
Robust Linear Optimization with Recourse:

Solution Methods and Other Properties

by

Tara L. Terry

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Industrial and Operations Engineering)

in The University of Michigan
2009

Doctoral Committee:

Associate Professor Marina A. Epelman, Chair
Professor Romesh Saigal
Assistant Professor Amitabh Sinha
Assistant Professor Aurelie Thiele, Lehigh University

ACKNOWLEDGEMENTS

I would like to thank my advisor, Marina A. Epelman, for all of her support, guid-

ance, and assistance throughout my time in graduate school. I have learned a great

deal from her, more than I can express here, and I am grateful for the commitment

she made to me in helping me develop myself as a researcher, an educator, and a

person.

I am appreciative of my dissertation committee’s willingness to perform their

duties; their comments and critiques were informative and only improved my research

and results. It was helpful to see my research from another perspective, which helped

me grow as a researcher.

I also want to thank the IOE department, both for the financial support through

my graduate student instructor position and fellowship and the caring that was

displayed by the faculty, staff, and students in the department. The people in the

department were so generous with their time and wisdom and I am saddened to leave

such a great place.

I also want to thank the National Science Foundation and the Elizabeth C. Crosby

Research Award. This work was partially supported by the National Science Foun-

dation under grant CCF-0306240.

Last, but not least, I want to thank my family and, in particular, Serge. Their love

and support helped me to remain strong, to keep working towards my goals, and to

look positively at setbacks that ultimately helped me grow, learn, and succeed. I am

ii

indebted to Serge for his enthusiasm for learning and educating through classwork

and research. I didn’t believe I was Ph.D. material, but the strength of his belief in

me and of my future success has been proven correct by the very existence of this

dissertation. He introduced me to the academia world just at the right time and my

life has been forever altered and for that I am grateful.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . viii

CHAPTER

I. Introduction . 1

1.1 Literature Review . 2
1.2 Contributions . 6

II. Cutting-Plane Algorithms for Solving Adjustable Robust Optimization
Problems . 8

2.1 Problem Overview . 8
2.1.1 Optimization With Recourse . 8
2.1.2 The Robust Approach . 10

2.2 Convex Adjustable Robust Optimization . 12
2.3 Cutting-Plane Methods for Solving Convex Programming Problems 14

2.3.1 Kelley’s Algorithm . 14
2.3.2 Analytic Center Cutting Plane Method 16
2.3.3 Subgradient Algorithm . 19

2.4 Discussion of Difficulties in Applying Cutting-Plane Methods to Adjustable
Robust Problems . 20

2.4.1 When the Adversarial Problem is Easily Solved 21
2.4.2 Form of Subgradient for Adding Cuts 22

2.5 Kelley’s Algorithm for Robust Linear Programming with Recourse 23

III. Analysis of Robust Linear Optimization Problems with Simple Recourse
and Computational Experiments . 26

3.1 Analysis of Robust Linear Programs with Simple Recourse 26
3.1.1 Computing Q(x) for Robust Linear Programs with Simple Recourse 27

3.2 Computational Results: Newsvendor Problem 29
3.2.1 Analysis of Problem Solutions . 31
3.2.2 Algorithmic Performance . 35

3.3 Additional Experiments and Computational Results for the Newsvendor Prob-
lem . 36

3.3.1 Kelley’s Method versus ACCPM and Subgradient Algorithm for
the Newsvendor Problem . 36

3.3.2 Further Analysis of Kelley’s Method for the Newsvendor Problem . 40

iv

IV. Analysis of Robust Linear Optimization Problems with General Recourse
and Computational Experiments . 47

4.1 Analysis of Robust Linear Programs with General Recourse 47
4.1.1 Computing Q(x) for Robust Linear Programs with General Recourse 48

4.2 Computational Results: Production Planning Problem 50
4.2.1 Analysis of Production Planning Problem 51
4.2.2 Computational Results . 54

V. Bounds on Distance to Ill-posedness for Robust Linear Optimization
Problems . 66

5.1 Literature Review . 67
5.2 Distance to Infeasibility of a Linear Conic Problem 69
5.3 Robust Counterpart of LCP . 71
5.4 Structure of perturbations to SOCP . 77
5.5 Shifting the center of the ellipsoid: RC transformation structure 0 82
5.6 Transforming the size and shape of the ellipsoid 86

5.6.1 Common-scaling transformation of the ellipsoid: RC transforma-
tion structure 1 . 86

5.6.2 Independent-scaling transformation of the ellipsoid: RC transfor-
mation structure 2 . 89

5.6.3 Structured linear transformation of the ellipsoid: RC transforma-
tion structure 3 . 94

VI. Conclusions . 100

BIBLIOGRAPHY . 103

v

LIST OF FIGURES

Figure

3.1 The impact of the budget of uncertainty on worst-case cost for Instance 1 of the
multi-item newsvendor problem. 32

3.2 The impact of the budget of uncertainty on average cost for Instance 1 of the
multi-item newsvendor problem. 33

3.3 The impact of the budget of uncertainty on worst-case cost for Instance 2 of the
multi-item newsvendor problem. 34

3.4 The impact of the budget of uncertainty on average cost for Instance 2 of the
multi-item newsvendor problem. 35

3.5 The impact of the budget of uncertainty on the number of iterations for Instance
1 of the multi-item newsvendor problem. 36

3.6 The impact of the budget of uncertainty on the run time (sec) for Instance 1 of the
multi-item newsvendor problem. 37

3.7 The impact of the budget of uncertainty on the number of iterations for Instance
2 of the multi-item newsvendor problem. 38

3.8 The impact of the budget of uncertainty on the run time (sec) for Instance 2 of the
multi-item newsvendor problem. 39

3.9 The impact of the number of items and the budget of uncertainty on average cost
for two instances of the multi-item newsvendor problem. 41

3.10 The impact of the number of items and the budget of uncertainty on worst-case
cost for two instances of the multi-item newsvendor problem. 42

3.11 The impact of the number of items and the budget of uncertainty on the number
of iterations for two instances of the multi-item newsvendor problem. 44

3.12 The impact of the number of items and the budget of uncertainty on the run time
(sec) for two instances of the multi-item newsvendor problem. 45

3.13 The impact of the number of items and the budget of uncertainty on the ratio of run
time (sec) and number of iterations for two instances of the multi-item newsvendor
problem. 46

4.1 The impact of the budget of uncertainty on worst-case and average cost of the
production planning problem and the SAA cost under a normal demand distribution. 57

vi

4.2 The impact of the budget of uncertainty on worst-case and average cost of the
production planning problem and the SAA cost under a uniform demand distribution. 58

4.3 First- and second-stage purchasing and production, as fractions of the total pur-
chasing and production, under worst-case demand outcome. 60

4.4 Sample averages of first- and second-stage purchasing and production, as fractions
of the total purchasing and production, under a normal demand distribution. . . . 61

4.5 Sample averages of first- and second-stage purchasing and production, as fractions
of the total purchasing and production, under a uniform demand distribution. . . . 62

4.6 The impact of the budget of uncertainty on the number of iterations and run time
(CPU seconds) for production planning problem. 65

5.1 Traditional distance to infeasibility for a conic linear feasibility problem. 71

5.2 Example of RC transformation under structure 0 transformation 83

5.3 Example of RC transformation under structure 1 transformation 87

5.4 Example of RC transformation under structure 2 transformation 90

5.5 Example of RC transformation under structure 3 transformation; here Q ∈ Rm×m . 94

vii

LIST OF TABLES

Table

3.1 Surplus and shortage penalties for item i for two instances of the newsvendor problem. 30

3.2 99.96% confidence intervals for the mean of the differences for Instances 1 and 2. . 33

3.3 Number of iterations and running time (sec) for Algorithms 2.15, 2.17, and 2.18 for
Γ = 0. 37

4.1 99.96% confidence intervals for the mean of the differences for the normal and
uniform demand samples. 56

5.1 Changes to the RC data under structure 0 transformation 82

5.2 Changes to the SOCP data under structure I perturbation 84

5.3 Changes to the RC data under structure 1 transformation; here α > 0 86

5.4 Changes to the SOCP data under structure II perturbation resulting from a struc-
ture 1 transformation on the RC data. 88

5.5 Changes to the RC data under structure 2 transformation 90

5.6 Changes to the SOCP data under structure II perturbation resulting from a struc-
ture 2 transformation on the RC data. 92

5.7 Changes to the RC data under structure 3 transformation 95

5.8 Changes to the SOCP data under structure II perturbation resulting from a struc-
ture 3 transformation on the RC data. 98

viii

CHAPTER I

Introduction

The unifying theme of this dissertation is robust optimization; the study of solv-

ing certain types of convex robust optimization problems and the study of bounds

on the distance to infeasibility for certain types of robust optimization problems.

Robust optimization has recently emerged as a new modeling paradigm designed

to address data uncertainty in mathematical programming problems by finding an

optimal solution for the worst-case instances of unknown, but bounded, parameters.

Parameters in practical problems are not known exactly for many reasons: measure-

ment errors, round-off computational errors, even forecasting errors, which creates

a need for a robust approach. The advantages of robust optimization are two-fold:

guaranteed feasible solutions against the considered data instances and not requiring

the exact knowledge of the underlying probability distribution, which are limitations

of chance-constraint and stochastic programming. Adjustable robust optimization,

an extension of robust optimization, aims to solve mathematical programming prob-

lems where the data is uncertain and sets of decisions can be made at different

points in time, thus producing solutions that are less conservative in nature than

those produced by robust optimization.

This dissertation has two main contributions: presenting a cutting-plane method

1

2

for solving convex adjustable robust optimization problems and providing prelimi-

nary results for determining the relationship between the conditioning of a robust

linear program under structured transformations and the conditioning of the equiva-

lent second-order cone program under structured perturbations. The proposed algo-

rithm is based on Kelley’s method and is discussed in two contexts: a general convex

optimization problem and a robust linear optimization problem with recourse under

right-hand side uncertainty. The proposed algorithm is then tested on two differ-

ent robust linear optimization problems with recourse: a newsvendor problem with

simple recourse and a production planning problem with general recourse, both un-

der right-hand side uncertainty. Computational results and analyses are provided.

Lastly, we provide bounds on the distance to infeasibility for a second-order cone

program that is equivalent to a robust counterpart under ellipsoidal uncertainty in

terms of quantities involving the data defining the ellipsoid in the robust counterpart.

In this chapter, we first provide an overview of recent developments in the robust

optimization literature and then discuss the contributions of this dissertation.

1.1 Literature Review

The concept of robust feasibility was pioneered in 1973 by Soyster [61], who pro-

posed a model that guarantees feasibility for all instances of the parameters within a

convex set, but the convex set is defined via set containment instead of the usual set

of convex inequalities. It wasn’t until the mid-1990s that robust feasibility saw a re-

newed interest. Ben-Tal and Nemirovski [7] hint at robust optimization, but hadn’t

yet coined the phrase, in a study of robust truss topology design and model the

problem as a semidefinite program. Ben-Tal and Nemirovski [8] performed a com-

prehensive analysis detailing the solvability of various convex robust optimization

3

problems for ellipsoidal uncertainty sets and intersections of ellipsoidal uncertainty

sets under the title robust convex optimization. Further work of Ben-Tal and Ne-

mirovski includes uncertain linear programs [9, 10], uncertain quadratic and conic

quadratic programs written in conjunction with Roos [12], and uncertain semidefi-

nite and conic quadratic programs [11]. Independently of Ben-Tal and Nemirovski’s

truss topology work, in [28] El Ghaoui and Lebret studied least-squares problems

with ellipsoidal uncertainty, which can be formulated as semidefinite programs, and

resulted in the further analysis of semidefinite programs by El Ghaoui et al. in [29].

Recently the robust optimization approach has been considered for portfolio selec-

tion problems (Goldfarb and Iyengar [41]), integer programming and network flows

(Bertsimas and Sim [14]), supply chain management (Bertsimas and Thiele [17]),

inventory theory (Berstimas and Thiele [18]), radiation treatment planning (Chu et

al. [26]), and many other applications.

Robust counterparts (RCs) are often semi-infinite optimization problems which

do not immediately lend themselves to efficient solution methods, such as interior-

point methods. One solution method is to express the robust counterpart as an

explicit optimization problem which can then be solved using efficient techniques;

e.g., Ben-Tal and Nemirovski [8] show that the robust counterpart of an uncertain

convex quadratically constrained quadratic program (QCQP) with ellipsoidal uncer-

tainty can be reformulated as a semidefinite program. In contrast, instead of focusing

on ellipsoidal uncertainty, Goldfarb and Iyengar [40] investigate which uncertainty

sets allow you to reformulate the convex QCQP as a second-order cone program and

give examples of when these uncertainty sets would arise naturally. The solution

method of reformulating a RC as an explicit optimization problem usually leads to

an increase in complexity, which could lead to intractability. For computationally in-

4

tractable RCs with specific uncertainty sets, computationally tractable approximate

RCs were given for conic quadratic problems (Ben-Tal et al. [12]), for semidefinite

problems (Ben-Tal and Nemirovski [11]), and for robust conic quadratic optimization

problems (Bertsimas and Sim [16]). In spirit of the above reformulation work, Aver-

bakh and Zhao [3] reformulate RCs for a general class of mathematical programming

problems where the uncertainty set is represented by a system of convex inequalities,

allowing their work to be applicable to a wider range of problems and more compli-

cated uncertainty sets. Bertsimas and Sim [15] study polyhedral uncertainty, which

does not increase the complexity of the problem at hand, and explicitly quantify the

trade-off between performance and conservatism (introducing what is now called a

budget of uncertainty) in terms of probabilistic bounds of constraint violation. A

highlight of their approach is that it can be easily extended to discrete optimization

(Bertsimas and Sim[14]). Bertsimas and Thiele [18] use the above mentioned Bertsi-

mas and Sim framework to address uncertainty on the underlying distributions in a

multi-period inventory problem, showcasing the potential of robust optimization for

dynamic decision-making in the presence of randomness.

Robust optimization has a modeling disadvantage: having to make every decision

before seeing the realization of the data, thus producing overly conservative solutions.

There are many optimization problems in which only a subset of the decisions must be

made before the realization of the data, but the remaining decisions can be made after

observing the realized data. Multi-period production planning problems represent a

class of problems for which this separation of variables into groups of decisions to be

made at different points in time occurs naturally. The case when groups of decisions

can be made at two points in time can be modeled via a two-stage formulation

called the adjustable robust counterpart (ARC) where the second-stage decisions are

5

referred to as the recourse action. ARCs are very similar to two-stage stochastic

programs, but the solution methods differ as stochastic programming requires some

knowledge of the underlying probability distribution while ARCs require a known

uncertainty set.

The greater flexibility of the ARC results in an additional increase in complex-

ity on top of that of the RC, and frequently leads to computationally intractable

problems. It has been shown by Ben-Tal et al. [6] that the ARC of an LP is compu-

tationally tractable, in fact equivalent to a larger LP, if the uncertainty set is given as

a convex hull of a finite number of points and the recourse coefficient matrix is fixed.

When either of these conditions fails, the ARC can be computationally intractable,

which leads them to restrict the second-stage variables to affine functions of the data.

In [1], Atamtürk and Zhang model a network flow and design under uncertain de-

mand using a two-stage optimization model that does not involve affinely adjustable

decision variables. Ordóñez and Zhao in [51] present a tractable ARC for transporta-

tion networks for a multi-commodity flow problem with a single source and sink per

commodity and uncertain demand and travel time represented by bounded convex

sets. When the underlying problem is nonlinear, Takeda et al. in [62] show that for

problems with polytopic uncertainty, quasi-convexity of the optimal value function

of certain subproblems involving maximization over the uncertainty set is sufficient

for reducing the ARC to an explicit optimization problem.

Another solution method for solving ARCs takes an iterative approach and looks

to use cutting-plane algorithms. Bienstock and Özbay [21] and Bienstock [20] use

Bender’s decomposition (delayed-constraint generation) to solve robust optimization

problems for specific applications: determining a robust basestock level under uncer-

tain demands and robust portfolio optimization with uncertain returns, respectively.

6

Their approach alternates between solving a restricted master problem that includes

a limited subset of possible data realizations to determine an approximate solution

and an adversarial problem which finds the worst-case data realization for the ap-

proximate solution found. The newly identified data instance is then added to the

restricted master problem and the process is repeated. While writing (Thiele et al.)

[63], which contains, but is not limited to, work found in Chapters II, III, and IV

of this dissertation, we became aware of the recent work by Mutapcic and Boyd

[47], which applies cutting-plane methods to convex robust optimization problems.

The overall idea is the same: applying cutting-plane methods, in particular Kelley’s

method, to convex robust optimization problems. However, convex adjustable robust

optimization problems (or robust problems with recourse) considered in Chapters II,

III, and IV present additional challenges (specifically in solving the adversarial prob-

lem) and a significant portion of the work is devoted to the discussion of solution

methods of adversarial problems arising in problems with recourse under right-hand

side uncertainty.

1.2 Contributions

We address right-hand side uncertainty in linear programming problems with

recourse by modeling random variables as uncertain parameters in a polyhedral un-

certainty set. The level of conservatism of the optimal solution is flexibly adjusted

by setting a parameter called the “budget of uncertainty” to an appropriate value.

A cutting-plane solution method, based on Kelley’s method, is presented for solving

adjustable robust linear programs. This method is similar to, but less computation-

ally demanding than, Benders’ decomposition. We provide techniques for finding

the worst-case realizations of the uncertain parameters within the polyhedral uncer-

7

tainty set for problems with simple and general recourse and provide computational

experiments and analysis for both. Lastly, we propose several data transformations

for a robust counterpart with ellipsoidal uncertainty and then bound the distance to

infeasibility of the equivalent second-order cone program by quantities involving the

data defining the ellipsoid.

The structure of this dissertation is as follows. Chapter II discusses sufficient

conditions for convexity of the general ARC, cutting-plane algorithms for a general

convex program, and the details and difficulties of computing subgradients and ob-

jective function values. Chapter III contains an analysis of robust linear programs

with simple recourse, computational results for solving a newsvendor problem with

simple recourse with Kelley’s method, and experimental results that motivated the

choice of Kelley’s method over other cutting-plane algorithms. Chapter IV presents

an analysis for robust linear programs with general recourse and computational re-

sults for solving a production planning problem with general recourse with Kelley’s

method. Chapter V proposes several transformations to the robust counterpart data,

provides a definition for distance to infeasibility for each type of transformation, and

then bounds the distance to infeasibility of the equivalent second-order cone pro-

gram by quantities involving the data defining the ellipsoid. Chapter VI will provide

a conclusion and discuss directions for future work.

CHAPTER II

Cutting-Plane Algorithms for Solving Adjustable Robust
Optimization Problems

2.1 Problem Overview

2.1.1 Optimization With Recourse

The focus of Chapters II, III, and IV is on two-stage linear optimization with

right-hand side uncertainty 1, which was first described by Dantzig in [27]. The

deterministic problem can be formulated as:

(2.1)

min cTx + dTy

s.t. A x + B y = b,

x,y ≥ 0,

with the following notations:

x : the first-stage decision variables,

y : the second-stage decision variables,

c : the first-stage costs,

d : the second-stage costs,

A : the first-stage coefficient matrix,

B : the second-stage coefficient matrix,

b : the requirement vector.

1Most of the material discussed in this chapter can also be found in Thiele et al. [63].

8

9

In many applications, the requirement vector is random and the decision-maker

implements the first-stage (“here-and-now”) variables without knowing the actual

requirements, but chooses the second-stage (“wait-and-see”) variables only after the

uncertainty has been revealed. This has traditionally been modeled using stochas-

tic programming techniques, i.e., by assuming that the requirements obey a known

probability distribution and minimizing the expected cost of the problem. In math-

ematical terms, we define the recourse function, once the first-stage decisions have

been implemented and the realization of the uncertainty is known, as:

(2.2)

Q(x,b) = min dTy

s.t. B y = b−A x,

y ≥ 0,

and the stochastic counterpart of problem (2.1) can be formulated as a nonlinear

problem:

(2.3)
min cTx + Eb[Q(x,b)]

s.t. x ≥ 0.

If the uncertainty is discrete, consisting of Ω possible requirement vectors each occur-

ring with probability πω, ω = 1, . . . ,Ω, problem (2.3) becomes a linear programming

problem:

(2.4)

min cTx +
Ω∑
ω=1

πω · dTyω

s.t. A x + B yω = bω, ∀ω,

x, yω ≥ 0, ∀ω.

However, a realistic description of the uncertainty generally requires a high number

of scenarios. Therefore, the deterministic equivalent, problem (2.4), is often a large-

scale problem, which necessitates the use of special-structure algorithms such as

10

decomposition methods or Monte-Carlo simulations (see Birge and Louveaux [22]

and Kall and Wallace [42] for an introduction to these techniques). Thus, problem

(2.4) can be considerably harder to solve than problem (2.1), although both are

linear. The difficulty in estimating probability distributions accurately also hinders

the practical implementation of these techniques.

2.1.2 The Robust Approach

In contrast with the stochastic programming framework, robust optimization

models random variables using uncertainty sets rather than probability distribu-

tions. The objective is then to minimize the worst-case cost in that set. Specifically,

let B be the uncertainty set of the requirement vector having known mean b. The

robust problem with recourse is formulated as:

(2.5)
min cTx + max

b∈B
Q(x,b)

s.t. x ∈ S.

We assume relatively complete recourse (problem (2.2) is feasible for all x ∈ S and

b ∈ B). Moreover, we assume for ease of presentation that Q(x,b) > −∞ for all

x ∈ S and b ∈ B. By strong duality, we can write:

(2.6)
Q(x,b) = max

p
(b−Ax)Tp

s.t. BTp ≤ d.

Thus, problem (2.5) is equivalent to:

(2.7) min
x∈S

[
cTx + max

b∈B,p:BT p≤d
(b−Ax)Tp

]
.

If B = {b}, problem (2.5) is the “nominal” problem. As B expands around

b, the decision-maker protects the system against more realizations of the random

variables and the solution becomes more robust, but also more conservative. If

11

the decision-maker does not take uncertainty into account, he might incur very large

costs once the uncertainty has been revealed. On the other hand, if he includes every

possible outcome in his model, he will protect the system against realizations that

would indeed be detrimental to his profit, but are also very unlikely to happen. The

question of choosing uncertainty sets that yield a good trade-off between performance

and conservatism is central to robust optimization.

Following the approach developed by Bertsimas and Sim [14, 15] and Bertsimas

and Thiele [18], we focus on polyhedral uncertainty sets and model the random

variable bi, i = 1, . . . ,m, as a parameter of known mean bi and belonging to the

interval [bi − b̂i, bi + b̂i]. Equivalently:

bi = bi + b̂i zi, |zi| ≤ 1, ∀i.

To avoid overprotecting the system, we impose the constraint:

m∑
i=1

|zi| ≤ Γ,

which bounds the total scaled deviation of the parameters from their mean. Such

a constraint was first proposed by Bertsimas and Sim [14] in the context of linear

programming with uncertain coefficients. The parameter Γ, which we assume to be

integer, is called the budget of uncertainty. Γ = 0 yields the nominal problem and,

hence, does not incorporate uncertainty at all, while Γ = m corresponds to interval-

based uncertainty sets and leads to the most conservative case. In summary, we will

consider the following uncertainty set:

(2.8) B =
{

b : bi = bi + b̂i zi, i = 1, . . . ,m, z ∈ Z
}
,

with:

(2.9) Z =

{
z :

m∑
i=1

|zi| ≤ Γ, |zi| ≤ 1, i = 1, . . . ,m

}
.

12

In chapters II, III, and IV, we investigate how problem (2.5) can be solved efficiently

(practically and theoretically) for the polyhedral set defined in equations (2.8)–(2.9),

with an emphasis on the link with deterministic linear models and how the robust

approach can help us gain insights into the impact of the uncertainty on the optimal

solution.

2.2 Convex Adjustable Robust Optimization

As we propose to solve adjustable robust optimization problems using cutting-

plane methods, we must have convexity of the adjustable robust problem. In this

section, we prove that a general adjustable robust optimization problem, under mild

assumptions, is a convex programming problem. Consider the following two-stage

robust optimization problem:

(2.10) min
x∈S

f(x) + max
b∈B

Q(x,b)

where

(2.11)
Q(x,b) = min

y∈Y
h(y)

s.t. H(x,y,b) ≤ 0.

The problem maxb∈BQ(x,b) is often referred to as the adversarial problem and the

function Q(x), where Q(x) = maxb∈BQ(x,b), as the recourse function. The follow-

ing list identifies the variables, parameters, and feasible decisions given in problems

(2.10)–(2.11):

• x, y are the first-stage and second-stage decisions, respectively,

• b is the vector of data,

• S, Y are the sets of all possible first-stage and second-stage decisions, respec-

tively, and

13

• B is the uncertainty set.

We make a mild feasibility assumption that for any first-stage decision x ∈ S and

any data instance b ∈ B, there exists y ∈ Y such that H(x,y,b) ≤ 0.

Proposition 2.12. If the following conditions hold:

A1 S is a nonempty convex set,

A2 f(x) is convex in x,

A3 Y is a nonempty convex set,

A4 h(y) is convex in y,

A5 For all i = 1, . . . , p, Hi(x,y,b) is convex in (x,y), ∀b ∈ B,

then problem (2.10) is a convex optimization problem.

Proof. First, note that for any x1,x2 ∈ S and λ ∈ [0, 1], we can take the convex

combination λx1 +(1−λ)x2 due to A1. For problem (2.10) to be a convex program-

ming problem we need the objective function to be convex in x. We know that f(x)

is convex due to A2, so we have left to show that maxb∈BQ(x,b) is convex in x.

Let b be a fixed point such that b ∈ B. Given that we can find a feasible y for

any fixed b and first-stage decision x, we have the following: for any x1,x2 ∈ S,

Q(xi,b) = h(yi) for i = 1, 2. Using the above we get the following.

Q(λx1 + (1− λ)x2,b) ≤ h(λy1 + (1− λ)y2)

≤ λh(y1) + (1− λ)h(y2)

= λQ(x1,b) + (1− λ)Q(x2,b)

In the first inequality, we use conditions A3 and A5, which give us convexity of the

feasible region, i.e., we can write λy1 + (1− λ)y2 as a convex combination of y1 and

14

y2. The second inequality stems from condition A4, which gives us convexity in y

of the inner minimization objective function h(y). Conditions A3-A5 are sufficient

to ensure that Q(x,b) is convex in x, ∀b ∈ B and thus maxb∈BQ(x,b) is convex in

x.

Let f(x) = cTx, h(y) = dTy, Y = {y ≥ 0}, and H(x,y,b) = Ax−By − b (an

equality constraint can be written as two inequality constraints and thus all equality

constraints must be linear in (x,y) for any b ∈ B to maintain convexity of H(x,y,b)

in (x,y) for any b ∈ B). Now that we have written problem (2.5) in the form of

problem (2.10), we can apply Proposition 2.12 with the result that (2.5) is a convex

programming problem and can be solved using cutting-plane methods.

2.3 Cutting-Plane Methods for Solving Convex Programming Problems

In this section, we describe three cutting-plane algorithms for solving problem

(2.5): the first based on Kelley’s algorithm, originally proposed in [43], secondly

an analytic center cutting-plane method (ACCPM), and lastly a subgradient algo-

rithm. We will describe in detail the algorithm based on Kelley’s method, and only

briefly describe the ACCPM and subgradient algorithm, because the modified Kel-

ley’s method performed exceedingly well and was far superior in solving two-stage

linear programs with recourse than the ACCPM and the subgradient algorithm.

2.3.1 Kelley’s Algorithm

Kelley’s algorithm, as presented in [43], is designed to minimize a linear objective

function over a compact convex feasible region that is complex (possibly described

by an infinite number of constraints) or given only by a separation oracle, i.e., a sub-

routine that given a point in variable space, either correctly asserts that the point is

feasible or returns the normal vector and intercept of some hyperplane that strictly

15

separates the point from the feasible region. At each iteration, the algorithm main-

tains a polyhedral outer approximation of the feasible region. The objective function

is minimized over the approximate feasible region, and if the arg min is infeasible,

adds a linear inequality (a cut obtained from the separating hyperplane) to the ap-

proximate feasible region, thus improving the approximation. For problems with

feasible regions described by a (possibly infinite) family of differentiable inequality

constraints, cuts can be generated using gradients of the violated constraints.

Problem (2.5) has a simple feasible region S, but the objective function min cTx+

maxb∈BQ(x,b) is complex. Thus, in the implementation we are proposing, we focus

on maintaining a piece-wise linear lower approximation of the objective function.

The approximation is improved by adding cuts derived using subgradients of the

objective function. The next section will provide a general outline of the version of

Kelley’s method we will be proposing, which will be further specialized for robust

linear optimization with recourse.

Consider the following optimization problem:

(2.13)
min

x
f(x)

s.t. x ∈ S

where f(x) is a convex function in x, and S is a closed convex set. We assume

that problem (2.13) has a finite, attainable optimal value. To implement all three

algorithms to be discussed, we need to be able, given a value x̃, to compute the value

f(x̃), as well as a subgradient g of f(x) at x̃ (denoted g ∈ ∂f(x̃)), i.e., a vector g

such that the following subgradient inequality is satisfied:

(2.14) f(x) ≥ f(x̃) + gT (x− x̃) ∀x.

In addition, we will maintain a lower bound L and an upper bound U on the optimal

16

objective function value.

Algorithm 2.15. (Kelley’s Algorithm for problem (2.13))

Initialization: Let f0(x) be an initial piece-wise linear lower approximation of f(x).

Set L = −∞ and U =∞; t = 0.

Iteration t: Given ft(x), L, and U ,

Step 1: Solve minx ft(x). Let xt be an optimal solution and L = ft(xt).

Step 2: Compute f(xt). Let U = min{U, f(xt)}. If U −L is sufficiently small,

then stop and return xt as the approximate solution to (2.13).

Step 3: Let gt be a subgradient of f(x) at xt. Define

ft+1(x) = max{ft(x), f(xt) + gTt (x− xt)}.

Step 4: Set t← t+ 1.

Note that the cut added to the piecewise linear lower approximation at iteration

t is a supporting hyperplane to the epigraph of function f(x) and it separates the

point (xt, ft(xt)) from the epigraph.

2.3.2 Analytic Center Cutting Plane Method

The analytic center cutting-plane method (ACCPM) is an example of an interior-

point cutting-plane method, which has been proven effective in terms of both the-

oretical complexity [2, 39, 46, 48] and practical performance [4, 45, 46], and other

references therein, on a variety of problems.

At the beginning of a typical iteration of the ACCPM, we have available a set P

known to contain the feasible region and an upper bound U on the optimal objective

function value. The algorithm proceeds by finding the analytic center x of the set

17

P ∩ {x | f(x) ≤ U} and calling the separation oracle for x. If x is feasible, then the

upper bound is reset to be U := f(x) (since the analytic center cannot lie on the

boundary of the region, f(x) ≤ U). Otherwise, the valid inequality obtained from

the separating hyperplane provided by the oracle is added to the description of the

polyhedron P . The iteration is then repeated until appropriate termination criteria

are satisfied. Note that to implement the ACCPM, the set P ∩{x | f(x) ≤ U} must

be such that its analytic center can be computed efficiently.

Define S in problem (2.13) as S = {x | fi(x) ≤ 0, i = 1, . . . , m̃}, where f1, . . . , fm̃

are convex functions in x leading us to the following general convex programming

problem.

(2.16)
min

x
f(x)

s.t. fi(x) ≤ 0 i = 1, . . . , m̃

Algorithm 2.17. (ACCPM for problem (2.16))

Initialization: Let P0 be some polyhedron that is known to contain S:

S ⊆ P0 = {x | li(x) ≤ 0, i = 1, . . . , L̃},

where li(x) are linear functions in x. Let L = −∞ and U =∞.

Iteration t: Given Pt, L, and U ,

Step 1: Compute xt as the analytic center of Pt,

xt = arg min
x

{
−

L̃∑
i=1

log(−li(x))−
t−1∑
i=1

log(−f̃i(x))
}
,

where f̃i(x) are previously added feasibility and/or optimality cuts. The

lower bound L must be computed by a separate subroutine, implemented

here. Let L be the output of this subroutine evaluated at the analytic center

xt.

18

Step 2: Check feasibility of xt. If xt violates some constraint fi(x), i.e. fi(xt) >

0 for some i, then add the following feasibility cut:

Pt+1 = Pt ∩ {x | f̃t = fi(xt) + gTt (x− xt) ≤ 0},

where gt is a subgradient of fi(x) evaluated at xt. Skip to Step 5. Else go

to Step 3.

Step 3: Compute f(xt). Let U = min{U, f(xt)}. If U −L is sufficiently small,

then stop and return xt as the approximate solution.

Step 4: If xt is feasible, then add the following optimality cut:

Pt+1 = Pt ∩ {x | f̃t = gTt (x− xt) ≤ 0},

where gt is a subgradient of f(x) evaluated at xt.

Step 5: Set t← t+ 1.

To prove that the above feasibility cut only cuts off points that are infeasible, and

not points that are feasible, we want to show that given a feasible x and an infeasible

xt, fi(xt)+gTt (x−xt) ≤ 0. We know that for any feasible x, fi(x) ≤ 0. We also have

that fi(x) ≥ fi(xt) + gTt (x − xt) by the gradient inequality since fi(x) is a convex

function. This gives us the following:

0 ≥ fi(x) ≥ fi(xt) + gTt (x− xt)

and thus 0 ≥ fi(xt) + gTt (x− xt).

To prove that an optimality cut only cuts off points that have worse objective

function values than xt and not points that have equal or better objective function

values than xt, we want to show that given a feasible x, gTt (x−xt) ≤ 0. Again, since

f(x) is a convex function, the gradient inequality will hold: f(x) ≥ f(xt)+gTt (x−xt).

19

We can rewrite this as f(x)− f(xt) ≥ gTt (x− xt). Additionally, since we are trying

to cut off points with worse objective function values than xt, for all feasible x, the

following will hold: f(x) − f(xt) ≤ 0. Note that the problem is a minimization

problem so a better objective function value in this case means a smaller value. This

gives us the following:

gTt (x− xt) ≤ f(x)− f(xt) ≤ 0

and thus gTt (x− xt) ≤ 0.

2.3.3 Subgradient Algorithm

The subgradient algorithm is a steepest-descent-like algorithm, which can be used

to solve convex optimization problems with non-differentiable objective functions.

When the objective function is differentiable, then the subgradient algorithm for un-

constrained optimization will use the same direction as the steepest-descent method.

(See Bazaraa et al. [5] Section 8.9 for a discussion of the subgradient algorithm pre-

sented here along with some of the implementation difficulties one must consider.)

Consider the standard convex program, problem (2.13). At the beginning of

a typical iteration of the subgradient algorithm, we have a point xt ∈ S. The

algorithm proceeds to find another point xt+1 ∈ S such that f(xt+1) < f(xt) and

does so by computing a step size µt, finding a subgradient gt of f(x) evaluated at

xt, and starting from xt, taking a step of length µt in the negative direction of gt.

Given that problem (2.13) is a constrained optimization problem, we must make

sure to maintain feasibility in each iteration of the subgradient algorithm. If once

you arrive at your new point xt+1 and xt+1 6∈ S, then you can either project xt+1

onto S or backtrack in the direction of the subgradient (shrinking the step size µ

until you reach the feasible region). In our implementation, we used backtracking to

20

maintain feasibility. The iteration is repeated until appropriate termination criteria

are satisfied.

Algorithm 2.18. (Subgradient algorithm for problem (2.13))

Initialization: Let x0 be the starting point and µ0 be the initial starting step size.

Iteration t: Given xt and µt,

Step 1: Find gt evaluated at xt. If gt = 0, then stop.

Step 2: x̄t+1 = xt − µtgt.

Step 3: If x̄t+1 6∈ S, backtrack (shrink µt) until xt − µtgt ∈ S. If x̄t+1 ∈ S,

then xt+1 = x̄t+1.

Step 4: Compute f(xt+1). Let U = min{U, f(xt+1)}.

Step 5: Set t← t+ 1.

While the subgradient algorithm provides an overall framework, what remains to

be specified is the step size in each iteration. The step size in our implementation can

be found in Wolsey [66] Theorem 10.4(c), which has guaranteed convergence, and

involves a difference of bounds (upper bound minus lower bound) over the squared

norm of the subgradient evaluated at the current iterate. The lower bound is obtained

by solving the approximate problem found in Step 1 of Algorithm 2.15 and using the

cuts generated by the subgradient algorithm.

2.4 Discussion of Difficulties in Applying Cutting-Plane Methods to Ad-
justable Robust Problems

To remind the reader, the problem we wish to solve is problem (2.7), presented

again below:

min
x∈S

[
cTx + max

b∈B,p:BT p≤d
(b−Ax)Tp

]
.

21

To compute cTx+maxb∈BQ(x,b) (the true objective function value at a given point),

given first-stage decision xt, we need to be able to solve the adversarial problem:

max
b∈B

Q(xt,b) = max
b∈B

min
y∈Y
{dTy | By = b−Axt}

= max
b,p
{bTp− xTt ATp | BTp ≤ d,b ∈ B}

Note that the adversarial problem, when viewed through the primal representation,

is a max-min formulation and thus a saddle-point problem, while the adversarial

problem, when viewed through the dual representation, is a non-convex quadratic

optimization problem. Additionally, since Q(x,b) is convex in b for any x, it requires

maximization of a convex function. In general, the adversarial problem is a difficult

problem to solve; however, there are some special cases for which we can solve the

adversarial problem fairly easily, which will be discussed in the following subsection.

How we solve the adversarial problem for program (2.7) will be discussed in detail

for simple and general recourse in Chapters III and IV.

2.4.1 When the Adversarial Problem is Easily Solved

If B is a finite set of points {b1, . . . ,bΩ} or a convex set expressed as the convex

hull of a known list of extreme points {b1, . . . ,bΩ}, then the maximum of Q(xt,b)

over B is attained at one of the points bω, ω = 1, . . . ,Ω, which results in the following:

max
b∈B

Q(xt,b) = max
ω=1,...,Ω

Q(xt,bω) = max
ω=1,...,Ω

max
p
{(bω −Axt)

Tp | BTp ≤ d}.

If Ω is of reasonable size and the polyhedron {p | BTp ≤ d} is easy to optimize

over, the inner maximization in the last expression can be done easily for each bω,

and then the maximum over ω can be taken to obtain the solution to the adversarial

problem.

Another instance when the adversarial problem can be solved easily is when the

polyhedral set {p | BTp ≤ d} is bounded and its extreme points are a known list

22

given as {p1, . . . ,p∆} with ∆ being of reasonable size. Then we can rewrite the

adversarial problem as follows:

max
b∈B

max
δ=1,...,∆

(b−AxTt)pδ = max
δ=1,...,∆

max
b∈B

(b−Axt)
Tpδ

= max
δ=1,...,∆

{(
max
b∈B

bTpδ

)
− xTt ATpδ

}
.

If the situation is such that a linear function can be easily optimized over B, then

the inner maximization in the last expression can be done easily for each pδ and then

the maximum over δ can be taken to obtain the solution to the adversarial problem.

If both sets B and {p | BTp ≤ d} can be described by a list of their extreme points

then we can solve the adversarial problem as follows:

max
b∈B

Q(xt,b) = max
ω=1,...,Ω

max
δ=1,...,∆

(bω −Axt)
Tpδ.

2.4.2 Form of Subgradient for Adding Cuts

We give the form for the subgradient of problem (2.5) and then discuss how

this subgradient fits into Algorithms 2.15, 2.17, and 2.18. Let f(x) = cTx +

maxb∈BQ(x,b).

Lemma 2.19. Let b̄ ∈ arg maxb∈BQ(x̄,b). Furthermore, let p̄ be an optimal solu-

tion of (2.6) with (x,b) = (x̄, b̄). Then (cT −AT p̄) ∈ ∂f(x̄).

Proof. For an arbitrary x,

f(x) = cTx +Q(x) ≥ cTx +Q(x, b̄)

≥ cTx + (b̄−Ax)T p̄

= cT x̄ +Q(x̄, b̄) + (c−AT p̄)T (x− x̄)

= f(x̄) + (c−AT p̄)T (x− x̄),

proving the claim.

23

Using the result of Lemma 2.19, we can now discuss how the subgradient fits into

each algorithm. Step 3 in Algorithm 2.15 will take the following form:

ft+1(x) = max{ft(x), f(xt) + (c−ATp)T (x− xt)}.

Step 2 in Algorithm 2.17 is dependent upon the form of the inequalities describing

S and thus cannot be characterized any further. However, Step 4 in Algorithm 2.17

will take the following form:

Pt+1 = Pt ∩ {x | f̃t = (c−ATp)T (x− xt) ≤ 0}.

Lastly, Step 1 of Algorithm 2.18 will find a subgradient of the form (c−ATp).

2.5 Kelley’s Algorithm for Robust Linear Programming with Recourse

As mentioned earlier, we will focus on Kelley’s algorithm as the solution method

for solving robust linear programming problems with recourse and will now specify

algorithm 2.15 (Kelley’s algorithm) for problem (2.7).

Algorithm 2.20. (Kelley’s Algorithm for Robust Linear Program with Recourse)

Initialization: Let Q0(x) be the initial piecewise linear lower approximation of Q(x).

Set L = −∞ and U =∞; t = 0.

Iteration t: Given L, U , and Qt(x),

Step 1: Solve min
x∈S

cTx +Qt(x):

(2.21)

min
x,α

cTx + α

s.t. α + pTl Ax ≥ bTl pl, l = 1, . . . , t− 1

α ≥ Q0(x)

x ∈ S.

Let (xt, αt) be an optimal solution and let L = cTxt +Qt(xt).

24

Step 2: Compute Q(xt), let bt and pt be the corresponding worst-case demand

and dual recourse vector, respectively. Let U = min{U, cTxt + Q(xt)}. If

U − L is sufficiently small, stop and return xt as an approximate solution.

Step 3: Define

Qt+1(x) = max{Q(xt),p
T
t (bt −Ax)}.

Step 4: Set t← t+ 1.

Observe that, for a given x, the function maxb∈B(b−Ax)Tp is convex in p, and

therefore problem (2.5) can be rewritten as the following master problem:

(2.22)

min
x,α

cTx + α

s.t. α ≥ max
b∈B

(b−Ax)Tpk, k = 1, . . . , K

x ∈ S,

where pk, k = 1, . . . , K are the extreme points of {p | BTp ≤ d}. Algorithm 2.20

can be seen as a variant of delayed constraint generation for problem (2.22), with

relaxed master problem (2.21), and convergence of the algorithm follows from this

observation. Bertsimas and Tsitsiklis provide an introduction to these techniques

in [19]. (The reader is also referred to Birge and Louveaux [22] and Kall and Wal-

lace [42] for an extensive treatment of these methods in the context of stochastic

optimization.)

Application of the delayed constraint generation technique to the stochastic pro-

gramming problem (2.4) is referred to as Benders’ decomposition [13]. The corre-

25

sponding master problem can be written as:

min cTx +
Ω∑
ω=1

πωZω

s.t. Zω ≥ pTk (bω −Ax) ∀k, ω

x ≥ 0,

where ω = 1, . . . ,Ω are the scenarios. Here at each iteration, a relaxed master prob-

lem is solved to obtain a first-stage solution x̃ and the corresponding value of the

recourse function Z̃ω when scenario ω is realized. To check if this solution is opti-

mal for the full master problem or to apply a cut to the expected recourse function∑Ω
ω=1 πωQ(x,bω), one needs to solve the recourse problem (2.4) for each scenario

ω = 1, . . . ,Ω. While these problems are similar to each other and each can be

solved efficiently by applying, for instance, the dual simplex method, the large num-

ber of subproblems is a drawback in accurately solving the stochastic programming

counterpart of problem (2.1) in many real-life settings. In contrast, Algorithm 2.20,

which applies a similar technique to the adjustable robust counterpart of problem

(2.1), involves solving only one subproblem per iteration. This plays a key role in

the tractability of the robust approach in all settings where the relevant subproblem

can be identified efficiently, which will be discussed in Chapters III and IV.

CHAPTER III

Analysis of Robust Linear Optimization Problems with
Simple Recourse and Computational Experiments

In this chapter, we present a variety of experimental results when using Kelley’s

Method to solve a newsvendor problem with simple recourse including an analysis

of problem solutions and performance results of Kelley’s Method. 1

3.1 Analysis of Robust Linear Programs with Simple Recourse

In linear programs with simple recourse, the decision-maker is able to address

excess or shortage for each of the requirements independently. For instance, he

might pay a unit shortage penalty si for falling short of the random target bi or a

unit holding cost hi for exceeding the random target bi, for each i. We describe an

application of this setting to multi-item newsvendor problems in Section 3.2.

The deterministic model can be formulated as:

min cTx + sTy− + hTy+

s.t. Ax + y− − y+ = b,

x ∈ S, y−, y+ ≥ 0,

1Some of the analysis and experimental results presented in this chapter can also be found in Thiele et al. [63].

26

27

and the recourse function defined in equation 2.2 becomes:

(3.1)

Q(x,b) = min sTy− + hTy+

s.t. y− − y+ = b−Ax,

y−, y+ ≥ 0,

We will require that s + h ≥ 0 to ensure finiteness of the recourse function. It is

straightforward to see that Q(x,b) is available in closed form:

Q(x,b) =
m∑
i=1

[
si ·max{0, bi − (Ax)i}+ hi ·max{0, (Ax)i − bi}

]
.

However, we will focus on problem 3.1 to build a tractable robust model. We obtain

an equivalent characterization of the recourse function by invoking strong duality:

(3.2)
Q(x,b) = max (b−Ax)Tp

s.t. −h ≤ p ≤ s.

Therefore, in this section we will be developing efficient ways to solve:

(3.3) min
x∈S

[
cTx + max

b∈B, −h≤p≤s
(b−Ax)Tp

]
,

where B has been defined in equations 2.8–2.9.

3.1.1 Computing Q(x) for Robust Linear Programs with Simple Recourse

The following theorem provides a simple method for computing Q(x) in problems

with simple recourse. In the proof, we refer to the set

(3.4) Z ′ =
{

z′ |
m∑
i=1

z′i ≤ Γ, 0 ≤ z′i ≤ 1, i = 1, . . . ,m
}
.

Theorem 3.5 (Calculating Q(x)). Given x, define for i = 1, . . . ,m,

(3.6)
∆i = max

{
(bi + b̂i − (Ax)i) si, ((Ax)i − bi + b̂i) hi

}
−max

{
(bi − (Ax)i) si, ((Ax)i − bi) hi

}
.

28

Let I be the set of indices corresponding to the Γ-largest ∆i. Then Q(x) = max
b∈B

Q(x,b)

verifies:

(3.7)

Q(x) =
∑
i∈I

max
{

(bi + b̂i − (Ax)i) si, ((Ax)i − bi + b̂i) hi

}
+
∑
i/∈I

max
{

(bi − (Ax)i) si, ((Ax)i − bi) hi
}
.

Proof. We note that for any first-stage decision vector x:

Q(x) = max
b∈B

max
−h≤p≤s

(b−Ax)Tp,(3.8)

= max
b∈B

m∑
i=1

max {(bi − (Ax)i) si, ((Ax)i − bi) hi} ,(3.9)

=
m∑
i=1

max
{

(bi − (Ax)i) si, ((Ax)i − bi) hi
}

+ max
z′∈Z′

m∑
i=1

∆i z
′
i,(3.10)

where Z ′ is defined in equation (3.4). The last equality is obtained by observing that

the expression in (3.9) is convex in b, hence the worst-case value of b that attains

the maximum can be found at an extreme point of B. The extreme points of B can

be enumerated by letting Γ components of b deviate up or down (to their highest

or lowest values), while keeping the remaining components at their nominal values.

Whether the worst case is reached when bi deviates up or down (to its highest or

lowest value) is captured by the value of ∆i. It then follows that max
z′∈Z′

m∑
i=1

∆i z
′
i is

equal to
∑

i∈I ∆i.

Corollary 3.11. Given x, the corresponding worst-case demand b can be computed

as follows: for i = 1, . . . ,m

(3.12) bi =



b̄i + b̂i if i ∈ I and (b̄i + b̂i − (Ax)i) si ≥ ((Ax)i − b̄i + b̂i) hi

b̄i − b̂i if i ∈ I and (b̄i + b̂i − (Ax)i) si < ((Ax)i − b̄i + b̂i) hi

b̄i if i 6∈ I.

29

The corresponding dual recourse vector p can be determined as follows: for i =

1, . . . ,m

(3.13) pi =



si if i ∈ I and (b̄i + b̂i − (Ax)i) si ≥ ((Ax)i − b̄i + b̂i) hi

−hi if i ∈ I and (b̄i + b̂i − (Ax)i) si < ((Ax)i − b̄i + b̂i) hi

si if i 6∈ I and (b̄i − (Ax)i) si ≥ (Ax)i − b̄i) hi

−hi if i 6∈ I and (b̄i − (Ax)i) si < ((Ax)i − b̄i) hi.

The subgradient of Q(x) can now be computed as in Lemma 2.19, allowing the

implementation of Kelley’s method, Algorithm 2.20.

3.2 Computational Results: Newsvendor Problem

In this section, we test the robust methodology on a multi-item newsvendor prob-

lem. The decision-maker orders perishable items subject to a capacity constraint,

faces uncertain demand, and incurs surplus and shortage costs for each item at the

end of the time period. His goal is to minimize total cost. We use the following

notation:

n : the number of items,

ci : the unit ordering cost of item i,

hi : the unit holding cost of item i,

si : the unit shortage cost of item i,

bi : the demand for item i,

A : the purchasing budget.

30

The deterministic problem can be formulated as:

min cTx +
n∑
i=1

max {si (bi − xi), hi (xi − bi)}

s.t. cTx ≤ A,

x ≥ 0

or equivalently as:

(3.14)

min cTx + sTy− + hTy+

s.t. x + y− − y+ = b,

cTx ≤ A,

x ≥ 0.

Problem (3.14) is an example of a linear programming problem with simple re-

course and therefore can be analyzed using the techniques described in Sections

2.3.1. We consider a case with n = 50 items and budget A = 5000, with ordering

cost ci = 1, nominal demand bi = 8 + 2 i, and maximum deviation of the demand

from its nominal value b̂i = 0.5 · bi, for each i = 1, . . . , 50. We consider two differ-

ent structures for the surplus and shortage penalties, resulting in two instances of

problem (3.14). In the first instance, items with larger nominal demand (and thus

wider demand variability by the above definitions of b and b̂) have larger surplus

and shortage penalties than items with small nominal demand. In the second in-

stance, surplus and shortage penalties follow the opposite pattern. In particular, the

penalties for item i are shown in the table below:

Shortage si Holding hi

Instance 1 2i i
Instance 2 2(n+ 1− i) (n+ 1− i)

Table 3.1: Surplus and shortage penalties for item i for two instances of the newsvendor problem.

We applied Algorithm 2.15 to problem (3.14) using AMPL/CPLEX v.10.0. Since

the recourse value in this problem is always nonnegative, we set Q0(x) ≡ 0 in the

31

initialization step. Step 2 of the algorithm was carried out as discussed in Theorem

3.5 and Corollary 4.6. Finally, we terminated the algorithm when L = U , solving

the robust problem to optimality.

3.2.1 Analysis of Problem Solutions

To understand the effect of the budget of uncertainty Γ utilized by the decision-

maker in the selection of the uncertainty set B, we solved both instances of the

newsvendor problem for values of Γ ranging from 0 to 50. Figures 3.1–3.4 summarize

our findings.

Figures 3.1 and 3.3 show the worst-case cost of the two instances (i.e., the optimal

objective value of problem (2.7)) as a function of Γ, which, as expected, increase as

the solution becomes more conservative (the green curves). To assess the average

performance of the robust solutions, we created a sample of 5000 realizations of the

demands, using independent normal random variables with mean bi and standard

deviation 0.4 · bi for each i. The resulting average costs of the robust solutions

are depicted in Figures 3.1 and 3.3 (the red curves in Figures 3.1 and 3.3 and,

on a different scale, in Figures 3.2 and 3.4; the blue error bars reflect the sample

standard deviations). For both instances of the newsvendor problem, we observe

from Figures 3.2 and 3.4 that the average cost first decreases with Γ, as incorporating

a small amount of uncertainty in the model yields more robust solutions, reaches its

minimum, and starts increasing with Γ as the solution becomes overly conservative

for the typical demand realization. In Figure 3.2, the optimal trade-off is reached at

Γ = 5, and the average cost of the corresponding robust solution achieves savings

of 3.4% over the solution obtained for Γ = 0 (i.e., the solution targeted to satisfy

the nominal demand b), while Figure 3.4 has an optimal trade-off at Γ = 11 and

savings of 4.1%; both are consistent with the guidelines provided by Bertsimas and

32

Sim in [15], namely, that the budget of uncertainty should be of the order of
√
n

(here
√

50 ≈ 7.1).

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50

C
os

t

Budget of Uncertainty

Average and Worst-case Cost for 50 Items and Various Budgets of Uncertainty

Average Cost
Worst-case Cost

Figure 3.1: The impact of the budget of uncertainty on worst-case cost for Instance 1 of the multi-
item newsvendor problem.

To strengthen our results, we found that the 99.96% confidence interval surround-

ing the mean of the differences (for each demand instance we subtracted the minimum

Γ cost from the Γ = 0 cost and took the average over these differences) is far from

containing zero for both Instance 1 and 2 (see Table 3.2.1 for the statistical infor-

mation and confidence interval for each data instance), and thus we can say with

high statistical significance, p = 0.0004, that the average cost at Γ = 5 for Instance

1 and Γ = 11 for Instance 2 is lower than Γ = 0, resulting in a savings in average

cost. Note that for the first instance, the worst case for Γ = 5 corresponds to the

situation where the demand for the last five items (items 46 to 50) is equal to its

33

22000

23000

24000

25000

26000

27000

28000

29000

30000

0 10 20 30 40 50

C
os

t

Budget of Uncertainty

Average Cost for 50 Items and Various Budgets of Uncertainty

Average Cost
Sample Approximation Cost

Figure 3.2: The impact of the budget of uncertainty on average cost for Instance 1 of the multi-item
newsvendor problem.

Cost Data Mean of Differences Std Dev of Differences 99.96% Confidence Interval
Instance 1 895.54 2427.48 [775.73, 1015.35]
Instance 2 653.79 896.78 [609.53, 698.05]

Table 3.2: 99.96% confidence intervals for the mean of the differences for Instances 1 and 2.

highest value and demand for the other items is equal to its nominal value, which

makes sense as the last five items have the largest shortage and holding penalties.

In the second instance, the worst-case instance for Γ = 11 consists of demand for 11

products with mid-range penalties equal to its highest value.

In an attempt to compare the robust methodology to stochastic programming,

we solved the sample average approximation (SAA) of the stochastic version of the

newsvendor problem for both Instance 1 and 2 with the same normal demand sample

that was used to assess the average performance of the robust solutions. Thus, the

34

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50

C
os

t

Budget of Uncertainty

Average and Worst-case Cost for 50 Items and Various Budgets of Uncertainty

Average Cost
Worst-case Cost

Figure 3.3: The impact of the budget of uncertainty on worst-case cost for Instance 2 of the multi-
item newsvendor problem.

green lines in Figures 3.2 and 3.4 represent the cost of the sample average approx-

imation ordering policy against the normal demand sample for Instance 1 and 2,

respectively. As expected, the sample average approximation cost is lower for both

Instance 1 and 2; however, the minimum average costs resulting from the robust

methodology are only 4.1% and 1.9% larger than the sample average approximation

cost for Instances 1 and 2, respectively. If the demands are coming from a distribu-

tion known to be normal with a known mean and standard deviation, then solving

the stochastic approximation would provide a lower costing ordering policy, but if

the distribution is unknown or uncertain prior to realization of the demands, then

the robust methodology would provide a good ordering policy at a slightly higher

cost.

35

14000

14500

15000

15500

16000

16500

17000

17500

0 10 20 30 40 50

C
os

t

Budget of Uncertainty

Average Cost for 50 Items and Various Budgets of Uncertainty

Average Cost
Sample Approximation Cost

Figure 3.4: The impact of the budget of uncertainty on average cost for Instance 2 of the multi-item
newsvendor problem.

3.2.2 Algorithmic Performance

Figures 3.5–3.8 illustrate the effect of the budget of uncertainty on both the num-

ber of iterations and the running time, in CPU seconds, of Algorithm 2.20. Neither

the number of iterations nor the running time showed any particular dependence

on Γ (although problems with very small and very large values of Γ appear easier

to solve, due to relatively small numbers of extreme points of B). The maximum

number of iterations needed for either problem instance was 182, while the maximum

running time was under two seconds.

36

120

130

140

150

160

0 10 20 30 40 50

N
um

be
r

of
 It

er
at

io
ns

Budget of Uncertainty

Number of Iterations for 50 Items and Various Budgets of Uncertainty

Figure 3.5: The impact of the budget of uncertainty on the number of iterations for Instance 1 of
the multi-item newsvendor problem.

3.3 Additional Experiments and Computational Results for the Newsven-
dor Problem

3.3.1 Kelley’s Method versus ACCPM and Subgradient Algorithm for the Newsven-
dor Problem

Kelley’s method (Algorithm 2.15) was chosen over both the ACCPM (Algorithm

2.17) and the subgradient algorithm (Algorithm 2.18) because of the low number of

iterations needed for convergence and for the speedy running time. Both the ACCPM

and subgradient algorithm require many more iterations and a longer running time

(CPU seconds) than Kelley’s method. Table 3.3 presents our performance results

for the three algorithms on the newsvendor problem (Instance 1) for Γ = 0. In

the ACCPM, the termination criteria were U − L < ε (ε = 0.1) or the number of

iterations equaled 600, whichever came first. Similarly, in the subgradient method,

37

0.9

1

1.1

1.2

1.3

1.4

1.5

0 10 20 30 40 50

C
P

U
 S

ec
on

ds

Budget of Uncertainty

Total Time CPLEX Spent Solving (sec) for 50 Items and Various Budgets of Uncertainty

Figure 3.6: The impact of the budget of uncertainty on the run time (sec) for Instance 1 of the
multi-item newsvendor problem.

the termination criteria were U−L < ε (ε = 0.1) or the number of iterations equaled

10,000, whichever came first. As Table 3.3 shows, both the ACCPM and subgradient

algorithm terminated when reaching the maximum number of iterations allowed.

Γ = 0 Number of Iterations Running Time (CPU seconds)
Kelley’s method 112 0.85
ACCPM 600 140,500.4
Subgradient 10,000 5362.6

Table 3.3: Number of iterations and running time (sec) for Algorithms 2.15, 2.17, and 2.18 for
Γ = 0.

We make no claims on the efficiency of the implementation of either the ACCPM

or subgradient algorithm and we are aware that efficient software implementations

of both are available, which could have been used to improve the efficiency and

performance of the ACCPM and subgradient algorithm; however, we’d like to offer

38

110

120

130

140

150

160

170

180

0 10 20 30 40 50

N
um

be
r

of
 It

er
at

io
ns

Budget of Uncertainty

Number of Iterations for 50 Items and Various Budgets of Uncertainty

Figure 3.7: The impact of the budget of uncertainty on the number of iterations for Instance 2 of
the multi-item newsvendor problem.

up the following analysis, which is independent of our implementation and stands

even if we improve the efficiency of our implementations, as reasons for not pursuing

these two algorithms in this setting. If we had used available efficient software

in our implementation of the ACCPM, we know the running time per iteration

would decrease by some unknown quantity. Suppose the efficient software would

have decreased the ACCPM run time per iteration to be equal to that of Kelley’s

method (solving a relatively small LP). Notice the ACCPM required more than 600

iterations to decrease the bound gap to within 0.1, while Kelley’s method needed

only 112 iterations to decrease the bound gap to zero. Thus, even if the time per

iteration of the ACCPM was equal to that of Kelley’s method, the larger number of

iterations required for convergence would still make the ACCPM worse compared to

39

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 10 20 30 40 50

C
P

U
 S

ec
on

ds

Budget of Uncertainty

Total Time CPLEX Spent Solving (sec) for 50 Items and Various Budgets of Uncertainty

Figure 3.8: The impact of the budget of uncertainty on the run time (sec) for Instance 2 of the
multi-item newsvendor problem.

Kelley’s method for robust linear programs with simple recourse and right-hand side

uncertainty.

When the maximum number of iterations allowed for the subgradient algorithm

was increased from 10,000 to 100,000, the bound gap was still greater than 0.1

when 100,000 iterations had executed. The subgradient algorithm would find a good

approximate solution within a second or two (reducing the bound gap to 100 or

200), but would spend the remaining time tightening the bound and trying to find

the optimal solution. There might be some potential for a hybrid algorithm that

starts with the subgradient algorithm to find a good approximate solution and then

switches to Kelley’s method to find the optimal solution. However, the difficulty

the subgradient algorithm had in narrowing in on the optimal solution (requiring

40

more than 1,000 times the number of iterations of Kelley’s method) made Kelley’s

method a more suitable choice for robust linear programs with simple recourse and

right-hand side uncertainty.

3.3.2 Further Analysis of Kelley’s Method for the Newsvendor Problem

In section 3.2, the data instances we looked at each had n = 50 items, while

we varied Γ ∈ [0, 50]. Here we consider both smaller and larger values of n to

see how the size of the problem, as well as the budget of uncertainty, affects the

computational performance of Algorithm 2.20 (Kelley’s method). Figures 3.9–3.12

display average cost, worst-case cost, number of iterations, and running time (in

seconds) as n increases from 10 up to 100 by increments of 5 for both instances

of the newsvendor problem (see Table 3.1). For each instance in Table 3.1 and for

each value of n, we used Algorithm 2.20 to solve the newsvendor problem for each

Γ ∈ [0, n]. There is an associated worst-case cost, number of iterations performed,

and running time (in CPU seconds) for each (n,Γ)-pair. The average cost is estimated

by using the optimal solution found for each (n,Γ)-pair and sampling 500 demands

for each (n,Γ)-pair (with the sampling as described in section 3.2).

Figures 3.9(a) and 3.9(b) show that the average cost follows a gently sloping

convex surface that increases as the number of items increase and the budget of un-

certainty increases. While the curves look very similar, notice that the two problem

instances of the newsvendor problem, Instance 1, shown in Figure 3.9(a), results in

a much larger average cost than that of Instance 2, shown in Figure 3.9(b). Figures

3.10(a) and 3.10(b) show that, for a fixed n, worst-case cost increases as more de-

mands are allowed to deviate from their nominal values for a fixed value of n and

resembles the concave curves we saw in Figures 3.1–3.4.

Figures 3.11(a) and 3.11(b) show a rather linear surface, indicating that as the

41

Average Cost for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000

Average Cost

(a) Instance 1: Average Cost versus (n,Γ).

Average Cost for Switched Cost for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0

 20000

 40000

 60000

 80000

 100000

Average Cost

(b) Instance 2: Average Cost versus (n,Γ).

Figure 3.9: The impact of the number of items and the budget of uncertainty on average cost for
two instances of the multi-item newsvendor problem.

42

Worst-Case Cost for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000
 500000

Worst-Case Cost

(a) Instance 1: Worst-Case Cost versus (n,Γ).

Worst-Case Cost for Switched Cost for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0

 50000

 100000

 150000

 200000

 250000

Worst-Case Cost

(b) Instance 2: Worst-Case Cost versus (n,Γ).

Figure 3.10: The impact of the number of items and the budget of uncertainty on worst-case cost
for two instances of the multi-item newsvendor problem.

43

number of items increases, the number of iterations increases. Although the number

of iterations increases with n, for a fixed number of items, no dependence is exhibited

between the number of iterations and the budget of uncertainty for either instance

of the problem; the same result as shown in Figures 3.5–3.8.

The running time (in seconds) is shown in Figures 3.12(a) and 3.12(b). It exhibits

a faster-than-linear growth in running time as the number of items increase. Again, as

seen in Figures 3.5–3.8, no dependence between the running time and Γ is exhibited

for a fixed n. Next, we considered whether the increase in the running time is

due to the increase in the number of iterations required, or the increased work per

iteration needed, as the algorithm is working with larger vectors and matrices as n

increases. To address this concern, we plotted the ratio between running time and

the number of iterations required for each (n,Γ)-pair and each problem instance.

Figures 3.13(a) and 3.13(b) show that the running time is increasing faster than the

number of iterations required as n increases, resulting in the conclusion that the

running time is increasing due to the increased work per iteration. It should be

noted that we did not make any special efforts to implement the individual steps of

our algorithm efficiently (e.g., we did not take advantage of the fact that the linear

program being solved at each iteration differs from the one solved in the previous

iteration by one additional constraint, and hence is likely easily handled by the dual

simplex algorithm). Such savings could potentially improve the running time of the

algorithm, although it is unlikely that they will qualitatively change the plots in

Figures 3.13(a) and 3.13(b).

44

Number of Iterations for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 50
 100
 150
 200
 250
 300
 350
 400

Number of Iterations

(a) Instance 1: Iteration Count versus (n,Γ).

Number of Iterations for Switched Cost for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 50
 100
 150
 200
 250
 300
 350
 400

Number of Iterations

(b) Instance 2: Iteration Count versus (n,Γ).

Figure 3.11: The impact of the number of items and the budget of uncertainty on the number of
iterations for two instances of the multi-item newsvendor problem.

45

Running Time (sec) for Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Running Time (sec)

(a) Instance 1: Running Time (sec) versus (n,Γ).

Running Time (sec) for Switched Cost Various Number of Items and Budgets of Uncertainty

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0

 20

 40

 60

 80

 100

 120

Running Time (sec)

(b) Instance 2: Running Time (sec) versus (n,Γ).

Figure 3.12: The impact of the number of items and the budget of uncertainty on the run time
(sec) for two instances of the multi-item newsvendor problem.

46

Ratio of Run Time(sec)/Number of Iterations as n and Gamma Increase

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Ratio

(a) Instance 1: Ratio of Running Time and Number of Iterations versus (n,Γ).

Ratio of Run Time(sec)/Number of Iterations for Switched Costs as n and Gamma Increase

line 1

 10 20 30 40 50 60 70 80 90 100
Number of Items 0

 20

 40

 60

 80

 100

Budget of Uncertainty

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Ratio for Switched Costs

(b) Instance 2: Ratio of Running Time and Number of Iterations versus (n,Γ).

Figure 3.13: The impact of the number of items and the budget of uncertainty on the ratio of run
time (sec) and number of iterations for two instances of the multi-item newsvendor
problem.

CHAPTER IV

Analysis of Robust Linear Optimization Problems with
General Recourse and Computational Experiments

In this chapter, we present a variety of experimental results when using Kelley’s

Method to solve a production planning problem with general recourse including an

analysis of problem solutions and performance results of Kelley’s Method. 1

4.1 Analysis of Robust Linear Programs with General Recourse

In this section, we return to the analysis of the robust linear program with general

recourse function, problem (2.2). Without any assumptions on the structure of the

recourse matrix B, evaluation ofQ(x) = maxb∈B,p:BT p≤d(b−Ax)Tp can no longer be

done in closed form, as was the case with simple recourse in Chapter III. We present

a general approach for computing the value of Q(x), along with the corresponding

worst-case value of b and dual recourse variable p, via a mixed-integer programming

problem.

1Some of the analysis and experimental results presented here can also be found in Thiele et al. [63].

47

48

4.1.1 Computing Q(x) for Robust Linear Programs with General Recourse

Theorem 4.1. Given x, Q(x) = maxb∈BQ(x,b) where Q(x,b) is given by equation

(2.6) and B given by equations (2.8)–(2.9) can be computed by

(4.2)

Q(x) = max
p+,p−,q+,q−,r+,r−

(b−Ax)T (p+ − p−) + b̂T (q+ + q−)

s.t. BT (p+ − p−) ≤ d,

0 ≤ q+ ≤ p+,

0 ≤ q− ≤ p−,

q+ ≤Mr+,

q− ≤Mr−,

eT (r+ + r−) ≤ Γ,

r+ + r− ≤ e,

r+, r− ∈ {0, 1}m,

p+,p− ≥ 0,

where e is the vector of all ones and M is a sufficiently large positive number.

Proof. Let p = p+ − p−, with p+,p− ≥ 0. Recalling the definition of B, Q(x) =

maxb∈B,p:BT p≤d(b−Ax)Tp can be rewritten as

(4.3)

Q(x) = max
p+,p−

(b−Ax)T (p+ − p−) + max
z∈Z

m∑
i=1

b̂i(p
+
i − p−i)zi

s.t. BT (p+ − p−) ≤ d

p+,p− ≥ 0

where Z was defined in equation (2.9). Note that for a given p+ and p−, the inner

maximization problem of (4.3) is a linear program in variables z and its optimal

solution can be found at one of the extreme points of the set Z, which have the

form zi ∈ {−1, 0, 1} ∀i and
∑m

i=1 |zi| = Γ. Therefore, we can rewrite the inner

49

maximization problem of (4.3) as the following integer program in variables r+, r−:

(4.4)

max
r+,r−

m∑
i=1

b̂i(p
+
i − p−i)(r+

i − r−i)

s.t. eT (r+ + r−) ≤ Γ

r+ + r− ≤ e

r+, r− ∈ {0, 1}m.

Substituting problem (4.4) into problem (4.3), we obtain the following equivalent

formulation:

(4.5)

Q(x) = max
p±,r±

(b−Ax)T (p+ − p−) +
m∑
i=1

b̂i(p
+
i − p−i)(r+

i − r−i)

s.t. BT (p+ − p−) ≤ d,

eT (r+ + r−) ≤ Γ,

r+ + r− ≤ e,

r+, r− ∈ {0, 1}m,

p+, p− ≥ 0.

Finally, to linearize the objective function of problem (4.5), we introduce variables

q+
i = p+

i r
+
i and q−i = p−i r

−
i ∀i (note we can assume p+

i r
−
i = p−i r

+
i = 0 ∀i without loss

of generality). Making this substitution in problem (4.5) and adding appropriate

forcing constraints results in problem (4.2).

Corollary 4.6. Given x, let (p±, r±,q±) solve problem (4.2). Then the correspond-

ing worst-case value of b can be determined as follows:

bi = bi + b̂i(r
+
i − r−i), i = 1, . . . ,m,

and the corresponding dual recourse variable p can be determined as p = p+ − p−.

The subgradient of Q(x) can now be computed as in Lemma 2.19.

50

4.2 Computational Results: Production Planning Problem

Here, we consider a production planning example where the demand is uncertain,

but must be met. Once demand has been revealed, the decision-maker has the option

to buy additional raw materials at a higher cost and re-run the production process,

so that demand for all products is satisfied. The goal is to minimize the ordering

costs of the raw materials and the production costs of the finished products, as well

as the inventory (or disposal) costs on the materials and products remaining at the

end of the time period. We define the following notation:

m : the number of raw materials,

n : the number of finished products,

c : the first-stage unit cost of the raw materials,

d : the second-stage unit cost of the raw materials,

f : the first-stage unit production cost,

g : the second-stage unit production cost,

h : the unit inventory cost of unused raw materials,

k : the unit inventory cost of unsold finished products,

A : the productivity matrix,

b : the demand for the finished products,

x : the raw materials purchased in the first stage,

y : the raw materials purchased in the second stage,

u : the products produced in the first stage,

v : the products produced in the second stage.

We assume that all coefficients of the matrix A are nonnegative as are all costs:

51

c, d, f , g, h, and k. The deterministic problem can be formulated as:

(4.7)

min
x,y,u,v

cTx + dTy + fTu + gTv + hT (x + y −A(u + v)) + kT (u + v − b)

s.t. Au ≤ x,

Au + Av ≤ x + y,

u + v ≥ b,

x, y, u, v ≥ 0.

Note that, according to the formulation, raw materials can be purchased in the first

stage of the time period and used in production in the second stage.

4.2.1 Analysis of Production Planning Problem

The robust production planning problem is as follows:

(4.8)

min
x,u

cTx + fTu + max
b∈B

Q(x,u,b)

s.t. Au ≤ x

x, u ≥ 0,

where the recourse problem, Q(x,u,b), is given by:

(4.9)

Q(x,u,b) = c− kTb + min
y,v

(d + h)Ty + (g −ATh + k)Tv,

s.t. y −Av ≥ Au− x,

v ≥ b− u,

y,v ≥ 0,

and c(x,u) = hTx − hTAu + kTu is a constant. Since this form of the recourse

function is slightly different from expression (2.6) in that the constraints are in in-

equality form, we begin by deriving a modification of the mixed-integer program of

Theorem 4.1.

52

The dual of the recourse problem, problem (4.9), is:

(4.10)

Q(x,u,b) = c̄(x,u)− kTb + max
q,p

(Au− x)Tq + (b− u)Tp

s.t. 0 ≤ q ≤ d + h

0 ≤ p ≤ ATq + g −ATh + k,

To obtain Q(x,u) = maxb∈BQ(x,u,b), where Q(x,u,b) is defined by problem

(4.10), we can write:

(4.11)

Q(x,u) = c̄(x,u)− kTb+

max
q,p

(
(Au− x)Tq + (b− u)Tp + max

z∈Z

n∑
i=1

(̂
bi(pi − ki)zi

))
s.t. 0 ≤ q ≤ d + h

0 ≤ p ≤ ATq + g −ATh + k,

where Z was defined in equation (2.9). Applying the same logic as in Theorem 4.1,

for a given q and p, we can rewrite the inner maximization problem of problem

(4.11) as an integer programming problem in variables r+ and r−:

(4.12)

max
r+,r−

m∑
i=1

b̂i(pi − ki)(r+
i − r−i)

s.t. eT (r+ + r−) ≤ Γ

r+ + r− ≤ e

r+, r− ∈ {0, 1}m.

53

Substituting problem (4.12) into problem (4.11), we obtain:

(4.13)

Q(x,u) = c̄(x,u)− kTb+

max
q,p,r±

(Au− x)Tq + (b− u) +
m∑
i=1

(̂
bi(pi − ki)(r+

i − r−i)
)

s.t. 0 ≤ q ≤ d + h

0 ≤ p ≤ ATq + g −ATh + k

eT (r+ + r−) ≤ Γ

r+ + r− ≤ e

r+, r− ∈ {0, 1}m

To remove the nonlinearity from the objective function, we introduce variables s+
i =

pir
+
i and s−i = pir

−
i ∀i. Substituting these definitions into problem (4.13) we can

conclude that we can calculate the value of Q(x,u) by solving the following mixed-

54

integer program:

(4.14)

c̄(x,u)− kTb+

max
q,p,s±,r±

(Au− x)Tq + (b− u)Tp + b̂T (s+ − s−)−
n∑
i=1

kib̂i(r
+
i − r−i)

s.t. 0 ≤ q ≤ d + h

0 ≤ p ≤ ATq + g −ATh + k

0 ≤ s+ ≤ p

0 ≤ s− ≤ p

s+ ≤Mr+

s− ≤Mr−

eT (r+ + r−) ≤ Γ

r+ + r− ≤ e

r+, r− ∈ {0, 1}n,

where e is the vector of all ones and M is a sufficiently large positive number.

Lastly, given (x,u), let (p,q, r±, s±) solve problem (4.14). The corresponding

dual recourse vector is (p,q), and the corresponding worst-case value of b can be

determined as bi = bi + b̂i(r
+
i − r−i), i = 1, . . . ,m. The subgradient of cTx + fTu +

max
b∈B

Q(x,u,b) can now be computed as in Lemma 2.19 and is equal to:

(4.15)

 (c− q + h)

(f + ATq− p−ATh + k).


4.2.2 Computational Results

We considered an example of the production planning problem with m = 2 raw

materials and n = 30 finished products with the following data:

55

• Purchasing and inventory unit costs of raw materials: ci = 100, di = 150, and

hi = 20 for i = 1, 2;

• Production and inventory unit costs of products: fj = 530, gj = 750, and

kj = 50 for j = 1, . . . , 30;

• Components of productivity matrix A were independently drawn from the

integer-valued uniform distribution U [0, 15];

• Product demand ranges: bj = 10 and b̂j = 5 for j = 1, . . . , 30.

In our example, g > ATh+k, ensuring that any production v in the second stage

is performed solely in order to satisfy demand not filled by first-stage production u

(see problem (4.9)).

The green curve in Figure 4.1 (and in Figure 4.2) shows the worst-case cost of

this problem as a function of the budget of uncertainty Γ ∈ [0, 30]. To assess the

expected performance of robust solutions, we considered two possible distributions of

demand: one in which demands for individual products follow independent normal

distributions with mean bi = 10 and standard deviation b̂i = 5 (truncated at zero

to avoid negative values) and one in which demands follow independent continuous

uniform distributions on the interval [bi− b̂i, bi+ b̂i] = [5, 15]. We generated indepen-

dent samples of 5000 realizations of the demands for each distribution and plotted

the resulting average cost in Figures 4.1 and 4.2 (the red curves; the blue error bars

reflect the sample standard deviations) for the normal and uniform distributions,

respectively. Just as in the newsvendor problem of Section 3.2, the average cost first

decreases with Γ, as incorporating uncertainty into the model yields more robust

solutions, reaches its minimum, and then increases with Γ as the solutions become

overly conservative. The minimum average cost in Figure 4.1 occurs at Γ = 9, and

56

by implementing the corresponding ordering and production planning solution, the

decision-maker can achieve average savings of 3.3% over the solution obtained for

Γ = 0 (i.e., the solution targeted to satisfy the nominal demand b); in Figure 4.2 the

minimum occurs at Γ = 6 with average savings of 2.5%.

Additionally, the 99.96% confidence interval surrounding the mean of the differ-

ences (for each demand instance we subtracted the minimum Γ cost from the Γ = 0

cost and took the average of these differences) is far from containing zero for both

the normal and uniform demand sample (see Table 4.1 for the statistical information

and confidence interval for each demand distribution). Therefore, we can say with

high statistical significance, p = 0.0004, that the average cost at Γ = 9 for the nor-

mal demand sample and Γ = 6 for the uniform demand sample is lower than Γ = 0,

resulting in a savings in average cost.

Demand Distribution Mean of Differences Std Dev of Differences 99.96% Confidence Interval
Normal 24783.39 8451.31 [24366.27, 25200.51]
Uniform 17435.96 8058.29 [17038.23, 17833.68]

Table 4.1: 99.96% confidence intervals for the mean of the differences for the normal and uniform
demand samples.

These outcomes make intuitive sense, since demands in the sample generated from

the normal distribution exhibit higher variability than in the sample generated from

the uniform distribution. This example illustrates the advantage of the robust opti-

mization approach in situations when precise estimates of probability distributions

of uncertain parameters are unavailable or inaccurate. Observe that implementing

any of the robust solutions obtained by setting Γ anywhere in the range between five

and ten yields a robust solution that would perform well (as measured by expected

cost) regardless of whether the demands follow a normal or uniform distribution.

We performed a number of additional experiments with demands sampled from a

57

variety of distributions. Results presented are typical of all these experiments, with

the minimum average cost occurring at Γ ∈ [5, 15], which indicates that in the pro-

duction planning problem a fair amount of uncertainty needs to be considered to

obtain solutions that perform well in expectation.

550000

600000

650000

700000

750000

800000

850000

900000

0 5 10 15 20 25 30

C
os

t

Budget of Uncertainty

Average and Worst-Case Cost for 2 RMs, 30 Products, and Various Budgets of Uncertainty

Average Cost
Worst-case Cost

SAA Normal

Figure 4.1: The impact of the budget of uncertainty on worst-case and average cost of the produc-
tion planning problem and the SAA cost under a normal demand distribution.

In an attempt to compare the robust methodology to stochastic programming,

we solved the sample average approximation (SAA) of the stochastic version of the

production planning problem for the normal and uniform demand samples that were

used to assess the average performance of the robust solutions. Thus, the magenta

lines in Figures 4.1 and 4.2 represent the cost of the sample average approximation

ordering and production policy against the normal and uniform demand samples,

respectively. As expected, the sample average approximation cost is lower for both

demand distributions; however, the minimum average costs resulting from the robust

58

550000

600000

650000

700000

750000

800000

850000

900000

0 5 10 15 20 25 30

C
os

t

Budget of Uncertainty

Average and Worst-Case Cost for 2 RMs, 30 Products, and Various Budgets of Uncertainty

Average Cost
Worst-case Cost

SAA Uniform

Figure 4.2: The impact of the budget of uncertainty on worst-case and average cost of the produc-
tion planning problem and the SAA cost under a uniform demand distribution.

methodology are only 11% and 8.9% larger than the sample average approximation

cost for the normal and uniform demand samples, respectively. If the demands

are coming from a distribution known to be normal (uniform) with a known mean

and standard deviation, then solving the stochastic approximation would provide a

lower costing ordering and production policy, but if the distribution is unknown or

uncertain prior to realization of the demands, then the robust methodology would

provide a good ordering and production policy at a slightly higher cost.

It is informative to consider the amounts of raw materials purchased and produc-

tion done in the first and second stages. The first-stage purchasing and production

decisions (x and u, respectively) are made according to the solution calculated by

solving the robust problem, problem (4.8). Once the first-stage decisions are made

and implemented, the actual demand is revealed and the second-stage decisions (y

59

and v) tune themselves to the realized demands.

Figures 4.3(a) and 4.3(b) plot the total amount of raw materials purchased and

products produced, respectively, in the first and second stage as fractions of the

total purchasing/production that occurs under the worst-case demand outcome. For

Γ = 0, we start with first-stage purchasing/production levels targeted to satisfy

nominal demand. As Γ increases, we split purchasing and production between the

two stages. However, for higher values of Γ worst-case demand realizations tend to

have values higher than nominal, and thus we see the second-stage purchasing and

production decreasing.

Figure 4.4(a) displays the sample averages of the fractions of total amounts of raw

materials purchased in the first and second stage when first-stage decisions are ob-

tained by solving the robust formulation for various values of Γ and the demands are

normally distributed. (Figure 4.4(b) captures similar information for total produc-

tion, and Figures 4.5(a) and 4.5(b) display these fractions for uniformly distributed

demands.) The errors bars show the standard deviation of these average fractions.

With uniformly distributed demands, first-stage decisions obtained using high values

of Γ in the description of the uncertainty set actually satisfy the realized demand in

most cases, as the average second-stage purchasing is zero, and second-stage produc-

tion is nearly zero, as Figures 4.5(a) and 4.5(b) show (recall also that for these high

values of Γ, the average cost of these solutions is almost equal to their worst-case

costs). With normally distributed demands, the average fraction of raw material

purchases done in the second stage is nearly zero for Γ ∈ [20, 25], but increases for

solutions obtained with higher values of Γ; the average fraction of second-stage pro-

duction decreases with Γ, but never reaches zero. Again, this behavior can partially

be explained by higher variability of demands under normal distribution.

60

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

ct
io

n

Budget of Uncertainty

1st Stg Production
Worstcase 2nd Stg Production

(a) Raw materials purchased.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

ct
io

n

Budget of Uncertainty

1st Stg Purchase
Worstcase 2nd Stg Purchase

(b) Production performed.

Figure 4.3: First- and second-stage purchasing and production, as fractions of the total purchasing
and production, under worst-case demand outcome.

61

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

ct
io

n

Budget of Uncertainty

Avg 1st Stg Purchase
Avg 2nd Stg Purchase

(a) Raw materials purchased, normally distributed demands.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

ct
io

n

Budget of Uncertainty

Avg 1st Stg Production
Avg 2nd Stg Production

(b) Production performed, normally distributed demands.

Figure 4.4: Sample averages of first- and second-stage purchasing and production, as fractions of
the total purchasing and production, under a normal demand distribution.

62

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

ct
io

n

Budget of Uncertainty

Avg 1st Stg Purchase
Avg 2nd Stg Purchase

(a) Raw materials purchased, uniformly distributed demands.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

A
ve

ra
ge

 F
ra

ct
io

n

Budget of Uncertainty

Avg 1st Stg Production
Avg 2nd Stg Production

(b) Production performed, uniformly distributed demands.

Figure 4.5: Sample averages of first- and second-stage purchasing and production, as fractions of
the total purchasing and production, under a uniform demand distribution.

63

Figures 4.6(a) and 4.6(b) summarize our computational experience by illustrating

the effect of the budget of uncertainty on the number of iterations and the running

time of Algorithm 2.20 on this problem. The number of iterations required is not

particularly sensitive to the value of Γ (except for very small and very large values

of Γ) and therefore the determining factor in the running time is the computational

demand of solving the mixed-integer program (4.14), which generally increases with

Γ. Therefore, the overall running time of the algorithm generally increases with

Γ, up to Γ = 22, and then drops off sharply. Thus, the algorithm has fairly low

computational demands for budgets of uncertainty of Γ = 15 and lower, which were

most appropriate for determining robust solutions with low average costs in this and

other experiments.

It should be pointed out that, in addition to the value of Γ, the computational

demands of the adversarial problem were greatly influenced by the density of the pro-

ductivity matrix A. Indeed, if the productivity matrix is dense (as it is in the example

presented here), all the raw materials would contribute roughly equally towards the

production of most or all of the products, which makes it harder to determine which

products (and implicitly which raw materials) are more sensitive to demand fluc-

tuations. In examples where a sparse productivity matrix with pronounced block

structure allowed the decisions to be implicitly decomposed by materials, instances

of the mixed-integer program (4.14) were easier and required shorter solution times.

Finally, we would like to remark that, depending on the relative magnitudes of

problem parameters (e.g., the relative magnitudes of inventory and first- and second-

stage production costs), one can devise heuristics that would generate an approxi-

mate solution to the adversarial problem (4.11) (i.e., a “bad,” if not worst, demand

realization) quite easily – almost as easily as solving the adversarial problem to op-

64

timality in the case of simple recourse. If the demand realization found is worse, in

the adversarial sense, than realizations already considered, it can be used to produce

a weak cut that separates the current iterate from the epigraph of Q(x,u), but is

typically not a supporting hyperplane (thus, increasing the number of iterations, but

possibly leading to faster overall solution times). Alternatively, an algorithm solving

(4.14) can be terminated prematurely once a high-quality incumbent solution has

been found. In fact, in our experiments we observed that the optimal solution of

(4.14) was discovered relatively quickly, and, as is often the case, the bulk of the solu-

tion time was spent improving dual bounds and proving optimality of the incumbent

solution.

65

50

100

150

200

0 5 10 15 20 25 30

N
um

be
r

of
 It

er
at

io
ns

Budget of Uncertainty

Number of Iterations for 2 RMs, 30 Products, and Various Budgets of Uncertainty

(a) Iteration count vs. Γ.

0

100

200

300

400

500

0 5 10 15 20 25 30

C
P

U
 S

ec
on

ds

Budget of Uncertainty

Total Time CPLEX Spent Solving (sec) for 2 RMs, 30 Products, and Various Budgets of Uncertainty

(b) Run time (CPU seconds) vs. Γ.

Figure 4.6: The impact of the budget of uncertainty on the number of iterations and run time (CPU
seconds) for production planning problem.

CHAPTER V

Bounds on Distance to Ill-posedness for Robust Linear
Optimization Problems

This chapter investigates the relationship between the conditioning of a robust lin-

ear feasibility problem with ellipsoidal uncertainty under structured transformations

and the conditioning of the equivalent second-order cone feasibility problem (SOCP)

under structured perturbations. Starting from the geometry of the ellipsoidal uncer-

tainty set in data space, we consider various and meaningful structured changes to

the data of the robust counterpart and examine the effects on the equivalent SOCP

in terms of the standard structured additive perturbation for which the distance to

ill-posedness has been previously studied. Our examination results in upper bounds

on the distance to ill-posedness of the SOCP in terms of the data given in the initial

description of the ellipsoid. In this chapter, we provide a brief description of condi-

tion number theory literature, discuss how our work relates to the condition number

literature, propose structured changes to the ellipsoidal uncertainty set data, and

lastly present our results that bound the distance to ill-posedness of the SOCP by

quantities involving the data defining the original ellipsoid.

66

67

5.1 Literature Review

The concepts of distance to ill-posedness and condition numbers for optimization

problems were introduced by Renegar in [57], who showed that a linear program has

large optimal solutions (a sensitive optimal objective value) only if the primal data

instance is nearly infeasible or the dual data instance is nearly infeasible. Distance

to ill-posedness is an intuitive concept: the amount by which a data instance needs

to be perturbed to obtain an infeasible primal or dual data instance. The condition

number is a scale-invariant inverse of the distance to ill-posedness, and it reflects the

difficulty of the problem instance to be solved. Renegar generalized these concepts

more fully in [58] and [59] to convex optimization and feasibility problems in conic

linear form and developed complexity theory that allowed for the analysis of iterative

algorithms (such as interior-point methods and the ellipsoid algorithm) in terms of

the problem-instance size, which is a direct generalization of the condition number

and distance to ill-posedness. In addition to Renegar’s work, further analysis of

condition numbers and their role in the theoretical complexity of solving conic convex

optimization problems and convex feasibility problems in conic linear form has been

done by Cheung and Cucker [23, 24, 25], Epelman and Freund [30, 31], Filipowski

[32, 33], Freund and Vera [36, 37, 38], Nunez and Freund [49], Peña [54], Peña and

Renegar [52], Renegar [58, 60], Vera [64, 65], and references therein. In [34], Freund

and Ordóñez show that much of the conic-based condition number theory can be

naturally extended to non-conic convex optimization problems where the variable is

restricted to a convex ground-set.

In addition to theoretical research, there has been some computational work on

how condition numbers relate to the number of iterations performed by interior-point

68

methods in practice by Freund, Ordóñez, and Toh. In [50], Ordóñez and Freund show

that for the NETLIB suite of linear optimization problems, a statistically significant

positive linear relationship exists between the number of interior-point method iter-

ations needed to solve the problems and the log of their condition numbers (after

CPLEX pre-processing). In [35], Freund, Ordóñez, and Toh show that two of out

the four measures of problem-instance conditioning considered are correlated with

the number of interior-point method iterations when solving semi-definite problems

from the SDPLIB suite.

Another avenue of research, one tied more closely to the work presented in this

chapter, looks at structured perturbations: perturbations restricted to a particular

block structure. The distance to infeasibility in the above-mentioned work (with

the exception of Filipowski [33]) is derived under the assumption that the relevant

problem data is subject to arbitrary and unstructured perturbations. However, data

instances can have a pronounced structure such as those resulting from a sparsity

pattern, slack variables, or box constraints. In this vein, Peña ([53, 55, 56]) has

shown that a natural generalization of Eckart and Young’s identity holds for conic

systems under block-structured perturbations in various settings.

The robust optimization modeling approach and the study of condition numbers

and problem well-posedness are both concerned with subjecting the data of an op-

timization problem to perturbations. One of the goals of the latter is to provide an

assessment of the impact perturbations can have on the optimal solutions and values,

whereas the former takes a proactive modeling approach to immunize the solutions

of the problem to such perturbations. (For a more detailed comparative discussion,

see the following sections.) Due to these similarities, it appeared natural to study

the issues of problem conditioning in the context of data perturbations as considered

69

in formulations of robust counterparts.

This chapter presents an initial step in this study. Specifically, we consider a

robust counterpart of a linear feasibility problem subjected to data perturbations

characterized by an ellipsoidal uncertainty set, and propose several possible measures

of distance to ill-posedness for such a problem. We connect these measures to the

size and shape of the uncertainty set used to define the robust problem, and provide

bounds on these measures in terms of the traditional structured distance to ill-

posedness of an equivalent conic feasibility problem, thus grounding our ideas in

established concepts.

The eventual goal of this line of research is to develop measures of conditioning for

robust optimization problems that would be helpful in understanding the interplay

between the choice of the uncertainty set and the impact of that choice on the

structure and objective function value of the resulting robust problem, and provide

modeling guidance in selecting uncertainty sets that are appropriate for the problem

at hand.

5.2 Distance to Infeasibility of a Linear Conic Problem

Consider the general homogenized conic feasibility problem:

(5.1)
Ax ∈ CY

x ∈ CX ,

where CX ⊂ X and CY ⊂ Y are closed convex cones in the finite n-dimensional

normed linear vector space X and in the finite m-dimensional normed linear vector

space Y , respectively, and A : X → Y is a linear operator (A ∈ Rm×n). We will

refer to A as a feasible data instance when problem (5.1) has a non-trivial (non-zero)

solution. If A is changed by some small amount ∆A, would problem (5.1) still be

70

feasible with data instance A + ∆A? How large can ∆A be before problem (5.1) is

infeasible? These questions lead toward determining the smallest perturbation ∆A

that can be added to A to make A + ∆A an infeasible data instance, thus arriving

at the traditional distance to infeasibility for problem (5.1) introduced by Renegar

in [57]:

(5.2) ρ(A) = inf{‖∆A‖ | (A+ ∆A)x ∈ CY , x ∈ CX has no non-trivial solutions}.

ρ(A) reflects how problem (5.1) reacts to perturbations or changes in its data A. In

[58], Renegar also defined the condition number of the data instance A as

(5.3) C(A) :=
‖A‖
ρ(A)

when ρ(A) > 0 and C(A) =∞ when ρ(A) = 0. Problem (5.1) is well-conditioned to

the extent that C(A) is small; when problem (5.1) is ill-posed or ill-conditioned (i.e.,

arbitrarily small perturbations of the data A can yield both feasible and infeasible

problem instances), C(A) = +∞.

Let us define F ⊆ Rm×n to be the set of data instances A for which problem (5.1)

has a feasible non-trivial solution, namely

F = {A ∈ Rm×n | ∃x 6= 0 such that Ax ∈ CY , x ∈ CX}.

Then I ⊆ Rm×n (the complement of F) consists of data instances A for which

problem (5.1) has only a trivial solution. Let the boundary of F (and of I) be the

following set denoted by B:

B = ∂F = ∂I = cl(F) ∩ cl(I),

where ∂S denotes the boundary set of S and cl(S) denotes the closure of set S.

Figure 5.1 illustrates an example of the distance to infeasibility for problem (5.1)

given feasible data instance A for F , I, and B as defined above.

71

Figure 5.1: Traditional distance to infeasibility for a conic linear feasibility problem.

5.3 Robust Counterpart of LCP

Let LCP be the following problem:

(5.4)
(LCP) P 0x ≥ 0

x ∈ CX .

where CX ⊆ Rn is a closed convex cone. LCP could be a homogenization of a

traditional system of constraints, e.g., if P 0 = [A − b], x =

y
t

, and CX = C ×R+

where C is some closed convex cone, then LCP represents the following linear system:

72

Ay ≥ bt, y ∈ C, and t ≥ 0.

Notice that LCP is an instance of problem (5.1) with A = P 0 and CY = Rm
+ .

Therefore, using the definition given in equation (5.2), the distance to infeasibility

for LCP is the following:

(5.5) ρ(P 0) = inf{‖∆P 0‖ | (P 0 +∆P 0)x ≥ 0, x ∈ CX has no non-trivial solutions}.

Similarly, we can define F ⊆ Rm×n to be the set of data instances P 0 for which

problem (5.4) has a feasible non-trivial solution,

F = {P 0 ∈ Rm×n | ∃x 6= 0 such that P 0x ≥ 0, x ∈ CX},

I ⊆ Rm×n is the set of data instances P 0 for which problem (5.4) has only a trivial

solution, and B is the boundary of F and of I.

Consider LCP in the robust feasibility framework which mandates that for any

perturbation ∆P 0 made to P 0, P 0+∆P 0 must be contained in a known and bounded

uncertainty set, thereby restricting perturbations to a particular structure and limit-

ing the size of the perturbations. This chapter focuses on ellipsoidal uncertainty sets

as considered by Ben-Tal and Nemirovski in [9]. The definition presented by Ben-Tal

and Nemirovski is general enough to encompass three types of ellipsoidal uncertainty

sets: the standard K-dimensional ellipsoid in Rm×n, flat ellipsoids, and ellipsoidal

cylinders. Flat ellipsoids occur when there is partial uncertainty of the data matrix

(some data elements are known). Ellipsoidal cylinders occur when there are many

ellipsoidal restrictions placed on the matrix P , such as those resulting from having

upper and lower bounds on entries of the matrix. As previously mentioned, ellipsoidal

uncertainty sets have a nice analytical structure that can be exploited; however, there

are modeling advantages for ellipsoidal uncertainty as well: ellipsoidal uncertainty

sets cover a wide range of sets (including polytopes by intersecting finitely many

73

ellipsoidal cylinders), ellipsoidal uncertainty sets can be used to approximate com-

plicated convex sets, and an ellipsoidal uncertainty set could be constructed as the

minimum-volume ellipsoid containing several given scenarios. Additionally, if the

data is of a statistical nature, mutually independent and symmetrically distributed

within some interval around a known mean value, then the data uncertainty can

be formulated as an ellipsoidal uncertainty set (see Ben-Tal and Nemirovski [9] for

a simple portfolio problem with known nominal returns and known bounds on the

returns).

The robust counterpart of LCP under ellipsoidal uncertainty, as presented by

Ben-Tal and Nemirovski in [9] is:

Px ≥ 0 ∀P ∈ E

x ∈ CX ,

where P 0, P 1, . . . , PK ∈ Rm×n are given matrices and

(5.6) E = {P = P 0 +
K∑
j=1

ujP
j | ‖u‖2 ≤ 1} ⊂ Rm×n.

Given the various ways the ellipsoidal uncertainty set can be constructed, the P j’s

defining E might not have any nice properties such as spanning Rm×n, being linearly

independent, being orthogonal to one another, or being the axes of the ellipsoid, and

therefore no assumptions are made on the P j’s unless otherwise stated.

Substituting the definition of E produces the following robust counterpart (RC)

that will be used throughout the remainder of this chapter:

(5.7)

(RC) : P 0x+
K∑
j=1

ujP
jx ≥ 0 ∀u : ‖u‖2 ≤ 1

x ∈ CX .

74

Let P j
i denote the ith row of matrix P j and

(5.8) RT
i =


P 1
i

...

PK
i

 ∈ RK×n, R̃T
i =

P 0
i

RT
i

 ∈ R(K+1)×n

and

(5.9) R̃T =


R̃T

1

...

R̃T
m

 ∈ Rm(K+1)×n.

The RC (5.7) is a semi-infinite optimization problem, but it can be transformed

into an equivalent second-order cone problem (SOCP) as follows. Note that RC (5.7)

is equivalent to (
min

u:‖u‖2≤1
P 0
i x+ uTRT

i x
)
≥ 0 ∀i = 1, . . . ,m.

Applying standard first-order optimality conditions to the problem of minimizing

P 0
i x + uTRT

i x with respect to u subject to the constraint ‖u‖2 ≤ 1, we then obtain

the following equivalent SOCP (Ben-Tal and Nemirovski [9]):

(5.10)
(SOCP) : P 0

i x− ‖RT
i x‖2 ≥ 0 ∀i = 1, . . . ,m

x ∈ CX ,

which, written in the following conic form using definitions (5.8) and (5.9):

(5.11)
R̃Tx ∈ CY

x ∈ CX ,

is another instance of problem (5.1) with A = R̃ and CY = CY1 × . . . CYm ⊆ Rm(K+1)

where, for i = 1, . . . ,m, CYi
⊆ RK+1 is a second-order cone.

In this chapter, we will use the following slight abuse of notation to refer to the

data specifying equivalent instances of problems (5.7) and (5.10):

75

• when discussing the RC (problem (5.7)), d refers to the collection of matrices

(P 0, P 1, . . . , PK) and

• when discussing the SOCP (problem (5.10)), d refers to the augmented matrix

d = R̃T =


R̃T

1

...

R̃T
m

 ∈ Rm(K+1)×n,

where R̃T
i is defined in equation (5.8).

Similar to the definitions of section 5.2, define FSOCP to be the set of data instances

d for which the SOCP has a feasible non-trivial solution, namely

FSOCP = {d ∈ Rm(K+1)×n | ∃x 6= 0 satisfying problem (5.11)}.

Let ISOCP (the complement of FSOCP) be the set of data instances d for which the

SOCP only has a trivial solution. Since d ∈ Rm(K+1)×n, FSOCP ⊂ Rm(K+1)×n and

ISOCP ⊂ Rm(K+1)×n. Lastly, BSOCP is the boundary of FSOCP and ISOCP.

In the remainder of this chapter we proceed to describe four types of struc-

tured transformations, indexed by 0, 1, 2, and 3, which change the RC data d =

(P 0, P 1, . . . , PK) in some manner. The transformed RC data results in perturbed

SOCP data d̄ = d+ ∆d ∈ Rm(K+1)×n, which fall into one of two types of structured

perturbations. The latter two types of perturbations are detailed in section 5.4.

Mathematical preliminaries

We start by presenting some mathematical definitions and relations that will be

referenced throughout the remainder of this chapter, which can be found in Meyer

[44] and other standard linear algebra references.

76

For p ≥ 1, the p-norm of x ∈ Rn is defined as

(5.12) ‖x‖p =
(n∑
i=1

|xi|p
) 1

p
.

Each pair of vector norms, ‖ · ‖a and ‖ · ‖b, on an n-dimensional space are equivalent,

i.e., there exist positive constants β and γ (dependent upon the choice of norms)

such that for all x,

β‖x‖a ≤ ‖x‖b ≤ γ‖x‖a.

The vector p-norm defined on Rn and Rm induces a matrix norm on Rm×n by

setting:

(5.13) ‖A‖p = max
‖x‖p=1

‖Ax‖p

for A ∈ Rm×n and x ∈ Rn. A matrix norm defined on Rm×n is also a vector norm

defined on Rmn, thus equivalency holds for pairs of matrix norms as well.

Additionally, given matrices A ∈ Rm×m and B ∈ Rm×n, the p-norm also satisfies

the submultiplicative property:

(5.14) ‖AB‖p ≤ ‖A‖p‖B‖p.

Lastly, we present the following result to be used later in the chapter: given

α ∈ RK , let αmax denote the maximum element of α, and diag(α) denote a diagonal

matrix with elements of α arranged on the diagonal. Then

‖diag(α)‖p = max
‖x‖p=1

‖diag(α)x‖p

= max
‖x‖p=1

‖αTx‖p

= max
‖x‖p=1

(K∑
i=1

|αixi|p
) 1

p

=
((
αmax · 1

)p) 1
p

= αmax(5.15)

77

5.4 Structure of perturbations to SOCP

This section discusses a paper from Ben-Tal and Nemirovski that highlights the

need to consider data uncertainty, as well as work from Peña, [55] in particular, who

considers block-structured perturbations that are similar in nature to those being

considered in this chapter. We then present two types of structured perturbations for

the SOCP and their corresponding definitions for distance to infeasibility under each

type of structured perturbation, which will be referenced throughout the remainder

of this chapter.

In [10], Ben-Tal and Nemirovski studied the optimal solutions of 90 linear pro-

grams from the NETLIB library to: quantify the level of infeasibility of the nominal

solution in the face of small uncertainty, apply the robust optimization methodol-

ogy when the level of infeasibility is large to obtain a solution that is immunized

against data perturbations, and determine the price of robustness. However, theirs

considered partial data uncertainty: they coined the term “ugly reals” (e.g. 15.79081

or 84.644257) that may characterize certain technological devices or processes and

usually are known to within three or four digits of accuracy, but no more. Therefore,

these “ugly reals” are uncertain. On the other hand, coefficients of zeros and ones

seem to reflect the structure of the problem and are consequently certain. They

show for one constraint from the PILOT4 LP that when the uncertain data is per-

turbed by 0.1%, the worst-case violation can be as large as 450% of the right-hand

side, while the typical violation when perturbations are independently and uniformly

distributed between [-0.1%, 0.1%] results in an average violation of 125% of the right-

hand side. Thus, the work presented in this paper is important for two reasons: it

demonstrates the need to consider robust solutions when the problem data is subject

78

to perturbations, and secondly, gives real examples of structured data perturbations,

as reflected in “certain” and “uncertain” coefficients.

With this distinction of certain and uncertain coefficients, Peña’s work in [55] con-

siders block-structured perturbation where only some of the coefficients are subject to

perturbations. Consider the homogenized linear system (and subsequent definitions)

as presented by Peña in [55]:

Ax = 0, x ∈ C

where A ∈ Rm×n and C is a closed convex cone. Peña considers several types of

block-structured perturbations: low-rank perturbations, horizontal block-structured

perturbations, and general block-structured perturbations. As an example, the hor-

izontal block-structured perturbation occurs when the subspaces Xi, where Rn =

X1× . . .×Xk, form a direct decomposition of Rn and Y1, . . . , Yk are linear subspaces

of Rm. The horizontal block-structured perturbation is then:

(5.16) ∆A =

[
∆A1 . . . ∆Ak

]
where ∆Ai : Xi → Yi, i = 1, . . . , k. Given α1, . . . , αk ≥ 0, the scaled norm is defined

as the following:

‖∆A‖α = max
{‖∆Ai‖

αi
| αi 6= 0, i = 1, . . . , k

}
The distance to infeasibility, denoted distblk(A), is then:

distblk(A) = inf
{
‖∆A‖α | ∆A has form (5.16) s.t. (A+∆A)x = 0, x ∈ C is inconsistent

}
.

Our work is similar in that we both consider block-structured perturbations that

perturb only some of the data in a particular fashion, but the main difference in

[55] is Peña’s key proof technique underlying his results: a low-rank construction of

the minimal infeasible perturbation, an extension of his rank-one approach used in

79

[53], which he uses to extend Eckart and Young’s identity for distance to infeasibil-

ity of conic systems under block-structured perturbations. We do not attempt to

characterize the minimal infeasible perturbation, but rather study the relationship

between various distances to infeasibility of a robust counterpart under particular

data transformations and the distance to infeasibility of the equivalent conic system

under structured perturbations.

The two types of structured perturbations to the SOCP data we are considering

deal with perturbing particular rows of d. The first type of structured perturbation

∆Id only perturbs the first row of each R̃T
i block:

(5.17) ∆Id =



∆P 0
1

0


...∆P 0
m

0




.

Definition 5.18. Let the SOCP distance to infeasibility under perturbation struc-

ture I be:

(5.19) ρI(d) = inf
d+∆Id∈ISOCP

{‖∆Id‖p | ∆Id has structure (5.17)}.

where ‖∆Id‖p is the matrix p-norm defined in equation (5.13).

Notice that, since the p-norm of a matrix is invariant to deletion of rows consisting

entirely of zeros, we can simplify ‖∆Id‖p as shown below:

‖∆Id‖p = max
‖x‖p=1

‖∆Idx‖p

= max
‖x‖p=1

‖∆P 0x‖p

= ‖∆P 0‖p.(5.20)

80

The second type of structured perturbation ∆IId perturbs every row except the

first row of each R̃T
i block:

(5.21) ∆IId =



 0

∆RT
1


... 0

∆RT
m




.

Definition 5.22. Let the SOCP distance to infeasibility under perturbation struc-

ture II be:

(5.23) ρII(d) = inf
d+∆IId∈ISOCP

{‖∆IId‖p | ∆IId has structure (5.21)}.

where ‖∆IId‖p is the matrix p-norm defined in equation (5.13).

Let RT be the matrix produced by stacking each RT
i matrix on top of each other

(recall that the RT
i matrices are produced by stacking the ith row of each P j matrix

j = 1, . . . , K on top of each other):

(5.24) RT =


RT

1

...

RT
m

 =




P 1

1

...

PK
1


...
P 1
m

...

PK
m





,

and let ∆RT be defined analogously. Again, removal of rows consisting entirely of

zeros allows for simplification of ‖∆IId‖p. Moreover, the p-norm of a matrix is also

81

invariant to permutations of rows of the matrix, and since RT is a result of row

permutations of S, where

(5.25) S =


P 1

...

PK

 ,

and, analogously, ∆RT is a result of row permutations of ∆S, we obtain the following

simplification of ‖∆IId‖p:

‖∆IId‖p = max
‖x‖p=1

‖∆IIdx‖p

= max
‖x‖p=1

‖∆RTx‖p

= ‖∆RT‖p

= ‖∆S‖p.(5.26)

As discussed earlier, the traditional distance to infeasibility gives an indication of

how far a data instance A is from the boundary of infeasibility B and therefore how

well-posed (or ill-posed) the convex feasibility problem (5.1) is. We now consider the

feasibility status of robust counterparts and well-posedness (or ill-posedness) of the

robust counterpart, i.e., how far the ellipsoidal uncertainty set in data space is from

the boundary of infeasibility. As ρ(A) measures the size of the perturbation necessary

to make problem (5.1) change feasibility status, we propose ways to measure sizes

of transformations that make the robust counterpart change feasibility status. With

this goal in mind, the remainder of the chapter discusses four types of transforma-

tions to the RC data and provides a way to measure the size of the transformation.

Additionally, we relate the structured distance to infeasibility of the SOCP to the

distance to infeasibility of the RC.

82

5.5 Shifting the center of the ellipsoid: RC transformation structure 0

Let the ellipsoid defining the original RC be denoted by Ed where Ed is robustly

feasible (Ed ⊂ F) and has center P 0. One way to determine how far Ed is from the

boundary B is to shift Ed in data space until Ed intersects cl(I). This type of trans-

formation, referred to as structure 0, changes the data defining the center of ellipsoid

without changing the size or shape of the ellipsoid and is the natural extension of the

usual data perturbation for LCP . Moreover, transforming Ed with center P 0 to Ed̄

having center P 0 + ∆P 0 allows us to measure the size of this transformation simply

as ‖P 0 + ∆P 0 − P 0‖ = ‖∆P 0‖. Figure 5.2 illustrates an example of a structure 0

transformation while Table 5.1 summarizes the changes to the original RC data and

ellipsoid under transformation of structure 0.

Original Transformed

Data d = (P 0, P 1, . . . , PK) d̄ = (P 0 + ∆P 0, P 1, . . . , PK)

Ellipsoid Ed = {P 0 +
K∑

j=1

ujP
j | ‖u‖2 ≤ 1} Ed̄ = {(P 0 + ∆P 0) +

K∑
j=1

ujP
j | ‖u‖2 ≤ 1}

Table 5.1: Changes to the RC data under structure 0 transformation

This type of transformation seems natural when the nominal data P 0 is uncertain,

but the data defining the size and shape of Ed is known. As an example, consider five

machines that each perform a specific type of measurement. Each machine performs

and stores this measurement multiple times over a period of time and thus each

machine has collected a set of data for which it can determine the mean value and

standard deviation. P 0 could represent some kind of aggregate value of the five mean

values while P j could represent the standard deviation of data set j from machine

j, j = 1, . . . , 5. The nominal data P 0 might not be a meaningful measure, while

83

B

Figure 5.2: Example of RC transformation under structure 0 transformation

P 1, . . . , P 5 are very meaningful. A transformation under structure 0 could indicate

the largest error on P 0, while still maintaining robust feasibility.

Definition 5.27. Let the RC distance to infeasibility under transformation structure

0 be:

(5.28) ρ0(d) = inf
Ed̄∩I6=∅

{‖∆P 0‖p | d̄ = (P 0 + ∆P 0, P 1, . . . , PK)}.

As is the case with ρ(P 0) defined in equation (5.5), the farther away Ed is from

I, the larger ρ0(d) becomes.

Rewriting the transformed RC having data d̄ = (P 0 + ∆P 0, P 1, . . . , PK) results

84

in the equivalent SOCP with data

d̄ =



P 0
1 + ∆P 0

1

RT
1


...P 0

m + ∆P 0
m

RT
m




.

Notice that ∆Id = d̄ − d corresponds to SOCP perturbation of structure I given

in equation (5.17). Table 5.2 summarizes the changes to the SOCP data under

perturbation structure I.

Original Perturbed

SOCP P 0
i x− ‖RT

i x‖2 ≥ 0 ∀i (P 0
i + ∆P 0

i)x− ‖RT
i x‖2 ≥ 0 ∀i

x ∈ CX x ∈ CX

Data d =


R̃T

i

...

R̃T
i


=



P
0
1

RT
1


...P
0
m

RT
m





d̄ =



P
0
1 + ∆P 0

1

RT
1


...P

0
m + ∆P 0

m

RT
m




Table 5.2: Changes to the SOCP data under structure I perturbation

Proposition 5.29. Let the norm on the SOCP data d ∈ Rm(K+1)×n be the matrix p-

norm and the SOCP distance to infeasibility under perturbation structure I be defined

as in equation (5.19). Let the norm on the RC data be the matrix p-norm and the RC

distance to infeasibility under transformation structure 0 be defined as in equation

(5.28). Then

ρI(d) ≤ ρ0(d).

85

Proof. If ρ0(d) = +∞, then the result is trivially true. Assume ρ0(d) < +∞. Let

ε > 0 and let ∆P 0 be such that Ed̄ ∩ I 6= ∅, where d̄ = (P 0 + ∆P 0, P 1, . . . , PK) and

‖∆P 0‖p ≤ ε+ ρ0(d).

Let ∆Id be a perturbation of the SOCP data d having structure I obtained by

replacing the appropriate rows with rows of ∆P 0, as defined above, in a m(K+1)×n

matrix of zeros. Note that, since Ed̄ ∩ I 6= ∅, d+ ∆Id ∈ ISOCP. Hence,

ρI(d) ≤ ‖∆Id‖p,

which results in

ρI(d) ≤ ‖∆Id‖p = ‖∆P 0‖p ≤ (ε+ ρ0(d)),

by equation (5.20). Since the above is true for any ε > 0, the desired result follows.

Proposition 5.30. Consider LCP , the original conic system given by problem (5.1).

Let the distance to infeasibility of LCP be defined by equation (5.2) and let the

norm on the LCP data be the p-norm. Let the RC distance to infeasibility under

transformation structure 0 be defined as in equation (5.28) and let the norm on the

RC data be the p-norm. Then

ρ0(d) ≤ ρ(P 0).

Proof. Let ∆P 0 be such that P 0 + ∆P 0 ∈ I. Then the instance of RC with data

d̄ = (P 0 + ∆P 0, P 1, . . . , PK) is not feasible and thus ρ0(d) ≤ ‖∆P 0‖p. Therefore,

ρ0(d) ≤ ρ(P 0).

86

5.6 Transforming the size and shape of the ellipsoid

5.6.1 Common-scaling transformation of the ellipsoid: RC transformation structure
1

Assuming Ed is robustly feasible (Ed ⊂ F) and has center P 0, another way to

determine how far Ed is from the boundary of infeasibility is to inflate, or scale, Ed

in data space until Ed intersects cl(I). This type of transformation, referred to as

structure 1, fixes the center of the ellipsoid and maintains the shape of the ellipsoid,

but increases the size of the ellipsoid. The obvious way to measure the size of this

perturbation is to look at the magnitude of the size increase. Figure 5.3 illustrates an

example of a structure 1 transformation, while Table 5.3 summarizes the changes to

the original RC data and ellipsoid under transformation structure 1. The parameter

α > 0 reflects the magnitude of scaling of the ellipsoid.

Original Transformed

Data d = (P 0, P 1, . . . , PK) d̄ = (P 0, αP 1, . . . , αPK)

Ellipsoid Ed = {P 0 +
K∑

j=1

ujP
j | ‖u‖2 ≤ 1} Ed̄ = {P 0 +

K∑
j=1

ujαP
j | ‖u‖2 ≤ 1}

Table 5.3: Changes to the RC data under structure 1 transformation; here α > 0

This type of transformation seems natural when the nominal data P 0 is known,

but the data defining the size and shape of Ed is uncertain. Consider the machine

example, but add the modification that the data storage for each machine is getting

too costly and management is trying to determine by how much to reduce the data

collection and storage for each machine, but now the nominal data is known and

certain. The issue with reducing data collection is that the reduced number of

samples results in smaller data sets, which cause the standard deviations to increase,

resulting in the inflation of the ellipsoid. A transformation under structure 1 would

87

B

Figure 5.3: Example of RC transformation under structure 1 transformation

indicate in some manner by how much one could reduce the number the samples

collected from each machine, but still maintain robust feasibility.

Definition 5.31. Let the RC distance to infeasibility under transformation structure

1 be:

(5.32) ρ1(d) = inf
Ed̄∩I6=∅

{α | d̄ = (P 0, αP 1, . . . , αPK)} − 1.

Since, according to our assumption, Ed ⊂ F , one needs to take α ≥ 1 to obtain

an infeasible or nearly infeasible data instance (where Ed̄ ∩I 6= ∅), which guarantees

ρ1(d) ≥ 0. The larger ρ1(d), the farther away Ed is from I.

Rewriting the transformed RC having data d̄ = (P 0, αP 1, . . . , αPK) results in the

88

equivalent SOCP with data

d̄ =



 P 0
1

αRT
1


... P 0
m

αRT
m




.

Notice that ∆IId = d̄− d corresponds to SOCP perturbation of structure II given in

equation (5.21). Table 5.4 summarizes the changes to the SOCP data resulting from

this perturbation.

Original Perturbed

SOCP P 0
i x− ‖RT

i x‖2 ≥ 0 ∀i P 0
i x− ‖αRT

i x‖2 ≥ 0 ∀i

x ∈ CX x ∈ CX

Data d =


R̃T

i

...

R̃T
i


=



P
0
1

RT
1


...P
0
m

RT
m





d̄ =



 P 0
1

αRT
1


... P 0
m

αRT
m




Table 5.4: Changes to the SOCP data under structure II perturbation resulting from a structure 1

transformation on the RC data.

Proposition 5.33. Let the norm on the SOCP data d ∈ Rm(K+1)×n be the matrix

p-norm and the SOCP distance to infeasibility under perturbation structure II be

defined as in equation (5.23). Let the norm on the RC data be the matrix p-norm

and the RC distance to infeasibility under transformation structure 1 be defined as

in equation (5.32). Then

ρII(d) ≤ ‖S‖pρ1(d).

89

where S, defined in equation (5.25), is the matrix produced by stacking the P j’s,

j = 1, . . . , K on top of each other.

Proof. If ρ1(d) = +∞, then the result is trivially true. Assume ρ1(d) < +∞. Let

ε > 0 and let α be such that Ed̄ ∩ I 6= ∅, where d̄ = (P 0, αP 1, . . . , αPK) and

α− 1 ≤ ε+ ρ1(d).

Let ∆IId be a perturbation of the SOCP data d having structure II obtained by

replacing the appropriate blocks of zeros with blocks ∆RT
i = (α−1)RT

i , i = 1, . . . ,m

in a m(K + 1)× n matrix of zeros. Note that, since Ed̄ ∩ I 6= ∅, d + ∆IId ∈ ISOCP.

Then we have:

‖∆IId‖p = max
‖x‖p=1

‖∆IIdx‖p

= max
‖x‖p=1

‖(α− 1)RTx‖p

= (α− 1) max
‖x‖p=1

‖RTx‖p

= (α− 1)‖RT‖p

= (α− 1)‖S‖p.

Hence,

ρII(d) ≤ ‖∆IId‖p,

which results in

ρII(d) ≤ ‖∆IId‖p = (α− 1)‖S‖p ≤ ‖S‖p(ε+ ρ1(d)).

Since the above is true for any ε > 0, the desired result follows.

5.6.2 Independent-scaling transformation of the ellipsoid: RC transformation struc-
ture 2

Assuming Ed is robustly feasible (Ed ⊂ F) and has center P 0, a third way way

to determine how far Ed is from the boundary of infeasibility is to amplify each P j

90

independently until at least one point in Ed intersects cl(I). This type of transforma-

tion, referred to as structure 2, fixes the center of the ellipsoid, but changes the size

and shape of the ellipsoid in a particular way. The way we propose to measure this

type of transformation is to determine which P j received the largest scaling factor.

If the P j’s were the axes of the ellipsoid, this would tell you which axis received the

largest increase in length to reach infeasibility. Figure 5.4 illustrates an example of

a structure 2 transformation where the P j’s are the axes of the ellipsoid. As you can

see, under a structure 2 transformation, each P j is scaled independently and so the

length of each P j changes, but not the direction. Table 5.5 summarizes the changes

to the original RC data and ellipsoid under transformation structure 2.

B

!d 2P2

1P

2
2P!

1
1P!

Figure 5.4: Example of RC transformation under structure 2 transformation

Original Transformed

Data d = (P 0, P 1, . . . , PK) d̄ = (P 0, α1P
1, . . . , αKP

K)

Ellipsoid Ed = {P 0 +
K∑

j=1

ujP
j | ‖u‖2 ≤ 1} Ed̄ = {P 0 +

K∑
j=1

ujαjP
j | ‖u‖2 ≤ 1}

Table 5.5: Changes to the RC data under structure 2 transformation

As the structure 2 transformation is similar to the structure 1 transformation,

91

structure 2 transformations would occur when the nominal data P 0 is known, but

the data defining the size and shape of Ed is uncertain. Consider the machine exam-

ple again where management wants to reduce the data storage for just one machine;

however, as each machine results in standard deviations of differing sizes, it isn’t ob-

vious which machine would produce the most detrimental change to the uncertainty

set. Thus, a transformation under structure 2 would indicate which machine, and

therefore which data set, is the most sensitive to reductions in sample size and would

pinpoint the worst machine to reduce the number the samples collected and would

provide some measure by how much the sample size could be reduced before reaching

robust infeasibility.

Definition 5.34. Let the RC distance to infeasibility under transformation structure

2 be:

(5.35) ρ2(d) = inf
Ed̄∩I6=∅

{ max
j=1,...,K

αj | d̄ = (P 0, α1P
1, . . . , αKP

K)} − 1.

Let e be the vector of ones in RK and α = (α1, . . . , αK)T .

Since Ed ⊂ F , it is necessary to have at least one αj ≥ 1 to obtain an infeasible

robust problem instance, which guarantees ρ2(d) ≥ 0. Let αmax be the component

of α that attains the maximum in equation (5.35).

Rewriting the transformed RC having data d̄ = (P 0, α1P
1, . . . , αKP

K) results in

the equivalent SOCP with data

d̄ =



 P 0
1

diag(α)RT
1


... P 0
m

diag(α)RT
m




.

92

Original Perturbed

SOCP P 0
i x− ‖RT

i x‖2 ≥ 0 ∀i P 0
i x− ‖diag(α)RT

i x‖2 ≥ 0 ∀i

x ∈ CX x ∈ CX

Data d =


R̃T

i

...

R̃T
i


=



P
0
1

RT
1


...P
0
m

RT
m





d̄ =



 P 0
1

diag(α)RT
1


... P 0
m

diag(α)RT
m




Table 5.6: Changes to the SOCP data under structure II perturbation resulting from a structure 2

transformation on the RC data.

Notice that ∆IId = d̄− d corresponds to SOCP perturbation of structure II given in

equation (5.21). Table 5.6 summarizes the changes to the SOCP data resulting from

this perturbation.

Proposition 5.36. Let the norm on the SOCP data d ∈ Rm(K+1)×n be the matrix

p-norm and the SOCP distance to infeasibility under perturbation structure II be

defined as in equation (5.23). Let the norm on the RC data be the matrix p-norm

and the RC distance to infeasibility under transformation structure 2 be defined as

in equation (5.35). Then

ρII(d) ≤ ‖S‖pρ2(d).

Proof. If ρ2(d) = +∞, then the result is trivially true. Assume ρ2(d) < +∞. Let

ε > 0 and let α ∈ RK be such that Ed̄ ∩I 6= ∅, where d̄ = (P 0, α1P
1, . . . , αKP

K) and

αmax − 1 ≤ ε+ ρ2(d).

Let ∆IId be a perturbation of the SOCP data d having structure II obtained by

replacing the appropriate blocks with blocks ∆RT
i = (diag(α)− e)RT

i , i = 1, . . . ,m

93

in a m(K + 1)× n matrix of zeros. Note that, since Ed̄ ∩ I 6= ∅, d + ∆IId ∈ ISOCP.

Using the actual form of ∆IId given in Table 5.6, we get the following bound:

‖∆IId‖p = max
‖x‖p=1

‖∆IIdx‖p

= max
‖x‖p=1

‖diag(A− E)RTx‖p

= ‖diag(A− E)RT‖p

≤ ‖diag(A− E)‖p‖RT‖p

= (αmax − 1)‖RT‖p

= (αmax − 1)‖S‖p.

where

A− E =


α− e

...

α− e

 ∈ RKm.

The second to last equality uses the result in equation (5.15). Hence,

ρII(d) ≤ ‖∆IId‖p,

which results in

ρII(d) ≤ ‖∆IId‖p ≤ (αmax − 1)‖S‖p ≤ ‖S‖p(ε+ ρ2(d)).

Since the above is true for any ε > 0, the desired result follows.

Notice that if we multiply each P j by αmax, then we actually obtain a structure

1 transformation to the ellipsoid that corresponds to an infeasible instance of the

RC (5.7); thus ρ1(d) ≤ ρ2(d). On the other hand, as a structure 2 transformation is

more general than a structure 1 transformation, we have ρ2(d) ≤ ρ1(d). These two

inequalities result in ρ1(d) = ρ2(d).

94

5.6.3 Structured linear transformation of the ellipsoid: RC transformation structure
3

In this section we consider a more general transformation that changes the size

and shape of the ellipsoid, but maintains the center P 0. In particular, we consider a

transformation that results from pre-multiplying the matrices P 1, . . . , PK by a matrix

Q ∈ Rm×m, thus resulting in a linear transformation of the ellipsoid Ed. We refer to

this transformation as transformation of structure 3. Figure 5.5 illustrates an exam-

ple of a structure 3 transformation, which shows that under a linear transformation,

the axes of the ellipsoid are rotated and, in addition, their lengths change. Table 5.7

summarizes the changes to the original RC data and ellipsoid under transformation

structure 3.

!

1
P

2
P

2
QP

1
QP

Figure 5.5: Example of RC transformation under structure 3 transformation; here Q ∈ Rm×m

To identify the data of the SOCP, equivalent to the transformed RC, first consider

the following example where m = 2, n = 3, K = 2, and Q ∈ R2×2.

95

Original Transformed

Data d = (P 0, P 1, . . . , PK) d̄ = (P 0, QP 1, . . . , QPK)

Ellipsoid Ed = {P 0 +
K∑

j=1

ujP
j | ‖u‖2 ≤ 1} Ed̄ = {P 0 +

K∑
j=1

ujQP
j | ‖u‖2 ≤ 1}

Table 5.7: Changes to the RC data under structure 3 transformation

QP 1

QP 2

 =

q11 q12

q21 q22


P 1

11 P 1
12 P 1

13

P 1
21 P 1

22 P 1
23


q11 q12

q21 q22


P 2

11 P 2
12 P 2

13

P 2
21 P 2

22 P 2
23



=



q11P
1
11 + q12P

1
21 q11P

1
12 + q12P

1
22 q11P

1
13 + q12P

1
23

q21P
1
11 + q22P

1
21 q21P

1
12 + q22P

1
22 q21P

1
13 + q22P

1
23

q11P
2
11 + q12P

2
21 q11P

2
12 + q12P

2
22 q11P

2
13 + q12P

2
23

q21P
2
11 + q22P

2
21 q21P

2
12 + q22P

2
22 q21P

2
13 + q22P

2
23



= un-vec







q11 0 0 0 0 0

0 q11 0 0 0 0

0 0 q11 0 0 0

0 0 0 q11 0 0

0 0 0 0 q11 0

0 0 0 0 0 q11





q12 0 0 0 0 0

0 q12 0 0 0 0

0 0 q12 0 0 0

0 0 0 q12 0 0

0 0 0 0 q12 0

0 0 0 0 0 q12



q21 0 0 0 0 0

0 q21 0 0 0 0

0 0 q21 0 0 0

0 0 0 q21 0 0

0 0 0 0 q21 0

0 0 0 0 0 q21





q22 0 0 0 0 0

0 q22 0 0 0 0

0 0 q22 0 0 0

0 0 0 q22 0 0

0 0 0 0 q22 0

0 0 0 0 0 q22







P 1
11

P 1
12

P 1
13

P 2
11

P 2
12

P 2
13

P 1
21

P 1
22

P 1
23

P 2
21

P 2
22

P 2
23




= un-vec(Q̂vec(RT)).

96

In general, Q̂ ∈ RKmn×Kmn is the block-structured matrix consisting of elements of

Q as defined below:

(5.37)

Q̂ =



Q̃11 0 . . . 0 Q̃12 0 . . . 0 . . . Q̃1m 0 . . . 0

0 Q̃11 . . . 0 0 Q̃12 . . . 0 . . . 0 Q̃1m . . . 0

...
...

. . .
...

...
...

. . .
... . . .

...
...

. . .
...

0 0 . . . Q̃11 0 0 . . . Q̃12 . . . 0 0 . . . Q̃1m

Q̃21 0 . . . 0 Q̃22 0 . . . 0 . . . Q̃2m 0 . . . 0

0 Q̃21 . . . 0 0 Q̃22 . . . 0 . . . 0 Q̃2m . . . 0

...
...

. . .
...

...
...

. . .
... . . .

...
...

. . .
...

0 0 . . . Q̃21 0 0 . . . Q̃22 . . . 0 0 . . . Q̃2m

...
...

...

Q̃m1 0 . . . 0 Q̃m2 0 . . . 0 . . . Q̃mm 0 . . . 0

0 Q̃m1 . . . 0 0 Q̃m2 . . . 0 . . . 0 Q̃mm . . . 0

...
...

. . .
...

...
...

. . .
... . . .

...
...

. . .
...

0 0 . . . Q̃m1 0 0 . . . Q̃m2 . . . 0 0 . . . Q̃mm



,

and

Q̃ab =



qab 0 . . . 0

0 qab . . . 0

...
...

. . .
...

0 0 . . . qab


∈ Rn×n

where qab is the (a, b)th element of Q.

97

Let Q̃i ∈ RKn×Kmn denote the ith-row block of Q̂:

Q̃i =



Q̃i1 0 . . . 0 Q̃i2 0 . . . 0 . . . Q̃im 0 . . . 0

0 Q̃i1 . . . 0 0 Q̃i2 . . . 0 . . . 0 Q̃im . . . 0

...
...

. . .
...

...
...

. . .
... . . .

...
...

. . .
...

0 0 . . . Q̃i1 0 0 . . . Q̃i2 . . . 0 0 . . . Q̃im


,

then rewriting the transformed RC having data d̄ = (P 0, QP 1, . . . , QPK) results in

the equivalent SOCP with data

d̄ =



 P 0
1

un-vec(Q̃1vec(RT))


... P 0
m

un-vec(Q̃mvec(RT))




.

Notice, ∆IId = d̄ − d corresponds to SOCP perturbation of structure II given in

equation (5.21). Table 5.8 summarizes the changes to the SOCP data resulting from

this perturbation.

98

Original Perturbed

SOCP P 0
i x− ‖RT

i x‖2 ≥ 0 ∀i P 0
i x− ‖un-vec(Q̃ivec(RT))x‖2 ≥ 0 ∀i

x ∈ CX x ∈ CX

Data d =


R̃T

i

...

R̃T
i

 =



P 0
1

RT
1


...P 0
m

RT
m




d̄ =



 P 0
1

un-vec(Q̃1vec(RT))


... P 0
m

un-vec(Q̃mvec(RT))




Table 5.8: Changes to the SOCP data under structure II perturbation resulting from a structure 3

transformation on the RC data.

Definition 5.38. Let the RC distance to infeasibility under transformation structure

3 be:

(5.39) ρ3(d) = inf
Ed̄∩I6=∅

{‖Q̂− IKmn‖ | d̄ = (P 0, QP 1, . . . , QPK)}

where Q ∈ Rm×m, IKmn is the Kmn × Kmn identity matrix and Q̂ is defined in

(5.37).

Proposition 5.40. Let the norm on the SOCP data d ∈ Rm(K+1)×n be the matrix

p-norm and the SOCP distance to infeasibility under perturbation structure II be

defined as in equation (5.23). Let the norm on the RC data be the matrix p-norm

and the RC distance to infeasibility under transformation structure 3 be defined as

in equation (5.39). Then

(5.41) ρII(d) ≤ ‖S‖pρ3(d).

Proof. If ρ3(d) = +∞, then the result is trivially true. Assume ρ3(d) < +∞. Let

ε > 0 and let Q be such that Ed̄ ∩ I 6= ∅, where d̄ = (P 0, QP 1, . . . , QPK) and

‖Q̂− IKmn‖p ≤ ε+ ρ3(d).

99

Let ∆IId be a perturbation of the SOCP data d having structure II obtained by

replacing the appropriate blocks with blocks ∆RT
i = un-vec(Q̃ivec(RT)) − RT

i , i =

1, . . . ,m in a m(K + 1)× n matrix of zeros. Note that, since Ed̄ ∩ I 6= ∅, d+ ∆IId ∈

ISOCP. Using the actual form of ∆IId given in Table 5.8, we get the following bound:

‖∆IId‖p = max
‖x‖p=1

‖∆IIdx‖p

= max
‖x‖p=1

‖(un-vec(Q̂vec(RT))−RT)x‖p

= max
‖x‖p=1

‖(un-vec((Q̂− IKmn)vec(RT)))x‖p

= ‖un-vec((Q̂− IKmn)vec(RT))‖p

≤ ‖(Q̂− IKm)‖p‖RT‖p

= ‖(Q̃− IKm)‖p‖S‖p.

Hence,

ρII(d) ≤ ‖∆IId‖p,

which results in

ρII(d) ≤ ‖∆IId‖p ≤ ‖Q̃− IKm‖p‖S‖p ≤ ‖S‖p(ε+ ρ3(d)).

Since the above is true for any ε > 0, the desired result follows.

In conclusion, what we have been able to show is that if the RC is not well-

posed (Ed is nearly infeasible), then neither is the SOCP, given that the distance

to infeasibility of the SOCP is bounded above by an infeasible perturbation to the

RC. One interesting research hypothesis that remains to be proved (or disproved) is

the following: if the SOCP is not well-posed, then neither is the RC. Proving this

statement would result in an if and only if condition concerning the well-posedness

of the RC and SOCP.

CHAPTER VI

Conclusions

In Chapters II, III, and IV we have proposed an approach to linear optimization

with recourse that is robust with respect to the underlying probabilities. Specifi-

cally, instead of relying on the actual distribution, which would be difficult to esti-

mate accurately, or a family of distributions, which would significantly increase the

complexity of the problem at hand, we have modeled random variables as uncertain

parameters in a polyhedral uncertainty set and analyzed the problem for the worst-

case instance within that set. We have shown that this robust formulation can be

solved using a cutting-plane algorithm and standard linear optimization software.

We tested our approach on a multi-item newsvendor problem and a production plan-

ning problem with demand uncertainties, with encouraging computational results.

Analysis of obtained solutions provides insight into appropriate levels of conservatism

in planning (as captured by the budget of uncertainty) to obtain lower average costs.

Recently cutting-plane algorithms have been used to solve adjustable robust op-

timization problems, but the work focused on solving linear adjustable robust prob-

lems. An obvious next step is to use cutting-plane algorithms to solve nonlinear ad-

justable robust optimization problems and see if Kelley’s method is still superior, in

computational performance, to other cutting-plane algorithms such as analytic center

100

101

or the subgradient algorithm. As the computational tractability of the cutting-plane

algorithm approach is dependent upon the uncertainty set, the impact of various

uncertainty sets on the computational tractability should be investigated.

In Chapter V we consider a robust counterpart of a linear feasibility problem

subjected to data perturbations characterized by an ellipsoidal uncertainty set, and

propose several possible measures of distance to ill-posedness for such a problem. We

connect these measures to the size and shape of the uncertainty set used to define the

robust problem, and provide bounds on these measures in terms of the traditional

structured distance to ill-posedness of an equivalent conic feasibility problem, thus

grounding our ideas in established concepts. One interesting research hypothesis

remains unanswered concerning the connection between the well-posedness of the RC

and the SOCP: given that we have shown if the RC is not well-posed (Ed is nearly

infeasible), then neither is the SOCP, does the converse hold, i.e., if the SOCP is not

well-posed, then neither is the RC? Addressing this question would give us insight

into the connection between the conditioning of the two problems and seems the first

step in the continuation of this research.

The eventual goal of this line of research though is to develop measures of con-

ditioning for robust optimization problems that would be helpful in understanding

the interplay between the choice of the uncertainty set and the impact of that choice

on the structure and objective function value of the resulting robust problem, and

provide modeling guidance in selecting uncertainty sets that are appropriate for the

problem at hand. Chapter V only presents measures of distance to ill-posedness for

a robust problem under ellipsoidal uncertainty; however, there are equivalent conic

formulations for robust counterparts characterized by other types of uncertainty sets

and the impact of alternative uncertainty sets should be investigated. Moreover,

102

the results presented concerned a robust linear feasibility problem; other types of

programs (feasibility and optimization problems) should be considered.

BIBLIOGRAPHY

103

104

BIBLIOGRAPHY

[1] Alper Atamtürk and Muhong Zhang. Two-stage robust network flow and design under demand
uncertainty. Oper. Res., 55(4):662–673, 2007.

[2] D. Atkinson and P. Vaidya. A cutting plane algorithm for convex programming that uses
analytic centers. Math. Programming, 69(1, Ser. B):1–43, 1995. Nondifferentiable and large-
scale optimization (Geneva, 1992).

[3] Igor Averbakh and Yun-Bin Zhao. Explicit reformulations for robust optimization problems
with general uncertainty sets. SIAM J. Optim., 18(4):1436–1466, 2007.

[4] O. Bahn, O. du Merle, J.-L. Goffin, and J.-P. Vial. A cutting plane method from analytic
centers for stochastic programming. Math. Programming, 69(1, Ser. B):45–73, 1995. Nondif-
ferentiable and large-scale optimization (Geneva, 1992).

[5] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear programming. Wiley-
Interscience [John Wiley & Sons], Hoboken, NJ, third edition, 2006. Theory and algorithms.

[6] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust solutions of
uncertain linear programs. Math. Program., 99(2, Ser. A):351–376, 2004.

[7] A. Ben-Tal and A. Nemirovski. Robust truss topology design via semidefinite programming.
SIAM J. Optim., 7(4):991–1016, 1997.

[8] A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769–805,
1998.

[9] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Oper. Res.
Lett., 25(1):1–13, 1999.

[10] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems contaminated
with uncertain data. Math. Program., 88(3, Ser. A):411–424, 2000.

[11] A. Ben-Tal and A. Nemirovski. On approximate robust counterparts of uncertain semidefinite
and conic quadratic programs. In System modeling and optimization, XX (Trier, 2001), volume
130 of IFIP Int. Fed. Inf. Process., pages 1–22. Kluwer Acad. Publ., Boston, MA, 2003.

[12] A. Ben-Tal, A. Nemirovski, and C. Roos. Robust solutions of uncertain quadratic and conic
quadratic problems. SIAM J. Optim., 13(2):535–560 (electronic), 2002.

[13] J. F. Benders. Partitioning procedures for solving mixed-variables programming problems.
Comput. Manag. Sci., 2(1):3–19, 2005. Reprinted from Numer. Math. 4 (1962), 238–252
[MR0147303].

[14] Dimitris Bertsimas and Melvyn Sim. Robust discrete optimization and network flows. Math.
Program., 98(1-3, Ser. B):49–71, 2003. Integer programming (Pittsburgh, PA, 2002).

[15] Dimitris Bertsimas and Melvyn Sim. The price of robustness. Oper. Res., 52(1):35–53, 2004.

105

[16] Dimitris Bertsimas and Melvyn Sim. Tractable approximations to robust conic quadratic
optimization problems. Math. Program., 107(1-2):5–36, 2006.

[17] Dimitris Bertsimas and Aurélie Thiele. A robust optimization approach to supply chain man-
agement. In Integer programming and combinatorial optimization, volume 3064 of Lecture
Notes in Comput. Sci., pages 86–100. Springer, Berlin, 2004.

[18] Dimitris Bertsimas and Aurélie Thiele. A robust optimization approach to inventory theory.
Oper. Res., 54(1):150–168, 2006.

[19] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear optimization. Athena Scien-
tific and Dynamic Ideas, Belmont, Massachusetts, 1997.

[20] Daniel Bienstock. Experiments in robust portfolio optimization. Technical report, Columbia
University, January 2007. Columbia Center for Financial Engineering Report 2007-01.

[21] Daniel Bienstock and Nuri Özbay. Computing robust basestock levels. Discrete Optim.,
5(2):389–414, 2008.

[22] John R. Birge and François Louveaux. Introduction to stochastic programming. Springer Series
in Operations Research. Springer-Verlag, New York, 1997.

[23] Dennis Cheung and Felipe Cucker. A new condition number for linear programming. Math.
Program., 91(1, Ser. A):163–174, 2001.

[24] Dennis Cheung and Felipe Cucker. Solving linear programs with finite precision. I. Condition
numbers and random programs. Math. Program., 99(1, Ser. A):175–196, 2004.

[25] Dennis Cheung and Felipe Cucker. Solving linear programs with finite precision. II. Algorithms.
J. Complexity, 22(3):305–335, 2006.

[26] M. Chu, Y. Zinchenko, S. Henderson, and M. Sharpe. Robust optimization for intensity
modulated radiation therapy treatment planning under uncertainty. Physics in Medicine and
Biology, 50(23):5463–5477, 2005.

[27] George B. Dantzig. Linear programming under uncertainty. Management Sci., 1:197–206,
1955.

[28] Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares problems with uncer-
tain data. SIAM J. Matrix Anal. Appl., 18(4):1035–1064, 1997.

[29] Laurent El Ghaoui, Francois Oustry, and Hervé Lebret. Robust solutions to uncertain semidef-
inite programs. SIAM J. Optim., 9(1):33–52 (electronic), 1999.

[30] Marina Epelman and Robert M. Freund. Condition number complexity of an elementary
algorithm for computing a reliable solution of a conic linear system. Math. Program., 88(3,
Ser. A):451–485, 2000.

[31] Marina Epelman and Robert M. Freund. A new condition measure, preconditioners, and
relations between different measures of conditioning for conic linear systems. SIAM J. Optim.,
12(3):627–655 (electronic), 2002.

[32] Sharon Filipowski. On the complexity of solving feasible systems of linear inequalities specified
with approximate data. Math. Programming, 71(3, Ser. A):259–288, 1995.

[33] Sharon Filipowski. On the complexity of solving sparse symmetric linear programs specified
with approximate data. Math. Oper. Res., 22(4):769–792, 1997.

[34] Robert M. Freund and Fernando Ordóñez. On an extension of condition number theory to
nonconic convex optimization. Math. Oper. Res., 30(1):173–194, 2005.

106

[35] Robert M. Freund, Fernando Ordóñez, and Kim-Chuan Toh. Behavioral measures and their
correlation with IPM iteration counts on semi-definite programming problems. Math. Pro-
gram., 109(2-3, Ser. B):445–475, 2007.

[36] Robert M. Freund and Jorge R. Vera. Condition-based complexity of convex optimization
in conic linear form via the ellipsoid algorithm. SIAM J. Optim., 10(1):155–176 (electronic),
1999.

[37] Robert M. Freund and Jorge R. Vera. Some characterizations and properties of the “distance
to ill-posedness” and the condition measure of a conic linear system. Math. Program., 86(2,
Ser. A):225–260, 1999.

[38] Robert M. Freund and Jorge R. Vera. On the complexity of computing estimates of condition
measures of a conic linear system. Math. Oper. Res., 28(4):625–648, 2003.

[39] J. Goffin, Z. Luo, and Y. Ye. Complexity analysis of an interior cutting plane method for
convex feasibility problems. SIAM J. Optim., 6(3):638–652, 1996.

[40] D. Goldfarb and G. Iyengar. Robust convex quadratically constrained programs. Math. Pro-
gram., 97(3, Ser. B):495–515, 2003. New trends in optimization and computational algorithms
(NTOC 2001) (Kyoto).

[41] D. Goldfarb and G. Iyengar. Robust portfolio selection problems. Math. Oper. Res., 28(1):1–
38, 2003.

[42] Peter Kall and Stein W. Wallace. Stochastic programming. Wiley-Interscience Series in Sys-
tems and Optimization. John Wiley & Sons Ltd., Chichester, 1994.

[43] J. E. Kelley, Jr. The cutting-plane method for solving convex programs. J. Soc. Indust. Appl.
Math., 8:703–712, 1960.

[44] Carl Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied
Mathematics, 2000.

[45] J. Mitchell. Computational experience with an interior point cutting plane algorithm. SIAM
J. Optim., 10(4):1212–1227 (electronic), 2000.

[46] J. Mitchell. Polynomial interior point cutting plane methods. Optim. Methods Softw.,
18(5):507–534, 2003.

[47] Almir Mutapcic and Stephen Boyd. Cutting-set methods for robust convex optimization with
pessimizing oracles, 2008.

[48] Y. Nesterov. Complexity estimates of some cutting plane methods based on the analytic
barrier. Math. Programming, 69(1, Ser. B):149–176, 1995. Nondifferentiable and large-scale
optimization (Geneva, 1992).

[49] Manuel A. Nunez and Robert M. Freund. Condition measures and properties of the central
trajectory of a linear program. Math. Programming, 83(1, Ser. A):1–28, 1998.

[50] Fernando Ordóñez and Robert M. Freund. Computational experience and the explanatory
value of condition measures for linear optimization. SIAM J. Optim., 14(2):307–333 (elec-
tronic), 2003.

[51] Fernando Ordóñez and Jiamin Zhao. Robust capacity expansion of network flows. Networks,
50(2):136–145, 2007.

[52] J. Peña and J. Renegar. Computing approximate solutions for convex conic systems of con-
straints. Math. Program., 87(3, Ser. A):351–383, 2000.

107

[53] Javier Peña. Understanding the geometry of infeasible perturbations of a conic linear system.
SIAM J. Optim., 10(2):534–550 (electronic), 2000.

[54] Javier Peña. Conditioning of convex programs from a primal-dual perspective. Math. Oper.
Res., 26(2):206–220, 2001.

[55] Javier Peña. A characterization of the distance to infeasibility under block-structured pertur-
bations. Linear Algebra Appl., 370:193–216, 2003.

[56] Javier Peña. On the block-structured distance to non-surjectivity of sublinear mappings. Math.
Program., 103(3, Ser. A):561–573, 2005.

[57] James Renegar. Some perturbation theory for linear programming. Math. Programming, 65(1,
Ser. A):73–91, 1994.

[58] James Renegar. Incorporating condition measures into the complexity theory of linear pro-
gramming. SIAM J. Optim., 5(3):506–524, 1995.

[59] James Renegar. Linear programming, complexity theory and elementary functional analysis.
Math. Programming, 70(3, Ser. A):279–351, 1995.

[60] James Renegar. Condition numbers, the barrier method, and the conjugate-gradient method.
SIAM J. Optim., 6(4):879–912, 1996.

[61] A. L. Soyster. Convex programming with set-inclusive constraints and applications to inexact
linear programming. Oper. Res., 21(5):1154–1157, 1973.

[62] A. Takeda, S. Taguchi, and R. H. Tütüncü. Adjustable robust optimization models for a
nonlinear two-period system. J. Optim. Theory Appl., 136(2):275–295, 2008.

[63] Aurélie Thiele, Tara Terry, and Marina Epelman. Robust linear optimization with recourse.
Technical report, University of Michigan, Industrial and Operations Engineering, March 2009.

[64] Jorge R. Vera. Ill-posedness and the complexity of deciding existence of solutions to linear
programs. SIAM J. Optim., 6(3):549–569, 1996.

[65] Jorge R. Vera. On the complexity of linear programming under finite precision arithmetic.
Math. Program., 80(1):91–123, 1998.

[66] Laurence A. Wolsey. Integer programming. Wiley-Interscience Series in Discrete Mathematics
and Optimization. John Wiley & Sons Inc., New York, 1998. A Wiley-Interscience Publication.

