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Abstract 

 
 Numerous inductive patterning events occur in eye development. The periocular 

mesenchyme plays a role in these processes by patterning the optic stalk, corneal 

epithelium, and retinal pigmented epithelium during eye development, in addition to 

contributing cells to many non-neural tissues in the eye. The periocular mesenchyme 

includes cells from two embryonic lineages, the neural crest and mesoderm, which each 

form distinct cell types.  

 

 The homeodomain transcription factor Pitx2 is required for normal eye 

development in both mice and humans, and mutations can lead to early onset glaucoma in 

humans. Pitx2 is expressed in both the neural crest and mesoderm lineages of the 

periocular mesenchyme, but the mechanisms of its function in each lineage were not 

known. To test the hypothesis that Pitx2 has unique functions in each lineage during eye 

development, lineage-specific knockout mice of Pitx2 in the neural crest and mesoderm 

were created using the Cre-lox system. Pitx2 in the neural crest is cell-autonomously 

required for anterior segment development, sclera formation and ocular blood vessel 

growth. Pitx2 also has non-cell autonomous functions in the neural crest in optic stalk 

development and RPE patterning. The defects in optic stalk development and ocular 

blood vessel growth represent two new potential mechanisms underlying the glaucoma 

seen in human patients with PITX2 mutations. In the mesoderm, Pitx2 is cell 

autonomously required for extraocular muscle precursor survival and non-cell 

autonomously required for optic fissure closure. Pitx2 function is also required in the 

mesoderm lineage for eyelid closure. Pitx2, not Pax7, regulates MRF expression in the 

extraocular muscles, and PITX2 can activate the Myod1 promoter through a novel 

sequence. This identifies distinct mechanisms of Pitx2 function in the two lineages of the 

periocular mesenchyme in the developing eye. These findings significantly expand the 

understanding of the functions of Pitx2 in eye development and its role in human disease.  
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Chapter 1: Background and introduction 

 
 
 The development of structures related to vision has fascinated scientists since the 

earliest days of embryology (Darwin, 1859; Spemann, 1901). While embryologists were 

limited to labeling and transplantation experiments, modern developmental biology has 

developed an ever-expanding understanding of the genes that control eye development 

(Jean et al., 1998). These include the transcription factors which specify cell fate, 

members of the signaling cascades which induce their expression, and their downstream 

target genes that enable the development of diverse cell types like photoreceptors, lens 

fibers and corneal stroma cells.  

 

 One of the reasons the eye remains a popular model system are the inductive 

relationships between tissues and cells of different embryonic lineages. The eye receives 

contributions from the neural ectoderm, the surface ectoderm, and the periocular 

mesenchyme, which includes contributions from mesoderm and neural crest (Johnston et 

al., 1979; Le Douarin, 1980, 1982; Le Lievre and Le Douarin, 1975; Noden, 1982). 

Contact with the neural ectoderm-derived optic vesicle causes the surface ectoderm to 

form the lens placode, which in turn causes the invagination of the optic vesicle and the 

lens itself to form the optic cup (Figure 1.1A, B) (Chow and Lang, 2001). Signals from 

the lens cause the inner layer of the optic cup to develop into the neural retina, while 

signals from the periocular mesenchyme induce the outer layer to form the retinal 

pigmented epithelium (Fuhrmann et al., 2000; Hyer et al., 1998; Nguyen and Arnheiter, 

2000).  Signals from the mesenchyme also promote the proper development of the 

proximal part of the optic vesicle, the optic stalk, into the optic nerve (Gage et al., 1999). 

As development proceeds, the inductive events continue. The optic cup induces the 

specification of the cornea from mesenchyme and the overlying surface ectoderm, and 

signals from the neural retina cause the cells of the lens vesicle to differentiate as lens 



 2 

fibers (Figure 1.1C, D) (Coulombre and Coulombre, 1964; Genis-Galvez, 1966; Jean et 

al., 1998; Piatigorsky, 1981). A functional consequence of these inductive relationships 

that form the various tissues of the eye is the assurance that the functioning “parts” of a 

camera eye are properly located with respect to one another, i.e. the light-focusing lens is 

placed between the light-sensing film of the retina and the window-like cornea.  

 

The Periocular Mesenchyme 

 

 While the inductive aspects of retina and lens development have long been 

known, the inductive functions of the periocular mesenchyme have only recently been 

discovered (Fuhrmann et al., 2000; Gage et al., 1999). Perhaps for this reason, the study 

of the periocular mesenchyme in eye development was less advanced until recently. In 

addition to participating in inductive events in eye development, the periocular 

mesenchyme contributes to many critical tissues in the anterior segment of the eye. These 

include the corneal stroma and corneal endothelium, which allow light to enter the eye; 

the stroma of the iris, which regulates the amount of light; the stroma of the ciliary body, 

which supports the ciliary epithelium that produces aqueous humor to nourish the 

avascular cornea and lens; and the trabecular meshwork and Schlemm’s canal, which 

form the outflow pathway by which aqueous humor exits the eye (Figure 1.2). Other parts 

of the anterior segment include the corneal epithelium and lens, which are derived from 

the ocular surface ectoderm, and the iris and ciliary body epithelium, which are derived 

from the neural ectoderm at the tip of the optic cup. The periocular mesenchyme also 

contributes the cells that form the extraocular muscles, which enable eye movements and 

thus stereovision; the sclera, the tough white outer coating of the eye, which provides 

structural shape and an anchoring point for the muscles; and the hyaloid, choroidal, and 

retinal ocular blood vessels (Figure 1.2).  

 

 As noted previously, the periocular mesenchyme contains cells of two different 

developmental lineages, the neural crest and the mesoderm. Cells from these two lineages 

often contribute to the same tissues, although they form different cell types within those 

tissues (Figure 1.2) (Gage et al., 2005). The endothelial cells in the blood vessels of the 
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choroid and hyaloid are derived from mesoderm, while their pericytes and smooth muscle 

cells are derived from neural crest. The myocytes of the extraocular muscles are 

mesoderm, whereas the fascia and tendons are formed from neural crest, as is the sclera. 

The iris stroma is mesoderm-derived, while the stroma of the ciliary body is neural crest-

derived. Schlemm’s canal is mesoderm-derived, not surprising given its vessel-like 

structure and function. The corneal stroma, corneal endothelium, and trabecular 

meshwork are all composed of primarily neural crest cells, but a small population of 

interspersed mesoderm-derived cells is also present (Gage et al., 2005). It is unclear 

whether the neural crest and mesoderm cells of the cornea and trabecular meshwork all 

carry out the same functions; it has been proposed that the mesoderm derived cells may 

be the dendritic and Langerhans immune surveillance cells observed in the anterior 

segment (Gage et al., 2005; Hamrah et al., 2003a; Hamrah et al., 2003b; Hamrah et al., 

2002).  

 

 Developmentally, the cells of the neural crest and mesoderm begin in distinct 

locations and both migrate into the eye field where they mix to create the loose periocular 

mesenchyme (POM), which surrounds the optic cup and stalk. The mesoderm 

contribution of the POM comes from the most anterior portion of the mesoderm, which is 

unsegmented and often referred to as pre-somitic; it is a separate population of mesoderm 

from that which contributes to branchial arch formation (Figure  1.3A). The prechordal 

and paraxial mesoderm that contribute to the POM are a continuous population of loose 

mesenchyme located ventral and caudal to the developing optic vesicle and cup from e8.0 

to e10.5 (Figure 1.3A, B) (Gage et al., 2005; Noden and Francis-West, 2006). By e11.5, 

the mesoderm has proliferated and condensed into a morphologically distinct wedge of 

cells just dorsal, caudal and slightly proximal to the optic cup, while a few cells have 

migrated into the spaces between the developing retina, lens and ocular surface ectoderm 

(Figure 1.3C). The neural crest portion of the POM is derived from the cranial neural 

crest which migrate out of the posterior diencephalon, mesencephalon and 

metencephalon beginning at e8.5 (5-6 somites) and arrive in the eye field beginning at 

e10.0 (Creuzet et al., 2005). At this point, the lens vesicle has separated from the 

overlying ocular surface ectoderm, and the neural crest invade the space between the two 
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and quickly surround the optic cup and stalk by e10.5 (Figure 1.1C, 1.3C). By e12.5, the 

mesoderm and neural crest portions of the POM are extensively co-mingled and difficult 

to distinguish morphologically (Gage et al., 2005). 

 

 The morphogenesis of the periocular mesenchyme continues as it proliferates; 

between e12.5 and e13.5, the 3-5 cell thick layer of mesenchyme between the lens and 

the surface ectoderm begins to condense. By e13.5 individual extraocular muscle 

primordia are visible. At e14.5, the mesenchyme cells closest to the lens begin to flatten 

and form the corneal endothelium, which becomes separate from the lens, creating the  

anterior chamber (Figure 1.1E). Mesenchymal cells migrate into the angle that is created 

between the corneal endothelium and the anterior edge of the optic cup, known as the 

iridocorneal angle. Posterior to this region, the cells surrounding the developing retinal 

pigmented epithelium (RPE) begin to condense in a layer 2-4 cells thick that will form 

the sclera and choroid vasculature. At e15.5, the anterior edge of the optic cup begins to 

flatten and elongate to form the iris; it is colonized by mesenchyme that forms the iris 

stroma, which becomes detached from the cornea by e16.5 (Figure 1.1F).  The stroma of 

the adjacent ciliary body is also formed from mesenchyme at this time. Proliferation of 

the corneal stroma levels off by e16.5 and these cells begin to adopt a lamellar 

appearance (Cvekl and Tamm, 2004; Gould et al., 2004).  

 

 Further differentiation and formation of structures within the anterior segment 

derived from the POM continues after birth; mesenchyme in the iridocorneal angle 

condenses to form the trabecular meshwork beginning at postnatal day P4. Schlemm’s 

canal appears at P12 and the remodeling of these structures is fully complete at P35 

(Gould et al., 2004). The corneal stroma increases in thickness by excreting substantial 

amounts of extracellular matrix proteins until P10, and the corneal endothelium closes its 

intracellular spaces to keep the corneal stroma dehydrated and laminated. Descemet’s 

membrane, a basement membrane, is formed by the corneal endothelium (Zieske, 2004). 

The sclera also undergoes significant remodeling of its collagen-rich extracellular matrix 

for up to two months after birth (Zhou et al., 2006). 
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Gene Expression and Molecular Markers 

 

 Much research has been done to identify the genes that control these 

morphogenetic events in the differentiation of the periocular mesenchyme and the 

molecular markers that define various stages. The homeodomain transcription factor 

Pitx2 is expressed in the mesoderm that contributes to the periocular mesenchyme at very 

early stages, before the neural crest enters the eye field (Figure 1.3B) (Gage et al., 2005). 

As the neural crest cells migrate into the eye field, they activate numerous transcription 

factor genes including Pitx2, Foxc1, Foxc2, and Lmx1b, all of which are required in mice 

for normal development of mesenchyme derived structures (Gage et al., 1999; Kitamura 

et al., 1999; Kume et al., 1998; Lu et al., 1999; Pressman et al., 2000; Semina et al., 1996; 

Smith et al., 2000; Winnier et al., 1997). Transcription factor AP-2β (Tfap2b) is 

expressed in the developing neural crest, lens and surface ectoderm beginning at e10.5, 

but is not required for normal eye development (Moser et al., 1997; West-Mays et al., 

1999).  Eya2 is expressed in the neural crest and mesoderm portions of the periocular 

mesenchyme beginning at e11.5, but mice lacking Eya2 function reportedly have no 

visible ocular phenotype (Grifone et al., 2007; Xu et al., 1997).  Pitx1 is expressed in the 

presumptive corneal stroma and extraocular muscles beginning at e11.5, and is rapidly 

down-regulated by e14.5, but mice lacking  Pitx1 function have no ocular phenotype 

(Adam Diehl, personal communication).  

  

  As the cells of the largely neural crest-derived corneal stroma differentiate they 

activate expression of the proteoglycan keratocan beginning at e13.5 (Liu et al., 1998). 

The expression of type I collagen at e13.5 and type II collagen at e14.5 are further 

indicators of differentiation in the corneal stroma and sclera (Dakubo et al., 2008; 

Savontaus et al., 1997). The transcription factors Pitx2, Foxc1, and Foxc2, are all 

downregulated in the central corneal stroma by e16.5, while Lmx1b remains on through 

adulthood (Pressman et al., 2000). Although the corneal epithelium is not derived from 

the periocular mesenchyme, it does receive signals from the mesenchyme that influence 

its patterning (Gage et al., 2008). Corneal epithelium is marked by the expression of Pax6 

and its differentiation is indicated by the expression of cytokeratins 12 and 14; CK12 is 
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cornea specific, while CK14 is expressed throughout the ocular surface ectoderm (Zhang 

et al., 2005).  

 

 In the developing extraocular muscles, Pitx2 is expressed prior to e8.5, while 

Pitx1 is activated at e11.5 (Diehl et al., 2006).  Many other transcription factors that are 

also expressed in other skeletal muscles are found in the extraocular muscles, including 

Pax7, Myf5, MyoD, and Myogenin (Mootoosamy and Dietrich, 2002). The timing of the 

expression of these factors has been well characterized in chick, but not in mammals 

(Mootoosamy and Dietrich, 2002; Noden and Francis-West, 2006; Noden et al., 1999). 

Developmental myosin heavy chain expression, which marks differentiated muscles, 

appears at e13.5 (Diehl et al., 2006).  Expression of the transcription factor Lmx1b can be 

seen in the extraocular muscles at e14.5; it is unclear when its expression begins in the 

mesodermal lineage (Pressman et al., 2000).  

 

 If these morphogenetic and differentiation events do not occur properly in the 

periocular mesenchyme, a variety of ocular diseases result. Diseases involving the 

extraocular muscles are discussed later, but one of the most common conditions 

associated with deficits in periocular mesenchyme development is a constellation of 

developmental eye defects known as anterior segment dysgenesis (ASD). ASD includes 

defects such as corneal opacity, adhesions of the iris to the cornea, hypoplastic iris and 

defects of the outflow tract leading to early onset glaucoma. The great majority of genes 

currently identified to cause ASD encode transcription factors that are expressed in the 

periocular mesenchyme during development. Transcription factors can activate programs 

leading to cell fate specification and differentiation, so they are often the targets of 

inductive signals (Faber et al., 2001; Wawersik et al., 1999). They can also activate the 

expression of signaling molecules and their receptors and inhibitors, thus causing or 

preventing other inductive events (Gage et al., 2008). For these reasons, the study of 

transcription factors has been an area of great interest in developmental biology.  
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Homeodomain Transcription Factor Pitx2 

 

 One of the most important transcription factors regulating the development of the 

periocular mesenchyme is the homeodomain transcription factor gene Pitx2. The Pitx2 

gene consists of six exons and is transcribed in three different isoforms; Pitx2a and 

Pitx2b are generated by alternative splicing, while Pitx2c originates from an alternative 

transcriptional start site. All three isoforms include exons 5 and 6, which encode the 

homeodomain and C-terminus, so they bind the same DNA sequences, but they differ in 

their N-termini (Cox et al., 2002; Gage and Camper, 1997; Semina et al., 1996). The N-

terminus of Pitx2a includes exons 1 and 2, while Pitx2b includes exons 1, 2, and 3, and 

Pitx2c includes exon 4 (Gage and Camper, 1997; Semina et al., 1996). All three isoforms 

are expressed in the developing periocular mesenchyme (Kitamura et al., 1999; Liu et al., 

2001; Zhou et al., 2009). 

 

 Of the transcription factors required for normal development of the periocular 

mesenchyme, Pitx2 is the only one that is expressed in both the neural crest and 

mesodermal lineages. It is expressed in the neural crest cells that contribute to the corneal 

stroma and endothelium, the iridocorneal angle, the sclera, the pericytes of the blood 

vessels, and the fascia of the extraocular muscles. In the mesoderm, Pitx2 is expressed in 

the cells that form the myocytes of the extraocular muscles, Schlemm’s canal, and the 

small cohort that contributes to the corneal stroma, corneal endothelium and trabecular 

meshwork (Gage et al., 2005). It is also expressed in the eyelid mesenchyme beginning at 

e12.5 (ALZ, unpublished data).  

 

 Like many transcription factors, the expression of Pitx2 is tightly regulated in 

time and space. Pitx2 is expressed in the prechordal and paraxial mesoderm prior to e8.5, 

and it remains on throughout the development of the extraocular muscles that form from 

it (Figure 1.3B, C, E). It is downregulated postnatally in some muscle fibers, but it 

remains on in the satellite cells, the muscle stem cells. In the neural crest, it is activated at 

e10.0 as the migrating neural crest cells enter the eye field, in response to signals from 

the optic cup (Figure 1.3C) (Gage et al., 2005; Matt et al., 2005; Molotkov et al., 2006). 
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Pitx2 remains on in the developing sclera, corneal endothelium, and iridocorneal angle 

just prior to birth (e18.5), but it is downregulated in the corneal stroma beginning at 

e14.5, where it continues to be expressed at low levels (Gage et al., 2008).  

 

Axenfeld-Rieger Syndrome 

 

 PITX2 was initially identified as an important regulator of eye development when 

mutations in it were discovered as the cause of an autosomal dominant human disorder 

called Axenfeld-Rieger Syndrome (Semina et al., 1996). Axenfeld-Rieger Syndrome 

(ARS) is a constellation of developmental abnormalities that includes the dysgenesis of 

the anterior segment of the eye, dental hypoplasia including small, malformed or absent 

teeth, mild craniofacial dsymorphism and failure of the involution of the periumbilical 

skin. Rare heart, pituitary and limb defects have also been reported. The eye phenotype 

includes adhesions of the iris to the cornea and trabecular meshwork, iris stromal 

hypoplasia, corectopia (misplaced pupil), polycoria (multiple pupils), and posterior 

embryotoxon. Posterior embryotoxon refers to a prominent, anteriorly displaced 

Schwalbe’s line, which represents the intersection of the cornea, sclera and trabecular 

meshwork (Amendt et al., 2000; Sampaolesi et al., 2009). This additional trabecular 

meshwork tissue occurs to some extent in up to 15% of normal eyes and alone is not 

associated with an increased risk of glaucoma (Burian et al., 1955). Approximately 50% 

of patients with ARS develop early onset glaucoma, possibly due to defects in the 

outflow tract that lead to increased eye pressure (Shields, 1983). Recently, a case report 

described an individual with ARS and strabismus (cross eyes), with an abnormal 

insertion position for one of the extraocular muscles, the superior oblique, although the 

underlying genetic cause was not known in this case (Park et al., 2009). When the eye 

phenotype is present alone, the disease is often referred to as Axenfeld-Rieger anomaly or 

malformation, although the absence of systemic defects is relatively rare in patients with 

PITX2 mutations (Strungaru et al., 2007). Since the identification of PITX2 as a cause of 

anterior segment dysgenesis, it has also been identified as a cause of iridogonio-

dysgenesis (iris hypoplasia with defects of the outflow tract) (Alward et al., 1998), Peters 

Anomaly (anterior segment dysgenesis with opaque cornea) (Doward et al., 1999), and 
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ring dermoid of the cornea (abnormal growths and projections of the limbus or sclera into 

the cornea) (Xia et al., 2004).  

  

 Mutations in other genes can also cause Axenfeld-Rieger anomaly. Mutations in 

the forkhead transcription factor FOXC1, located at chromosome 6p25, cause identical 

eye phenotypes and rarely deafness, heart anomalies, tooth defects, and umbilical 

abnormalities (Gould et al., 1997; Mears et al., 1998; Mirzayans et al., 2000; Nishimura 

et al., 1998). Duplications of FOXC1, as well as mutations that reduce FOXC1 activity, 

can cause Axenfeld-Rieger anomaly; the patients with duplications tend to have more 

severe forms of the disease (Lehmann et al., 2000; Strungaru et al., 2007). This indicates 

that anterior segment development is also very sensitive to FOXC1 dose. 

 

 A third, uncloned locus for ARS has been identified at 13q14, which includes 

FOXO1A in the critical region (Phillips et al., 1996). Foxo1a is expressed in the 

periocular mesenchyme of developing zebrafish and is a direct target of Foxc1 (Berry et 

al., 2008). These three loci likely do not account for all genetic causes of ARS; there may 

even be other genes in the 6p25 region, such as TFAP2A (AP-2α), which cause ARS 

(Alward, 2000; Davies et al., 1999).  

 

 Genes have been identified that cause other forms of anterior segment dysgenesis 

with phenotypes similar to Axenfeld-Rieger anomaly. Many of these genes are expressed 

only in the surface ectoderm and/or neural ectoderm, further emphasizing the signaling 

relationships between the periocular mesenchyme and surface and neural ectoderm and 

their requirement for normal development. Patients with mutations in LMX1B, which is 

expressed in the developing periocular mesenchyme, have nail-patella syndrome and 

approximately one-third develop early onset glaucoma, which indicates possible outflow 

pathway defects, a more mild phenotype than the ASD seen in Lmx1b mutant mice 

(Lichter et al., 1997; Mimiwati et al., 2006; Pressman et al., 2000; Vollrath et al., 1998). 

Mutations in the transcription factor PAX6, which is expressed in both the surface and 

neural ectoderm, cause aniridia, Peters’ anomaly and iris hypoplasia (Prosser and van 

Heyningen, 1998). Similarly, mutations in CYP1B1, a cytochrome P450-related enzyme 
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expressed in the neonatal corneal and ciliary epithelia, cause Peters’ anomaly and 

congenital glaucoma (Bejjani et al., 2002; Doshi et al., 2006; Stoilov et al., 1997; Vincent 

et al., 2006; Vincent et al., 2001). Mutations in two transcription factor genes expressed 

in the lens epithelium, PITX3 and FOXE3, cause anterior segment mesenchymal 

dysgenesis, which includes corneal opacity, cataracts, and lens-cornea and iris-cornea 

adhesions (Semina et al., 2001; Semina et al., 1998; Summers et al., 2008).  Mutations in 

JAG1, a signaling molecule in the Notch pathway that is expressed in the developing iris 

epithelium, cause Alagille syndrome, which includes posterior embryotoxon and iris 

abnormalities. (Bao and Cepko, 1997; Hingorani et al., 1999; Li et al., 1997; Oda et al., 

1997)   

 

 As noted, patients with anterior segment dysgenesis have greatly increased risk 

for developing glaucoma, and often develop it much earlier in life than other patients 

(Strungaru et al., 2007). Glaucoma is a disease in which vision loss occurs due to optic 

nerve damage and retinal ganglion cell death; the visual information from the retina 

cannot be transmitted to the brain. The causes of glaucoma are complex and not well 

understood, but the developmental glaucomas associated with ASD represent an excellent 

entrez into studying this disease. In general, there are two classes of glaucoma: 

hypertensive glaucoma in which elevated intraocular pressure (IOP) causes damage to the 

optic nerve, and normal-tension glaucoma in which IOP is normal but optic nerve 

damage still occurs, possibly due to vascular defects (Araie et al., 1994). IOP is 

determined by the rate at which the ciliary body produces aqueous humor and the rate it 

exits the eye through the trabecular meshwork and Schlemm’s canal (outflow pathway). 

Elevated IOP can occur without ever causing optic nerve damage; this fact and the 

existence of normal tension glaucoma indicate that there are other factors that cause 

glaucoma besides elevated IOP (Grodum et al., 2005). In many cases of hypertensive 

glaucoma, the reasons for the increase in IOP are completely unknown, which is why the 

study of developmental glaucoma can provide insight. In these patients, elevated IOP is 

likely caused by developmental defects in the outflow pathway that partially inhibit the 

aqueous humor from exiting the eye, however, this may not be the whole story.  
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 In a review of 126 Axenfeld-Rieger patients with genetic changes in PITX2 or 

FOXC1, Strungaru et al. found that those with glaucoma frequently showed no 

improvement in response to either surgery (even multiple surgeries) to open the outflow 

pathway or medication to reduce aqueous humor production. If the glaucoma in these 

patients was due entirely to developmental defects of the outflow pathway, these 

interventions should be very successful, suggesting that like in adult-onset glaucoma, 

additional causative factors exist. The authors propose that these may include progressive 

degeneration of the outflow pathway, aqueous humor production that does not respond to 

medical/surgical interventions, extremely sensitive optic nerve cells, increased fibrosis in 

response to surgery, and/or the involvement of other modifier genes. The study also noted 

that patients with PITX2 mutations had glaucoma that was more resistant to intervention 

and worse visual outcomes than patients with FOXC1 mutations (Strungaru et al., 2007).   

 

Mutations in PITX2 

 

 Dozens of unique genetic defects in the PITX2 gene have been reported to cause 

anterior segment dysgenesis (Amendt et al., 2000; Lines et al., 2004). Splice-site, 

frameshift and nonsense mutations have been found throughout the gene, while missense 

mutations are usually restricted to the homeodomain region (Espinoza et al., 2002; 

Kozlowski and Walter, 2000; Lines et al., 2004; Lines et al., 2002; Perveen et al., 2000). 

Microdeletions of the 4q25 region including PITX2 have also been reported (Lines et al., 

2004). The association between PITX2 and ARS was originally made using two families 

with balanced translocations in which the actual breakpoints are 5-65 KB from the coding 

region of the gene, indicating that distant enhancers are required to drive normal PITX2 

expression (Semina et al., 1996; Trembath et al., 2004). The vast majority of the 

mutations identified in PITX2 are null mutations; they create protein products which are 

truncated, unstable, unable to translocate to the nucleus, bind DNA, or activate 

transcription (Amendt et al., 2000; Footz et al., 2009; Lines et al., 2004). Since the eye 

diseases caused by genetic changes in PITX2 are dominant, this suggests that they are 

caused by haploinsufficiency and eye development is sensitive to reduced levels of 

PITX2 expression.  



 12 

 Two other types of mutations in PITX2 have been described. One group described 

a missense mutation in the homeodomain that resulted in a V45L change that caused the 

protein to have slightly reduced DNA-binding capabilities, but a massive increase in 

transactivation (Priston et al., 2001). Another group identified a K88E change in the 

homeodomain that caused the protein to have dominant negative interactions with 

wildtype PITX2 protein (Saadi et al., 2003; Saadi et al., 2001). Other groups have had 

difficulty replicating these findings with the V45L and K88E mutations with other cell 

lines and promoters, suggesting that these effects may be very specific to certain 

conditions (ALZ unpublished observation, Min Qian & Michael Walter, personal 

communication). The possibility that a hyperactive form of PITX2 could cause the same 

disease as a null mutation suggests that the eye is exquisitely sensitive to PITX2 dose. To 

some degree, genotype-phenotype correlations have been identified based on the 

particular mutation a patient carries. Missense mutations in the homeodomain that 

reduce, but do not eliminate DNA binding and transactivation are associated with iris 

hypoplasia and iridogoniodysgenesis, while missense mutations that produce 

transcriptionally dead proteins are associated with ARS (Kozlowski and Walter, 2000). 

However, the same frameshift mutation was found to cause Axenfeld-Rieger syndrome in 

one family and Axenfeld-Rieger anomaly in another, so modifying factors may play a 

role (Amendt et al., 2000).  

 

Mouse Models of Pitx2 Dysfunction 

 

 Analysis of Axenfeld-Reiger syndrome and other eye diseases caused by 

mutations in PITX2 has shown that this transcription factor has important functions in eye 

development and also the pathogenesis of glaucoma. The use of mouse models to study 

the function of Pitx2 can provide much insight, and as such, numerous mouse models 

have been created (Gage et al., 1999; Holmberg et al., 2004; Kitamura et al., 1999; Lin et 

al., 1999; Lu et al., 1999; Suh et al., 2002). Most of these mouse models are various types 

of null alleles. Mice that lack Pitx2 function have defects in many other tissues besides 

the eye, tooth and umbilicus, but surprisingly, mice heterozygous for null mutations in 

Pitx2 have mild eye defects, such as corectopia and polycoria, at low penetrance (Gage et 
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al., 1999). Heterozygotes also have reduced central corneal thickness (Asai-Coakwell et 

al., 2006). The heterozygous phenotype has not been examined on a variety of genetic 

backgrounds, so the low penetrance could be due to the effects of modifying loci, but it 

could also be that mouse ocular development is less sensitive to haploinsufficiency of 

Pitx2.  

  

 The ocular defects seen in mice homozygous null for Pitx2 affect tissues in which 

Pitx2 is expressed, as well as tissues in which it is not. Cell autonomous defects include 

the absence of extraocular muscles, the agenesis of the sclera and corneal endoderm, 

thickening of the presumptive corneal stroma, failure of the anterior chamber to form, 

and reduced ocular vasculature. Many of the affected tissues receive contributions from 

both the mesoderm and neural crest.  Non-cell autonomous defects include the thickening 

of the developing optic nerve, reduced pigmentation in the RPE, and retinal coloboma 

(the latter at reduced penetrance) (Evans and Gage, 2005; Gage et al., 1999; Kitamura et 

al., 1999; Lu et al., 1999). It should be noted that Foxc1 expression is unchanged, 

indicating that Pitx2 does not regulate this gene. Unfortunately, Pitx2null/null mice die at 

e14.5, so further analysis of later structures, such as the trabecular meshwork and 

Schlemm’s canal, has not been possible. Examination of mice with a reduced function 

allele of Pitx2 also showed that it is required for normal eyelid development and closure  

(Figure 1.4C, D)(Adam Diehl, personal communication).  

 

 Non-ocular defects found in the Pitx2null/null mice include pituitary agenesis, tooth 

agenesis, agenesis of the facial muscles, abnormal jaw development, severe heart defects, 

right isomerization of the lungs, turning defects, failure of the ventral body wall to close, 

and the absence of certain nuclei in the brain (Dong et al., 2006; Gage et al., 1999; 

Kitamura et al., 1999; Lin et al., 1999; Lu et al., 1999; Martin et al., 2004; Shih et al., 

2007a). Targeted knockouts and stem cell studies have identified roles for Pitx2 in 

vascular smooth muscle differentiation and formation of the stem cell niche in bone 

marrow (Kieusseian et al., 2006; Shang et al., 2008). In lower vertebrates, Pitx2 

homologues play key roles in left-right patterning, but the Pitx2null mice have relatively 

mild laterality defects by comparison, despite the asymmetric expression of the gene in 
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the trunk mesoderm (Ryan et al., 1998). Situs inversus and other laterality defects have 

also never been reported for patients with PITX2 mutations. This suggests that Pitx2 has a 

lesser role in left-right asymmetry in mammals or that other factors are compensating for 

its loss.  

 

 To understand how a transcriptionally hyperactive mutation of PITX2 might cause 

ARS, a transgenic mouse model of Pitx2 overexpression was created. The keratocan 

promoter was used to drive overexpression of either wildtype or mutant PITX2A in the 

cornea beginning at e13.5. Adult mice carrying the wildtype transgene had cloudy 

corneas with a disrupted collagen matrix, abnormal iridocorneal angles and progressive 

retinal degeneration. Some also had severely hypertrophic cornea and iris with 

iridocorneal attachment, while the mice overexpressing mutant PITX2 had no phenotype 

(Holmberg et al., 2004). These data indicate that downregulation of Pitx2 is required for 

normal cornea development and increased activation of Pitx2 targets in the iridocorneal 

angle has similar deleterious effects as reduced activation, so the expression level of 

Pitx2 must be tightly regulated.  

 

 To better understand the functions of decreased Pitx2 dose, an allelic series was 

created using the Pitx2null loss of function allele and the Pitx2neo hypomorphic allele, 

which produces approximately 40% as much protein as a single wildtype allele due to 

inefficient splicing (Suh et al., 2002). The Pitx2+/neo (70% wildtype dose PITX2) eyes are 

indistinguishable from wildtype, but in the Pitx2+/null mice (50%) the extraocular muscles 

are affected; the two oblique muscles are absent and the four rectus muscles are reduced 

in size (Figure 1.4A, 1.5B, C). In the Pitx2neo/neo (40%) mice the extraocular muscles are 

even more reduced and the optic cup is rotated ventrally. At only 20% of wildtype PITX2 

dose in the Pitx2neo/null eyes, extraocular muscles are completely absent and the eyelids 

fail to close (Figure 1.4).  The shape of the optic cup is slightly elongated, possibly 

because the sclera is thin. However, anterior segment development and optic nerve 

development are largely normal at e14.5, the latest timepoint examined histologically 

(Figure 1.4). There are no gross defects of the body wall or turning defects (Adam Diehl, 

personal communication).  These data suggest that, with the exception of extraocular 
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muscle development, a small dose of Pitx2 is sufficient to induce the major 

morphogenetic events in mouse eye development.  

 

Other Mouse Models of Anterior Segment Dysgenesis 

 

 There are interesting similarities and differences between the ocular phenotype of 

the Pitx2 mutant mice and mice carrying defects in other transcription factor genes 

expressed in the periocular mesenchyme. Mice homozygous null for Foxc1 have agenesis 

of the corneal endothelium and thick dysmorphic, vascularized corneal stroma that is 

attached to the lens because the anterior chamber fails to form. The iris is hypoplastic 

with irregular shaped pupils, there is a lack of cells in the presumptive trabecular 

meshwork at e18.5, and the eyelids fail to close. However, the level of Pitx2 expression is 

unchanged, indicating it is not transcriptionally regulated by Foxc1. The mice also have 

non-cell autonomous defects; the corneal epithelium is thick and dysmorphic and overall, 

the mutant eyes are smaller than wildtype. The mutant mice also have hydrocephalus and 

multiple skeletal abnormalities that cause them to die at birth (Kidson et al., 1999; Kume 

et al., 1998). Adult mice heterozygous for Foxc1 also have ocular phenotypes, the 

severity of which depends on genetic background. Clinical defects included misplaced 

and irregularly shaped pupils, posterior embryotoxon, iridocorneal adhesions, and 

increasing corneal opacity with age (Hong et al., 1999; Smith et al., 2000). Upon 

histological analysis, most mice were observed to have small or absent Schlemm’s canal; 

hypoplastic, compressed, or absent trabecular meshwork; abnormal vascularization; and 

hypoplastic ciliary body, iris stroma, and iris epithelium (Smith et al., 2000).  

 

 Recently, the PITX2 and FOXC1 proteins were shown to physically interact, with 

PITX2 inhibiting the ability of FOXC1 to activate target gene transcription in the subset 

of cells in the developing anterior segment in which the two proteins are co-expressed. 

The precise balance between the competing activities of PITX2 and FOXC1 may explain 

why eye development is sensitive to the dosage of both proteins; reduced PITX2 function 

leads to both reduction in expression of its target genes and increased expression of 

FOXC1 target genes, while additional copies of FOXC1 may increase FOXC1 levels 
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enough to overcome the inhibition by PITX2 in some cells (Berry et al., 2006).  

  

 Foxc2 encodes a second forkhead-related transcription factor that is highly related 

to Foxc1 and has an analogous expression pattern. Despite the demonstration that 

heterozygous or homozygous Foxc2null mice have analogous anterior segment phenotypes 

to the corresponding Foxc1 mice, no FOXC2 mutations in association with anterior 

segment defects or glaucoma have been reported (Smith et al., 2000; Winnier et al., 

1997). Foxc2null heterozygous mice also have distichiasis, an ectopic extra row of 

eyelashes (Kriederman et al., 2003). Heterozygous FOXC2 mutations have been 

identified in patients with Lymphedema-Distichiasis Syndrome (Fang et al., 2000).  Mice 

that were double heterozygous for Foxc1 and Foxc2 mutations have similar defects to the 

single mutants, but with more severe defects in the iris stroma and ciliary body, plus 

corneal vascularization and open eyelids at birth (Smith et al., 2000).  

 

 Lmx1b knockout mice lack a corneal endothelium and anterior chamber and have 

dysmorphic corneal stroma, similar to Foxc1 or Foxc2 deficient mice. Lmx1b-/- 

homozygotes also exhibit corneal revascularization, microphthalmia, iris hypoplasia with 

irregular pupillary openings, and ciliary body hypoplasia, although their extraocular 

muscles appear normal. In contrast to Foxc1 and Foxc2 heterozygotes, eye development 

in Lmx1+/- animals is normal (Pressman et al., 2000).  

 

 None of these phenotypes are as severe as the Pitx2 knockout mice, especially in 

the effects on non-mesenchymal tissues, but they all have defects in corneal endothelial 

formation and thus anterior chamber formation. The Foxc1 heterozygous mice provide a 

better model for Axenfeld-Rieger anomaly than the Pitx2 heterozygotes, as they display 

all the clinical hallmarks with high penetrance. The Foxc1+/- clinical phenotype was 

almost completely penetrant (20/21) on the C57BL/6J background, but not seen on the 

129 background, although histological sections revealed outflow pathway defects in all 

mice. The Pitx2+/- mice that were examined were mixed 129/SJL and C57BL/6J, and 

defects were observed in approximately 10% of mice upon clinical examination. It might 

be worthwhile to examine the Pitx2+/- mice on a pure C57BL/6J background with both 
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clinical and histological tools.  

 

Signaling Pathways in Mouse Models of ASD 

 

 Numerous mice with mutations in signaling pathway genes also have anterior 

segment dysgenesis, some of which regulate Pitx2 expression in the eye. One such 

signaling pathway is the retinoic acid signaling pathway. Mice which lack the enzymes 

that produce retinoic acid, as well as mice with no retinoic acid receptors in the neural 

crest, phenocopy the neural crest-specific knockout of Pitx2 (see Chapter 2 for details). 

These mice also lose expression of Foxc1 (Evans and Gage, 2005; Matt et al., 2005; Matt 

et al., 2008; Molotkov et al., 2006).  

 

 The canonical Wnt pathway also seems to play a role in the activation of Pitx2 

expression during eye development, possibly as part of a feedback loop. PITX2 activates 

the expression of Dkk2, a secreted inhibitor of canonical Wnt signaling, in the neural 

crest at e11.5, and mice lacking Dkk2 fail to down-regulate Pitx2 expression in the 

corneal stroma at e16.5. Dkk2 mutant mice have conjunctivalization of the cornea with 

abnormal blood vessel growth, iridocorneal adhesions, and hypomorphic eyelids that fail 

to close (Gage et al., 2008).  Wnt signaling has also been proposed to stabilize Pitx2 

mRNA, preventing its rapid turnover and allowing its translation (Briata et al., 2003). 

Recent evidence indicates the canonical Wnt effector protein β-catenin may be required 

for the maintenance of Pitx2 expression in the neural crest at e11.5 (ALZ & Philip Gage, 

unpublished observations). In the developing pituitary, the Wnt responsive transcription 

factor LEF1 binds a conserved, required site in a pituitary Pitx2 enhancer, indicating that 

canonical Wnt signaling can activate the expression of Pitx2 in other tissues (Ai et al., 

2007). Physical interaction with β-catenin has been proposed to functionally activate 

PITX2-dependent transcription, possibly by relieving inhibition mediated by the 

chromatin associated protein HMG-17 (Amen et al., 2008; Amen et al., 2007; Vadlamudi 

et al., 2005).  

 

 Another signaling pathway that plays a role in the activation of Pitx2 is the G-
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coupled protein receptor, Gpr48. Gpr48 acts through adenylate cyclase to increase 

intracellular cyclic AMP (cAMP), which activates the CREB transcription factor. During 

eye development, it is expressed in the mesenchyme of the developing anterior segment 

as early as e12.5, and later expression is seen in the lens epithelium and tips of the optic 

cup (presumptive iris and ciliary body). CREB can bind and activate the Pitx2 promoter 

and mice mutant for Gpr48 have significantly reduced Pitx2 expression at e12.5. These 

mice also have reduced eye size, severe iris hypoplasia, iridocorneal adhesions, corneal 

opacity and vascularization, abnormalities of the trabecular meshwork and Schlemm’s 

canal, and cataracts. Unlike other mice with anterior segment defects, the corneal 

endothelium appears unaffected (Weng et al., 2008).  

 

 The TFG-β signaling pathway may also have a role in the activation of Pitx2, but 

the evidence is incomplete. TGFβ2 is expressed in the developing lens and knockout 

mice have a very similar eye phenotype to neural crest specific knockout mice for the 

Tgfbr2 receptor, indicating that its primary signaling target is the neural crest. These mice 

have thin, hypoblastic corneas with no endothelium or stromal lamination, persistent 

hyaloid vasculature and hyperblastic retinas (Ittner et al., 2005; Sanford et al., 1997). The 

neural crest specific knockout lacks Pitx2 expression at e15, but the cornea is already 

severely hypocellular at this point, so the cells that normally express Pitx2 may be absent 

or reduced in number (Ittner et al., 2005). Examination of these mice at earlier timepoints 

would provide more insight into whether TGF-β signaling is required for the activation or 

maintenance of Pitx2 expression or the survival and/or proliferation of the neural crest.  

The overexpression of a related molecule, TGF-β1 in the lens beginning at e12.5 causes 

the opposite effect. These mice have severely hypertrophic corneas due to increased 

proliferation and absence of the vitreal space between the retina and lens. Their corneal 

stroma is disorganized, unlaminated and vascularized and they lack a corneal epithelium 

and iris stroma (Flugel-Koch et al., 2002). The expression of Pitx2 was not examined in 

these mice, which also might help determine if it is regulated by TGF-β signaling. Other 

TGF-β family members, activin and TGF-α, are required for eyelid closure (Berkowitz et 

al., 1996; Luetteke et al., 1993; Vassalli et al., 1994; Xia and Kao, 2004).  
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 Recent work has shown that Indian Hedgehog (Ihh), an activator of the hedgehog 

signaling pathway, plays a role in regulating Pitx2 expression in the more proximal part 

of the periocular mesenchyme which surrounds the optic nerve and optic cup. Ihh is 

expressed in the developing choroid vasculature, and the hedgehog target gene Gli1 is 

expressed in the adjacent POM surrounding the optic cup. In Ihhnull mice, Gli1 expression 

is lost and Pitx2 expression is reduced in the posterior mesenchyme but not the anterior 

segment at e12, and completely absent in the posterior by e13.5.  However this regulation 

is not direct, because inhibiting or activating hedgehog signaling in e12 whole eye 

explants cultured for 48 hours does not affect Pitx2 expression. The Ihh mutant mice also 

have extensive loss of the sclera, probably due to defects in differentiation, which results 

in misshapen eyes. The choroid vasculature is reduced, and there are patchy defects in 

RPE pigmentation associated with the abnormal choroid and sclera (Dakubo et al., 2008). 

This emphasizes the importance of Pitx2 in scleral development. The identified signaling 

pathways that have been proposed to activate Pitx2 expression are all acting on the neural 

crest lineage, based on the location and fate of the cells affected, as well as lineage 

specific analysis. No activators of the Pitx2 expression in the mesodermal portion of the 

periocular mesenchyme have been proposed.  

 

 Other signaling pathways are critical for anterior segment development, but 

apparently do not affect Pitx2 expression. One such pathway is BMP4; in early eye 

development, it is expressed in the optic vesicle and ventral mesenchyme, and is later 

localized to the dorsal retina (Behesti et al., 2006). Beginning at e14.5, Bmp4 is restricted 

to the ciliary body, iris stroma, and RPE, where it is expressed through adulthood (Chang 

et al., 2001). Mice heterozygous for a Bmp4 null allele have Schlemm’s canal and 

trabecular meshwork defects, which cause a glaucoma phenotype. They also have 

iridocorneal adhesions, irregular shaped pupils and thinning, opacity and/or 

vascularization of the peripheral cornea. The involvement of anterior segment tissues that 

do not express Bmp4 suggests that BMP4 is secreted in the aqueous humor by the ciliary 

body and thus signals long range to the affected tissues, but the molecular targets for such 

signaling were not investigated (Chang et al., 2001). Mice expressing very low levels of 

Bmp4 are anophthalmic or severely microphthalmic, and human patients with BMP4 
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mutations also have this severe eye phenotype, suggesting that BMP4 also has very 

important functions in the early formation of the eye (Bakrania et al., 2008; Goldman et 

al., 2006).  

 

Functions of Pitx2 in Other Organs 

 

 In addition to its functions in eye development, the functions of Pitx2 have been 

studied in the development of many other tissues, some of which may be generalized 

functions of Pitx2 in organogenesis. One of the best studied organs is the pituitary; there 

Pitx2 has been shown to play roles in the formation and survival of the organ primordia, 

cell fate specification through the activation of other transcription factors, and 

differentiation by activating genes expressed by terminally differentiated cells (Charles et 

al., 2005; Quentien et al., 2002a; Quentien et al., 2002b; Suh et al., 2002; Tremblay et al., 

2000). It plays a similar role in activating transcription factor expression in many other 

tissues. In the pituitary and in other organs, some of these target genes require certain 

transcriptional co-factors and the three isoforms of Pitx2 differ in their abilities to 

regulate certain target genes (Amendt et al., 1998; Cox et al., 2002; Quentien et al., 

2002a; Quentien et al., 2002b; Schubert et al., 2004; Suh et al., 2002; Toro et al., 2004; 

Tremblay et al., 2000). The Pitx2c isoform in particular has been proposed to be the 

dominant isoform in left-right patterning (Essner et al., 2000; Liu et al., 2001; 

Schweickert et al., 2000; Yu et al., 2001).  

 

 Pitx2 has also been proposed to regulate members of various signaling pathways, 

including the Wnt pathway in the eye and pituitary, and FGF8 and BMP4 in the 

developing tooth (Gage et al., 2008; Liu et al., 2003; Lu et al., 1999; Vadlamudi et al., 

2005). Although Pitx2 has been shown to act primarily as a transcriptional activator, it 

has been demonstrated to inhibit the expression of the osteogenic transcription factor 

Osterix in cultured muscle cells (Hayashi et al., 2008). The function of Pitx2 in inducing 

histone modifications has not been well studied, but it has been shown to increase histone 

acetlyation in smooth muscle differentiation (Shang et al., 2008). Pitx2 has also been 

shown to play a role in inhibiting cell death and promoting proliferation by the activation 
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of cyclins (Charles et al., 2005; Kioussi et al., 2002; Rodriguez-Leon et al., 2008). It has 

been reported to regulate cell-cell adhesions and the remodeling of the extracellular 

matrix during the process of gut looping (Kurpios et al., 2008). Pitx2 is also required for 

normal cell migration in the developing brain, heart and branchial arches, although it is 

unclear whether Pitx2 is playing a role in cell movements or chemotaxis (Liu et al., 2002; 

Liu et al., 2003; Skidmore et al., 2008). Pitx2 has been proposed to activate a large 

variety of cellular functions and it may be influencing any or all of these functions in eye 

development.  

 

Transcriptional Targets of Pitx2 

 

 Since Pitx2 encodes a transcription factor, the majority of its functions are 

presumed to involve binding DNA and activating (or inhibiting) transcription. The 

homeodomain of Pitx2 has functional homology to that of the Drosophila homeobox gene 

bicoid; it has the characteristic lysine residue at the ninth amino acid position in the third 

helix (Hanes and Brent, 1989; Semina et al., 1996). Other mammalian bicoid-class 

transcription factors include Pitx1, Pitx3, Otx1, and Otx2 (Semina et al., 1996; Simeone 

et al., 1993). PITX2 can bind the characteristic bicoid binding site TAATCC and activate 

transcription (Amendt et al., 1998; Driever and Nusslein-Volhard, 1989).  Until recently, 

Pitx2 target genes had been identified by searching the proximal promoters of likely 

candidates for bicoid-like sites. The only proven PITX2 binding sites have identified in 

this manner and the TRANSFAC matrix used in the computational analysis is based on 

these sites and is therefore biased towards sites with high homology to the bicoid site 

(Amendt et al., 1998; Hjalt et al., 2001; Vadlamudi et al., 2005). Recently, a large scale, 

non-biased screen for mammalian homeodomain transcription factor binding sites was 

conducted. While it identified TAATCC as the ideal binding site for PITX2, it identified 

many other binding sites. These were used create a new matrix that will facilitate more 

unbiased identification of potential binding sites (Berger et al., 2008). A complicating 

factor in the in silico identification of binding sites is the fact that PITX2 has been shown 

to cooperate with other transcription factors, but how this affects its binding site and/or 

specificity is unknown (Amendt et al., 1998; Schubert et al., 2004; Toro et al., 2004).  
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 Until recently, only two direct transcriptional targets of PITX2 had been identified 

in the eye. Plod-1 and Plod2 are both procollagen lysyl hyroxylases that are important for 

collagen cross-linking. Collagen fibrils are found in large numbers in the cornea and 

sclera and Plod-1 and Plod2 are expressed in the embryonic eye. The genes were 

identified from a library of sequences obtained from chromatin precipitation of PITX2 

and e14 mouse head DNA. PITX2 can bind the bicoid-like sequences in the proximal 

promoters of Plod-1 and Plod-2 both in vitro and in vivo and it can activate transcription 

(Hjalt et al., 2001).  In humans, mutations in PLOD-1 and PLOD-2 cause Ehlers-Danlos 

syndrome and Bruck Syndrome respectively, both of which cause primarily skeletal 

defects, but abnormalities of the cornea and sclera are commonly reported (Durham, 

1953; Salavoura et al., 2006; Sharma and Anand, 1964; van der Slot et al., 2003). These 

phenotypes are consistent with potential regulation by PITX2 in the eye.  

 

 A newly identified transcriptional target of Pitx2 in the eye is a secreted inhibitor 

of Wnt/β-catenin signaling, Dkk2. Dkk2 is expressed in the periocular mesenchyme 

beginning at e11.5, and is lost in Pitx2 global and neural crest-specific knockout mice. 

PITX2 binds the Dkk2 promoter in vivo and can trans-activate it in vitro (Gage et al., 

2008). Although the PITX2-responsive sequence(s) in the Dkk2 promoter have yet to be 

identified, they are not homologous to bicoid sites (Philip Gage, Min Qian, and Chen 

Kuang, personal communication). Mice with a loss of Dkk2 function have eyelid closure 

defects and conjunctivalization and vascularization of the cornea (Gage et al., 2008). 

Humans with mutations in Dkk2 have not yet been identified.  

 

Extraocular Muscles 
 
 The extraocular muscles are an additional tissue derived from the periocular 

mesenchyme that is critical for vision and requires Pitx2 for its development. The 

extraocular muscles (EOMs) move the eyes within the orbit, enabling a whole new array 

of visual functions; tracking objects, reading text, and seeing in three dimensions 

(stereovision). In humans there are six extraocular muscles: four rectus muscles that 

move the eye side-to-side and up and down, and two oblique muscles that enhance 

rotational motion (Figure 1.3D, E). These muscles are innervated by the cranial nerves; 
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the superior, inferior, and medial rectus muscles, as well as the inferior oblique, are 

innervated by cranial nerve III, the superior oblique by cranial nerve IV, and the lateral 

rectus by cranial nerve VI. Mice have an additional extraocular muscle, the retractor 

bulbus, which serves to retract the globe deeper into the orbit as part of a protective reflex 

(Noden and Francis-West, 2006). The presence of extraocular muscles is conserved 

through all vertebrates, gnathasomes (lamprey), and even cephalopods (octopus) 

(Budelmann and Young, 1993; Fritzsch et al., 1990).  Some species have added accessory 

EOMs or adapted them to serve other purposes. These include some cold-water fish that 

have adapted the lateral rectus as a heat generating tissue, and frogs, which have co-opted 

the retractor bulbi to aid in swallowing (Block, 1994; Levine et al., 2004).  

 

 The demands of ocular motility are extreme and the extraocular muscles have 

evolved to meet them. Reflexive oculomotor control is required to stabilize an image on 

the retina to prevent blur and double-vision, plus higher vertebrates have added visual 

targeting (saccade) and vergence movements, so the neural system controlling ocular 

movements is complex. In saccadic eye movements, the neuronal input to the EOMs is 

substantial and rapid. The EOMs respond by moving the eye at speeds of up to 600˚/s. 

Because ocular movements occur almost constantly, and even during sleep, the EOMs 

must be extremely fatigue resistant as well. To achieve these functions, EOMs have used 

the full array of traits available to adult skeletal muscle and borrowed some from cardiac 

and embryonic skeletal muscle (Spencer and Porter, 2006).  

  

 Even the connective tissue of the eye orbit facilitates the functions of the 

extraocular muscles. The extraocular muscles function as part of a pulley system with the 

orbital connective tissue to mediate eye movements. Fibroelastic sleeves, or pulleys, 

anchor the EOMs to a fixed point in the orbit, acting as an inflection point to guide the 

movement of the globe (Clark et al., 1997; Demer et al., 1995; Kono et al., 2002; Porter 

et al., 1996). The recently proposed “active pulley hypothesis” suggests that the smooth 

muscle found in the orbit may activate movements of the pulleys that impact EOM forces 

on the globe, helping to make the neural inputs to initiate movement independent of the 

initial eye position (Clark et al., 2000; Demer et al., 2000). The mechanisms of activation 
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for this smooth muscle and its functions are still unknown, and the hypothesis remains 

controversial (Demer et al., 1997).  

 

Extraocular Muscle Fibers Are Unique 

 

  The extraocular muscles are highly specialized in order to meet unique functional 

demands. The multinucleated muscle fibers found in EOMs do not fit into any of the 

classifications used for other skeletal muscles. They are also polarized; there are different 

fiber types on the side of the muscle facing the eye and optic nerve (global) than on the 

side facing the orbit (orbital). The fibers on the orbital side are much smaller in diameter 

than those on the global side. The orbital layer fibers have more mitochondria, more 

extensive microvasculature and have higher levels of oxidative enzyme activity, 

reflecting their fatigue resistance (Spencer and Porter, 2006). The global layer fibers 

retain expression of developmental markers like embryonic myosin heavy chain (Myh3), 

NCAM and acetylcholine receptor γ (Brueckner et al., 1996; Kaminski et al., 1996; 

McLoon and Wirtschafter, 1996).  

 

 There are two categories of muscle fibers in the extraocular muscles: singly 

innervated fibers (SIFs) and multiply innervated fibers (MIFs). SIF fiber types are similar 

to other skeletal muscle fast-twitch fiber types, but they contain very little glycogen, 

while the MIF fiber types are atypical compared to other slow fibers. MIF fibers are 

innervated by a separate population of motor neurons than SIF fibers, raising the 

possibility that these nerves might have special properties as well (Buttner-Ennever et al., 

2001). There are six fiber types: two orbital (one SIF, one MIF) and four global (three 

SIF, one MIF). The orbital SIF type makes up 80% of the orbital layer. It has small 

myofibrils containing Mhy3 and Mhy13 with large numbers of mitochondria surrounded 

by extensive sarcoplasmic reticulum, and high lipid content compared to skeletal fibers. 

The orbital MIF type has structural variation along its length corresponding to the 

multiple sites of innervation—the center is moderately fast-twitch, while the distal and 

proximal ends exhibit characteristics of slowly contracting fibers. This type is unlike any 

other muscle fiber in the body and it is not known how its unique characteristics affect its 
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function. The three global SIF types, red, intermediate, and pale, differ in terms of their 

myosin heavy chain expression, fiber size, sarcoplasmic reticulum content, fatigue-

resistance and mitochondrial number and organization. The global MIF fiber type has 

very large myofibrils containing slow and cardiac myosin heavy chain isoforms, very few 

mitochondria, and scant sarcoplasmic reticulum. It exhibits a slow, graded, non-

propagating contraction unlike any other skeletal muscle fiber type. The four global fiber 

types are found in approximately equal proportions (Spencer and Porter, 2006).  

  

 In order to carry out the rapid, highly precise movements needed for proper visual 

function, the motor units, the number of myofibers innervated by a single motor neuron, 

are very small in EOMs as compared to other skeletal muscles. They have very short 

contraction and relaxation times compared to other fast skeletal muscles and require less 

nerve stimulation (Spencer and Porter, 2006). This speed is enabled by faster calcium 

transients due to the extensive sarcoplasmic reticulum and novel calcium reuptake 

mechanisms, as well as differences in contractile kinetics due to the EOM-specific 

myosin heavy chain isoform Myh13 (Asmussen and Gaunitz, 1981; Briggs et al., 1988; 

Jacoby and Ko, 1993; Kjellgren et al., 2003; Shrager et al., 2000). These adaptations are 

possible in part because the globe of the eye is a small, unchanging load, so the EOMs 

can further specialize compared to other skeletal muscles since the force needed is 

constant (Spencer and Porter, 2006).  

 

 Given their specialization, it is unsurprising that the extraocular muscles have 

distinct gene expression profiles from other skeletal muscles, even from other specialized 

muscles like the masticatory muscles. The EOMs express virtually all forms of myosin 

heavy chain: adult skeletal (Myh1, 2, 4, 7), developing (Myh3, 8), cardiac (Mhy6) and 

EOM specific (Myh13) (Spencer and Porter, 2006). The analysis of the differentially 

expressed genes has identified key differences in muscle biology, including 

transcriptional regulation, sarcomeric organization, metabolism and immune response. 

For example, it was identified that EOMs do not depend on glycogen as an energy 

source, as was previously found by histochemical analysis, probably because the EOMs 

have such high glucose demands that storage as glycogen is inefficient (Khanna et al., 
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2003). Similarly, transcriptional profiling showed that EOMs lacked M-line proteins that 

organize the myofilaments and link the contractile apparatus to the cytoskeleton. Analysis 

confirmed the loss of the M-line in EOMs, which represents another functional 

adaptation to the unique demands of ocular motion (Andrade et al., 2003; Porter et al., 

2003a).  

 

Extraocular Muscles in Disease 

 

 Dysfunction of the extraocular muscles can result in blurred or double vision 

(Kaminski et al., 2002). Numerous diseases, both developmental and adult-onset, include 

extraocular muscle pathologies. The most common, strabismus, colloquially known as 

“cross-eyes”, occurs in up to 4% of children (Gronlund et al., 2006). Strabismus is a 

generally developmental defect that occurs when the six ocular muscles are not equally 

balanced in strength, causing the eye to turn in one direction. This misalignment prevents 

the eyes from focusing on a single point, so binocular vision cannot be achieved. If left 

untreated, the brain will ignore the input from the misaligned eye and blindness can 

occur. Causes for the imbalance include neural, innervation and muscular defects, but it 

indicates that EOM development must be tightly regulated to ensure equal strength of the 

EOMs. Strabismus can also be caused by abnormalities of the pulley system (Oh et al., 

2002). More severe defects in EOM innervation result in the Congenital Craniofacial 

Dysinnervation Disorders (or CCDDs), which cause a default downward gaze or absence 

of vertical or horizontal eye movements. These disorders occur when the cranial nerves 

fail to properly innervate the EOMs; in the absence of nerve input the EOMs develop 

abnormally, often with fibrosis, immobility and aberrant innervation (Engle, 2006; 

Spencer and Porter, 2006). Mice lacking EOM innervation form normal extraocular 

primordia up through e14.5, but in the later phases of development the primary fibers 

degenerate and secondary fibers fail to form, which may help explain this phenotype 

(Porter and Baker, 1997). Rarely, congenital absence of one or more of the extraocular 

muscles has been reported (Astle et al., 2003; Chan and Demer, 1999; Drummond and 

Keech, 1989; Greenberg and Pollard, 1998; Hart et al., 2005; Kolling, 1999; Mather and 

Saunders, 1987; Taylor and Kraft, 1997).  
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 Adult-onset diseases involving the extraocular muscles are often autoimmune in 

nature. In myasthenia gravis, an autoimmune disease that attacks neuromuscular 

junctions, the extraocular muscles are often the first muscles affected (Spencer and 

Porter, 2006). This may be due to the fact that EOMs express a different acetylcholine 

receptor isoform than other skeletal muscles (Kaminski et al., 1996; Kaminski and Ruff, 

1997; Missias et al., 1996). Graves disease, an autoimmune-induced form of 

hyperthyroidism, also causes extraocular muscular dysfunction. The EOMs become 

enlarged due to the abnormal accumulation of glycosaminoglycans in the connective 

tissue of the orbit. The EOM fibers are normal, but the swelling causes difficulty in eye 

movements and causes the eye to protrude from the orbit (Porter et al., 1995). It is now 

thought that the eye phenotype is primarily autoimmune in nature, rather than simply a 

response to the increased levels of circulating thyroid hormone (Kaminski et al., 2002; 

Porter et al., 1995). Recently, EOMs were found to express lower levels of genes that 

inhibit the complement pathway of the immune system, which may partially explain their 

susceptibility to diseases like myasthenia gravis and Graves disease (Kaminski et al., 

2002; Porter et al., 2001). Extraocular muscle is also a primary tissue affected in some 

mitochondrial myopathies such as chronic progressive external ophthalmopathy and 

Kearns-Sayre syndrome, in which mitochondrial dysfunction leads to muscle weakness. 

The EOMs may be sensitive to mitochondrial defects due to their reliance on oxidative 

energy metabolism, which produces large amount of reactive oxygen species. Although 

the EOMs express large amounts of antioxidants, it may not be enough to last a lifetime, 

allowing damaged mitochondria to accumulate in old age (Spencer and Porter, 2006).  

 

 Interestingly, the extraocular muscles are spared in many forms of muscular 

dystrophy, including the most common form, Duchenne’s Muscular Dystrophy (DMD), 

which results from mutations in the cytoskeletal protein, dystrophin. DMD is 

characterized by disruption of the dystrophin-glycoprotein complex, which links the 

muscle fiber cytoskeleton to its plasma membrane, the sarcolemma. This disruption 

allows calcium to leak into the cells, causing changes in calcium homeostasis that 

eventually lead to muscle damage, followed by repair by satellite cells, the muscle stem 

cells. Eventually, the satellite cell population is exhausted by the damage and repair 
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cycle, and inflexible scar tissue takes the place of muscle. Proposed mechanisms for 

EOM sparing include a larger population of satellite cells, enhanced calcium 

homeostasis, increased protection from reactive oxygen species and higher levels of 

proteins like utrophin, which can compensate for dystrophin (Andrade et al., 2000; 

Porter, 1998).  

 

 Animal models of muscular dystrophy like the Mdx mouse have been invaluable 

in evaluating these hypotheses. The extraocular muscles of Mdx mice do not degenerate 

and they have no muscle fibers with central nuclei, a hallmark of recently regenerated 

muscle, indicating that the large satellite cell population plays no part in EOM sparing 

(Karpati et al., 1988; Porter et al., 1995). The Mdx mice also have reduced levels of the 

antioxidant nitric oxide synthase in the EOMs as well as other skeletal muscles, which 

makes the reactive oxygen species protection hypothesis less attractive (Kaminski and 

Andrade, 2001; Porter et al., 2003b; Wehling et al., 1998). Increased levels of utrophin do 

seem to play a role; in dystrophin-utrophin double-knockout mice, the EOMs do show 

degeneration, but only in 3 of the 6 fiber types, indicating that other protective 

mechanisms are at work (Porter et al., 1998). Calcium homeostasis and improved 

sarcolemmal integrity may play a role. In Mdx mice, EOM fibers with disrupted 

dystrophin-glycoprotein complexes did not have alterations in their sarcolemma or 

calcium levels, unlike affected muscles (Porter et al., 2003b). Genome-wide transcription 

profiling of EOMs from wildtype and Mdx mice showed almost no differences in 

expression, indicating that the protective mechanisms used by EOMs are constitutive 

properties, not adaptations (Porter et al., 2003b). Interestingly, the extraocular muscles 

are specifically affected in oculopharyngeal muscular dystrophy, which is caused by 

mutations in PABPN1, a poly-A binding protein that is a component of filamentous 

nuclear inclusions. The mechanisms of disease pathogenesis are unclear, but it seems 

fundamentally different from other forms of muscular dystrophy, which are generally 

caused by defects in specialized muscle proteins like those of the dystrophin-glycoprotein 

complex (Brais, 2009; Spencer and Porter, 2006). 
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Skeletal Muscle Development 

 

 With all of the differences between extraocular muscles and other skeletal 

muscles, it is not unexpected that their development is unique as well. In order to 

understand how EOM development is unique, it is helpful to first understand the 

development of the other skeletal muscle populations. The muscles and tendons of the 

trunk and limbs are derived from somites, regularly spaced and sized epithelialized 

condensations of paraxial mesoderm that form on either side of the neural tube during 

development. The homeobox transcription factor Pax3 is expressed in the paraxial 

mesoderm prior to somite formation, as well as the newly formed somites. The 

homologous gene, Pax7, is also expressed in part of the epithelial somite (Buckingham 

and Relaix, 2007). PAX3 and PAX7 are equivalent in the majority of their functions in 

myogenesis (Relaix et al., 2006; Relaix et al., 2004). The cells of the somites then 

delaminate and begin the process of cell fate determination; cells that enter non-myogenic 

lineages quickly down-regulate the expression of Pax3/Pax7.   

 

 Cells commit to the myogenic lineage by activating a group of basic helix-loop-

helix transcription factors known as the muscle regulatory factors (MRFs) because they 

can convert other cell types to a skeletal muscle phenotype (Braun et al., 1989a; Braun et 

al., 1989b; Edmondson and Olson, 1989; Thayer et al., 1989; Weintraub et al., 1989). The 

MRFs are 4 homologous genes that were generated by two separate duplication events 

over the course of evolution. Myf5 lies just upstream of Mrf4 (Myf6), while their 

respective homologues, MyoD (Myod1) and Myogenin, have moved to different 

chromosomes (Atchley et al., 1994; Atsushi and Rudnicki, 2002). The MRFs have 

complex and highly overlapping functions and expression patterns. They are co-

expressed in some, but not all cells, knockout mice for any single gene generally have 

subtle muscle phenotypes, and many of them can activate each other’s expression 

(Bryson-Richardson and Currie, 2008). Myf5, MyoD, and to a lesser extent, Mrf4, are 

required for myogenic specification, i.e. commitment to the muscle lineage. Myogenin, 

Mrf4, and MyoD are subsequently required for differentiation, i.e. the expression of genes 

required for muscle cell function, such as the myosins. The expression of Myogenin 
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marks the transition of cells from proliferating myoblasts to myocytes, which are post-

mitotic mononuclear cells that express skeletal muscle specific markers. As 

differentiation proceeds, the myocytes will fuse to form multinucleated myotubes, which 

coalesce to form myofibers (Noden and Francis-West, 2006).  

 

 PAX3/PAX7 can directly activate the expression of Myf5 and MyoD (Bajard et 

al., 2006; Hu et al., 2008), although cells generally downregulate Pax3/Pax7 expression 

once they activate the myogenic program (Relaix et al., 2005). Pax3/Pax7 are not 

absolutely required for the expression of Myf5 and MyoD, but they do drive the majority 

of the expression (Buckingham et al., 2006; Relaix et al., 2005). Pax3/Pax7 are also 

required for the specification and function of satellite cells, the stem cells found in mature 

muscle, but only Pax7 is able to ensure satellite cell survival (Kuang et al., 2006; Relaix 

et al., 2006). Pax3/Pax7 are generally required for muscle precursor survival and the vast 

majority of proliferating muscle precursors express PAX3/PAX7 rather than the MRFs 

(Kuang et al., 2006; Relaix et al., 2006).  

 

Cranial Muscle Development 

 

 The muscles of the head are derived from the paraxial and prechordal mesoderm, 

similar to other skeletal muscles, although the mesoderm is unsegmented. The MRFs 

Myf5, MyoD, and Myogenin also function as activators of myogenic specification and 

differentiation, although Mrf4 is absent in the head (Haldar et al., 2008; Noden and 

Francis-West, 2006). Transplantation experiments in chick have also shown that grafts of 

early, presomitic trunk mesoderm or newly formed somites that are transplanted into the 

head can contribute to normal EOM and branchiomeric muscles with normal gene 

expression. (Borue and Noden, 2004). The converse grafting experiment moving cranial 

mesoderm into the trunk found that cranial mesoderm can contribute to trunk but not limb 

muscles (Noden and Francis-West, 2006). There are, however, two major differences 

between cranial and somitic myogenesis. The first is that the signals and transcription 

factors upstream of the MRFs are distinct between the two muscle populations. The 
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second is that the tendons of the cranial muscles are derived from the neural crest lineage, 

and neural crest-mesoderm interactions influence the development of the cranial muscles.  

 

 There are many lines of evidence that indicate the activation of the myogenic 

program is different in head versus trunk muscles. The signals activating myogenesis 

differ: Sonic Hedgehog and canonical Wnt signaling are critical for trunk myogenesis, 

but Shh is dispensable in the head and Wnt signaling actually represses cranial 

myogenesis (Borycki et al., 2000; Kruger et al., 2001; McDermott et al., 2005; 

Munsterberg et al., 1995; Tajbakhsh et al., 1998; Teillet et al., 1998; Tzahor et al., 2003). 

The transcription factors that activate myogenesis are also different between the head and 

the trunk. While the Pax genes are critical MRF activators in trunk muscle development, 

Pax3 is not expressed in the head, and Pax7 is not expressed in the branchial arches until 

after the MRFs (Horst et al., 2006).  Head muscles are reported to form normally in the 

Pax7 knockout mice, although a detailed examination was not performed (Relaix et al., 

2004). In the absence of Myf5, MyoD expression is delayed in the trunk, but not the head, 

further indicating the MRFs are activated by different mechanisms (Tajbakhsh et al., 

1998; Tajbakhsh et al., 1997). Consistent with this, separate trunk and branchial arch 

enhancer regions have been identified for Myf5 and MyoD, although no EOM specific 

enhancers have been identified (Hadchouel et al., 2003; Kucharczuk et al., 1999; 

Summerbell et al., 2000).  

 

 Several genes that regulate branchial arch (BA) myogenesis have been identified. 

Tbx1, Musculin (MyoR), and Tcf21 (Capsulin) are required for myogenesis upstream of 

the MRFs in the branchial arches (Grenier et al., 2009; Kelly et al., 2004; Lu et al., 2002; 

Robb et al., 1998). Tbx1 has been proposed to regulate Myf5 and MyoD expression 

directly (Dastjerdi et al., 2007; Grifone et al., 2008; Kelly et al., 2004). However, none of 

these genes are necessary for EOM development, although Tbx1 and Musculin are 

expressed, indicating that the program for extraocular muscle development is distinct 

(Grenier et al., 2009; Kelly et al., 2004; Lu et al., 2002; Robb et al., 1998). No direct 

regulators of MRF expression have been identified for the EOMs. Pax7 has been 

proposed to serve this function in the extraocular muscle primordia, but a functional role 
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has not been demonstrated (Mootoosamy and Dietrich, 2002). Pitx2 is required for the 

formation of the extraocular muscles, as well as the muscles of the first branchial arch, in 

a dose-dependant manner, and it has also been proposed to activate the MRFs directly 

(Diehl et al., 2006; Dong et al., 2006; Gage et al., 1999; Kitamura et al., 1999; Liu et al., 

2003; Lu et al., 1999; Shih et al., 2007a). The genes which regulate MRF expression in 

the branchiomeric and extraocular muscles are clearly distinct from those of somitic 

muscles, but more work needs to be done to functionally demonstrate MRF activation.   

 

 The other major difference between cranial and trunk muscles are the mechanisms 

underlying the formation of tendons and connective tissue. In the trunk, tendons are 

formed from the somitic mesoderm and require the transcription factor Scleraxis. In the 

head, tendons are neural crest derived, and although Scleraxis expression is found in the 

extraocular and branchiomeric tendons beginning at e12.5, it is not required for their 

formation (Grenier et al., 2009; Grifone et al., 2008; Murchison et al., 2007; Pryce et al., 

2007). Expression of Scleraxis initiates in the absence of branchiomeric muscle, but is 

not maintained, indicating that signals from the developing muscle are required for neural 

crest cells to form tendon (Grenier et al., 2009).  

 

 The neural crest cells also pattern the cranial muscle primordia during 

development, which does not occur in trunk myogenesis. In the branchial arches, the 

neural crest cells surround the developing mesoderm, and mouse mutants with neural 

crest migration defects have marked defects in the myogenic specification of the 

branchiomeric muscles (Rinon et al., 2007). The extraocular muscles do not establish 

contact with the neural crest until relatively later than the branchial arches, at 

approximately e10.5 in mouse (Gage et al., 2005; Noden and Trainor, 2005). Mice with 

defects in neural crest development have varying phenotypes. In Twist1 mutant mice, 

most of the periocular neural crest migrate to the correct location and these mice have no 

extraocular muscle phenotype (Rinon et al., 2007). Mice with constitutively activated β-

catenin in the neural crest have defects in the migration of portions of the periocular 

neural crest and these mice lack expression of Myf5, MyoD, and Myogenin in the 

extraocular muscle primordia (Rinon et al., 2007). The number of extraocular muscle 



 33 

precursor cells expressing Pitx2 is reduced in these mice, suggesting the neural crest may 

influence mesoderm proliferation or survival (ALZ, unpublished observations). However, 

it is unclear whether this phenotype is caused by reduced interactions of the mesoderm 

with the neural crest or abnormal interactions with the neural crest cells that are present, 

due to their activated canonical Wnt signaling. These findings underscore the importance 

of neural crest-mesoderm interactions in EOM development.  

 

Pitx2 in Skeletal Muscle Development 

 

 Pitx2 is expressed in the developing extraocular muscles as well as the branchial 

arches and somites. It is expressed in almost all somite-derived musculature during 

development (Shih et al., 2007b). While Pitx2 is expressed prior to markers of muscle 

specification in the EOM and BA muscle precursors, it lags behind the expression of 

Pax3 and the MRFs in the somites (L'Honore et al., 2007; Shih et al., 2007b). In the 

somitic muscles, PITX2 expression co-localizes with PAX3, PAX7, MYOD, and 

MYOG, as well as proliferation markers BrdU and Ki67, but less with differentiation 

markers MF20 and α-actin, indicating it marks muscle precursors and progenitors 

(L'Honore et al., 2007). In vitro culture experiments with limb-derived myoblasts indicate 

that PITX2 promotes proliferation by regulating cyclin activity and may inhibit terminal 

differentiation (Kioussi et al., 2002; Martinez-Fernandez et al., 2006). While Pitx2 is 

required for the formation of extraocular muscles and the mastication muscles of the first 

branchial arch, a function in the development of the trunk and limb muscles has not been 

described. The lack of a somitic muscle phenotype in the Pitx2null mice may be due to 

compensation by the other Pitx genes, Pitx1 and Pitx3, which have overlapping 

expression patterns in the skeletal muscle (L'Honore et al., 2007; Lanctot et al., 1997; 

Shang et al., 1997). 

 

Functions of Pitx2 in cranial myogenesis 

 

 In branchial arch development, only the 1st branchial arch requires Pitx2 

expression for it development, even though Pitx2 is expressed in arches I-IV (Dong et al., 
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2006; Lu et al., 1999; Shih et al., 2007a, b). Pitx1 and Pitx3 are expressed in the 1st arch, 

but are apparently unable to compensate for the loss of Pitx2 (L'Honore et al., 2007; 

Lanctot et al., 1997). Expression of the branchiomeric muscle specification genes 

Tbx1and Musculin were shown to be lost at e9.5 (Dong et al., 2006; Shih et al., 2007a). In 

the reverse of their relationship in cardiac development, PITX2 was shown to directly 

activate Tbx1 expression (Shih et al., 2007a). At the same time, massive cell death occurs 

in the mesodermal core of the first arch beginning at e9.5, such that it is almost 

completely gone by e10.5 (Dong et al., 2006; Shih et al., 2007a). Myogenesis is not 

observed and mesoderm specific deletions of Pitx2 demonstrate that the defect is cell 

autonomous (Dong et al., 2006). The requirement for Pitx2 is also dose sensitive; 

Pitx2neo/null mice with approximately 20% normal PITX2 levels have reduced Myogenin 

expression in the first branchial arch and no masseter muscles (Dong et al., 2006).  

 

 Extraocular muscle formation is also dependent on Pitx2 dose. EOMs are reduced 

in Pitx2+/- mice with 50% wildtype Pitx2 dose, and completely absent in Pitx2neo/null mice 

with 20% dose. The expression of the MRFs and other muscle transcription factors is also 

dependent on Pitx2 dose. Myf5, MyoD, and Myogenin are reduced to 10%-20% of their 

wildtype expression level in Pitx2 heterozygotes and are effectively absent in Pitx2 null 

mice by qRT-PCR (Figure 1.5). Musculin, Smyd1 and Csrp3 are other muscle 

transcription factors affected by loss of Pitx2. Pitx2 was proposed to be a direct regulator 

of these muscle transcription factors, including the MRFs. The expression of myosin 

heavy chain is also Pitx2 dose dependent, as are many other muscle proteins, indicating 

differentiation is reduced as well as the muscle size. No changes were seen in cell death 

or proliferation in the EOMs at e12.5 and e14.5 (Diehl et al., 2006). In Pitx2null mice 

labeled with a Myf5-Cre, it was observed that Myf5-labeled EOM precursor cells were no 

longer present in their normal location, just dorsal to the eye, while an abnormal mass of 

Myf5-labeled cells was later seen in the frontonasal region. It is unclear if these cells 

represent a mislocalization of the EOM primordia (Dong et al., 2006). The expression of 

Pitx2 was disrupted in the neural crest as well as the mesoderm in all of these 

experiments, so it is unclear what role Pitx2 expression in the neural crest cells might 

have on the developing extraocular muscle primordia.  
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 In addition to Pitx2, the only genes demonstrated to regulate extraocular muscle 

myogenesis are the MRFs, Myf5 and MyoD, which are redundantly required for myoblast 

specification. The double knockout mice lack any differentiated muscles in the head or 

trunk (Kablar et al., 2003; Kassar-Duchossoy et al., 2004; Rudnicki et al., 1993). 

Six1/Six4 double knockout mice have EOMs that are present but reduced in size, 

indicating they are not required (Grifone et al., 2005). Eya2 and Dach2 are transcription 

factors expressed in the developing EOM primordia, but mutant mice for both are 

reported to have no eye phenotype, although whether the EOMs were examined was not 

specifically mentioned (Davis et al., 2008; Davis et al., 2001; Grifone et al., 2007). The 

absence of other genetic regulators besides the MRFs further emphasizes the critical role 

of Pitx2 in extraocular myogenesis.  

 

 Pitx2 expression in the extraocular muscles is maintained through adulthood in 

both myonuclei and satellite cells in all EOM fiber types (Zhou et al., 2009). Other 

myogenic transcription factors are not expressed in differentiated muscle fibers, and Pitx2 

expression is absent from other muscles in adulthood, which further indicates it may have 

unique functions in the extraocular muscles (L'Honore et al., 2007; Relaix et al., 2006). 

Recently, an adult skeletal muscle knockout of Pitx2 was reported, in which Pitx2 

expression was removed beginning at post-natal day zero. The EOMs of these mice 

display reduced fiber size, and increased force, contractile speed and fatigability. Many 

forms of myosin heavy chain were reduced in expression levels, particularly the 

extraocular muscle specific isoform, Myh13, which may explain the changes in 

contractile properties. Expression levels of Myf5, MyoD, and Myogenin were all highly 

down-regulated at all timepoints examined, while expression of the myosin proteins 

progressively decreased over time, leading the authors to propose that the MRFs are 

direct targets of PITX2, while the myosins are indirect targets (Zhou et al., 2009).    

 

Thesis Aims 

 

 Pitx2 is an essential regulator of both anterior segment and extraocular muscle 

development in the eye, but the mechanisms underlying its function were not well 
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understood. Pitx2 plays a variety of roles in many cell types and it was unclear whether 

Pitx2 was involved in the regulation of proliferation, cell survival, cell fate specification 

or other processes in eye development. This issue is further complicated by the fact that 

Pitx2 is expressed in two embryonic lineages in the eye, the mesoderm and the neural 

crest, which both make contributions to the anterior segment and extraocular muscles. It 

was unknown whether Pitx2 has different functions in the neural crest and mesoderm, 

due to the unique mix of endogenous transcription factors in each lineage and their 

differential ability to respond to extracellular signals. It was also unknown how Pitx2 

expression in one lineage affects the function of the other lineage, particularly in the 

interactions between neural crest and mesoderm during extraocular muscle development. 

Pitx2 was proposed to activate myogenesis in extraocular muscle development, but the 

underlying mechanism of this function was unclear.  

 

 To determine the lineage specific functions of Pitx2, we created both neural crest 

and mesoderm specific knockout mice using the Cre-lox system. In addition to 

identifying the mechanism of Pitx2 function in the two lineages, we hoped to uncover 

new and potentially later functions in eye development, if the mice survived longer. 

Furthermore, these experiments allowed us to examine the role of Pitx2 in the 

interactions between neural crest and mesoderm, especially during extraocular muscle 

development. In order to identify the upstream activator(s) of myogenesis in extraocular 

muscle development, we examined the functions of two proposed regulators of MRF 

expression, Pax7 and Pitx2.   
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Figure 1.1: Morphogenesis of the developing eye. The eye develops from the ocular 
surface ectoderm (blue), neural ectoderm (green), and the periocular mesenchyme 
(orange). (A) At e9.5 the optic vesicle induces the formation of the lens placode from the 
ocular surface ectoderm. The cranial mesoderm is already present adjacent to the optic 
vesicle (B) At e10.0, the lens pit and optic vesicle invaginate to form the optic cup. The 
outer layer of the optic cup will form the RPE, while the inner layer forms the retina. At 
this point, neural crest cells begin to invade the eye field. (C) By e11.5, the lens vesicle 
has separated from the surface ectoderm, and a thin layer of loose mesenchymal cells has 
invaded the space between the lens and surface ectoderm. (D) At e13.5, signals from the 
lens induce the compaction of the mesenchymal cells that will form the corneal stroma 
and endothelim. The outgrowth of the eyelid primordia begins. (E) At e14.5, the corneal 
endothelium has formed (arrow), which separates the mesenchyme from the lens, 
creating the anterior chamber. (F) By e16.5, the iris has been colonized by mesenchymal 
stroma and the eyelids fuse closed. Key: C, cornea; E, eyelid; L, lens; LP, lens placode; 
M, mesoderm; OSE, ocular surface ectoderm; OV, optic vesicle; Pit, lens pit; R, retina; 
RPE, retinal pigmented epithelium. Adapted from Gage & Zacharias, 2009.  



 38 

 

 
Figure 1.2: Fate map of the adult mouse eye. A structural diagram of the adult mouse 
eye showing critical features. Cells type derived from the neural crest lineage are shown 
in red. Cell types derived from the mesoderm lineage are shown in blue. Many tissues 
receive contributions from both cell types.  Adapted from Gage et al., 2005.  
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Figure 1.3: Morphogenetic movements of extraocular muscle precursor cells during 
development. The extraocular muscles derive from the most anterior portion of the 
mesoderm, based on fate mapping experiments performed in chick by Evans and Noden, 
2006 (A). The extraocular muscles form from unsegmented prechordal and paraxial 
mesoderm. The more posterior cranial mesoderm cells invade the branchial arches at 
e9.0, while the extraocular precursors remain in the eye field (B). A loose collection of β-
gal-labeled mesoderm cells (arrow) express PITX2 at e10.0, prior to the invasion of the 
neural crest cells (B). β-gal-labeled mesoderm cells expressing PITX2 (arrow) have 
condensed into a wedge at e11.5 (C). PITX2 is also expressed by the neural crest cells 
surrounding the optic cup (C, arrowheads). Ectopic transgene expression is seen in the 
lens, retina, and optic stalk. Later in development, the precursors separate into individual 
muscles, shown in red in the diagram (D). The optic nerve is shown in grey, and the plane 
of section seen in (E) is indicated. A sagittal section at e14.5 shows all seven extraocular 
muscles, which express PITX2 (E). SO, superior oblique; IO, inferior oblique; MR, 
medial rectus; IR, inferior oblique; SR, superior rectus; LR, lateral rectus; RB, retractor 
bulbus; ON, optic nerve. Embryos in A and C were genetically labeled with αGSU-Cre, 
B was labeled with T-Cre, see Chapter 3 for details. 
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Figure 1.4: Ocular phenotype in mice with reduced Pitx2 dose. At e14.5, mouse 
embryos with one copy of a reduced function Pitx2neo allele have a normal eye 
phenotype, with normal sclera formation (arrow) and extraocular muscles (arrowheads). 
(A). Pitx2neo/null embryos, which have approximately 20% of the Pitx2 dose of a wildtype 
embryo, have absent extraocular muscles, and defects in sclera formation (arrow) which 
may cause the observed distortion in eye shape (B). At e16.5, the eyelids of a Pitx2+/neo 
embryo have closed normally and fused shut (arrowhead) (C). The eyelids of a 
Pitx2neo/null embryo remain open (arrowheads) (D). The open eyelids phenotype also 
occurs in Pitx2neo/neo embryos, which have approximately 40% wildtype Pitx2 dose (data 
not shown). Adapted from the work of Adam Diehl. 
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Figure 1.5: MRF expression is severely affected in the extraocular muscles of 
Pitx2null heterozygous embryos. The expression levels of the muscle regulatory factors 
(MRFs) Myf5, Myod1, and Myogenin are reduced to 10-20% of wildtype levels in Pitx2+/- 
heterozygous eye primordia, by quantitative RT-PCR (A). The reduction in MRF levels is 
more severe than the reduction in the number of muscle cells (arrows) in the heterozotes 
(C). In the Pitx2 heterozygotes (C), the two oblique muscles are absent and the four 
rectus muscles are reduced in size (arrows), as compared to a wildtype embryo (B). 
Adapted from Diehl et al., 2006.  
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Chapter 2: Expression of the homeobox gene Pitx2 in neural crest is 
required for optic stalk and ocular anterior segment development. 

 

Introduction 

 

Glaucoma is a constellation of disease processes that result in vision loss due changes in 

the optic nerve head and accompanying death of retinal ganglion cells. Glaucoma often 

occurs in association with elevated intraocular pressure (IOP) due to physical or 

functional changes within the anterior segment of the eye, but its relationship to IOP is 

not absolute. The most common form of glaucoma in the United States is primary open 

angle glaucoma, in which elevated IOP is associated with optic nerve damage. In 

contrast, the most common form in Japan is normal tension glaucoma, in which IOP is 

unchanged, but optic nerve damage is associated with defects in blood flow (Araie et al., 

1994). Additionally, elevated IOP does not always lead to glaucoma (Grodum et al., 

2005). The underlying molecular mechanisms leading to initiation and progression of 

most forms of glaucoma are largely unknown. 

 

 Developmental glaucomas provide a unique entry into studying the disease; 

patients generally develop more severe glaucoma at younger ages, which facilitates the 

mapping of gene loci. In cases in which genetic mutations are identified, the study of 

animal models is possible. Heterozygous mutations in the human homeobox gene, PITX2, 

underlie Axenfeld-Rieger Syndrome (ARS) in the subset of patients mapping to 

chromosome 4q25 (Semina et al., 1996).  This autosomal-dominant condition results in 

developmental defects within the ocular anterior segment in structures derived from the 

periocular mesenchyme, including the cornea, iris and outflow tract (Alward et al., 1998; 

Kulak et al., 1998; Noden, 1982; Semina et al., 1996; Shields, 1983). In addition, 50% of 
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affected individuals develop early onset glaucoma.  PITX2 encodes a homeodomain 

transcription factor that regulates expression of downstream target genes (Amendt et al., 

1998; Charles et al., 2005; Cox et al., 2002; Ganga et al., 2003; Green et al., 2001; Hjalt 

et al., 2001; Suh et al., 2002; Vadlamudi et al., 2005). Interestingly, both gain- and loss-

of-function mutations in PITX2 have been functionally identified (Brooks et al., 2004; 

Kozlowski and Walter, 2000; Perveen et al., 2000; Priston et al., 2001; Saadi et al., 2003; 

Saadi et al., 2001). Murine Pitx2 is expressed throughout the periocular mesenchyme, 

including not only the structures of the anterior segment but also the sclera, ocular 

vasculature, and extraocular muscles (Gage et al., 2005; Semina et al., 1996). It is widely 

assumed that glaucoma in these patients is the result of elevated IOP due to the anterior 

segment defects (Shields, 1983).  However, the underlying molecular mechanisms and 

the reason(s) why only 50% of affected individuals develop glaucoma are not known. 

Collectively, these observations suggest that more complex factors than simply elevated 

IOP contribute to the etiology of glaucoma in affected patients. 

 

Animal models of glaucoma have been very powerful in identifying its underlying causes 

(Levkovitch-Verbin, 2004). Previously, an animal model of ARS was created by targeted 

deletion of Pitx2 in mice in order to further analyze the functions of this important 

regulatory gene (Gage et al., 1999; Kitamura et al., 1999; Lin et al., 1999; Lu et al., 

1999). These global knockout mice die at e14.5 of heart defects, but this model has 

revealed several important roles for Pitx2 in early eye development. The eye defects 

include the agenesis of the corneal endothelium and stroma and loss of extraocular 

muscles, which derive from periocular mesenchyme (Gage et al., 1999; Kitamura et al., 

1999; Lu et al., 1999).  Additionally, development of the optic nerve from neural 

ectoderm is abnormal, despite the fact that Pitx2 is not expressed there (Gage et al., 

1999). These results suggest that Pitx2 has both intrinsic and extrinsic roles in eye 

development.  

 

 Fate mapping experiments in chick provided the first evidence that both neural 

crest and mesoderm precursors contribute to the periocular mesenchyme (Johnston et al., 

1979; Le Douarin, 1980, 1982; Le Lievre and Le Douarin, 1975; Noden, 1982). The optic 
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cup, optic stalk, and lens interact with both precursor pools early in eye development. We 

recently used binary transgenic systems to establish that neural crest and mesoderm fates 

in mice are similar to those in chick but there is a greater contribution of mesoderm to 

anterior segment structures, including the corneal endothelium and stroma. Interestingly, 

Pitx2 is expressed in both neural crest and mesoderm precursors beginning early in eye 

development (Gage et al., 2005). Collectively, these data indicate that the ocular defects 

of the global Pitx2 knockout mice could arise from a requirement for Pitx2 function in 

neural crest or mesoderm, or both. The neural crest precursors are of particular interest 

because it has been suggested that deficiencies in neural crest function underlie many 

human anterior segment disorders (Kupfer and Kaiser-Kupfer, 1978).  

 

 To determine the role of Pitx2 in the neural crest lineage of the ocular 

mesenchyme, we created a neural crest specific knockout of Pitx2 (Pitx2-ncko) by mating 

mice carrying the Pitx2flox allele to mice carrying a Cre transgene driven by the Wnt1 

promoter (Danielian et al., 1998). Studying these mice enabled us to determine the roles 

of Pitx2 expression in the neural crest during early eye development.  In addition, post-

natal survival of Pitx2-ncko mice allowed identification of novel requirements for Pitx2 

function in the later stages of eye development.  We discovered defects in both the 

mesenchymal tissues that normally express Pitx2, as well as in neural tissues that do not, 

demonstrating that Pitx2 expression in the neural crest cells has both intrinsic and 

extrinsic functions. Based on the data, we propose a new model for development of the 

optic nerve from the optic stalk and new mechanisms that may contribute to the etiology 

of glaucoma in ARS.   

 

Materials and Methods 

 

Generation of neural crest-specific Pitx2 knockout mice: The generation of Pitx2flox mice 

has been previously described (Gage et al., 1999).  Mice carrying the R26R Cre-reporter 

allele (Soriano, 1999) were obtained from the Jackson Laboratories. Wnt1Cre mice, 

which carry a transgene containing a Cre cassette under the control of the Wnt1 promoter, 

were obtained from A. McMahon (Danielian et al., 1998). The Pitx2flox/flox;R26R/R26R 
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parental line was generated by serial mating of Pitx2flox and R26R mice, and their 

progeny. The Wnt1Cre; Pitx2+/- parental line was generated by mating Wnt1Cre  and 

Pitx2null mice. All procedures involving mice were approved by the University of 

Michigan Committee on Use and Care of Animals. All experiments were conducted in 

accordance with the principles and procedures outlined in the NIH Guidelines for the 

Care and Use of Experimental Animals.  

 

 The Wnt1Cre; Pitx2+/- mice were mated to the Pitx2flox/flox; R26R/R26R mice to 

generate timed pregnancies. The morning after mating was designated as embryonic day 

0.5. Embryos were collected by C-section after euthanasia of the mother. The resulting 

embryos were genotyped for Cre (Cushman et al., 2000), and Pitx2 (Gage et al., 1999) 

using PCR-based methods. Embryos with a Wnt1Cre; Pitx2flox/- genotype were considered 

mutant, while Wnt1Cre;Pitx2flox/+embryos were used as controls. 

 

Histology: All embryos were fixed in 4% paraformaldehyde in PBS, washed, dehydrated, 

embedded in paraffin, and sectioned at 7 microns. Mounted sections for morphological 

analysis were dewaxed, rehydrated, and stained with hematoxylin and eosin.  

 

Immunofluorescence: Paraffin sections were dewaxed and treated for antigen retrieval by 

boiling for 10 minutes in 10 mM citrate buffer (pH6.0).  Sections were treated with 

Image-iT FX signal enhancer (Molecular Probes) for 30 minutes. Immunostaining was 

performed according to standard protocols. Briefly, sections were stained with antibodies 

against β-galactosidase (Eppendorf-5prime), PITX2 (gift from T. Hjalt), Pitx1 (gift from 

J. Drouin), Pax2 (Covance), Pax6 (Covance), AP-2β (Abnova), NG2 (Chemicon), 

Collagen IV (Biogenesis), myogenin (clone F5D, developed by Woodring Wright and 

obtained from NICHD/Developmental Studies Hybridoma Bank), developmental myosin 

heavy chain (Vector) or TUJ1 (BabCo). Treatment with the primary antibody was 

followed by fluorescent-labeled (Molecular Probes) or biotinylated (Jackson Immuno 

Research) species-specific secondary antibodies. When biotinylated secondary antibodies 

were used, signals were detected using tyramide signal amplification kits (Molecular 

Probes).  
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In Situ Hybridization: Antisense riboprobes to Otx2 (J. Rubenstein; (Crossley et al., 

2001)), Mitf (C. Hodgkinson; (Hodgkinson et al., 1993)), Vax1 (P. Mathers), and Shh (A. 

McMahon; (Echelard et al., 1993)) were generated and labeled with digoxigenin 

according to standard procedures. Paraffin sections were processed for in situ 

hybridization as previously described (Cushman et al., 2001). All probes were incubated 

at 57°C.  

 

Results 

 

Tissue-specific targeting of Pitx2 in neural crest 

 

 We previously described generation of a conditional Pitx2 allele (Pitx2flox) by 

introduction of loxP sites into introns flanking exon 5, which encodes the homeodomain 

essential for DNA binding and protein function (Gage et al., 1999). We included the 

R26R Cre reporter allele in our crosses so that we could readily detect cells in which Cre-

mediated excision occurred (Soriano, 1999). To obtain neural crest specific Pitx2 

knockout mice (Pitx2-ncko), mice homozygous for Pitx2flox and the Cre reporter allele 

R26RloxP (Pitx2flox/floxR26RloxP/loxPmice) were mated to Pitx2 null heterozygotes carrying 

the Wnt1-Cre transgene. The endogenous Wnt1 gene is expressed in the midbrain and 

along the entire length of the dorsal neural tube, which contains the pre-migratory neural 

crest (Echelard et al., 1994). Wnt1-Cre is active by e8.5 in the pre-migratory neural crest 

(Danielian et al., 1998; Echelard et al., 1994), two days before the expression of Pitx2 in 

the ocular neural crest at day e10.5 (Gage and Camper, 1997), thereby allowing sufficient 

time for efficient conversion of Pitx2flox to the null allele. Wnt1-Cre has also been used 

successfully to study the role of β-catenin in the craniofacial neural crest (Brault et al., 

2001). In our current experiments, excision of the homeodomain results in conversion of 

the fully functional Pitx2flox to the non-functional Pitx2null allele in the cells expressing 

Wnt1-Cre, creating pups that are homozygous null for Pitx2 in the neural crest 

population, but heterozygous elsewhere. Control and experimental mice were identified 

by PCR-based genotyping. In order to confirm that expression of Wnt1-Cre resulted in 
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specific and efficient silencing of Pitx2 in neural crest, sections from control and Pitx2-

ncko embryo were co-immunostained for β-gal, to detect marked neural crest, and 

PITX2.  In control embryos at e12.5, PITX2 is expressed in both neural crest and 

mesoderm surrounding the eye primordia (Figure 2.1A, C, E).  In contrast, in Pitx2-ncko 

embryos, PITX2 expression is expressed only in mesoderm, even though neural crest 

cells appear to be present (Figure 2.1B, D, F).   These results establish that Cre-mediated 

excision of Pitx2 was highly efficient and specific for neural crest in the mutant embryos.  

In mice that were identified as mutants, twenty of twenty-two mice examined exhibited 

the consistent mutant phenotype described below.  The remaining two mice had one 

mutant eye and one eye with similar but less severe defects.  These observations confirm 

that the Pitx2-ncko phenotype is highly consistent and fully penetrant. In contrast to 

global Pitx2 knock out animals, Pitx2-ncko mice are viable and survive at least until 

weaning, suggesting that Pitx2 function in neural crest is not strictly required for 

development of the cardiovascular system or other essential organs (data not shown). 

 

Pitx2-ncko mice are clinically anophthalmic 

 

 To examine the cumulative phenotype, as well as to gain insight into the role of 

Pitx2 in later eye development, Pitx2-ncko mice and their control littermates were 

harvested at e16.5 and e18.5. The eyes of control littermates are visible through the fused 

eyelids (Figure 2.2A), while the eyes are not visible externally in the Pitx2-ncko mutants 

(Figure 2.2B). Dissection of the mutant head revealed that two eyes are present, but 

buried within the skull, near the midline, directly beneath the brain (Figure 2.2C, D). The 

presence of globes that are not externally visible indicates that Pitx2-ncko mice are 

clinically anophthalmic (Ishikawa et al., 1996). Mutant eyes are generally devoid of 

pigment except for a cone-shaped region at the anterior segment (Figure 2.2 C, D).  The 

lens and retina are present in each mutant eye (Figure 2.2 C-H).   

 

 Examination of histological sections revealed that the mutant eyes are attached 

directly to the ventral hypothalamus rather than connected through an extended optic 

nerve (Figure 2.2 E, F). Multiple histologically distinct layers are apparent in the retinas 
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of mutant animals, as are retinal ganglion cells that extend axons that enter the ventral 

hypothalamus and form a structure resembling an optic chiasm (Figure 2.2H, 2.6J). Lens 

blebbing is also observed, which is a common feature in many eye mutants (Smith et al., 

1997). The control retinal-pigmented epithelium (RPE) is fully pigmented at e16.5 

(Figure 2.7E).  In contrast, the mutant RPE is devoid of pigment at this stage, but it 

remains a columnar epithelium (Figure 2.2C, H). The developing anterior segment 

remains heavily pigmented (Figure 2.2D, H).  Both the optic stalk and the RPE arise from 

the neural ectoderm where Pitx2 is not expressed (Figure 2.1E; (Gage and Camper, 

1997)). These phenotypes indicate that one essential function of Pitx2 in the neural crest 

is to regulate expression of extrinsic factors that influence development of the neural 

ectoderm.   

 

 Multiple defects in structures derived partially or totally from neural crest are also 

apparent in Pitx2-ncko eyes. The corneal endothelium and stroma, which receive 

contributions from neural crest and mesoderm, are absent in mutant eyes (Figure 2.2F, H; 

(Gage et al., 2005).  The sclera surrounding the eye is derived from the neural crest and is 

completely absent in the mutant eyes (Figure 2.2G, H; (Gage et al., 2005)). Hyaloid 

blood vessels, composed of a mesoderm-derived endothelial lining and neural crest-

derived pericytes, are present but appear hypomorphic relative to wild type eyes (Figure 

2.2G, H). Muscle bundles, which contain mesoderm-derived myocytes and neural crest-

derived fascia cells, are present adjacent to the dysmorphic anterior segment in Pitx2-

ncko eyes (Figure 2.2H). We hypothesized these muscles may be the extraocular muscles. 

Collectively, these results indicate that a second essential function of PITX2 is to regulate 

expression of intrinsic factors within neural crest precursor cells that are required for their 

subsequent specification into mature lineages. 

 

 

 

 

Defects in Pitx2-ncko eye primordial begin at e11.5 
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 To identify the origins of the accumulated eye defects, we examined Pitx2-ncko 

mice beginning at e10.5, when Pitx2 expression is initially activated in the ocular neural 

crest. Control and mutant mice are indistinguishable at this time point (Figure 2.3A, E). 

At e10.5, the optic stalk in both control and mutant eyes consists of a 10-12 cell thick 

neuroblastic cell layer.  By e11.5 in control eyes, the optic stalk has begun to extend and 

thin, reflecting the increased distance between the optic cup and the ventral diencephalon 

(Figure 2.3B).  By e12.5, the wild type stalk consists of a 1-2 cell thick neural epithelium 

and the distance between optic cup and brain is further increased (Figure 2.3C). In 

contrast, the optic stalk in Pitx2-ncko mice remains a thick, neuroblastic structure 

throughout and does not extend laterally, but remains very short (Figure 2.3F, G).  The 

mutant eyes remain closely associated with the ventral diencephalon and become directly 

attached to the diencephalon by e14.5 (Figure 2.5F). There is also increased distance 

between the optic cup and the surface ectoderm as the head grows rapidly in size during 

this period (Figure 2.3F, G). We examined markers of cell proliferation (Ki67 and 

phospho-Histone H3) and apoptosis (TUNEL) but did not find any changes that could 

account for the optic stalk phenotype (data not shown).  

 

 Defects in development of structures derived from periocular mesenchyme are 

also apparent in Pitx2-ncko eyes by e11.5.  In wild type eyes, neural crest and mesoderm 

cells migrate into the anterior segment beneath the surface ectoderm immediately after 

formation of the lens vesicle (Figure 3B, (Gage et al., 2005)).  By e12.5, compaction of 

the mesenchyme to form the corneal endothelium is evident, and by e16.5 the corneal 

stroma is also present (Figure 2.3C,D).  In Pitx2-ncko eyes, mesenchyme is present 

within the anterior segment by e11.5 (Figure 2.3F).  However, the mesenchymal layer is 

noticeably thickened at this time point and there is no subsequent formation of either the 

corneal endothelium or stroma layers (Figure 2.3 G, H).  Proliferation is not increased in 

the ocular mesenchyme of Pitx2-ncko mice (data not shown).  Therefore the increasing 

thickness of the anterior segment in mutant eyes is not due increased proliferation caused 

by the loss of Pitx2 in this tissue, but instead appears to be secondary to displacement of 

the optic cup.   
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Molecular analysis of periocular mesenchyme fates in Pitx2-ncko mice 

 

 Several of the structures defective in the Pitx2-ncko eye contain neural crest cells 

that normally express Pitx2, so we examined molecular markers to determine how the 

loss of Pitx2 affects cell fate. To determine how the loss of Pitx2 and the displacement of 

the optic cup affect cornea development, we examined the expression of the transcription 

factor AP-2β, which is expressed in the neural crest of the developing cornea, but is not 

required for its development (Moser et al., 1997; West-Mays et al., 1999). We found that 

AP-2β expression was present but significantly disrupted by the displacement of the eye 

(Figure 2.4A, B). There are markedly fewer mesenchymal cells expressing AP-2β 

adjacent to the surface ectoderm, where the presumptive corneal cells are normally 

located, and there is also a population of AP-2β-postive cells adjacent to the lens and 

displaced optic cup. While Pitx2 expression in the neural crest is not absolutely required 

for AP-2β expression, it influences corneal specification as shown by the reduced number 

of corneal precursors, but the displacement of the optic cup prevents normal cornea 

development.  

 

 To confirm our initial finding that the mutant vasculature is reduced in the Pitx2-

ncko eye, we performed immunostaining for Collagen IV, a vascular endothelial marker 

(Merville et al., 1976). We found that there were fewer hyaloid vessels in the mutant eye 

(Figure 2.5A, B). While it is unknown whether the hyaloid vasculature forms by 

vasculogenesis or angiogenesis, in either case, the vessels are initially formed as 

primitive tubes by endothelial cells of mesodermal origin. Platelet derived growth factor 

(PDGF) released by the endothelial tubes recruits mural cells, which in turn stabilize the 

new vessels, possibly by secreting vascular endothelial growth factor (VEGF) or 

angiopoeitin-1 (Darland et al., 2003; Hellstrom et al., 1999; Hirschi et al., 1998; Lindahl 

et al., 1997; Nishishita and Lin, 2004). The mural cells of the eye vessels are pericytes, 

which are neural crest derived (Etchevers et al., 2001; Gage et al., 2005). We 

hypothesized that the reduced vasculature phenotype seen in the Pitx2-ncko could be due 

to a deficiency in the migration of neural crest-derived pericytes to the primitive 

endothelial tubes. We assayed this by examining the presence of NG2, a marker for 
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differentiated pericytes and their precursors (Hughes and Chan-Ling, 2004; Murfee et al., 

2005; Ozerdem et al., 2001), and found that pericytes were present by 

immunofluorescence, although they may not be fully functional (Figure 2.5C, D). Defects 

in the ability of Pitx2-negative pericytes to differentiate and stabilize the developing 

vessels could account for the reduction in the number of hyaloid blood vessels. 

  

 Although extraocular muscles are absent in global Pitx2 knockout mice, our initial 

histological examination of the Pitx2-ncko eye suggested that extraocular muscles were 

present, albeit in an abnormal orientation to the optic cup.  To confirm, we analyzed the 

expression of several muscle-related markers during extraocular muscle development. 

Extraocular muscles were specified normally as indicated by the presence of the 

transcription factors PITX1 and myogenin via immunofluorescence at e12.5 (Figure 

2.6C, D). These populations of cells did not migrate from their original locations in the 

eye field, despite the displacement of the optic cup towards the midline. By e14.5, the 

muscles had differentiated, as indicated by the presence of developmental myosin heavy 

chain immunofluorescence (Figure 2.6G, H).  

 

Loss of Pitx2 in the neural crest lineage results in severe optic nerve defects 

 

 The optic nerve defects in the Pitx2-ncko mice are striking, and to our knowledge 

unique, so we pursued the underlying molecular aspects further. Based on the early and 

severe optic stalk phenotype in the Pitx2-ncko mice, we considered the possibility that the 

optic stalk was never specified properly. To test this hypothesis, we examined the 

expression of Pax2, an early marker for optic stalk specification that is also required for 

its normal development (Dressler et al., 1990; Otteson et al., 1998; Torres et al., 1996). 

We found PAX2 protein is expressed in the optic stalk of both control and mutant 

animals at e12.5, establishing that a lack of initial specification cannot account for the 

optic stalk defects in Pitx2-ncko mice (Figure 2.7A, B).  Consistent with previous reports, 

PAX2 expression in control eyes at e12.5 is limited to the optic stalk and does not enter 

the optic cup (Figure 2.7A (Otteson et al., 1998; Torres et al., 1996)).  In contrast, PAX2 

expression in e12.5 Pitx2-ncko eyes extends into the posterior presumptive RPE and 
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outer layer of the optic stalk (Figure 2.7B, D).  The expansion of PAX2 into the posterior 

RPE becomes progressively more extensive until approximately 50% of the RPE is 

expressing PAX2 by e16.5 (Figure 2.7E, F). We also found that Vax1, another homeobox 

transcription factor required for optic stalk specification, is present and expanded in the 

same manner as Pax2 (Figure 2.7E, F; (Bertuzzi et al., 1999; Hallonet et al., 1999; Mui et 

al., 2005)).  Since Pax2 and Vax1 are both activated by Sonic hedgehog signaling 

(Macdonald et al., 1995; Take-uchi et al., 2003), we examined whether increased midline 

Shh expression could account for the expanded expression of these genes. We found that 

the spatial and temporal pattern of Shh mRNA expression is unchanged in the mutant 

mice (Figure 2.7G, H; data not shown).  

 

 After the initial specification of the optic stalk by PAX2, the stalk attracts the 

axons of the retinal ganglion cells (RGCs) while undergoing significant morphogenetic 

movements (Otteson et al., 1998; Torres et al., 1996). Defects in routing of the RGCs 

axons are often associated with defects in optic nerve development (Bertuzzi et al., 1999; 

Hallonet et al., 1999; Mui et al., 2005; Torres et al., 1996).  Initial histological 

examination suggested that RGC axons entered the optic disk in Pitx2-ncko eyes (Figure 

2.3G, H). We used immunostaining for β-tubulin to confirm that RGC axons exit the eye 

at the optic disk and subsequently associate with PAX2-expressing cells of the optic stalk 

at e12.5 (Figure 2.7A-D). PAX2 positive cells of the optic stalk are ultimately fated to 

delaminate and migrate among the axons in the optic nerve, where they differentiate as 

astrocytes (Figure 6I; (Mi and Barres, 1999; Torres et al., 1996)). In the mutant at e16.5, 

only a small percentage of PAX2 positive cells of the stalk have invaded the axons of the 

optic nerve while the majority remain localized at the periphery (Figure 2.7J). The axons 

exiting the mutant eyes enter directly into the ventral hypothalamus where they form a 

primitive optic chiasm (Figure 2.7K, L).  

 

 

  

RPE development is disrupted in Pitx2-ncko eyes 
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 Shortly after the optic vesicle invaginates to form the optic cup, signals from the 

periocular mesenchyme specify the outer layer of the optic cup as the RPE (Fuhrmann et 

al., 2000). This initial specification appears to occur normally in Pitx2-ncko mice, since 

the mutant RPE is indistinguishable from the control in both morphology and gene 

expression at e10.5 (Figure 2.8A, B; data not shown).  However, the progressive loss of 

pigment beginning at e12.5 suggests that subsequent expansion or maintenance of the 

RPE is blocked in the mutant eyes (Figure 2.8C-J). PAX2 is known to inhibit the 

expression of Pax6 as the boundary is established between the PAX2-expressing optic 

stalk and the PAX6-expressing RPE layer (Schwarz et al., 2000). PAX6 is subsequently 

required to activate expression of the downstream transcription factor Mitf, which is 

required for RPE specification (Baumer et al., 2003; Martinez-Morales et al., 2004; 

Mochii et al., 1998; Nakayama et al., 1998; Smith et al., 1998). Otx1 and Otx2 also 

encode transcription factors required for RPE specification, but their expression does not 

depend on Pax6 (Bovolenta et al., 1997; Martinez-Morales et al., 2001; Takeda et al., 

2003). We hypothesized that suppression of RPE-specifying genes, including Pax6, Mitf, 

and Otx2, may account for the progressive block in RPE differentiation or expansion in 

Pitx2-ncko eyes. At e10.5, both control and mutant presumptive RPE express PAX6, Mitf 

and Otx2 (Figure 2.8A, B; data not shown). In Pitx2-ncko eyes, expression of PAX6 

protein is excluded from cells expressing PAX2 (Figure 2.8A-F). As expected, pigment is 

similarly excluded from cells expressing PAX2 (Figure 2.8C-F).  Mitf and Otx2 

expression are also lost in the presumptive RPE cells that do not express pigment at e12.5 

(Figure 2.8G-J).  

 

Discussion 

 

  Sophisticated experimental genetics in mice provides a powerful approach for 

understanding human development and disease by allowing for precise molecular, 

cellular, and temporal dissection of gene function.  Tissue-specific knockouts can be 

particularly useful when trying to understand the function of a gene that is expressed in 

multiple precursor pools in developing organs.  In the present study, we used conditional 

targeting to determine the processes in early eye development that require function of the 
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homeobox gene, Pitx2, in the neural crest.  We also identified critical new roles for Pitx2 

in later eye development, which was previously impossible to study due to the embryonic 

death of Pitx2 global knockout mice. Furthermore, we propose two potential mechanisms 

for the early development of glaucoma in human PITX2 patients and identify a previously 

unrecognized regulatory pathway in optic nerve development that may have implications 

for other eye diseases.  

 

Intrinsic requirements for Pitx2 in tissues derived from the periocular mesenchyme 

 

 Given the corneal defects seen in Axenfeld-Rieger syndrome patients with PITX2 

mutations (Doward et al., 1999), Pitx2 was predicted to play an important role in cornea 

development. The global Pitx2 knockout mice lack a corneal endothelium and corneal 

stroma, confirming an essential role for the gene in corneal development (Gage et al., 

1999; Kitamura et al., 1999; Lu et al., 1999). Based on our current results, specification 

of corneal endothelium and stroma requires Pitx2 function in neural crest precursors, 

which are the primary contributors to these tissues (Gage et al., 2005). Pitx2 is also 

expressed in the subset of mesoderm cells that contribute to the cornea, but this small 

number of cells is not able to rescue corneal formation in Pitx2-ncko mice (Gage et al., 

2005). Although the phenotype of global Pitx2 knockout mice suggested the mutant 

anterior segment was hypercellular (Gage et al., 1999; Kitamura et al., 1999; Lu et al., 

1999), we are unable to find evidence of increased proliferation in the periocular 

mesenchyme of Pitx2 mutant mice (data not shown). Thus, the thickened appearance of 

the presumptive cornea is likely secondary to the displacement of the optic cup.  

 

 Cornea differentiation requires inductive signals from the lens (Coulombre and 

Coulombre, 1964; Genis-Galvez, 1966), and lens defects result in cornea defects in 

human disease (Jamieson et al., 2002; Ormestad et al., 2002; Semina et al., 2001; Semina 

et al., 1998). The ectopic expression of AP-2β next to the displaced lens in the Pitx2-ncko 

eyes provides further proof of this induction. Normally, Pitx2 expression is activated in 

neural crest cells as they migrate into the anterior segment (Gage et. al, 2005 and PJG, 

unpublished results). Based on these observations and our current results, we propose that 
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Pitx2 is normally a direct downstream effector that is induced in response to signals from 

lens.  Activation of Pitx2 in neural crest within in the presumptive anterior segment is 

required to initiate a cascade of genes required for corneal differentiation. In the absence 

of Pitx2 expression, neural crest cells are not competent to respond appropriately to the 

signals from the lens, and corneal differentiation fails to occur. It is also possible that 

corneal agenesis is secondary to the displacement of the lens in Pitx2-ncko mice, but we 

favor our model of a primary role for Pitx2 because human PITX2 patients have corneal 

defects without eye displacement (Doward et al., 1999). The role of Pitx2 in cornea 

formation is an important question that must be answered in the future.  

 

 Scleral agenesis is a second example of an intrinsic defect in the Pitx2-ncko eye. 

The sclera, the white outermost coat of the eye, is derived from the neural crest lineage of 

the periocular mesenchyme, which expresses Pitx2 (Gage et al., 2005). While signals 

from the RPE have been shown to induce sclera formation, only part of the RPE is 

disrupted in the Pitx2-ncko eye (Seko et al., 1994). Since the sclera is completely absent 

in the Pitx2-ncko mice, we conclude that Pitx2 expression is required for neural crest 

cells to adopt scleral fates. Pitx2 may confer competence on neural crest cells to respond 

to the signals from the RPE. Currently, little is known about the development of the 

sclera; our data provide the first clues about its genetic origins. Recent data about the 

causes of nanophthalmos (extreme hyperopia) demonstrate that scleral development is 

involved in controlling the shape of the eye, which is critical given the precise optics 

required for vision (Sundin et al., 2005).  

 

 Other tissues that are derived from the periocular mesenchyme do not show an 

absolute requirement for Pitx2 in the neural crest lineage. While the hyaloid vasculature 

of the Pitx2-ncko mice is hypoplastic, the mutant pericyte precursors are still recruited to 

the primitive endothelial vessels. This suggests that Pitx2 expression is not strictly 

required for neural crest cells to adopt the pericyte fate in the eye, as judged by the 

commonly used marker NG2 (Hughes and Chan-Ling, 2004; Murfee et al., 2005). 

However, the mutant pericytes may have compromised function that could cause defects 

in vessel formation and growth. This idea comes from the knowledge that pericytes play 
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a particularly crucial role in the formation of the vascular plexus of the eye (Klinghoffer 

et al., 2001; Uemura et al., 2002). We hypothesize that the Pitx2-null pericytes do not 

express signaling factors required to stimulate the proliferation of vascular endothelial 

cells and induce the remodeling associated with the formation of additional vessels. The 

absence of Pitx2 in the neural crest population results in abnormal development of the 

hyaloid vasculature, so the retinal vasculature, which replaces the hyaloid vasculature 

after birth, may also be hypoplastic. 

 

 Expression of Pitx2 is not required for the adoption of all neural crest fates in the 

developing eye. Although we cannot exclude the possibility to subtle defects, the 

expression of the muscle specification genes, myogenin and Pitx1, and the differentiated 

muscle marker, myosin heavy chain, in the muscle primordia indicate muscle formation 

is relatively normal in Pitx2-ncko mice. Neural crest cells are present in the extraocular 

muscles of mutant eyes (data not shown), where they form the connective fascia and 

tendons (Gage et al., 2005). Therefore, we conclude that Pitx2 expression in neural crest 

cells is not required for extraocular muscle formation.  Since extraocular muscles are 

completely lost in the global Pitx2null mice, this implies that the expression of Pitx2 in the 

mesodermal lineage is required for extraocular muscle formation, a hypothesis that could 

be tested in mesoderm-specific Pitx2 knockout mice. 

 

Extrinsic effects on neural ectoderm 

 

 Our results have identified a previously unknown role for Pitx2 function in the 

neural crest during optic stalk development. One of the ongoing processes of early eye 

development is the partitioning of the neural ectoderm-derived optic vesicle into the 

regions that will form the optic stalk, neural retina and RPE by signaling, gene activation 

and gene repression. In Pitx2-ncko mice, early partitioning of the optic vesicle occurs 

normally but subsequent morphogenesis of the optic stalk is abnormal. This results in a 

foreshortened optic stalk and eyes that are displaced towards the midline. Although the 

end phenotype superficially resembles cyclopia, the presence of two eye fields and 

absence of other midline defects allowed us to rule out this line of inquiry.  Since Pitx2 is 
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never expressed in the optic stalk, this indicates that the defect in optic stalk development 

is extrinsic (non-cell autonomous). Pitx2 expression in the neural crest mesenchyme must 

be activating an extracellular signal that is required for optic stalk development. The 

periocular mesenchyme is known to signal other tissues of the eye. For example, an 

activin-like signal from the mesenchyme is required to define the RPE, and FGF10 and 

BMP7 cause the development and morphogenesis of the lacrimal gland from the surface 

ectoderm (Dean et al., 2004; Fuhrmann et al., 2000; Govindarajan et al., 2000; 

Makarenkova et al., 2000). Our finding that the Pitx2-dependent signaling function is 

localized to the neural crest component of the mesenchyme raises the possibility that it 

acts as a form of signaling center. 

 

 Our current data support a two step model for optic stalk development (Figure 

2.9). During the initial formation of the eye beginning at e8.5, Shh diffuses from the 

midline and activates Pax2, Vax1, and Vax2 expression in the optic stalk (Macdonald et 

al., 1995; Take-uchi et al., 2003). These transcription factors act synergistically to repress 

Pax6 and define the optic stalk as separate from the optic cup (Bertuzzi et al., 1999; 

Hallonet et al., 1999; Mui et al., 2005; Schwarz et al., 2000; Torres et al., 1996). This 

initial specification of the optic stalk takes place normally in Pitx2-ncko mice, as 

indicated by normal expression of Shh, Pax2 and Vax1 (Figure 2.6). Later, beginning at 

e10.5, Pitx2 expression in the periocular mesenchyme activates signals that cause the 

morphogenetic extension of the optic stalk. This step fails to occur in Pitx2-ncko mice, 

resulting in a foreshortened optic stalk. To our knowledge, this is the first example of the 

neural crest population patterning the neuroectoderm from which it is originally derived, 

which raises the possibility that this process occurs in other neural tube derivatives.  

 

 The progressive RPE defects we observed in the Pitx2-ncko eye are likely 

secondary to the defects in optic nerve development and the displacement of the eyes. 

The close proximity of the mutant eyes to the midline source of Shh is probably sufficient 

to drive increased Pax2 expression, which shifts the boundary between Pax2 and Pax6 

expression distally. The reciprocal changes in Pax2 and Pax6 expression are likely to be 

the cause of the loss of pigment in large portions of the RPE in the Pitx2-ncko mice. Pax6 
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initially activates Mitf, which is required for normal RPE development and is lost in the 

unpigmented portions of the RPE (Baumer et al., 2003; Fuhrmann et al., 2000; Martinez-

Morales et al., 2004; Nakayama et al., 1998; Nguyen and Arnheiter, 2000). Expression of 

Otx2, another gene required for RPE development that does not depend on Pax6, is also 

absent in the regions of pigment loss. Mitf expression may be required for the 

maintenance of Otx2 expression, as proposed by Martinez-Morales et al., or Pax2 may 

repress Otx2 expression (Martinez-Morales et al., 2001). Overall, our data is consistent 

with the role of Pax2 as a repressor of RPE development proposed by Martinez-Morales 

et al. (Martinez-Morales et al., 2004). 

 

Implications for human health 

 

 In all, our results suggest several new possible mechanisms by which early-onset 

glaucoma can occur in Axenfeld-Rieger syndrome patients with PITX2 mutations. It is 

widely assumed that these patients have anterior segment defects that cause increased 

intraocular pressure, which leads to the development of glaucoma relatively early in life 

(Shields, 1983). While we do not discount the role elevated IOP plays in glaucoma, we 

propose that human PITX2 patients may have additional developmental eye defects that 

lead to the accelerated development of glaucoma. Although the human patients clearly do 

not have the severe optic nerve defects seen in the Pitx2-ncko mice, they may have more 

subtle defects in optic nerve development that render the optic nerve more susceptible to 

damage. The reduced number of Pax2-positive astrocyte precursors that invade the axons 

of the RGCs in the Pitx2-ncko mice is particularly noteworthy. Astrocytes are critical for 

the maintenance and survival of the RGC axons, and they have been implicated in the 

pathogenesis of glaucoma (Morgan, 2000; Neufeld and Liu, 2003; Pena et al., 1999). If 

human PITX2 patients have reduced numbers of astrocytes or altered astrocyte function, 

it could make their optic nerves more vulnerable to the effects of other factors like 

elevated IOP, and lead to the RGC axon damage and death seen in glaucoma. 

 

 Reduced ocular blood flow has long been associated with normal tension 

glaucoma (Geijssen and Greve, 1995), and has also been proposed to contribute to other 
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forms of glaucoma (Grieshaber and Flammer, 2005; Hayreh, 1994). Retinal blood vessel 

development cannot be critically assessed in Pitx2-ncko mice due the severely 

dysmorphic ocular growth.  However, the clear defect in hyaloid vessel formation implies 

that normal retinal blood vessel development or function may also depend on PITX2 

function in neural crest since the two vasculature systems are developmentally related 

(Saint-Geniez and D'Amore, 2004).  The observed deficiency in astrocytes in Pitx2-ncko 

eyes provides additional evidence for defective retinal vessel development because 

astrocytes guide retinal vessel formation (Jiang et al., 1994; West et al., 2005).  It has not 

been clear whether defects in ocular blood flow are a cause or effect of glaucoma (Ikram 

et al., 2005; Mitchell et al., 2005).  Our results with Pitx2-ncko mice raise the possibility 

that PITX2 patients may have fewer ocular vessels, which would be another risk factor 

for developing glaucoma.  

 

 The pronounced internal displacement of the eyes in Pitx2-ncko mice is 

reminiscent of other human eye diseases, including anophthalmia and septo-optic 

dysplasia, and suggests potential underlying genetic mechanisms in these diseases. 

Although we cannot formally exclude the possibility, it seems unlikely that mutations in 

PITX2 itself will be identified in these conditions since mice globally deficient in Pitx2 

die during development (Gage et al., 1999; Kitamura et al., 1999; Lin et al., 1999; Lu et 

al., 1999).  However, genes for the extrinsic signaling factor(s) regulated by PITX2 in 

neural crest or the downstream effectors in the neural epithelium are strong candidate 

genes for these diseases. 

 

 Mutations in SOX2 (Fantes et al., 2003), SIX6 (Gallardo et al., 1999), PAX6 

(Glaser et al., 1994), RAX/RX (Voronina et al., 2004), and OTX2 (Ragge et al., 2005) 

have been associated with anophthalmia, but the underlying genetic defects in many 

cases of anophthalmia remain to be identified. These genes are only expressed in the 

neural ectoderm and are associated with early defects in formation or survival of the optic 

vesicle (Grindley et al., 1995; Jean et al., 1999; Kamachi et al., 1998; Martinez-Morales 

et al., 2001; Mathers et al., 1997). Our work suggests that cases of clinical anophthalmia 

may be associated with genes expressed in the periocular mesenchyme as well. Mutations 
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in HESX1 have been identified in septo-optic dysplasia, a disease which affects the 

midline structures of the brain and optic nerves (Dattani et al., 1998). Mice with 

mutations in Hesx1 have a “buried” eye phenotype which bears similarities to the 

phenotype described here (Dattani et al., 1998). This suggests that Hesx1 may be part of 

the same pathway as Pitx2, thus it is possible that mutations in PITX2 or its downstream 

targets may underlie some cases of septo-optic dysplasia. 

  

 Our findings raise the possibility that these disorders may also result from defects 

occurring later in eye development and the underlying molecular defects could affect 

genes expressed in either the neural epithelium or the surrounding neural crest. These 

findings demonstrate that understanding the underlying genes and pathways is critical to 

understanding the disorders that result when development goes awry.  
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Figure 2.1: Neural crest specific knockout of Pitx2. (A-F) Double-immunostaining for 
PITX2 expression in lineage-marked neural crest in e12.5 eye primordia of control (A, C, 
E,) and Pitx2-ncko (B, D, F) embryos. (A, B) Neural crest, as indicated by β-gal from 
activated R26R Cre-reporter allele, shown in green. (C, D) PITX2 protein shown in red. 
(G, H) Merged image shows expression of PITX2 in neural crest (yellow) and mesoderm 
(red) in the control embryo, while in the mutant embryo PITX2 expression limited to the 
mesoderm (inset).  
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Figure 2.2: Accumulated morphological defects in late gestation Pitx2-ncko 
embryos.  (A) Control embryo at e16.5. (B) Clinical anophthalmia (arrow) in e16.5 
Pitx2-ncko embryo. (C, D) Low and high magnification views of dissected e16.5 Pitx2-
ncko head. Note the visibility of lens in mutant eyes due to lack of pigment except in the 
anterior segment (arrow).  (E, F) Hematoxylin and eosin-stained transverse sections of 
control and Pitx2-ncko heads at e16.5.  Note attachment of mutant eyes directly to the 
ventral hypothalamus. (G, H) Close up of control and mutant eyes at e16.5. Note that the 
extraocular muscle condensations (closed arrowheads) are shifted in reference to the 
optic cup. The cornea (arrow), anterior segment, and sclera (open arrowhead) are absent 
in the mutant eye. L, lens; H, hypothalamus; R, retina; V, hyaloid vessels; ON, optic 
nerve.  
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Figure 2.3: Progression of the Pitx2-ncko eye phenotype during development. (A, E) 
Hematoxylin and eosin-stained transverse sections of control and mutant eyes at e10.5, 
(B, F) e11.5, (C, G) e12.5, and (D, H) e16.5. Note progressive morphogenetic extension 
of optic stalk in control embryos (arrowheads, A-D) that does not occur in mutant 
embryos (arrowheads, F-H). The distance between the optic cup and the surface ectoderm 
also becomes greater over time in the mutant animals. Re, retina; Le, lens; SE, surface 
ectoderm.  
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Figure 2.4: Cornea development is disrupted in Pitx2-ncko embryos. Expression of 
the transcription factor AP-2β marks the neural crest cells of the presumptive cornea 
during development at e12.5(A). Displacement of the optic cup in Pitx2-ncko eyes causes 
a reduction in the number of cells expressing AP-2β adjacent to the surface ectoderm, 
and induces expression in a separate population of cells adjacent to the optic cup (B). 
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Figure 2.5: Reduction of hyaloid vasculature. (A, B) Immunofluorescence for the 
blood vessel endothelial cell marker, collagen IV (green), at e12.5 in control and Pitx2-
ncko eyes. (C, D) Immunofluorescence for the pericyte marker, NG2 (green), in control 
and mutant eyes at e12.5. Insets are representative high magnification views. Red blood 
cells appear orange due to autofluorescence. 
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Figure 2.6: Extraocular muscles are present in the normal location. (A, B) 
Extraocular muscles (arrows) are present at e12.5 in both the control and Pitx2-ncko eye. 
Grey boxes indicate the orientation of panels C and D. (C, D) Double-immunostaining 
for PITX1 (red) and Myogenin (green), markers of muscle precursor cells, in e12.5 
control and mutant mice. (E, F) Extraocular muscles are present at e14.5 (arrows), 
although their location is changed relative to the eye in the mutant. (G, H) 
Immunofluorescence for the mature muscle fiber marker, developmental myosin heavy 
chain, at e14.5 in control and mutant mice. R, retina; SE, surface ectoderm.   
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Figure 2.7: Optic stalk specification and morphogenesis. (A, B) Expression of PAX2 
protein (red) in control and mutant eyes at e12.5. Staining for β-tubulin labels RGC axons 
(green). (C, D) PAX2 expression (red) and staining for RGC axons (green) in a cross 
(sagittal) section of the optic stalk at e12.5. White arrowheads denote the limits of PAX2 
expression, and a white arrow indicates the optic fissure. (E, F) Vax1expression (purple) 
in the control and mutant optic stalk at e12.5. Arrowheads denote the limits of 
expression. Pigmented RPE appears black. (G, H) Sonic Hedgehog expression in the 
ventral diencephalon (future hypothalamus) in the control and mutant brain at e12.5. 
Infundibulum is marked with an arrowhead. (I, J) Cross-section of the optic nerve at 
e16.5, showing the PAX2-expressing astrocyte precursors (red) and the axons (green) in 
control and mutant mice. The unlabeled blue cells in the mutant are retina. (K, L) 
Transverse H&E sections of e16.5 embryos showing control optic chiasm  (K) formed by 
the axons of the RGCs at the midline near the ventral hypothalamus. In the mutant, a 
primitive chiasm (L) is formed by the RGC axons as they exit the eyes. R, retina. 
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Figure 2.8: Expansion of PAX2 results in RPE specification defects. (A, B) Co-
immunostaining shows expression pattern of PAX2 (red) and PAX6 (green) at e10.5 in 
control and Pitx2-ncko mice. (C-F) Expression of PAX2 (red), PAX6 (green) and 
pigment (white) at e12.5 (C, D) and e16.5 (E, F) in control and mutant mice. Yellow 
arrowheads mark the sharp demarcation between PAX2 and pigment expression. To 
show pigment expression, brightfield images were inverted. (G-J) In situ hybridization 
for Mitf (G, H) and Otx2 (I, J) at e12.5 in control and Pitx2-ncko mice. Inset shows the 
expression of Otx2 (purple) in cells that express pigment (brown) on their apical surface. 
Arrowheads indicate the extent of pigment expression in the posterior optic cup.  
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Figure 2.9: Model for Pitx2 function in optic stalk development. Our work indicates 
that optic stalk development includes at least two patterning steps. Initially (1), SHH 
diffusing from the midline activates Pax2 in the optic stalk, which represses Pax6 to 
create a boundary between the optic stalk and optic cup.  Later in development (2), Pitx2 
is expressed in the neural crest mesenchyme cells surrounding the optic stalk, where it 
activates unknown signaling molecule(s) that induces the extension of the optic stalk
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Chapter 3: Pitx2 is required for the survival of extraocular muscle 

precursors and eyelid closure 
 

Introduction 

 

 Cranial mesoderm contributes to the formation of the vasculature and muscles of 

the head. The unsegmented prechordal and paraxial mesoderm forms the extraocular 

muscles (EOMs) and contributes to the periocular mesenchyme. The periocular 

mesenchyme is composed of cells of both neural crest and mesoderm-derived cells, and 

they combine to form many structures in the eye (Creuzet et al., 2005; Gage et al., 2005; 

Johnston et al., 1979; Wahl and Noden, 1997).  In addition to the myocytes of the 

extraocular muscles, the mesodermal cells form the endothelial cells of the hyaloid, 

retinal, and choroidal blood vessels, Schlemm’s canal in the outflow tract, and the stroma 

of the iris. Mesoderm-derived cells are also found in the corneal stroma and endothelium, 

ciliary body, and trabecular meshwork, but the bulk of these tissues are formed by the 

neural crest (Gage et al., 2005). In chick, the prechordal mesoderm contributes to the 

medial, superior, and inferior rectus and inferior oblique muscles, while the superior 

oblique and the lateral rectus come form the most anterior portion of the paraxial 

mesoderm (Noden and Francis-West, 2006).  

  

 The extraocular muscles that enable eye movements have many unique features 

that differentiate them from other skeletal muscles. They have unique physiology, fiber 

types, and gene expression profiles (as reviewed in Porter, 2002; Spencer and Porter, 

2006). They are uniquely unaffected by most forms of muscular dystrophy, including 

Duchenne’s, possibly due to their improved calcium homeostasis and higher levels of 

proteins like utrophin that can compensate in the disrupted dystrophin-glycoprotein 

complex (Andrade et al., 2000; Karpati et al., 1988; Porter et al., 2003b; Porter et al., 

1998). Extraocular muscle function is also disrupted in human disease. Strabismus, or 
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“cross eyes” is a common condition in which the eye is turned due to an imbalance in 

extraocular muscle strength. Patients cannot see in three-dimensions because the brain 

ignores the input from the misaligned eye, and if left untreated, permanent vision loss can 

result (Gronlund et al., 2006). Although the cause of strabismus can also be neural, the 

need for the extraocular muscles to be equal in strength indicates that their development 

must be tightly regulated. Failure of the muscles to be properly innervated can also cause 

their abnormal development, as is seen in the congenital craniofacial dysinnervation 

disorders (CCDDs) (reviewed in Engle, 2006). Congenital absence of one or more of the 

extraocular muscles is rare, but has been reported in the literature (Astle et al., 2003; 

Chan and Demer, 1999; Drummond and Keech, 1989; Greenberg and Pollard, 1998; Hart 

et al., 2005; Mather and Saunders, 1987; Taylor and Kraft, 1997).  

  

 Given the unique properties of extraocular muscles, it is not surprising that their 

development is unique as well. The differences in the early steps of trunk and craniofacial 

myogenesis have been well documented; the trunk muscles develop from somites, 

whereas the craniofacial muscles develop from unsegmented mesoderm, and transcription 

factors critical for trunk myogenesis such as Pax3 and Mrf4 are not expressed in the head 

(as reviewed in Noden and Francis-West, 2006). However, the development of the 

extraocular muscles is different from that of the other craniofacial muscles, which are 

formed in the branchial arches. Tbx1, Musculin (MyoR), and Tcf21 (Capsulin) are 

upstream activators of the critical muscle regulatory factors (MRFs), Myf5, MyoD, and 

Myogenin, in the branchial arches, but are not required for extraocular muscle formation 

(Brand-Saberi, 2005; Buckingham et al., 2003; Dastjerdi et al., 2007; Grenier et al., 2009; 

Grifone et al., 2008; Kelly et al., 2004; Lu et al., 2002; Robb et al., 1998). In fact, no 

upstream activators of the MRF myogenic cascade in the extraocular muscles have been 

identified, although Pitx2 and Pax7 have been proposed to play this role (Diehl et al., 

2006; Mootoosamy and Dietrich, 2002).  

 

 The homeodomain transcription factor Pitx2 is the only single gene shown to be 

required for extraocular muscle formation (Diehl et al., 2006; Gage et al., 1999; Kitamura 

et al., 1999). In the many organs in which Pitx2 is required for development, it has been 
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implicated in controlling cell fate specification as well as cell proliferation and survival 

(Charles et al., 2005; Kioussi et al., 2002; Liu et al., 2003; Marcil et al., 2003; Quentien 

et al., 2002b; Rodriguez-Leon et al., 2008; Shih et al., 2007a; Suh et al., 2002). Mice 

lacking Pitx2 function have no extraocular muscles and their formation is dependant on 

Pitx2 gene dose (Diehl et al., 2006; Gage et al., 1999; Kitamura et al., 1999). Mouse 

embryos with approximately 20% of normal Pitx2 dose also lack extraocular muscles 

(Figure 1.4). Mice heterozygous for a null allele of Pitx2 have no oblique muscles and 

smaller rectus muscles and expression of the MRFs Myf5, MyoD, and Myogenin is 

reduced to 10-20% of their wildtype levels (Figure 1.5) (Diehl et al., 2006). A recent 

report of post-natal knockdown of Pitx2 in the extraocular muscles also showed a 

dramatic loss of MRF expression levels (Zhou et al., 2009). Although Pitx2 is required 

for muscle precursor survival in the branchiomeric muscles, no changes in cell death or 

proliferation were reported in Pitx2-/- extraocular muscle primordia, although only later 

timepoints were examined (Diehl et al., 2006; Dong et al., 2006; Shih et al., 2007a).  

 

 Pitx2 has other critical functions in eye development; it is expressed in both the 

mesodermal and neural crest lineages of the periocular mesenchyme (Evans and Gage, 

2005; Gage et al., 2005). In addition to the loss of extraocular muscles, Pitx2-/- mice have 

thickened corneas with agenesis of the anterior segment, scleral agenesis, and hypoplastic 

hyaloid blood vessels. They also have non-cell autonomous defects in the development of 

the optic stalk and RPE (Evans and Gage, 2005; Gage et al., 1999; Kitamura et al., 1999; 

Lu et al., 1999). Mice with reduced Pitx2 levels also have eyelid closure defects and the 

optic cup is rotated ventrally (Adam Diehl, personal communication).  Many of these 

structures receive contributions from both the neural crest and mesodermal lineages. 

Recent work has highlighted the complex interactions between neural crest and 

mesodermal cells in craniofacial development. The neural crest is important for 

patterning the developing mesoderm and inducing branchiomeric myogenesis, and may 

play a role in EOM development as well (Evans and Noden, 2006; Grenier et al., 2009; 

Noden and Trainor, 2005; Rinon et al., 2007). Similarly, the developing muscles signal to 

the neural crest to induce tendon formation (Grenier et al., 2009; Grifone et al., 2008; 

Murchison et al., 2007; Pryce et al., 2007). We recently described a neural crest-specific 
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knockout of Pitx2 and found that these mice recapitulated many features of the global 

knockout. However, these mice have fused eyelids at e18.5, and the extraocular muscles 

are present and differentiated by e14.5. It was not possible to evaluate tendon formation 

in these mice because the globe of the eye, to which the muscles normally attach, is 

shifted in position relative to the EOMs (Evans and Gage, 2005).  

 

 To determine the mesoderm specific functions of Pitx2 in eye development, we 

created mesoderm-specific knockout mice using the Cre-lox system. T-Cre was used to 

convert the Pitx2flox allele to the Pitx2null allele in all mesoderm at gastrulation (Perantoni 

et al., 2005). The resulting Pitx2 mesoderm knockout mice (Pitx2-mko) lacked 

extraocular muscles, have eyelids that failed to close and have retinal coloboma at a 

reduced penetrance. To further investigate the EOM phenotype, we examined the fates of 

the former EOM precursors and discovered that these cells undergo apoptosis at e10.5 

and that this process depends on Pitx2 gene dose. In attempt to circumvent the 

requirement of Pitx2 for cell survival, we used an inducible CreERTM to delete Pitx2 at 

various timepoints in development, but found that Pitx2 continues to be required for cell 

survival.  

 

Materials & Methods 

 

Mouse Strains: The Pitx2flox and Pitx2null alleles were created from different 

recombination products from CMV-Cre transfected mouse R1 ES cells carrying a Pitx2 

allele containing a neomycin resistance cassette and three LoxP sites. The Pitx2flox allele 

loses the PGK-neoR cassette, but carries LoxP sites on either side of the 5th exons that 

encodes the homeodomain required for DNA binding, while the Pitx2null allele loses the 

cassette and the 5th exon (Gage et al., 1999; Suh et al., 2002).  The TgN(Cga-cre)S3SAC 

mice, referred to here as αGSU-Cre, were a gift from Sally Camper. This transgene 

contains nuclear-localized Cre cDNA with a β-actin polyadenylation sequence under the 

control of a 4.6 kb (-5000 to +46) promoter for the pituitary glycoprotein α subunit 

(Cushman et al., 2000). The Tg(T-cre)1Lwd mice, referred to here as T-Cre, were a gift 

from Mark Lewandoski. This transgene includes 650 bp promoter of T, including 500 bp 
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upstream of the transcriptional start site, the bacterial recombinase Cre with a nuclear 

localization sequence and a β-actin polyadenylation sequence (Perantoni et al., 2005). 

The Tg(UBC-cre/ESR1)1Ejb mice, referred to here as UBC-CreERT2, were obtained from 

the Jackson Laboratories. This transgene contains Cre recombinase fused to a modified 

form (G400V/M543A/L544A) of the human estrogen receptor which binds tamoxifen 

specifically and is inactive in the absence of tamoxifen. This fusion protein is under the 

control of a 2 KB fragment of the human UBIQUITIN C promoter. The transgenic line 

was created through lentitransgenesis by lentiviral injection of one cell zygotes and is 

present in a single copy (Gruber et al., 2007; Ruzankina et al., 2007). The Tg(CAG-

cre/Esr1)5Amc mice, referred to here as Cagg-CreERTM, carry a transgene which also 

contains a Cre recombinase/modified estrogen receptor fusion protein under the control 

of a chicken β-actin promoter/enhancer coupled with the cytomegalovirus immediate-

early enhancer (Hayashi and McMahon, 2002). These mice were obtained from the 

Jackson Laboratories. Gt(Rosa)26Sor mice, referred to here as R26R, carry a ubiquitously 

expressed Cre-reporter construct, which contains a floxed stop codon upstream of a LacZ 

expression cassette (Soriano, 1999). More detailed descriptions of all mouse lines used in 

these experiments can be found in the original references noted here.   

 

Mouse Husbandry: Mice were mated to generate timed pregnancies. The relevant crosses 

include:  

αGSU-Cre; Pitx2+/-  X Pitx2flox/+; R26R/R26R,   
T-Cre; Pitx2+/- X Pitx2flox/+; R26R/R26R,  
Cagg-CreERTM; Pitx2+/-  X Pitx2flox/flox; R26R/R26R,  
UBC-CreERT2; Pitx2+/- X Pitx2flox/flox; R26R/R26R,   
Pitx2+/- X Pitx2+/-   
 
The morning after mating was designated as embryonic day 0.5. If indicated, a single 

intraperitoneal injection of tamoxifen (Sigma, T5648-1G) suspended in corn oil at a dose 

of 100 µg per gram body weight was administered to the pregnant dam at noon on the 

day noted. If noted, intraperitoneal injections of pifithrin-α (Alexis Biochemicals, ALX-

270-287) suspended in PBS were administered daily beginning at e8.5 at a dose of 0.2 µg 

per gram of body weight. Embryos were collected by C-section after euthanizing the 

pregnant dam. The resulting embryos were genotyped for Cre or Pitx2 using PCR-based 
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methods (Suh et al., 2002). The Cre genotyping includes IL-2 positive control primers 

(CTAGGCCACAGAATTGAAAGATCT and 

GTAGGTGGAAATTCTAGCATCATCC) and Cre-specific primers  

(GCGGTCTGGCAGTAAAAACTATC and GTGAAACAGCATTGCTGTCACTT) run 

for 42 cycles with an annealing temperature of 51˚C and an extension time of 1 minute, 

as per the Jackson Laboratories. All procedures involving mice were approved by the 

University of Michigan Committee on Use and Care of Animals. All experiments were 

conducted in accordance with the principles and procedures outlined in the NIH 

Guidelines for the Care and Use of Experimental Animals.  

 

Histology: All embryos were fixed in 4% paraformaldehyde in phosphate buffered saline, 

washed, dehydrated, embedded in paraffin, and sectioned at 7 µm. Mounted sections for 

morphological analysis were dewaxed, rehydrated and stained with hematoxylin and 

eosin (H & E).  

 

Immunofluorescence: Paraffin sections were stained as previously described (Evans and 

Gage, 2005). Primary antibodies against PITX2 (gift from T. Hjalt), β-galactosidase 

(Eppendorf 5-prime and a gift from T. Glaser), FOXC1 (ab5079, Abcam), FOXC2 

(ab5060, Abcam), Collagen IV (2150-1470, Biogenesis), developmental myosin heavy 

chain (vp-M664, Vector), Ki67 (clone TEC3, Dako Cytomation), phospho-histone H3 

(06-570, Upstate Biotechnology), MYOD (ab788, Abcam), and Myogenin (clone F5D, 

Santa Cruz). An appropriate fluorescently labeled secondary antibody (Jackson Immuno) 

or tyramide signal amplification kit (Molecular Probes) was used for detection.  

 

In situ hybridization: Antisense riboprobes for Pitx2 were generated and labeled with 

digoxigenin according to standard procedures (Martin et al., 2002). Paraffin sections were 

processed for in situ hybridization as previously described (Cushman et al., 2001). Probes 

were hybridized at 57˚C.  

 

TUNEL staining: Terminal dUTP nick end labeling (TUNEL) was performed using an In 

situ Cell Death Detection kit (Roche) per manufacturer protocol. Briefly, paraffin 
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sections were dewaxed, rehydrated, and enzymatically treated with Proteinase K (PCR 

grade, Roche) at a final concentration of 10 µg/mL in 10 mM Tris-HCl, pH 8.0, 1 mM 

EDTA buffer for 15 min at 37°C. Slides were rinsed twice in PBS for 5 minutes and then 

incubated with the manufacturer specified mix of enzyme and labeling solution for 1 hour 

at 37°C in the dark. Slides were rinsed three times with PBS and either coversliped with 

ProLong Gold antifade reagent with DAPI (Molecular Probes) or followed with an 

antibody staining, beginning with the incubation of blocking solution, and proceeding as 

usual.   

 

Imaging and Analysis: All imaging of sections was performed on a Nikon Eclipse 800 

fluorescent microscope using ACT-1 software. Whole mount imaging was performed 

using a Leica MZ12.5 dissecting microscope with FireCam software.  Images were 

analyzed using Photoshop 7.0 for Macintosh.  

 

Statistics: To evaluate the possiblity that the percentage of cells undergoing cell death 

was different between wildtype and Pitx2 heterozygote extraocular muscle primordia, the 

following analysis was undertaken. Three to four non-adjacent sections of three wildtype 

and four heterozygous e10.5 embryos were stained for TUNEL, PITX2 immunostaining, 

and DAPI to label nuclei. The number of TUNEL/PITX2/DAPI triple-positive cells in the 

location of the EOM precursors was divided by the number of PITX2/DAPI double-

positive cells to generate the percentage of EOM precursors undergoing cell death. 9 total 

wildtype observations were compared to 15 total Pitx2 heterozygote observations using a 

two-tailed student’s t-test assuming equal variances.  

 

Results 

 

Mesoderm specific Pitx2 knockout mice  

 

 It was previously shown that mice with neural crest-specific knockout of Pitx2 

recapitulate most aspects of the Pitx2 global knockout, except the extraocular muscles are 

unaffected (Evans and Gage, 2005). We hypothesized that the primary function of Pitx2 
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in the mesoderm lineage during eye development is to direct extraocular muscle 

formation. To test this hypothesis, mesoderm-specific Pitx2 knockout mice were created 

using mice from one of two different Cre recombinase transgenic lines. αGSU-Cre is 

expressed in the cranial mesoderm as shown in Gage et al., 2005, but its expression is not 

fully penetrant (Cre recombinase activity is not seen in all cells), and we found that it was 

not expressed in the cranial mesoderm prior to the expression of Pitx2 (Figure 3.1A, 

B)(Gage et al., 2005). Based on Cre-recombinase activity, mesoderm cells are initially 

found ventral to the optic vesicle (Figure 3.1A, B). By e11.5, the mesoderm condenses 

into a wedge shape, which breaks into individual muscle primordia beginning at e12.5 

(Figure 3.1H, I). Other mesoderm cells are found in the hyaloid vasculature and adjacent 

to the optic fissure (Figure 3.1C). Mesoderm cells are also found in the developing eyelid 

mesenchyme beginning at e12.5, but the presence of unlabeled cells suggests that neural 

crest cells may contribute as well (Figure 3.1D, E).  

  

 αGSU-Cre+; Pitx2flox/- mice were observed to have small or absent extraocular 

muscles, open eyelids at e16.5, and retinal coloboma (Figure 3.2A-D, data not shown), 

but all of these defects were seen with reduced penetrance, probably because the 

knockout of Pitx2 was late and not fully complete. The underlying defect in eyelid 

closure was not identified, but it was not caused by changes in FOXC1 and FOXC2 

expression, two transcription factors required for eyelid closure (Figure 3.2E-H) (Kidson 

et al., 1999; Kume et al., 1998; Smith et al., 2000). Although the mutant embryos often 

had a pale, blanched appearance, the ocular blood vessels, which are mesoderm derived 

and express Pitx2, were not dramatically affected (Figure 3.2B, M-P). The pale 

appearance may be connected with the requirement for Pitx2 in the hematopoetic stem 

cell niche, which includes mesoderm-derived cells (Chagraoui et al., 2003; Kieusseian et 

al., 2006; Zhang et al., 2006). Since Pitx2+/null embryos have an EOM phenotype, Cre+; 

Pitx2+/+ embryos were used as controls in all of the mesoderm specific knockout 

experiments.  

 

 To attempt to circumvent the problems caused by the late expression of αGSU-

Cre relative to Pitx2, we used a T-Cre transgene that drives Cre expression using a 500 
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bp promoter of T, the mammalian homologue of Brachyury. T-Cre is expressed in all 

mesoderm at gastrulation, and Cre-recombinase activity is observed in the cranial 

mesoderm at e9.0 (Figure 3.1F, G) (Perantoni et al., 2005). The transgene is also 

ectopically expressed in some neural tissues and the lens, but Pitx2 is not expressed in 

these locations, so it is not a concern (Figure 3.1H, I). We verified that T-Cre is active in 

the extraocular primordia using the R26R Cre-reporter allele (Figure 3.1H, I). We found 

that T-Cre activity, as indicated by the presence of β-galactosidase, was also not present 

in all cranial mesoderm cells that express Pitx2, but it was expressed in a greater 

percentage than αGSU-Cre. T-Cre; Pitx2flox/- mesoderm specific knockout mice display 

the same ocular phenotypes as the αGSU-Cre knockouts, but with greater penetrance 

(Figure 3.2I-L). The extraocular muscles in particular were more severely affected; some 

mice had completely absent EOMs (Figure 3.2Q-T). This suggests that Pitx2 may have 

critical functions at very early timepoints in EOM development.  The T-Cre Pitx2-mko 

mice also displayed defects in body wall closure similar to those seen in global Pitx2 

knockout mice, although they did survive up to two days longer than the global 

knockouts, until e16.5 in one case (data not shown) (Gage et al., 1999; Kitamura et al., 

1999; Lin et al., 1999; Lu et al., 1999; Perantoni et al., 2005).  

 

Pitx2 is required for EOM survival in a dose dependant manner 

 

 In order to determine what fates were adopted by the EOM precursors in the 

absence of functional Pitx2, we examined Pitx2 mRNA expression. The Pitx2null allele 

produces a stable mRNA transcript that can be identified by a Pitx2 probe targeting the 3’ 

UTR. However,  any protein product produced by the mutant mRNA is either non-

functional or degraded, because the homozygous null mice phenocopy other Pitx2 

knockout mice (Gage et al., 1999; Kitamura et al., 1999; Lin et al., 1999; Lu et al., 1999; 

Perantoni et al., 2005). Although robust Pitx2 mRNA expression is seen in the neural 

crest cells that surround the optic cup in Pitx2null/null embryos at e10.5, little to no 

expression is seen in the location where the mesodermal EOM precursors are normally 

present (Figure 3.3A-C). The severe reduction in the number of EOM precursors could be 

caused by defects in proliferation or an increase in cell death.   
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 To examine the possibility that the EOM precursors were lost to cell death, 

TUNEL staining was performed. In Pitx2null/null embryos, a massive increase in cell death 

was observed in the region where Pitx2-expressing EOM precursors are normally found 

(Figure 3.3E, G). Cell death was also increased in Pitx2+/null EOM precursors (Figure 

3.3F),  and the number of PITX2-positive cells that also labeled with TUNEL was 

significantly greater than wildtype littermates (p<0.007) (Figure 3.3D). No difference in 

apoptosis was observed at e9.5 or e11.5 (data not shown).  

 

 Because Pitx2 has been implicated in cell proliferation and disruptions in cell 

cycle progression often lead to apoptosis (Charles et al., 2005; Hipfner and Cohen, 2004; 

Kioussi et al., 2002; Kleinschmidt et al., 2009; Martinez-Fernandez et al., 2006), cell 

proliferation was examined in the EOM precursors at both e9.5, prior to the observed 

apoptosis, and at e10.5.  Ki67, which marks all proliferating cells, and phospho-histone 

H3, which marks all cells in metaphase, were used to label proliferating cells (Paulson 

and Taylor, 1982). The number of cells proliferating in the wildtype EOM primordia was 

generally low, but no differences were seen between mutant and wildtype embryos 

(Figure 3.3H-O).  

 

Pitx2 is required at multiple timepoints for EOM precursor survival 

 

 Other data generated by our lab suggests that Pitx2 has a role in EOM 

specification as well as survival (see Chapter 4)(Diehl et al., 2006). However, Pitx2null/null 

EOM precursor cells undergo apoptosis before they express any markers of muscle 

specification (see Chapter 4). To determine if Pitx2 has functions in later EOM 

development, we endeavored to create a temporal knockout of Pitx2 using a ubiquitously 

expressed CreERTM as diagrammed in Figure 3.4. We initially selected the Cagg-

CreERTM transgene, which has been used successfully by many groups (Hayashi and 

McMahon, 2002). We bred Cagg-CreERTM+; Pitx2+/null males to Pitx2flox/flox females and 

injected the pregnant dams with the appropriate dose of tamoxifen at e10.5. Of 91 

resulting pups, only 3 were Cre+;Pitx2flox/null and none were Pitx2flox/+ without the 

transgene. All embryos were harvested at e14.5 or earlier, which is within the window of 
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viability for Pitx2null/null embryos. Based on these numbers, we conclude that Pitx2 and 

the Cagg-CreERTM transgene are in linkage, approximately 3 cM apart.  

 

 To effectively induce a temporal knockout of Pitx2, we switched to using the 

UBC-CreERT2 transgene, which is driven by the ubiquitin promoter (Gruber et al., 2007; 

Ruzankina et al., 2007). The results seen were identical to those observed in the few 

mutants that were obtained with the Cagg-CreERTM transgene. Although wild type Pitx2 

mRNA has been shown to be relatively unstable unless positively regulated, it was not 

known how long it would take for the existing PITX2 protein to decay. Others have 

shown effective induction of Cre recombinase activity as soon as 6 hours post-injection, 

and we observed almost complete loss of PITX2 protein expression 24 hours post-

injection (Figure 3.5A, C). The vast majority of cells expressed no PITX2 protein, but a 

few cells had very weak labeling with the PITX2 antibody, suggesting that PITX2 

expression was still decaying.  A very small number of cells had robust PITX2 

expression, suggesting that Cre was either not expressed or not active. For all temporal 

knockout experiments UBC-CreERT2+; Pitx2flox/null mice were used as mutants, and 

because Pitx2+/null mice have a reduced EOM phenotype, Pitx2flox/null littermates without 

the transgene were used as controls.  

 

 Apoptotic EOM precursors are seen in Pitx2null/null embryos at e10.5, indicating 

that the requirement for Pitx2 for cell survival begins earlier, possibly at e9.5. To test this 

hypothesis, we deleted Pitx2 expression at e9.5 by injecting timed pregnant dams with 

tamoxifen. In contrast to the T-Cre; Pitx2 knockout mice, the expression of Pitx2 can be 

initiated normally in the EOM precursors at e8.5 (Shih et al., 2007b). EOM development 

was assessed at e10.5 and e11.5. No markers of myogenic development were seen and 

Pitx2 mRNA expression was absent from the mesodermal wedge at e11.5 (Figure 3.5E-

H). Increased TUNEL staining was seen in the mesodermal cells at e10.5 (Figure 3.5B, 

D), indicating that apoptosis occurred rapidly after the deletion of Pitx2. No change in 

apoptosis was observed at e11.5 (data not shown) and areas of reduced cellularity were 

often found in the normal location of the EOM precursors, indicating that the dead cells 

had already been cleared. This indicates that Pitx2 expression in the cranial mesoderm 
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prior to e9.5 is not sufficient to prevent cell death, and that Pitx2 is required for EOM 

precursor survival prior to the visualization of apoptosis by TUNEL staining at e10.5.  

 

 To determine if survival of the EOM precursors could be rescued by Pitx2 

expression at e9.5, and to evaluate the role of Pitx2 in activating muscle specification at 

e11.5, we delayed the ablation of Pitx2 until e10.5. Timed pregnant dams were injected 

with tamoxifen at e10.5 and embryos were examined at both e11.5 and e14.5 for presence 

of EOM precursors and markers of myogenesis. In eight of eight eyes from four mutants 

examined at e11.5, the EOM precursors could be identified by Pitx2 mRNA expression, 

and some expressed MYOD and MYOG (Figure 3.6A-L). The size of the mesodermal 

wedge of EOM precursors in mutants was generally smaller than that of the controls, and 

there were some regions that did not express any MRFs (Figure 3.6E, H, K, arrowheads). 

TUNEL staining in the EOM wedge was comparable between the control and mutant 

embryos (Figure 3.6M-O).  

 

 By e14.5, embryos with loss of Pitx2 function at e10.5 had little to no extraocular 

muscle, as indicated by the almost complete absence of MYOD and MYOG expression 

(Figure 3.7G-L). The small amount of muscle present was associated with cells that 

retained PITX2 expression (Figure 3.7C), and the muscle is differentiated based on 

myosin heavy chain expression (Figure 3.7O). There is almost no expression of Pitx2 

mRNA, indicating that most of the EOM precursors are gone (Figure 3.7D-F). Because 

the mutant eyes were sometimes sunken (Figure 3.8I ), more distal sections through the 

eye were also examined, but no evidence of extraocular muscle precursors was found 

(data not shown). The precursor cells have probably undergone apoptosis, but no increase 

in TUNEL staining was seen at e14.5 (Figure 3.8D-F), presumably because the dead cells 

have already been cleared. A large decrease in the number of cells surrounding the optic 

nerve was observed, which further indicates that cell death has taken place (Figure 3.8A-

C). The reduced number of cells caused the optic nerves of mutant mice to be shifted 

closer to the oculo-sphenoid bone of the skull. This indicates that EOM precursors 

require Pitx2 for survival, even after e10.5. 
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EOM cell death is not p53 mediated 

 

 In an attempt to prevent the cell death that occurs in the absence of Pitx2, we 

treated timed-pregnant Pitx2null females with pifithrin-α, a chemical inhibitor of p53, a 

critical mediator of apoptosis (Culmsee et al., 2001; Komarov et al., 1999). Although p53 

is not implicated in normal developmental apoptosis, it may be important for abnormal 

developmental apoptosis, like we see in the Pitx2 mutant mice. p53 is required for the 

cell death that is seen in Tcof1 mutant mice, a model for Treacher Collins Syndrome 

(Jones et al., 2008). Although mice were treated with pifithrin-α beginning at e8.5, well 

before the onset of apoptosis in the EOM primordia of Pitx2 mutant embryos, it was 

unable to prevent apoptosis in the mutant EOM precursors, because reduced EOM 

primordia were seen at e11.5 (Figure 3.9I-K). Other sites of developmental apoptosis, 

such as the optic cup and trigeminal ganglion, were also not affected by pifithrin-α 

(Figure 3.9A-H), implying that p53 function is not required for either normal or Pitx2-

deficient developmental apoptosis.  

 

Discussion 

 

 We used mesoderm-specific and temporal Pitx2 knockout mice to identify 

mesoderm-specific functions of Pitx2 in the development of the extraocular muscles, 

eyelids, and optic fissure. We have identified Pitx2 as a survival factor in mesoderm-

derived extraocular muscle precursors.  

 

Pitx2 is required in the mesoderm for eyelid and optic fissure closure 

 

 We have identified requirements for Pitx2 in the processes of eyelid closure, 

failure of which results in open eyelids at birth, and optic fissure closure, failure of which 

results in coloboma. The mesoderm specific requirement of Pitx2 in eyelid closure is 

somewhat surprising. Pitx2 is expressed in both the mesoderm of the eyelid mesenchyme 

and cells that do not label as mesoderm, which are presumably neural crest (Figure 3.1E). 

In the anterior segment of the eye, Pitx2 is required to activate expression of Dkk2 in the 
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neural crest cells. Mice lacking Dkk2 have anterior segment defects as well as a failure of 

eyelid closure. Dkk2 mutant eyelids lose FOXC1 and FOXC2 expression in the 

conjunctival epithelium of the eyelid, but this expression is unaffected in Pitx2-mko mice. 

Although the expression of Dkk2 in the eyelids has not been fate mapped, this indicates 

that Pitx2 expression in the mesoderm of the eyelids does not mediate closure by 

activating Dkk2 (Gage et al., 2008). The eyelids also have the filopodia-like periderm 

extensions that are associated with closure, so the mechanism of failure is unclear (Fujii 

et al., 1995; Tao et al., 2005). It may be due to reduced proliferation of the eyelid 

mesenchyme, which prevents the eyelids from extending enough to close. This suggests 

that Pitx2 may have functions in both the neural crest and mesoderm lineages that are 

required for eyelid closure.  

 

 The requirement for Pitx2 in closure of the retinal fissure further extends our 

knowledge of the non-cell autonomous functions of Pitx2. Pitx2 global and neural-crest 

specific knockout mice have severe optic nerve defects that resemble coloboma, but 

retinal coloboma has not been previously reported (Evans and Gage, 2005; Gage et al., 

1999). Since, Pitx2 is not expressed in the retina, this indicates that it has non-cell 

autonomous functions in the mesoderm as well as in the neural crest during eye 

development. Cells expressing Pitx2 surround the optic cup and there is a small patch of 

mesodermal cells adjacent to the optic fissure at e12.5. The signals that induce closure of 

the optic fissure could come from these cells, or possibly from the hyaloid vasculature, 

which is also adjacent to the optic fissure. Pitx2 function in the mesodermal lineage is not 

required for the formation of the hyaloid vasculature of the eye. The number of vessels 

may be slightly reduced, but any differences are difficult to quantify with the methods 

used here. This indicates that Pitx2 influences ocular blood vessel formation primarily 

through the neural crest-derived pericytes (Evans and Gage, 2005). 

 

Pitx2 is required for survival of extraocular muscle precursors  

 

 Previously, it has been shown that Pitx2 is required for the formation of the 

extraocular muscles and that EOM size and number depend on Pitx2 dose (Diehl et al., 
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2006; Gage et al., 1999; Kitamura et al., 1999). However, no underlying mechanism had 

been identified, and a requirement for Pitx2 function in the neural crest for extraocular 

muscle development had been ruled out (Evans and Gage, 2005). We have demonstrated 

that Pitx2 is required in the mesoderm lineage for extraocular muscle formation and that 

Pitx2 expression in the mesodermal EOM precursor cells is required for their survival in 

a dose dependant manner. This provides a mechanism to explain why EOM size and 

number are correlated with Pitx2 dose, and further emphasizes the critical role for Pitx2 

in EOM development. The requirement for Pitx2 in EOM precursor survival parallels the 

role of Pax3/Pax7, which are redundantly required for muscle precursor survival in the 

somites (Relaix et al., 2005).  

 

 The requirement for Pitx2 in EOM precursor survival begins at approximately 

e10.0. In Pitx2null/null embryos, cell death is seen in the EOM precursors at e10.5, but not 

earlier. TUNEL staining marks sheared DNA, the final stage of apoptosis, indicating that 

the process of cell death initiated earlier. Similarly, embryos that lose Pitx2 function 

shortly after e9.5 have apoptosis in the EOM precursor cells at e10.5. This indicates that 

although Pitx2 is expressed in the cranial mesoderm prior to e8.5, it is not required for 

survival until approximately e10.0. Pitx2 is also required in the mesoderm of the first 

branchial arch for the survival of those muscle precursors at an earlier stage (Dong et al., 

2006; Shih et al., 2007a). TUNEL staining is seen at e9.5 in the branchial arches of Pitx2 

mutant mice, prior to the expression of other myogenic markers (Shih et al., 2007a). The 

difference in timing may be due to the fact that myogenesis is delayed in the EOMs 

relative to the branchial arches (Kelly et al., 2004; Noden and Francis-West, 2006). The 

requirement for Pitx2 in the survival of myogenic precursors may represent an important 

developmental step in myogenesis. The pathways that activate apoptosis in both normal 

and aberrant development are not well understood (reviewed in (Mirkes, 2008)). The 

mechanism by which loss of Pitx2 function causes cell death in the EOM precursors 

remains to be identified. There are many pathways that lead to cell death, but the pathway 

activated in Pitx2 mutant EOMs does not appear to be mediated by p53.  
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 More work needs to be done to pinpoint the time window in which Pitx2 is 

required for EOM precursor survival. We have identified the initial requirement at e9.5 

and determined that it is still required after e10.5. Muscle-specific post-natal knockout of 

Pitx2 did not result in any changes in extraocular muscle mass or fiber number at three 

weeks post-natal, although cell death was not specifically assessed (Zhou et al., 2009). 

This indicates that Pitx2 is not required post-natally for the survival of the extraocular 

muscles. The latest timepoint at which Pitx2 is still required for EOM precursor survival 

can be determined experimentally using the temporal knockout system by injecting 

tamoxifen at various timepoints between e11.5 and e18.5.  The fact that Pitx2 continues 

to be required for survival in extraocular muscle development indicates it is not merely 

required for a single developmental checkpoint, but plays an active role in cell survival, 

which is notable for a homeodomain transcription factor in a non-neural cell type.   

 

 Pitx2 is required for cell survival in the development of other tissues, besides the 

extraocular muscles. It is required for the survival of branchial arch muscle precursors 

and Rathke’s pouch, the precursor to the pituitary. In these tissues, Pitx2 is implicated in 

regulating other transcription factors that are required for survival, Musculin and Lhx3, 

respectively (Charles et al., 2005; Dong et al., 2006; Lu et al., 2002; Shih et al., 2007a). 

There are no transcription factor candidates to play this role in extraocular muscle 

development; all known factors are either expressed later in EOM development than the 

observed cell death, or have no proven requirement in EOM formation. While an as yet 

unknown survival factor may exist, this suggests that Pitx2 may play a more direct role in 

regulating cell survival.  

 

 Pitx2 has been implicated in regulating proliferation and the cell cycle by 

affecting c-Jun, CyclinD1 and CyclinD2 expression and mRNA stability, and Pitx2 has 

been demonstrated to affect proliferation in the C2C12 limb muscle progenitor cell line 

(Briata et al., 2003; Kioussi et al., 2002; Martinez-Fernandez et al., 2006). Cell cycle 

progression and apoptosis are intimately linked—cells that fail to progress in the cell 

cycle are often induced to undergo apoptosis (Hipfner and Cohen, 2004; Kleinschmidt et 

al., 2009). Although we were not able to detect changes in markers of proliferation in 
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Pitx2null/null EOM precursors, delays in cell cycle progression in the absence of Pitx2 may 

be the underlying cause of apoptosis.  However, the function of Pitx2 in cell survival is 

cell-type specific. Tooth buds and the neural crest portion of the ocular mesenchyme 

require Pitx2 for their normal development, but not survival (Evans and Gage, 2005; 

Kitamura et al., 1999; Liu et al., 2003). This further highlights the differences in Pitx2 

function between the two ocular lineages and indicates that these cell types may have 

different survival requirement or different co-factors that affect Pitx2 function.  

 

 In many tissues, Pitx2 is required for cell fate specification as well as control of 

proliferation and survival (Charles et al., 2005; Dong et al., 2006; Shih et al., 2007a).  

The continued requirement for Pitx2 in the survival of extraocular muscle precursors has 

made it difficult to determine if Pitx2 has other functions in EOM development. Although 

the Pitx genes are expressed too late to play a role in activating myogenesis in the 

somites, the early expression of Pitx2 in the EOM and branchial arch muscle precursors 

makes it a strong candidate to activate myogenesis there (L'Honore et al., 2007; Shih et 

al., 2007b). Our data do not contradict this hypothesis. The fact that some of the EOM 

precursors fail to express MRFs suggest that Pitx2 may be required for MRF expression. 

While some of the EOM precursors that lack PITX2 protein express MYOD and MYOG, 

it is not clear how long PITX2 has been absent in these cells. Prior to its decay, PITX2 

may have already activated the expression of the MRFs or other events that lead to their 

expression. It may be necessary to treat satellite cells derived from UBC-Cre+; 

Pitx2flox/null adult EOMs with tamoxifen to determine if Pitx2 is required for MRF 

activation, although we cannot be sure that Pitx2 is not required for satellite cell survival.  

 

 There are other additional functions Pitx2 could have in extraocular muscle 

formation. The mechanisms that control the compaction of the EOM precursors into a 

wedge and then split them into 7 different muscles are not known. The Pitx2 temporal 

knockout mice that were induced at e10.5 have a typical mesodermal wedge at e11.5, 

suggesting that Pitx2 may not affect cell adhesion at this stage. However, it is possible 

that PITX2 protein may not have been absent long enough to affect cell adhesion. Pitx2 

could also be important for the formation of separate muscle primordia or specifying 
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differences in the fibers of the global and orbital layers. It may be possible to assess these 

potential functions with later temporal knockouts of Pitx2, or it may be that the only way 

to determine the function of Pitx2 in these processes is to identify and inhibit the pathway 

that causes apoptosis in the absence of Pitx2.    
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Figure 3.1: Mesoderm-specific Cre expression patterns. R26R-labeled αGSU-Cre (A-
E) and T-Cre (F-I) control embryos. αGSU-Cre recombinase activity is absent from the 
mesoderm at e9.0, but PITX2 is already present (A). Recombinase activity driven αGSU-
Cre is first observed in the mesoderm at e10.0 (B). Mesodermal cells are found adjacent 
to the optic fissure (C, arrowhead) and in the hyaloid vasculature (C, arrow), as well as in 
the eyelid mesenchyme (D) at e12.5. At e16.5, some of the PITX2-positive cells in the 
eyelid are mesoderm labeled (E, arrow), while others are not (E, arrowhead). The 
absence of Cre-recombinase activity in large areas of the eyelid mesenchyme indicates a 
neural crest contribution. T-Cre expression is seen in the cranial mesoderm as at e9.0 (F) 
and e10.5 (G) (red arrows, eye is marked in red). A high percentage of the mesodermal 
wedge (arrow) show T-Cre recombinase activity at e11.5 (H) and in the developing 
extraocular muscles (I, arrows) at e12.5, indicating the transgene is effective. PITX2 
expression in the neural crest cells is seen surrounding the optic cup (H, I, arrowheads). 
Ectopic expression of T-Cre transgene is also seen in the neural tube (N), retina (R), and 
lens (L), but these are not areas of PITX2 expression. Cornea (C). Images F and G are 
from Perantoni et al., 2005.  
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Figure 3.2: Pitx2 mesoderm-specific knockout phenotype. Control (A, C, E, G, I, K, 
M, O, Q) and mutant (B, D, F, H, J, L, N, P, R, S, T) mesoderm-specific Pitx2 knockout 
embryos. αGSU-Cre; Pitx2-mko mice have open eyelids, despite the presence of 
periderm (A-D, arrows), and retinal coloboma (B, arrow). The open eyelid defect is not 
due to changes in FOXC1 (E, F, arrowheads) or FOXC2 (G, H, arrowheads) expression. 
T-Cre; Pitx2-mko embryos also have retinal coloboma (I-L), seen in sagittal sections. 
Pitx2-mko mice do not have obvious defects in hyaloid blood vessel formation, labeled 
here with Collagen IV (M-P). The mice have absent (R) or severely reduced (S, T) 
extraocular muscles, as compared to the control (Q). Embryos in A-H are e16.5, I-L are 
e15.5, M-P are e14.5, Q-S are e14.5 and T is e15.5.  
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Figure 3.3: Cell death and proliferation in Pitx2null extraocular muscle primordia. 
Wildtype (A, E, H, J, L, N), Heterozygote (B, F) and mutant (C, G, I, K, M, O) Pitx2null 
embryos. Pitx2 mRNA is lost in the mesoderm of Pitx2-/- embryo at e10.5(C) but not the 
neural crest surrounding the optic cup, as compared to the wildtype (A) and heterozygote 
(B).  A massive increase in TUNEL staining is seen in the mutant (G) where the 
mesoderm is normally found in the wildtype (E). The heterozygous Pitx2+/- mice also 
have an increase in apoptosis in the PITX2-labeled mesoderm (F), which is statistically 
significant, (D, *p<0.007). Proliferation is unchanged in the EOM primordia of e10.5 
Pitx2-/- embryos by Ki67 (H, I) and phospho-histone H3 (J, K) staining. Proliferation is 
similarly unaffected at e9.5 (L-O).  
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Figure 3.4: Strategy for temporal knockout of Pitx2. In wildtype embryos, PITX2-
positive extraocular muscle precursors (red) increase in number between e9.5 and e10.5 
(A). These precursors condense into a wedge shape and activate the expression of MRF 
proteins (green) by e11.5 (A). In Pitx2null/null mutants, apoptotic cells (black) are seen at 
e10.5, indicating that the process of cell death was initiated earlier due to the absence of 
PITX2 (B). The loss of the EOM precursors makes it impossible to evaluate the role of 
PITX2 in MRF activation in vivo. Using a ubiquitously expressed CreERT2, Pitx2 was 
deleted after the initial timepoint when it is required for EOM precursor survival, so the 
role of Pitx2 in MRF activation and continued precursor survival could be evaluated (C). 
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Figure 3.5: Temporal knockout of Pitx2 at e9.5. Control (A, C, E, G) and mutant (B, 
D, F, H) Ubiquitin-CreERTM embryos. Tamoxifen-induced knockout of Pitx2 at e9.5, 
results in efficient knockout of PITX2 protein (A, C), and an increase in cell death at 
e10.5 as indicated by TUNEL staining (arrows, B, D). By e11.5, the EOM primordia are 
absent in the mutants as indicated by Pitx2 mRNA expression (G) and MYOD expression 
(H), as compared to the control embryo (arrows, E, F). Autofluorescent red blood cells 
are shown in green for F and H.    
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Figure 3.6: Temporal knockout of Pitx2 results in reduced MRF expression. 
Representative control (A, D, G, J, M) and Mutant (B, C, E, F, H, I, K, L, N, O) 
Ubiquitin-CreERTM e11.5 embryos. Tamoxifen-induced knockout of Pitx2 at e10.5 
results in efficient knockdown of PITX2 protein (A-C). Extraocular muscle primordia are 
still present at e11.5 by Pitx2 mRNA expression (E, F), but are generally smaller than 
controls (D). MYOD (G-I) and MYOG (J-L) are lost in some EOM precursors (H, K, 
arrowheads), although patches of expression remain (H, I, K, L), possibly because 
insufficient time has elapsed to see the full effects of PITX2 loss. TUNEL staining labels 
a comparable number of cells in controls (M) and mutants (N, O). Autofluorescent red 
blood cells are shown in green (A-C, G-L).  



 94 

 
Figure 3.7: Temporal knockout of Pitx2 eventually results in the loss of extraocular 
muscle precursors.  Representative control (A, D, G, J, M) and mutant (B, C, E, F, H, 
I, K, L, N, O) Ubiquitin-CreERTM e14.5 embryos. Tamoxifen-induced temporal 
knockout of Pitx2 at e10.5 results in efficient loss of PITX2 protein by e14.5 (B) as 
compared to controls (A), except in a small patch of cells (C, arrowhead). However, all 
Pitx2 mRNA expression is lost in the extraocular muscles (D, E), except for a small patch 
of cells (F, arrowhead). In one eye, this patch of cells is associated with MYOD, MYOG 
and developmental myosin heavy chain (dMHC) expression (I, L, O, arrowheads), while 
the expression of these genes is lost in the other mutant eye (H, K) as compared to the 
control (G, J).  
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Figure 3.8: Temporal knockout of Pitx2 eventually results in the loss of extraocular 
muscle and disrupted eye development.  Representative control (A, D, G) and mutant 
(B, C, E, F, H, I) Ubiquitin-CreERTM e14.5 embryos, which were treated with tamoxifen 
at e10.5. Hematoxylin and Eosin staining reveals that the mutant optic nerves (B, C, 
labeled ON) are shifted closer to the adjacent oculo-sphenoid bone (labeled B) of the 
cranial vault and there are fewer cells in the regions where the EOM are normally present 
(A). Very few TUNEL positive cells are found in the control or mutant embryos by e14.5 
(D-F, arrows in F indicate autofluorescent red blood cells). Whole mount views of the 
embryos show that the mutant eyes are slightly ventrally rotated and have retinal 
coloboma (H, arrowhead) or a sunken appearance (I, arrowhead).  
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Figure 3.9: Treatment with a p53-inhibitor does not prevent EOM precursor death 
in the absence of Pitx2. Untreated wildtype (A, E) and pifithrin-α treated wildtype (B, 
F, I), heterozygote (C, G, J) and Pitx2-/- (D, H, K) e11.5 embryos. Treatment with p53 
inhibitor pifithrin-α does not prevent naturally occurring cell death in the retina (A-D, 
arrows) or trigeminal ganglion (E-H) at e11.5 as indicated by TUNEL staining. Cell 
death in the EOM primordia of Pitx2 mutants is inferred to be unchanged at e10.5, 
because the EOM primordia are reduced in the heterozygote (J) and completely absent in 
the null (K) at e11.5, based on Pitx2 mRNA expression.   
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Chapter 4: Pitx2 regulates expression of the muscle regulatory factors in 

extraocular muscle development 
 
Introduction 
 
 Extraocular muscles (EOMs) have many properties that make them unique among 

the skeletal muscles (reviewed in (Porter, 2002; Spencer and Porter, 2006). In contrast to 

other skeletal muscles, the function of the EOMs, to move the eye, requires a constant 

load, which has enabled their specialization and unique physiology. The EOMs have 

evolved to be extremely fast, precise and fatigue-resistant in order to meet the demands 

of binocular vision.  They have unique muscle fiber types, including multiply innervated 

fibers that can undergo graded, non-propagating contractions. EOMs also have unique 

gene expression profiles, which include the presence of embryonic and cardiac muscle 

proteins as well as higher levels of enzymes that lead to improved calcium homeostasis 

and reduced oxidative stress relative to other skeletal muscles (Khanna et al., 2003; 

Porter et al., 2006). Some of these unique properties make the EOMs resistant to many 

forms of muscular dystrophy, while the need for extreme precision can cause visual 

deficits if the EOMs are not functioning perfectly, as seen in strabismus or “cross 

eyes”(Gronlund et al., 2006; Porter et al., 2003b).  

  

 Not surprisingly, the development of these unique muscles has many aspects that 

distinguish it from the development of other skeletal muscles (reviewed in Noden and 

Francis-West, 2006). The EOMs form from the most anterior portion of the mesoderm 

and are not derived from somites like trunk muscles or the branchial arches (BAs) like 

the other cranial muscles. The initiation of myogenesis in the EOMs is delayed relative to 

muscles derived from the somites and branchial arches, as indicated by the expression of 

the muscle regulatory factors (MRFs), Myf5, MyoD and Myogenin (Mrf4 is not expressed 

in the head) (Kelly et al., 2004). The MRFs are so named because they initiate a genetic 

cascade that can convert differentiated cells to muscle and they are required for muscle 
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development (Braun et al., 1989a; Braun et al., 1989b; Edmondson and Olson, 1989; 

Thayer et al., 1989; Weintraub et al., 1989). Myf5 and MyoD can each induce myogenic 

specification, while their downstream target Myogenin acts primarily to induce 

differentiation (Arber et al., 1994; Rudnicki et al., 1993). The MRFs activate the 

myogenic program in all skeletal muscle lineages, but the upstream transcription factors 

that regulate their expression are different between muscle populations. Pax3 and Pax7, 

and to a lesser extent Six1 and Six4, activate MRF expression in the somites (Bajard et 

al., 2006; Grifone et al., 2005; Relaix et al., 2005). Tbx1, Musculin (MyoR), and Tcf21 

(Capsulin) activate MRF expression in the branchial arches (Dastjerdi et al., 2007; Kelly 

et al., 2004; Lu et al., 2002). However,  no upstream activator of MRF expression in the 

EOMs has been identified. Many of the genes demonstrated to activate MRF expression 

in other locations are absent in the EOMs (Pax3, Tcf21) or not required for their normal 

development (Tbx1, Musculin) (Grenier et al., 2009; Kelly et al., 2004; Lu et al., 2002). 

Six1/Six4 double mutant mice have small EOMs, indicating that they may play a role, but 

are not required for MRF expression (Grifone et al., 2005). Other genes important for 

myogenesis, such as Eya1, Eya2, and Dach2, are expressed in the EOMs, but a role in 

EOM development has not been reported (Davis et al., 2008; Davis et al., 2001; Grifone 

et al., 2007; Xu et al., 1997).  

 

Two genes, Pax7 and Pitx2, have been proposed to be the upstream activator of MRF 

expression in EOM development (Diehl et al., 2006; Mootoosamy and Dietrich, 2002). 

Pax7 is a homeodomain transcription factor in the paired family. During skeletal muscle 

development, it acts primarily to specify a population of muscle precursor cells as 

satellite cells, the muscle stem cells (Seale et al., 2004; Seale et al., 2000). In the absence 

of Pax3, Pax7 acts as an activator of MRF expression during myogenesis (Relaix et al., 

2004, 2005). Unlike Pax3, Pax7 is expressed in the cranial mesoderm, so it is an 

excellent candidate to activate MRF expression there (Horst et al., 2006; Mootoosamy 

and Dietrich, 2002). However, Pax7 expression lags behind MRF expression in the 

branchial arches, and Pax7 mutant mice are reported to have normal head muscle 

formation (Horst et al., 2006; Relaix et al., 2004). The functional role of Pax7 in EOM 

development remains to be determined.  
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 Pitx2 is another homeodomain transcription factor proposed to regulate MRF 

expression in the EOMs. Pitx2 is required in a dose-dependent manner for extraocular 

and branchiomeric muscle precursor survival (Diehl et al., 2006; Dong et al., 2006; Shih 

et al., 2007a). Pitx2 is also expressed in somite-derived muscles, but it is not required for 

their development, possibly because of redundancy with paralogs Pitx1 and Pitx3 (Marcil 

et al., 2003). Although it has not been possible to prove an in vivo requirement for Pitx2 

in MRF expression during development because of the survival requirement, there are 

indications that it is important. In Pitx2+/null heterozygous mice, expression of Myf5, 

MyoD, and Myogenin is reduced to 21%, 14%, and 13%, respectively, of wildtype levels, 

even though the reduction in the number of muscle precursors is not as severe (Figure 

1.5). Terminal muscle differentiation is also reduced in these mice, as indicated by the 

presence of myosin heavy chain (Diehl et al., 2006). Recently, a post-natal muscle 

specific knockout of Pitx2 was reported, and these mice have drastically reduced 

expression of Myf5, MyoD, and Myogenin 21 days after Pitx2 deletion. Other muscle 

specific proteins were affected on a much longer time scale (3 months), leading the 

authors to suggest that Pitx2 might directly regulate the MRFs. They also report that 

Pitx2 expression is found in satellite cells, muscle stem cells that lie quiescent until they 

are activated to express the MRFs, proliferate and differentiate (Zhou et al., 2009).  

 

 Here, we examine the potential for Pitx2 and Pax7 to directly regulate the MRFs 

in the extraocular muscles. We found that Pitx2 is expressed prior to Pax7 and the MRFs 

and that mice lacking Pax7 function have normal pre-natal EOM development. We show 

that Pitx2 binds the promoters of Myf5, Myod1, and Myogenin and can activate the 

Myod1 promoter, demonstrating that Pitx2, not Pax7, directly activates MRF expression 

in the extraocular muscles.  

 

Materials and Methods 

 

Mice: Mice carrying the Pax7tm2Pgr allele, referred to here as Pax7LacZ, were a gift from 

Michael Rudnicki. These mice have a LacZ-neo cassette inserted in frame into the first 
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exon of the paired box of Pax7. This disrupts the expression of the protein and generates 

β-galactosidase staining which recapitulates the Pax7 expression pattern (Mansouri et al., 

1996; Seale et al., 2000). Pax7LacZ/+ or wildtype mice were mated to generate timed 

pregnancies. The morning after mating was designated as embryonic day 0.5. Embryos 

were collected by C-section after euthanasia of the mother and genotyped using PCR- 

based methods. The Pax7 genotyping protocol uses one forward 

(GGGCTTGCTGCCTCCGATAGC), and two reverse primers 

(GTGGGGTCTTCATCAACGGTC and TCGTGCTTTACGGTATCGCCGCTCCCG) 

and a PCR program which requires 65°C annealing temperature and a two minute 

extension time for 35 cycles. All procedures involving mice were approved by the 

University of Michigan Committee on Use and Care of Animals. All experiments were 

conducted in accordance with the principles and procedures outlined in the NIH 

Guidelines for the Care and Use of Experimental Animals.  

 

Immunofluorescence: All embryos were fixed in 4% paraformaldehyde in phosphate 

buffered saline, washed, dehydrated, embedded in paraffin, and sectioned at 7 µm. 

Sections were dewaxed, rehydrated and stained as previously described (Evans and Gage, 

2005). Primary antibodies against PITX2 (gift from T. Hjalt), PAX7 (developed by A. 

Kawakami and obtained from NICHD/Developmental Studies Hybridoma Bank), MYOD 

(Ab 788, Abcam), Myogenin (clone F5D, Santa Cruz), and MYF5 (SC-302, Santa Cruz) 

were used.  

 

Immuocytochemistry: Cells were plated on coverslips in normal media, grown overnight, 

and fixed with cold methanol for 15 minutes. Cells were washed three times in PBS for 

five minutes and incubated with antibody block for one hour, then incubated with the 

primary antibody overnight. Cells were washed three times in PBS for 5 minutes, 

incubated in an appropriate fluorescently labeled secondary antibody (Jackson Immuno) 

diluted 1:500 in antibody block, washed again three times in PBS for 5 minutes and 

mounted to slides with ProLong Gold antifade reagent (Molecular Probes). Primary 

antibodies against PITX2 (gift from T. Hjalt) and MYOD (Ab 778, Abcam) were used.  
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Cell culture: CHO (Chinese Hamster Ovary) and C2C12 limb muscle precursor cells 

were obtained from ATCC (Puck et al., 1958; Yaffe and Saxel, 1977). They were grown 

in Dulbecco’s Modified Eagle Medium (GIBCO) supplemented with antibiotics and L-

glutamine plus 10% fetal bovine serum (GIBCO), and passaged every two to three days. 

The C2C12 cells were never allowed to reach greater than 80% confluency, in order to 

prevent spontaneous differentiation. mEOM primary mouse extraocular muscle cells 

were obtained from Henry Kaminski (Porter et al., 2006). They were grown on plates 

coated with 0.5% gelatin (Sigma, #G1393), in F-10C media (GIBCO) supplemented with 

15% horse serum (GIBCO), 2 ng/mL FGF (Sigma, #F0291), 1.2 mM CaCl2, and 

antibiotics. These cells regularly took 5-7 days to reach 80% confluency and were 

supplemented with fresh media every other day.  

 

Chromatin Immuno Precipitation (ChIP): C2C12 and mEOM cells were grown to 80% 

confluency and subjected to ChIP assays as previously described (Gummow et al., 2006). 

Briefly, cells were fixed to cross-link DNA and proteins, then nuclear extracts were 

prepared. The resulting chromatin was sheared with a sonicator and verified to be an 

average of 500 bp in length. The chromatin fragments were immunoprecipitated, heated 

to reverse the cross-linking and purified. For immunoprecipitation, two polyclonal 

antibodies specific for PITX2 were used (Santa Cruz, goat C-16 & rabbit H-80), as well 

as control antibodies as previously described (Gage et al., 2008). Purified DNA 

fragments were analyzed by PCR using the primers described in Table 1. The PCR 

program used for all primers has a 59.5°C annealing temperature with a 45 second 

extension time.   

 

Vectors, Cloning and Mutagenesis: The PITX2 expression constructs in the pCI-HA tag 

vector were a gift from Kathy Kozlowski and Michael Walter and have been previously 

described (Kozlowski and Walter, 2000). The names of mutations T30P, K50E, and 

R53P indicate the position of the mutation within the homeodomain, not the full protein.  

A -2.5 kb human MYOD1 promoter in the pGL3-basic luciferase reporter vector was a 

gift from David Goldhamer. The -2.5 kb promoter was previously described (Goldhamer 

et al., 1992). An analogous fragment of the mouse Myod1 promoter (-2.7 kb promoter) 
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and a shortened version (-1.6 kb promoter) were generated by high-fidelity PCR of a 

mouse BAC containing the Myod1 gene (RP23 149N5, ResGen), with primers tagged 

with restriction sites to facilitate cloning into the XhoI and SpeI sites of the pFL-basic 

luciferase reporter vector (Table 2). The pFL-basic vector has the same backbone as the 

pGL3-basic vector, but a different multiple cloning site. A 317 bp Myod1 minimal 

promoter, which contains 124 bp upstream of the transcriptional start site and the 5’UTR  

cloned into in the pFL-basic vector, was a gift from Jeff Ishibashi and Michael Rudnicki. 

Deletion and mutagenesis of the Myod1 minimal promoter were carried out using the 

QuikChange II Site-Directed Mutagenesis kit (Stratagene) according to the manufacturer 

protocol. Mutagenesis primers were designed using the manufacturer’s website: 

http://www.stratagene.com/sdmdesigner/default.aspx. For the mutagenesis of PITX2 

sites, non-complementary transversion was used to convert every other base pair to the 

pyridine/purine it does not complement (i.e. A to C, G to T), a common method of 

binding site mutagenesis (Scott Barolo, personal communication). For deletions, a 

standard primer design program was used to create primers that could be used to amplify 

the sequence to be deleted.  The reverse complement of the second primer was attached 

to the first and vice-versa to create two long primers that form a bridge, forcing the 

polymerase to omit the sequence between them. The sequence for all primers used for the 

mutations and deletions of the Myod1 minimal promoter are listed in Table 3. All 

mutations and deletions were verified with sequencing, and an average of 4/5 clones were 

correct.  

 

Luciferase Assays: Transfections were carried out in CHO or C2C12 cells using 

FuGENE6 (Roche) according to standard techniques. Cells were transfected with various 

Myod1 promoter-luciferase reporter plasmids and either an expression vector encoding 

human wildtype or mutant PITX2A protein or empty pCI-HA vector (a gift from Michael 

Walter). For all conditions, the constitutively expressing renilla vector pPolIII-RL was 

included as a control for transfection efficiency (Nybakken et al., 2005). Cells were lysed 

48 h after transfection, and luciferase and renilla levels assayed using the Dual-Luciferase 

Reporter Assay System (Promega) according to the manufacturer’s protocol. Normalized 

luciferase values were compared to the promoter-luciferase reporter transfected with the 
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empty HA vector to determine the extent of activation over background levels. Results 

are presented as relative activity and are expressed as mean±S.D. of three experiments, 

each performed in triplicate. Additionally, for the mutagenesis/deletion analysis of the 

Myod1 minimal promoter, three individual clones of each mutation/deletion were 

analyzed to control for accidental mutagenesis of the backbone vector sequence. All 

reporters showed activation greater than the empty reporter vector (data not shown).  

 

Results 

 

Pax7 is dispensable for EOM formation   

 

 Pax7 has been shown to activate MRF expression in other muscles, and proposed 

to activate MRF expression in the developing extraocular muscles (Mootoosamy and 

Dietrich, 2002; Relaix et al., 2004, 2005). Therefore, we examined extraocular muscle 

development in Pax7LacZ/LacZ mutant embryos (Mansouri et al., 1996). The extraocular 

muscles of these embryos were histologically normal (data not shown) so MRF 

expression was examined. Pax7LacZ/LacZ mutant embryos were found to have normal 

expression of MYF5, MYOD, MYOG and PITX2 at e12.0 (Figure 4.1A-H). By e14.5, all 

seven EOMs were present and differentiated normally, as indicated by the presence of 

developmental myosin heavy chain (Figure 1I, J). This shows that Pax7 is not required 

for MRF activation in EOM development. The role of Pax7 in EOM satellite cell 

formation and post-natal development remains to be examined. 

 

Pitx2 is expressed prior to the muscle regulatory factors 

 

 The exclusion of Pax7 as an activator of MRF expression in the extraocular 

muscles leaves Pitx2 as the only proposed candidate. However, the hierarchy of gene 

expression was not known in mouse extraocular muscle precursors. To determine the 

timing of activation of myogenic genes in the extraocular muscle, their expression was 

examined at different stages in wildtype mice. PITX2 is expressed in the EOM primordia 

as early as e8.5, while expression of MYF5 is seen in a small patch of cells at e10.5 and 
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the other myogenic genes, PAX7, MYOD, and MYOG are not seen until e11.5 (Figure 

4.2). This indicates that Pitx2 is temporally upstream of the MRFs. PITX1, homologue of 

Pitx2, is also found in a subset of extraocular muscle precursors beginning at e11.5, but it 

is not required for EOM development (Adam Diehl, personal communication). At e12.5, 

MYOD and MYOG are co-expressed with PITX2 in many cells, while others express 

only MYOD or MYOG (Figure 4.2 F, I), indicating that some cells may downregulate 

Pitx2 expression once the MRFs have been activated. Experiments to prove that all 

extraocular muscle cells express Pitx2 during their development remain to be done (the 

proper reagents only recently became available), but the absolute requirement for Pitx2 in 

extraocular muscle formation suggests that this is the case (Donna Martin, personal 

communication).   

 

Pitx2 binds MRF promoters 

   

 We hypothesized that Pitx2 is directly activating the muscle regulatory factors. 

The previously characterized promoters of Myf5, MyoD, and Myogenin, which were 

shown to drive expression in the EOMs, were examined, and predicted PITX2 binding 

sites were identified in each of them (Figure 4.3) (Cheng et al., 1995; Goldhamer et al., 

1995; Goldhamer et al., 1992; Patapoutian et al., 1993). Chromatin immunoprecipitation 

was used to determine if PITX2 was binding these promoters in two cell types. Both the 

C2C12 muscle precursor cell line, which is derived from mouse lower limb satellite cells, 

and a mouse EOM (mEOM) primary cell line, which is derived from neonatal (p4-6) 

extraocular muscle, were examined (Porter et al., 2006; Yaffe and Saxel, 1977). It was 

first verified that both cell lines express PITX2 protein endogenously (Figure 4.4). In the 

ChIP experiments, sequences that were enriched in the PITX2 IP over a control IgG IP, 

as shown by increased PCR product, were considered to be bound by PITX2. PITX2 

binds specific regions with predicted PITX2 binding sites in the Myf5, MyoD, and 

Myogenin promoters (Figure 4.5). In the Myod1 promoter, PITX2 binds the more 

proximal B and C regions, but not the distal A region or the 258 bp Myod1 enhancer. In 

the Myf5 promoter, PITX2 binds the B and D regions, but not the A and C regions. The 

more proximal regions of the Myog promoter are also bound by PITX2. Generally, the 
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same sites were bound in both the C2C12 and mEOM cells, although a few sites in the 

Myog promoter were bound in C2C12 cells but not in the mEOM cells (Figure 4.5E, F). 

This is likely an artifact caused by the close spacing of the Myog ChIP regions (Figure 

4.3); regions B, C, and D are only separated by a few hundred base pairs, and the 

resolution of ChIP is considered to be about 1 kb. It should be noted that chromatin 

immunoprecipitation cannot discriminate between direct protein binding to DNA or 

indirect binding via a co-factor. These results confirm that PITX2 interacts with the 

promoters of the MRF genes.  

 

Pitx2 activates the MYOD1 promoter 

 

 To determine whether PITX2 binding to the MRF promoters might be 

functionally significant, we tested the human -2.5 Kb MYOD1 promoter, described by 

Goldhamer et al. that was used to drive LacZ expression in the developing EOMs (Figure 

4.3A) (Goldhamer et al., 1995; Goldhamer et al., 1992). We selected MyoD1 as a 

representative MRF to test here because it is involved in both the specification and 

differentiation of muscle (Blais et al., 2005; Cao et al., 2006; Weintraub et al., 1989). 

Luciferase promoter assays found that the MYOD1 promoter responds to increasing doses 

of PITX2-expression vector, but not to mutant forms of PITX2 that have been shown to 

be transcriptionally deficient (Figure 4.6). Furthermore, the MYOD1 promoter responds 

at greater levels over baseline in the C2C12 muscle precursor cell line than in the CHO 

Chinese hamster ovary cell line (Figure 4.6). These data indicate that PITX2 can activate 

the MYOD1 promoter and that the muscle cell line may have factors that enhance this 

activation.  

 

A minimal Myod1 promoter fragment contains the PITX2-responsive element 

  

 To localize which part of the Myod1 promoter is responding to PITX2, we carried 

out serial deletions of the promoter (Figure 4.7A). Because the ChIP experiments that 

identified PITX2 binding to the Myod1 promoter were carried out using mouse cells, the 

mouse sequence was used for all subsequent experiments. The mouse -2.7 kb Myod1 
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promoter responded to PITX2 dose in a similar manner as the human promoter in C2C12 

cells (Figure 4.7B).  A 1.1 kb region containing the A ChIP region was deleted from the 

distal end of the Myod1 promoter to create the -1.6 kb promoter (Figure 4.7A). The -1.6 

kb promoter responds to PITX2 dose at levels equal to the full length promoter, as 

expected since PITX2 does not bind the A region. A further deletion of 1.5 kb containing 

the B ChIP region yields the -0.12 kb promoter, a 317 bp fragment of the Myod1 

promoter that contains 124 bp upstream of the transcriptional start site and the 5’UTR 

(Figure 4.7C). Although PITX2 binds the B ChIP region of the Myod1 promoter, its 

deletion does not affect the ability of the -0.12 kb promoter to respond to PITX2 dose. 

This identifies a minimal 317 bp Myod1 promoter that responds to PITX2 and contains 

the ChIP C region, which binds PITX2. It remains to be determined if the B ChIP region 

is sufficient for PITX2 promoter activation in the absence of the PITX2-responsive site(s) 

in the minimal promoter.  

 

Identification of the PITX2 responsive site in the minimal Myod1 promoter 

 

 The Myod1 minimal promoter contains two predicted PITX2 binding sites; one is 

conserved between mouse and human, the other is not (Figure 4.7C, 4.9A). To assess the 

functionality of these sites, we mutagenized each site by non-complementary transversion 

of every other base pair (Table 3). Mutagenesis of the conserved predicted PITX2 

binding site in ChIP site C did not affect the ability of the minimal Myod1 promoter to 

respond to PITX2 (Figure 4.8). Similarly, a non-conserved predicted PITX2 binding site 

in the 5’ UTR was not required for PITX2 responsiveness (data not shown).  

 

 With all predicted PITX2 binding sites ruled out, we sought to localize the PITX2 

responsive region(s) to either the promoter region upstream of the Myod1 start site or the 

Myod1 5’ UTR (Figure 4.9A). Deletion of the promoter region upstream of the Myod1 

predicted start site resulted in an almost complete loss of PITX2 responsiveness, while 

deletion of the 5’UTR had no effect (Figure 4.9B). The 83 bp promoter region was 

divided into two overlapping halves (Deletions A and B), which were each deleted. Both 
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halves are required for PITX2 responsiveness, which indicates that there are either 

multiple responsive sites, or a single site in the overlapping region (Figure 4.9C).  

 

 To further narrow the location of the PITX2 responsive region(s), scanning 

adenine mutagenesis of 7-9 bp regions in the Myod1 promoter region was carried out. Six 

of seven mutations analyzed responded to PITX2 dose statistically the same as the 

wildtype construct (Figure 4.9D). The mutation of one 8 bp region in the area of overlap 

between Deletions A and B resulted in significantly reduced  PITX2 response from 

wildtype levels, indicating that it is required for PITX2 responsiveness (Figure 4.9D). 

The center of this region is 80 bp from the transcriptional start site. The sequence of this 

region (with 4 base pairs on either side) is (CCCG)CCCCCAGC(CTCC) and the reverse 

complement is (GGAG)GCTGGGGG(CGGG).  This region does not resemble any 

known PITX2 binding sites or contain the TAAT sequence associated with stereotypical 

homeodomain binding sites (Berger et al., 2008). It does contain SP1, KLF15, and MAZ 

binding sites, all of which are involved in transcription in both muscle and non-muscle 

cell types (Genomatix, William Zacharias, personal communication) (Aiba et al., 2008; 

Almeida-Vega et al., 2009; Cullingford et al., 2008; de Leon et al., 2005; de Wolf et al., 

2006; Figliola et al., 2008; Fisch et al., 2007; Gray et al., 2002; Himeda et al., 2008; 

Otteson et al., 2005; Wu et al., 2007). Several of the adenine mutations have yet to be 

analyzed.   

 

Discussion 

 

 Here we have excluded Pax7 as a regulator of myogenic development in the 

extraocular muscles and showed that the Pitx2 expression pattern is consistent with a role 

in MRF activation in extraocular muscle. We have demonstrated that PITX2 binds MRF 

promoters and activates the Myod1 promoter through a novel site. The ability of PITX2 

to activate the promoters of Myf5 and Myog remains to be determined.    
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Pax7 is not required for MRF activation 

 

 We have shown that Pax7 is not required for the activation of MRF expression in 

the extraocular muscles. We also showed that Pax7 is not required for the differentiation 

of the extraocular muscles, although its potential role in later developmental functions 

was not examined. Pax7 may have functions in late EOM development, because Pax7 is 

required for normal post-natal muscle size and fiber growth in somitic muscles. Another 

function of Pax7 is to specify satellite cells during somitic muscle development (Seale et 

al., 2000). The EOMs and several other craniofacial muscles have high numbers of 

satellite cells per fiber as compared to other muscles, but the factors that lead to this 

increased number are not known (Karpati et al., 1988). The role of Pax7 in satellite cell 

formation in the EOMs and other craniofacial muscles has not been investigated (Kuang 

et al., 2006; Oustanina et al., 2004; Relaix et al., 2006; Seale et al., 2000); the differences 

between craniofacial and trunk myogenesis make this an important area for future study. 

With the elimination of Pax7 as a potential activator of the MRFs in the developing 

extraocular muscles, this promotes Pitx2 as the likely candidate, since other known 

activators of MRF expression are either not expressed or not required for EOM 

development.  

 

Pitx2 activates MRF expression  

 

 Pitx2 is the remaining proposed candidate to activate MRF transcription in the 

extraocular muscle precursors. We have identified several lines of evidence that indicate 

Pitx2 has an essential role in activating MRF transcription. We have shown that PITX2 

binds the promoters of Myf5, Myod1, and Myogenin in a specific manner in both limb and 

extraocular muscle precursor cells, which is consistent with the hypothesis that they are 

direct targets of Pitx2. The function of PITX2 in binding these promoters may be to 

activate transcription, as we showed with the Myod1 promoter. Wild-type PITX2 can 

transactivate the promoter in vitro, while transcriptionally dead mutations in PITX2 have 

no effect on the Myod1 promoter. The promoter responds to PITX2 more robustly in a 

muscle precursor cell line than in an unrelated cell-line, indicating that PITX2 has one or 
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more muscle specific co-factor(s) that enhances its ability to activate the Myod1 

promoter. The human MYOD1 promoter responds with greater fold activation than the 

mouse Myod1 promoter to the same doses of PITX2 in C2C12 cells. While it is possible 

that differences in the cloning vector used can account for the change, it is not known 

how in vitro differences in promoter activation actually affect cellular processes like cell 

fate specification. It may be that the MYOD1 promoter does respond more strongly in 

vivo, but that both are sufficient to activate the myogenic program, especially since it is 

self-perpetuating.     

 

 We have localized the PITX2-responsive regions to an 8 bp sequence in an 83 bp 

region upstream of the Myod1 transcriptional start site. The exact site(s) and their 

mechanisms of function remain to be identified, and these will need to be verified as 

PITX2-binding regions with electromobility shift-assays (EMSA). None of the regions 

contain identifiable PITX2 binding sites. This suggests that PITX2 may be binding a 

novel site or interacting with a co-factor that modifies its binding site. It may even be that 

PITX2 does not bind DNA directly, but is acting as part of a transactivation complex. 

The identified 8 bp region does include binding sites for the transcription factors, SP1, 

KFL15, and MAZ.  This raises the possiblity that these factors may be part of such a 

complex. These factors can be functionally evaluated for their presence in CHO and 

C2C12 cell lines, their ability to enhance PITX2-dependant transcription of Myod1, and 

their ability to bind PITX2. Few proteins have been identified that directly interact with 

PITX2, and no muscle specific factors have been identified (Amendt et al., 1999; Berry et 

al., 2006; Huang et al., 2009; Vadlamudi et al., 2005). Immunoprecipitation of PITX2 

followed by mass-spectrometry analysis or a yeast two-hybrid using a muscle specific 

library could be used to identify such a co-factor.  

 

 Although we have shown that PITX2 can activate MRF expression, there is no 

direct in vivo evidence that Pitx2 is required for MRF activation in developing EOM 

primordia because of the prior requirement for PITX2 in EOM precursor survival (see 

Chapter 3). However, all current evidence is consistent with a Pitx2 requirement for MRF 

activation. Pitx2+/null heterozygous mice lose some EOM cells because of cell death, but 
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have an even greater reduction of MRF expression levels in the remaining EOMs (Diehl 

et al., 2006). Post-natal knockout of Pitx2 in EOMs results in a severe loss of MRF 

expression (Zhou et al., 2009). Mice that lose Pitx2 expression at e10.5 have patches of 

EOM precursors with no MRF expression. All of these phenotypes are consistent with 

Pitx2-dependent MRF activation.  

 

Functions of Pitx genes in muscle development 

 

 Similar to its functions in extraocular muscle development, Pitx2 is required for 

both organ precursor survival and cell fate specification in the pituitary and first branchial 

arch (Charles et al., 2005; Dong et al., 2006; Shih et al., 2007a). Pitx2 has been shown to 

activate Tbx1 expression in the first branchial arch, and is likely to activate MRF 

expression directly as it does in the EOMs (Shih et al., 2007a). Pitx2 has also been shown 

to increase proliferation in myogenic cells in culture, but this function has not been 

verified in vivo (Kioussi et al., 2002; Martinez-Fernandez et al., 2006). Other genes that 

activate the MRFs display this multifunctionality. Pax3 and Pax7 in the somites are 

required for normal proliferation, survival and MRF activation (Collins et al., 2009; 

Relaix et al., 2006; Relaix et al., 2005). Mice lacking both Musculin and Tcf21 lose MRF 

expression in the first branchial arch, which is followed by apoptosis (Lu et al., 2002). 

Our results show that Pitx2 plays multiple roles in extraocular muscle development, 

similar to other upstream activators of myogenesis.   

 

 While Pitx2 plays critical upstream roles in myogenesis in the head, it is first 

expressed after the initiation of myogenesis in the somites (L'Honore et al., 2007; Shih et 

al., 2007b). Although it cannot be the initial activator of MRF expression in the somites, 

our results with the C2C12 limb muscle precursor cells indicate that Pitx2 may help 

maintain MRF expression. In developing trunk and limb muscles, PITX2 expression 

overlaps with MYOD and MYOG expression, as well as PAX3 and PAX7, which is 

consistent with this role (L'Honore et al., 2007; Shih et al., 2007b). However, Pitx2null/null 

embryos have no defects in somite-derived muscle development, which may be due to 

functional redundancy with the other Pitx genes. Pitx1 and Pitx3 are expressed in the 



 111 

trunk and limb muscles and may have similar functions to Pitx2 and thus be able to 

compensate in Pitx2null/null embryos (L'Honore et al., 2007; Lanctot et al., 1997; Shang et 

al., 1997). In EOM development, Pitx1 is expressed too late to prevent EOM precursor 

apoptosis. The Pitx gene family may play critical roles in MRF activation and 

maintenance during muscle development throughout the embryo, but double mutant mice 

have been nearly impossible to generate (Jacques Drouin, personal communication) 

(Marcil et al., 2003). It may be necessary to use the Cre-Lox system to test this 

hypothesis.  

 

Summary 

 

 Here we have shown that while Pax7 is dispensable for early extraocular muscle 

development, Pitx2 functions in the activation of the muscle regulatory factors Myf5, 

MyoD1, and Myogenin. Like other activators of myogenesis, Pitx2 plays a multi-

functional role in extraocular muscle development by regulating cell survival, cell 

proliferation and cell fate specification. We have identified a non-canonical PITX2 

responsive site in the MyoD1 minimal promoter and other evidence that suggests PITX2 

has muscle-specific binding partner(s) that enhance its activation of MRF promoters. The 

role of Pitx2 in activating MRF transcription may extend to myogenesis throughout the 

developing embryo, but only in the extraocular muscles does Pitx2 operate alone at the 

top of the myogenic cascade.  
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