EROD, and other reporting molecules to and from the internal cells has a 

greater barrier than that in the 2D cell cultures; (iii) Surface cells dominating in small 

clusters and 2D cultures may be more active because they have better conditions for the 

delivery of nutrients and removal of metabolites.  

Interestingly, there is an evident contradiction between the data reported here and 

those published previously which typically show greater activity in spheroids than in 

“flat” cells[223-225]. Analysis of this discrepancy is significant in understanding cell 

biology and the proper selection of cell culture conditions for different tissue modeling 

tasks. Two potential factors are suspected. The first one is the absence of shear forces that 

have been frequently utilized in spheroid culture because the flux conditions stimulate 

cell aggregation.[206, 207, 224, 225] Presence or absence of shear force in 3D conditions 

could be the key factors determining metabolic rate of cells. Besides improving diffusion 

of oxygen and nutrients, mechanical stimulation by shear stress plays an important role in 

maintaining a proliferative state of hepatic spheroids and enhancing liver specific 

functionality. For example, Shvartsman et al. demonstrated significantly augmented 
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CYP450 activity of hepatic spheroids in perfusion culture condition.[225] Also Chang et 

al. reported that HepG2 spheroids cultured within a rotating wall vessel bioreactor 

exhibited continuous proliferation and substantially up-regulated metabolic 

activities.[224]  

In addition to shear forces, a topological factor could account for the lower 

metabolic activity since ICC matrices, unlike 2D and other 3D systems have high volume 

density of cells and interfaces. On one hand, this brings them closer to real human liver.  

On the other hand, this can induce strong contact inhibition of cells, which cause a 

substantial portion of cells to become quiescent in spheroids.[226]  Quiescent tumor 

spheroids can potentially be an excellent model for understanding tumor dormancy, as 

well as their repopulating and metastatic mechanisms.[227]  

 

3.4. Summary 

In summary, uniformly sized pores in ICC hydrogel scaffolds afford a high yield 

production of controlled size spheroids in standard 96 well-plates. Transparent hydrogel 

matrix and ship-in-bottle effect also allows for convenient monitoring of cell processes 

by traditional optical techniques. Different developmental stages of 46.5–151.6µm 

spheroids from HepG2 hepatocytes with vivid morphological similarities to liver tissue 

(bile canaliculi) were observed. A high yield of spheroids in well-interconnected pores is 

beneficial to derive tissue level biological responses without tissue vascularization. Liver 

specific function was demonstrated to be strongly dependent on the diameter of spheroid. 

 Since the aggregation of cells into clusters is a universal biological process, these 

findings and scaffolds can be applied to many other relevant cell types. Along with many 
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advantages expected of ex vivo replicas of human organs, this system also allows one to 

identify the specific challenges of 3D cell cultures and avoid fundamental experimental 

mistakes and conclusions. Most importantly the presented system will contribute to the 

development of various physiological and pathophysiological 3D tissue models which 

can be served as a valuable tool for understanding tissue level biology and in vitro drug 

testing application. 
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CHAPTER IV 

IN VITRO TOXICITY TESTING OF NANOPARTICLES 

 

4.1. Introduction 

In this chapter, the standardized 3D liver tissue spheroid culture model is applied 

to an in vitro toxicity testing platform. Instead of drug molecules, nanoparticles (NPs) 

were selected as testing compounds because it is getting important to access and predict 

their toxic effects in the body. Despite providing valuable information, in vitro 2D cell 

culture models do not accurately predict in vivo toxicity and other biological effects of 

NPs due to the absence of key physiological processes[212], such as transport of NPs 

through cell layers when they are brought in contact with the tissues. Also, essential 

effects of NPs and other substances are neglected with respect to cellular functions which 

are strongly dependent on 3D organization. For example, the enhanced specific protein 

secreting function of granular epithelial cells can only be observed when they form a 

three dimensionally organized acinus structure.[29] As an additional piece of evidence 

substantiating the significance of expanding cell toxicity assays from 2D to 3D cultures, 

one also must mention that it has become increasingly apparent that there is a large 

discrepancy in toxicity results depending on whether in vitro 2D cell culture or animal 

models were used.[228] For instance, recent studies on toxicity testing of quantom 
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dots[229], magnetic NPs[230], CNTs[231] and fullerenes[232] using in vitro 2D 

cell culture showed high cytotoxic effects. However, when they were tested in animal 

models, no adverse effects were observed.[233-236] (Table 4.1) 

As shown in Chapter 3, multicellular spheroid culture is expected to be the most 

effective 3D culture model. Therefore, the toxicity testing based on the spheroid culture 

would deliver more physiologically relevant toxicological information about NPs that 

might be quite different from the current cellular level cytotoxicity. Resultantly, it can 

potentially enhance the predictive power of current in vitro toxicity testing for estimating 

in vivo toxicity. 

Table4.1 Discrepancy between in vitro and in vivo NPs toxicity testing 

 Cytotoxicity  
(In vitro 2D) 

Animal Testing 
(In vivo) 

CNTs 
 “Our work clearly indicated that these 
materials are toxic…”  
Nano Lett. 6, 1121 (2006)  

“No toxic side effect of SWNTs to mice 
was observed in…” 
PNAS, (2) 105, 1410 (2008)  

Fullerenes 

 “This work demonstrates both a 
strategy for enhancing the toxicity of 
fullerenes…”  
Nano Lett.  4, 1881 (2004)  

 “The results demonstrated little or no 
difference in lung toxicity effects …” 
Nano Let. 7, 2399 (2007) 

Magnetic 
NPs 

 “Exposure to increasing concentrations 
of anionic magnetic NPs results in a 
dose-dependent diminishing ability of 
PC12 cells..”  
Biomaterials, 28, 2572 (2007)  

 “…magnetic nanoparticles of 50-nm 
size did not cause apparent toxicity 
under the experimental conditions of 
this study...” 
Toxicol Sci, 89, 338 (2006)  

Quantom 
Dots 

 “…CdTe QDs induce cell death via 
mechanisms involving both Cd2+ and 
ROS …” 
 Langmuir, 4, 1974 (2007) 

“Few signs of functional toxicity or 
clinical (urinary or blood) changes were 
noted…” 
J of Nanosci. & Nanotec. 7, 497 (2007) 

 

Methods for the toxicity testing of NPs are basically the same as the techniques 

used in modern drug development; however, the toxic mechanism of NPs can be more 

diverse than that of drug compounds. NPs can be indiscriminately transported into cells 

due to their comparable dimension to biological macromolecules.[237] Fiber-shaped NPs 
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such as nanowires, nanotubes and nanofibers have a high probability for the penetration 

of cell membrane and tissue layers, as has been reported for asbestos.[238] Decomposed 

NPs generate free radical species or toxic ions which can injure plasma membrane 

functions by reducing membrane integrity or impairing ion channel transport.[239] 

Additionally, there are potentially more unrecognized harmful effects of NPs considering 

the great diversity of engineered NPs in chemical composition, size, shape, charge, 

coating, solubility, and so on.[240-242] Equally, there might be some potentially 

unrecognized beneficial effects related to the same factors. (Figure 4.1) Until now all of 

the in vitro NP toxicity testing has been performed using 2D cell cultures[243], and it will 

be very important to demonstrate a suitable 3D cell model for NPs and compare the 

results with 2D cell cultures. 

 

Figure 4.1 Various routes of nanoparticle induced toxicity 

 

The established ICC-spheroid culture system exhibits multiple advantages for NP 

toxicity testing. For instance, transparent hydrogel matrix allowed easy characterization 

of optical based assays. In addition, by utilizing standard micro well-plates, it can be 
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readily accessible to existing hardware such as a microplate reader. Consequently, the 

spheroid culture system permits the systematic and reproducible characterization of toxic 

effects of NPs on liver tissue which is one of major tissues for NP accumulation. The 

toxic effects of CdTe and Au NPs were tested using a number of different approaches, 

including morphology, membrane integrity, metabolic activity and cell death mechanism; 

and a comparison was made with conventional 2D culture-based cytotoxicity.  

 

4.2. Materials and Methods 

4.2.1. Au and CdTe nanoparticle synthesis 

Au nanoparticle synthesis 

Au NPs having two different stabilizers were synthesized following the 

previously reported method.[244] Briefly, a 20ml of aqueous solution containing 2.5x10-

4M HAuCl4 and 2.5x10-4M trisodium citrate was mixed with 0.6ml of ice-cold 0.1M 

NaBH4 solution while stirring. In a few minutes, Citrate-Au NPs were prepared with a 

diameter of 3.5±0.7 nm. A 7.5ml of aqueous solution containing 2.5x10-4M HAuCl4 and 

0.08 M cetyltrumethylammonium bromide (CTAB) was mixed with 0.05ml of 0.1M of 

ascorbic acid solution. CTAB-Au NPs with a diameter of 5.5±0.6 nm were prepared by 

adding 2.5ml of Citrate-Au solution while stirring. 

CdTe nanoparticle synthesis 

L-cysteine stabilized CdTe NPs were prepared according to the literature.[245, 

246] Briefly, 2.35mM of Cd(ClO4)2
.H2O and 5.7mM of L-cysteine were dissolved in 

125ml of deionized water; the pH is rapidly adjusted to 11 using 1M NaOH and placed in 

a three-necked flask and degassed with N2.  H2Te gas is introduced to this solution by the 
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reaction of 0.46mM Al2Te3 and 20ml of 0.5M H2SO4 in a separate three-necked flask. 

The solution is nitrogen-purged for an additional 30minutes, at which time the CdTe NP 

solution is refluxed to achieve the desired NP size. The NPs were observed under atomic 

force microscopy (AFM) (Digital Instruments NanoScope III) and analyzed using 

NanoScope ® III software tools. Fluorspectroscopic measurements were performed using 

a Jobin Yvon Horiba FluoroMax-3.   

4.2.2. Spheroid culture and nanoparticle treatment 

ICC hydrogel scaffolds were prepared using glass beads (D=156.85±8.4µm). 

Dried state ICC scaffolds were rehydrated in PBS solution and then sterilized by 

immersion in 70% ethanol for 15 min under UV light. The sterilized scaffolds were 

washed with PBS three times and transferred into a non-tissue culture treated 48 well-

plate (Corning, NY). Human hepatocellular carcinoma (HepG2) spheroid arrays were 

prepared following the protocol in Chapter 3. Briefly, a 20µl of cell suspension (5x105 

cells) was dropped on top of an ICC scaffold and then 1ml of culture media was gently 

added into the well. For 2D culture, 1x105 cells were seeded in each well of a 12 well-

plate containing 1ml of culture media. A half volume of media (0.5ml) was changed daily 

both 2D and 3D cultures for 5 days.  

On Day 6 of culture, media was changed with 10µg/ml CdTe and 98.5µg/ml Au 

NP solutions in William’s E medium. A control culture was maintained with only 

William’s E medium. After 12 and 24 hours (also some interval time points) incubation, 

the NPs exposure and control cultures were characterized.  
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4.2.3. Morphological characterizations 

Optical and Confocal Microscopes 

Cell morphology was observed using an inverted microscope with 10X and 20X 

objectives (Nikon TS100) and a digital camera with imaging software. Cell viability was 

observed after staining Live/Dead dyes under confocal microscope (Leica SP2). 

Specifically, NPs exposure and control culture were incubated with 2µM calcein and 

4µM ethidium homodimer-1 for 40 minutes at 37°C. Under a laser excitation of 488nm, 

live cells were imaged as green using a 510-540 nm emission filter, and dead cells stained 

by ethidium homodimer-1 were imaged as red using a 600-630 nm emission filter. 

Scanning Electron Microscope 

A SEM was used to characterize cellular morphology. Cells in sample scaffolds 

and on 2D glass slides were fixed overnight with 2.5% glutaraldehyde solution. The 

samples were then dehydrated through a series of ethanol solution concentrations of 50, 

70, 90, 95 and 100%, and then freeze dried. After 180 sec gold sputtering, the samples 

were imaged using a FEI Nova Nanolab SEM.  

4.2.4. Toxicological assays 

LDH Assay 

 Lactate dehydrogenase leakage from dead cells was analyzed using a LDH assay 

kit (Promega, WI). Diluted supernatant of 50µL was mixed with 50µL of reagent and 

incubated for 30 minutes at room temperature. A 50µL of stop solution was then added, 

and absorbance at 490nm was measured using a microplate reader (BioTek, VT)  

MTT Assay  
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Mitochondria activity was quantified using a MTT assay kit (ATCC, VA). The 

medium was aspirated and 500µL of fresh serum-free medium was added with 50µL of 

MTT reagent. After 3 hours incubation, 500µl of detergent solution was added and 

incubated for 2 hours more. The scaffolds and cell lyses solutions were transferred into 

1.5ml centrifuge tubes. Scaffolds were completely destroyed by using forceps and further 

sonication. After centrifugation at 1,000rpm for 5 minutes, 200µl of supernatant solution 

was collected, and then the absorbance was measured at 590nm (sample) and 630nm 

(reference). The difference in activity between normal and NPs exposure cultures was 

used as a toxicity indicator. All measurements were performed in triplicate, and six 

independent experiments were carried out.  

Apoptosis Assay  

Caspase activity was measured using a Caspase 3/7 assay kit (Promega). After 

treatment of CdTe NPs, the culture media was completely removed for the LDH assay. 

The scaffolds were transferred into a 1.5ml centrifuge tube and 250µl of 1x cell lyses 

buffer solution (Promega) was added. The scaffolds were then crushed into small pieces 

with a micro centrifuge sample pestal and sonicated for 3-5 sec. In 2D cultures, 250µl of 

1x cell lyses buffer was added. Then 250µl of Caspase 3/7 assay reagent was added to 

each sample solution and incubated for 2 hours at room temperature. To maintain the 

same sample preparation conditions, the cell lysate in 2D cultures were transferred into 

1.5ml centrifuge tubes and briefly sonicated to make a homogeneous dispersion. The 

sample-containing tubes were centrifuged at 1,000rpm for 5 minutes to precipitate 

scaffolds and cell debris. A 200µl of supernatant solution was collected in a white-wall 
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luminescence plate. Luminescent intensity was measured using a microplate reader with 

10 seconds integration time.   

 

4.3. Results and Discussion 

4.3.1. Standardized hepatic spheroid culture model 

An absolute spheroid size suitable for toxicity testing and other assays has not 

been identified. Considering the previously reported data[197, 247], spheroid diameters 

were aimed to be around 100µm so as not to induce hypoxic culture conditions while 

recovering tissue level physiological properties. The spheroid diameters are dependent 

upon pore dimensions, which can be easily regulated by changing the size of the 

microspheres in the colloidal crystal template. Here glass beads with a diameter of 156 ± 

8.4µm were used for preparing colloidal crystals. Final ICC scaffolds have 174.6 ± 10µm 

diameter pores, approximately 10% larger than the template bead sizes due to swelling of 

the hydrogel matrix, and 49.6 ± 7µm diameter interconnected channels, approximately 

30% of pore diameters. (Figure 4.2) 

  
Figure 4.2 HepG2 spheroid (D~100 µm) arrays prepared in ICC hydrogel scaffolds. (A) 
SEM and (B) Confocal images 
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4.3.2. Morphological evaluation after nanoparticle exposure 

The exact mechanism of semiconductor NP (e.g., CdTe and CdSe) induced 

toxicity is unclear, however, it has been identified that the most important aspect is the 

stability of NPs both under physiological conditions, i.e. intracellular and in vivo, as well 

as during synthesis and storage since they are susceptible to photolysis and oxidation. 

Released free cadmium and reactive oxygen species impair cell function and eventually 

kill the cells.[229, 248] For example, Derfus et al. demonstrated that decreased 

photostability of CdSe NPs under exposure to ultraviolet light caused liberation of free 

Cd2+, which in turn enhanced cytotoxicity.[249] Kirchner et al. reported that the core-

shell structure of CdSe/ZnS significantly reduced the cytotoxicity of CdSe NPs by 

protecting the core from oxidation and preventing it from leaching into the surrounding 

solution.[250] The cytotoxicity of semiconductor NPs also differs depending on their 

size[233, 248] and stabilizer chemistry/surface modification.[229, 251] On the other 

hand, gold NPs have excellent stability and major factors inducing toxic effect are shape, 

size and stabilizer chemistry.[252, 253] 

In this study unmodified L-cysteine-stabilized CdTe NPs were intentionally used 

which are unstable and quite toxic in order to highlight the different cellular toxic effects 

between 2D and 3D spheroid cultures. The CdTe NPs have a photoluminescence peak of 

577nm and an average diameter of 2.9±1.0 nm. (Figure 4.3) The CdTe NP concentration 

was constantly maintained at 10µg/ml while varying the exposure time up to 24 hours. 
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Figure 4.3 L-cysteine stabilized CdTe NPs synthesis. (A) Emission PL spectra, peak at 577nm, 
(B) AFM image, 2.9±1.0 nm of average diameter 

 

Citrated-stabilized (D = 3.5 ± 0.7 nm) and CTAB–stabilized (D = 5.5 ± 0.6 nm) 

spherical Au NPs were also prepared. Their concentration and exposure time were 

maintained at 98.5µg/ml and 24 hours, respectively. All toxicity testing was performed 

with freshly synthesized NPs, less than a week after preparation, but increased toxic 

effect of CdTe NPs over time was observed in the 2D culture due to decomposition (Data 

not shown). In addition, to establish comparable testing conditions in both 2D and 3D 

cultures, the same culture volume (1ml) and a similar number of cells were maintained at 

the point of toxicity testing. Since the cell proliferation rate in spheroid culture is 

considerably slower than in 2D culture, five times fewer cells were seeded for 2D 

cultures (1x105 cells) than 3D cultures (5x105 cells). After 5 days of culture, the point at 

which 3D cultures form solid spheroids and NP exposure began, total cell numbers in 

both cultures were approximately equal. Additionally, toxicity assay results were 

normalized with total DNA content.  
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Figure 4.4 Comparison of 2D and 3D culture of HepG2 cells after 12 hours of CdTe NP 
exposure. (A-D) Optical images of normal (A) 2D and (C) 3D spheroid cultures. After CdTe NP 
introduction, (B) 2D culture showed a dramatically different morphology, (D) while it was hard 
to distinguish any change in the 3D culture under an optical microscope. (E-H) Confocal images 
of live/dead stained normal (E) 2D and (G) 3D spheroid cultures; live cells are green and dead 
cells are red. Most cells in both cultures showed excellent viability. Again after CdTe NP 
exposure, (F) 2D culture revealed that a significant number of cells were dead. (H) Although a 
few cells located on the surface of spheroids were dead, overall the number is much smaller than 
the 2D culture. 
 

At first, the cellular morphology change was investigated because it is an obvious 

initial sign of toxic effect. In 2D cell culture, HepG2 cells normally have a flat shape after 

spreading out on a well-plate while closely attaching to each other. However, their 

morphology dramatically changed after 12 hours of CdTe exposure. A significant number 

of shrunk and rounded cells were observed with some partially detached from the well-

plate. (Figure 4.4A-B)  

In case of Au NPs, as expected, in 2D culture citrate-stabilized Au NPs did not 

induce toxic effect while CTAB-stabilized Au NPs showed high cytotoxicity. (Figure 

4.5) Interestingly toxic effects of CdTe and CTAB-stabilized Au NPs were significantly 

reduced in 3D spheroid culture. No significant morphological alteration was noticed in 

spheroid culture except only a slightly rugged spheroid surface. (Figure 4.4C-D) 
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Figure 4.5 Characterization of cellular morphology after 24 hrs Au NP exposure. (A) 
Control culture, (B) Citrate-Au and (C) CTAB-Au NPs.   

 

In order to confirm whether the reduced toxic effect is caused by the diffusion 

limit of toxic molecules within the scaffold or not, a simple diffusion test was performed 

as dropping a 500µl of rhodamin solution on top of an ICC hydrogel scaffold. The spread 

of dye molecule was characterized in real time under confocal microscope. Within 5 min 

strong fluorescent signals were detected from the entire scaffold. (Figure 4.6) This result 

supports that the diffusion of toxic molecules is not the reason of reduced toxic effects in 

the 3D spheroid culture.  

 

Figure 4.6 Real time characterization of rhodamin diffusion within ICC scaffolds 

 

To distinguish more clearly between live and dead cells, the cells were stained 

with live-dead assay dyes. In 2D culture, it was apparent that dead cells (red) morphed 

into a granular shape and fell away from the plate after losing their cell-cell and cell-

substrate interactions. (Figure 4.4E-F) Although the spheroid culture did not undergo a 
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distinct morphological change, a few dead cells were observed on the surface of 

spheroids with a rugged exterior, as discussed above. There were noticeably fewer dead 

cells in the spheroid culture than the 2D culture. (Figure 4.4G-H)   

Morphological changes were further characterized under a SEM. In normal 

conditions, individual cells are hard to distinguish in both cultures because they form 

tight cell-cell junctions covered by a pervasively developed ECM layer. After 12 hours of 

CdTe NP exposure, dying or dead cells could be distinguished as they were separating 

from a live cell colony. This phenomenon was more obvious in 2D culture. In spheroid 

culture, dead cells could be identified as protruding bulbs, but they did not separate from 

the spheroid. It seemed that cells in a spheroid were tightly packed together and formed 

intensive junctions with adjoining cells. Thus, dead cells could stay in the spheroid 

despite losing their cell-cell interactions, and the overall spherical shape could be 

maintained. (Figure 4.7)   

 To further examine the toxic effects of CdTe NPs, the exposure time was 

extended 24 hours. As expected, longer treatment caused severe damage in 2D culture. A 

significant number of cells were dead and detached from the well-plate. Even 

cytoskeletons of dead cells were readily identified. (Figure 7A-Right) Similarly, in 

spheroid culture the surface roughness increased, corresponding to an increase in dead 

cell bodies. Individual dead cells were easily recognizable but they still remained on the 

spheroid. In order to observe the inner part of the spheroids, samples fixed in 

formaldehyde were left for one week to allow partial detachment of the dead cell bodies 

from the surface of the spheroid. Characterization of the spheroids revealed that the inner 

cell mass was preserved while the outer layer of cells was severely damaged. (Figure 7B-



100 

Right) CTAB-Au NPs showed similar results to CdTe NPs treated culture. Again no 

significant morphological change was observed for citrate-Au NPs. 

 
Figure 4.7 SEM images of 2D (A) vs. 3D spheroid (B) cultures before and after CdTe NP 
exposure. (Left) Typical morphology after 5 days of culture. The surface is very smooth due to 
tight cell-cell junctions and a well-developed ECM layer, so that it makes hard to distinguish 
individual cells in both cultures. (Center) Representative morphology after 12 hours CdTe NP 
exposure. Dying cells gradually lose their cell junctions. Shrunken cell bodies detached from the 
cell colony were easily recognized in 2D culture, while in 3D spheroid culture, dying or dead 
cells located on the surface were partially dissociated from the spheroid and appeared as 
protruded blubs. (Right) Morphological change after 24 hours CdTe NP exposure. In 2D culture, 
most cells were dead and considerable number of cells was detached from the substrate. Although 
cells in spheroid culture were damaged, multilayered structure buffered toxic effects to inner 
cells. Intact inner cell mass were observed after partially detaching dead cell bodies on the surface 
of the spheroid by intentionally keeping the formaldehyde fixed culture for one week.  

 

Morphological study results clearly indicate that the degree of toxicity of CdTe 

and CTAB-Au NPs to the spheroid culture is substantially lower when compared to the 

2D culture. The most obvious reason for that is the diffusion of NPs into the spheroid. 

Densely-packed cells in the spheroid are covered by a well-developed layer of ECM 

common for all tissues which reduces the penetration of toxicants. Hence, the inner layer 

of cells received less damage than cells in the outer layer. Also the dead cells on the outer 
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layer of the spheroid potentially acted as a temporal protective barrier against toxic 

materials as they increased the thickness of the ECM.  

 

4.3.3. Toxicological assays 

In the next step, the toxic effects of NPs were evaluated quantitatively utilizing 

lactate dehydrogenase (LDH) and methyl tetrazolium (MTT) assays. The LDH assay 

detects the amount of LDH that leaks out from the plasma membrane of damaged cells. 

This extracellular protein assay protocol was identical in both 2D and spheroid cultures. 

The MTT assay measures the amount of enzymatically-reduced MTT in the mitochondria. 

Thus, cell lyses utilizing a detergent or lyses buffer were required. In the scaffold-based 

spheroid culture system, an additional spheroid and scaffold destruction step was needed 

to make a homogeneous cell lysate such as torn down and sonication of scaffolds. To 

keep the same assay conditions, 2D culture samples were also treated in the same manner. 

Both cultures were treated with CdTe NPs for 12 hours and gold NPs for 24 hours before 

running the assays.  

As expected from the morphological study, the toxic effects of CdTe NPs were 

significantly reduced in spheroid cultures. (Figure 4.8) Specifically, the results showed 

five times lower LDH leakage and two times more reduction of mitochondrial activity 

than in 2D cultures. The different sensitivity of the assay results was expected due to the 

nature of each assay and the different cell phenotypes. For example, the LDH assay is 

more sensitive to the number of cells at the solution interface capable of leaking their 

cytosolic contents into the media. All of the cells in 2D culture are exposed to the 

solution, while only a small portion of cells in spheroid culture make direct contact with 
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the solution interface. The remaining cells are enclosed by the outer layer of cells. For 

this reason, it caused a larger gap between two cultures. In the MTT assay, however, cells 

are dissolved before analysis and, therefore, the cell phenotype is more closely related 

than diffusivity or the number of exposed surface cells. In the case of spheroid culture, 

one can consistently see a considerably reduced proliferation rate which causes the 

accumulation of a quiescent cell phenotype, which in turn gradually reduces cell 

metabolic activity.[177] Since mitochondria produce about 90% of the adenosine 

triphosphate (ATP) required for cell survival, down-regulated mitochondrial activity in 

spheroid culture caused significantly reduced MTT activity compared to 2D culture 

despite the similar number of cells in both cultures.[218] Therefore, the MTT assay 

results after CdTe NP exposure are required to be calibrated with control samples. The 

drop in MTT activity was almost two times higher in 2D culture than 3D spheroid culture. 

(Figure 4.8B)  

 

Figure 4.8 Quantitative comparison of toxicology assays between 2D and 3D spheroid 
culture after 12 hours of CdTe NP exposure. (A) Normalized LDH assay results. LDH activity 
before treatment was similar between the two cultures. However, after CdTe exposure, LDH 
leakage in 2D culture (1047%) was almost five times higher than spheroid culture (212%). (B) 
MTT assay results. In control samples, MTT activity in the 2D culture was more than 2 times 
higher than the 3D culture due to down-regulated cellular metabolism. Upon exposure to CdTe 
NPs, the decrement of mitochondrial activity from the control group in the 2D culture (56%) was 
approximately two times higher than the spheroid culture (31%).  
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Similarly a significantly reduced toxic effect of CTAB-Au NPs was observed in 

spheroid culture. More specifically, LDH leakage and decreased mitochondrial activity 

was three times lower in spheroid culture than 2D flat culture. Citrate-Au NPs slightly 

reduced mitochondrial activity (5%), but there was no substantial change of LDH leakage 

in both types of culture. (Figure 4.9)  

 

Figure 4.9 Quantitative comparison of toxicology assays between 2D and 3D spheroid 
culture after 24 hours exposure to Au NPs having two different stabilizers. CTAB-Au NPs 
caused severe toxicity but Citrate-Au NPs induced negligible toxic effect. CTAB-Au NP toxicity 
was significantly reduced when it was tested in 3D spheroid culture. (A) Normalized LDH assay 
results demonstrate three times less LDH leakage of CTAB-Au NPs in 3D culture. (B) MTT 
assay result shows that three times less reduction of mitochondrial activity of CTAB-Au NPs in 
3D culture.  
 

 

4.3.4. Cell death mechanisms 

The MTT assay results reflect that reduced CdTe NP toxicity in spheroid culture 

is closely linked to a change of cell phenotype. With this in mind I hypothesized that 

CdTe NP-induced toxicity would cause different cell death mechanisms, i.e., dying cells 

in spheroid culture would undergo more apoptosis but less necrosis than in 2D culture. 

Necrosis is a catastrophic cell death caused by acute cellular injury, resulting in the 

release of cytosolic proteins into the intercellular space. Apoptosis is a controlled, natural 
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cell death mechanism. Compared to necrosis, the apoptotic process does not release 

intracellular constituents into the extracellular milieu but instead presents various 

signaling molecules such as caspase proteins. However, these signaling molecules are 

only temporarily presented before the cells undergo secondary necrosis, which is similar 

to necrotic cell death. Therefore, a time-dependent study is necessary to distinguish 

apoptosis from necrosis.  

In order to test our hypothesis, the intensity of apoptotic (Caspase-3/7 assay) and 

necrotic (LDH assay) processes after 1, 2, 4, 6, 8, 12 and 24 hours of CdTe NPs exposure 

were measured. (Figure 4.10) At these time points the culture medium was collected for 

the LDH assay, while the remaining cells on plates and scaffolds were further processed 

for the Caspase 3/7 assay. In both cultures the apoptosis and necrosis values had similar 

trends yet they displayed substantial differences. In 2D cultures, the LDH assay value 

gradually increased until 8 hours and then suddenly jumped, while in spheroid cultures it 

was slightly enhanced until 12 hours followed by a moderate increase between 12 and 24 

hours. Since a sudden increase of LDH leakage designates the point of prevalent necrosis 

or secondary necrosis at the end of apoptotic cell death, these data demonstrate that 

necrotic points of spheroid culture, either by necrosis or apoptosis, is much more retarded 

than 2D culture.  

The caspase assay results more clearly showed phenotypic effects. In 2D culture 

the caspase activity continuously decreased with different level of retrenchment over 

time—gradually diminishing for 2 hours before rapidly dropping. Please note that a 

relatively high concentration of unmodified CdTe NPs was intentionally used. On the 

other hand, in spheroid culture an initial jump in the caspase activity was first observed, 
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followed by a gradual decrease. I also observed inherently higher caspase activity in 2D 

cultures than spheroid cultures similar to MTT results. These data obviously indicate that 

cells in spheroid culture undergo more apoptotic processes than 2D culture due to the 

cellular phenotypic change. 

 

Figure 4.10 Kinetic studies of the cell death mechanism. Representative data of combined 
LDH and Caspase 3/7 assay results over a span of 24 hours, with measurements at 8 different 
time points. The results were normalized with dsDNA quantification data. The LDH assay, the 
absorbance value on the right Y-axis, was used as a necrosis marker. The Caspase 3/7 assay, the 
luminescence value on the left Y-axis, was used as an apoptosis indicator. (n=3 at each time point, 
total n=24 in each type of culture). 

 

 

These results are well correlated with previous animal testing results.[228, 234-

236, 254] For example, Zhang et al. reported that intravenous injection of CdTe NPs into 

rats did not cause any damage to major organs. Although locomotive activity was 

reduced shortly after dosing, it returned to normal within 24 hours. [233] In fact 

nanoscale materials undergo various physiological processes in the body, including 

circulating in the blood stream, accumulating in specific organs, cellular uptake, and 
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renal excretion.[78, 255-257] It seems that such diverse and complex physiological 

processes cooperatively act to mitigate the toxic effects of NPs in vivo.  

Similar to the findings, the reduced toxic effects of drug compounds in 

multicellular spheroid culture models were previously reported by other 

investigators.[258] Also there are several reports highlighting the unique opportunities of 

spheroid culture as an in vitro toxicity testing application.[211, 215, 259] Nevertheless, it 

has not been widely accepted in the actual toxicity screening field because there are still 

technical barriers preventing current spheroid culture systems from being used in 

practical and industrial applications, such as standardization, reproducibility, high yields, 

and simple manipulation for experimental intervention and assay purposes. ICC hydrogel 

scaffolds significantly improve all these issues. Highly controlled ICC structure and 

material resulted in excellent control and standardization of prepared liver tissue 

spheroids. A simple and versatile fabrication method allows the mass production of a 

diverse range of macro- and micro-scale ICC scaffolds. It can also be readily combined 

with currently utilized HTS equipment. Additionally, the transparent hydrogel matrix 

enables the deep confocal 3D imaging of spheroids that is essential for HCA.[214, 260]  

In perspective, one can also envision other advantages of spheroid culture system. 

(i) It enables long-term toxicity testing. Currently, all 2D culture-based toxicity testing is 

short term (less than a few days) due to continuous cell growth. However, longer toxicity 

testing is necessary to understand how toxic molecules affect cellular behavior not 

instantly but gradually, such as chronic exposure to toxic substances. The quiescent 

phenotype observed in spheroid culture is beneficial to treating cells for a longer period 

of time. (ii) It can be used as a model system for understanding tissue-level healing 
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processes after damage by toxic substances. As shown before, the interior spheroid was 

protected by an outer layer of cells, suggesting a capacity in spheroid culture for 

physiological repair, which is closer to real tissue biology. (iii) Applying this system to 

tumor spheroids would be a very appropriate model system for testing the effectiveness 

of newly-engineered NPs which are related to cancer treatments, such as tumor cell 

targeting and delivering therapeutics into solid tumors.  

 

4.4. Summary 

Established standardized liver tissue spheroid culture model was successfully 

applied to the in vitro toxicity testing of NPs. The results showed great differences in 

comparison with common 2D cell culture, while more correlating well with the data from 

animal tests. Two important aspects of the 3D spheroid culture exemplify the differences 

with 2D cultures and the greater resemblance to in vivo tissue-like physiological 

responses; (i) tissue like mass transport due to dense tissue-like cell clusters and ECM 

layer present and (ii) cell phenotype changes due to intensified cell-cell interactions. The 

ICC scaffold-based spheroid culture system clearly indicate the significance of the 3D 

cell culture model to in vitro testing of NPs toxicity and the need of implementing 

standardized 3D in vivo models for NP research. 

In the same way, the ICC scaffold-based spheroid culture system would undertake 

initial toxicity testing of drug candidate compounds as producing more physiologically 

relevant toxicological information. As a result, it can potentially improve the predictive 

power of in vitro screenings which in turn critically contribute to a reduction in animal 

testing and a clinical stage failure rate.  
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CHAPTER V 

BIOACTIVE ICC SCAFFOLDS FOR CELLULAR CO-CULTURES 

 

5.1. Introduction 

Adequate understanding and proper methods of control of cell signaling are 

important in emulating hematopoietic stem cell (HSC) niches since the rate and direction 

of the differentiation of HSCs are strongly affected by their 3D microenvironment and 

signaling molecules.[261, 262] Recent studies have shown that a 3D culture environment 

significantly promotes the efficiency of stem cell differentiation[263-265]. Intensive cell-

cell and cell-matrix interactions have been distinguished as key factors that determine the 

fate of individual cells by serving as important communication channels. 

As shown in Chapter 2, ICC systems possess high surface area with void fraction 

of 97% (i.e. combining 74% effective cellular porosity and 23% bulk hydrogel porosity) 

and a regularly spaced network of pores which provides a mechanically strong, well-

connected open porous geometry. These features enhance cell seeding efficiency, 

transport of nutrients and metabolites, and the rapid and uniform distribution of soluble 

signaling molecules. In addition the excellent control over porosity combined with a high 

degree of organization of ICC scaffolds enable much better control of cell-cell and cell-

scaffold interactions. Such unique characteristics of ICC scaffolds make them particularly 
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convenient for the use with HSC cultures, which can help uncover methods for 

successful tissue engineering of HSC niches such as bone marrow and thymus.  

Besides these advantages, the high level of organization and geometrical identity 

of different cavities make possible effective computer modeling of scaffold properties 

such as diffusion of nutrients and other signaling molecules, cell-cell and cell-matrix 

interactions, and other processes, which can substantially reduce experimental load. For 

instance, in fabricating effective scaffolds for in vitro tissue engineering applications, 

several design variables such as mechanical strength, diffusion and cell adhesion have to 

be considered. Currently, a significant bottleneck is the lack of adequate oxygen and 

nutrient transport as well as cell migration to the interior of the scaffold.[266] 

The hydrogel matrix rarely supports adherent cells adhesion without surface 

modification, because acrylamid polymer chains do not have cell adhesion receptors, and 

the hydrophilic nature of hydrogel inhibits adsorption of cell binding proteins on the gel 

surface. To render the surface bioactive, a layer-by-layer (LBL) surface modification 

technique was utilized instead of commonly used covalent coupling of specific peptide 

sequences such as RGD or an entire ECM protein to the polymer. It has been reported 

that 2D polyelectrolyte multilayer supported anchorage dependant cell attachment 

without using adhesive proteins. The driving forces of LBL coating are the electrostatic, 

Vander-Waals, and hydrogen bonding interactions between oppositely charged 

polyelectrolytes dispersed in aqueous solution. This unique feature of the LBL technique 

allows a complex porous 3D geometry, such as the intricate and convoluted ICC surface, 

to be coated as long as fluid transport in and out of the sample is not severely constrained. 
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In this chapter, a model system combining two types of cells co-existing in an 

ICC scaffold will be introduced having in mind the recreation of HSC niches in the bone 

marrow and thymus. The selection of particular model cell cultures was also aided by the 

fact that the characteristic geometry of the ICC scaffolds resembles that of bone marrow 

and thymus niches, i.e. stromal cells cover the surface and well intersticed sinus cavities. 

The surface of ICC hydrogel scaffolds was coated with LBL assembly of clay 

nanoplatelets and polydiallyldimethylammonium (PDDA) polymer to support stromal 

cell adhesion. Rotary cell culture vessels were utilized instead of micro-well plates to 

make dynamic culture environment. In addition, open porous ICC scaffolds were used 

rather than pocket ICC scaffolds to more effectively accommodate dynamic flows within 

the ICC geometry.  

Human thymus epithelial cells (Hs202.Th) and human monocytes (HL-60) were 

used as anchorage dependent feeder cells and suspension cells mimicking progenitors, 

respectively. Before using HSCs, I tried to use the HL-60 cells because it is easier to deal 

with and has been provided a unique in vitro model system for studying the cellular and 

molecular events involved in the proliferation and differentiation of normal and leukemic 

cells.[267] Microscopic characterization data clearly demonstrated the co-existence of 

two types of cells in same ICC chambers. Diffusion of nutrient and cell-cell interactions 

within ICC scaffolds were also evidenced by simplified Brownian Dynamics (BD) and 

Monte Carlo (MC) simulations taking advantage of its unique 3D morphology. 
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5.2. Materials and Methods 

5.2.1. ICC scaffold preparation 

CCs were prepared with PS beads (D=100µm) following the protocol in Chapter 

2. Final scaffolds have 6.5mm diameter and 0.5-1mm thickness. All pores are open to the 

outer fluid which facilitates cell motility and media exchange in a dynamic culture 

condition.  

5.2.2. LBL 3D surface modification 

The surface of polyacrylamide hydrogel ICC scaffolds was coated with sequential 

layers of negatively charged 0.5% (w/w) clay platelets (average dimension of 1nm 

thickness and 70-150nm in diameter, Southern Clay Products) dispersion and positively 

charged 0.5% (w/w) PDDA (MW=200,000, Sigma) solution utilizing a LBL surface 

modification technique. ICC hydrogel scaffolds were immersed first in PDDA solution 

for 15 minutes and rinsed in deionized water for 30 minutes. Then the scaffolds were 

immersed in clay solution for 15 minutes and rinsed again with deionized water for 30 

minutes. This LBL coating cycle was repeated 5-10 times. The initial and outermost layer 

was PDDA and clay nanoparticles, respectively. To demonstrate 3D LBL coating on 

hydrogel ICC scaffolds, negatively charged fluorescein isothiocyanate (FITC) conjugated 

albumin (Sigma) was utilized instead of clay nanoparticles. An ICC hydrogel scaffold 

coated with ten bilayers of FITC-albumin and PDDA was imaged under confocal 

microscope (Leica SP2) with 10X objective lenses. Confocal series images taking 160µm 

depth were three dimensionally reconstructed using imaging software. In order to 

visualize polymeric component, fluorescent-PDDA was prepared taking advantage of 
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electrostatic interactions between FITC (negatively charged) and PDDA (positively 

charged). Unbound FITC molecules were separated via dialysis process.  

5.2.3. Cell cultures 

Human thymic epithelial cells Hs202.Th (CRL-7163) and human premyeloblasts 

HL-60 (CCL-240) were purchased from ATCC (Manassas, VA).  Hs202Th cells were 

grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% FBS 

(GIBCO, CA).  HL-60 cells were cultured in Iscove’s Modified Dulbecco’s Medium 

(IMDM) containing 20% FBS. The cells were maintained at 37ºC with 5% CO2 and 

media was changed twice a week until they reached a confluent or desired population on 

T-75 culture flasks.  

5.2.4. Dynamic 3D co-culture 

 Co-culture was carried out in a 10ml rotary cell culture vessel (RCCS-4D, 

Synthecon).  Scaffolds were sterilized by soaking in 70% EtOH for one hour followed by 

washing in PBS for 15 minutes twice. 2x105 Hs202.Th cells were placed in a culture 

vessel, which subsequently was filled with medium. The rotation speed was set at 12 rpm 

for the first 12 hours and later it was decreased to 8 rpm, the normal speed.  The medium 

was replaced once every three days. On day 6, the HL-60 cells were stained with 5µM 

chloromethyl derivatives fluorescent dye (CMRA) (Molecular Probes) and the Hs202.Th 

cells growing on the scaffold were stained with carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) (Molecular Probes). After that, the culture vessel medium 

was changed to IMDM supplemented with 20% FBS, and 1x106 pre-stained HL-60 cells 

were seeded. Co-culture was maintained for 5 days.  
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5.2.5. Modeling approach 

The basic modeling problem is the escape of a particle trapped in an enclosed 

cavity through an aperture on the surface of the cavity.[268-271] This problem can be 

greatly simplified when the size of the aperture is small enough, because then it can be 

assumed that before being evacuated, the particle samples the cavity thoroughly. Under 

these conditions, the escape of the particle is a rare event that is characterized by a single 

exponential decay.[266, 271] Mathematically, it may be represented as  

S (t) = exp (- 4bDo/V)            (1) 

S(t): survival probability of the particle after a time t has elapsed 
Do: diffusivity of the particle in free solution 
b: radius of the circular aperture 
V: volume of the cavity 
 

For spherical cavities arranged on a simple cubic lattice connected to neighboring 

cavities by pores of radius b, the effective diffusivity is given by Deff /Do=6b/πR where R 

is the radius of the spherical cavity[272, 273]. Generalizing their expression for cubic 

lattices with co-ordination number Z (Z = 6 for a simple cubic lattice), we get  

Deff /Do = (Z/π) (b/R)          (2) 

Eq. (2) implies that escape of a particle from a cavity is proportional to the 

number of openings Z, i.e. the openings operate independently of each other. However, as 

the number of openings per cavity increases, there is significant cross-talk between 

adjacent openings, and the diffusion characteristics may deviate from Eq. (2).[271] This 

fact also underscores the importance of having the ordered scaffold for which the location 

of openings is geometrically defined. In case of random distance between openings as in 
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many chaotically organized scaffolds, the degree of cross-talk between them is uncertain. 

Here cavities formed from spheres close-packed on a face-centered cubic lattice of ICC 

were considered, for which Z=12. BD and MC simulations were used to describe the 

diffusion characteristics of particles in this lattice and compare it with Eq. (2).  

To model the cavities we first laid down spheres of radius Ror in a close packed 

hexagonal lattice so that each sphere had 12 other spheres touching it, which produces 

ICC geometry of the scaffolds. To form the intercavity pore of radius b we ‘‘enlarged’’ 

the original spheres slightly. This expansion caused the spheres to interpenetrate with a 

lens-shaped region of interpenetration. The edge of the lens defined the perimeter of the 

intercavity pore. From Figure 5.1A, it may be seen that R2 = Ror
2 + b2, when b/Ror~0.1, 

R/Ror~1.005. The volume of the lens, thus formed, can be derived using straightforward 

geometrical arguments to be 

Vlens = 2πR3 (2/3 + 1/3 (Ror/R)3(Ror/R))     (3) 

The void fraction for a close-packed FCC lattice is π/3√2. After the expansion of 

the spheres the void fraction increases to 

φ = π / 3√2 (9 (R/Ror)2 – 5 (R/Ror)3 -3)      (4) 

Again, for b/Ror~0.1, φ increases slightly from 0.7405 characteristic of close-

packed spheres, to φ = 0.7515. We then uniformly distributed the nutrients in the matrix 

of interconnected cavities. In the simulations, we considered only Brownian and excluded 

volume effects. 

For point particles, we did BD simulations using reflecting boundary conditions 

for collisions with cavity walls. The time-step ∆t was chosen so that the characteristic 
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hopping distance √6D0∆t was 0.05b. We found that decreasing ∆t such that √6D0∆t = 

0.01b did not produce statistically important differences. During the course of the 

simulations we observed a set of trial moves which involved the migration of a nutrient 

from one cavity to another without passing through the interconnecting pore, but instead, 

by jumping over the cavity walls. Such moves obviously violated excluded volume 

conditions and we employed reflecting boundary conditions to rebound the particles back 

into the original cavity. 

For finite-sized particles, we did only dynamic MC simulations, choosing the 

same hopping distance, ∆r=0.05b. Any trial move that violated excluded volume 

constraints with the walls or with any of the other particles was rejected. Also, trial 

moves which involved migration of nutrients from one cavity of ICC to another by 

jumping over cavity walls were also rejected. We found that for point particles, both the 

BD and MC calculations gave essentially indistinguishable results.  

The parameters used in the calculations were normalized as follows: radius of the 

original spheres, Ror=1.0, radius of the pore, b=0.1, and free solvent diffusivity 

D0=0.0001. We used periodic boundary conditions and varied the size of the simulation 

box (for different concentration of nutrients) such that the number of nutrients was 

greater than 1000. We collected position data of all the particles at fixed intervals, and 

calculated the mean squared displacement (MSD) and diffusivity using standard methods. 
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5.3. Results and Discussion 

5.3.1. Modeling molecular diffusion and cellular interactions 

Molecular diffusion in 3D ICC geometry 

The solubility of oxygen in water at 25°C is approximately 8mg/l, which 

corresponds to a concentration of approximately 1mM. Assuming the radius of a cavity in 

the ICC lattice to be 100µm, which is a median of cell culture scaffold size used 

previously in the experiments with hepatocytes and bone marrow cells[186, 188, 271], 

the number of oxygen molecules per cavity is of the order of 1012. Simulating such a 

large system is an almost impossible task. However, we find that the radius of an oxygen 

molecule along with its solvation shell is about 0.5nm[274], and that the size of a glucose 

molecule which is another important nutrient, is also about 1nm.[275] Therefore, the size 

of these nutrients is about 10-4 b, where b is the size of the pore connecting two cavities. 

It thus seems reasonable to treat these nutrients at point particles. For the ICC scaffold 

geometries relevant to cell organization and culturing, this mathematical approach will 

most likely hold in all possible cases. This assumption eases the computational problem 

dramatically. Point particles have no dimension and hence do not exert any repulsive 

excluded volume force on each other. Thus, they cannot ‘‘see’’ neighboring molecules 

and the diffusion characteristics are independent of the concentration of the nutrients in 

the medium in which they diffuse. This is brought out in Figure 5.1B which compares the 

ratio of D(t) to D0 of a point particle at different concentrations.  t* = R2/6D0 is the time-

scale at which a particle understands that it is confined in the cavity. As expected, the 

diffusivity falls to its effective long term value around t/t* ~ 1, and is independent of the 

concentration. 
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The average value of the effective diffusivity is Deff=0.3D0. If we use Eq. (2) to 

compute the effective diffusivity, we obtain Deff=0.382D0. As the co-ordination number Z 

increases, the probability that the particle has not completely sampled the cavity before it 

escapes also increases, as mentioned previously. If we define t`= 2R2/Deff [272]to be the 

characteristic time of escape and identify t* with the characteristic time to sample the 

cavity, then a small value of t*/t` signifies that the particle has sampled the cavity well. 

Using Eq. (2), we find that even for Z=12, t*/t`= 0.5Deff/D0= 0.191, which indicates that 

it might still be reasonable to assume that the cavity is well sampled.  

The observed discrepancy between Deff and D*
eff could, therefore, be a 

consequence of ‘‘cross-talk’’ between the adjacent apertures. Each pore occupies only a 

small fraction (~0.25(b/R)2 ~0.0025) of the surface of the sphere. However, as elaborated 

in Berg et al. for a somewhat different case, when a number of small apertures are evenly 

distributed on the surface of a sphere their cooperative behavior can be significant. 

Crudely, this may be understood as follows: the presence of an aperture depletes the 

density (or alternatively likelihood of existence) of particles in its neighborhood. This, in 

turn, curtails the rate at which particles flow through adjacent apertures. Thus, eventually, 

the net transport of nutrients is less than what it would have been, if the apertures truly 

operated independently of each other. 

Additionally, Figure 5.1B also depicts the diffusion characteristics of point 

particles at low concentration (C = 1.0 particles/volume), when the size of the aperture is 

halved to b=0.05. It can be seen that Deff decreases, as expected, to an average value of 

0.165D0. If the conditions under which Eqs. (1) and (2) were strictly satisfied then Deff 

would have been proportional to the size of the aperture b. We suspect that the value 
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observed from simulation Deff (b=0.05) = 0.165D0 is greater than what we would expect 

naively, i.e. 0.5Deff (b=0.1) = 0.150D0 because of decreased cross talk between the pores. 

If there was no cross talk between the pores then D*
eff (b=0:05) = 0.191D0. 

 

Figure 5.1 Molecular diffusion modeling in ICC geometry (A) The geometrical relation 
between the original radius of close packed spheres, Ror, the radius of the inter-cavity pore, b and 
the radius of the swollen spheres, R is given by R2= Ror

2 + b2: The difference between Ror and R 
has been exaggerated for clarity. The volume of the shaded lens shaped region is given by Eq. (3).  
(B) Effect of concentration (thick, dotted and dashed lines) and size of aperture (thin line) on the 
effective diffusivity of point particles diffusing in an ordered matrix of spherical cavities. As the 
size of the aperture is reduced from b=0.1~0.05 (C=10.0), the effective diffusivity, Deff is 
approximately halved from 0.300 to 0.165.  
 

Cellular interactions within ICC geometry 

Floating cells can travel deep into the scaffold through interconnecting channels 

while they are temporarily entrapped in an ICC chamber due to limited channel numbers 

and size. To study the interaction of a floating cell with the scaffold quantitatively, we 

constructed a simplified BD model. The cell was treated as a hard sphere of radius, acell 

that is suspended in an ICC geometry, composed of hollow spherical chambers of 

nominal radius, R, connected by channels of radius, b. To simplify the treatment, we 

assumed that the fluid inside the scaffold was quiescent and that the motion of the cells 
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was purely diffusive. Under the assumptions stated above, the motion of the cell results 

from a balance between the drag force and the random Brownian force,  

ζ dr/dt =FB              (5) 

Where ζ=6πηacell is the hydrodynamic drag exerted by the solvent of viscosity (η) 

on a cell of radius (acell), and r is the position vector of the center of mass of the cell.  The 

Brownian force, FB, satisfies the fluctuation-dissipation theorem[276] which necessitates 

<FB> = 0, and <FBFB> = 2kBTζI.  Here, I is the unit tensor, kB=1.38x10-23 JK-1 is 

Boltzmann's constant, and T is the absolute temperature. 

The diffusivity (D) was obtained from the hydrodynamic drag via the Einstein 

relation[276], D=kBT/ζ.  In accordance with microscopy measurements, we took 

R=50μm, b=12.5μm, and acell=7.5μm. Thus, ζ=6π(1cP)(7.5μm)=1.414x10-4g/s, and D= 

kBT/ζ=2.91*10-2μm2/s.  We used the algorithm outlined in Larson[276] to implement the 

BD simulation, choosing the simulation time step, dt, so that √6Ddt ≈ 0.05acell.  We 

employed reflecting boundary conditions to model collisions between the cell and the 

scaffold. 

Grigoriev et al. considered a dimensionless Brownian particle trapped inside a 

spherical chamber of volume V.[268] They estimated that the time, t*, that it takes for the 

particle to escape from a small circular hole of radius b on the surface of the chamber, is 

given by t*=V/4bD, where D is the diffusivity of the particle. We adapted the expression 

for t* to obtain a crude estimate for the escape time of a Brownian particle of finite size 

from an ICC scaffold as, 

t*
ICC = (π/3ZD) (R-acell)3/(b-acell)      (6) 
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where Z=12 is the co-ordination number of the ICC lattice.  From Eg. (6), we obtained 

t*
ICC ~ 5.5*105/12 seconds ~ 12 hours. Thus, the ICC geometry provides very suitable 

geometry for cell interactions due to partial entrapment of the cells in the cavity. 

We simulated the dynamics of the cell in the ICC scaffold using BD, and recorded 

its trajectory from t=0 to t=1000 days. Over this period, the cell visited several chambers. 

From the simulation, we observed that by the time the cell vacated a chamber by escaping 

through the interconnecting channel to another chamber, it thoroughly, and uniformly, 

sampled the whole chamber. In other words, the amount of time the cell spent in any 

region of the chamber was proportional to the volume of that region. Figure 5.2A shows a 

cross section of a spherical chamber that has been divided into shells of equal thickness, 

ΔR=acell. These shells do not have the same volume. For illustration, if we approximate 

the volume of a shell by, ΔVshell = 4πRi
2 ΔR, where Ri is the inner radius of the shell, we 

can see that the volume of the outer shells is greater than that of the inner shells. As 

mentioned previously, the center of mass of the cell resides in a shell, in proportion to the 

volume of that shell. Thus, it spends a significant fraction of time (about 41%, see Figure 

5.2B) in the outer-most shell, where the distance between the surface of the cell and the 

inner surface of the chamber is less than or equal to the radius of the cell. (Figure 5.2C)  

Thus the ICC geometry fosters contacts between the cell and the matrix surface or 

between the suspension and adherent cells in a co-culture.  
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Figure 5.2 Modeling results of cell entrapment and interaction within ICC geometry. (A) 
Schematics of ICC topology and cell contacts within ICC geometry. Floating HSCs enter into a 
pore through interconnected channels that have diameters 2-3 times larger than that of a single 
cell. Temporarily entrapped HSCs undergo intense contacts with ICC pore surface where stroma 
cells grow. (B-C) Modeling data of radial probability distribution of a finite-sized Brownian 
particle of radius 7.5µm diffusing in a spherical ICC chamber obtained from BD simulations, 
when the chamber is divided into shells of the same (B) thickness, and (C) volume. In (B), the 
dotted arc and the disc represent the inner surface of the chamber, and the cell which is modeled 
as a hard sphere, respectively. The thickness of each shell is equal to the radius of the cell, acell. 
From (C), it can be seen that the cell spends the same amount of time in each of the equi-volume 
shells, whereas in (B), it spends more time in the exterior shells due to their greater volume. 

 

5.3.2. LBL 3D surface modification 

The LBL molecular assembly process is a novel film deposition technique 

utilizing electrostatic interaction between oppositely charged poly electrolytes[88]. The 

process consists of sequential dipping of a substrate into solutions of oppositely charged 

species alternating with water rinsing. In each dipping cycle, a monolayer of the species 

is adsorbed to the substrate while the rinse step removes their excess. The next dipping 

gives rise to enhanced adsorption of oppositely charged species, which is also 
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accompanied by the switch in the surface charge. The film thickness can be adjusted by 

repeating this cycle as many times as one needs, and the composition of films can be 

engineered through the sequential deposition of different materials without the need of 

complex chemistry. Notably, a uniform coating can be achieved in any substrate 

including a complex 3D porous ICC geometry, as long as fluid transport in and out of the 

sample is not severely constrained. This is probably the only technique that can create 

organized layered structures on cell scaffolds with intricate porosity and 3D 

organization[87]. (Figure 5.1B) 

To provide adequate adhesion of stromal cells, the pore surface of ICC hydrogel 

scaffolds was coated with clay/PDDA multilayer following the LBL technology[277]. 

PDDA is a positively charged polymer, while clay is negatively charged nano-platelets. 

(Figure 5.1A) The flat shape of clay NPs effectively covered the hydrogel surface 

combined with PDDA like brick-and-mortar. As a result, a thin layer of nano-composite 

was prepared on the surface of the scaffold. The hybrid organic-inorganic composite is 

mechanically compatible with the hydrogel and does not delaminate. Coated clay NPs 

also created nanoscale roughness, increased charging on the surface, and created much 

stiffer film than hydrogel[277]. Increase of Young modulus was shown to be the primary 

factor determining the adhesion of cells to materials[16, 278]. These synchronous effects 

promoted cell adhesion. Normally five bilayers of clay/PDDA effectively changed the 

surface property from cell repulsive to cell adhesive, and successfully support stromal 

cell adhesion on the hydrogel scaffold. In addition, nano-composites have minimal light 

scattering because the characteristic diameter of the inorganic component is smaller than 
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the wavelength of light, which is quite relevant for optical interrogation of biological 

processes.  

 

Figure 5.3 Schematic of clay/PDDA LBL surface coating of ICC hydrogel scaffold.  (A) 
Schematic of PDDA and Clay nanoparticles. (B) Schematic of LBL surface coating procedure.  

 

At first, the clay/PDDA LBL film formation was characterized on 2D hydrogel 

surface. Compared to glass slides substrate, hydrogel surface retains quite different 

physical and chemical properties such as high porosity, low mechanical strength and 

hydrophilicity, which caused somewhat dissimilar LBL film growth patterns. For 

instance, the LBL components did not cover the entire hydrogel surface during initial few 

dipping cycles rather than partially coat. Normally it took 3-5 cycles to completely cover 

the hydrogel surface as confirmed by gradually disappeared pores. The LBL coating on 

hydrogel surface was also thicker than a glass slide probably due to its porous hydrophilic 

structure. However, weak mechanical strength of the hydrogel made hard characterize the 

growth pattern and thickness of the LBL film. In addition, different cell adhesion and 

growth patterns were observed. For example, cells were fully spread on a glass substrate 

while they were less stretched on a Clay/PDDA coated hydrogel surface. (Figure 5.4E-F)  
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Figure 5.4 Clay/PDDA LBL film formation on 2D hydrogel and cell growth pattern  Gradual 
surface coverage of LBL coating (A) 1 bilayers, (B) 3 bilayers, (C) 5 bilayers, and (D) 25 bilayers 
on a thin 2D hydrogel substrate. Stromal cell adhesion and growth on (E) a glass slide and (F) 2D 
hydrogel surface 5 bilayers of clay/PDDA LBL film layered.  
 

Next, the LBL coating was applied to 3D hydrogel scaffolds. Since both clay and 

PDDA do not have fluorescent, the feasibility of 3D LBL coating was confirmed by 

employing fluorescent technique. For example, negatively charged FITC-conjugated 

albumin properly interacted with positively charged PDDA polymer. As a result, nicely 

formed 3D albumin/PDDA LBL film was observed under confocal microscope. (Figure 

5.5B) In order to directly visualize the clay/PDDA multilayer, FITC was electro-statically 

bound to PDDA before using. Although the clay/PDDA LBL film quality was less 

uniform compared to the film prepared on a glass slide, it was successfully extended to 

the surface coating on ICC hydrogel scaffolds that supported stroma cell adhesion and 

growth. (Figure 5.5C) 

 



125 

 

Figure 5.5 Confocal images of LBL film formation and stromal cell adhesion on ICC 
hydrogel scaffolds (A) Ten bilayers of fluorescent labeled PDDA (green) and clay NPs on ICC 
hydrogel scaffold soaked in rhodamin solution (red) (B) 3D reconstructed confocal image of ICC 
hydrogel scaffold after five bilayers of FITC-albumin(green)/PDDA LBL coating. (C) HS-5 bone 
marrow stromal cell adhesion on the scaffold after five bilayers of clay/PDDA LBL coating.  
 

5.3.3. Dynamic 3D co-culture 

Human thymic epithelial cells and human premeylote monocytes were co-

cultured in a rotary cell culture bioreactor. Rotary motion induced convective flow, and 

the scaffold geometry utilized this flow as a continuous driving force for the cell 

movement. After five days of co-culture, the hydrogel ICC scaffolds were imaged 

through a confocal microscope.  Different emission ranges of fluorescent dyes were used 

to stain the thymus cells and monocytes with green and red, respectively. Thymic 

epithelial cells attached to the cavity were observed as green circles, and floating 

monocytes were imaged as red spots. (Figure 5.6) Although many monocytes were 

diffused out of the scaffold during the sample preparation, some of them remained 

entrapped inside the pores. Confocal cross-sectional images reveal that suspended cells 

were distributed uniformly throughout the scaffold. (Figure 5.6D)   
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Figure 5.6 Confocal images of 2D and 3D co-culture models Representative image of co-
culture (A) on a 2D substrate and (B) in an ICC scaffold: thymic epithelial cells (green) and 
monocytes (red). (C) Top area image shows the surface of the scaffold was densely covered with 
thymic epithelial cells. Most of monocytes around the edge of the scaffold were released out. (D) 
A cross-sectional image after cutting the co-cultured ICC scaffold with a razor blade shows 
decreasing thymic epithelial cell density moving into the inside of the ICC scaffold. Monocytes 
were distributed the whole ICC scaffold and similar number of cells were entrapped at each pore. 
 

Co-cultured hydrogel ICC scaffolds were dehydrated and observed under SEM. 

The dehydration process deformed the structure, which is the reason for dimensional 

differences compared to the confocal images. It was found that the scaffold exterior was 

covered densely with thymic epithelial cells, and their population reduced the inward 

movement of other epithelial cells. (Figure 5.7A)  Secondly, epithelial cells migrated 

between pores through interconnected channels, and some colonies expanded over 
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several pores. (Figure 5.7C) Thirdly, a few suspension cells were entrapped inside when 

they were observed at the interior of the scaffold in SEM cross-sectional images. (Figure 

5.7B) It suggests that monocytes travel deep into the ICC scaffolds while temporarily 

entrapped in an ICC pore before moving into neighboring pores due to the finite size and 

number of interconnecting channels. 

 

Figure 5.7 SEM images of 3D co-cultured ICC scaffolds (A) Cross-sectional image of the 
scaffold’s interior, (B) Entrapped monocytes, and (C) Thymic epithelial cells covering pores and 
channels.  
 

 

5.4. Summary 

A clay/PDDA LBL thin film successfully formed on an ICC scaffold pore surface 

which in turn significantly improved adhesion and growth of stromal cells. The unique 

geometry of ICC scaffolds accommodated two different types of cells within a same 

chamber. Floating cells mimicking HSCs were undergo extensive cell-cell and cell-

matrix interactions. Such cellular interactions within the ICC scaffold were demonstrated 

in both experimental and modeling works. Confocal images clearly showed that two 

types of cells co-exist in the same pore. Modeling results indicated that entrapped 

suspension cells spent a significant fraction of time in the vicinity of the ICC chamber 

wall or the stromal cell layer on the pore surface.    



128 

 Well controlled multi-scale structures which can build real-size organ systems and 

generate the essential subcellular morphology, are a key factor for the successful 

investigation of cell-molecular and cell-cell interactions. It is obvious that the full 

function of the tissues and organs cannot be recovered without rebuilding the ultra 

structure of the tissue itself. Proposed ICC scaffolds and surface modification utilizing a 

LBL technique will be excellent approach for this purpose. ICC scaffold structure 

generates super- and cellular- scale microenvironment for intense cell contacts with other 

types of cells or matrix. On this surface, various insoluble signaling molecules such as 

ECM components, membrane bound receptors and ligands can be incorporated through a 

LBL method which can produce subcellular, nanoscale resolution environment for 

cellular receptor-molecular interactions. In particular, this could greatly facilitate the 

study of B and T cell development from the stem cells which requires understanding and 

controlling precise 3D molecular interactions. 
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CHAPTER VI 

ENGINEERING PRIMARY LYMPHOID TISSUES 

 

6.1. Introduction 

Development of in vitro human HSC niches that can recapitulate the bone marrow 

and thymus function is imperative for understanding the fundamental biology of human 

hematopoiesis because most information on HSC self-renewal and lineage commitment 

has been based primarily on murine studies. Although rodent studies have provided 

important fundamental insights into hematopoietic development, there is much that can be 

learned regarding human hematopoiesis through the use of in vitro human hematopoietic 

systems that are unavailable in non-human models. For instance, such established 

functional tissue analogues can greatly serve as a valuable tool to identify specific 

signaling factors and their precise roles in hematopoiesis by systematically manipulating 

major experimental parameters. In vitro production of human HSCs and lymphocytes are 

also clinically important for the development of immune therapeutics such as monoclonal 

antibodies and cancer vaccines. Besides that, artificial analogs of primary lymphoid tissues 

can considerably accelerate the testing of a variety of types of drugs. 

However, construction of ex vivo analogs of lymphoid tissues is quite challenging 

since hematopoiesis is a complicated and tightly regulated process involving multiple 
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signaling factors.[279] (Figure 6.1A) Still the precise nature of HSC self-renewal 

and differential niches remains uncertain. Nevertheless, recent research efforts have 

discovered that supporting stromal cells and 3D ECM microenvironments are important in 

directing HSC self-renewal and differentiation. Here, stromal cells play a critical role in 

both presenting membrane bound ligands and secreting soluble signaling proteins[279-

288]. 3D ECM microenvironments coordinate cellular interactions between HSCs and 

stromal cells as well as spatio-temporal delivery of various signaling molecules to the 

cells[279, 287]. (Figure 6.1B) 

Although the native bone marrow environment can be recreated on 2D culture to 

some extent by the addition of proper growth factors and by the presence of co-cultured 

stromal cells, it is inefficient for the purpose of replicating hematopoiesis to produce 

functional leukocytes. Utilizing 3D cell scaffolds that induce more intensive cell-cell 

contacts between HSCs and stromal cells appears promising to provide the appropriate 

developmental niches[289-291].  

Similarly, three-dimensionally organized thymic stromal cells create a distinctive 

intrathymic 3D microarchitecture which coordinates the various signaling milieus.[292-

294] Thymocytes passing through the interstices of the 3D network of thymic stroma 

undergo extensive physical contacts with stromal cells that is the main mechanisms to 

promote T-cell differentiation and maturation. Due to such complexity, until recently the 

only reliable in vitro culture model for the successful T-cell differentiation was the fetal 

thymus organ culture (FTOC) which is composed of a three-dimensionally reaggregated 

dissection of fetal thymic tissues.[295-297]  
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Figure 6.1 Schematics of hematopoiesis and hematopoietic stem cell niches. (A) 
Hematopoiesis focused on B-/T-lymphocytes differentiation in primary lymphoid tissues and (B) 
Components consisting HSC niches.  

 

One of the difficulties in the development of a bone marrow and thymic analog is 

the availability of a suitable 3D matrix, which must possess sufficiently large surface area 

for cell attachment, high porosity for cell migration and transport of nutrients, substantial 

transparency for inspection of constructs with optical techniques, and variability in 

scaffold structure to control cell-to-cell contacts. Even though various types of 3D 

matrices have been introduced for this purpose, their approaches remain largely empirical 

rather than systematic due to limited controllability and reproducibility of microscale 

structures. For that reason, there has been little attention to the design of pore geometry 

that can effectively mimic the functional 3D microenvironments.  

In this chapter, ICC hydrogel scaffolds combined with a LBL surface engineering 

technique applied to create artificial human primary lymphoid tissues. ICC scaffold design 

clearly exhibited marked advantage of 3D organization for hematopoiesis and resulted in 

acquisition of structural requirements critical for a successful bone marrow and thymus 
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analog. (Figure 6.2) Regarding bone marrow niche, it was demonstrated that 3D dynamic 

co-culture model is capable of supporting substantial expansion of CD34+ HSCs and B-

lymphocyte differentiation, two main functions of bone marrow.  Production of functional 

B-cells was substantiated by enhanced secretion of immunoglobulin after exposing the 

culture to lipopolysaccharide (LPS). 

 
Figure 6.2 Morphological comparison ICC geometry and supporting bone marrow and 
thymic tissues. (A) ICC geometry, (B) Bone marrow, and (C) Thymic tissues. 
 

In terms of thymic niche, it focuses on notch signaling, an essential cell-cell 

signaling pathway promoting T-cell differentiation[298]. Specifically 3D micro-

architecture and notch ligand effects were combined utilizing LBL surface coating 

technique under the hypothesis that 3D ICC scaffolds coated with DL-1 notch ligand 

would considerably substitute for the structure and function of thymic stromal in addition 

to essential cytokines. The effectiveness of 3D ICC topology and the bioactivity of LBL-

immobilized DL-1 notch ligands in ex vivo T-cell development of human HSCs were 

investigated.  
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6.2. Materials and Methods 

6.2.1. ICC scaffold preparation 

CCs were prepared with PS beads (D=100µm) following the previous method. 

Final scaffolds have 6.5mm diameter and 0.5-1mm thickness. All pores are open to the 

outer fluid which facilitates cell motility and media exchange in a dynamic culture 

condition.  

6.2.2. Bone marrow niche preparation 

Clay-PDDA multilayer preparation 

The surface of ICC hydrogel scaffolds was coated with Clay and PDDA following 

the LBL surface coating procedure in Chapter 5. The LBL coating was started with a 

PDDA layer and finished with a Clay layer.  

Bone marrow stromal cell culture 

Human bone marrow stromal cells HS-5 (CRL-11882, ATCC) were cultured with  

DMEM with 4mM L-glutamine, 4.5g/l glucose, 1.5g/l sodium bicarbonate, 10%(v/v) FBS, 

and 1%(v/v) penicillin-streptomycin. Human fetal osteoblasts hFOB 1.19 (CRL-11372, 

ATCC) were maintained with 45% Ham’s F12 medium, 45% DMEM, 10% FBS and 1% 

antibiotic. Once cell growth reached approximately 80% confluence, they were detached 

from the culture flask using 0.25%(v/v) Trypsin-EDTA solution and 105 cells were seeded 

on top of UV sterilized scaffolds. In order to characterize stromal cell growth in 3D 

scaffolds, HS-5 cells were stained with 5µM CFSE dye (Invitrogen). The cells growing 

within ICC scaffolds were imaged under a Leica SP2 confocal microscope with 20x 

objective.  

Human CD34+ HSCs isolation 
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Peripheral bloods were obtained from Gulf Coast Blood Bank or from donors (18-

50 years of age) after informed consent under protocols that were reviewed by the 

Institutional Review Board of The University of Texas Medical Branch. Cord blood and 

bone marrow were purchased from Lonza Inc. (Allendale, NJ).  The mononuclear 

leukocyte (MNL) fraction was isolated from these three CD34+ HSC sources using Ficoll 

density gradient separation medium (Amersham-Biosciences, NJ). CD34+ HSCs were 

enriched by counter current centrifugal elutriation of MNLs in a Beckmann J6M elutriator 

(Beckman Instruments, USA) using a Sanderson chamber. A Masterplex peristaltic pump 

(Cole Parmer Instruments) was used to provide the counter current flow. RPMI 1640 

supplemented with 2mM glutamine, 100units penicillin G and 100µg/ml streptomycin and 

10% heat inactivated defined fetal calf serum (Hyclone, Logan, UT) was used as 

elutriation medium.  3~6 x 106 cells were loaded at 3000rpm and HSCs were isolated using 

a step-wise reduction of rotor speed until the appropriate cell diameter population, 6-7 µm, 

of CD34+ enriched cells was collected. 

 Immunophenotypic analysis of elutriation with 5-7 µm diameter HSCs at the time 

of isolation and seeding of the scaffold showed that these cells were lin-1 mature leukocyte 

marker negative, CD34+ cells were further purified by negative selection of any remaining 

lin-1 positive or mature cell types using Dynall magnetic beads or by flow cytometric cell 

sorting using a FACSaria cell sorter.  

Human CD34+ HSCs expansion 

CD34+ cells were labeled with the CFSE dye as previously described[299]. 

Prestained 1-4x104 CD34+ HSCs in 50µl DMEM containing 5% pluronic F-127 were 

seeded in ICC scaffolds. A total of 3~5 scaffolds were placed in a standard 2 or 10ml 
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culture vessels mounted on a rotary bioreactor with a rotational speed at 5rpm. In a subset 

of experiment, the scaffolds were seeded with stromal cells from human bone marrow 

aspirates. After 3 days of stromal culture, non-autologous CD34+ HSCs were introduced 

to the culture vessel. HSC/stromal cell co-cultures were also incubated in plastic Petri 

dishes in order to compare 2D versus 3D cell cultures.  

Inducing B-Cell differentiation 

In order to induce B-cell differentiation, CD34+ cells were co-cultured with 

primary cell lines from bone marrow aspirates which included cells positive for 

CD105(100%), CD166(100%), CD44(95%), CD14(1%), CD34(1%) and CD45(<1%). 

Considering these surface markers, they were part of the stromal cell population and at 

least one cell type of them was actually of osteoblasts lineage as it was positive for 

osteonectin. These primary stromal cells formed densely populated layers similar to 

natural bone marrow and replicated the actual bone marrow stroma better than the feeder 

layer made from a single cell type. Growth factors used to promote hematopoiesis 

included interleukin (IL)-2 (5ng/ml), IL-7 (20ng/ml), Flt3 ligand (20ng/ml), stem cell 

factor-1 (SDF-1) (20ng/ml), BMP-4 (4ng/ml) and IL-3 (10ng/ml). Additives used to 

promote development of a B-lymphocyte lineage included soluble CD40L (5ng/ml), IL-4 

(10ng/ml), IL-5 (10ng/ml), IL-6 (10ng/ml), IL-10 (10ng/ml), IL-2 (5ng/ml), IL-7 

(20ng/ml), Flt3 ligand (20ng/ml), stem cell derived factor (20ng/ml), IL-3 (10ng/ml) and 

agonist anti-CD40 mAb (5µg/ml). 

To activate B-lymphocytes and induce plasma cell formation, cultures were 

exposed to 3.5µg/ml LPS. Secreted IgM in supernatant fluids from 2D and 3D cultures was 

quantitated using a human IgM ELISA assay (Diagnostic Automaton Inc.) as described by 
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the manufacturer. All samples were run in triplicate and averaged optical densities (OD) at 

450nm were compared to a standard curve using optical densities obtained for each of the 

standards. 

6.2.3. Thymic niche preparation 

Delta-like-1 notch ligand presenting complex LBL preparation 

First, the surface of hydrogel ICC scaffolds was coated with five bi-layers of clay 

and PDDA following the protocol in Chapter 5. Both starting and finishing layers were 

PDDA. Engineered DL-1 notch ligands consisted of the extracellular domain of Delta 1 

ligand fused to the Fc domain of human IgG was gifted from Prof. Irwin Bernstein‘s lab 

(University of Washington). Monolayer of DL-1 notch ligand coating was prepared on 

top of the Clay-PDDA film by immersing the scaffold in a 10µg/ml of DL-1 notch ligand 

solution for 30 minutes. For imaging purpose, the Fc portion of DL-1 notch ligands was 

bound with secondary antibodies conjugated to FITC before using.  

Cell culture 

Fresh unprocessed 25ml of human bone marrow was purchased from Cambrex. 

Mononuclear cells were isolated by utilizing a density gradient centrifugation in Ficol-

Paque solution (GE Healthcare) at 400xG for 30 minutes.  Mononuclear cells derived 

from human umbilical cord blood cells were gifted from Prof. Larry Lasky’s lab (Ohio 

State University). For CD34+/CD4- HSC culture, CD4+ cells were depleted first from 

the mononuclear cells and then isolated CD34+ cells utilizing magnetic activated cell 

sorting kits (MACS) (Milteney Biotech). Approximately 1~1.5x106 CD34+/CD4- HSCs 

were collected. Isolated mononuclear cells and HSCs were cultured in serum-free 

medium (StemSpan: Stemcell Technologies) supplemented with 20ng/ml of Flt-3 ligand, 
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Stem Cell Factor, and Thrombopoietic (Stemcell Technologies). Five scaffolds were put 

in a 10 ml rotary cell culture vessel and approximately 0.2x106 HSCs were seeded in each 

vessel. The rotary culture was maintained at 15rpm for 4 weeks and culture medium was 

changed in every 3 days. Experiment repeated three times and similar results were 

obtained.  

Characterization 

Cellular morphology and distribution within ICC scaffolds were characterized 

under SEM (FEI Nova NanoLab). HSCs-ICC scaffolds were fixed with 2.5% 

glutaraldehyde solution overnight and dehydrated through a series of ethanol solutions. 

Dehydrated samples were further freeze dried and then coated with gold using a sputter 

coater. Differential stage of HSCs was determined by surface markers analysis. HSCs 

growing ICC scaffolds were fixed with 4% formaldehyde and blocked with 10% normal 

goat serum to prevent non-specific binding of antibodies. Primary antibodies CD34, 

CD117, CD4, CD7, CD8 and TCRα (Santa Cruz biotechnology) diluted in blocking 

solution were applied for one hour. After washing, diluted secondary antibodies 

conjugated to Alexa fluro 488 and 568 dyes (Invitrogen) were introduced for one hour. 

The antibody stained scaffolds were visualized under confocal microscope (Leica SP2) 

with 10x and 20x objective. 

 

 

 

 

 



138 

6.3. Results and Discussion 

6.3.1. Bone marrow niche for ex vivo HSC expansion 

The two basic functions of the bone marrow are self-renewal of an 

undifferentiated population of HSCs and production of fully functional B-

lymphocytes.[300] Artificial bone marrow construction starts with isolating HSCs. 

However, surface antigens exclusively presented in HSC are not discovered yet, so the 

combination of multiple surface markers such as CD34, CD38, Lin, CD90, and CD117 

have been commonly used to identify and isolated them from mixture of blood cell 

populations.[301] Among them CD34 is the most commonly accepted surface marker in 

enriching HSCs, since the clinical importance of CD34 cells has been extensively 

reported in bone marrow transplantation.[302-304] Obviously a significant portion of 

CD34+ cells includes HSCs having a long term multi-lineage engraftment capability.  

CD34+ HSCs were isolated from human peripheral blood, umbilical cord blood 

or bone marrow. All cells were positive for CD34 and were lineage-1 (lin-1) negative 

when seeded onto the scaffolds. A small portion (1-2%) of CD34-expressing cells was 

positive for CD150, a cell marker also associated with long term multi-cell lineage 

reconstitution in irradiated mice[286]. Analogous cultures were also made on 2D plates 

to establish the importance of the 3D geometry in ICC scaffolds.   

Throughout this study ICC hydrogel scaffolds having 100µm of pore diameter and 

20-30µm of channel sizes were mainly used. These diameters were chosen because they 

provide efficient contacts between adhesion and dispersion cells, and allows for natural 

cell migration through the channels between the cavities, which is imperative for 

replication of hematopoietic tissues. To provide adequate adhesion of bone marrow 
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support cells, hydrogel matrixes were coated by clay/PDDA multilayer following the LBL 

technology in Chapter 5. Once stromal layer formed, CD34+ HSCs were introduced and 

the co-culture maintained in a dynamic culture condition utilizing a rotary cell culture 

system. (Figure 6.3) 

 

Figure 6.3 Schematic of 3D co-culture model for bone marrow niche. (A) Optimized pore 
(D=110µm) and channel (D=20-30µm) size for HSC (D=5~10µm) culture (B) 5 bilayers of 
Clay/PDDA LBL film to support stromal cell adhesion (C) Stromal cells were seeded and 
cultured for three days to allow stromal cell layer formation (D) Introduce CD34+ cells and co-
culture maintains under dynamic condition.  
 

Bone marrow stroma is comprised of a complex reticulum containing 

hematopoietic precursors, as well as non-hematopoietic cells such as fibroblasts, epithelial 

cells, nerve cells, reticular cells, adipocytes and osteoid cells[280-283, 288, 305].  It is 

unknown how many or all of these cell types may be necessary to support the development 

of fully functional leukocytes. To mimic the bone marrow stromal tissue function, human 

bone marrow stromal cells were seeded on scaffolds and cultured for three days which 

allows the formation of a support cell layer on the scaffold surface prior to the addition of 

CD34+ cells. Figure 6.4 shows typical confocal images of stromal and HSC co-cultured 

ICC scaffolds.  
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Figure 6.4 3D co-culture of stromal cell and HSCs. Red is bone marrow stromal cells were 
stained with a red dye and CD34+ HSCs were observed as yellow dots. (A) 2D section and (B) 
3D reconstructed images. 

 

Examination of ICC cultures on day 28 showed the continued presence of CD34+ 

HSCs. There was also formation of numerous actin-rich cell processes, which were absent 

in cell cultures on flat substrates. Similarly, maintenance of a population of CD150+ cells 

was seen in ICC matrices but not in donor matched 2D cultures after 28 days.  Data from 

flow cytometry show that there were significantly higher percentages of CD34+ cells in 

ICC cultures after 28 days, regardless of the original cell source, when compared to 2D 

plate cultures. (Figure 6.5B) This proves that an undifferentiated population of CD34+ 

cells was maintained over time and demonstrates the importance of the chosen 3D ICC 

organization of the cell cultures for replication of reproductive functionality of bone 

marrow. Active proliferation of HSC was also seen from observation of mitotic figures 

and analysis of loss of CFSE fluorescence intensity. (Figure 6.5A) Overall, ICC scaffolds 

demonstrate substantially more CD34+ proliferation than plate cultures.  
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Figure 6.5 Characterization ex vivo expansion of HSCs in 2D and 3D co-culture model on 
day 28 (A) Significantly more CD34+ cells were seen in ICC cultures for (BM) (P=0.01), cord 
blood (CB) (P=0.004), or peripheral blood (PB) (P=0.03) than for donor matched 2D plate culture. 
(n=6) (B) Comparison of 2D versus 3D cell cultures in ICC scaffolds by HSC proliferation 
analysis using CFSE loss for CD34+-derived from BM, CB or PB. (n=5)  

 

Although CD34+ cells hold great potential in various biomedical research and 

clinical practice, their practical usage has been significantly limited primarily due to the 

low number. Normally CD34+ cells comprise only 5% of total cell population in the bone 

marrow where is the best-known location for HSCs.[306] For sufficient engraftment and 

good clinical outcome 2-5 million of CD34+ cells should be transplanted.[306] However, 

in many cases, obtaining such a large quantity of CD34+ cells from the donor is difficult. 

For that reason, development of ex vivo system that can effective expand CD34+ cells has 

been desired in order to improve clinical transplantation.  

Besides effective bone marrow transplantation, the development of artificial bone 

marrow analogue that can continuously produce CD34+ cells is also imperative in drug 

discovery applications. For example, currently immune responses of drug molecules in 

the human body, particularly HSC activity in the bone marrow, cannot be estimated 

simply due to the absence of in vitro model system which recapitulates bone marrow 

functionality. Therefore, functional bone marrow analogue can be directly used for 
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screening immune toxicity of drug candidate compounds in a preclinical stage. In 

addition, it can potentially serve as a platform for developing leukemia drug that can 

regulate HSC activity which in turn simulates the production of immune cells.  

 

6.3.2. Bone marrow niche for ex vivo B-cell differentiation 

Bone marrow is also the site of long term antibody production after viral 

infection[305] and bone marrow stroma has been shown to play a role in plasma cell life 

cycle[264]. Similar to the maintenance of HSCs populations, the production of B-cells is 

an essential component for the development of ex vivo bone marrow, immune system 

studies, development of human monoclonal antibodies, drug evaluation, and disease 

treatment. B-cell development involves a series of stages where close 3D contact between 

bone marrow stroma and the developing B-cell is critical and hard to realize in 2D plate 

cultures.  

To assess the ability of the artificial bone marrow constructs to produce functional 

immune cells, B-lymphocyte production was focused since B-cells normally undergo the 

process of differentiation (as well as negative and positive selection) in the bone 

marrow.[282, 283, 307, 308] After three days of culture, ICC/stromal cell constructs 

containing growth factors to drive the B cell production were seeded with CD34+ HSCs. 

Cell cultures were examined for stage-specific markers of development and functionality 

on days 1, 7, 14, 28 and 40. ICC cultures showed nuclear specific expression of 

recombination activating gene 1 protein (RAG-1) by day 7, cell surface IgM by day 14, 

and co-expression of IgM with IgD by day 28 confirming differentiation of CD34+ into 

mature antigen naive B lymphocytes. (Figure 6.6A) In a separate comparative experiment, 
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more of the differentiating cell population were observed to express CD40 (P=0.0002) and 

IgM/IgD co-expression (P=0.021) in donor matched ICC cultures than in 2D cultures. 

(Figure 6.6B)   

These results show the expression of phenotypic cell surface markers of B-cells, 

which is an important step in development bone marrow replicas; however, this fact does 

not necessarily prove the functionality of the ex vivo generated B-lymphocytes. To 

evaluate the ability of these B-lymphocytes to respond to mitogenic or antigenic 

stimulation and fully mature into antibody producing cells, B-lymphocytes isolated from 

28 day ICC scaffold constructs and donor matched plate cultures were exposed to bacterial 

LPS, a major structural component of the outer wall of gram-negative bacteria and initiator 

of immune response to bacterial infection. Secreted IgM was quantified using a human 

IgM ELISA for all B-cell cultures differentiated from CB-derived, PB-derived and BM-

derived CD34+ cells. Significantly higher levels of IgM were produced from B-

lymphocytes generated in the ICC scaffold regardless of the initial source of the CD34+ 

cells. (Figure 6.6C)  
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Figure 6.6 Characterization of B-cell differentiation from the 3D co-culture model (A) 
Confocal microscopy images of 7μm sections of hydrogel scaffolds supporting CD34+ HSCs 
from cord blood.  DAPI nuclear stain is blue for all images.  (Top) Nuclear RAG-1 (red) 
expression and surface expression of IgM (green), day 7, 200X.  (Middle) Cell surface co-
expression of CD19 (red) and IgM (green), day 14, 630X.  (Bottom) Co-expression of cell surface 
IgM (green) and IgD (red) day 28, 630X. (B) The average expression of CD40, IgM, IgD and 
IgM + IgD co-expression for plate and ICC cultures using CD34+ from cord blood. (n=6) (C) 
Comparison of IgM production for LPS stimulated plate and ICC cultures from CB, PB or BM 
derived CD34+ HSCs. 
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6.3.3. Stromal cell free 3D culture system 

Recent advances of biomaterial-process engineering enabled the recapitulation of 

the hematopoietic process to some extent on biomaterial-based in vitro culture 

environments.[309] Simple and directed preparation of artificial microenvironments was 

exceptionally beneficial to improve experimental controllability and reproducibility. It 

also allowed the systematic manipulation of experimental parameters which in turn 

deepen the fundamental understanding of thymic signaling effects. For instance, 3D co-

culture models of thymus established on 3D scaffolds significantly promoted T-cell 

differentiation of HSCs compared to the conventional monolayer cultures.[289, 310] In 

addition, these studies highlighted the importance of the proper design of a 3D scaffold to 

obtain the optimum range of pore size and density so as to maximize ex vivo HSC 

development. Nevertheless, 3D co-culture models retain several critical drawbacks: (i) 

difficulty in control the growth of stromal cells in 3D substrates; (ii) required an extra 

step to isolate a pure population of HSCs when the culture needs to be characterized; (iii) 

potential phenotypic change of feeder cells due to enhanced cell-cell and cell-matrix 

interactions in 3D culture condition.  

A different promising approach was stromal cell-free T-cell differentiation which 

presents multiple advantages such as better control over cell interactions and signaling, 

and efficient isolation and characterization of HCSs. Currently the most successful 

system is utilizing engineered delta-like 1 (DL-1) notch ligands in addition to essential 

cytokines.[311-313] Notch signaling is a major cell-cell signaling pathway determining 

HSC fate in the bone marrow and thymus.[298] The signaling is activated when a notch 

receptor on HSCs directly contacts the Delta and Jagged families of notch ligand present 
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on the stromal cell membrane. (Figure 6.7A) The expression of ligands and receptors is 

tightly regulated to balance between self-renewal and differentiation of HSCs in the bone 

marrow, and to promote T-cell lineage commitment and maturation in the thymus.[314, 

315] The importance of notch signaling in T-cell development was demonstrated with 2D 

ex vivo co-culture model of HSCs and OP9-DL1 stromal cells expressing the DL-1 notch 

ligand.[316] For example, the OP9-DL1 cells successfully supported T-cell 

differentiation of HSCs, whereas regular OP9 cells only induced B-cell differentiation. 

[317, 318] Although these in vitro culture models greatly contributed to the understanding 

of HSC biology, their purely biological nature presents inherent limitations including 

technically burdensome preparation, low yields, and highly variable outcomes.  

Recently DL-1 notch ligands were successfully synthesized from genetically 

engineered microbes which made possible thymic stromal cell free T-cell development. 

For instance, individual DL-1 notch ligands immobilized either by physical absorption on 

the bottom of a well-plate[311, 312, 319] or by chemical conjugation to micro-

carriers[313] successfully supported T-cell development. Moreover, the readily 

adjustable ligand density of this technique distinguished the different effect of notch 

signaling intensity to determine the fate of HSC differentiation.[312, 320, 321] Notch 

ligand presenting acellular microenvironments are attractive approach to create in vitro 

HSC niches in a convenient and consistent manner; however, it has remained in only 2D 

substrates, probably due to the absence of suitable 3D substrates and coating techniques.  

In this section, DL-1 notch ligand effects were extended to the ICC scaffold 

utilizing a LBL surface engineering technique under the hypothesis that 3D scaffolds 
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coated with DL-1 notch ligand would considerably substitute for the structure and 

function of thymic stroma in addition to essential cytokines. (Figure 6.7B)  

 

Figure 6.7 Schematic of stromal cell free approach (A) In the thymus, three-dimensionally 
organized thymic stromal cells present membrane bound notch ligands and secrete soluble 
cytokines for the T-cell differentiation of HSCs. (B) ICC topology provides 3D intrathymic 
microstructure and the multi-component LBL film (i.e. monolayer of DL-1 notch ligands on top 
of five bilayers of clay/PDDA film) substitutes thymic stromal cell functions in addition to 
soluble cytokines. 

 

The same pore and channel dimensions of ICC scaffolds were utilized in this 

study. The surface of hydrogel scaffolds was coated with five bilayers of Clay/PDDA 

following the previous method. Then, a monolayer of DL-1 notch ligand was prepared on 

top of clay/PDDA film instead of seeding stromal cells. The pre-deposited clay/PDDA 

multilayer provided better environment for the following DL-1 notch ligand 

immobilization as increasing surface charges of the hydrogel surface. Finally CD34+ 

cells were introduced and then the culture was maintained in a rotary cell culture vessel 

up to 4 weeks. (Figure 6.8) 
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Figure 6.8 Schematic of stromal cell free 3D culture model for thymic niche (A) Optimized 
pore (D=110µm) and channel (D=20-30µm) size for HSC (D=5~10µm) culture (B) Five bilayers 
of Clay/PDDA LBL film to support stromal cell adhesion (C) Monolayer of DL-1 notch ligand 
coating on top of clay/PDDA layer (D) Introduce CD34+ cells and the culture maintains under 
dynamic condition.  
 

The LBL process created a homogenous 3D artificial thymic layer in a short time 

compared to the previous 3D co-culture model which normally took several days to reach 

a confluence on 3D ICC scaffolds. To characterize the quality of 3D LBL coating, the Fc 

portion of the ligand was tagged with a secondary antibody conjugated to a fluorescent 

dye before coating and visualized under confocal microscope. As shown in Figure 6.9B, 

DL-1 notch ligands were well coated on the surface of ICC scaffold but slightly weaker 

fluorescent intensity was observed inner side pores which would be caused by the 

relatively less diffusive environment of interior pores.  

 

Figure 6.9 Structure of DL-1 notch ligand and LBL immobilization (A) Schematic of 
engineered DL-1 notch ligand structure. (B) Confocal images of DL-1 notch ligand coated ICC 
hydrogel scaffold. For imaging purpose, DL-1 notch ligands were bound to antibodies conjugated 
to FITC.  
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The LBL adsorption technique affords the scaffolds to retain high stability and 

activity of the notch ligands since the LBL coating is conducted in a mild condition while 

maintaining pristine protein structures.[322-324] Moreover, the clay/PDDA multilayer 

promotes immobilized DL-1 notch ligands function in two ways. First, the alternative 

layer of the inorganic (Clay) and organic (PDDA) composite is mechanically compatible 

with polyacrylamide hydrogel which supports steadfast immobilization of DL-1 notch 

ligands. This is an important feature for receptor-ligand based cell signaling because 

ligands existing in a soluble state, although they can bind to receptors and activate signal 

transduction, normally undergo rapid internalization into a cell, which in turn 

considerably reduces the intensity and duration of cell signaling.[325] Other investigators 

demonstrated that the surface-tethered epidermal growth factor (EGF) more effectively 

promoted cell spreading and survival than a saturating concentration of soluble EGF due 

to the longer duration of intense ligand-receptor interactions.[326] Similarly it has been 

shown that DL-1 notch ligands are required to be immobilized to activate the proper level 

of notch signaling.[312, 327]  

Second, LBL-immobilized ligands can have a moderate level of flexibility 

because, although individual clay platelets provide local mechanical strength, the overall 

LBL film provides softness and elasticity found in ECM due to the hydrated polymeric 

component. It was shown that mechanical properties of a clay/PDDA LBL film are 

strongly decreased in humid environment.[277] The flexibility of immobilized ligands is 

essential for the proper development of the ligand docking with the receptor for 

intracellular signal activation.[328] Hence, the behavior of LBL-coated DL-1 ligands 

would be quite different when compared to ligands directly adsorbed on a solid surface. 
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Considering that cellular ligands are actually embedded in a flexible plasma membrane, it 

is a more realistic and effective approach.  

 

6.3.4. Thymic niche for ex vivo T-cell differentiation 

First, the ICC topological effect was tested by culturing mononuclear cells 

derived from bone marrow or umbilical cord blood. As shown in Figure 6.10A, a 

significant number of cells were observed deep inside of ICC scaffold after 15 days of 

culture. This demonstrates that the mononuclear cells were deeply transported into the 

ICC scaffold and the LBL surface modification promoted cell adhesion. Since HSCs are 

only a small fraction of mononuclear cells (1-2%), most of cells were non-HSCs. 

However, interestingly I could observe the development of pre-erythrocytes attaching on 

the pore surface which might be the result of activated notch signaling.[319] In addition, 

dendritic-like cells scavenging across ICC pores were observed that vividly captured an 

in vivo 3D bone marrow microenvironment. (Figure 6.B)  

As a next step CD34+/CD4- HSCs were isolated from mononuclear cells and 

cultured in the same condition. It is important utilizing CD34+ HSCs to mimic the thymic 

niches because an initial stage of cellular population entering into the thymus is mostly 

bone marrow derived HSCs. Moreover, it is necessary to deprive CD4+ cells from the 

initial cell population to confirm the bioactivity of LBL coated DL-1 notch ligands since 

notch-1 signaling induces CD4+ T-cell lineage commitment at the late stage of 

differentiation.[298, 329] In addition, MACS method usually cannot isolate target cells 

with 100% efficiency. Therefore, CD4+ cells were depleted from mononuclear cells and 

then CD34+ cells were enriched from there. (Figure 6.11A)  
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Figure 6.10 Initial cell populations and 15 days culture scaffolds (A) Confocal images after 
CD4 depletion and CD34 enrichment utilizing a magnetic activated cell sorting method. The 
initial cell population consists of majority CD34+ and negligible CD4+ cells. (Scale bar is 40µm) 
(B) Typical transmission image of a CD34+/CD4- HSC growing ICC scaffolds after 15 days of 
culture.  

 

A small diameter of HSCs (< 10µm) readily moved deep into ICC scaffolds and 

intimately associated with the surface of DL-1 notch ligand coated ICC pores. After 14 

days of culture, the pore surface was densely covered with cells. (Figure 6.10C) This 

result inferred that HSCs proliferated multiple times subsequent to entering into the ICC 

scaffolds. Notch signaling would be activated on the surface associated HSCs which in 

turn stimulated T-cell lineage commitment and differentiation. However, it was hard to 

distinguish differentiated T-lymphocytes from HSCs under SEM due to their similarity in 

morphology, size and shape. (Figure 6.10D) In the absence of DL-1 notch ligand coating, 

mononuclear cells readily adhered to the surface of ICC scaffolds which was comparable 

to the notch ligand coated scaffolds. (Figure 6.10E) However, without clay/PDDA LBL 

surface coating, hydrogel ICC scaffolds could not support cell adhesion and most of 

pores appeared empty. (Figure 6.10F) Although a few numbers of cells were entrapped in 
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the pores during dynamic cell culture, most of them were released out during the sample 

preparation procedure due to the well-interconnected open porous ICC geometry. 

 

Figure 6.11 SEM images after 15 days of stromal cell free culture. (A-B) Mononuclear cells. 
(A) Various cell types co-existed deep inside of ICC pores. (B) Development of pre-erythrocyte 
associating with the LBL coated surface and migrating dendritic-like cells across pores. It well 
recapitulated the bone marrow microenvironment. (C-D) Isolated CD34+ cells from bone marrow 
derived mononuclear cells. (C) DL-1 notch ligand immobilized pore surface was densely covered 
with cells. Restricted cellular population mimicked the thymic microenvironment. (D) Due to 
similar morphology and size, it is hard to distinguish developing T-lymphocytes from CD34+ 
HSCs under SEM. (E-F) Control experiments of 15 days cultured CD34+ cells. (E) ICC scaffolds 
could support cell adhesion without DL-1 notch ligand coating. (F) However, without clay/PDDA 
LBL coating (bare hydrogel), ICC scaffolds could not allow any cell adhesion.  
 

In order to confirm T-cell differentiation of HSCs, the progression of differential 

stage specific surface marker expression was characterized for 4 weeks under confocal 

microscope. Besides the CD34 molecule, CD117 so called a C-kit receptor is another 

representative surface marker of primitive HSCs that also maintains the earliest 

thymocyte progenitors.[26] Examination of ICC cultures on day 15 and 22 showed the 

continued presence of CD117 which proved that the ex vivo 3D culture system 

successfully supported self-renewal or maintaining undifferentiated population of HSCs. 
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(Figure 6.12A) In addition, the presence of T-cell receptor (TCR) α and CD3 molecules 

were observed on day 22 culture. (Figure 6.12B) TCR is a complex of integral membrane 

proteins consisting of α/β heterodimers associated with CD3 molecules. Pre-TCR 

expression is one of initial signs in T-cell lineage commitment and development in the 

Thymus.[296] Therefore, these data substantiate the preserved bioactivity of LBL-coated 

notch ligands so as to promote pre-T-cell differentiation of HSCs.  

 

Figure 6.12 Biological effects of LBL immobilized DL-1 notch ligands Representative 
confocal images of (A) CD117 and CD3 after 15 days of culture, and (B) CD117 and TCR α after 
22 days of culture.  (Scale bar is 40µm) 
 

The expression of CD4 and CD8 molecules over the longer period of ICC cultures 

were further characterized to identify followed double positive and single positive 

differentiation stages. On 28 days of culture we could observe some CD4 positive but 

CD8 negative cells. (Figure 6.13A) However, they would not be functional CD4 helper 

T-cells because in our system the major histocompatibility complex (MHC) molecules; 
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important factors involved in cell screening processes, i.e. positive and negative selection, 

were missing. Generally more than 95% of thymocytes undergo apoptosis during the 

screening processes[26], but we did not observe severe cell apoptosis during the culture. 

Without DL-1 notch ligand coating, we could not observe either CD4 or CD8 molecules 

on 28 days of culture. (Figure 6.13B) However, the culture continuously expressed a 

CD34 surface marker for 14 days which infers that 3D dynamic cell culture stimulates ex 

vivo HSC expansion without notch signaling. Another important thing was that ECM-like 

molecules progressively developed on the surface of cell/scaffold over the culture period 

which reduced the quality of surface marker analysis. For that reason, 28 days cultured 

samples showed relatively weaker fluorescent signals than the samples cultured shorter 

period of time.  

Although the 3D culture model demonstrated promising features to create in vitro 

HSC niches, it was difficult to rapidly isolate large enough number of cells from ICC 

culture due to strong cellular association with the LBL coated surface and the complex 

ICC geometry limiting the release of cells. Flow cytometric analysis of individual cells is 

critical to quantitatively corroborate the study of cell differentiation pathways 

accompanied with qualitative confocal surface marker characterization. To overcome 

these drawbacks, the development of effective cell harvesting methods needs to be 

further investigated.  
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Figure 6.13 CD4 T-cell differentiation after 28 days of culture. (A) DL-1 notch ligands coated 
ICC scaffolds induced CD8-/CD4+ T-cell development. (B) Neither CD4 nor CD8 molecule was 
detected on the ICC scaffold in the absence of DL-1 notch ligand coating. (Scale bar is 80µm) 
 

Potentially the LBL coating system can also be applied to recapitulate the other 

function of stromal cells, releasing soluble growth factors. Since multiple functional 

components can be sequentially incorporated into a growing film, a compartmentalized 

LBL film consisted of soluble signaling molecule embedded bottom layers and ligands 

presenting top layers can be prepared on the surface of 3D scaffolds. Diffusion of soluble 

factors can be regulated by hydrolytically degradable polymer components.[89] In 

addition, recently discovered an exponential LBL system can be used for loading and 

unloading soluble signaling molecules.[330, 331]  As a result, such multicompoent and 

functional LBL film on 3D scaffolds can deliver both insoluble and soluble signaling 

molecules to the cells, which in turn significantly improve the creation of artificial 3D 

HSC niches in a simple and effective way. 
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6.4. Summary 

ICC hydrogel scaffolds combined with a LBL surface modification technique 

enabled to create functional HSC niches for bone marrow and thymic tissues. The 

described bone marrow construct replicates two of the key reproductive functions of 

normal bone marrow. Notch ligand immobilized ICC scaffolds also successfully 

promotes T-cell development of HSCs in the absence of stromal cells. These data 

demonstrate that proper organization of cells provided by the ICC scaffold has 

tremendous importance in ex vivo replication of HSC niches. As a valuable tool, the 

LBL-ICC scaffold system can significantly contribute to the realization of artificial bone 

marrow and thymus construction one step closer. It can potentially allow not only ex vivo 

production of clinically important stem/immune cells but also preclinical immunotoxicity 

testing which are not available now.  
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CHAPTER VII 

SUGGESTED FUTURE DIRECTIONS & CONCLUSION 

 

7.1. Suggested future directions 

7.1.1. Direction for ICC scaffold fabrication 

In this dissertation work, all PS and glass microparticles were purchased from 

commercial vendors. Although highly ordered uniform size spherical pore arrays is the 

distinguished feature of ICC scaffolds, the high cost of uniform size beads has been the 

major bottleneck to realize the mass production of the scaffolds. This issue should be 

overcome. The solution can be found in emulsion polymerization that has been 

extensively utilized for the preparation of mono-dispersed polymeric particles utilizing 

simple micro-fluidic devices.  

Recently glass capillary based micro-fluidic device design was introduced which 

made possible simple preparation of uniform size polymeric microparticles[332]. The 

most representative system is PCL and PLGA microparticle synthesis utilizing two 

syringe pumps[333]. As shown in Figure 7.1, the device set-up is very simple and 

preliminary result was quite promising. However, significant amount of work should be 

followed to accomplish highly ordered CC and ICC preparation utilizing homemade 

microparticles.  
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Figure 7.1 PCL microparticle syntheses via emulsion polymerization (A) Schematic of PCL 
microparticle synthesis via micro-emulsion technique, (B) Solidified PCL microparticles.  
 

7.1.2. Direction for spheroid engineering 

The engineering liver tissue spheroid culture system can be applied to other types 

of cells including primary cells, stem cells and tumor cells. For example, aggregates of 

embryonic and neural stem cells can form embryonic bodies and neurospheres, 

respectively[334]. It has been known that the stem cell spheroid size is closely related to 

the degree of differentiation. ICC scaffolds would be a valuable tool for the systematic 

investigation of such relationship.  

Another interesting direction will be employing biodegradable microparticles 

including signaling molecules during the stem cell spheroid formation. Microparticles 

having a similar dimension to cells could be incorporated as a part of cell aggregate and 

then slowly release signaling proteins corresponding to their degradation within the 

spheroid. As a result, it can generate more homogenous signaling molecules profile 

across the spheroid which in turn improves unidirectional stem cell differentiation than 

normal culture condition, typically having a diffusion gradient of signaling molecules. In 

addition, these microparticles can be used for sensing local chemical and physical 

environments in spheroids.   
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Besides stem cells, tumor spheroids culture model will be another important 

research topic. Although HepG2 spheroids exhibited liver tissue-like functions to some 

extent, overall their morphology and functions are closer to tumors because they were 

originally derived from tumors. Indeed the reduced metabolic activity of HepG2 

spheroids in Chapter 3 can be regarded as dormant stage tumor nodules. They can be 

used as a tumor dormant model for better understanding tumor cells metastasis and 

repopulation. In addition, the spheroid size controllable feature can be applied to develop 

a tumor hypoxia model as increasing their size larger than the diffusion limit of oxygen 

(300 µm>). It can also serve as an early stage tumor nodule model for diagnostic and 

treatment purposes. Currently small size tumors are difficult to detect while hypoxic 

environment reduce the effectiveness radiation therapy. Well controlled in vitro tumor 

spheroid model can significantly contribute to overcome these issues.  

Lastly tumor spheroids and immune cells co-culture model also will be an 

interesting research area. A tumor spheroid entrapped in an ICC pore takes up only 50 % 

of pore volume, whereas the remaining 50 % of pore volume can be used as a pathway 

for circulating immune cells (i.e. T-/B-lymphocytes, dendritic cells and macrophages) 

within the scaffold. As a result, immune cells can effectively scavenge and contact with 

tumor spheroids. Such a unique immunological microenvironment can be used for 

answering various questions such as suppressed immune response by cancer cells, 

anticancer mechanism by activated immune cells, etc. Particularly these data will 

significantly contribute to the cancer vaccine research. (Figure 7.2) 
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Figure 7.2 In vitro tumor spheroid culture models (A) (Left) Tumor spheroids µ-CT imaging 
after OsO4 (osmium) staining. Densely packed tumor cell aggregates appear brighter than 
background hydrogel matrix. (Right) An enhanced contrast image clearly shows spheroids. (B) 
Schematic of tumor spheroids and immune cells co-culture model. 
 

7.1.3. Direction for immune system engineering 

Although primary lymphoid tissue models were successfully accomplished, 

significant research efforts should be followed to realize their practical application in the 

drug testing application. The two most critical issues are (i) how to realize similar 

dynamic fluids in a micro-well plate to a rotary cell culture system and (ii) how to 

effectively extract target cells from ICC scaffolds. Potential solutions can be found in 

engineering functional ICC scaffolds and culture devices. For example, ICC scaffolds 

including magnetic components such as magnetic NPs, magnetic micro-beads or 

magnetically susceptible stainless steels can deliver motility of the scaffolds under the 

magnetic fields. It can generate a continuous dynamic media flow within the ICC 

scaffolds. For this purpose, specific design of magnetic device should be made 

simultaneously to apply periodic and homogeneous magnetic fields in each well.  

The development of effective cell harvesting system is equally important because 

here the final products are individual HSCs or immune cells rather than a bulk functional 

tissue. ICC geometry is exceptionally beneficial for HSC culture: however, their intricate 
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pore structure limits efficient harvesting target cells from the scaffold. For this purpose, 

the development of smart hydrogels that can rapidly dissolve or swell under 

physiologically tolerable chemical or physical environmental changes would be 

promising approach.  

The dissertation primarily focuses on primary lymphoid tissues, i.e. bone marrow 

and thymus, but the same system can be also applied to create secondary and tertiary 

lymphoid tissues. Secondary lymphoid tissues including spleen, lymph nodes and 

mucosal lymphoid tissues are essential for initiating adaptive immune responses[335-

337]. Tertiary lymphoid tissues located at sites of chronic inflammation have 

considerable morphological and functional similarity to secondary lymphoid tissues. Both 

tissues provide proper 3D microenvironments for the appropriate interactions between 

antigens, antigen presenting cells and lymphocytes which is the key process immune cell 

activation. The unique feature of ICC geometry for inducing intimate cell-cell contacts 

between floating and adherent cells can significantly contribute to the secondary and 

tertiary lymphoid tissue engineering. (Figure 7.3) 

Lastly all research efforts have been focused on creating in vitro function 

lymphoid tissues. However, faithfully established tissue models can be used for 

investigating the mechanisms of how tissues lose their function. Such ex vivo human 

lymphoid tissue models would greatly accelerate understanding and curing diseases 

related to the human immune system.  
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Figure 7.3 Schematic of secondary and tertiary lymphoid tissue engineering (A) LBL 
immobilized antigens on ICC pore surface to activate immune cells (B) Co-culture of antigen 
presenting cells and naïve T-/B-lymphocytes 

 

7.2. Concluding remarks 

My doctoral work mainly focuses on two directions: (i) developing robust 

techniques for the ICC scaffold fabrication and (ii) demonstrating exclusively 

distinguished biological significance of the ICC scaffold. The most important 

achievement in the first part was the improvement of the method for obtaining highly 

ordered CCs in microscale that enabled ICC scaffolds research more conveniently and 

effectively. In the second part, I evaluate that my most significant devotion was 

developing a new opportunity of ICC scaffolds as a distinctive platform for spheroid 

culture. This work was successfully expanded to the standardized liver tissue spheroid 

culture model and further utilized as an in vitro toxicity testing platform.  

I would like to make four important aspects of this dissertation. First, the thesis is 

looking for a new opportunity of tissue engineering escaping from the classical tissue 

engineering theme. Tissue engineering for in vitro applications is a quite new idea and it 

is becoming more concrete and feasible accompanied with recent advances in stem cell 
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research, biotechnologies and scaffold fabrication techniques. My work demonstrated 

promising potential of this research direction and discussed many critical considerations 

particularly for the scaffold design.  

Second, the primary lymphoid tissue engineering is relatively new. Typical tissue 

engineering models include skin, bone, cartilage, liver, heart, muscle, blood vessels, and 

so on. Here we aimed to recreate more complex and functional 3D HSC niches for bone 

marrow and thymus. Although significant research efforts should be followed, our results 

clearly demonstrated the pivotal role of scaffold-engineering techniques in functional 

reconstitution of stem cell niches. I expect these work would bring broad and significant 

attention from the stem cell research society. 

Third, it adequately balances the modeling and experimental works. Highly 

regulated ICC structures made possible computer modeling approach, which delivered 

guidelines for the scaffold design and proved biological significance of the scaffold 

combined with experimental data.  

Lastly, I would like to stress that this dissertation research not only remains in 

publications but also significantly contributes to commercialization of the ICC scaffold 

that I believe one of major missions of biomedical engineers. My doctoral work provided 

backbone techniques for launching a company specialized in ICC scaffold manufacturing 

i.e. 3D Biomatrix (www.3d-biomatrix.com). I hope the ICC scaffold can significantly 

contribute to the improvement of human health. 
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