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ABSTRACT 
 
 

Development of Hemocompatible Polymeric Materials for 
Blood-Contacting Medical Devices 

 
 

by 
 
 

Biyun Wu 
 
 
 

Chair: Mark E. Meyerhoff 

 

One of the major problems of cardiovascular and other blood-contacting medical 

devices remains the lack of hemocompatibility of their surfaces.  Hence, the research in 

this dissertation focuses on the development of novel multifunctional polymeric coatings 

that incorporate multiple antithrombogenic and/or anti-proliferative bioactive agents.  

The incorporated bioactive agents, whether endogenous small molecules (nitric oxide 

(NO)), polysaccharides (heparin), proteins (thrombomodulin (TM)), or drugs (sirolimus), 

are intended to function synergistically to prevent the formation of thrombus and the 

proliferation of smooth muscle cells (SMCs), which are considered to be two of the major 

causes for the failure of various blood-contacting implantable devices. 

New multifunctional bilayer polyurethane (PU) coatings were developed that 

exhibit both controlled NO release (via use embedded diazeniumdiolate NO donors) 



 xix

and surface-bound active TM or combined TM and heparin.  Both TM and heparin’s 

activity were evaluated by chromogenic assays and found to be at clinically significant 

levels.  The NO release rate could be tuned by changing the thickness of top coatings.  

The duration of NO release at physiologically relevant levels (1 × 10-10 mol min-1 cm-2) 

could be as long as 2 weeks.   

To control the rate of NO release of polymers containing diazeniumdiolate NO 

donors, more stable and less toxic lipophilic tetrapenylborate species were examined to 

help buffer the pH in the polymeric phase of the coatings.  Furthermore, in order to 

completely eliminate the leaching and possible toxicity issues associated with small 

molecules, a new sulfonated PU was synthesized with sulfonic anionic sites covalently 

tethered to the PU backbones as a potential replacement for borate additives.  In vitro 

endothelial cell and SMC studies demonstrated that such coatings exhibit much improved 

biocompatibility compared to films prepared with conventional tetrakis(p-

chlorophenyl)borate. 

In addition to thrombus formation, SMC proliferation is another important cause 

for medical device failure, especially for stents and small-diameter vascular grafts.  The 

use of NO, in combination with an anti-cell proliferation agent, might provide the ideal 

solution to reduce both clotting and restenosis risks.  Thus, the first dual-functional 

polymeric coatings that released both sirolimus (rapamycin) and NO were prepared.  NO 

is released at physiologically relevant levels with simultaneous release of sirolimus from 

3.00 to 0.10 μg cm-2 h-1 over a period of 2 weeks.  The possibility of combining catalytic 

NO generation and sirolimus release was also explored by doping a selenium-derivatized 

PU with sirolimus.   
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CHAPTER 1 

 

Introduction 

 

 

1.1. Challenges Inherent to Blood-Contacting Medical Devices 

During the past century, the use of cardiovascular and other blood contacting 

biomedical devices has evolved from a mere dream to a widely adopted practice, 

including the use of heart valves, vascular grafts, stents, extracorporeal circuits and 

membrane oxygenators1,2 (see Figure 1.1).  These blood-contacting devices have saved 

the lives of millions of people.   

However, one of the major problems of these devices remains the lack of 

haemocompatibility of their surafaces3.  Some examples are the occlusion of small-

diameter vascular grafts4 and failure of blood-contacting biosensors5, 6 due to thrombus 

formation on the device surface.  Other examples include embolism and 

thrombocytopenia (platelet consumption7) caused by the blood-contacting biomedical 

devices.  Thus, long term, in some cases even life-long, administration of anticoagulant 

drugs is required2.  Furthermore, the possibility of hemorrhage will be greatly increased 

as a side effect of using such drugs8. 
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Figure 1.1. Examples of blood-contacting medical devices. 

 

In a review paper published in J. Biomater. Sci.: Polymer Edn. in 20002, Dr. Ratner 

clearly expressed his concerns on the significant challenges facing current medical 

devices: 

• Small-diameter vascular grafts fail early due to thrombolic occlusion; 

• Embolic complications are noticed with artificial hearts; 

• Embolic problems frequently occur with catheters; 
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• Non-tissue heart valves require lifelong anticoagulation; 

• Blood contacting biosensors fail due to thrombus accumulation; 

• Long-term implants are seen to be continuously platelet reactive; 

• Significant blood damage is observed during hemodialysis and extracorporeal 

blood oxygenation; 

• Venous prostheses cannot be made at all; 

• Endoluminal stents are associated with blood interaction problems. 

 

Pader and Schoen have also summarized the major complications of 

cardiovascular devices, and these are listed in Table 1.1.  Indeed, lack of 

hemocompatibility still remains one of the biggest hurdles associated with blood-

contacting medical devices.  The focus of this dissertation is to develop polymeric 

coatings through various approaches that can potentially reduce or even eliminate the 

adverse effects caused by blood-device interactions. 
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Table 1.1. Complications of cardiovascular devices (adapted from Padera and Schoen’s book chapter ‘Carciovascular Medical 
Devices’9 in Biomaterials Sciences – An Introduction to Materials in Medicine, 2nd Ed.). 
 

Heart Valve Prostheses Vascular Grafts Circulatory Assist Devices 

Thrombosis/thromboembolism 

Anticoagulant-related hemorrhage 

Prosthetic valve endocarditis 

Intrinsic structural deterioration (wear, 
fracture, popper escape, cuspal tear, 
calcification) 

Nonstructural dysfunction (pannus 
overgrowth, tissue or suture entrapment, 
paravalvular leak, inappropriate sizing, 
hemolytic anemia, noise) 

Thrombosis/thromboembolism 

Infection 

Erosion into adjacent structures 

Perigraft seroma 

(Anastomotic) false aneurysm 

(Anastomotic) intimal fibrous hyperplasia 

Mechanical failure 

Thrombosis/thromboembolism 

Endocarditis 

Extraluminal Infection 

System component fractures 

Bladder/valve calcification 

Hemolysis 

Mechanical failure 
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1.2. Inspiration from Endothelium – the Natural Nonthrombogenic ‘Coating’ 

1.2.1. Thrombus Formation 

 The formation of thrombus is a complex process that involves the participation 

of a large number of cells, tissue factors, enzymes and their cofactors10, 11.  Vascular 

damage or direct contact between foreign objects and blood initiate the coagulation 

cascade, the first step of which is the activation of a zymogen, factor IX (FIX), to its 

active counterpart, factor IXa (FIXa).  FIXa then activates factor X (FX) to factor Xa 

(FXa), which in turn activates prothrombin (FII) to form thrombin (FIIa), the pivotal 

agent in the process of thrombosis.  At the same time, proteins adsorb onto the surface of 

the injured vessel or the foreign object, which is followed by platelet adhesion.  The 

adhered platelets become activated, and then form platelet aggregates12.  Thrombin 

activates fibrinogen to form the insoluble cross-linked fibrin, which, together with 

activated platelets and red blood cells, ultimately leads to thrombus formation4.  Scheme 

1.1 illustrates how the coagulation cascade (initiated by either intrinsic or extrinsic 

pathway) and the activation of platelets interact with each other and form thrombi as a 

result. 

Platelet adhesion/activation and thrombus formation do not readily occur on the 

surface of a healthy endothelium that lines the inner walls of all blood vessels.  The 

excellent thromboresistancy of endothelial cells (ECs) is largely attributed to both 

secreted agents (nitric oxide (NO)13, prostacyclin14, plasminogen15, antithrombin III (AT 

III)16) and membrane-bound species (heparan sulphate (HS)17, thrombomodulin (TM)18).  

Both NO and prostacyclin have long been recognized for their anti-platelet activity, while 

heparin19 (an HS analogue) and TM are well known for their anticoagulant function.  
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Scheme 1.1 also shows how NO, HS and TM, as endogenous antiplatelet and 

anticoagulant agents, check the coagulation cascade and platelet activation/aggregation 

process so that thrombi do not form on healthy endothelium surfaces. 
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Scheme 1.1. The formation and inhibition (by HS, TM and NO) of thrombus. 

 

 

1.2.2. Heparan Sulfate and Heparin 

Heparan sulfate is a complex and highly active biopolymer that is synthesized as an 

alternating copolymer of hexuronic acid and glucosamine and modified at various 

positions with sulfate20 (Figure 1.2A), which affects and controls its biological activities21.  

Heparin is considered as an oversulfated intracellular variant of the ubiquitous HS.  It 
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was first discovered in 1916 as an inhibitor of coagulation and was further developed to 

become an anticoagulant drug in the mid 1930s.  It has been used as an anticoagulant 

drug for over 70 years22.  Indeed, heparin is second only to insulin as a very successful 

natural therapeutic agent.  It received its name, heparin, because hepatic tissue was a 

common and abundant source from which it was first isolated and studied17. 

 

 

 

Figure 1.2. Heparin structure (adapted from ‘Heparin Momograph’20 by Chromogenix).  
Heparin is a heterogenous mixture of polysaccharides, whose chains are made up of 
alternating 1 to 4 linked, sulfated monosaccharide residues of L-iduronic acid and D-
glucosamine. A – the most frequent type of disaccharide unit, representing up to 90 % of 
the structure of beef-lung heparin, and up to 70% of pig-mucosa heparin; B – the unique 
pentasaccharide binding site for AT III which occurs in about one-third of the heparin 
chains. 
 

Both heparin and HS act as a cofactor of AT III in the inhibition of various 

enzymes in the coagulation cascade, but primarily thrombin and FXa (Scheme 1.1).  A 

specific pentasaccharide sequence20 (Figure 1.2B) of heparin binds to AT III to induce a 



 8

conformational change in AT III, which, in turn, accelerates the binding and hence the 

inhibition of certain proteases by AT III19, 22 (Figure 1.3). 
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Figure 1.3. Inhibition of FXa by AT III catalyzed by heparin.  [H] – heparin binding site; 
[R] – reactive site in antithrombin; [P] – the unique antithrombin binding sequence of 
heparin. Binding to this sequence induces a conformational change in antithrombin, 
shown here by the square changing to a circle, which facilitates its reaction with its target 
proteases. The end result is a complex of heparin, AT III, and the now inactive FXa. 
 

 

1.2.3. Thrombomodulin 

Thrombomodulin is named after its bioactivity as a ‘thrombin modulator’23.  It is 

a transmembrane protein with a molecular weight of 74 kDa24 (Figure 1.425).  The mature 

TM molecule consists of 557 amino acid residues and usually has a chondroitin sulfate 

moiety attached to its Ser/Thr-rich domain26.  There are approx. 100,000 TM molecules 

on the surface of every endothelial cell.  Once thrombin, the pivotal protein in the 

coagulation cascade, binds to TM on the surface of the EC layer, thrombin’s fibrinogen-

cleaving activity is inhibited.  This thrombin-antithrombin reaction is accelerated by the 

existence of the chondroitin sulfate moiety that is attached to the Ser/Thr-rich domain26. 
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Figure 1.4. Two representations of TM structure. Left – Solvent accessible surface 
representation of TM colored by residue type (red – acidic residues, blue – basic residues, 
green – polar residues, grey – nonpolar residues) (adapted from Zhengrong Zhou’s PhD 
dissertaion25); Right – domain representaion of TM: The mature TM molecule consists of 
557 amino acids residues arranged in a lectin-like domain, six EGF-like domains, a 
Ser/Thr-rich domain (usually with an attached chondritin sulfate moiety), a 
transmembrane domain, and a short cytoplasmic tail (adapted from Chromogenix 
‘Protein C Product Monograph.’26). 
 

In addition, this binding will also alter thrombin from a procoagulant to an 

anticoagulant by activating protein C (PC) to initiate the PC anticoagulation pathway15.  

Activation of PC by thrombin alone is slow and has no physiological function.  However, 

when thrombin binds to TM, a 20,000-fold increase in the PC activation rate can be 

observed (Figure 1.5).  In summary, the three anticoagulant activities of TM are listed as 

follows27: 
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• Direct anticoagulant activity by preventing the cleavage of fibrinogen by 

thrombin; 

• AT III-dependent anticoagulant activity by promoting the inactivation of 

thrombin via AT III; 

• PC activation cofactor activity by promoting the activation of PC via thrombin 

(see Figure 1.5). 
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Figure 1.5. TM binds to thrombin and greatly enhances its PC activation activity. 

 

1.2.4. Nitric Oxide 

Until the mid 1980s, NO was regarded as an atmospheric pollutant and bacterial 

metabolite.  Twenty years later, NO is highly recognized for its indispensable functions 

in various biological processes including neurotransmission28,29, vasodilation30, 

bronchodilation, modulation of intestinal motility, as well as contraction of heart and 

skeletal muscle31. 
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Nitric oxide is endogenously produced in many cells in the body.  In mammalian 

ECs, NO is synthesized from L-arginine by NO synthase, a calcium dependent enzyme32, 

33.  Its basal flux level from the EC surface34 is estimated to be 1×10-10 mol cm-2 min-1 

(see Figure 1.6).  It is an extremely reactive free radical (•N=O) with a less-than-one-

second lifetime in blood owing to its rapid reaction with oxyhemoglobin13.   

Nitric oxide can diffuse to the adjacent blood and the nearby platelets to inhibit 

both platelet adhesion to endothelium as well as platelet activation13 (see Figure 1.6).  

Once NO diffuses into platelets, particularly as they approach the surface of the EC lining 

of the vessel, it activates guanalate cyclase, which, in turn, increases the intracellular 

level of cyclic guanosine monophosphate (cGMP).  Cyclic guanosine monophosphate 

further decreases the intracellular Ca2+ level and inhibits the activity of phospholipase C, 

the two key substances required for platelet activation35-37 (see Scheme 1.1).  Nitric oxide 

can also down-regulate the functions of some platelet receptors, which in turn prevents 

platelet aggregation and adhesion onto blood vessel walls.  Beyond binding to 

hemoproteins, NO also reacts with thiol species (RSHs) in the blood, resulting in the 

formation of S-nitrosothiols (RSNO).  This formation prolongs the half-life and biologic 

activity of NO and allows for further platelet inhibition by RSNOs. 

Nitric oxide can also diffuse into and relax the underlying smooth muscle cells 

(SMCs) which, in turn, dilates the artery and increases the blood flow (Figure 1.6).  

When NO reaches the underlying vascular SMCs, it binds to the heme groups of the 

enzyme guanylate cyclase.  This results in an increased production of cGMP.  The 

increased level of cGMP leads to vascular relaxation that allows the vessel to dilate and 

thereby lowers blood pressure38.  
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Figure 1.6. NO is synthesized in ECs by NOS.  It then diffuses toward platelets and red 
blood cells in adjacent blood stream, as well as to the underlying SMCs to dilate the walls 
of the blood vessels.  The gap between SMC layer and EC layer is exaggerated. 

 

 In addition to its anti-platelet and vasodilation activities, NO is also known to 

effectively inhibit SMC proliferation39 and reduce restenosis, which are caused by the 

damage of the fragile EC layer during the process of implantation of certain medical 

devices40 (e.g., stents, vascular grafts).  Furthermore, it is known that NO plays a crucial 

role in wound healing, and down regulates mediators of inflammatory response such as 

cytokines, chemokines, and growth factors that signal the recruitment of neutrophils and 

macrophages to the implant site41-43.  NO also promotes angiogenesis, an important 

component of the normal wound healing process44, 45. 
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1.2.5. Strategies to Prepare Bioactive Nonthrombogenic Polymeric Surfaces 

In addition to heparin, TM and NO, there exist many other anticoagulant and 

antiplatelet agents that work synergistically to prevent the formation of blood clots.  The 

following is a list of representative, not exhaustive, approaches that have been adopted to 

improve the nonthrombogenicity of device surfaces: 

• Phospholiplid-mimicking surfaces46; 

• Ionically-bound heparin and controlled release systems47; 

• Surfaces with covalently-bound heparin48 (see Figure 1.7); 

• Hirudin-immobilized surfaces49; 

• Thrombomodulin-immobilized surfaces50,  51; 

• Incorporate prostacyclin into polymer matrices for controlled release52; 

• Aspirin-releasing polymer membranes53; 

• Immobilization of fibrinolytic agents – urokinase54, plasminogen55 and lysine56; 

 

 

 

Figure 1.7. Medtronic Carmeda® BioActive Surface with heparin molecules that are 
covalently bonded into the surface using an end-point attached method (adapted from 
product website48).  
 



 14

As has been stated by Sefton and Gemmell56, it is impossible to predict which 

approach will ultimately be successful.  However, combining approaches to address 

thrombin production and platelet activation may lead to new opportunities.  Indeed, it is 

impossible for each of the individual agents to perform the whole spectrum of the 

thromboresistant functionalities of the healthy endothelium.  Such a surface lined with 

ECs presents all the anticoagulant agents not only simultaneously but also in a well 

regulated way.  Thus, the first part of this dissertation focuses on preparing EC-

mimicking polymeric coatings combining two or more anticoagulant agents (NO, heparin, 

TM) that possess desirable thromboresistance properties. 

 

 

1.3. Combining Antithrombogenicity and Anti-SMC Proliferation 

1.3.1. Drug-Eluting Stent 

Thrombosis is not the only problem associated with blood-contacting medical 

devices.  In many cases, SMC activation can be the problem as well.  In the treatment of 

coronary artery disease, balloon angioplasty and stenting have become common 

procedures for the relief of arterial stenosis and to restore normal blood flow.  Over time, 

this traditional bare-metal stent (BMS) used in the procedure is fully endothelialized.  In 

roughly a third of bare-metal stenting cases, however, restenosis occurs.  Tissue engulfs 

the stent, once more reducing the blood flow in the stented vessel, which can lead to 

subsequent coronary symptoms (see Figure 1.8).  This type of restenosis is believed to be 

the result of an inflammatory response to injury from the initial angioplasty procedure 

and to the BMS itself57. 
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Figure 1.8. Restenosis in traditional BMSs vs. late thrombosis in DESs. 

 

Drug-eluting stents (DESs) were developed to prevent the kind of restenosis seen 

with BMSs.  Drug eluting stents differ from BMSs mainly in that they are coated with a 

polymer containing a drug meant to interfere with the process of restenosis.   Sirolimus 

(rapamycin) and paclitaxel (Figure 1.9) are the most widely used drugs on DESs.  The 

drugs are released from the polymeric matrices that cover the stainless-steel stents in a 

controlled way to address the in-stent restenosis problem caused by stenting-induced 

biological responses to the vessel wall injury58-62.  Over time, these drugs inhibit the 

proliferation and migration of SMCs and inflammatory cells responsible for restenosis.  

Table 1.2 lists some of the representative DESs that have been clinically approved and 

are commercially available. 
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Table 1.2. Information of some representative clinically approved DESs that are currently commercially available. 

DES Manufacturer Delivery Platform Polymer Coating Drug 

Cypher63 
Cordis, 

Johnson & Johnson 

316L Stainless Steel 
BX Velocity Stent 

Three-layer coating (base coat – Parylene C; 
main coat – PEVA (polyethylene-co-vinyl 

acetate) & PBMA (poly n-butyl 
methacrylate); top coat – drug free PBMA) 

Sirolumus 

Promus64, 65 
Distributed by Boston 
Scientific/Manufacture
d by Abbott (Xience V)

L605 cobalt chrome 
alloy Multi-Link 

Vision stent 

Mixture of PBMA and PVDF-HFP (a 
copolymer of vinylidene fluoride and 

hexafluoropropylene) 
Everolimus 

Taxus 
Express2/Liberte 

/Liberte Atom66-68 
Boston Scientific 316L Stainless Steel 

Express/Liberte stent 

Single-layer Translute polymer 
(poly(styrene-b-isobutylene-b-styrene) 

coating 
Paclitaxel 

Endeavor69 Medtronic Cobalt alloy Driver 
stent Phosphorylcholine polymer Zotarolimus
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Figure 1.9. Structures of Sirolimus (Left) and Paclitaxel (Right).  

 

 

1.3.2. Problems with DES 

Unfortunately, DESs do not provide a benefit relative to BMSs in 

reducing/preventing sub-acute thrombosis (SAT).  Therefore, patients must be placed on 

anticoagulation therapy after stent implantation, by taking antiplatelet drug for up to six 

months70.  Recent findings have suggested an increased risk of late stage thrombosis 

associated with drug-eluting stents due to the incomplete endothelialization on the 

surface of the struts of the stents since these drugs can also retard the migration and 

proliferation of ECs71.  For example, after reviewing 4-year follow-up data on its 

sirolimus-eluting Cypher stents, Cordis Corporation (Johnson & Johnson) found a higher 

incidence of thrombosis (which may increase the risk of myocardial infarction and death) 

in the Cypher group compared to the BMS control group71.  More and more evidence 

indicates that the drugs can prevent or delay full endothelialization of the stent,  allowing 

platelets, red blood cells, fibrin and white blood cells to adhere to the exposed struts of 
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the stents, leading to late-stage thrombosis in a small fraction of patients57.  The resulting 

thrombi can lead to narrowing or complete occlusion of the lumin which may then lead to 

myocardioinfarction.  Hence, it is now recognized that using anti-restenotic drugs alone 

may only solve part of the issues associated with stent placement.  Furthermore, similar 

thrombosis and SMC proliferation problems exist in the case of implanted vascular grafts 

as well. 

 

1.3.3. Combining NO and Anti-SMC Proliferation Drug – A Possible Solution 

 As has been stated before, in addition to its anti-platelet and vasodilation 

activities, NO is also known to effectively inhibit SMC proliferation39,40 and reduce 

restenosis.  Furthermore, it is known that NO plays a crucial role in wound healing, and 

down regulates mediators of inflammatory response41-43.  Some researchers have also 

found that NO release can enhance EC growth on surfaces.  In two studies reported by Dr. 

West’s group in Rice University, NO releasing PUs promoted endothlialization and 

suppressed platelet adhesion72,73.  Hence, NO release coatings may reduce the possibility 

of stent thrombosis.  If this is true, then the presence of NO release would prevent 

thrombosis early on, and if EC growth is in fact promoted, it would help solve the 

fundamental problem associated with drug eluting stents! 

Hence, the use of NO, a naturally occurring anti-thrombotic/anti-platelet/pro-

endothelialization agent, in combination with sirolimus, an anti-cell proliferation agent, 

may provide the ideal solution to reduce both clotting and restenosis risk for stents as 

well as vascular grafts and other implanted medical devices.  To prepare polymeric 

coatings based on this multivalent functionality is the second focus of this dissertation.  



 19

The new coatings can potentially suppress the migration and proliferation of SMC and at 

the same time, exhibit decreased thrombus formation and enhanced endothelialization.  

 

 

1.4. Statement of Dissertation Research 

The primary goal of the research described in this dissertation is to develop and 

investigate novel multifunctional polymeric coatings that incorporate multiple 

antithrombogenic and/or anti-proliferative bioactive agents.  These bioactive agents, 

whether endogenous small molecules (NO), polysaccharides (heparin), proteins (TM), or 

drugs (sirolimus), are intended to function synergistically to prevent the formation of 

thrombus and the proliferation of SMCs. 

In Chapter 2, new polymeric coatings are reported that exhibit both controlled NO 

release and surface-bound active TM or combined TM and heparin.  These 

multifunctional bilayer polymeric coatings were prepared to more closely mimic the 

nonthrombogenic properties of the endothelium by multiple complementary anti-

thrombotic mechanisms based on the anti-platelet activity of NO and the anticoagulant 

ability of immobilized heparin and TM.  This work has been published in Biomaterials in 

200774.  It has also been presented at 3 local and national conferences75-77. 

Chapter 3 describes the first dual-functional polymeric coating that releases both 

sirolimus and NO.  The use of NO, in combination with an anti-cell proliferation agent 

may provide the ideal solution to reduce both clotting and restenosis risk for stents as 

well as vascular grafts and other implanted medical devices.  This work has been 

presented at 3 local and national conferences78-80. 
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As we moved forward with in vitro cell testings of some of the NO release 

coatings, the toxicity of the borate additive (lipophilic anionic species used to sustain the 

NO flux) was discovered and as a result, efforts were undertaken to find a more stable 

and lipophilic borate species to greatly reduce the problems of degradation and leaching.  

This is reported in Chapter 4.  Furthermore, also described in Chapter 4, a sulfonated 

polyurethane was synthesized with sulfonic anionic sites chemically tethered to the 

polymer backbones to completely eliminate the leaching and possible toxicity issue 

associated with using small borate derivatives.  In vitro EC and SMC studies have proved 

that such coatings indeed show much improved biocompatibility.  This work has been 

presented at 3 local and national conferences81-83. 

Another approach to achieve sustained NO release is to use endogenous NO 

donors (RSNO species) that are circulating in our blood stream.  In Chapter 5, the 

synthesis of selenium-derivatized polyurethanes is described, and coatings made from 

such polymers are shown to exhibit prolonged NO-generating capability in the presence 

of RSNO species that are constantly generated in vivo.  The thickness of such coatings 

could ultimately be decreased significantly which would make them more applicable to 

the polymeric coating matrices of DESs and other medical devices in which thinner 

coatings are preferred.  Indeed, this chapter reports the first dual-functional polymeric 

coating that can both generate NO from endogeneous RSNO species and simultaneously 

release sirolimus at a controlled rate.  The new coatings can potentially suppress SMC 

proliferation and thrombosis, as well as facilitate endothelialization at a given implant 

site.  This work has been presented at 2 national conferences84,85. 

 



 21

 

1.5. References 

1. Peppas, N.A.; Langer, R. ‘New challenges in biomaterials.’ Science 1994, 263, 1715-
1720. 

2. Ratner, B.D. ‘Blood compatibility - a perspective.’ J. Biomater. Sci-Polym. E 2000, 
11, 1107-1119. 

3. Xue, L.; Greisler, H.P. ‘Biomaterials in the development and future of vascular 
grafts.’ J. Vasc. Surg. 2003, 37, 472-480. 

4. Brash, J.L. ‘Exploiting the current paradigm of blood–material interactions for the 
rational design of blood-compatible materials.’ J. Biomater. Sci. Polymer Edn. 2000, 
11, 1135–1146. 

5. Frost, M.C.; Meyerhoff, M.E. ‘Implantable chemical sensors for real-time clinical 
monitoring: Progress and challenges.’ Curr. Opin. Chem. Biol. 2002, 6, 633–641. 

6. Frost, M.C.; Batchelor, M.M.; Lee, Y.; Zhang, H.; Kang, Y.; Oh, B.; Wilson, 
G.S.; Gifford, R.; Rudich, S.M.; Meyerhoff M.E. ‘Preparation and characterization of 
implantable sensors with nitric oxide release coatings.’ Microchem. J. 2003, 74, 277–
288. 

7. Cholakis, C.H.; Zingg, W.; Sefton, M.V. ‘Effect of heparin-pva hydrogel on platelets 
in a chronic canine arterio-venous shunt.’ J. Biomed. Mater. Res. 1989, 23, 417-441. 

8. Kidane, A.G.; Salacinski, H.; Tiwari, K.A.; Bruckdorfer, R.; Seifalian, A.M. 
‘Anticoagulant and antiplatelet agents:  Their clinical and device application(s) 
together with usages to engineer surfaces.’ Biomacromolecules 2004, 5, 798-813.   

9. Padera, R.F.; Schoen, F.J. ‘Chapter 7.3 – Cardiovascular Medical Devices.’ 
Biomaterials Sciences – An Introduction to Materials in Medicine (2nd Ed.) Elsevier, 
2004. 

10. Adcock, D.M. ‘The revised model of blood coagulation.’ Clin. Hemostasis Rev. 2002, 
16, 1-5. 

11. Furie, B.; Furie B.C. ‘Mechanisms of thrombus formation.’ N. Eng. J. Med. 2008, 
359, 938-949. 

12. Sefton, M.V.; Gemmell, C.H.; Gorbet, M.B. ‘What really is blood compatibility?’ J. 
Biomater. Sci. Polymer Ed. 2000, 11, 1165-1182. 

13. Moncada, S.; Palmer, R.M.J.; Higgs, E.A. ‘Nitric-oxide – physiology, 
pathophysiology, and pharmacology.’ Pharmacol. Rev. 1991, 43, 109-142. 



 22

14. Vane, J.R.; Botting, R.M. ‘Pharmacodynamic profile of prostacyclin.’ Am. J. Cardiol. 
1995, 75, A3-A10. 

15. Woodhouse, K.A.; Weitz, J.I.; Brash, J.L. ‘Lysis of surface-localized fibrin clots by 
adsorbed plasminogen in the presence of tissue plasminogen activator.’ Biomaterials 
1996, 17, 75-77. 

16. Hoylaerts, M.; Owen, W.G.; Collen, D. ‘Involvement of heparin chain-length in the 
heparin-catalyzed inhibition of thrombin by antithrombin-III.’ J. Biol. Chem. 1984, 
259, 5670-5677. 

17. Whitelock, J.M.; Iozzo, R.V. ‘Heparan sulfate: A complex polymer charged with 
biological activity.’ Chem. Rev. 2005, 105, 2745-2764. 

18. Esmon, C.T. ‘The roles of protein-C and thrombomodulin in the regulation of blood-
coagulation.’ J. Biol. Chem. 1989, 264, 4743-4746. 

19. Munoz, E.M.; Linhardt, R.J. ‘Heparin-binding domains in vascular biology.’ 
Arterioscl. Throm. Vas. 2004, 24, 1549-1557. 

20. Chromogenix ’Heparin Product Monograph.’  

21. Lindahl, U.; Kusche-Gullberg, M.; Kjelle´n, L. ‘Regulated diversity of heparan 
sulfate.’ J. Biol. Chem. 1998, 273, 24979-24982. 

22. Monien, B.H.; Cheang, K.I.; Desai, U.R. ‘Mechanism of poly(acrylic acid) 
acceleration of antithrombin inhibition of thrombin:  Implications for the design of 
novel heparin mimics.’ J. Med. Chem. 2005, 48, 5360-5368. 

23. Esmon, N.L.; Owen, W.G.; Esmon, C.T. ‘Isolation of a membrane-bound cofactor for 
thrombin-catalyzed activation of protein-C.’ J. Biol. Chem. 1982, 257, 859-864. 

24. Marconi, W.; Piozzi, A.; Romoli, D. ‘Preparation and evlauation of polyurethane 
surfaces containing plasminogen.’ J. Biomater. Sci.: Polymer Ed. 1996, 8, 237-249. 

25. Zhou, Z. ‘Development of Novel Nitric Oxide Releasing Materials and Polymeric 
Coatings for Blood Contacting Biomedical Applications.’ Ph.D. Dissertation, 2006, 
University of Michigan, Ann Arbor, MI. 

26. Chromogenix ‘Protein C Product Monograph’ 1995. 

27. Bourin, M.C.; Ohlin, A.K.; Lane, D.A.; Stenflo, J.; Lindahl, U. ‘Relationship between 
anticoagulant activities and polyanionic properties of rabbit thrombomodulin.’ J. Biol. 
Chem. 1988, 263, 8044-8052. 

28. Bredt, D.S.; Snyder, S.H. ‘Nitric oxide, a novel neuronal messenger.’ Neuron 1992, 8, 
3-11. 



 23

29. Bredt, D.S.; Hwang, P.M.; Snyder, S.H. ‘Localization of nitric oxide synthase 
indicating a neural role for nitric oxide.’  Nature 1990, 347, 768-770. 

30. Maragos, C.M.; Morley, D.; Wink, D.A.; Dunams, T.M.; Saavedra, J.E.; Hoffman, A.; 
Bove, A.A.; Isaac, L.; Hrabie, J.A.; Keefer, L.K. ‘Complexes of .NO with 
nucleophiles as agents for the controlled biological release of nitric oxide. 
Vasorelaxant effects.’ J. Med. Chem. 1991, 34, 3242-3247. 

31. Feelisch, M.; Stamler, J. S. Methods in Nitric Oxide Research John Willey and Sons 
Ltd.: West Sussex, 1996. 

32. Ignarro, L.J.; Buga, G.M.; Wood, K.S.; Byrns, R.E.; Chaudhuri, G. ‘Endothelium-
derived relaxing factor produced and released from artery and vein is nitric oxide.’ 
Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 9265-9269. 

33. Palmer, R.M.J.; Ferrige, A.G.; Moncada, S. ‘Nitric oxide release accounts for the 
biological activity of endothelium-derived relaxing factor.’ Nature 1987, 327, 524-
526. 

34. Vaughn, M.W.; Kuo, L.; Liao, J.C. ‘Estimation of nitric oxide production and 
reaction rates in tissue by use of a mathematical model.’ Am. J. Physiol. 1998, 274, 
H2163-H2176. 

35. Colman, R.W. ‘Chapter 3 Mechanisms of thrombus formation and dissolution.’ 
Cardiovasc. Path. 1993, 2, S23-S31. 

36. Missirlis, Y.F.; Wautier, J.L. The Role of Platelets in Blood-Biomaterial Interactions 
Kluwer Academic Publishers: Boston, 1993. 

37. Kroll, M.H.; Sullivan, R. In Thrombosis and Hemorrhage Loscalzo, J.; Schafer, A. I. 
Eds. Williams & Wilkins: Baltimore, 1998, 261-291. 

38. Moncada, S.; Radomski, M.W.; Palmer, R.M.J. ‘Endothelium-derived relaxing factor: 
Identification as nitric oxide and role in the control of vascular tone and platelet 
function.’ Biochem. Pharmacol. 1988, 37, 2495-2501. 

39. Chen, C.Y.; Hanson, S.R.; Keefer, L.K.; Saavedra, J.E.; Davies, K.M.; Hutsell, T.C.; 
Hughes, J.D.; Ku, D.N.; Lumsden, A.B. ‘Boundary Layer Infusion of Nitric Oxide 
Reduces Early Smooth Muscle Cell Proliferation in the Endarterectomized Canine 
Artery.’ J. Surg. Res. 1997, 67, 26-32. 

40. Groves, P.H.; Banning, A.P.; Penny, W.J.; Newby, A.C.; Cheadle, H.A.; Lewis, M.J. 
‘The effects of exogenous nitric oxide on smooth muscle cell proliferation following 
porcine carotid angioplasty.’ Cardiovasc. Res., 1995, 30, 87-96. 

41. Schwentker, A.; Vodovotz, Y.; Weller, R.; Billiar, T.R. ‘Nitric oxide and wound 
repair: Role of cytokines?’ Nitric Oxide, 2002, 7, 1-10. 



 24

42. Witte, M.B; Barbul, A. ‘Role of nitric oxide in wound repair.’ Am. J. Surg., 2002, 183, 
406–412. 

43. Anderson, J.M. ‘Mechanism of inflammation and infection with implanted devices.’ 
Cardiovasc. Path. 1993, 2, 33S-41S. 

44. Cooke, J.P. ‘NO and angiogenesis.’ Atherosclerosis, 2003, suppl. 4, 53–60. 

45. Ziche, M.; Morbidelli, L. “Nitric oxide and angiogenesis.” J. Neuro-Oncology, 2000, 
50, 139-48. 

46. Campbell, E.J.; O’Byrne V.; Stratford, P.W.; Quirk, I.; Vick, T.A.; Wiles, M.C.; 
Yianni, Y.P. ‘Biocompatible surfaces using methacryloylphosphorylcholine 
laurylmethacrylate copolymer.’ ASAIO J. 1994, 47, 193-199. 

47. Kim, S.W.; Jacobs, J. ‘Design of nonthrombogenic polymer surfaces for blood-
contacting medical devices.’ Blood Purif, 1996, 14, 357-372. 

48. http://www.medtronic.com/cardsurgery/arrested_heart/carmeda_bioactive.html. 

49. Seifert, B.; Romaniuk, P.; Groth, T. ‘Covalent immobilization of hirudin improves 
the haemocompatibility of polylactidepolyglycolide in vitro.’ Biomaterials 1997, 8, 
1495-1502. 

50. Akashi, M.; Maruyama, I.; Fukudome, N.; Yashima, E. ‘Immobilization of human 
thrombomodulin on glass-beads and its anticoagulant activity.’ Bioconjugate Chem. 
1992, 3, 363-365. 

51. Han, H.S.; Yang, S.L.; Yeh, H.Y.; Lin, J.C.; Wu, H.L.; Shi, G.Y. ‘Studies of a novel 
human thrombomodulin immobilized substrate: surface characterization and 
anticoagulation activity evaluation.’ J. Biomater. Sci-Polym. E 2001, 12, 1075-1089. 

52. McRea, J.C.; Kim, S.W. ‘Characterization of controlled release of prostaglandin from 
polymer matrices for thrombus prevention.’ Trans. Am. Soc. Artif. Internal Organs J. 
1983, 6, 60-64. 

53. Paul, W.; Sharma, C.P. ‘Acetylsalicylic acid loaded poly(vinyl alcohol) hemodialysis 
membranes: effect of drug release on blood compatibility and permeability.’ J. 
Biomater. Sci.: Polymer Ed. 1997, 8, 755-764. 

54. Sugitachi, A.; Takagi, K. ‘Antithrombogenicity of immobilized urokinase – clinical 
applications.’ Int. J. Artif. Organs 1978, 1, 88-92. 

55. Woodhouse, K.A.; Brash, J.L. ‘Adsorption of plasminogen from plasma to lysine-
derivatized polyurethane surfaces.’ Biomaterials, 1992, 13, 1103-1108. 



 25

56. Sefton, M.V.; Gemmell, C.H. ‘Chapter 7.2 – Nonthrombogenic treatment and 
strategies.’ Biomaterials Sciences – An Introduction to Materials in Medicine, 2nd Ed. 
Elsevier, 2004. 

57. http://www.nhlbi.nih.gov/health/dci/Diseases/Angioplasty/Angioplasty_Risks.html. 

58. Windecker, S.; Remondino, A.; Eberli, F.R.; Juni, P.; Raber, L.; Wenaweser, P.; 
Togni, M.; Billinger, M.; Tuller, D.; Seiler, C.; Roffi, M.; Corti, R.; Sutsch, G.; Maier, 
W.; Luscher, T.; Hess, O.M.; Egger, M.; Meier, B. ‘Sirolimus-eluting and paclitaxel-
eluting stents for coronary revascularization.’ N. Engl. J. Med. 2005, 353, 653-662. 

59. Dibra, A.; Kastrati, A.; Mehilli, J.; Pache, J.; Schuhlen, H.; von Beckerath, N.; Ulm, 
K.; Wessely, R.; Dirschinger, J.; Schomig, A. ‘Paclitaxel-eluting or sirolimus-eluting 
stents to prevent restenosis in diabetic patients.’ N. Engl. J. Med. 2005, 353, 663-670. 

60. Moses, J.W.; Leon, M.B.; Popma, J.J.; Fitzgerald, P.J.; Holmes, D.R.; O'Shaughnessy, 
C.; Caputo, R.P.; Kereiakes, D.J.; Williams, D.O.; Teirstein, P.S.; Jaeger, J.L.; Kuntz, 
R.E. ‘Sirolimus-eluting stents versus standard stents in patients with stenosis in a 
native coronary artery.’ N. Engl. J. Med. 2003, 349, 1315-1323. 

61. Schofer, J.; Schluter, M.; Gershlick, A.H.; Wijns, W.; Garcia, E.; Schampaert, E.; 
Breithardt, G. ‘Sirolimus-eluting stents for treatment of patients with long 
atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled 
trial (E-SIRIUS).’ Lancet 2003, 362, 1093-1099. 

62. Morice, M.; Serruys, P.W.; Sousa, J.E.; Fajadet, J.; Hayashi, E.B.; Perin, M.; 
Colombo, A.; Schuler, G.; Barragan, P.; Guagliumi, G.; Molnar, F.; Falotico, R. ’A 
randomized comparison of a sirolimus-eluting stnet with a standard stent for coronary 
revascularization.’ N. Engl. J. Med. 2002, 346, 1773-1780. 

63. http://www.cypherstent.com/cypher-stent/specifications/pages/index.aspx. 

64. http://www.stent.com/DisplayPage.bsci/id/4/1a1/m/IC/heart-stent-
products/promus/promus-stent.html/page.bsc. 

65. Abbott Laboratories ‘The XIENCE™ V Everolimus Eluting Coronary Stent System 
Instructions for Use.’ 

66. http://www.stent.com/DisplayPage.bsci/id/3/1a1/m/IC/heart-stent-
products/landing.html/page.bsc 

67. Boston Scientific ‘Express2 Monorail Coronay Stent Delivery System and Over-the-
Wire Stent Delivery System – Instructions for Use.’  

68. Boston Scientific ‘Liberte Monorail Over-the-Wire Coronary Stent System – 
Instructions for Use.’ 

69. http://www.endeavorstent.com/html/us/hcp_end_differentbydesign.html 



 26

70. Gurbel, P.A.; Cummings, C.C.; Bell, C.R.; Alford, A.B.; Meister, A.F.; Serebruany, 
V.L. ‘Onset and extent of platelet inhibition by clopidogrel loading in patients 
undergoing elective coronary stenting: The Plavix Reduction Of New Thrombus 
Occurrence (PRONTO) trial.’ Am. Heart J.  2003, 145, 239-247. 

71. Shuchman, M. ‘Trading restenosis for thrombosis? New questions about drug-eluting 
stents.’ N. Engl. J. Med. 2006, 355, 1949-1952. 

72. Jun, H.W.; Taite, L.J.; West, J.L. ‘Nitric oxide-producing polyurethanes.’ 
Biomacromolecules 2005, 838-844. 

73. Taite, L.J.; Jun H.W.; Yang, P.; West J.L. ‘Nitric oxide-releasing polyurethane-PEG 
copolymer containing the YIGSR peptide promotes endothelialization with decreased 
platelet adhesion.’ J. Biomed. Mater. Res. B 2007, 108-116. 

74. Wu B.; Gerlitz, B.; Grinnel, B.W. and Meyerhoff, M.E. ‘Polymeric coatings that 
mimic the endothelium: combining nitric oxide release with surface-bound active 
thrombomodulin and heparin.’ Biomateirals 2007, 28, 4047-4055. 

75. Wu, B.; Zhou, Z. and Meyerhoff, M.E. ‘Dual-acting biomimetic polymeric coatings: 
Combining nitric oxide release with surface-bound active thrombomodulin.’ 232nd 
American Chemical Society National Meeting & Exposition, Sept 10, 2006; San 
Francisco, CA. 

76. Wu, B. and Meyerhoff, M.E. ‘Combining nitric oxide release with surface-bound 
active thrombomodulin.’ 1st Annual Meeting of Methods in Bioengineering 
Conference, Jul 17, 2006, Boston, MA. 

77. Zhou, Z.; Wu, Y.; Wu, B. and Meyerhoff, M.E. ‘Multifunctional biomimetic coatings 
for medical devices.’ 29th Macromolecular Science and Engineering Annual 
Symposium, Oct 27, 2005, Ann Arbor, MI. 

78. Wu, B. and Meyerhoff, M.E. ‘A dual functional polymer coating combining 
rapamycin and nitric oxide release.’ 34th Annual Spring Symposium: Smart 
Functional Materials and Thin Films for Biomedical Applications, May 9, 2007, Ann 
Arbor, MI. 

79. Wu, B. and Meyerhoff, M.E. ‘A dual-functional polymeric coating combining 
rapamycin and nitric oxide release.’ 2007 Society of Materials Annual Meeting, Apr 
18, 2007, Chicago, IL. 

80. Wu, B. and Meyerhoff, M.E. ‘A dual-functional polymeric coating combining 
rapamycin and nitric oxide release.’ The 27th Annual Graduate Student Symposium in 
the Pharmacological Sciences and Biorelated Chemistry, Mar 30, 2007, Ann Arbor, 
MI. 



 27

81. Wu, B.; Studzinski, D.; Shanley, C.J. and Meyerhoff, M.E. ‘Hemocompatible 
polymeric coatings with sulfonated polyurethanes as matrix for sustained nitric oxide 
release.’ 2009 Society of Materials Annual Meeting, Apr 22, 2009, San Antonio, TX. 

82. Wu, B.; Studzinski, D.; Shanley, C.J. and Meyerhoff, M.E. ‘Combining antiplatelet 
and antiproliferation agents: Polymeric coatings that release both nitric oxide and 
sirolimus.’ 236th American Chemical Society National Meeting & Exposition, Aug 17, 
2008, Philadelphia, PA. 

83. Wu, B.; Studzinski, D.; Shanley, C.J. and Meyerhoff, M.E. ‘Polymeric coatings that 
release both nitric oxide and sirolimus – Towards the elimination of smooth muscle 
cell proliferation and late-stent thrombosis.’  Perspectives in Chemistry Research at 
The University of Michigan, Aug 1, 2008, Ann Arbor, MI. 

84. Wu, B.; Wang, Y.; Roy-Chaudhury, P. and Meyerhoff, M.E. ‘Combining nitric oxide 
generation and sirolimus release in polymeric films – Potential coatings for stents and 
other biomedical devices.’ 237th American Chemical Society National Meeting & 
Exposition, Mar 22, 2009, Salt Lake City, UT. 

85. Wu, B. and Meyerhoff, M.E. ‘Selenium-derivatized polyurethanes – Potential nitric 
oxide generating coatings for stents and other biomedical devices.’ The Society for 
Biomaterials 2008 Translational Biomaterial Research Symposium, Sept 11, 2008, 
Atlanta, GA. 

 



 28

CHAPTER 2 

 

Polymeric Coatings That Mimic the Endothelium: 

Combining Nitric Oxide Release with Surface-Bound Active 

Thrombomodulin and Heparin 
 

 

2.1. Introduction 

During the past century, the use of cardiovascular and other blood contacting 

biomedical devices has evolved from a mere dream to a widely adopted practice, 

including the use of heart valves, vascular grafts, stents, extracorporeal circuits and 

membrane oxygenators1,2.  However, a lingering issue is the potential of thrombus 

formation and/or platelet activation at the blood/device interface owing to the lack of 

hemocompatibility of the polymeric materials employed to fabricate such devices3.  

Platelet adhesion/activation and thrombus formation do not readily occur on the 

surface of a healthy endothelium that lines the inner walls of all blood vessels.  The 

excellent thromboresistancy of endothelial cells (ECs) is largely attributed to both 

secreted agents such as nitric oxide (NO)4, prostacyclin (PGI2)5, plasminogen6 and 

antithrombin III (AT III)7 as well as membrane-bound species including heparan sulphate 

(HS)8 and thrombomodulin (TM)9.  Both NO and PGI2 have long been recognized for 
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their anti-platelet activity, while heparin10 (an HS analogue) and TM are well known for 

their anticoagulant function. 

Based on the knowledge of which species contribute to the exceptional 

biocompatibility of the ECs, efforts have been made to utilize such agents to create more 

hemocompatible surfaces.  Some examples include NO-release11, heparin-bound12 and 

TM-immobilized2 polymeric coatings.  However, their potency in preventing blood clot 

formation may be limited by the fact that such surfaces only possess partial 

thromboresistancy (i.e., either only anti-platelet or only anticoagulant activity).  A surface 

that integrates both anti-platelet and anticoagulant agents would seem more promising in 

that these agents can work synergistically to achieve true thromboresistancy.  Recently, 

the first polymeric coating that combines both NO release and surface-bound biologically 

active heparin was reported as an initial effort toward this goal13.  

Thrombomodulin is named after its bioactivity as a ‘thrombin modulator’14.  It is 

a transmembrane protein with a molecular weight of 74 kDa.  The mature human TM 

molecule consists of 557 amino acid residues and usually has a chondroitin sulfate 

moiety attached to its Ser/Thr-rich domain15.  Once thrombin, a pivotal protein in the 

coagulation cascade, binds to TM on the surface of the EC layer, thrombin’s fibrinogen-

cleaving activity is inhibited.  In addition, this binding will also alter thrombin from a 

procoagulant to an anticoagulant by activating protein C (PC) to initiate the PC 

anticoagulation pathway15.  
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Scheme 2.1. A) Schematic of silicone rubber (SR) catheter sleeve (made with SR tube (OD = 1.19 mm, ID = 0.64 mm, L = 1.5 cm) 
sealed at one end with Dow Corning RTV 3140 silicone coating) with biomimetic bilayer coating.  B) Illustration of this bilayer 
polymeric coating with combined NO release and surface-bound TM: a) top layer: carboxylated CarboSil with surface-bound TM; b) 
underlying layer: PurSil matrix doped with DBHD/N2O2 (structure shown in Figure 2.2 below) and potassium tetrakis(p-
chlorophenyl)borate (KTpClPB); c) SR substrate.  C) Illustration of this bilayer polymeric coating with combined NO release and 
surface-bound heparin and TM: a) top layer: aminated CarboSil with TM attached onto the surface-bound heparin; b) underlying layer: 
PurSil matrix doped with DBHD/N2O2 and KTpClPB; c) SR substrate. 

CBA 
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Herein, polymeric coatings with controlled NO release and surface-bound active 

TM alone or along with heparin were prepared and characterized (see Scheme 2.1).  Two 

approaches were examined.  In both cases, an underlying NO release polymer film was 

employed in which a lipophilic diazeniumdiolated NO donor molecule was incorporated 

(see Scheme 2.1A).  This layer provided the NO release once water partitions into the 

film.  In the first scheme in which TM was immobilized alone, an outer polymer coating 

(over the inner NO release film) was modified with free carboxyl groups (see Scheme 

2.1B) so that TM could be covalently linked via amide bonds.  In the second approach, 

heparin was first immobilized to an outer layer possessing free amine groups, and then 

TM was coupled to heparin using the excess carboxyl groups on heparin to create amide 

bond with amine groups on TM (see Scheme 2.1C).  The effect of TM immobilization 

chemistry on the NO release properties of the underlying film was examined.  Further, it 

was shown that in addition to releasing NO at physiologically relevant fluxes, the 

resulting polymer coatings possessed significant amounts of immobilized TM or TM plus 

heparin with biological activities, as determined by activated PC (APC) and anti-Factor 

Xa (anti-FXa) chromogenic assays. 

 

 

2.2. Experimental 

2.2.1. Materials and Instrumentation 

Recombinant soluble human TM (TM (CS+), with a chondriotin sulfate moiety 

attached to TM’s Ser-Thr rich domain) was a generous gift from Dr. Bruce Gerlitz and Dr. 

Brian Grinnell in Eli Lilly and Company (Indianapolis, IN).  It was produced by a high-
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producing AV12-664 cell line and was purified as described previously16.  Human PC, as 

well as the chromogenic substrates S-2366 and S-2222, were generous gifts from 

Instrumentation Laboratory Inc. (Lexington, MA).  Human APC, human α-thrombin and 

human AT III were purchased from Haematologic Technologies Inc. (Essex Junction, 

VT).  Hirudin (from leeches), porcine heparin (171 USP units/mg), glutaraldehyde (25 % 

aqueous solution), Triton X-100, Trizma® Pre-set crystals (for preparing Tris buffer), 2-

(N-morpholino)ethanesulfonic acid hydrate (for preparing MES buffer), phosphate 

buffered saline (PBS, pH 7.4), PBS (containing Tween 20, pH 7.4), bromophenol blue 

and dibutylamine (DBA) were all purchased from Sigma (St. Louis, MO).  Bovine serum 

albumin (BSA) solution was obtained from Invitrogen (Carlsbad, CA).  Potassium 

tetrakis(p-chlorophenyl) borate (KTpClPB) and triglycine (glycyl-glycyl-glycine, TG) 

were obtained from Fluka (Ronkonkoma, NY).  Glycine (Gly), 0.6 mL Fisherbrand low 

retention microcentrifuge tubes and 96-well polystyrene (PS) microtiter plates were 

obtained from Fisher Scientific (Fair Lawn, NJ).  Diprimary amine terminated 

poly(ethylene oxide) (DPA-PEO, with 10 repeating ethylene oxide units) was generously 

donated by Tomah Inc. (Milton, WI).  PurSil 20 80A and CarboSil 20 90A were from 

The Polymer Technology Group (Berkeley, CA).   

Silicone rubber catheter sleeves were made from silicone tubing (0.64 mm 

ID/1.19 mm OD), purchased from Helix Medical Inc. (Carpinteria, CA).  Polypropylene 

(PP) 96-well microplates with round ‘U’ bottom wells were purchased from Evergreen 

Scientific (Los Angeles, CA).  Nanosep centrifugal devices (Mw cut-off = 5K) were 

purchased from Pall Life Sciences (Ann Arbor, MI).  Whatman 13 mm ZC syringe filters 

were obtained from Whatman (Florham Park, NJ).  Hexamethylene diisocyanate (HMDI, 



 33

Aldrich (St. Louis, MO)) was distilled at reduced pressure immediately before use.  The 

3140 RTV SR was purchased from Dow Corning Corporation (Midland, MI).  Pyridine 

(Aldrich) was dried and distilled over 4M molecular sieves right before the reaction.  

Dibutyltin dilaurate (DBTDL), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC), N-hydroxysuccinimide (NHS), absolute ethanol and p-

toluenesulfonic acid monohydrate (TsOH) were all used as received from Aldrich.  

Citrate/phosphate/dextrose solution was purchased from Hospira Inc. (Lake Forest, IL).  

Lactate dehydrogenase (LDH) assay kits were obtained from Roche Applied Sciences 

(Indianapolis, IN).  Oregon Green 488 (OG-488) succinimidyl ester was purchased from 

Molecular Probes, Inc. (Eugene, OR).  DBHD/N2O2 was synthesized by treating N,N’-

dibutyl-1,6-hexanediamine (DBHD, Aldrich) with NO gas (80 psi, Cryogenic Gases 

(Detroit, MI)) at room temperature for 24 h as previously described11. 

FTIR spectra were collected on a Perkin-Elmer BX FT-IR system (Wellesley, 

MA).  Nitric oxide flux from polymer coatings was measured by a chemiluminescent NO 

analyzer (NOA™ 280, Sievers Instruments, Inc. (Boulder, CO)).  A scanning electron 

microscope (Philips XL30 FEG, FEI Company (Hillsboro, OR)) was used to characterize 

the morphology of the coatings.  A sputter coater system (SPI Supplies (West Chester, 

PA)) was used to coat a thin conductive gold layer prior to SEM analysis.  Static air–

water contact angles were measured by using a Cam-100 Optical Contact Angle 

Goniometer (KSV Instruments Ltd. (Monroe, CT)).  Fluorescence spectra were recorded 

with a Shimadzu RF-1501 spectrofluorophotometer (Tokyo, Japan).  The UV-Vis 

absorbance changes in the chromogenic assays were measured with a microtiter plate 
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reader (UV-IR-Vis Multiskan Spectrum Model 349, MTX Lab Systems, Inc. (Vienna, 

VA)). 

 

2.2.2. Synthesis of Carboxylated and Aminated CarboSil  

The urethane groups on CarboSil backbone were used to couple with HMDI 

through an allophanate reaction in the presence of a tin catalyst (DBTDL)17.  A solution 

of CarboSil (10 w/v % in DMAc) was added dropwise to a ca. five-fold molar excess of 

HMDI solution (10 w/v % in DMAc with 0.1 v/v % DBTDL) under argon.  The reaction 

mixture was stirred for 24 h at 40 °C, and the product was precipitated in copious 

anhydrous ethyl ether.  The precipitate was filtered and dissolved in anhydrous DMAc 

and then precipitated again in anhydrous ethyl ether.  After washing, the product was 

dried under vacuum for 2 d to remove any residual solvent.  The resulting polymer with 

pendant isocyanate groups (CarboSil-NCO) was further used to prepare carboxylated and 

aminated CarboSil. 

The carboxylation of CarboSil-NCO was carried out via a modified urea-forming 

reaction17,18.  Equimolar of pyridine was first mixed with a glycine or triglycine 

suspension in anhydrous dimethylacetamide (DMAc, 10 w/v %) overnight at 60 °C.  

CarboSil–NCO was dissolved in DMAc to make a 10 w/v % solution and mixed with an 

excess of freshly prepared pyridinyl glycine/triglycine suspension.  The reaction mixture 

was stirred under argon at 60 °C for 2 d, and then precipitated in copious ethanol/H2O 

(4:1, v/v).  The precipitate was filtered and washed with ethanol/H2O (4:1, v/v) twice and 

then soxhlet extracted with methanol.  Afterwards, it was washed again with ethyl ether 

and dried under vacuum for 2 d and then stored at -20 °C.  
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Scheme 2.2. Synthesis of carboxylated and aminated CarboSil. 

 

The amination of CarboSil-NCO was carried out according to a previously 

reported method13.  Briefly, CarboSil–NCO solution in DMAc (10 w/v %) was added 

dropwise to an excess of diamino–PEO (DPA-400E) solution (10 w/v % in DMAc). The 

reaction mixture was stirred under argon at 40 °C for 1 d, and then precipitated in copious 

ethyl ether.  The aminated CarboSil (CarboSil–PEO–NH2) was filtered and washed with 
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acetone and then ethyl ether to remove any unreacted diamine.  The product was further 

soxhlet extracted with methanol and then washed again with ethyl ether before it was 

finally dried under vacuum for 2 d to remove the residual solvent and then stored at -20 

°C.  Scheme 2 summarizes the carboxylation and amination procedures employed to 

modify CarboSil. 

 

2.2.3. Determination of Isocyanate Group Concentration on CarboSil-NCO and Amino 

Group Concentration on CarboSil-PEO-NH2 

The concentration of pendant isocyanate groups on CarboSil-NCO was 

determined via a modified titration method19.  Approximately 20 mg CarboSil-NCO was 

dissolved in 20 mL DMAc under argon to form a homogeneous solution.  An excess 

amount of DBA (50 μmol dissolved in 20 mL anhydrous toluene) was added and the 

mixture was shaken under argon at room temperature overnight.  The remaining base was 

titrated with an isopropanol solution of TsOH (5 mM), and the endpoint was indicated by 

bromophenol blue, via a color change from purplish blue to light yellow. 

A similar method was adopted for the determination of the amine content of 

CarboSil-PEO-NH2.  Approximately 20 mg CarboSil-PEO-NH2 was dissolved in 20 mL 

DMAc.  The amino groups were titrated with TsOH solution, (5 mM in isopropanol), 

with bromophenol blue as the indicator. 

 

2.2.4. Preparation of Underlying NO Release Polymeric Coatings 

The NO release polymeric coatings were prepared using a method similar to that 

previously reported by our group13.  A cocktail containing PurSil and 1:1 (molar ratio) of 
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KTpClPB and DBHD/N2O2 was prepared by suspending KTpClPB and DBHD/N2O2 in 

PurSil solution (4 w/v % in DMAc/THF) via moderate sonication.  The amount of PurSil 

in the cocktail was controlled so that final underlying layer of the polymeric coatings 

contained 8 wt % of DBHD/N2O2 (after a complete solvent evaporation).  Silicone rubber 

catheter sleeves (1.5 cm in length) were sealed at one end with Dow Corning 3140 RTV 

SR and cured overnight under ambient conditions.  Afterwards, they were dip-coated 

with the DBHD/N2O2 containing PurSil cocktail 8 times at 20-min intervals.  Finally, a 

carboxylated or aminated CarboSil top layer was applied by dip-coating twice in a 

CarboSil-Gly/TG-COOH or CarboSil–PEO–NH2 solution in DMAc/THF. The polymer 

concentrations ranged from 1 to 4 w/v % to achieve outer layers with different 

thicknesses.  The catheter sleeves were allowed to dry overnight, followed by vacuum 

drying at room temperature for additional 2 d to remove any residual solvent.  Scheme 

2.1 illustrates the final bilayer polymeric coating configurations on SR catheter sleeves. 

 

2.2.5. Heparin Immobilization on CarboSil-PEO-NH2 

Porcine heparin (unfractionated) was covalently immobilized onto the aminated 

CarboSil surface as previously reported13.  Briefly, a solution of heparin (20 mg/mL) in 

MES buffer (pH 5.6) was reacted with EDC and NHS at room temperature for 10 min 

(EDC:NHS:Hep–COOH = 0.4:0.24:1.0 (molar ratio))12.   The aminated CarboSil coatings, 

pre-equilibrated in PBS (pH 7.4) for 2 h at room temperature, were soaked in the 

activated heparin solution at room temperature for another 2 h.  The resulting heparinized 

surface (CarboSil-PEO-Hep) was extensively washed with 4 M NaCl and then DI water.  
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2.2.6. TM Immobilization on Carboxylated and Heparinized CarboSil Surface 

The CarboSil-Gly/TG-COOH surface was first hydrated in PBS (pH 7.4) at room 

temperature for 2 h.  Then, the surface carboxyl groups were activated by 100 mM EDC 

and 50 mM NHS in PBS (pH 7.4) at room temperature.  The activated carboxyl groups 

were then reacted with the amine groups on the lysine residues of TM (10 μg/mL in PBS, 

pH 7.4) at 4 °C overnight21.  The polymeric coating was then extensively washed with 

PBS (pH 7.4, containing Tween 20) and then DI water to rinse off any noncovalently-

linked TM.  The dual-acting polymeric coating, with NO donor within the underlying 

PurSil layer and TM bound onto its top layer, was then further characterized (see below). 

The procedure used to immobilize TM on heparinized CarboSil surface was 

similar to that employed for the carboxylated surface.  After hydration, the CarboSil-

PEO-Hep surface was reacted with 100 mM EDC and 50 mM NHS in PBS (pH 7.4) at 

room temperature for 30 min to activate the heparin carboxyl groups.  The activated 

carboxyl groups on heparin were then reacted with the amine groups on the lysine 

residues of TM (10 μg/mL in PBS, pH 7.4) at 4 °C overnight.  Any noncovalently-

bonded TM was removed by extensive washing with PBS (pH 7.4, containing Tween 20) 

and then DI water.   

 

2.2.7. Surface Characterization of Multifunctional Coatings 

Static air–water contact angles were determined by a sessile drop method using a 

Cam-100 Optical Contact Angle Goniometer at ambient humidity and temperature.  A 1–

1.5 μL of DI water droplet was placed on the polymer surface using a microsyringe and 

its image was taken with a CCD camera.  The contact angle was then calculated from the 
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image of the droplet using the software provided with the instrument.  Polymer coated 

surfaces for contact angle measurements were prepared via spin coating a polymer 

solution (0.1 w/v % in THF, filtered with Whatman 0.45 μm PTFE syringe filter) onto a 

glass slide at 600 rpm for 40 s under nitrogen.  The polymer coated glass slides were 

further treated to immobilize TM and/or heparin as described above.  All the sample 

slides were first dried in nitrogen overnight and then under vacuum for another 2 d.  For 

each polymer surface, 20 separate drops were examined on two different sample slides to 

obtain the average contact angle values reported. 

Scanning electron microscopic characterization was performed with a Philips/FEI 

XL30 FEG SEM Electron Microscope.  The electron beam was operated at 15 kV and the 

sample chamber pressure was 10-6 torr.  Polymeric coatings were dried under vacuum for 

2 d and then sputtered with gold prior to acquiring the SEM images. 

 

2.2.8. Estimation of the Amount of Immobilized hTM 

Thrombomodulin was labeled with OG-488 succinimidyl ester as follows.  To a 

solution of 150 μL of carbonate-bicarbonate buffer (pH 9.0), 50 μL of OG-488 solution 

(10 mg/mL in DMSO) was added, followed by 150 μL aqueous TM solution (0.8 mg/ml).  

The mixture was gently vortexed at room temperature in the dark for 2 h.  After the 

coupling reaction, the unreacted OG-488 was removed by dialysis using centrifuge 

devices with a cut-off molecular weight of 5K. 

TM’s degree of labeling (DOL) was determined by the following equation: 

 

TM

OG

C
C

DOL 488−=
   Eqn. 2.1. 
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Whereas, COG-488 and CTM are the concentrations of OG-488 and TM, respectively, in the 

stock solution of OG-488 labeled TM. 

The concentration of TM was measured via a Bio-Rad protein assay20.  First three 

to five dilutions of HRP standards were prepared.  The HRP is a protein that can be used 

as standard.  One hundred and sixty μL of each standard and sample solution were 

pipetted into separate microtiter plate wells.  Forty μL of dye reagent concentrate was 

then added to each well using a multi-channel pipet to dispense the reagent.  To mix the 

sample and reagent in the well, the plunger on the dispenser was depressed repeatedly.  

The samples were then incubated at room temperature for at least 5 min and no more than 

1 h.  The absorbances at 590 nm of both the standards and samples were measured with a 

microtiter plate reader.  The concentration of OG-488 was determined by measuring the 

fluorescence intensity of the mixture using 495 nm for excitation and 520 nm for 

emission. 

TM-OG-488 was immobilized onto CarboSil-Gly surfaces in a similar manner as 

non-labelled TM.  After immobilization, the surface-bound TM-OG-488 was hydrolyzed 

with 2 M NaOH for 1 h at 121 °C using an autoclave.  After cooling the hydrolyzed 

mixture to room temperature, acetic acid was added, and the fluorescence intensity of the 

mixture was measured using 495 nm for excitation and 520 nm for emission.  Blank 

CarboSil-Gly polymeric coatings and solutions with known TM-OG-488 concentrations 

were also autoclaved under the same condition to be used as controls and standards. 
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2.2.9. Activity of Surface-Bound Thrombomodulin 

The bioactivity of surface-bound TM was analyzed by a chromogenic PC assay16 

(see Figure 1.5).  In a 0.6 mL microcentrifuge tube, the 1.5 cm long polymer coated SR 

catheter sleeve (surface area = 0.572 cm2) with immobilized TM was fully immersed into 

a solution composed of 80 μL BSA solution (7.5 w/v %), 8 μL thrombin solution (100 

μg/mL), and 192 μL 20 mM Tris buffer (pH 7.4, with 3 mM CaCl2, 100 mM NaCl and 

0.02 % NaN3).  After incubation at 37 °C for 5 min, 40 μL of PC solution (100 μg/mL) 

was added and the mixture was incubated at 37 °C for 10 min.  Then, 80 μL of hirudin 

(204.8 unit/mL) was added to bring the total volume to 400 μL and the mixture was 

further incubated at 37 °C for 5 min.  The 400 μL mixture was then evenly divided into 4 

wells of a PP 96-well microtiter plate.  Ninety μL of Tris buffer (pH 7.4) and 10 μL of 2 

mg/mL S-2366 substrate solution were then added and absorbance change at 405 nm was 

measured immediately by a Labsystems Multiskan RC 96-well microplate reader in the 

kinetic mode.  Control experiments were also performed for surfaces without 

immobilized TM (carboxylated, aminated and heparinized polymeric surfaces), using the 

exact same assay procedure. 

The stability of surface-bound TM was also tested both in PBS and sheep plasma 

using this APC assay.  Arterial blood from pregnant ewes, weighing 70 ± 14 kg, was 

drawn into a 9:1 volume of blood anticoagulant (citrate/phosphate/dextrose) solution.  

The citrated whole blood was centrifuged at 110 g for 15 min at 22 °C and plasma was 

collected from the supernatant.  To re-establish platelet activity, CaCl2 was added to the 

plasma to raise [Ca2+] by 2 mM. 
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2.2.10. Activity of Surface-Bound Heparin 

The bioactivity of surface immobilized heparin was determined by a chromogenic 

anti-FXa assay12 (see Figure 1.3).  In a 0.6 mL Fisherbrand low retention microcentrifuge 

tube, the 1.5 cm long SR catheter sleeve with heparinized polymer coating (surface area = 

0.572 cm2) was fully immersed in a solution composed of 80 μL BSA solution (7.5 w/v 

%), 80 μL AT III solution (100 μg/mL), and 232 μL PBS (pH 7.4).  After incubation at 

37 °C for 2 min, 8 μL of 20 μg/mL FXa was added to bring the total volume to 400 μL 

and the mixture was further incubated at 37 °C for 1 min.  The 400 μL mixture was then 

evenly divided into 4 wells of a PP 96-well microtiter plate.  Ninety μL of PBS (pH 7.4) 

and 10 μL of 2 mg/mL S-2222 solution were then added to bring the total volume in each 

well to 200 μL.  Absorbance changes at 405 nm were measured immediately by the 

microplate reader in the kinetic mode.  Experiments were also performed using non-

heparinized surfaces (aminated polymer surface) and the heparinized surface after 

subsequent TM immobilization. 

 

2.2.11. Chemiluminescence Measurements of NO Release 

Nitric oxide released from the polymeric coatings was measured using a Sievers 

Chemiluminescence NO Analyzer.  The instrument was calibrated before each 

experiment using an internal two-point calibration (zero gas and 45 ppm NO gas).  NO 

was continuously swept from the headspace of the sample vessel and purged from the 

bathing solution with a nitrogen sweep gas and bubbler into the chemiluminescence 

detection chamber.  The flow rate was set to 50 mL/min with a chamber pressure of 5.4 

torr and an oxygen pressure of 6.0 psi. 
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2.2.12. In Vitro Platelet Adhesion Experiments Using Sheep Plasma 

A lactate dehydrogenase assay was used to quantify platelet adhesion on 

polymeric coatings with an NO-release underlying layer and CarboSil-Gly top layer 

prepared in PP 96-well microtiter plates.  Thrombomodulin was immobilized using the 

method described above.  Microtiter plates with control polymeric coatings were also 

prepared.  After incubation with sheep plasma, adhesion of platelets was determined by 

measuring LDH enzymatic activity derived from the platelets via a method reported 

recently by Wu et al21. 

Briefly, before sheep plasma incubation, the polymer coated microtiter plate wells 

were hydrated by incubating with 200 mL PBS for 3 h at 37 °C.  Then, 100 mL of sheep 

plasma was added to each polymer-coated well and incubated for 1 h at 37 °C under 

static conditions.  The plasma was then decanted and the wells were washed once with 

200 mL PBS.  Adhered platelets were lysed for 1 h at 37 °C using a lysing buffer (150 μL 

PBS with 1 w/v % Triton X-100 and 0.75 w/v % BSA per every well).  Then, 100 μL of 

each lysate solution was pipetted into wells of a second 96-well polystyrene microtiter 

plate (Fisher) that contained 100 μL of reagent from an LDH assay kit. Absorbance 

change of each well at 490 nm was monitored by a microplate reader. 

NO release properties before and after plasma incubation were investigated by 

NOA.  SEM images for surfaces of the various polymeric films were also obtained.  The 

polymer coatings were prepared via sequentially spin coating a DBHD/N2O2 containing 

PurSil cocktail and then a CarboSil-Gly solution in DMAc/THF onto glass slides at 600 

rpm for 40 s as the underlying NO release and the top layers, respectively.  All the 
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sample slides were first dried in nitrogen overnight and then under vacuum for 2 d.  The 

polymer coated glass slides were then further treated to immobilize TM as described 

above.  After plasma incubation, adhered platelets in some wells were fixed with 4 % 

glutaraldehyde for 1 h and then dehydrated in a series of ethanol solutions (Table 1.1) and 

dried overnight.  The polymeric coatings with adhered platelets were sputtered with gold 

prior to acquiring the SEM images. 

 

Table 2.1. Series of ethanol solutions for platelet dehydration. 

Solution # Ethanol Concentration Immersion Time (min) 
1 50 % 5 min 
2 75 % 5 min 
3 85 % 5 min 
4 90 % 5 min 
5 95 % 5 min 
6 Absolute 5 min 

 

 

 

2.3. Results and Discussion 

2.3.1. Preparation and Characterization of Outer Carboxylated/Aminated CarboSil 

Layer 

Carboxylation was carried out on CarboSil, a silicone-poly(carbonate)urethane 

copolymer that is used for biomedical applications3,22.  This polymer has been suggested 

for longer-term in vivo implants, including vascular grafts, owing to its greatly improved 

biostability and biomcompatibility, compared to the classical polyether type 

polyurethanes. 
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The urethane groups on the polymer backbone were first coupled with a 

diisocyanate compound (HMDI)23.  The coupling was confirmed using IR by the 

appearance of a NCO band at 2266 cm-1, and another new band at 1619 cm-1 

(corresponding to urea absorption) after reaction for 1 d (see Figures 2.1a and b).  The 

concentration of the isocyanate groups was determined to be 401 ± 3 μmol/g (n = 3) via 

the modified titration method19.  Prolonging the reaction time would increase the 

isocyanate concentration (data not shown) yet the polymer also became more and more 

difficult to dissolve due to the increasing extent of crosslinking between separate polymer 

chains. 

The resulting polymer with pendant free isocyanate groups was further reacted 

with the amino groups of glycine/triglycine to form carboxylated CarboSil (CarboSil-

Gly/TG-COOH).  The disappearance of the 2266 cm-1 peak and increased intensity at 

1619 cm-1 in the IR spectra (Figures 2.1c and d) verified the formation of the second urea 

bond at the expense of the isocyanate group. 

The preparation of the aminated CarboSil was described previously13.  The free 

isocyanate groups attached to CarboSil were further coupled to a hydrophilic diprimary 

amine terminated PEO chain. Surfaces coated or covalently linked with this PEO based 

hydrogel-like structure have been shown to suppress cell adhesion (e.g., platelet adhesion) 

22,23.  The concentration of amine groups on CarboSil-PEO-NH2 was determined to be 

221 ± 4 μmol/g (n = 3) by titration.  Compared to that of the isocyanate groups in 

CarboSil-NCO (401 ± 3 μmol/g), the decrease of functional group concentration might be 

attributed to the slight hydrolysis of NCO and the crosslinking of separate polymer chains 

by the diamine. 
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Figure 2.1.  Typical IR spectra of CarboSil and its derivatives: a) CarboSil; b) CarboSil-
NCO; c) CarboSil–Gly–COOH; d) CarboSil-TG-COOH. 
 

 

2.3.2. Immobilization of TM on Carboxylated CarboSil as well as Heparin and TM on 

Aminated CarboSil 

A number of methods have been adopted for the immobilization of TM using a 

variety of surface functional groups, including carboxylic acid24, amine25, and 

trichlorotriazine26 to anchor TM through the formation of covalent linkages.  It has also 

been reported that TM can be incorporated within a phospholipid membrane via in situ 

photopolymerization27.  Here, we chose to introduce carboxylic groups (from glycine, 

triglycine or heparin) on the outer CarboSil polymeric surface to form stable amide bonds 

with the amine groups on the TM.  The reaction can be carried out in very mild 

HN NH
O

NCO 
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conditions (pH 7.4, room temperature or 4 °C) and this helps to minimize any possible 

deterioration of TM’s biological activity. 

In one approach (see Scheme 2.1B) to link TM to the outer surface, the COOH 

groups on CarboSil-Gly/TG-COOH surfaces were used to react with the amino groups on 

lysine residues of TM to form stable amide bonds as described in the Experimental 

section.  The unreacted TM could be collected and reused as needed. 

In the second approach (see Scheme 2.1C), heparin can first be covalently 

immobilized on to the aminated CarboSil surfaces as described in the Experimental 

section.  Unfractionated heparin (from porcine intestinal mucosa), as a highly negatively 

charged polysaccharide with a molecular weight ranging from 5 kDa to 20 kDa, has 18 

COOH groups per molecule on average12.  The EDC/NHS/Hep-COOH ratio used 

corresponds to a value where only one COOH group per every heparin molecule can 

react with the polymer surface amine groups so that maximal activity of heparin could be 

maintained12, and the remaining COOH groups on immobilized heparin could be used to 

immobilize TM.  The concentrations of EDC and NHS (100 mM and 50 mM, 

respectively), the activation time (30 min) and the concentration of TM (10 μg/mL) were 

all carefully optimized (data not shown) so that maximal activity of surface-bound TM 

could be obtained with the least decrease in immobilized heparin activity (see below).  
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Figure 2.2. a-d): SEM pictures of polymeric surfaces with different thickness of top-coating before/after TM immobilization.  The 
underlying layers of all coatings were doped with 8 wt % of DBHD/N2O2 and an equimolar amount of KTpClPB.  a) and b) are 
surfaces before and after TM immobilization with top-coatings made by dip-coating in 2 wt % solution of CarboSil-Gly-COOH in 
DMAc/THF, respectively; c) and d) are surfaces before and after TM immobilization with top-coatings made by dipping the tubes in 1 
wt % solution of CarboSil-Gly-COOH in DMAc/THF, respectively; e) Typical cross-section of the SR catheter sleeves onto which the 
bilayer polymeric coatingwas applied.  The thickness of the bilayer coating was approx. 35-50 μm. 

2c 2d 2e

SR substrate

Coating 

2a 2b
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2.3.3. Surface Characterization 

SEM images (see Figures 2.2a, b) show that the surfaces of the polymeric 

coatings were smooth on the micrometer scale and that no observable change in 

roughness was observed.  Also, there was no discernible interface between the top layer 

and the underlying layer. The total thickness of these bilayer coatings was ca. 35-50 μm 

(see Figure 2.2c). 

Chemically modifying the polymer surface also led to significant changes in the 

air–water contact angle of the material surface.  As shown in Table 2.2, the contact angle 

of CarboSil decreased from 105 ± 3° to 91 ± 2° after glycine was attached.  The contact 

angle of CarboSil-Gly-TM further decreased to 69 ± 3°, 22 degrees smaller than that of 

CarboSil-Gly-COOH, showing that the surface becomes quite hydrophilic after the 

immobilization of the TM protein.  

 

Table 2.2. Contact angles of various polyurethane surfaces. (degree, n ≥ 20) 

CarboSil CarboSil-Gly-COOH CarboSil-Gly-TM 
105 ± 3 91 ± 2 69 ± 3 

 

 

2.3.4. Measurement of the Amount of Immobilized hTM 

Figure 2.3 shows a typical calibration curve for HRP using the Bio-Rad protein 

assay.  The labeled TM sample solution was diluted to fit into the linear range of the 

calibration curve.  Figure 2.4 shows the typical emission spectrum of OG-488.  The 

degree of labeling (DOL) of OG-488 labeled TM was determined to be 0.65 (n = 3).  The 
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absolute amount of TM immobilized on CarboSil-Gly surfaces was estimated to be 1.77 

± 0.26 pmol/cm2. 

 

 

 

Figure 2.3. Typical calibration curve of Bio-Rad assay (via recommended microtiter 
procedure for microtiter plates). 

 

 

 

Figure 2.4. Typical emission spectrum of OG-488 labeled TM solution (using 495 nm as 
the emission wavelength). 

HRP Concentration (µg/mL) 
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2.3.5. Activity of Surface-Bound TM and Heparin 

The anticoagulant activity of the immobilized TM was evaluated by a 

chromogenic APC assay.  Activation of PC by thrombin alone is slow and has no 

physiological function.  However, when thrombin binds to TM in the presence of Ca2+, 

the rate by which thrombin activates PC will increase by 20,000-fold15.  The activated PC 

can be quantified by measuring the cleavage rate of the chromogenic substrate S-2366 

(Glu-Pro-Arg-pNA·HCl)16.  For immobilized TM, its activity is expressed in terms of 

nanograms of APC generated per square centimeter per min. 

The immobilized TM’s activity on CarboSil-Gly-COOH was determined to be 

11.7 ± 0.5 and 11.5 ± 0.5 ng APC·cm2·min-1 in the presence and absence of a surface NO 

flux of 1.0×10-10 mol cm-1 min-1, respectively.  Surfaces without immobilized TM or with 

only physically adsorbed TM showed negligible activity (0.1 ± 0.2 and 0.3 ± 0.2 ng 

APC·cm2·min-1, respectively (see Figure 2.5)).  This confirmed that the anticoagulant 

activity comes from covalently bound TM and not physically adsorbed TM; the presence 

of NO release does not alter the anticoagulation activity of TM. 

As has been mentioned in Section 3.4, the absolute amount of TM immobilized 

on CarboSil-Gly surfaces was estimated to be 1.77 ± 0.26 pmol/cm2 as determined by a 

fluorescence method based on labeling TM with OG-488.  Such a value should 

correspond to a much higher PC activating capability than measured by the APC assay 

(see above).  A possible reason for less activity is that the short spacer (i.e., glycine) 

between TM molecules and the polymeric surface might hinder both the mobility of TM 

and the accessibility of its substrates.  Indeed, with longer spacers such as TG and PEO-
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Hep as described below, a significant increase of TM biological activity could be 

detected using the same immobilization chemistry. 
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Figure 2.5. TM activity of modified polymeric surfaces (determined by APC assay): a) 
CarboSil-Gly-COOH in the absence of NO; b) CarboSil-Gly-COOH with physically 
adsorbed TM in the absence of NO; c) CarboSil-Gly-TM in the absence of NO; d) 
CarboSil-Gly-TM in the presence of an NO flux of ca. 1.0×10-10 mol·cm-2·min-1; e) 
CarboSil-TG-TM in the presence of an NO flux of ca. 1.0×10-10 mol·cm-2·min-1.  f) 
CarboSil-PEO-Hep in the presence of an NO flux of ca. 1.0×10-10 mol·cm-2·min-1; g) 
CarboSil-PEO-Hep-TM in the presence of an NO flux of ca. 1.0×10-10 mol·cm-2·min-1. (n 
= 4 for each set of data) (* Activity of TM < 1.0 ng APC·cm-2·min-1). 
 

In the presence of a surface NO flux of 1.0×10-10 mol cm-1 min-1, the immobilized 

TM’s activity on CarboSil-TG-COOH was determined to be 69.2 ± 1.9 ng APC cm2 min-1 

(see Figure 2.5).  The 6-fold increase in the activity of surface-bound TM on CarboSil-

TG-COOH compared to CarboSil-Gly-COOH may be attributed to the longer chain that 
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links TM onto the surface and hence better accessibility of thrombin and PC to TM’s 

active site. 

Neither CarboSil-PEO-NH2 nor CarboSil-PEO-Hep showed observable response 

in the PC assay.  However, CarboSil-PEO-Hep-TM exhibited a significant TM activity of 

316.0 ± 31.9 ng APC cm2 min-1 (see Figure 2.5).  This is quite reasonable given that the 

PEO moiety together with heparin, would form an extremely flexible spacer between TM 

and the polymeric surface.  Hence, the immobilized TM should be quite accessible to 

thrombin and PC.  However, it is also possible that the high local concentration of 

negatively-charged heparin may also contribute to the strong association of thrombin 

with immobilized TM for PC activation.  It is conceivable that an approximation model, 

akin to those described for serpin-heparin-protease ‘ternary complex’ formation, may 

also contribute to the apparent activity increase28. 

TM has long been recognized for its thermostability29.  In this study, we evaluated 

the stability of the surface-bound TM.  An insignificant loss (< 10 %) of activity of TM 

immobilized on CarboSil-Gly-COOH was observed over a five-month period when 

CarboSil-Gly-TM coatings were stored in PBS at 4 °C (n = 4) (see Figure 2.6A).  

Furthermore, almost 70 % of the original activity of TM is maintained over a four-week 

period in PBS at 37 °C (n = 4) (see Figure 2.6B).  Based on our extensive experience 

with the NO release coatings of the type used in this work, constant fluxes of NO for up 

to 2 weeks at 37oC is typically observed11,13,21 which is quite compatible with the TM 

lifetime under similar conditions.  
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Figure 2.6. Stability of CarboSil-Gly-TM stored in PBS (pH 7.4) a) at 4 °C over a five-
month period, b) under 37 °C over a four-week period.  TM activity was determined by 
PC assay (n = 4). 

6A 
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The polymeric surfaces with immobilized TM were also incubated in sheep 

plasma for 1 h at 37 oC to assess whether plasma components can decrease TM activity.  

However, it was found that functional TM activity (based on APC assay) actually 

increased by approx. 30 % after exposure to the plasma.  One possible reason is that some 

components in plasma might adhere onto the polymeric surfaces and cause the activation 

of PC and/or the cleavage of the chromogenic substrate.  Further experiments are needed 

to verify this hypothesis. 

The activity of surface-bound heparin immobilized by the same procedure used 

here have been evaluated in our earlier work and found to be 4.80 ± 0.08 mU/cm2 on 

poly(vinyl chloride) (PVC) and 6.39 ± 0.08 mU/cm2 on PU surfaces13.  The activity of 

surface-bound heparin here was found to be 5.34 ± 0.71 mU/cm2 (see Figure 2.7), which 

is comparable to the previous results.  After the immobilization of TM, heparin’s activity 

drops to 4.34 ± 0.20 mU/cm2, a possible result of the loss of COOH groups during the 

TM immobilization process as well as the steric hindrance from the large TM molecule, 

now linked to the surface appended heparin. 
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Figure 2.7. Heparin activity of 
modified CarboSil surfaces (all 
determined by anti-FXa assay in 
the presence of an NO flux of 
approx. 1.0×10-10 mol cm-2 min-1): 
a) CarboSil-PEO-NH2; b) 
CarboSil-PEO-Hep; c) CarboSil-
PEO-Hep-TM. (n = 4 for each set 
of data) 
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2.3.6. NO Release from Polymeric Coatings with Surface-Bound TM and/or Heparin 

The release of NO from the underlying polymer film containing the N-

diazeniumdiolates (DBHD/N2O2) is driven by protons11.  Therefore, exposure of this 

class of NO donors to physiological conditions stimulates NO release.  The addition of 

KTpClPB, a lipophilic tetraphenylborate derivative, into the polymer coating is critical to 

maintain a low enough pH within the organic polymer phase to promote continued NO 

release11.  In previous work, various polymer formulations and coating procedures using 

DBHD/N2O2 to fine-tune the flux and duration of NO release from hydrophobic coatings 

were examined11, 13.  The flux of NO can range from 0.5 to 60 × 10-10 mol cm-2 min-1 

(physiological level ca. 1.0 × 10-10 mol cm-2 min-1 30) and the duration can be longer than 

2 weeks13, depending on the specific polymer film composition. 

In this work it was also found that by increasing the thickness of the top-layer, the 

NO release rate decreases.  By dip-coating the SR catheter sleeves (pre-coated with NO 

donor containing layer) in carboxylated/aminated CarboSil solutions of different 

concentrations (1 to 4 w/v %), top layers with different thickness could be applied which 

would result in different NO fluxes (see Figure 2.8). 
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Figure 2.8. NO flux levels of DBHD/N2O2-loaded SR catheter sleeves before TM 
immobilization.  The underlying layers of all three coatings were loaded with 8 wt % of 
DBHD/N2O2 and an equimolar KTpClPB, while the top-coatings were made by dip-
coating the catheter sleeves into 1 w/v % (a), 2 w/v % (b) and 4 w/v % (c) solutions of 
CarboSil-Gly-COOH in DMAc/THF, respectively. 
 

Most importantly, the immobilization procedures, which involved the contact 

between the coatings and water for ca. 12 h (TM immobilization on carboxylated 

CarboSil) to 18 h (TM and heparin immobilization on aminated CarboSil), have very 

limited effect on the NO flux (see Figures 2.9 and 2.10).  It has been reported previously 

that ca. 1-2 % of NO loss was found for a PVC coating (PVC:DOS = 1:1) after ca. 8-10 h 

in contact with aqueous solution at room temperature13.  Thus, it can be predicted that the 

NO loss during  the TM and heparin immobilization process using the more hydrophobic 

PurSil polymer reported here (with DBHD/N2O2 doped PurSil as the underlying layer and 
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functionalized CarboSil as the top layer) should also be quite small  compared to the NO 

reservoir in the underlying polymer film. 
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Figure 2.9. NO flux profiles of SR catheter sleeves before/after TM immobilization. The 
underlying layers of all four coatings were loaded with 8 wt % of DBHD/N2O2 and an 
equimolar amount of KTpClPB.  The top-coatings were made by dip-coating the catheter 
sleeves in 4 % (w/v) solution of CarboSil-Gly-COOH (a and b) or 1 % (w/v) solution of 
CarboSil-TG-COOH (c and d). Coatings b and d were further immobilized with TM.  a) 
CarboSil-Gly-COOH; b) CarboSil-Gly-TM; c) CarboSil-TG-COOH; d) CarboSil-TG-
TM. 



 59

0

1

2

3

4

5

0 2 4 6 8 10 12
Time (h)

N
O

 s
ur

fa
ce

 fl
ux

   
(1

0-1
0 m

ol
 c

m
-2

m
in

-1
)

b

a

c

 

 

Figure 2.10. NO flux profiles of SR catheter sleeves before and after heparin/TM 
immobilization.  The underlying layers of all three coatings were loaded with 8 wt % of 
DBHD/N2O2 and an equimolar amount of KTpClPB.  The top-coatings were made by 
dip-coating the catheter sleeves in 1 % (w/v) DMAc/THF solution of CarboSil-PEO-NH2.  
a) CarboSil-PEO-NH2; b) CarboSil-PEO-Hep; c) CarboSil-PEO-Hep-TM. 
 

NO release properties before and after plasma incubation were investigated by 

NOA.  No significant change has been observed whether with or without surface-bound 

TM (see Figure 2.11). 
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Figure 2.11. NO flux profiles of SR catheter sleeves before/after TM immobilization. 
The underlying layers of both coatings were loaded with 8 wt % of DBHD/N2O2 and an 
equimolar amount of KTpClPB.  Both top-coatings were made by dip-coating the 
catheter sleeves in 4 % (w/v) solution of CarboSil-Gly-COOH.  Coating 11B was further 
immobilized with TM.  Both coatings were incubated in sheep plasma for 1 h at 37 °C 
under static conditions.  a) CarboSil-Gly-COOH before plasma incubation; b) CarboSil-
Gly-COOH after plasma incubation; c) CarboSil-Gly-TM before plasma incubation; d) 
CarboSil-Gly-TM after plasma incubation. 
 

11B 

c 

d 

11A a 

b 



 61

2.3.7. Preliminary In Vitro Study of Blood Compatibility of the Bilayer Polymeric 

Coatings 

In recent years, the lactate dehydrogenase present within platelets has been 

reported to provide a useful approach to study in vitro platelet adhesion on chemically 

and/or physically modified surfaces.  In previous work, the LDH assay has been used to 

assess the platelet adhesion on NO-releasing PVC coatings21.  In this work, a decreased 

amount (19.8 ± 2.7 %) of adhered platelets was detected on NO-releasing polymeric 

coatings compared with polymer coatings without NO release.  However, the presence of 

surface-immobilized TM had no significant effect on platelet adhesion (see Figure 2.12 

and Table 2.3).  This is expected since NO, being a potent anti-platelet agent, can prohibit 

platelet activation and adhesion, while TM is an anticoagulant agent which asserts its 

antithrombotic activity in triggering the PC pathway which will down regulate the 

coagulation cascade.  This effect of TM has already been successfully demonstrated in 

the previous section of the APC assays. 

 

Table 2.3. Coating information. 

Coating Underlying Layer Top Layer 
a N/A CarboSil-Gly-COOH 

b Loaded with 8 wt % of DBHD/N2O2 and an 
equimolar amount of KTpClPB.   CarboSil-Gly-COOH 

c N/A CarboSil-Gly-TM 

d Loaded with 8 wt % of DBHD/N2O2 and an 
equimolar amount of KTpClPB.   CarboSil-Gly-TM 
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Figure 2.12. Platelet adhesion on various polymeric coatings prepared by dip coating. All 
coatings were incubated in sheep plasma for 1 h at 37 °C under static conditions.  
Adhered platelets were quantified by LDH assay.  Coating information is listed in Table 
2.3 above. 

 

Similar results were also observed using SEM to image the platelet adhesion and 

activation on the various surfaces (see Figure 2.13).  Films were prepared in the same 

way as listed in Table 2.3, except that glass slides were used as substrates in the place of 

SR tubes and spin coating was used to coat the substrate instead of dip coating.  This 

deviation in sample preparation is required due to the nature of the static plasma 

incubation setting.  From the SEM images, it can be seen that there was almost no 

activation of adhered platelets, not only on polymers with NO release and immobilized 

TM, but also on control polymeric coatings.  This might be due to the already improved 

biocompatibility of the CarboSil-based top layers, compared to PVC and other less 

biocompatible polymeric materials. 
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Figure 2.13. Platelet adhesion on various polymeric coatings prepared by spin coating. 
All coatings were incubated in sheep plasma for 1 h at 37 °C under static conditions.  
Polymeric urfaces and adhered platelets were characterized by SEM.  Coating 
information is listed in Table 2.3 above. 
 

 

 

2.4. Conclusions 

Multifunctional bilayer polymeric coatings have been fabricated with both 

controlled NO release and surface-bound active TM or combined TM and heparin.  The 

outer layer was made of a commercially available SR-PU copolymer (CarboSil).  This 

outer coating material can be either carboxylated or aminated via an allophanate reaction 

b d

a c
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with a diisocyanate compound followed by a urea-forming reaction with an amino acid 

(glycine), an oligopeptide (triglycine) or a diprimary amine.  Carboxylated CarboSil 

(CarboSil-Gly/TG-COOH) was used to immobilize TM through the formation of an 

amide bond between the surface COOH groups and the lysine residues of TM molecule.  

Aminated CarboSil (CarboSil-PEO-NH2) was first heparinized, and the COOH groups on 

heparin could be further used to anchor TM.  The anticoagulant activity of TM and 

heparin were evaluated by PC and anti-FXa assay, respectively.  It should be noted that 

the length of the spacer was critical to the activity of surface-bound TM in that longer 

spacers likely rendered TM’s active site more accessible to its substrates, and this, in turn, 

resulted in higher activity.  Surface-bound TM showed very good stability when stored in 

PBS (pH 7.4) both at 4 °C and at 37 °C.  Immobilized heparin maintained most of its 

activity after the immobilization of TM to its COOH functional groups.  

The underlying layer was made with another commercial SR-PU copolymer 

(PurSil) mixed with a lipophilic NO donor (DBHD/N2O2).  The NO release rate could be 

tuned by controlling different loadings of NO donors as well as by changing the coating 

procedures.  In this work, we could control the NO fluxes around physiological level by 

applying top coatings with different thicknesses.  The immobilization of TM and heparin 

had little influence on NO release levels, and NO release did not influence the activity of 

surface-bound heparin and TM. 
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CHAPTER 3 

 

Combining Nitric Oxide and Sirolimus in Polymeric Films: 

Potential Coatings for Stents and Other 

Blood-Contacting Medical Devices 

 

 

3.1. Introduction 

As has been mentioned in Chapter 1, thrombosis is not the only problem 

associated with blood-contacting medical devices.  In many cases, smooth muscle cell 

(SMC) proliferation can be the problem as well.  In the treatment of coronary artery 

disease, balloon angioplasty and stenting have become common procedures for the relief 

of arterial stenosis and to restore normal blood flow.  Over time, this traditional bare-

metal stent (BMS) is fully endothelialized.  In roughly a third of bare-metal stenting cases, 

however, restenosis occurs.  Tissue engulfs the stent, leading to the reduction of the blood 

flow, and in turn, to the subsequent coronary symptoms (see Figure 1.8).  This type of 

restenosis is believed to be the result of an inflammatory response to injury from the 

initial angioplasty procedure and to the BMS itself1. 

Drug-eluting stents (DES) were developed to prevent the kind of restenosis seen 

with BMSs.  Drug eluting stents differ from bare-metal stents mainly in that 
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they are coated with a polymeric coating containing a drug meant to interfere with the 

process of restenosis.  Paclitaxel and sirolimus (rapamycin) are the most widely used 

drugs on DESs13-16.  Over time, these drugs inhibit the proliferation and migration of 

SMCs and inflammatory cells responsible for restenosis. 

Sirolimus (see Figure 1.9) is a macrolide antibiotic with potent antifungal, 

immunosuppressive and antimitotic properties2.  In December 1999, the first sirolimus-

eluting stents were implanted in human cornary arteries and the first published human 

study by Sousa et al. in 2001 showed a nearly complete elimination of neointimal 

hyperplasia3.  However, recent findings have suggested an increased risk of late-stage 

thrombosis associated with DESs due to the incomplete endothelialization on the surface 

of the struts of the stents as sirolimus can also retard the migration and proliferation of 

endothelial cells (ECs)4.  As described in Chapter 1, the drugs can prevent or delay full 

endothelialization of the stent allowing platelets, red blood cells, fibrin and white blood 

cells to adhere to the exposed struts of the stents, leading in a small fraction of patients to 

late-stage thrombosis1.  The resulting thrombi can lead to narrowing or complete 

occlusion of the lumin which may lead to myocardioinfarction.  Hence, the use of anti-

restenotic drugs alone may only solve part of the issues associated with stent placement.  

Indeed, similar thrombosis and SMC proliferation problems exist in the case of implanted 

vascular grafts as well17,18. 

In addition to its antithrombotic property, some researchers have also found that 

nitric oxide (NO) release can enhance EC growth on surfaces.  It has been reported by Dr. 

West’s research group at Rice University that NO releasing PUs were able to promote 

endothelialization and suppress platelet adhesion5,6, thus may reduce the possibility of 
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stent thrombosis.  If this is true, NO release would help solve the fundamental problem 

associated with DESs, since the presence of NO would prevent thrombosis early on and 

then further facilitate the EC growth. 

Hence, the use of a naturally occurring anti-thrombotic/anti-platelet agent such as 

NO, in combination with an anti-cell proliferation agent may provide the ideal solution to 

reduce both clotting and restenosis risk for stents as well as vascular grafts and other 

implanted medical devices. 

Herein, we describe the first dual-functional polymeric coating that releases both 

sirolimus and NO7.  The new coating can potentially suppress the migration and 

proliferation of SMC and at the same time, exhibit decreased thrombus formation and 

enhanced endothelialization.  

 

 

3.2. Experimental 

3.2.1. Materials and Instrumentation 

Phosphate buffered saline (PBS, pH 7.4) and N,N-dimethylacetamide (DMAc) 

were purchased from Sigma-Aldrich (St. Louis, MO).  Tetrahydrofuran (THF) was 

obtained from Fisher Scientific (Pittsburgh, PA) and was distilled over sodium and 

benzophenone prior to use.  Potassium tetrakis(p-chlorophenyl)borate (KTpClPB), 

acetonitrile (both reagent and HPLC grade) and trifluoroacetic acid (TFA) were also 

purchased from Fisher.  Sirolimus (rapamycin) was purchased from LC Laboratories 

(Woburn, MA).  Silicone rubber RTV 3140 coating was purchased from Dow Corning 

Corporation (Midland, MI).  PurSil-20-80A and CarboSil-20-90A were generous gifts 
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from The Polymer Technology Group (Berkeley, CA).  Tecoflex-SG-60D was a gift from 

Lubrizol Advanced Materials (Cleveland, OH).  DBHD/N2O2 was synthesized by treating 

N,N’-dibutyl-1,6-hexanediamine (DBHD, Aldrich) with NO gas (80 psi, Cryogenic Gases 

(Detroit, MI)) at room temperature for 24 h as previously described8. 

Nitric oxide flux from polymer coatings was measured by a chemiluminescent 

NO analyzer (NOA™ 280, Sievers Instruments, Inc. (Boulder, CO)).  Sirolimus release 

rate was determined by high-performance liquid chromatography (HPLC)-based analysis 

(Hewlett Packard 1050 HPLC system).  A scanning electron microscope (Philips XL30 

FEG, FEI Company (Hillsboro, OR)) was used to characterize the morphology of the 

coatings. 

 

3.2.2. Preparation of Polymer Coatings 

Diazeniumdiolated N,N’-dibutyl-1,6-hexanediamine (DBHD/N2O2) was 

synthesized by treating N,N’-dibutyl-1,6-hexanediamine in CH3CN with NO (80 psi)8.  

The NO release polymeric coatings were prepared using a method similar to that  

previously reported by our group9.  A cocktail containing well-suspended DBHD/N2O2 

in a DMAc/THF solution of 4 wt % PurSil (a commercial silicone-poly(ether)urethane 

copolymer) was made.  Silicone rubber (SR) tubings were then dip-coated with this 

cocktail to form an NO release underlayer.  A 1:1 molar ratio of KTpClPB (a lipophilic 

borate salt) was added to help reduce pH changes within polymeric coatings during the 

decomposition process of DBHD/N2O2.  The concentrations of DBHD/N2O2 and 

KTpClPB in the cocktail were determined based on the calculation that DBHD/N2O2 

constituted 16 wt% of the final underlying layer.  Silicone rubber catheter sleeves (2.5 



72 

cm in length) were sealed at one end with Dow Corning 3140 RTV SR and cured 

overnight under ambient conditions.  Afterwards, they were dip-coated with the 

DBHD/N2O2 containing cocktail 8 times at 20-min intervals and then dried overnight.   

The tubings were further dip-coated twice with 20 min interval in a DMAc/THF 

solution of sirolimus and PurSil, CarboSil (a commercial silicone-

poly(carbonate)urethane copolymer) or Tecoflex™ (a polyether polyurethane) to form 

a sirolimus releasing top-layer (see Scheme 3.1).  The polymer concentration was 4 

w/v% for PurSil and CarboSil and 2 wt % for Tecoflex.  The concentrations of 

sirolimus in the cocktail were determined based on the calculation that sirolimus 

constituted 23 wt % of the final top layer.  The catheter sleeves were allowed to dry 

overnight, followed by vacuum drying at room temperature for additional 2 d to remove 

any residual solvent.  The final NO/SiroRel coatings were stored at -20 ºC for 

characterization of NO and sirolimus release and other studies. 

 

 
 

Scheme 3.1. Polymeric coating – combining NO and sirolimus release. 
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3.2.3. Scanning Electron Microscopy (SEM) of NOGen/SiroRel Films 

Scanning electron microscopic characterization was performed with a Philips/FEI 

XL30 FEG SEM Electron Microscope.  The electron beam was operated at 15 kV and the 

sample chamber pressure was 10-6 torr.  Polymeric coatings were dried under vacuum for 

2 d and then sputtered with gold prior to acquiring the SEM images. 

 

3.2.4. Sirolimus Release Studies 

To determine the pharmacological release kinetics of sirolimus, films were 

immersed in PBS (10 mM, pH 7.4) at 37 °C.  Samples taken at distinct time points were 

then subjected to high-performance liquid chromatography (HPLC)-based analysis 

(Hewlett Packard 1050 HPLC system).  Total releasable sirolimus was extracted with 

methanol overnight at 37 °C.  The sirolimus methanol solution was injected to HPLC for 

quantification.   Tables 3.1 and 3.2 provide detailed instrument and gradient parameters. 

 

Table 3.1. Instrument parameters. 

Item Parameter 
Mobile Phase – Solvent A 0.1 v/v % TFA (aq.) 
Mobile Phase – Solvent A 0.1 v/v % TFA (acetonitrile) 
Column Waters, XBridgeTM C18, 4.6 × 150 mm, 5 μm 
Injector Volume 100 μL 
UV Detector Wavelength 278 nm 
Auto Zero on Inject Start enabled 
Run time 9.5 min 
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Table 3.2. Binary solvent gradient profile parameter. 
 

Section Time (min) Flow (mL/min) % A % B 
1 0.00 1.0 90.0 10.0 
2 2.00 1.0 90.0 10.0 
3 22.00 1.0 70.0 30.0 
4 27.00 1.0 10.0 90.0 
5 32.00 1.0 10.0 90.0 
6 35.00 1.0 90.0 10.0 
7 40.00 1.0 90.0 10.0 

 

 

3.2.5. Chemiluminescence Measurements of NO Release 

Nitric oxide released from the polymeric coatings was measured using a Sievers 

Chemiluminescence NO Analyzer.  The instrument was calibrated before each 

experiment using an internal two-point calibration (zero gas and 45 ppm NO gas).  NO 

was continuously swept from the headspace of the sample vessel and purged from the 

bathing solution with a nitrogen sweep gas into the chemiluminescence detection 

chamber.  The flow rate was set to 50 mL/min with a chamber pressure of 5.4 torr and an 

oxygen pressure of 6.0 psi. 

 

 

3.3. Results and Discussion 

3.3.1. Preparation of NO/Sirolimus Release Polymeric Coatings 

SEM was used to characterize the morphology of the coatings on the SR tubings.  

For a typical coating, SEM images illustrate that the DBHD/N2O2 containing underlying 

layer has a thickness of ca. 30 μm while that of the sirolimus containing outer layer is ca. 

15 μm (see Figure 3.1).  



75 

 

 

 
Figure 3.1. Representative SEM images of surface and cross section of NO/sirolimus 
release polymeric coatings. 

 

 

3.3.2. Sirolimus Release Kinetics 

For determination of pharmacological release kinetics, coated tubings were 

submersed in 300 μL PBS (pH 7.4) at 37 °C.  Samples harvested at distinct time points 

were subjected to HPLC-based analysis.  Figure 3.2 shows the typical chromatogram of 

sirolimus.  Based on the chromatograms, the peak with a retention time of 18.6 min was 

the peak corresponding to sirolimus and its area could be used for quantification purposes.  

Figure 3.3 shows the representative calibration curve.   
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Figure 3.2. Representative chromatogram of sirolimus. 
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Figure 3.3. Calibration curve of sirolimus. 

 

The sirolimus release rate was calculated according to Eqn. 3.1 below.  In both 

cases using PurSil and CarboSil as the outer layer, sirolimus’ release rate slowly 

decreased from ca. 3.00 to 0.10 μg cm-2 h-1 over a period of 300 h (ca. 2 weeks) (Figures 

3.4 and 3.5).  In the case where Tecoflex was employed as the top coating matrix, due to 

the reduced concentration of polymer cocktail, a lower sirolimus release rate and a 

shorter release window was observed (Figure 3.6). 

 

aSurfaceAreTimeExtraction
olumeInjectionV

VolumeExtractionmnmoutOnColuSirolimusA
eleaseRateSirolimusR

×

×
=  Eqn. 3.1. 

 

(In this study, the extraction volume is 300 µL, the injection volume is 100 µL, the 

extraction time is 1 h and the surface area is 0.572 cm2.) 
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Figure 3.4. HPLC measurement of sirolimus release from a polymeric coating with NO-releasing underlying layer (16 wt % 
DBHD/N2O2 in PurSil) and PurSil top layer with 23 wt % of sirolimus. The coating was incubated in PBS (pH 7.4) under 37 °C with 
intermittent sampling. 
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Figure 3.5. HPLC measurement of sirolimus release from a polymeric coating with NO-releasing underlying layer (16 wt % of 
DBHD/N2O2 in PurSil) and CarboSil top layer with 23 wt % of sirolimus. The coating was incubated in PBS (pH 7.4) under 37 °C 
with intermittent sampling. 
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Figure 3.6. HPLC measurement of sirolimus release from a polymeric coating with NO-releasing underlying layer (16 wt % 
DBHD/N2O2 in PurSil) and Tecoflex top layer with 23 wt % of sirolimus. The coating was incubated in PBS (pH 7.4) under 37 °C 
with intermittent sampling.  The thickness of this sirolimus-containing Tecoflex top layer is about half of those made of PurSil and 
CarboSil (see Figures 3.4 and 3.5). 
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When PurSil was used as the top layer, determination of total sirolimus dosage 

was performed by drug elution in 300 μL ethanol overnight at 37 °C.  Sirolimus amounts 

were quantified by HPLC.  The total releasable sirolimus from coatings with PurSil as the 

top layer matrix was estimated to be approximately 300 μg cm-2.  This is almost twice as 

much as the dosage of the sirolimus-coated BX Velocity stent (Cordis) (140 μg sirolimus 

cm-2)3. 

 

3.3.3. NO Release Studies 

To prepare NO release coatings, DBHD/N2O2, a lipophilic NONOate, was 

incorporated into the underlying PurSil films to release NO.  The release of NO from 

DBHD/N2O2 is proton driven8 (see Scheme 3.2).  The resulting diamines formed after the 

decomposition of hydrophilic diazeniumdiolates can potentially leach out of the polymer 

matrix and react with an oxidative intermediate of NO to form carcinogenic nitrosamines.  

However, DBHD/N2O2 is highly lipophilic and thus the corresponding diamine DBHD 

will stay predominately within the polymeric matrix. 
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Scheme 3.2. Proton-driven decomposition of DBHD/N2O2. 
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Nitric oxide flux from polymer coatings was measured at 37 °C in PBS (pH 7.4) 

by a chemiluminescent NO analyzer.  The NO flux released from the coatings slowly 

decreased from ca. 10.0×10-10 to 1.0×10-10 mol cm-2 min-1 over a two-week period after 

an initial burst (Figures 3.7 and 3.8).  This trend is observed in both coatings with PurSil 

and CarboSil as their top layers.  Such a level is comparable to the NO released from a 

healthy endothelium (ca. 1×10-10 mol cm-2 min-1)10. 

 

 

Figure 3.7. NO levels of DBHD/N2O2-loaded (16 wt % in PurSil underlying layer) SR 
tubings with PurSil sirolimus-releasing top layers (incubated in PBS (pH 7.4) under 37 
°C).  NO release was measured at specific time slots and the data were then integrated 
into the graph above.  Data were not collected in the gaps.  
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Figure 3.8. NO levels of DBHD/N2O2-loaded (16 wt % in PurSil underlying layer) SR 
tubings with CarboSil sirolimus-releasing top layers (incubated in PBS (pH 7.4) under 37 
°C).  NO release was measured at specific time slots and the data were then integrated 
into the graph above.  Data were not collected in the gaps.  
 
 

 

3.4. Conclusions 

A new type of polymeric coating that can simultaneously release both NO (as an 

antithrombotic agent) and sirolimus (as an antiproliferative agent) was prepared and 

studied.  Various polyurethanes (PurSil, CarboSil and Tecoflex) have been used to 

prepare the underlying layer and the top layer of these polymer coatings.  NO and 

sirolimus release kinetics were studied using chemiluminescence measurements and 

HPLC, respectively.  The NO flux released from the coatings slowly decreased from 

approx. 10.0×10-10 to 1.0×10-10 mol cm-2 min-1 (physiological NO flux is approx. 1.0×10-

10 mol cm-2 min-1) over a two-week period after an initial burst.  In both cases using 
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PurSil and CarboSil as the outer layer, sirolimus’ release rate slowly decreased from ca. 

3.00 to 0.10 μg cm-2 h-1 also over a two-week period, which is comparable to the NO 

release duration. 

Such a coating proved the concept of combining NO and sirolimus controlled 

release.  However, while this may be useful for some biomedical devices such as small-

bore vascular grafts, such coatings would be far too thick if they are to be applied to 

drug-eluting stents on which the coatings are usually less than 20 µm in thickness.  Hence, 

efforts will also be made on reducing the coating thickness so that they can be used as top 

coatings on medical devices that require thin-layer coatings.  Further, by combining 

sirolimus release with new NO-generating polymeric coatings (to be discussed in Chapter 

5), the presence of higher surface levels of NO could be maintained for extended time 

periods. 
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CHAPTER 4 

 

Potassium Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate and 

Sulfonated Polyurethanes for Sustained Nitric Oxide Release from 

Diazeniumdiolate Doped Polymer Films: 

Solution to Borate Cytotoxicity Problem 

 

 

4.1. Introduction 

In Chapter 3 it was proposed that the use of a naturally occurring anti-

thrombotic/anti-platelet agent, such as nitric oxide (NO)1, in combination with an anti-

cell proliferation agent may provide the ideal solution to reduce both clotting and 

restenosis risk for stents as well as vascular grafts and other implanted medical devices.  

Indeed, the first dual-functional polymeric coating that releases both sirolimus 

(rapamycin2) and NO was described in that chapter. 

It should be noted that in order to achieve long-term release of NO from 

polymeric materials using diazeniumdiolate type NO donors, anionic site additives are 

required within the polymeric films3.  These additives actually serve as ‘buffers’ to 

ensure that the pH of the organic phase remains low enough to promote exhaustive 

reaction of the diazeniumdiolate species (Scheme 4.1).  Without the anionic site additives, 
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generation of excess secondary amines in the polymer after initial release of NO will 

cause the pH within the organic films to increase, decreasing NO production from the 

remaining diazeniumdiolates (Figure 4.1).  In studies to date, potassium tetrakis(p-

chloropheny1)borate (KTpClPB) (Figure 4.2) has generally been employed as the 

polymer additive, typically at 100 mol % of the diazeniumdiolate concentration in the 

polymer film. 

 

 

 

Figure 4.1. NO surface flux for diazeniumdiolated N,N’-dibutyl-1,6-hexanediamine 
(DBHD/N2O2) dispersed in a 1:2 PVC/DOS matrix (circular disks with a diameter of 8 
mm and a thickness of 150 µm) with and without potassium tetrakis(p-
chlorophenyl)borate (KTpClPB) (1:1 mol ratio KTpClPB:DBHD/N2O2) soaked in PBS 
buffer (pH 7.4) at 37 °C.  NO was measured directly by chemiluminescence.  Figure 
adapted from Batchelor M.M. et al, J. Med. Chem. 20033.  The stepwise signal at higher 
NO level is because NO flux reached the low sensitivity range of NOA (> 700 ppb) when 
the NOA response changes every 100 ppb.  NO signals were converted from NOA output 
(ppb) to surface flux (10-10 mol cm-2 min-1) per coating surface area. 

 

DBHD/N2O2 + KTpClPB 

DBHD/N2O2 only 

 

Time 
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Figure 4.2. Structure of KTpClPB. 

 

In order to assess whether the new coating described in Chapter 3 really 

suppresses the migration and proliferation of smooth muscle cells (SMCs), and at the 

same time, exhibits decreased thrombus formation and enhanced endothelialization, we 

collaborated with Dr. Charles Shanley at Beaumont Hospital (Royal Oak, MI).  The 

compatibility with respect to the growth of endothelial cells (ECs) and SMCs directly on 

the surface of such films has been examined.  Interestingly, during the course of these 

studies, it was found that both EC and SMC growth was inhibited on one of the control 

polymeric films which contained only the borate additive, KTpClPB.  Such inhibition of 

cell proliferation was not observed on plain biomedical grade PurSil polymers that do not 

contain the borate species. 
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Scheme 4.1. Proton-driven decomposition of diamine diazeniumdiolates and buffering 
effect of borate additives in the polymer matrix. 

 

The cytotoxicity towards ECs and SMCs suggested that there were some toxicity 

issues with respect to the use of this borate additive as a polymeric-phase pH stabilizer.  

KTpClPB is very lipophilic and does not leach appreciably from the films4.  However, it 

is possible that potentially toxic radical species can be generated due to the cleavage of 

the carbon-boron bond in the proton-induced or oxidative degradation of the KTpClPB 

species5.  Furthermore, the resulting triphenylboronates could also leach out of the 

polymeric phase and be toxic to cells. 

Several studies have been published comparing the stability of various 

tetraphenylborate derivatives6 since they have been commonly used as the anionic 

additives in ion-selective polymeric membrane electrodes4.  While KTpClPB has been 

found to be more stable than simple sodium tetraphenylborate (NaTPB, Figure 4.3a), 

potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (KTFPB, Figure 4.3b) has been 
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found to be even more lipophilic, and substantially more stable and less susceptible to 

acid-catalyzed degradation than KTpClPB6.  The electron withdrawing properties of the 

fluorine atoms significantly decrease the electron density of the boron anionic site, which 

in turn, significantly increases the stability of the tetraphenylborate species.  

 

B

-

Na+

        

 

Figure 4.3. a (Left) – Structure of NaTPB; b (Right) – Structure of KTFPB. 

 

Therefore, to overcome the lack of stability and apparent cytotoxicity of 

KTpClPB, the use of KTFPB was investigated to prepare polymer coatings that can 

release NO on nearly constant fluxes for extended time periods. 

In addition to using the small molecule additives as the pH buffering agents in the 

polymeric films, the potential of a new sulfonated derivative of biomedical grade 

polyurethanes (PUs) is also examined in this chapter (Scheme 4.2).  Since the sulfonate 

anionic groups are chemically tethered to the polymer backbones7, the possibility of the 

leaching of low molecular weight species would be eliminated. 

 



91 

 

 

Scheme 4.2. Proton-driven decomposition of diamine diazeniumdiolates and buffering 
effect of sulfonate groups in the polymer matrix. 

 

Herein, the new polymeric coatings with more lipophilic and stable borate and 

polymer-tethered sulfonate groups are examined as the pH stabilizer in the NO releasing 

polymeric coatings.  Such non-toxic endothelium-mimicking polymeric coatings can 

potentially be used in various blood-contacting medical devices including vascular grafts, 

heart valves, extracorporeal circuits and stents. 

 

 

4.2. Experimental 

4.2.1. Materials and Instrumentation 

Phosphate buffered saline (PBS, pH 7.4), sulfuric acid, hydrochloric acid, sodium 

hydride (60 w/w % suspension in mineral oil), propane sultone, anhydrous diethyl ether, 

ethanol and N,N-dimethylacetamide (DMAc) were purchased from Sigma-Aldrich (St. 

Louis, MO).  Tetrahydrofuran (THF) was from Fisher Scientific (Pittsburgh, PA) and was 
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distilled over sodium and benzophenone prior to use.  KTpClPB, KTFPB, methanol, 

acetonitrile (both reagent and HPLC grade) and trifluoroacetic acid (TFA) were also 

purchased from Fisher.  Sirolimus (rapamycin) was obtained from LC Laboratories 

(Woburn, MA).  PurSil-20-80A was a gift from The Polymer Technology Group 

(Berkeley, CA).  Tecoflex-SG-80A and Tecophilic-93A-100 were gifts from Lubrizol 

Advanced Materials (Cleveland, OH).  DBHD/N2O2 was synthesized by treating N,N’-

dibutyl-1,6-hexanediamine (DBHD, Aldrich) with NO gas (80 psi, Cryogenic Gases 

(Detroit, MI)) at room temperature for 24 h as previously described in Chapter 2. 

Reagents for the in vitro studies were as follows: Human umblicial artery smooth 

muscle cells (SMC), human umbilical vein endothelial cells (EC), SMGM®-2 smooth 

muscle growth medium Bullet Kit and EGM®-2 endothelial cell growth medium Bullet 

Kit were purchased from Lonza Group Ltd. (Switzerland).  Costar 24 well culture plates, 

glasscover slips (12 mm), neutral buffered formalin, aqueous mounting medium and glass 

slides were all products of Thermo Fisher Scientific (Hanover Park, IL).  Dulbecco’s 

phosphate buffered saline (D-PBS) and Hoechst 33342 nuclear dye were purchased from 

Invitrogen (Carlsbad, CA).  Hematoxylin QS was from Vector Labs (Burlingame, CA),  

Nitric oxide flux from polymer coatings was measured by a chemiluminescent 

NO analyzer (NOA™ 280, Sievers Instruments, Inc. (Boulder, CO)).  Cells were imaged 

on a Nikon TE 2000 fluorescent microscope.  Elemental (carbon, hydrogen, nitrogen, 

sulfur and oxygen) combustion analysis was performed by Carol Carter with a Perkin-

Elmer 2400 Series II CHNS/O Analyzer (PerkinElmer Life And Analytical Sciences, Inc, 

Waltham, MA) in the Chemistry Department of University of Michigan (Ann Arbor, MI).  

Thermal profiles of polymers were characterized by a TA Q2000 differential scanning 
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calorimeter (DSC) (TA Instrument, New Castle, DE).  UV-Vis spectra were recorded 

with a Shimadzu UV-1601 UV-VIS spectrometer (Shimadzu Scientific Instruments, 

Columbia, MD). 

 

4.2.2. Preparation of NO-Release Polymer Coatings and Control Coatings on Glass 

Coverslips with Borate Additives 

DBHD/N2O2 was synthesized by treating N,N’-dibutyl-1,6-hexanediamine in 

acetonitrile with NO (80 psi)3.  The NO release polymeric coatings for cell culture 

experiments were prepared on clear glass coverslips with a diameter of 12 mm (surface 

area = 1.19 mm2).  A cocktail containing well-suspended DBHD/N2O2 in a DMAc/THF 

(2:3, v/v) solution of 4 wt % PurSil was made.  A 1:1 molar ratio of borate, either 

KTpClPB or KTFPB, was added to help reduce pH changes within polymeric coatings 

during the decomposition process of DBHD/N2O2.  The concentrations of DBHD/N2O2 

and borates in the cocktail were determined based on the calculation that DBHD/N2O2 

constituted 16 wt % of the final underlying layer.  Fifty µL of this cocktail was added 

on each pre-cleaned glass coverslip and dried in gentle nitrogen flow to form an NO 

release under-layer. 

One hundred µL 2 wt % PurSil solution in DMAc/THF (1:4, v/v) was added on 

top of each NO release under-layer to form the PurSil top layer on the glass coverslips.  

The bilayer NO releasing coatings were allowed to dry in gentle nitrogen flow 

overnight, followed by vacuum drying for additional 2 d to remove the residual solvent.  

The final NO release coatings were stored at -20 ºC.  They were incubated in PBS (10 
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mM, pH 10) at room temperature with gentle agitation for 6 h (PBS changed every 3 h) 

to completely remove any residual organic solvents prior to cell culture experiments. 

Borate containing control coatings were prepared with a similar procedure and 

the only difference is that the underlying layer did not contain any NO donor.  PurSil 

control coatings were prepared by directly adding 100 µL 2 wt % PurSil solution on 

each pre-cleaned glass coverslip followed by the drying and solvent extraction steps.  

Both control and blank coatings were stored at -20 ºC and extracted with PBS at room 

temperature to completely remove any residual organic solvents prior to cell culture 

experiments. 

 

4.2.3. UV-Vis Studies of Borate Leaching 

KTpClPB was dissolved in methanol to make a 1 mg/mL stock solution and 30 

µL of this solution was further diluted in 2.97 mL PBS (10 mM, pH 7.4) to reach a final 

borate concentration of 10 µg/mL.  A blank solution was prepared by dissolving 30 µL 

methanol in 2.97 mL PBS.  The UV spectra of KTpClPB and blank solutions were 

recorded with a Shimadzu UV-1601 UV-VIS spectrometer. 

Borate control coatings were prepared according to the process described in 

Section 2.2 and were used here for the leaching studies.  Borate control coatings without 

a top layer were also prepared and the process is identical except that a top coating wasn’t 

applied after the KTpClPB-containing underlying layer was coated.  Both borate control 

coatings (with and without top layer) together with PurSil blank coatings were incubated 

in PBS (10 mM, pH 7.4) for 3 h at 37 ºC with a surface-area-to-solution ratio of approx. 1 

cm2 vs. 1 mL, i.e., 1 coverslip (1.19 cm2)  per 1 mL PBS.  For each kind of coating, 
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extraction solutions from 5 coverslips were combined and UV spectra were recorded in 

the wavelength range from 200 to 300 nm. 

 

4.2.4. Sulfonation of Polyurethanes (PUs) 

Sulfonation of the PUs was described in a paper published by Cooper’s group in 

19897.  Tecoflex and Tecophilic were dissolved in anhydrous THF to make 10 w/v % 

solutions.  Urethane nitrogen atom was first deprotonated through the reaction of a 10 

w/v % polymer solution in THF with a 60 w/w % suspension of sodium hydride in 

mineral oil.  The nitrogen content in the polymer was measured by elemental analysis 

performed in Chemistry Department, University of Michigan (Ann Arbor, MI).  Sodium 

hydride was added in 3 to 5 portions over a period of 10 min.  This procedure was 

performed at -5 to 0 ºC to prevent polymer chain scission.   After 15 min, a slight excess 

of propane sultone was added to react with the nitrogen anion to produce the derivatized 

urethane linkage. The mixture was allowed to warm to room temperature and then heated 

to approximately 50 ºC for 1 h (see Scheme 4.3). 

The reaction mixture was cooled to room temperature and diluted sulfuric acid or 

hydrochloric acid (1 N) was added to neutralize the unreacted sodium hydride.  Inorganic 

salts could precipitate out of the mixture as a result of NaH’s neutralization by H2SO4 or 

HCl.  The suspension was filtered and the solution was precipitated with a copious 

amount of diethyl ether.  The polymer was collected and washed successively with 

diethyl ether, ethanol and DI water to remove both the organic and inorganic residues.  

The polymer was further washed with ethanol and diethyl ether to make the solvent phase 

easier to remove.  The purified polymer was dried in vacuum for 2 d and stored at -20 ºC. 
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Scheme 4.3. Synthesis of PU-SO3. 

 

4.2.5. Characterization of Sulfonated Polyurethanes (PU-SO3) 

Elemental (CHNS/O) combustion analysis was performed by Carol Carter with a 

Perkin-Elmer 2400 Series II CHNS/O Analyzer in the Chemistry Department at the 

University of Michigan to determine the sulfur concentration and the degree of 

sulfonation.  The water absorption of the PU-SO3 was measured according to the 

following procedure:  a piece of polymer (ca. 20-30 mg) was weighed and its exact mass 

was recorded as W1.   After 24 h of immersion in DI water, the piece of polymer was 

taken out and its surface moisture was blotted off by KimWipes and its weight quickly 
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measured again by an analytical balance and recorded as W2.  The percent water 

absorption was calculated according to the following formula: 

 

%100%
1

12 ×
−

=
W

WWptionWaterAbsor  Eqn. 4.1. 

 

A differential scanning calorimeter was used to characterize the thermal profile of 

the polymers.  Approx. 5 mg of either PU-SO3 or control polymer samples was placed in 

Tzero aluminum pan and placed in TA Q2000 DSC.  An empty pan was used as the 

reference.  The samples were equilibrated at -20.00 °C and then the temperature was 

ramped to 280.00 °C at a rate of 20.00 °C/min.  Heat flow was recorded and the onset 

transition temperatures were measured. 

 

4.2.6. Preparation of NO-Release Polymeric Coatings and Control Coatings on Glass 

Coverslips with PU-SO3 

The NO release polymeric coatings for cell culture experiments were prepared 

on clear glass coverslips with a diameter of 12 mm (surface area = 1.19 mm2).  A 

cocktail containing well-suspended DBHD/N2O2 in a THF solution of Tecoflex and 

sulfonated Tecoflex (Tecoflex-SO3) mixture was made.  The ratios of Tecoflex vs. 

Tecoflex-SO3 varied with a fixed total polymer concentration of 4 w/v %.  The 

concentration of DBHD/N2O2 in the cocktail was determined based on the calculation 

that DBHD/N2O2 constituted 16 wt % of the final underlying layer.  Fifty µL of this 

cocktail was added on each pre-cleaned glass coverslip and dried in gentle nitrogen 

flow to form an NO release under-layer. 
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One hundred µL 2 wt % PurSil solution in DMAc/THF (1:4, v/v) was added on 

top of each NO release under-layer to form the PurSil top layer on the glass coverslips.  

The bilayer NO releasing coatings were allowed to dry in gentle nitrogen flow 

overnight, followed by vacuum drying for additional 2 d to remove the residual solvent.  

The final NO release coatings were stored at -20 ºC.  They were incubated in PBS (10 

mM, pH 10) at room temperature with gentle agitation for 6 h (PBS changed every 3 h) 

to completely remove any residual organic solvents prior to cell culture experiments. 

Tecoflex-SO3 control coatings were prepared using a similar procedure with the 

only difference being that the underlying layer didn’t contain any NO donor. 

 

4.2.7. Chemiluminescence  Measurements of NO Release 

Nitric oxide released from various polymeric coatings was measured using a 

Sievers Chemiluminescence NO Analyzer.  The instrument was calibrated before each 

experiment using an internal two-point calibration (zero gas and 45 ppm NO gas).  NO 

was continuously swept from the headspace of the sample vessel and purged from the 

bathing solution (PBS, 10 mM, pH 7.4) with a nitrogen sweep gas and bubbler into the 

chemiluminescence detection chamber.  The flow rate was set to 50 mL/min with a 

chamber pressure of 5.4 torr and an oxygen pressure of 6.0 psi. 

 

4.2.8. In Vitro Smooth Muscle Cell (SMC) and Endothelial Cell (EC) Proliferation and 

Differentiation Studies on Polymeric Coatings 

In vitro studies were done in collaboration with Ms Diane Studzinski in Dr. 

Shanley’s Surgical Research Lab at Beaumont Hospital (Royal Oak, MI).  Glass 
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coverslips were coated with NO release or control coatings, and placed in 24 well tissue 

culture plates.  Human umbilical artery smooth muscle cells (HASMC) and human 

umbilical vein endothelial cells (HUVEC) were plated to evaluate the effects of the 

different polymer matrices and the release of NO on cell viability, proliferation and 

differentiation. 

Cells were grown in cell-specific medium in 24 well culture plates.  At specific 

time points (24 h, 48 h, 5 d), cells were rinsed in PBS, fixed with 10 % neutral buffered 

formalin for 10 min, and rinsed again with PBS.  Each polymer coating and time point 

was done on triplicate samples in a total of 4 experiments.  For cell viability and 

proliferation studies, cells were stained with Hoechst 33342 nuclear dye (10 µg/mL 

aqueous solution) and then rinsed in DI water.  For cell differentiation studies, cells were 

stained with Hematoxylin QS for 45 seconds and then rinsed with tap water.  All 

coverslips were mounted on glass slides and imaged with a Nikon TE 2000 microscope 

with fluorescence filters (Hoechst) or brightfield imaging (Hematoxylin) under a 10x 

objective.  Images were captured and stored using the Metamorph imaging program.  

Quantitative analysis of cell proliferation was determined by counting viable cell nuclei 

in three random fields per coverslip.  Numbers were totaled for the three fields per 

coverslip and averaged over the three coverslips per condition.  Numbers of cell nuclei on 

test coverslips were compared to those on controls.  
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4.3. Results and Discussion 

4.3.1. In Vitro SMC and EC Studies of KTpClPB-Containing Polymeric Coatings 

In order to assess whether the new NO/Sirolimus releasing coatings (Chapter 3) 

can really suppress the migration and proliferation of SMCs, and at the same time exhibit 

enhanced endothelialization, the compatibility with respect to the growth of ECs and 

SMCs directly on the surface of such films was tested.  Interestingly, during the course of 

these studies, it was found that growth of both EC and SMC were inhibited on one of the 

control polymeric films that contained the borate additive, KTpClPB (Figures 4.4b and 

4.4d).  Such an inhibition of cell proliferation was not observed on plain biomedical 

grade PurSil polymers without the borate (Figures 4.4a and 4.4c). 

 

4.3.2. The Leaching of KTpClPB and Its Degradation Products 

The inhibition of cell proliferation suggested that there was some cytotoxicity 

with respect to the use of the KTpClPB additive as a polymeric-phase pH stabilizer.  A 

borate leaching study was performed using UV-Vis as the detector.  The KTpClPB 

spectrum it showed an absorption peak at 235 nm (see Figure 4.5).  Phosphate buffered 

saline (10 mM, pH 7.4) was used to extract the leachable borate species out of the control 

coatings.  However, minimal amount of borate could be detected in the solution phase 

(Figure 4.6c), confirming that KTpClPB is very lipophilic and does not leach appreciably 

from the films4. 
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Figure 4.4. HUVECs were plated and grown in EC culture medium on KTpClPB-containing and PurSil blank polymeric films for 24 
h and 48 h.  Cells were fixed, and their nuclei were stained with Hoechst 33342 dye.  The images were taken with a Nikon TE 2000 
fluorescent microscope using a 10x objective.  a – PurSil blank, 24 h; b – KTpClPB-containing PurSil underlying layer and PurSil top 
layer, 24 h; c – PurSil blank, 48 h; d – KTpClPB-containing PurSil underlying layer and PurSil top layer, 48 h.  The strong blue 
fluorescence background came from the added KTpClPB. 

a b 

c d
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Figure 4.5. UV spectra of KTpClPB and blank PBS solution.  KTpClPB was dissolved in 
methanol to make a 1 mg/mL stock solution and 30 µL of this solution was further 
diluted in 2.97 mL PBS (10 mM, pH 7.4) to reach a final borate concentration of 10 
µg/mL.  A blank solution was prepared by dissolving 10 µL methanol in PBS.  The UV 
spectra were recorded with a Shimadzu UV-1601 UV-VIS spectrometer. 

 

However, it is possible that potentially toxic radical species can be generated due 

to the cleavage of the carbon-boron bond in the proton-induced or oxidative degradation 

of the KTpClPB species5.  Furthermore, the resulting triphenylboronates could also leach 

out of the polymeric phase.  These borate species, even though very small in amount, can 

still be toxic to cells.  To test this hypothesis, a KTpClPB-containing control coating was 

prepared without a top layer and the borate extracted under the same condition but with 

much enhanced signal due to the removal of the diffusion barrier.  This time, a significant 

increase of the UV absorbance in the lower 200 nm range could be observed (see Figure 

4.6), indicating the possible existence of borate degradation products.  

 

Blank 

KTpClPB, 235 nm 
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Figure 4.6. UV spectra of extraction solutions from borate-containing films, PurSil 
control films and PBS blank.  Both borate control coatings (with and without top layer) 
together with PurSil blank coatings were incubated in PBS (10 mM, pH 7.4) for 3 h at 37 
ºC with a surface area to solution ratio of approx. 1 cm2 vs 1 mL.  The extraction 
solutions were used for UV scan from 200 to 300 nm.  a – PBS (10 mM, pH 7.4); b – 
PBS extraction solution from PurSil blank films; c – PBS extraction solution from 
KTpClPB-containing films with PurSil top layer; d – PBS extraction solution from 
KTpClPB-containing flims without top layer.  The UV spectra were recorded with a 
Shimadzu UV-1601 UV-VIS spectrometer. 

 

a

b

c
d
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4.3.3. In Vitro Cell Viability Studies on KTFPB-Containing Control Coatings 

In ion-selective polymeric membrane electrodes, tetraphenylborate derivatives 

have been commonly used as the anionic additives4.  Several studies have been published 

comparing their stability.  It has been found that the less electro-negative the central 

boron atom is, the less susceptible it is to acid-catalyzed degradation.  While KTpClPB 

has been found to be more stable than simple TPB, the derivative TFPB has been found 

to be even more lipophilic, and substantially more stable than KTpClPB6.  

Thus control films were prepared with KTFPB in the place of KTpClPB as the 

borate additive in the underlying layer.  It was exciting to find that the viability of both 

ECs and SMCs improved significantly (Figure 4.7) compared to that of the KTpClPB-

containing coatings (Figure 4.4), indicating a much reduced degradation and/or leaching 

of KTFPB as a more stable and lipophilic borate additive.  More importantly, over a 

longer period of time (5 d), both cell types were able to differentiate properly (Figure 4.8). 

 

4.3.4. NO Release from Polymeric Coatings with KTFPB as the pH-Buffering Agent 

Nitric oxide flux from polymeric coatings with KTFPB as the borate additive in 

the underlying layer was measured at 37 ºC in PBS (10 mM, pH 7.4) by a 

chemiluminescent NO analyzer.  The NO flux from these coatings was compared with 

that from polymeric coatings with KTpClPB as the pH-buffering agent.  From Figure 4.9 

it is clear that these two types of films exhibited similar NO release rates. 
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Figure 4.7. HUVECs and HASMCs were plated and grown in cell specific culture 
medium on KTFPB-containing control polymeric films for 24 h (underlying layer – 
KTFPB-containing PurSil; top layer – PurSil).  Cells were fixed, and their nuclei were 
stained with Hoechst 33342 dye.  The images were taken with a Nikon TE 2000 
fluorescent microscope using a 10x objective.  a – HUVEC; b – HASMC.  The slight 
blue fluorescence background is due to the added KTFPB. 

 

a

b
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EC – 24 h EC – 48 h EC – 5 d 

   
SMC – 24 h SMC – 48 h SMC – 5 d 

   
 

Figure 4.8. ECs and SMCs were plated and grown in cell specific culture medium on KTFPB-containing control polymeric films for 
24 h, 48 h and 5 d (underlying layer – KTFPB-containing PurSil; top layer – PurSil).  Cells were fixed and stained with hematoxylin.  
Images were taken with a Nikon TE 2000 fluorescent microscope in bright field mode using a 10x objective. 
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Figure 4.9. Typical NO level of DBHD/N2O2-loaded (16 wt % in KTFPB- or KTpClPB-
contaning underlying layer) bilayer polymeric films (top layer – PurSil).  The coatings 
(on glass coverslip) were incubated in PBS (10 mM, pH 7.4) under 37 °C and their NO 
flux measured by NOA. 
 
 

4.3.5. Sulfonation of Tecophilic and Tecoflex 

By using KTFPB, an extremely lipophilic and stable borate additive, as the pH 

buffering agent, non-cytotoxic polymeric films with sustained NO release could be 

prepared.  However, since KTFPB is a small molecule, there is still some possibility for a 

fraction of this additive to diffuse out of the polymer coating to elicit potential adverse 

effects in vivo or in vitro.  To eliminate such possibility, we chemically immobilized 
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anionic sites to the polymer backbones by derivatizing two biomedical grade PUs 

(Tecoflex and Tecophilic) with sulfonate groups. 

For Tecophilic-93A-100, the elemental analysis (duplicates) showed a nitrogen 

concentration of 3.3 wt %, indicating there existed 2.4 mmol urethane groups per every 

gram of polymer.  After sulfonation, the sulfur concentration was detected to be 1.2 wt 

%, indicating that the sulfate group concentration is 0.38 mmol/g.  The water uptake was 

measured to be 96 %.  Actually, due to the extremely high water uptake, Tecophilic-SO3 

swelled too much and would easily peel off from the glass coverslip matrix.  Thus it was 

proved unsuitable for this study.  In this case, all the following cell studies and NO 

release studies were done using Tecoflex-SO3. 

 

4.3.6. Thermal Properties of Tecoflex-SO3 PUs 

A differential scanning calorimeter was used to characterize the thermal profile of 

the polymers.  In Figure 4.10, the heat flow curve of Tecoflex showed an endothermic 

peak with an onset temperature (To) at 68.14 ºC, a peak temperature (Tp) at 86.27 ºC and 

an enthalpy change (ΔH) at 11.35 J/g.  The heat flow curve of Tecoflex-SO3 was more 

complicated with two overlapping endothermic transitions.  The To and Tp of the first 

transition were 56.40 ºC and 79.49 ºC, respectively, both were approx. 7-8 degrees lower 

than those of Tecoflex.  This was probably due to the derivatization of the urethane 

nitrogen atom which might disrupt the hydrogen bonding in the ordered structure of the 

thermoplastic polyurethane elastomer’s hard segments.  The second transition had a To at 

the 110.35 ºC and a Tp and 125.38 ºC, respectively.  This was probably due to the 

introduction of sulfonate groups to the polymer backbones which generated a new 
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phase/hard segment with strong ionic forces and thus needed a higher temperature and 

more energy to ‘melt’.  Indeed, the summed ΔH of these two transitions is 14.78 J/g 

which was a little higher than that of the ΔH of Tecoflex control.  No thermal transitions 

above 280 ºC were measured as Tecophilic started to decompose and gasify. 

 

 

Figure 4.10. Heat flow curves of Tecoflex and Tecoflex-SO3.  Approx. 7-9 mg polymer 
samples was placed in Tzero aluminum pan and placed in TA Q2000 DSC.  The samples 
were equilibrated at -20.00 °C and then the temperature would ramp to 280.00 °C at a 
rate of 20.00 °C/min.   

 

4.3.7. In Vitro Cell Viability Studies on Tecoflex-SO3 Control Coatings 

Control films with Tecoflex-SO3 as the underlying layer were prepared and were 

tested.  No suppression of ECs and SMCs proliferation (Figure 4.11) was observed.  
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More importantly, over a longer period of time (5 d), both cell types were able to 

differentiate properly (Figure 4.12). 

 

 

 

 

Figure 4.11. ECs and SMCs were plated and grown in cell specific culture medium on 
control polymeric films with Tecoflex-SO3 as the underlying layer for 24 h (top layer – 
PurSil).  Cells were fixed, and their nuclei were stained with Hoechst 33342 dye.  The 
images were taken with a Nikon TE 2000 fluorescent microscope using a 10x objective.  
a – EC; b – SMC. 
 

a

b
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EC – 24 h EC – 48 h EC – 5 d 

   
SMC – 24 h SMC – 48 h SMC – 5 d 

   
 

Figure 4.12. ECs and SMCs were plated and grown in cell specific culture medium for 24 h, 48 h and 5 d on control polymeric films 
with Tecoflex-SO3 as the underlying layer and PurSil as the top layer.  Cells were fixed and stained with hematoxylin.  Images were 
taken with a Nikon TE 2000 fluorescent microscope in bright field mode using a 10x objective. 
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4.3.8. NO Release from Tecoflex-SO3 films 

Nitric oxide flux from polymeric coatings with Tecoflex-SO3 as the underlying 

layer was measured at 37 ºC in PBS (10 mM, pH 7.4) by a chemiluminescent NO 

analyzer.  NO was able to be released almost stoichiometrically for at least 23 d through 

the decomposition of the diazeniumdiolate NO donor DBHD/N2O2 (Figure 4.13).  

However whether the sulfonate groups on the polymer backbones were indeed able to 

buffer the pH change in the polymer matrix needs to be further verified. 

 

 

 

Figure 4.13. Typical NO level of DBHD/N2O2-loaded bilayer polymeric films 
(underlying layer – 16 wt % DBHD/N2O2 in Tecoflex-SO3; top layer – PurSil). The 
coating (on glass coverslip) was incubated in PBS (10 mM, pH 7.4) under 37 °C.  The 
loaded DBHD/N2O2 was 2.5 µmol (calculated based on polymer film weight and the wt 
percentage of the doped NO donor).  The total released NO amount was detected to be 
3.66 µmol, which was approx. 73 % of the total releasable NO (5.0 µmol).  NO release 
was measured at specific time slots and the data were then integrated into the graph 
above.  Data were not collected in the gaps.  
 
 



113 

In addition, different blends of Tecoflex vs. Tecoflex-SO3 with DBHD/N2O2 

added at a constant level have been tested for their NO release rates.  It has been found 

that with increased Tecoflex-SO3 content, NO flux would increase proportionally, both 

with and without the existence of a top coating as the diffusion barrier (Figures 4.14 and 

4.15).  This is an evidence that sufonate anionic groups serve as extremely lipophilic 

anionic sites that stabilize the pH value in the polymeric phase. 

 

 

Figure 4.14. NO levels of DBHD/N2O2-loaded polymeric films with PurSil as the top 
layer.  The Tecoflex/Tecoflex-SO3 ratios of the underlying NO release layers (containing 
16 wt % DBHD/N2O2) varied.  All coatings were incubated in PBS (10 mM, pH 7.4) 
under 37 ºC and their NO fluxes were measured by NOA. 
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Figure 4.15. NO levels of DBHD/N2O2-loaded polymeric films without top layer.  The 
Tecoflex/Tecoflex-SO3 ratios of the NO-release layers (containing 16 wt % DBHD- N2O2) 
varied.  Both coatings were incubated in PBS (10 mM, pH 7.4) under 37 ºC and their NO 
fluxes were measured by NOA. 
 

 

4.3.9. In Vitro SMC Proliferation Studies on NO Release Polymeric Coatings 

Glass coverslips were coated with NO-release (either with KTFPB or Tecoflex-

SO3) or control coatings.  SMCs were plated to evaluate the effects of the release of NO 

on cell proliferation.  Based on Hoechst 33342 nuclear staining of triplicate 

coverslips/condition, suppression of SMC proliferation has been observed on the NO-

release coatings (Figure 4.16). 
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Figure 4.16. SMC viability on NO-release polymeric coatings with either KTFPB as the 
pH-stabilizing additive or Tecoflex-SO3 as the matrix of the underlying layer (top layer – 
PurSil).  Cells were stained with Hoechst 33342 nuclear dye and then imaged with a 
Nikon TE 2000 fluorescent microscope using a 10x objective.  SMCs were counted in 
three random fields per coverslip and their total numbers were calculated per coverslip.  
Each polymer coating and time point was done on triplicate samples in a total of four 
experiments.  Percent viability data were normalized to control coatings with KTFPB-
containing PurSil or Tecoflex-SO3 as the underlying layer. 
 

 

 

4.4. Conclusions 

To potentially overcome the lack of stability and apparent cytotoxicity of 

KTpClPB, we investigated the use of KTFPB, a much more stable borate additive, to 

prepare polymer coatings that had much reduced cytotoxicity towards ECs and SMCs.  In 

addition to using the small molecule additives as the pH buffering agents in the polymeric 
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films, a sulfonate derivative of biomedical grade PUs has been synthesized to eliminate 

the possibilities of the leaching of low molecular weight species. 

 As has been shown in the cell proliferation data, the new polymeric coatings with 

non-toxic borate and polymer-tethered sulfonate groups have minimal cytotoxicity to 

both ECs and SMCs.  Indeed, the preliminary in vitro studies have shown that these NO-

release novel bilayer polymeric coatings are suppressive to human vascular SMCs.  Such 

non-toxic NO-release polymeric coatings have the potential to be used in various blood-

contacting medical devices such as vascular grafts, heart valves, extracorporeal circuits 

and stents. 
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CHAPTER 5 

 

Combining Nitric Oxide Generation and Sirolimus Release in 

Polymeric Films: Potential Coatings for Stents and Other 

Blood-Contacting Medical Devices 

 

 

5.1. Introduction 

Placement of stents by balloon angioplasty represents a major advance in the 

treatment of obstructive coronary artery diseases.  The number of percutaneous coronary 

interventions performed has been expanding considerably each year.  Unfortunately, 

many patients develop in-stent restenosis which is an exaggerated vascular neointimal 

proliferation after stenting.  Many drug-eluting stents (including sirolimus-eluting stents) 

have emerged as a potential solution for this restenosis problem1.  

Sirolimus is a macrolide antibiotic with potent antifungal, immunosuppressive 

and antimitotic properties2.  In December 1999, the first sirolimus-eluting stents were 

implanted in human cornary arteries and the first published human study by Sousa et al. 

in 2001 showed a nearly complete elimination of neointimal hyperplasia1.  However, as 

indicated in Chapter 1, recent findings have suggested an increased risk of late 

thrombosis associated with drug-eluting stents due to the incomplete endothelialization 
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on the surface of the struts of the stents since sirolimus can also retard the migration and 

proliferation of endothelial cells (ECs)3,4.  It is becoming clearer that using anti-restenotic 

drug alone may only solve part of the issues associated with stent placement.  Indeed, 

similar thrombosis and smooth muscle cell (SMC) proliferation problems exist in the case 

of implanted vascular grafts as well.  Hence, the use of a naturally occurring anti-

thrombotic/anti-platelet agent, such as nitric oxide (NO), in combination with an anti-cell 

proliferation agent may provide the ideal solution to reduce both clotting and restenosis 

risk for stents as well as vascular grafts and other implanted medical devices. 

Nitric oxide, an endogenous small molecule that continuously diffuses from 

healthy endothelium to adjacent blood stream, is able to inhibit both platelet adhesion to 

endothelial wall as well as platelet activation5.  In addition, NO has also been found to 

facilitate EC migration and proliferation6.  Recent research carried out in this 

laboratory18,19 and elsewhere7,8 has demonstrated the efficacy of NO producing polymers 

in preventing platelet adhesion and activation.  The materials are doped with NO donors 

and are capable of releasing low but controllable levels of NO at the polymer/blood 

interface, which are comparable to that generated by the healthy EC layer under the 

physiological conditions17 (ca. 1×10-10 mol⋅cm-2⋅min-1). 

Although these NO releasing materials can be employed in a wide range of 

medical applications, the finite NO donor reservoirs may limit their potential applications 

in some medical devices that require an ultra-thin coating for long-term implantation (i.e., 

vascular stents).  The limited amount of loaded NO donor may influence the level and 

duration of the NO release which may, in turn, affect the effective prevention of platelet 

adhesion and activation on such device surfaces.   
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To overcome this shortcoming, recent research has suggested a completely new 

approach to produce NO from polymers.  The new polymers contain a organoselenium 

(RSe) moiety7,8 that can catalytically generate NO from a variety of S-nitrosothiol species 

that are known to exist in blood.  Physiological S-nitrosothiols (RSNOs) such as S-

nitrosoglutathione (GSNO), S-nitrosocysteine (CySNO), and S-nitrosoalbumin (AlbSNO) 

are known to serve as storage and transfer agents of NO20.  The RSe moiety is indeed 

mimicking the active center of a selenium-containing enzyme, glutathione peroxidase 

(GPx), which is able to catalytically decompose RSNOs into NO and the corresponding 

free thiols15,16.  RSe-derivatized polymers, such as RSe-cellulose and RSe-

polyethyleneimine, have recently been synthesized and have demonstrated the ability to 

generate NO catalytically from endogenous RSNO species7,8. 

Herein, we report the first dual-functional polymeric coating that can both 

generate NO from endogeneous RSNO species and simultaneously release sirolimus at a 

controlled rate.  Such coatings are made from a sirolimus-doped RSe-derivatized 

biomedical-grade polyurethane (Tecophilic®) and are able to utilize the theoretically 

infinite RSNO reservoir in blood to generate a continuous flux of NO while also releasing 

sirolimus into the blood stream (Scheme 1).  The new coatings can potentially suppress 

SMC proliferation and thrombosis, as well as facilitate endothelialization at a given 

implant site.  
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Scheme 5.1. PU coatings that generate NO and release sirolimus. 

 

 

5.2. Experimental 

5.2.1. Materials and Instrumentation 

Hexamethylene diisocyanate (HMDI) from Sigma-Aldrich (St. Louis, MO) was 

distilled at reduced pressure right before use.  Triethylamine, anhydrous ether, dibutyltin 

dilaurate (DBTDL), sodium borohydride (NaBH4), sodium cyanoborohydride 

(NaCNBH3), Ethylenedinitrilotetraacetic acid disodium salt (EDTA), reduced glutathione 

(GSH), phosphate buffered saline (PBS, pH 7.4) were all used as received from Sigma-

Aldrich.  Selenium cystamine (SeCA) is a small diselenide compound synthesized in our 

Polymeric Phase

Se‐Se

SeH

SeH

NO

RSNO

Se‐Se

Se‐Se

SeH or Se‐Se
selenium species as NO 
generation catalysts.

Sirolimus



122 

group7,8.  Anhydrous methyl sulfoxide (DMSO), methanol were from Fisher Scientific 

(Pittsburgh, PA) and used as received.  Tetrahydrofuran (THF) was also from Fisher 

Scientific and was distilled over sodium and benzophenone prior to use.  Sirolimus 

(rapamycin) was purchased from LC Laboratories (Woburn, MA).  Tecophilic® HP-93A-

100 was a product of Lubrizol Advanced Materials (Wilmington, MA).  Vegetable oil 

was obtained from Kroger (Ann Arbor, MI).  Balb/c mice were purchased from Harlan 

Laboratories. 

FTIR spectra were collected on a Perkin-Elmer BX FT-IR system (Wellesley, 

MA).  Nitric oxide flux from polymer coatings was measured by a chemiluminescent NO 

analyzer (NOA™ 280, Sievers Instruments, Inc. (Boulder, CO)).  The selenium 

concentrations in the polymers were quantified by a Finnigan Element (inductively 

coupled plasma) ICP-mass spectrometer.  Thermal profiles of polymers were 

characterized by a TA Q2000 differential scanning calorimeter (DSC) (TA Instrument, 

New Castle, DE).  Sirolimus release rate was determined by high-performance liquid 

chromatography (HPLC)-based analysis (Hewlett Packard 1050 HPLC system).   

 

5.2.2. Synthesis of PU-NCO  

The urethane groups on CarboSil backbone were used to couple with HMDI 

through an allophanate reaction in the presence of a tin catalyst (DBTDL)9 (see Scheme 

5.2).  A solution of Tecophilic (10 w/v % in anhydrous THF) was added dropwise to a ca. 

5-fold molar excess of HMDI solution (10 w/v % in anhydrous THF with 0.1 v/v % 

DBTDL) under argon.  The reaction mixture was stirred for 24 h at 40 °C, and the 

product was precipitated in copious anhydrous ethyl ether.  The suspension was 
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centrifuged and the solid was collected and washed 3 times with anhydrous ethyl ether.  

After washing, the product was dried under vacuum for 1 d to remove any residual 

solvent.  The resulting polymer with pendant isocyanate groups (PU-NCO) was further 

used to prepare organoselenium-derivatized polyurethanes (RSe-PUs).  

 

5.2.3. Synthesis of Tecophilic-SeCA  

Further derivatization of PU was carried out via a modified urea-forming reaction 

(see Scheme 5.2)10, 11.  Five mL triethylamine (excess) was first mixed with 250 mg 

SeCA (0.78 mmol) in 25 mL anhydrous DMSO overnight at room temperature under 

argon.  Tecophilic–NCO was dissolved in anhydrous DMSO under argon to make a 10 % 

w/v solution and added dropwise to the freshly prepared triethylamine/SeCA solution.  

The yellow reaction mixture was stirred under argon at room temperature and then heated 

to 40 °C for 24 h.  The reaction mixture was cannulated to copious ethyl ether to 

precipitate the SeCA-derivatized Tecophilic (Tecophilic-SeCA).  The suspension was 

centrifuged and the pale yellow Tecophilic-SeCA polymer was collected and washed 3 

times with copious amount of ethylether.  Afterwards, it was dried under vacuum for 2 d 

to remove the residual solvent and then stored at -20 °C until further experiments.  

 

5.2.4. Reduction of Tecophilic-SeCA to Tecophilic-SeH  

The resulting Tecophilic-SeCA was reduced with NaBH4, NaCNBH3 or GSH to 

remove the uncoupled halves of the SeCA molecules to generate Tecophilic-SeH (see 

Scheme 5.2). 
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Scheme 5.2. Synthesis of PU-SeH. 

 

To reduce Tecophilic-SeCA in GSH, a piece Tecophilic-SeCA polymer (approx. 

10 mg) was placed in 5 mL deoxygenated PBS (100 mM, pH 7.4) with 200 µM GSH and 

200 µM GSNO for 2 h with gentle shaking at room temperature.  After reduction, the 

polymer piece turned from pale yellow to white due to the reduction of the diselenide 

bond to form Tecophilic-SeH.  The resulting polymer was rinsed with copious amount of 

deoxygenated DI water and then with anhydrous ethylether to remove the water.  Finally, 

the Tecophilic-SeH was dried in vacuum to remove the residual solvent and stored at -20 

°C until further experiments.  
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The reduction using NaBH4 or NaCNBH3 was done following the synthesis of 

Tecophilic-SeCA as a one-pot reaction.  Before precipitation, the reaction mixture was 

cooled from 40 °C to room temperature.  Then, 60 mg of NaBH4 or 100 mg of NaCNBH3 

(1.57 mmol) was added to the vigorously stirred Tecophilic-SeCA reaction mixture in 3 

portions over 15 min.  The reduction was performed under room temperature for 1 h and 

the color of the mixture turned from yellow to pale yellow.  Several drops of 2 M HCl 

were added to the suspension to neutralize the polymer under vigorous stirring.  The 

product, Tecophilic-SeH, was precipitated in copious anhydrous ethyl ether and the 

suspension was centrifuged and the solid was collected.  Crude Tecophilic-SeH polymer 

was washed 3 times with ethyl ether, 3 times with deoxygenated DI water and then 3 

times with ethyl ether.  After washing, the product was dried under vacuum for 1 d to 

remove any residual solvent and stored at -20 °C until further experiments. 

 

5.2.5. Characterization of RSe-PU 

The selenium content in the polymers was quantified by ICP-MS.  RSe-PU 

samples as well as blank polymer samples (accurately weighed, 15-25 mg for each 

sample) were dissolved in 0.5 mL fuming HNO3 at room temperature.  DI water was 

added to bring the volume to exactly 2 mL.  Selenium concentrations in the solutions 

were analyzed by Ted Huston in the Department of Geological Sciences in University of 

Michigan (Ann Arbr, MI) and then converted to the concentrations in corresponding 

polymers. 

A differential scanning calorimeter was used to characterize the thermal profile of 

the polymers.  Approx. 5 mg of either RSe-PU or control polymer samples was placed in 
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Tzero aluminum pan and placed in TA Q2000 DSC.  An empty pan was used as the 

reference.  The samples were equilibrated at -20.00 °C and then the temperature would 

ramp to 280.00 °C at a rate of 20.00 °C/min.  Heat flow was recorded and the onset 

transition temperatures were measured. 

 

5.2.6. Systemic Toxicity Studies of Tecophilic-SeH 

The potential acute toxic adverse effects of the PU-SeH coatings within organs 

and tissues that are remote from the site of contact were tested in collaboration with Yang 

Wang in Dr. Roy-Chaudhury’s internal medicine research lab in the University of 

Cincinnati according to ISO standard 10993-1112 and 10993-1214.  Balb/c mice (9 weeks 

old, 25-30 g) were used in this study.  Fluid extracts of the polymer coatings were 

prepared in saline and vegetable oil at 37 °C for 24 h with a 30 cm2 surface area to 10 mL 

fluid volume ratio.  Single doses (0.10 mL/mouse for saline extracts through intravenous 

(IV) injection and 0.15 mL/mouse for oil extracts through intraperitoneal (IP) injection) 

were administered to groups of five mice.  Control mice were injected accordingly with 

extraction fluids alone.  After injection, the mice were observed for adverse signs, such as 

convulsions or prostration, and were weighed daily. 

 

5.2.7. Preparation of NOGen/SiroRel Films 

To prepare combined NO generation/sirolimus releasing polymer films, 300 mg 

of Tecophilic-SeH was dissolved in 30 mL THF and then 7.5 mg sirolimus was added to 

make a cocktail.  A film was made by using this cocktail in a Teflon mold (25 mm × 75 

mm) and drying under a nitrogen stream for 24 h.  The film was then further dried in 
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vacuum for 2 d to remove any residual solvent.  The final NOGen/SiroRel films were 

stored at -20 ºC and cut to smaller sizes for characterization of NO and sirolimus release 

and other studies. 

 

5.2.8. Preparation of RSNOs and NO detection 

GSH stock solutions (5 mM) were made by dissolving 15.35 mg GSH in 10 mL 

DI water with 25 µM EDTA.   The GSNO stock solution (5 mM) was prepared as 

described earlier7, 8.  Briefly, equal volumes of fresh 10 mM reduced glutathione in 60 

mM H2SO4 and 10 mM of NaNO2 (with 25 µM EDTA) were mixed at room temperature.  

GSNO stock solution should sit for at least 5 min before use and solutions should be 

stored between 0 to 4 °C and should be discarded 6 h after preparation. 

GSNO and GSH were directly injected into a working buffer solution (PBS, pH 

7.4 solution containing 25 µM EDTA) to obtain the desired concentrations of RSNOs and 

RSHs.  Typically, the NO generated during the catalytic RSNO decomposition was 

purged from the test solution with nitrogen and detected by using the NOA.  The amount 

of NO evolved from the test solution can be calculated based on the calibration curves of 

the NOA.  

 

5.2.9. Sirolimus Release Studies 

To determine the pharmacological release kinetics of sirolimus, films were 

immersed in PBS (10 mM, pH 7.4) at 37 °C.  Samples taken at distinct time points were 

then subjected to HPLC-based analysis.  Total releasable sirolimus was extracted with 
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methanol overnight at 37 °C.  Sirolimus methanol solution was injected to HPLC for 

quantification. 

 

 

5.3. Results and Discussion 

5.3.1. Synthesis and Characterization of RSe-Derivatized Polyurethanes 

Derivatization was carried out on Tecophilic, a commercially available polyether 

polyurethane that has been developed specifically for biomedical applications13. The 

urethane groups on the Tecophilic backbones were used to couple with HMDI through an 

allophanate reaction in the presence of a tin catalyst8.  The reaction was carried out at a 

mild temperature (40 °C) with slow addition of Tecophilic solution into a great excess of 

HMDI to reduce the possibility of HMDI cross-linking separate polymer chains. The 

coupling was confirmed using IR by the appearance of a NCO absorption band at 2266 

cm-1, and another new band at 1619 cm-1 (corresponding to urea absorption) after reaction 

for 1 d (see Figure 5.1).  The resulting isocyanated Tecophilic (Tecophilic-NCO) was 

worked-up in an anhydrous environment and stored in argon at -20 °C to prevent 

hydrolysis. 

The resulting polymer with pendant free isocyanate groups was then reacted with 

amine groups of SeCA, a small diselenide compound7,8. The resulting Tecophilic-SeCA 

was then reduced with NaBH4, NaCNBH3 or GSH to remove the uncoupled halves of the 

SeCA molecules to generate Tecophilic-SeH (see Scheme 5.2). 
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Figure 5.1. IR spectra of various PUs. 



130 

RSe-derivatized polyurethanes were dissolved in fuming HNO3 and the selenium 

concentrations in the polymers were quantified by ICP-MS.  Elemental analyses (see 

Figure 5.2) showed that the concentrations of selenium in the unreduced RSe-derivatized 

Tecophilic material was 247 ± 12 μmol/g.  In the chemically reduced RSe-derivatized 

PUs, the amount of selenium dropped to approx. 100-150 µmol/g, depending on which 

reducing agent had been employed (hence different reducing efficiency).  More 

specifically, for Tecophilic-SeH reduced with GSH, the selenium concentration was 114 

± 6 μmol/g.  For Tecophilic-SeH reduced with NaBH4, the selenium concentration was 

105 ± 5 μmol/g.   For Tecophilic-SeH reduced with NaCNBH3, the selenium 

concentration was 157 ± 8 μmol/g.  This decrease was due to the removal of unbound 

small organoselenium molecules (SOSM) and the removal of pendent halves of the 

diselenides.  The reduction step was very critical in that it greatly decreased the leaching 

of selenium species in subsequent solution phase testing of the new polymer.  It also 

greatly improved the processing of the polymer since it broke the diselenide bonds and 

thus reduced the degree of crosslinking of polymer backbones, which, in turn, increased 

the solubility of the newly prepared RSe-PUs. 
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Figure 5.2. Selenium content in RSe derivative of Tecophilic treated with varying 
reducing agents. 

 

 

5.3.2. Thermal Properties of Tecophilic-SeH 

A differential scanning calorimeter was used to characterize the thermal profile of 

the polymers.  The heat flow curves (Figure 5.3) showed that both Tecophilic and 

Tecophilc-SeH have broad melting peaks while the latter’s onset Tm is approx. 15 ºC 

lower.  This is probably due to the derivatization of the urethane nitrogen atom with a 

half selenium cystamine moiety which disrupts, to some extent, the hydrogen bonds in 

the ordered structure of the thermoplastic polyurethane elastomer’s hard segments.  No 

thermal transitions above 280 ºC were measured as Tecophilic started to decompose and 

gasify. 

Undetectable 



132 

 

 

Figure 5.3. Heat flow curves of Tecophilic and Tecophilic-SeH.  Approx. 5 mg polymer 
samples was placed in Tzero aluminum pan and placed in TA Q2000 DSC.  The samples 
were equilibrated at -20.00 °C and then the temperature would ramp to 280.00 °C at a 
rate of 20.00 °C/min.   
 

 

5.3.3. Systemic Toxicity Studies of Tecophilic-SeH 

The potential acute systemic toxicity of Tecophilic-SeH was tested according to 

ISO 10993-1112 and 10993-1214.  No weight loss of Balb/c mice was observed after 

injection of either aqueous or organic extract solutions (see Figure 5.4).  In addition, no 

adverse signs (prostration, convulsion, etc.) were observed.  The lack of systemic toxicity 

indicates that Tecophilic-SeH is a good candidate for implantable biomedical devices. 
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Figure 5.4. Weights of Balb/c mice after IP injection of oil extracts/control or IV injection of saline extracts/control over a 31-day 
period (n = 5). 
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5.3.4. NO Generation Studies 

Organoselenium compounds have been studied previously as mimics of 

glutathione peroxidase (GPx, EC 1.11.1.9), a selenoenzyme that catalyzes the reduction 

of a variety of hydroperoxides using GSH as the reducing substrate15.  It has also been 

shown that RSe compounds, including the SeCA as well as naturally occurring GPx, can 

generate NO from RSNOs via a catalytic reaction16.  This type of catalyst is highly 

selective for reduction of S-nitrosothiol and exhibits no catalytic activity for nitrite or 

nitrate reduction7,8.  A mechanism has been proposed which comprises a fast 

denitrosation of RSNO by diselenide (Scheme 5.3, eq 4), and a slower catalytic cycle 

involving a selenolate intermediate which is regenerated by the reducing agent (Scheme 

5.3, eqs 1-3). 

The catalytic activity of Tecophilic-SeH was investigated by measuring NO 

generation via chemiluminescence measurement (see Figure 5.5).  Nitric oxide 

production was initiated upon introducing the RSe-derivatized polymer into solutions 

containing GSNO as the NO donor and GSH as the reducing agent.  NO fluxes plateaued 

to a steady level and then ceased almost entirely upon the removal of the film, indicating 

GSNO catalytically broke down at the polymer solution interface.  Repeated immersion 

and removal of the slide replicate the up-and-down NO generation pattern. The NO flux 

decreased slightly over time which is likely attributed to the consumption of the GSNO in 

the bulk test solution.  The marginal baseline increase after film removal suggested a 

small leaching of selenium catalyst from the polymer film into the test solution during the 

measurements.  The leached selenium small molecules could initiate a homogeneous 

GSNO decomposition which is much faster than the heterogeneous surface reaction 
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mediated by the polymer-bound selenium species.  The mechanism of leaching is still 

under more detailed investigation.  

 

 

 

Scheme 5.3. Proposed reaction mechanism of RSNO decomposition catalyzed by 
organoselenium species in the presence of glutathione as a reducing agent.  Each species 
represents: diselenide (RSe-SeR), thiol (R’SH and GSH (glutathione)), selenosulfide 
(RSe-SR’ and RSe-SG (a glutathione adduct)), selenolate (RSe-, a conjugate base of 
selenol), and S-nitrosothiol (R’SNO).  (Adapted from Cha, W.; Meyerhoff, M.E. 
Biomaterials 2007, 28, 19-278.) 
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Figure 5.5. Catalytic generation of NO from RSNO by PU-SeH. 
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Figure 5.6. Nitric oxide generation capability was tested at 
specific time points.  
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In this study, the NO generating capability of the combined PU-SeH and 

sirolimus release polymer was tested.  A piece of Tecophilic-SeH/Sirolimus polymer (ca. 

3 mg with a surface area of 1 cm2) was incubated in 4 mL PBS (pH 7.4, 10 mM) at room 

temperature.  Nitric oxide generation capability was tested at specific time points (see 

Figure 5.6).  It was found that the NO flux decreased quickly on the first day and 

stabilized starting from the second day.  NOA testing was stopped at the 82nd day when 

the NO flux decreased to a level below 0.2 × 10-10 mol min-1 cm-2 (see Figure 5.7).  The 

NO generating capability of the combined PU-SeH and sirolimus release polymer was 

also tested in air (see Figure 5.7). 

 

 

Figure 5.7. Stability of immobilized small organoselenium molecule catalyst in PBS (pH 
7.4) and air at room temperature. 
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5.3.5. Sirolimus Release Studies  

The pharmacological release kinetics of sirolimus was determined by immersing 

Tecophilic-SeH/sirolimus films in PBS at 37 °C.  Samples taken at distinct time points 

were subjected to HPLC analysis.  It has been found that sirolimus release rate slowly 

increased from approximately 0.4 to 0.6 μg cm-2 h-1 over the first 5 days and then slowly 

decreased to approximately 0.2 μg cm-2 h-1 over the following 3 weeks (see Figure 5.8).  

Methanol extraction solution was used to quantify the total releasable sirolimus and the 

total releasable sirolimus in the coating was estimated to be ca. 180 μg cm-2.  This is 

almost twice as much as the dosage of the sirolimus-coated BX Velocity stent (Cordis) 

(140 μg sirolimus cm-2)1. 

 

 

Figure 5.8. HPLC measurements of sirolimus release from polymeric coatings in PBS 
(pH 7.4) under 37 °C with intermittent sampling. 
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5.4. Conclusions 

Organoselenium-derivatized medical-grade polyurethanes have been prepared.  

These NO generating materials were mixed with sirolimus to make dual-functional 

polymeric coatings that both generate NO from endogenous RSNO species and release 

sirolimus.  Such composite polymeric coatings may be useful for preparing DESs that can 

potentially reduce the occurrence of late stent thrombosis as well as thrombosis on other 

intravascular biomedical devices.  While, in principle, the generation of NO at the 

blood/polymer interface could be infinite in duration, it is likely that some leaching 

and/or fouling of the catalytic sites may limit the length of time that physiologically 

relevant levels of NO can be continuously generated when such polymers are in contact 

with blood.  To address this issue, further studies are required. 
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CHAPTER 6 

 

Conclusions and Future Directions 

 

 

6.1. Conclusions 

The research in this dissertation has focused on the development of novel 

multifunctional polymeric coatings that incorporate multiple antithrombogenic and/or 

anti-proliferative bioactive agents.  These polymers could potentially be employed within 

certain blood contacting medical devices as well as used to construct or coat a wide 

variety of biomedical devices that are in contact with blood to improve the 

hemocompatibility of the devices.  The incorporated bioactive agents, such as 

endogenous small molecules (nitric oxide (NO)), polysaccharides (heparin), proteins 

(thrombomodulin (TM)), and drugs (sirolimus), are intended to function synergistically to 

prevent the formation of thrombus and the proliferation of smooth muscle cells (SMCs), 

which are considered to be the two major causes for the failure of various blood-

contacting implantable devices. 

In Chapter 2, the development of new multifunctional bilayer polymeric coatings 

was described.  These polyurethane-based polymeric coatings were prepared so as to 

present both controlled NO release and surface-bound active thrombomodulin (TM) or 

combined TM and heparin.  These new coatings combine the anti-platelet activity of NO 
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and the anticoagulant ability of immobilized heparin and TM so as to more closely mimic 

the nonthrombogenic properties of the endothelium by multiple complementary anti-

thrombotic mechanisms.  The anticoagulant activity of TM and heparin were evaluated 

by activated protein C and anti-factor Xa assays, respectively.  The NO release rate could 

be tuned by controlling different loadings of NO donors as well as by changing the 

coating procedures.  It was possible to control the NO fluxes of the films at ca. the 

physiological level by applying top coatings with different thicknesses.  The 

immobilization of TM and heparin had little influence on NO release levels, and the NO 

release did not influence the activity of surface-bound heparin and TM. 

In addition to thrombus formation, SMC proliferation is another important cause 

for the failure of various blood-contacting implantable devices, including stents and 

small-diameter vascular grafts.  In Chapter 3, the first dual-functional polymeric coating 

that releases both sirolimus and NO was prepared.  This was accomplished by doping an 

underlying polymer film with a lipophilic diazeniumdiolate NO donor, and the outer 

layer with a sirolimus impregnated PU coating.  In a formulation with 16 wt % NO donor 

in the underlying layer and 23 wt % sirolimus in the outer layer,  NO was released at 

physiologically relevant levels (from 10 to 1 × 10-10 mol min-1 com-2) with simultaneous 

release of sirolimus (from 3.00 to 0.10 μg cm-2 h-1) over a period of 2 weeks.  The use of 

NO, in combination with an anti-cell proliferation agent may provide the ideal solution to 

reduce both clotting and restenosis risk for the blood-contacting implanted medical 

devices. 

In Chapter 4, in vitro cell testing was carried out to assess the effects of the new 

dual functional polymeric coatings on cell growth.  Surprisingly, it was discovered that 
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the borate additive (lipophilic anionic species), which was used in the polymer phase to 

sustain the NO flux by maintaining the organic phase pH at a level required to drive NO 

release from the diazeniumdiolate, was rather toxic to SMCs.  As a result, the 

possibilities of using alternative borate sources were explored and it was found that the 

problems of degradation and leaching could be greatly reduced by using a more stable 

and lipophilic borate species (e.g. potassium tetrakis[3,5-

bis(trifluoromethyl)phenyl]borate as was described in chapter 4).  Furthermore, in order 

to completely eliminate the leaching and possible toxicity issue associated with small 

molecules, a sulfonated polyurethane (PU-SO3) was synthesized with sulfonic anionic 

sites chemically tethered to the polymer backbones.  In vitro EC and SMC studies were 

done in collaboration with Ms Diane Studzinski in Dr. Shanley’s Surgical Research Lab 

at Beaumont Hospital (Royal Oak, MI) and have proved that such coatings indeed 

showed much improved cell compatibility. 

In Chapter 5, another approach to achieve sustained NO release was explored by 

using S-nitrosothiol (RSNO) species, the endogenous NO donors circulating in our blood 

stream.  Selenium-derivatized polyurethanes (PUs) were synthesized and coatings made 

from such polymers showed prolonged catalytic NO-generating capability from RSNOs 

compared to NO-release polymeric coatings.  This is because the RSNO species are 

constantly generated in the blood stream and serve as a reservoir that is theoretically 

infinite.  Compared to NO-release coatings, such NO-generating coatings can also 

decrease greatly in thickness which would make them more applicable to the polymeric 

coating matrices for preparing drug-eluting stents (DESs) and other medical devices in 

which thinner coatings are preferred.  Indeed, the first dual-functional polymeric coating 
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that can both generate NO from endogeneous RSNO species and simultaneously release 

sirolimus at a controlled rate was prepared and characterized.  The new coating can 

potentially suppress SMC proliferation and thrombosis, as well as facilitate 

endothelialization at a given implant site. 

 

 

6.2. Future Directions 

6.2.1. Alternative Non-Toxic pH Stabilizing Additives for Sustained NO Release 

In Chapter 4, the use of more lipophilic borate species as well as chemically 

tethered sulfonate anionic groups have shown much reduced cytotoxicity towards EC and 

SMC while maintaining the continuous NO flux.  Similar experiments could also be 

carried out using sodium cholate, a naturally occurring compound (see Figure 6.1).  As a 

highly lipophilic anion, cholate will likely function similarly to borate anion and will 

extract protons from the surrounding solutions into the films to maintain the polymeric 

phase pH value low enough for sustained NO release from the N-diazeniumdiolate NO 

donors. 

 

 

Figure 6.1. Structure of sodium cholate hydrate. 
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Indeed, a polymer coating has been prepared with sodium cholate as the additive 

and its NO release property has been characterized by NOA (see Figure 6.2).  It has been 

shown that such film exhibits a sustained NO release for at least 20 d.  The NO flux 

needs to be increased in future studies since the current flux is very close to the lower end 

of the endogenous NO flux on healthy endothelium (0.5 – 4.0 × 10-10 mol min-1 cm-2)1.  

Parameters for optimization should include hydrophilicity of the polymer matrices, 

thickness of the top coating, concentration of NO donor in the polymer, ratio between 

cholate and NO donor, solvent drying process, etc. 

 

 

 
Figure 6.2. Nitric Oxide flux profiles of a PU catheter sleeve with sodium cholate as the 
pH-stabilizing additive. The underlying layer was loaded with equal molar of 
DBHD/N2O2 and sodium cholate (0.5 mmol DBHD/N2O2 and 0.5 mmol sodium cholate 
per gram PurSil).  The top-coatings were made by dip-coating the catheter sleeves in 2 
w/v % solution of PurSil in THF/DMAc (4:1, v/v).  The PU catheter sleeve was 
incubated in PBS (pH 7.4, 10 mM) at 37 ºC and the released NO was purged with 
nitrogen flow and detected by a chemiluminescent NO analysizer (NOA™ 280, Sievers 
Instruments, Inc. (Boulder, CO)).   
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Another possibility is to use polymer additive that can release small acidic 

molecules upon degradation.  A good candidate is poly(lactide-co-glycolide) (PLGA) 

since it is an FDA approved biodegradable polymer and has been widely used in 

bioabsorbable sutures2, implantable vascular closure devices3, etc.  Lactic acid and 

glycolic acid are its degradation products (see Scheme 6.1).  It is hypothesized that the 

presence of this continuous hydrolytic degradation will compensate for the increase in pH 

from generation of the free amines from NO release reaction, thereby maintaining a 

greater rate of NO release for longer periods of time4. 

 

 

 

Scheme 6.1. Hydrolysis of PLGA in aqueous environment (adapted from Zhou, Z. and 
Meyerhoff, M. E. Biomacromolecules 2005, 6, 780-7894). 
 

 

By varying the types of monomers (D-lactide, L-lactide), the ratios between 

glycolide and lactide, molecular weight, the molecular weight of the copolymer, as well 

as the end groups, the degradation rate of PLGA can be tuned in a very wide range from 

1-2 months to more than 24 months (see Table 6.1)5.  This provides a full array of PLGA 

polymers to be tested to achieve the optimal NO release profile.  
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Table 6.1. Physical properties of selected PURASORB polymers (PLGA).  Adapted from product data sheet5 of Purac Biomaterials 
(Lincolnshire, IL). 
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6.2.2. In Vitro Cell Studies of NO/Sirolimus Release Polymeric Coatings 

In Chapter 4, in vitro EC and SMC viability tests have shown that the control 

polymeric coatings containing potassium tetrakis-(bis-3,5-trifluoromethylphenyl)borate 

(KTFPB) or PU-SO3 had much improved biocompatibility.  In vitro SMC proliferation 

and differentiation studies have also proved that such NO/siroliumus release coatings 

have decent efficacy towards the suppression of SMC proliferation and differentiation.  

Future work should be focused on testing whether these coatings are capable of 

enhancing endothelialization on the blood-material interfaces as had been observed on 

the NO-release coatings in the studies6,7 reported by Dr. West’s research group at Rice 

University.  These experiments could be done in collaboration with Ms Diane Studzinski 

in Dr. Shanley’s Surgical Research Lab at Beaumont Hospital (Royal Oak, MI), since she 

is already quite familiar with handling the NO/sirolimus release polymer materials. 

 

6.2.3. Further Evaluation and Testing of Tecophilic-SeH and Tecoflex-SO3 According to 

ISO (International Organization for Standardization) Standards 

In Chapters 4 and 5, two new PU-based polymers have been synthesized, namely, 

Tecoflex-SO3 and Tecophilic-SeH.  They are intended to be used as matrices of 

hemocompatible polymeric coatings for blood-contacting medical devices.  According to 

the categorization in ISO 10993-18, these polymers could ultimately be used in External 

Communicating Devices and Implant Devices with various duration of contact as 

indicated in the quoted text below: 
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4.2 Categorization by nature of body contact 
…… 
4.2.3 External communicating devices 
These include medical devices in contact with the following 
application sites: 

…… 
c) circulating blood: devices that contact circulating blood; 
examples include intravascular catheters, temporary pacemaker 
electrodes, oxygenators, extracorporeal oxygenator tubing and 
accessories, dialyzers, dialysis tubing and accessories, 
hemoadsorbents, and immunoadsorbents. 

 
4.2.4 Implant devices 
These include medical devices in contact with the following 
application sites: 

…… 
b) blood: devices principally contacting blood; examples include 
pacemaker electrodes, artificial arteriovenous fistulae, heart 
valves, vascular grafts, internal drug-delivery catheters, and 
ventricular assist devices. 

 

In Chapter 5, the potential acute toxic adverse effects of the Tecophilic-SeH 

coatings within organs and tissues that are remote from the site of contact were tested in 

collaboration with Yang Wang in Dr. Roy-Chaudhury’s internal medicine research lab in 

the University of Cincinnati according to ISO standard 10993-119.  While this 

preliminary result suggested good biocompatibility of this new NO-generating polymer, 

more tests need to be done to cover the full spectrum of chemical, toxicological and 

biological characterization and evaluation of this novel material.  Indeed,  tables 6.2 and 

6.3 provide summaries of tests recommended in ISO 10993-18.  In fact, selected tests 

from this list must be preformed for both Tecophilic-SeH and Tecoflex-SO3 if they are to 

be used in blood-contacting devices in the future. 
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Table 6.2. Summary of initial tests relevant to non-degradable blood-contacting materials recommended in ISO 10993-18. 

Test Description ISO 

Cytotoxicity With the use of cell culture techniques, these tests determine the lysis of cells (cell death), the inhibition of cell growth, 
and other effects on cells caused by medical devices, materials, and/or their extracts. 10993-510 

Sensitization 
These tests estimate, using an appropriate model, the potential of medical devices, materials, and/or their extracts for 
contact sensitization. These tests are appropriate because exposure or contact to even minute amounts of potential 
leachables can result in allergic or sensitization reactions. 

10993-1011 

Intracutaneous 
Reactivity 

These tests assess the localized reaction of tissue to medical device extracts. These tests are applicable where 
determination of irritation by dermal or mucosal tests is inappropriate (e.g., medical devices having access to the blood 
path). These tests may also be useful where extractables are hydrophobic. 

10993-1011 

Systemic Toxicity 
(Acute Toxicity) 

These tests estimate the potential harmful effects of either single or multiple exposures, during a period of less than 24 h, 
to medical devices, materials, and/or their extracts in an animal model. These tests are appropriate where contact allows 
potential absorption of toxic leachables and degradation products. 

10993-119 

Subacute and 
Subchronic 

Toxicity 

These tests determine the effects of either single or multiple exposures or contact to medical devices,  materials, and/or 
their extracts for a period of not less than 24 h but not greater than 10 % of the total life span of the test animal (e.g., up to 
90 days in rats). 

10993-119 

Genotoxicity 
These tests use mammalian or non-mammalian cell culture or other techniques to determine gene mutations, changes in 
chromosome structure and number, and other DNA or gene toxicities caused by medical devices, materials, and/or their 
extracts. 

10993-312 

Implantation 

These tests assess the local pathological effects on living tissue, at both the gross level and microscopic level, of a sample 
of a material or final product that is surgically implanted or placed in an implant site or in a tissue appropriate to the 
intended application (e.g., special dental usage tests).  These tests should be appropriate for the route and duration of 
contact. 

10993-613 

Hemocompatibility 

These tests evaluate, using an appropriate model or system, the effects of blood-contacting medical devices or materials on 
blood or blood components. Specific hemocompatibility tests may also be designed to simulate the geometry, contact 
conditions, and flow dynamics of the device or material during clinical applications.  Hemolysis tests determine the degree 
of red blood cell lysis and the release of hemoglobin caused by medical devices, materials, and/or their extracts in vitro. 

10993-414 
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Table 6.3. Summary of supplementary tests relevant to non-degradable blood-contacting materials recommended in ISO 10993-18. 
 

Test Description ISO 

Chronic Toxicity 
These tests determine the effects of either single or multiple exposures to medical devices, materials, and/or their extracts 
during at least 10 % of the life span of the test animal (e.g., more than 90 days in rats). These tests should be appropriate 
for the route and duration of exposure or contact. 

10993-119 

Carcinogenicity 

These tests determine the tumorigenic potential of medical devices, materials, and/or their extracts from either single or 
multiple exposures or contacts during the major portion of the life span of the test animal. These tests may be designed in 
order to examine both chronic toxicity and tumorigenicity in a single experimental study. Carcinogenicity tests should be 
conducted only if there is suggestive data from other sources. These tests should be appropriate for the route and duration 
of exposure or contact. 

10993-312 

Reproduction and 
Developmental 

Toxicity 

These tests evaluate the potential effects of medical devices, materials, and/or their extracts on reproductive function, 
embryonic development (teratogenicity), and prenatal and early postnatal development. Reproductive/developmental 
toxicity tests or bioassays should only be conducted when the device has potential impact on the reproductive potential of 
the subject. The application site of the device should be considered. 

10993-312 
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