
POLYMORPHIC PIPELINE ARRAY: A FLEXIBLE

MULTICORE ACCELERATOR FOR MOBILE

MULTIMEDIA APPLICATIONS

by

Hyunchul Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:
Associate Professor Scott A. Mahlke, Chair
Professor Trevor N. Mudge
Professor James S. Freudenberg
Assistant Professor Satish Narayanasamy
Dr. Hong-seok Kim, Bain & Company

c© Hyunchul Park 2009
All Rights Reserved

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the guidance and support

of many people. First and foremost, I would like to thank my advisor, Scott Mahlke.

His insight, expertise, enthusiasm, and encouragement played a large part in my

success in graduate school. Without his guidance, this dissertation would not exist.

I would also like to thank my thesis committee, Professors Trevor Mudge, James

Freudenberg, Satish Narayanasamy, and Dr. Hong-Seok Kim. They donated their

time, providing valuable comments and suggestions that helped me refine my thesis.

The research presented in this dissertation is not the work of one person; I was

fortunate to have the assistance of a number of other students in the Compilers Cre-

ating Custom Processors research group. In particular, Kevin Fan gave me valuable

help in virtually every aspect of my graduate school life: debugging codes, writing

papers, and even fixing my long-suffering 240sx. Manjunath Kudlur also contributed

significantly, helping me write my first publication. More recently, Yongjun Park

has been unfailingly supportive in performing hardware experiments for the token

network and the PPA.

I would also like to thank people at Samsung Advanced Institute of Technology:

ii

Sukjin Kim, Heeseok Kim and Taewook Oh. They helped me set up the compiler

environment for my research and provided numerous application benchmarks that

were extensively used in my dissertation.

As much as those who provided technical expertise, those who offered engag-

ing conversation and moral support were crucial to my graduate school experience,

namely: Amin Ansari, Jay Blome, Hyounkyu Cho, Mike Chu, Nate Clark, Ganesh

Dasika, Shuguang Feng, Shantanu Gupta, Jeff Hao, Amir Hormati, Po-Chun Hsu,

Steve Lieberman, Yuan Lin, Mojtaba Mehrara, Rob Mullenix, Rajiv Ravindran, Mark

Woh, and Hongtao Zhong. I have shared offices, and in many cases, homes with these

friends, and my time in Ann Arbor would not have been the same without them.

I would like to thank my family for their support, encouragement, and advice.

My parents and my brother Sungchul provided their unconditional love and support

throughout this whole process. Finally, I am grateful to You-sun Chung for her love

and support. The occasional carrot and/or stick she would offer presumably to ward

off procrastination and keep me on track seemed to yield uneven results at best. That

is, until now.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . x

ABSTRACT . xi

CHAPTERS

1 Introduction . 1
1.1 Optimizations for CGRAs . 5

1.1.1 Compiler Support . 5
1.1.2 Control Path Optimization 6

1.2 Polymorphic Pipeline Array 7

2 Background and Motivation . 8
2.1 CGRA Overview . 8
2.2 Modulo Scheduling Challenges 10

3 Modulo Graph Embedding . 14
3.1 Introduction . 14
3.2 Modulo Graph Embedding 15

3.2.1 General Concepts . 16
3.2.2 Implementation . 28

3.3 Experimental Results . 34
3.3.1 Experimental Setup 34
3.3.2 Evaluation of Affinity Graph Heuristic 35
3.3.3 Evaluation of Modulo Scheduler 36

3.4 Related Work . 39
3.4.1 Architectures . 39
3.4.2 Compilation Techniques 40

3.5 Summary . 42

iv

4 Edge-centric Modulo Scheduling . 44
4.1 Introduction . 44
4.2 Core Concepts . 46

4.2.1 Integrated Placement and Routing 47
4.2.2 Routing Cost Metrics 51
4.2.3 Stage Re-assignment 54
4.2.4 Edge Categorization 56

4.3 Implementation . 58
4.3.1 Prepass Steps . 58
4.3.2 Edge-centric Modulo Scheduler 60
4.3.3 Postpass Steps . 68

4.4 Experimental Results . 69
4.4.1 Experimental Setup 69
4.4.2 Results . 70
4.4.3 Analysis and Discussion 72

4.5 Related Work . 75
4.6 Summary . 77

5 Control Path Optimization . 78
5.1 Introduction . 78
5.2 Motivation . 80
5.3 Dynamic Discovery of Instruction Formats 83

5.3.1 Concepts . 83
5.3.2 Token Network . 85
5.3.3 Supporting Modulo Scheduled Loops 89

5.4 Configuration Memory Partitioning 93
5.5 Experiments . 95

5.5.1 Experimental Setup 96
5.5.2 Configuration Memory Partitioning 97
5.5.3 Token Network Evaluation 99

5.6 Summary . 104

6 Polymorphic Pipeline Array . 105
6.1 Introduction . 105
6.2 Analysis of Multimedia Applications 106

6.2.1 Fine Grain Parallelism 107
6.2.2 Coarse-Grain Pipeline Parallelism 110
6.2.3 Computation Variance 112
6.2.4 Summary and Insights 114

6.3 Polymorphic Pipeline Array 116
6.3.1 Overview . 116
6.3.2 Core Description . 117
6.3.3 Supporting Coarse-Grain Pipeline Parallelism 120
6.3.4 Supporting Fine-Grain Pipeline Parallelism 120

v

6.3.5 Hardware Support for Virtualization 122
6.4 Compiler Support for Virtualization 123

6.4.1 Edge-centric Modulo Scheduling 123
6.4.2 How to Virtualize . 124
6.4.3 Virtualized Modulo Scheduling 127

6.5 Experiments . 134
6.5.1 Virtualized Modulo Scheduling Evaluation 134
6.5.2 Performance Evaluation of PPA 135
6.5.3 Power and Area Measurement 139

6.6 Related Works . 140
6.7 Summary . 142

7 Conclusion . 144
7.1 Summary . 144
7.2 Future Directions . 146

BIBLIOGRAPHY . 148

vi

LIST OF FIGURES

Figure

2.1 Example CGRA design . 9

2.2 Example to illustrate the challenges of CGRA scheduling: (a) the
dataflow graph for the fsed application, (b) the reservation table for
a partial schedule on a 4x4 array, (c) possible routings from 23’s pro-
ducers. In (a) and (b), dark grey shading indicates memory operations
and light grey shading is used to highlight the current operation being
scheduled (node 23) and its immediate predecessors. Bold numbers
indicate computation operations, other numbers followed by ‘r’ (e.g.
‘8r’) indicate routing slots for corresponding computation operations.
‘reg’ nodes indicate live-in values stored in the central RF. 10

3.1 Modeling resources in a CGRA: (a) example 2x2 CGRA, (b) resource
management model for 2x2 CGRA with II=3. 17

3.2 Example showing the placement of producers affects the routing cost
of consumers: (a) DFG for loop, (b) target architecture which is a
1x4 CGRA, (c) poor schedule that results in an extra cycle for routing
values to Op 6, and (d) good schedule that results in no additional
routing. 19

3.3 Example affinity graph: (a) DFG for loop, (b) calculated affinities
between each pair of operations, (c) affinity graph, and (d) possible
operation assignments to a 2x4 CGRA. 22

3.4 CGRA scheduling spaces: (a) normal scheduling space, (b) skewed
scheduling space, (c,d,e) variations of skewed scheduling space. 23

3.5 Overview of the CGRA scheduling system: input is the assembly code
for the loop body and a description of the CGRA; preprocessing an-
alyzes the loop to compute heights and skew the available scheduling
cycles for the FUs; the graph is iteratively scheduled at successive
dependence height levels by constructing the affinity graph and per-
forming modulo graph embedding of the affinity graph on the CGRA. 28

3.6 Scheduling process for operations at each successive dependence height. 32

vii

3.7 Example of modulo graph embedding: (a) DFG of sobel and target
CGRA, (b) scheduling results of first three heights. 33

3.8 Comparison of utilization rates for three register file configurations. . 40

4.1 High level comparison of scheduling approaches: (a) 1x5 CGRA, (b)
compile time example of node-centric, (c) compile time example of
edge-centric, (d) performance example of node-centric, (e) performance
example of edge-centric. Shaded boxes in the reservation tables indi-
cate slots occupied by other operations. 49

4.2 Routing cost example: (a) dataflow graph, (b) possible mappings, and
(c) probabilistic cost. 54

4.3 (a) Stage re-assignment example (II = 2) that re-assigns the recurrence
cycle B-C from time 2-3 to time 6-7 after operation A is scheduled; (b)
Example dataflow graph to illustrate non-critical edges. 56

4.4 An example dataflow graph from H.264. 59

4.5 Example from Figure 4.4 after fanout clustering. 60

4.6 System flow for edge-centric modulo scheduling. 62

4.7 Routing cost calculation example: (a) dataflow graph, (b) - (g) reser-
vation table with computed routing costs. 63

4.8 Performance comparison of scheduling strategies for the mesh-plus ar-
chitecture. The fraction of the theoretical maximum performance is
plotted. 71

4.9 Performance comparison of scheduling strategies for the mesh-only ar-
chitecture. 71

4.10 Performance comparison of scheduling strategies for the no-RF-sharing
architecture. 72

4.11 Performance comparison of EMS and DRESC for the mesh-plus archi-
tecture. 73

5.1 CGRA overview: 4x4 array of PEs (left), a detailed view of a PE
(right), and a PE instruction (bottom) 80

5.2 Different Control Path Designs: (a) No compression, (b) Fine-grain
code compression with static instruction format, (c) Fine-grain code
compression with a token network (F and R indicate FU token module
and RF token module, respectively) 81

5.3 Token Modules: (a) token receiver, (b) token sender, (c) FU token
module, (d) RF token module . 83

5.4 Dynamic configuration of PEs using tokens 84

5.5 Modulo scheduling basics: (a) Concept, (b) An example mapping for
FU 2, (c) Kernel mapping. 91

5.6 Decoder for fine-grained code compression 93

5.7 (a) Configuration memory partitioning, (b) Performance, power and
area comparison of control path designs 97

5.8 Cache effect on SRAM power consumption 99

viii

5.9 Power breakdown of baseline and token 2 designs for a kernel loop in
H.264 . 103

6.1 (a) CGRA loop accelerator, (b) Impact of the array size on the perfor-
mance . 106

6.2 (a) Number of software pipelineable loops, (b) Breakdown of execution
time for software pipelineable region and acyclic region 109

6.3 Task Graphs: (a) AAC, (b) 3D, (c) H.264, nodes represent tasks, solid
edges show control flow, and dotted edges show data transfer 110

6.4 Execution Pattern Variation in Coarse-Grain Pipelining: (a) Stage Ex-
ecution Time, (b) Resource Requirements 113

6.5 PPA Overview: (a) PPA with 8 cores, (b) Inside a single PPA core . 117

6.6 (a) An example of PPA running AAC in a pipelining fashion, (b) Vir-
tualization Controller . 119

6.7 (a) Folding with interleaving, (b) Expanding with horizontal cut, (c)
Expanding with vertical cut . 126

6.8 (a) Execution in a single core, (b) Execution in two cores, (c) Execution
in four cores, (d) Multi-level modulo constraints, (e) Code expansion 128

6.9 (a) Dataflow graph, (b) - (e) Mapping examples, (f) Modulo schedule
for 1x1 array, (g) Modulo schedules for 1x2 array 130

6.10 Performance Evaluation of VMS . 134

6.11 Performance Evaluation of PPA . 137

6.12 (a) Power breakdown of PPA: running H.264, (b) Power/performance
comparison . 140

ix

LIST OF TABLES

Table

3.1 Register file configurations for three CGRA designs used for evaluation. 34

3.2 Effectiveness of the affinity heuristic using acyclic scheduling. 36

3.3 Modulo graph embedding results for the dedicated register file CGRA. 39

4.1 Compile time comparison (in seconds). 72

x

ABSTRACT

POLYMORPHIC PIPELINE ARRAY: A FLEXIBLE MULTICORE

ACCELERATOR FOR MOBILE MULTIMEDIA APPLICATIONS

by

Hyunchul Park

Chair: Scott A. Mahlke

Mobile computing in the form of smart phones, netbooks, and PDAs has become

an integral part of our everyday lives. Moving ahead to the next generation of mo-

bile devices, we believe that multimedia will become a more critical and product-

differentiating feature. High definition audio and video as well as 3D graphics pro-

vide richer interfaces and compelling capabilities. However, these algorithms also

bring different computational challenges than wireless signal processing. Multimedia

algorithms are more complex featuring more control flow and variable computational

requirements where execution time is not dominated by innermost vector loops. Fur-

ther, data access is more complex where media applications typically operate on

multi-dimensional vectors of data rather than single-dimensional vectors with sim-

xi

ple strides. Thus, the design of current mobile platforms requires re-examination to

account for these new application domains.

In this dissertation, we focus on the design of a programmable, low-power accel-

erator for multimedia algorithms referred to as a Polymorphic Pipeline Array (PPA).

The PPA design is inspired by coarse-grain reconfigurable architectures (CGRAs)

that consist of an array of function units interconnected by a mesh style intercon-

nect. The PPA improves upon CGRAs by attacking two major limitations: scalability

and acceleration limited to innermost loops. The large number of resources are fully

utilized by exploiting both fine-grain instruction-level and coarse-grain pipeline par-

allelism, and the acceleration is extended beyond innermost loops to encompass the

whole region of applications.

Various compiler and architectural optimizations are presented for CGRAs that

form the basic building blocks of PPA. Two compiler techniques are presented that

systematically construct the schedule with intelligent heuristics. Modulo graph em-

bedding leverages graph embedding technique for scheduling in CGRAs and edge-

centric modulo scheduling provides a communication-oriented way to address the

scheduling problem. For architectural improvement, a novel control path design is

presented that leverages the token network of dataflow machines to reduce the in-

struction memory power.

The PPA is designed with flexibility and programmability as first-order require-

ments to enable the hardware to be dynamically customizable to the application. A

PPA exploit pipeline parallelism found in streaming applications to create a coarse-

xii

grain hardware pipeline to execute streaming media applications. PPA resources

are allocated to each stage depending on its size and ability to exploit fine-grain

parallelism. For dynamic partitioning of resources, Virtualized modulo scheduling

generates a unified schedule that can be easily converted to target different number

of resources at run-time.

xiii

CHAPTER 1

Introduction

Mobile computing has become a ubiquitous part of society. More than half the

world’s population now owns on a cell phone, and in some countries, the number of

active cell phone contracts out numbers the population. The embedded computer

systems that power mobile devices demand high performance and energy efficiency

to operate in an untethered environment. Traditionally, hardwired accelerators have

done the heavy lifting in terms of computation. Mobile platforms are designed as

heterogeneous systems-on-a-chip consisting of multiple processors (general-purpose

and/or digital signal processors) and special purpose accelerators constructed for

the most compute-intensive tasks. The performance/energy point achieved by these

designs is impressive - performing tens of giga-operations per second at sub-Watt

power levels.

Moving forward, there is a need to create more programmable mobile computing

platforms. Programmable solutions offer several key advantages:

• Multi-mode operation is enabled by running multiple application standards

1

(e.g., two video codecs) or even multiple applications on the same hardware.

Accelerator-based solutions require a union of hardware blocks to accomplish

all desired applications.

• Time to market of an implementation is lower because the hardware can be

re-used across multiple platforms. More importantly, hardware integration and

software development can progress in parallel.

• Prototyping and software bug fixes are enabled on existing silicon with a software

change. On-going evolution of specifications are supported in a natural way

by allowing software changes after the chipset and even the device have been

manufactured.

• Chip volumes are higher as the same chip can support multiple standards with-

out requiring hardware changes.

Traditionally, the design of programmable mobile computing platforms has fo-

cused on software defined radio [4, 3, 17, 35, 58]. These systems are geared towards

wireless signal processing that contain vast amounts of vector parallelism. As a re-

sult, single-instruction multiple-data (SIMD) hardware is recognized as an effective

strategy to achieve both high-performance and programmability. SIMD provides high

efficiency because of its regular structure, ability to scale lanes, and low control cost.

However, mobile computing systems are not limited to wireless signal processing.

High-definition video, audio, 3-D graphics, and other forms of media processing are

high value applications for mobile terminals. In fact, many believe the quality and

2

types of media support will be the key differentiating factors of future mobile termi-

nals.

Media applications in a mobile environment offer a number of different challenges

than wireless signal processing. First, the complexity of media processing algorithms

is typically higher than signal processing. Computation is no longer dominated by

simple vectorizable innermost loops. Instead, loop bodies are larger with signifi-

cant amounts of control flow to handle the different operating modes and inherent

complexity of media coding. This results in differential dynamic computational re-

quirements. Further, significant time is spent in outer loops and acyclic code regions.

As a result, SIMD parallelism is less prevalent and less efficient to exploit in media

algorithms [37]. Second, the data access complexity in media processing is higher.

Signal processing algorithms typically operate on single dimension vectors, whereas

video algorithms operate on two or three dimensional blocks of data where the block

size is variable. Thus, video and other forms of media processing push designs to

have higher bandwidth and more flexible memory systems. Finally, the power budget

is generally more constrained for media processing than wireless signal processing

because of higher usage times.

To address these challenges, this work focuses on the design of a flexible me-

dia accelerator for mobile computing referred to as a polymorphic pipeline array or

PPA. Our design does not exploit SIMD parallelism, but rather relies on two forms

of pipeline parallelism: coarse-grain pipeline parallelism found in streaming appli-

cations [19, 20, 27] and fine-grain parallelism exploited through modulo scheduling

3

of innermost loops [48]. The PPA consists of an array of simple processing elements

(PEs) that are tightly interconnected by a scalar operand network and a shared mem-

ory. Groups of four PEs form cores that are driven by a single instruction stream.

These cores can execute tasks (filters in a streaming application) independently or

neighboring cores can be coalesced to execute loops with high degrees of parallelism.

The use of a regular interconnection fabric allows the core boundaries to be blurred,

thereby allowing the hardware to be customized differently for each application.

The PPA design is inspired by coarse-grain reconfigurable architectures (CGRAs)

that consist of an array of function units interconnected by a mesh style intercon-

nect [38, 39]. In CGRAs, small register files are distributed throughout the array to

hold temporary values and are accessible only by a small subset of function units.

Example commercial CGRA systems that target mobile devices are ADRES [39],

MorphoSys [36], and Silicon Hive [47]. Tiled architectures, such as Raw, are closely

related to CGRAs though are not intended for mobile computing [52]. The abundance

of resources in CGRAs offer large raw computation capabilities while the distributed

nature of hardware and simple control provide low energy efficiency.

In this dissertation, we first attack the major challenges for deploying CGRAs

in embedded environments. Two compilation techniques for efficient mapping of

applications onto the highly distributed architectures like CGRAs are proposed. Also,

a novel design of control path in CGRAs is proposed for reducing instruction read

power. These optimizations can be directly applied to the PPA since it builds on

the basic building blocks of CGRAs. Then, we provide the application analysis that

4

motivates the PPA design paradigm, the hardware description of PPA, and a new

compilation technique to maximize the utilization of the proposed PPA.

1.1 Optimizations for CGRAs

1.1.1 Compiler Support

The most difficult challenge in deploying CGRAs arises in the compiler sup-

port. An effective compiler is essential for exploiting the abundance of computing

resources available on a CGRA. However, sparse connectivity and distributed regis-

ter files present difficult challenges to the scheduling phase of a compiler. Traditional

schedulers that just assign an FU and time slot to each operation are insufficient

because they do not take routing into consideration. Scalar operand values must be

explicitly routed between producing and consuming operations. Further, dedicated

routing resources are not provided. Rather, an FU can serve either as a compute

resource or as a routing resource at a given time. A compiler scheduler must thus

manage the computation and flow of operands across the array to effectively map

applications onto CGRAs. Chapter 2 provides the overview of CGRAs and major

scheduling challenges.

This dissertation proposes novel scheduling techniques that collectively synthesize

an efficient mapping of an application to the CGRA with a reasonable compile time.

Specifically, the new techniques are developed in the context of modulo scheduling.

Modulo scheduling is a software pipelining technique that overlaps the execution of

5

loop iterations to provide the opportunity to exploit both loop-level and instruction-

level parallelism. Modulo scheduling is especially effective for CGRAs since they

provide a large number of resources for exploiting potential parallelism.

In Chapters 3 and 4, we propose two modulo scheduling approaches that differ

in their primary objective of scheduling and we categorize them as node-centric and

edge-centric approaches. The first approach in Chapter 3, referred as modulo graph

embedding , is a modulo scheduling technique for CGRAs that leverages graph embed-

ding commonly used in graph layout and visualization. This technique is node-centric

in that the focus of scheduling is assigning operations (nodes in dataflow graphs) to

FUs, just as in traditional schedulers.

The second approach in Chapter 4, on the other hand, considers routing operands

between operations (edges in dataflow graphs) as its primary objective. Operation

assignment to FUs can be viewed as a by-product of a successful route, thus no

successive placement step is required. In essence, by getting an operand between two

points, the necessary operations can be performed along the way for free. We refer

to this technique as edge-centric modulo scheduling , or EMS.

1.1.2 Control Path Optimization

A major bottleneck for deploying CGRAs into a wider domain of embedded devices

lies in the control path. The appealing features in the datapath of CGRAs ironically

come back as a major overhead in the control path. The distributed interconnect

and register files require a large number of configuration bits to route values across

6

the network. The abundance of computation resources simply adds up the list for

configurations to the control path. As a result, the total number of control bits to

configure the whole array can reach nearly 1000 bits each cycle, and the control path

takes up to 43% of the total power consumption in existing CGRA designs [25, 5]. In

Chapter 5, we propose a novel control path design in CGRAs that leverages a token

network in dataflow machines to improve the code efficiency.

1.2 Polymorphic Pipeline Array

The major weakness of CGRAs is their lack of ability to accelerate an entire

application. Chapter 6 propose a flexible multicore accelerator that can accelerate

multiple regions of a target application. The PPA shares the inherent hardware

efficiency of CGRAs: fully distributed register files, nearest neighbor interconnect and

simple control. An application study is performed to discover the available parallelism

in today’s mobile multimedia applications. The result of this study motivates the

design of PPA that can support multiple levels of parallelism. Also, a novel scheduling

technique is proposed that enables virtualized execution of loops.

7

CHAPTER 2

Background and Motivation

2.1 CGRA Overview

A CGRA consists of an array of compute nodes, each of which executes word-

level operations, communicating through an interconnection network. In general,

CGRA designs can be described by four characteristics: size, node functionality,

network configuration, and register file sharing. The size refers to the number of

nodes; commonly this can vary from 4 nodes arranged in a row up to 64 nodes

arranged in an 8×8 grid. The functionality of each node can vary from a single FU

(e.g. adder or subtracter), to an ALU, to a full-blown processor. In addition, the

functionality of nodes may be homogeneous or heterogeneous. For example, only a

subset of nodes may access data memory.

There are a large number of potential network configurations, such as connections

between each node and its four (or eight diagonal) nearest neighbors, buses connect-

ing each node to (possibly to a subset of) other nodes in the same row or column,

8

Central Register File

FU4 FU5 FU6 FU7

FU0 FU1 FU2 FU3

FU8 FU9 FU10 FU11

FU14 FU15FU12 FU13

Mem
Config Register

FileFU

Register

To Neighbors

Central Register File
From Neighbors or

Figure 2.1: Example CGRA design

hierarchical connection schemes, and so on. Finally, the degree of register file sharing

ranges from small, individual register files at each node, to multiple register files each

shared by a small number of nodes, to a single central register file accessible by some

or all nodes.

Figure 2.1 shows a CGRA design that contains 16 nodes arranged in a 4×4 mesh;

each node can communicate with its four nearest neighbors. In addition, column

buses connect each node to a central register file. Each node consists of an FU that

can read inputs from neighbors or the central register file and write to a single output

register; a small, dedicated register file; and a configuration memory to supply control

signals to the MUXes, FU, and register file. Certain operations, such as loads and

stores, can only be executed on a subset of FUs (shaded). Note that a node can

either perform a computation or route data each cycle, but not both, as routing is

accomplished by passing data through the FU. This architecture is only one possible

CGRA design; many other variations are possible.

9

2.2 Modulo Scheduling Challenges

tim
e

reg

2726

reg

29

reg

 0 1

reg

 2 3 reg

 7 8

11

 6 5

10 12

 4

 9 13

17 181614

19

15

20

22

23

21

2524

current operation
to schedule

28

FU 0 FU 1

FU 8

FU 12 FU 13

FU 2 FU 3

FU 6 FU 7

FU 14

23

21

22

r

r r

(a) (b) (c)

FU 0 FU 1 FU 2 FU 3 FU 4 FU 5 FU 6 FU 7 FU 8 FU 9 FU10 FU11 FU12 FU13 FU14 FU15
MEM MEM MEM MEM

0 2 X X X X X X

1 6 26 8 X X X 11 X X

2 X 7 X X X X X X

3 29 3 0 X X X X X X X

4 X X X X X X X

5 X X X X X X X X X

6 1 X X 5 2r X X X

7 X X X 18 X 8r 13 X 10 X

8 X X 12 18r 17 X 15
9 X X X 12r 4 0r X X 20
10 X X 16 X X X 9 22
11 X X X X X X X 15r X 14
12 X X X X X 19 X

13 X X X X X X X X X

14 X X X X X 19r X X

15 X X X X 21 X X X X X

16 X 21r X X X X X

17 X X X X X X X 23 X

18 X X X X X X X X

19 X X X X X X X X X

Figure 2.2: Example to illustrate the challenges of CGRA scheduling: (a) the
dataflow graph for the fsed application, (b) the reservation table for
a partial schedule on a 4x4 array, (c) possible routings from 23’s pro-
ducers. In (a) and (b), dark grey shading indicates memory operations
and light grey shading is used to highlight the current operation being
scheduled (node 23) and its immediate predecessors. Bold numbers in-
dicate computation operations, other numbers followed by ‘r’ (e.g. ‘8r’)
indicate routing slots for corresponding computation operations. ‘reg’
nodes indicate live-in values stored in the central RF.

Modulo scheduling is a software pipelining technique that exposes parallelism by

overlapping successive iterations of a loop [48]. The goal is to find a valid schedule such

that the interval between successive iterations (initiation interval, or II) is minimized.

The II-cycle code region that achieves this maximal overlap is called the kernel. When

the number of iterations is large, the performance of the loop is determined by the

II to a first order; thus, it is more important to minimize the II than to minimize

schedule length. Initially, the scheduler chooses the target II to be the maximum

of the resource-constrained lower bound (ResMII) and the recurrence-constrained

lower bound (RecMII). If a valid modulo schedule cannot be found, the target II is

10

incremented and scheduling is attempted again.

Scheduling for CGRAs is quite different from scheduling for general VLIW archi-

tectures due to the different hardware characteristics. Factors that complicate CGRA

scheduling include:

Explicit routing. In a VLIW architecture, routing from producer to consumer

is implicitly guaranteed by storing intermediate values in a multi-ported, centralized

register file. However, in a CGRA, interconnect is much more sparse and values must

be explicitly routed using FUs, local register files, and mesh connections.

Intelligent routing. FUs are used for both computation and routing; thus,

scheduling can easily fail if poor routing choices are made. Furthermore, the scheduler

must not only generate a valid schedule, but also minimize the routing resources used

so that more FUs are available for computation.

Heterogeneous nodes. All nodes can perform addition and logical operations,

but “expensive” operations such as multiplies, loads, and stores may only be sup-

ported by a subset of nodes. In such an architecture, it is important to avoid schedul-

ing inexpensive operations on expensive nodes, because this limits the scheduling

flexibility of the expensive operations.

Modulo constraint. Resources are used in a periodic fashion, since the loop

kernel repeats every II cycles. Thus, unlike in acyclic scheduling, it is not possible to

guarantee routability by extending the schedule, and scheduling can easily fail due to

the previously scheduled operations.

To illustrate the complexities of CGRA modulo scheduling, Figure 2.2(a) shows

11

the dataflow graph (DFG) for the dominant loop from one of our benchmark appli-

cations, fsed, an image halftoning algorithm. Memory operations are shaded dark

grey. The DFG is being scheduled onto a 4×4 CGRA, similar to the one shown in

Figure 2.1, with II=4. The partial schedule is shown in Figure 2.2(b). schedule is

shown. Bold numbers are computation operations; other numbers followed by ‘r’ (e.g.

‘8r’) are routing operations for the corresponding computation operations; and, Xs

represent slots that are occupied due to the modulo constraint. ‘reg’ nodes indicate

live-in values that are stored in the central RF. All operations above operation 23

(light grey) in the DFG have been scheduled at this point.

There are several points to observe. First, only FUs 1, 2, 9, and 10 support

memory operations, thus all of the memory operations must be scheduled on those

FUs. Next, observe how values are routed to operation 23, which is considered for

execution on FU 10 at time 17, and has two producers: 21 and 22. Figure 2.2(c) shows

the possible routes of the operands from two producers. One possible way to route

the operand from 21 to 23 is through FU 9. The operand is first routed diagonally

from FU 4 to FU 9 via a shared register fie, then it is routed to the neighboring FU

10 via the mesh connection. However, taking this option leaves only two memory

slots for the unscheduled memory operations (27 and 28). Therefore, the operand of

21 is routed through FU 5 rather than through FU 9. Similarly, the operand of 22 is

routed directly from FU 15 to FU 10 rather than through FU 11. The value is stored

in a rotating register file for 6 cycles and is read out by 23 at time 17. The challenge

here is how to guarantee the availability of storage in the register file. The available

12

storage must be carefully considered during scheduling as simply pushing register

allocation to after scheduling can result in costly spilling and may require complete

rescheduling of the loop. It can be seen that routing is complex, and various resources

including FUs, registers, register file ports, and connection links must be modeled by

the compiler to properly orchestrate the flow of values from producers to consumers.

Further, this routing adds latency to the schedule: operation 23 has an earliest start

time of 11, but is actually scheduled at time 17.

13

CHAPTER 3

Modulo Graph Embedding

3.1 Introduction

In this chapter, we propose a modulo scheduling technique for CGRA architectures

that leverages graph embedding commonly used in graph layout and visualization [33],

referred to as modulo graph embedding . Graph embedding is a technique in graph

theory in which a guest graph is mapped onto a host graph. With CGRAs, scheduling

is reduced to placing operations of a loop body on a three dimensional grid. The three

dimensions consist of the FU array that comprises two dimensions and the time slots

of a modulo scheduled loop that form the third dimension.

Modulo scheduling is performed by considering groups of equal height operations

from the top of the dataflow graph (DFG) to the bottom. The three dimensional

scheduling grid is filled in a skewed manner by restricting the subset of FUs and time

slots available for each group of operations. This stylization increases routability

of operands and can dynamically adapt to different shape DFGs. A discrete cost

14

function between pairs of DFG nodes is designed and the placement algorithm tries to

reduce this cost function. The cost function consists of different components: routing

cost, which ensures that producers and consumers are placed close to one another;

affinity cost, which ensures that operations with common consumers are placed close

together; and, position cost, which ensures that operations are left-justified on the

set of eligible resources. Left justification ensures operations are tightly packed and

enables operand routing to subsequent operations using the righthand portion of the

array.

The central advantages of modulo graph embedding are summarized as follows:

• It scales well with respect to number of operations in the DFG and thus is

capable of handling large loop bodies.

• It handles a wide variety of CGRA configurations, including sparse interconnect

and fully distributed register files.

• It is a systematic technique that assigns operations to the nodes in a CGRA

and thus convergence to a solution is faster along with producing higher quality

schedules.

3.2 Modulo Graph Embedding

This section describes modulo graph embedding, our approach to modulo schedul-

ing for CGRAs. We break the description down into two parts: Section 3.2.1 presents

the important concepts of the approach in isolation, and Section 3.2.2 brings every-

15

thing together to discuss the complete scheduling algorithm.

3.2.1 General Concepts

3.2.1.1 Resource and Connectivity Management

During instruction scheduling, a reservation table is maintained to keep track

of which resources are used in each time slot. As resources are repeatedly used

every II cycles by successive iterations of the loop, the modulo scheduler maintains

a Modulo Reservation Table (MRT) which has only II time slots [48]. Considering

that the scheduler for a CGRA must perform routing of values as well as placement

of operations, routing information should be recorded by the scheduler. This routing

information can be included in the reservation table because FUs are used both for

computation and routing. Management of the interconnect network is not necessary

as all of the connections are dedicated point-to-point connections, meaning that no

congestion can occur in the network.

For resource management, the concept of the Modulo Routing Resource Graph

(MRRG) from the DRESC compiler framework [38] is used. The MRRG is a graphical

representation of the scheduling space where nodes represent routing resources and

edges describe the connectivity of those resources. Scheduling in the CGRA becomes

a problem of placement and routing of each operation on the MRRG.

The original MRRG has a detailed description of the CGRA [38]. MRRG nodes

are created for each port on the FUs and register files, in addition to the MRRG

nodes for the FUs and register files themselves. We take a simplified approach to

16

FU 0 FU 1

FU 2 FU 3 Time

(a) (b)

Figure 3.1: Modeling resources in a CGRA: (a) example 2x2 CGRA, (b) resource
management model for 2x2 CGRA with II=3.

model the CGRA. A single node is created for each FU and register file. Since port

information for FUs can be easily discovered by analyzing the resulting schedule along

with the instruction format, it is not necessary to create nodes for the individual FU

ports. Port information for register files can also be discovered in the same way, but

two additional nodes are used to limit the number of read/write accesses to register

files. Our resource management model can be considered as a distributed MRT with

connectivity information. Each node represents either an FU or register file and is

equipped with a MRT to keep track of the resource usage.

Figure 3.1(b) shows our resource management model constructed for the 2x2

CGRA in Figure 3.1(a) with II = 3. Nodes for register files and wrap-around edges

were omitted for simplicity. Each of the four nodes in the CGRA has a 3-entry MRT,

and each edge specifies that a value can be routed from the source to the destination

resource. When an operation is placed on an FU, the MRT in the corresponding

node is marked as occupied at the schedule time. If there are any placed producers

or consumers, a valid route is discovered by traversing nodes along the edges.

17

3.2.1.2 Register Assignment and Allocation

With modulo scheduling, the number of registers required by a loop is not known

before scheduling. In addition to conventional register allocation constraints, it may

be necessary to keep multiple copies of registers depending on how many iterations

separate the first producer and last consumer. This can cause a problem for the

small, distributed register files in CGRAs as the number of total registers required at

a single FU can exceed the local register file capacity. The available storage must be

carefully considered during scheduling as simply pushing register allocation to after

scheduling can result in costly spilling and may require complete rescheduling of the

loop.

Our approach is to perform a simple register allocation and assignment during

modulo scheduling. The modulo constraint that is enforced for FUs is also enforced

for registers, i.e., there is an MRT kept for the each register file. A register value

can stay in the same register up to II cycles, but the value will be overwritten by the

same instruction in the next iteration II cycles later. When a register value is live

for longer than II cycles, it has to be explicitly routed to another register file (or to

another register in the same file). Specific entries in the register file are allocated for

each virtual register using a simple greedy algorithm. While this approach may seem

overly simplistic, it effectively guides the scheduler to distribute register usage across

the CGRA.

18

0 1 32

4 5

6

0 1 32

4 5

6

FU 0 FU 1 FU 2 FU 3FU 0 FU 1 FU 2 FU 3

3

Op 62

Op 5Op 41

Op 3Op 2Op 1Op 00

FU 3FU 2FU 1FU 0Time

3

Op 62

Op 5Op 41

Op 3Op 2Op 1Op 00

FU 3FU 2FU 1FU 0Time
(a)

(b)

(c)

(d)

Op 63

routeroute2

Op 5Op 41

Op 3Op 2Op 1Op 00

FU 3FU 2FU 1FU 0Time

Op 63

routeroute2

Op 5Op 41

Op 3Op 2Op 1Op 00

FU 3FU 2FU 1FU 0Time

Figure 3.2: Example showing the placement of producers affects the routing cost
of consumers: (a) DFG for loop, (b) target architecture which is a 1x4
CGRA, (c) poor schedule that results in an extra cycle for routing values
to Op 6, and (d) good schedule that results in no additional routing.

3.2.1.3 Height-based Scheduling

The problem of modulo scheduling for a CGRA can be viewed as mapping appli-

cations onto the 3-D space consisting of the FU array stacked up II times. With this

finite scheduling space, minimizing the routing cost is a critical issue in scheduling,

as fewer resources being used for routing leads to more resources being available for

computation. Routing cost is defined as the number of FUs being used for routing

(passing data from one node to another) rather than computation. This cost depends

on the positions of producer and consumer operations in the CGRA due to the sparse

interconnect network. This requires the scheduler to be cognizant of producer and

consumer relations so that they can be placed close to each other.

Figure 3.2 shows how the placement of operations impacts the routing cost of their

consumers. Figure 3.2(a) is an example DFG and Figure 3.2(b) is a hypothetical

architecture with sparse interconnect where FUs are allowed to communicate only

19

with adjacent FUs. Figures 3.2(c) and Figure 3.2(d) show two different schedules,

both minimizing the routing cost for operations 4 and 5. When operation 6 is placed,

the minimal routing cost is affected by the positions of its two producers (operations

4 and 5). This suggests that the scheduler must proactively choose placements to

reduce routing costs.

To effectively manage routing costs, we employ two complementary techniques:

height-based scheduling and the affinity-based placement which is discussed in the

next section. Height-based scheduling is a common heuristic used in list scheduling

where operations are scheduled in the order of dependence height. Operations with

greater height are scheduled first, followed by operations with lower height. But, for

operations with the same height, a CGRA scheduler cannot process them individu-

ally because placement of one operation has cost implications on the placement of

others. Careless placement of one operation might increase the routing cost of other

operations, or even make it impossible to place by blocking all of its routing possibil-

ities. Therefore, operations with the same height are considered together to achieve

an optimal placement rather than being scheduled separately. Possible schedule slots

(resource/time pairs) are identified for each operation, and a combination of schedule

slots (called a layout) that minimizes the total routing cost is selected.

3.2.1.4 Affinity Graph

Routing cost is difficult to minimize during scheduling because the true cost is not

known until all producer-consumer pairs are placed. With height-based scheduling,

20

consumers are generally placed after the producers (except for operations on a recur-

rence cycle). Therefore, routing cost associated with just the producers is considered

when an operation is placed. Even though the routing cost associated with consumers

cannot be measured at the time that the producers are scheduled, it is desirable to

account for these consumers in some way to avoid making greedy decisions. Ideally,

operations with a common consumer should be placed close to each other so that the

routing cost can be minimized later.

A measure of affinity is utilized to perform more intelligent scheduling by using

information about common consumers. The affinity between a pair of operations with

the same height is a measure of how close their common consumer is in the DFG.

Operations with an immediate common consumer have the highest affinity between

them, while operations without a common consumer have zero affinity. Operations

with indirect common consumers have moderate affinities that decrease based on the

distance to the common consumer. The goal is to place operations with high affinity

close together to minimize the routing cost of the common consumers.

For each pair of operations, the affinity is calculated by looking at their common

consumers. An affinity graph is then constructed that consists of nodes representing

operations and edges representing affinity between operations. An example of the

affinity graph is shown in Figure 3.3. The affinity graph is constructed for the op-

erations in the first row of the DFG in Figure 3.3(a). Figure 3.3(c) is the resulting

affinity graph where solid edges represent high affinity between operations (a value

of 2 in the example) and dotted edges represent low affinity between operations (a

21

0 1 32 540 1 32 54

0 1

2 3

4

5

0 1

2 3

4

5

020000Op 5
200000Op 4
000211Op 3
002011Op 2
001102Op 1
001120Op 0

Op 5Op 4Op 3Op 2Op 1Op 0

020000Op 5
200000Op 4
000211Op 3
002011Op 2
001102Op 1
001120Op 0

Op 5Op 4Op 3Op 2Op 1Op 0

(a)

0 1

2 3

4

5

0 1

2 3

4

5

(b)

(c)
Good

(d)
Bad

Figure 3.3: Example affinity graph: (a) DFG for loop, (b) calculated affinities be-
tween each pair of operations, (c) affinity graph, and (d) possible oper-
ation assignments to a 2x4 CGRA.

value of 1). Pairs of operations without edges have an affinity of zero.

For each pair of operations A and B with the same height, the affinity value is

calculated using the following equation. Only the common consumers within the

range of max dist are considered in the calculation of the affinity value. The variable

num cons(A,B,d) denotes number of common consumers of A and B whose distance

from A and B in the dataflow graph equals d.

affinity(A, B) =
max dist∑

d=1

2max dist−d × num cons(A, B, d) (3.1)

When scheduling operations, the scheduler attempts to place operations close

together according to their affinity. Two alternate schedules for the operations are

shown in Figure 3.3(d) that illustrate the use of affinity to eliminate explicit routing

operations by performing more intelligent assignment of operations to nodes in the

CGRA. The schedule on the left is better because operations with affinity edges are

22

(a) (b) (c) (d)

time

(e)

Figure 3.4: CGRA scheduling spaces: (a) normal scheduling space, (b) skewed
scheduling space, (c,d,e) variations of skewed scheduling space.

placed closer on the array.

3.2.1.5 Graph Embedding

In this work, we leverage graph embedding that is commonly used in graph layout

and visualization. Graph embedding is a particular drawing of a graph onto a target

space (usually a planar space). Drawing large graphs “nicely” is not an easy task.

Here, a nice graph usually refers to non-crossing edges and a regular distribution of

nodes. The spring embedder model [10] is a well known heuristic approach to graph

embedding. It simulates a mechanical model of rings attached with springs. Each

ring represents a node in the graph and each spring between two rings represents

forces that attract or repel the nodes in the graph. The spring embedder is a suitable

model for our scheduling. Each weighted edge in the affinity graph can be thought

of as a spring that attracts two nodes in the graph. An edge with high affinity will

attract two operations so that they are placed on the same or nearby resources.

A large amount of research has been conducted for effective graph drawing using

23

the spring model. Kamada and Kawai proposed an iterative algorithm that calcu-

lates attractive and repulsive forces for each node and gradually moves the nodes

with respect to the calculated forces [23]. Davidson and Harel employed a simulated

annealing method that improves the cost of the graph based on the spring model [8].

However, most works do not fit into our scheduling problem as they assume a contin-

uous space rather than the discrete, finite 3-D scheduling space. Graph embedding

onto a grid-based space is well studied in the area of VLSI cell layout, known as

force-directed placement. These works have somewhat different objectives, such as

minimum edge bends. Li and Kurata proposed a grid layout algorithm of biochemi-

cal networks [33]. It uses simulated annealing for embedding complicated biochemical

graphs onto the grid space. We found this solution best suited for our problem as its

target space is discrete and the objective is placing nodes with edges close together.

Compared to the target graphs of typical graph embedding algorithms, our affinity

graph has quite a small number of nodes. This is because we are not scheduling the

whole application at one time. Instead, graph embedding is performed for each height

level of the DFG and it is unusual for more than 20 operations to have the same

height. Also, the search space is limited by pre-placed operations because pre-placed

producers limit the possible slots of their consumers due to the sparse interconnect.

For the search space that is sufficiently constrained, a simple exhaustive search can

find an optimal layout of operations quickly. Li and Kurata’s algorithm is employed

only for large search spaces where the exhaustive search cannot finish in a reasonable

time.

24

3.2.1.6 Skewed Scheduling Space

One of the difficult challenges of scheduling for CGRAs is ensuring that the nec-

essary routing can take place as the CGRA is filled up with more operations. At the

start of scheduling, the CGRA is empty, thus routing is not difficult. But, as schedul-

ing proceeds, the scheduler can easily back itself into a corner and get stuck where the

necessary routing cannot be performed. The affinity heuristic tries to minimize the

overall number of resources used for routing, but this is not enough. When schedule

times get larger than II, difficulties often result due to pre-placed operations (repeated

resource use by the same operation every II cycles) and already-placed producers.

The conventional approach used in modulo scheduling is backtracking, where one

or more operations are unscheduled to allow the current operation to successfully

schedule [48]. However, backtracking for CGRAs is much more complicated. First,

placing an operation usually requires more than one resource as routing is involved.

This means that many operations can be unscheduled to overcome a routing failure.

Moreover, re-scheduling operations requires both routing to its consumers as well as

from its producers. It’s difficult for the scheduler to make forward progress with

backtracking.

A different approach is to prevent routing failures in advance. In general, routing

failures to a consumer can be avoided if all the resources are free in time slots later than

a producer’s time slot. This is why the acyclic scheduling does not suffer from routing

failures as it has an infinite scheduling space. Likewise, modulo scheduling does not

suffer from routing failures within an II cycle window. Further, most applications

25

don’t have enough parallelism that requires all the CGRA FUs in one cycle. These

two observations encourage clustering of the CGRA. With clustering, the FUs in the

CGRA are partitioned into subsets. The scheduler can utilize one subset, or cluster,

without any routing failures for II cycles. When the cluster is full, the scheduler can

then use another cluster for the remaining operations, and so on.

Instead of partitioning the CGRA statically, our approach clusters the CGRA

dynamically where the cluster boundaries are not strictly defined. The clusters are

formed in a left-to-right manner on the array. The scheduler gives priority to the

leftmost available FUs. But when the application parallelism is high, the cluster is

dynamically enlarged by being forced to assign operations to lower priority FUs on

the right. The scheduler utilizes a position cost to accomplish dynamic partitioning.

When an operation is considered on an FU, its position cost is computed. The position

cost is determined by the column in which the FU lies. Low cost is assigned to the

leftmost available FUs, while higher cost is assigned to the FUs that lie further to

the right.

When a partition of FUs to the left becomes full, values must be routed to FUs

to the right. To guarantee this is possible, the concept of a skewed scheduling space

is introduced as shown in Figure 3.4(b). Unlike the traditional scheduling space

(see Figure 3.4(a)) where all the slots are available at the given schedule time, the

start times of FUs are restricted such that they stagger down the right side of the

CGRA. Since each FU is only available later than the FU on its left, the last schedule

slot is always available to the output value of the last schedule slot of its left FU.

26

When no operation is placed on an FU at the original start time, the start time

increases, which slides down the scheduling space of the FU. When the scheduling

space of an FU is lowered, scheduling spaces of FUs to its right are also lowered

to guarantee the routability. Therefore, the skewed scheduling space dynamically

changes as operations are placed in the CGRA. As the operations at the same height

are considered together to get an optimal layout, the parallelism in the application

at the given height determines the shape of the scheduling space. Some applications

may not even require all four FUs in one column. In this case, the position cost

is augmented with the row cost and the FUs in the upper rows are utilized first.

Figure 3.4(c), (d) and (e) show several other possible skewed scheduling spaces.

Assignment of operations to the skewed scheduling space works well for forward

dependence patterns, but difficulties arise with recurrence cycles. Recurrence cycles

contain a communication pattern where a producer is scheduled after its consumer.

Thus, the producer will be likely to be placed on the right of its consumer and routing

becomes difficult since most schedule slots on the left are already utilized. To address

this routing problem, our approach is to reserve in advance slots for such cycles when

the consumer is placed. When a producer is placed later, it can use this reserved

route. Again, we take the preventative approach to avoiding routing problems rather

than solving them when they occur.

27

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Target Application(sobel) and CGRA Preprocess DFG and
Initialize Scheduling Space

for (i = 0; i < N1; i++) {
 for (j = 0; j < N2; j=j+1) {
 int t00, t01, t02, t10, t12, t20, t21, t22;
 int e, tmp;
 t00 = x[i][j];
 t01 = x[i][j+1];
 t02 = x[i][j+2];
 t10 = x[i+1][j];
 t12 = x[i+1][j+2];
 t20 = x[i+2][j];
 t21 = x[i+2][j+1];
 t22 = x[i+2][j+2];

 e1 = ((t00 + t01) + (t01 + t02)) - ((t20 + t21) + (t21 + t22));
 e2 = ((t00 + t10) + (t10 + t20)) - ((t02 + t12) + (t12 + t22));
 e12 = e1*e1; e22 = e2*e2;
 e = e12 + e22;

 if (e > threshold) tmp = 1;
 else tmp = 0;
 edge[i][j] = tmp;
 }
}

Schedule Each Height using Graph Embedding Algorithm

Construct Affinity Graph

Final Schedule

Search Opimal Layout Update Scheduling Space

Op_77

Op_78

Op_50

Op_70

Op_19

Op_76 Op_67

Op_64

Op_71 Op_80

Op_72

Op_44

Op_79

Op_157

Op_25

Op_161 Op_143

Op_37

Op_81

Op_31

Op_68

Op_69

Op_137Op_159Op_165

Op_57

Op_145

Op_77

Op_78

Op_50

Op_70

Op_73

Op_74

Op_19

Op_76 Op_67

Op_64

Op_71 Op_80

Op_97

Op_181

Op_83

Op_95

Op_72

Op_44

Op_79

Op_82

Op_157

Op_25

Op_161

Op_107

Op_113

Op_143

Op_37

Op_109 Op_147

Op_89

Op_81

Op_31

Op_68

Op_69

Op_137Op_159Op_165

Op_57

Op_145

Figure 3.5: Overview of the CGRA scheduling system: input is the assembly code
for the loop body and a description of the CGRA; preprocessing analyzes
the loop to compute heights and skew the available scheduling cycles
for the FUs; the graph is iteratively scheduled at successive dependence
height levels by constructing the affinity graph and performing modulo
graph embedding of the affinity graph on the CGRA.

3.2.2 Implementation

Figure 3.5 presents an overview of our system. It takes the target loop body

and description of the CGRA as input. The scheduling process consists of an initial

preprocessing step to analyze the DFG and set up the skewed scheduling space. This

is followed by the main scheduling loop that iterates over each level of the DFG

to find a placement of all the operations at a particular height using modulo graph

embedding.

3.2.2.1 Preprocessing

The target application is first preprocessed to calculate the heights of all operations

based on the distance from the terminating operation (e.g., the loop back branch).

The height of an operation determines when it is considered for scheduling and the

height difference between producer and consumer is a rough estimation of the live

range of the intermediate values.

28

The scheduling space is skewed by assigning different start times to FUs. The

same start time is assigned to all FUs in one column. Starting from zero for the first

column on the left, the start time staggers downward with each increasing column

number.

3.2.2.2 Scheduling Process

Scheduling proceeds through successive dependence height levels of the DFG con-

sidering all operations at a level simultaneously. Scheduling is converted into a

graph embedding problem that maps the affinity graph onto the skewed schedul-

ing space. Our modulo scheduler is implemented based on Li & Kurata’s grid layout

algorithm [33]. In the remainder of this section, we review basic ideas behind grid

layout and describe our modified algorithm.

Grid Layout: Grid layout treats graph embedding as an optimization problem.

A discrete cost function is defined for each pair of nodes based on the topological

relation and the geometric positions of the nodes in the layout. Namely, high cost is

given when two nodes connected by an edge are placed far apart and low cost is given

when they are placed close together. The cost of a layout is given as a summation of

costs for all node pairs. Simulated annealing is employed to find the layout with the

lowest cost.

Modulo Graph Embedding: Unlike the original problem in grid layout,

our problem has more constraints and costs to consider. Specifically, scheduling

operations at each height has the following objectives:

29

• Place operations with a common consumer close to each other

• Minimize the routing cost for values from producers

• Ensure the routability of values to consumers

To achieve the objectives above, the scheduling concepts in Section 3.2.1 are re-

alized in a cost function composed of three terms: routing cost, affinity cost, and

position cost. They are calculated for operations by the following equations. where

A and B are operations to be placed and affinity(A, B) is given by Equation 3.1

from Section 3.2.1.4:

routing cost(A) = # FUs used for routing values from producers to A (3.2)

affinity cost(A, B) = distance(FU(A), FU(B))× affinity(A, B) (3.3)

position cost(A) = column # of FU(A)×BASE COST (3.4)

layout cost =
∑

A∈ops

(
routing cost(A) + position cost(A)

)
+

∑
A,B∈ops

affinity cost(A, B)

(3.5)

Grid layout employs a simulated annealing search to find an optimal layout of

operations at each level by minimizing layout cost. While the original grid layout

maps a graph onto a 2-D plane, our target space is 3-D scheduling space which

30

can have an infinite search space with varying schedule times. Therefore, we limit

the search space by placing operations only in slots that minimize routing cost, called

primary slots . Primary slots are identified before placing any operations. Even though

each individual primary slot has the same routing cost, the total routing cost of a

layout might vary because routing for one operation might block routing for another.

Therefore, the routing cost is still considered in the cost function.

Once primary slots are identified, the size of search space is the product of the

size of each operation’s primary slots. Sometimes the search space can be quite small

since pre-placed producers limit the placement of consumers. For small search spaces,

exhaustive search is employed rather than using the grid layout. A flow chart of the

scheduling process is presented in Figure 3.6.

The grid layout process begins with an initial layout obtained by randomly plac-

ing operations in one of their primary slots. Beginning with the initial layout, the

scheduler enters a loop where the cost of current layout is iteratively reduced using

simulated annealing. First, operations are randomly moved or swapped with other

operations to generate a neighbor of the current layout. The neighbor layout is then

locally optimized. Local optimization greedily performs moving or swapping opera-

tions whenever the cost is reduced, and these actions are repeated until no further

improvement can be achieved. The locally minimized layout is evaluated for accep-

tance as an optimal layout. At some points, an uphill movement is taken to escape

from a local minimum. After the optimal layout is discovered, the scheduling space is

adjusted to reflect the chosen placement of operations at the current height and the

31

construct
affinity
graph

identify
primary

slots

initial
layout

generate
neighbor

local
optimize

evaluate
layout

update
scheduling

space

exhaustive layout

grid layout

Figure 3.6: Scheduling process for operations at each successive dependence height.

scheduler proceeds to the next height.

3.2.2.3 Scheduling Example

The process of scheduling each height of the application onto the skewed scheduling

space is illustrated in Figure 3.7 with sobel, an image edge detection algorithm. The

II in this example is 4. Due to space limitations, scheduling of operations for the first

three heights is presented. Figure 3.7(a) shows the DFG of sobel and the target 4x4

CGRA. Scheduling for the selected heights is illustrated in Figure 3.7(b).

For each height, the affinity graph for the operations is shown at the top with solid

edges representing high affinity and dotted edges representing low affinity. The table

in the middle, where FUs are represented horizontally and time vertically, shows the

resulting layout of operations. Note that the FUs in the left two columns only appear

in the table since the other FUs are not used in this example. Each entry in the

table represents a schedule slot and shaded entries constitute the scheduling space of

the CGRA (also shown in 3-D graph at the bottom). Since FUs are repeatedly used

every II cycles, entries are marked with X’s when they are occupied by previously

32

137
157

159

161 165

145

143
57

64

44

31

50

37

19

25

71

70 68

67

77

76 80

79

height 11

height 10

height 9

height 11 height 10 height 9

FU 0 FU 1 FU 2 FU 3 FU 4 FU 5 FU 6 FU 7
0 145 143 137 157
1 165 161 159
2
3
4 X X X X
5 X X X
6
7
8

FU 0 FU 1 FU 2 FU 3 FU 4 FU 5 FU 6 FU 7
0 145 143 137 157
1 165 161 159 25 50 37 19
2 57 64 31 44
3
4 X X X X
5 X X X X X X X
6 X X X X
7
8

FU 0 FU 1 FU 2 FU 3 FU 4 FU 5 FU 6 FU 7
0 145 143 137 157
1 165 161 159 25 50 37 19
2 57 64 31 77 44 76 67
3 71 68 70 80 79
4 X X X X
5 X X X X X X X
6 X X X X X X X
7 X X X X X
8

FU 0 FU 4

FU 1 FU 5

FU 2 FU 6

FU 3 FU 7

FU 8 FU 12

FU 9 FU 13

FU 10 FU 14

FU 11 FU 15

FU 0 FU 4

FU 1 FU 5

FU 2 FU 6

FU 3 FU 7

FU 8 FU 12

FU 9 FU 13

FU 10 FU 14

FU 11 FU 15

(b)

19

67 76

25

68

31

79

37

77

44

80

50

70

57

71

64

69

73

72

74

89

78

82

81

83

95

97

181

107 109

314

113

147

145 143165 161159157 137

(a)

time

Figure 3.7: Example of modulo graph embedding: (a) DFG of sobel and target
CGRA, (b) scheduling results of first three heights.

scheduled operations.

At height 11, operations are placed only in the first column due to the limit of

the skewed scheduling space. Also, operations with high affinity represented in solid

edges are placed in adjacent schedule slots. For example, 145 is placed adjacent to

165 and 143 due to its high affinity with these operations. Conversely, 145 is placed

apart from 157 because there is no affinity between 145 and 157. Note that routing

cost is not considered at this height since there are no producers placed.

At height 10, all the costs, including routing cost, are considered. As the opera-

tions at height 11 were intelligently placed based on the affinity, the scheduler places

operations at height 10 without using any resources for routing. FUs in the second

column are also utilized to support the parallelism in the application. Since no opera-

tion is placed on FU 7 at its original start time of 1, FU 7’s start time is increased by

1 and its scheduling space is slid down. This also implies that the scheduling spaces

33

Design Name #RFs #FUs #Regs #Read #Write
per RF ports ports

Dedicated RF 16 1 4 2 1
Shared RF 4 4 12 8 4
Central
RF

16 local 1 4 2 1
1 central 16 32 8 4

Table 3.1: Register file configurations for three CGRA designs used for evaluation.

of FU 11 and FU 15 are slid down to guarantee routability.

Operations at height 9 are scheduled similarly to those at height 10, again ac-

counting for all costs. Note that the unoccupied slots in the second column at time

0 can be utilized II cycles later when output values of operations placed in the first

column cannot otherwise be routed due to the modulo constraint. For example, the

output values of operations 68 and 71 at height 9 can be routed using schedule slots

of the second column at time 4.

The final scheduling space of sobel is shown on the righthand side of Figure 3.5.

3.3 Experimental Results

3.3.1 Experimental Setup

CGRAs can be characterized by many parameters. To evaluate the performance

of our scheduler, three designs were tested. All three designs have the same architec-

tural parameters except for their register file configuration. All are 4x4 homogeneous

CGRAs connected with a mesh network, with operation latencies of the ARM926

(e.g., 3 cycles for multiply, 2 cycles for load/store, and 1 cycle for simple arithmetic).

34

Table 3.1 shows the register file configurations for the three designs. These designs

are the same as those pictured in Figure 2.1. The central RF design is the same as

the dedicated RF design except that it has an additional central register file shared

by all 16 FUs.

To evaluate the modulo graph embedding scheduler, twelve loop kernels are taken

from various application domains: signal processing (fft, fir, iir, viterbi), encryption

(blowfish), image processing (dct, fsed, sharp, sobel), network processing (channel),

and video compression (idct, dequant). Only the innermost loop is considered for

modulo scheduling for multidimensional loop nests.

3.3.2 Evaluation of Affinity Graph Heuristic

The main objective of the affinity graph heuristic is to minimize total routing

cost by using common consumer information. In modulo scheduling, total routing

cost is affected by other factors, such as recurrence cycles and the modulo constraint.

In acyclic scheduling, we can exclude the influence of the modulo constraint as we

can always find time slots where resources are available by increasing schedule time.

Thus, we evaluated the performance of our affinity graph heuristic in the domain

of acyclic scheduling; only loop kernels without a constraining recurrence cycle were

tested. The dedicated RF design in Figure 2.1(a) was used as the target architecture

because it has the sparsest interconnect and therefore is the most affected by the

placement heuristic.

Two cost models were compared to evaluate the affinity graph heuristic. One is

35

With Affinity Without Affinity
Bench SchedLen RouteFUs SchedLen RouteFUs
blowfish 32 4 34 14
channel 16 31 17 52
dct 15 24 19 53
fft 12 22 14 35
fir 8 3 9 5
fsed 11 2 12 6
sharp 21 19 25 23
sobel 11 2 13 12
viterbi 20 52 20 57

Table 3.2: Effectiveness of the affinity heuristic using acyclic scheduling.

implemented with both routing cost and affinity cost. (Position cost is not considered

as the scheduling space is not skewed in this experiment.) The other model does not

consider affinity in its cost function, and only tries to minimize routing cost when

operations are placed. The quality of the schedule is measured by schedule length

and number of FUs used for routing. The second and third columns of Table 3.2

show the quality of the schedules obtained with the affinity graph heuristic, while the

fourth and fifth columns show the result without it. For all of the benchmarks, the

affinity graph heuristic works well in reducing both the schedule length and number

of FUs used for routing. Clearly, guiding placement using downstream information

about consumers is important for CGRAs.

3.3.3 Evaluation of Modulo Scheduler

Two experiments are performed to evaluate the effectiveness of modulo graph

embedding. First, a detailed analysis using the dedicated RF CGRA is presented.

Then, we compare the most important parameter in scheduling for CGRAs, utilization

36

or fraction of the cycles the FUs in the array perform useful computation, for all three

register file configurations.

Scheduling results for the dedicated RF design are shown in Table 3.3. The second

and third columns show the number of operations and the number of communication

edges in the applications, respectively. These numbers roughly describe the commu-

nication patterns of the application. The fourth column shows the effective number of

operations; for this metric, multi-cycle operations are counted multiple times accord-

ing to their latency. Even if these operations can be pipelined with other operations of

the same opcode, they increase the difficulty of the scheduling problem as the write-

back resources of the node must be used at operation completion. The fifth and sixth

columns in the table contain the minimum IIs for each benchmark. The maximum

utilization that can be achieved is limited by these IIs.

The next two columns show the II and schedule length achieved by the modulo

graph embedding scheduler. Unlike acyclic scheduling, II is a better measurement of

performance than schedule length. The achieved II translates into the utilization of

FUs shown in the “util” column. The utilization is calculated by dividing the number

of schedule slots used for computation by the total number of slots which equals to (#

FUs x II). “Total util,” shown in the next column, takes into account the FUs being

used for routing. All benchmarks show a utilization of greater than 43%. Fir has the

lowest utilization, but more than half of the operations are multi-cycle operations,

including four multiply operations. Iir also has low utilization, but its RecMII is 4,

which limits the achievable utilization. Fft and sharp have relatively low utilization

37

because they have a high number of one-to-many communication patterns. Routing

cost increases with the number of consumers, as the value has to be individually

routed to each consumer.

On average, the scheduler achieves 56% utilization for all benchmarks, with indi-

vidual values ranging from 44% to 69%. This average utilization is similar to that

achieved by the DRESC compiler, even though the target architecture of DRESC had

a central register file and denser network connectivity. This shows that the modulo

graph embedding scheduler is able to achieve quality solutions for significantly lower

cost CGRAs.

The modulo scheduler runtimes (last column of Table 3.3) are reasonably fast, as

all benchmarks are scheduled within 5 seconds on a 3 GHz Pentium-4 machine with

1G of RAM. This is because the search space is limited to operations in the DFG with

the same height; thus, fewer than 20 operations are generally considered at a time.

Also, scheduling does not employ backtracking, nor random movement of operations.

Rather, systematic heuristics derived from the DFG guide the scheduler.

The impact of different register file configurations was evaluated by scheduling

the same set of benchmarks on the other two CGRA designs (shared RF and central

RF). The utilizations of the resulting schedules are shown in Figure 3.8. For all

the benchmarks, the smallest II was achieved for the central RF, showing highest

utilization in the graph except for blowfish and dequant. Blowfish and dequant were

scheduled at the same II for shared RF and central RF, but utilizations are slightly

higher for shared RF because different number of multi-cycle operations are pipelined.

38

Bench ops edges eff ops Res Rec II len util total util time
blowfish 85 99 107 6 1 10 46 0.650 0.800 2
channel 121 180 187 8 1 16 30 0.617 0.878 4
dct 114 150 142 8 1 13 30 0.625 0.836 5
fft 52 78 78 4 1 9 25 0.479 0.798 1
fir 23 30 41 2 1 4 14 0.437 0.734 1
fsed 38 48 45 3 1 4 16 0.687 0.906 1
iir 23 33 32 2 4 4 15 0.453 0.625 1
sharp 56 95 72 4 4 9 37 0.486 0.854 1
sobel 39 59 52 3 1 5 17 0.612 0.675 1
viterbi 104 181 124 7 1 14 30 0.526 0.843 1
idct 119 200 215 8 2 18 41 0.576 0.833 5
dequant 84 141 106 6 3 10 25 0.600 0.806 1

Table 3.3: Modulo graph embedding results for the dedicated register file CGRA.

Since the central RF is connected to all 16 FUs, each FU can communicate with any

other FU in 1 cycle, subject only to the availability of ports and register entries.

With these additional routing resources, more FUs can be used for computation. The

shared RF design achieves higher utilization than the dedicated RF design, as each

register file can be used as a routing resource among the four FUs that share it.

This result shows how increasing register file sharing can improve the quality of the

schedule, giving more routing options to the scheduler.

3.4 Related Work

3.4.1 Architectures

Many CGRA-like designs have been proposed in the literature. The designs have

different scalability, performance, and compilability characteristics as discussed in

Section 2.1. The ADRES architecture [38] is an example of an 8x8 mesh of process-

39

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
dedicated
shared
central

1.0

Figure 3.8: Comparison of utilization rates for three register file configurations.

ing elements with both individual and central register files. MorphoSys [36] is another

example of an 8x8 grid with a more sophisticated interconnect network; each node con-

tains an ALU and a small local register file. In the RAW architecture [52], each node

is actually a MIPS processor, including memory, registers, and a processor pipeline.

In addition, there are both dynamic and static routing networks. PipeRench [18] is

a 1-D architecture in which processing elements are arranged in stripes to facilitate

pipelining. RaPiD [13] consists of heterogeneous elements (ALUs and registers) in a

1-D layout, connected by a reconfigurable interconnection network.

3.4.2 Compilation Techniques

Many techniques have been proposed for compiling to CGRAs. Lee et al. [29]

propose a compilation approach for a generic CGRA. They generate pipeline schedules

for innermost loop bodies so that iterations can be issued successively. The main focus

of their work is to enable memory sharing between operations of different iterations

40

placed on the same processing element. Our work proposes a generic scheduling

strategy, and memory sharing and other such optimizations can be integrated into

our system as a preprocessing step. Convergent scheduling is proposed as a generic

framework for instruction scheduling on spatial architectures [31]. Their framework

comprises a series of heuristics that address independent concerns like load balancing,

communication minimization, etc. Whereas convergent scheduling focuses on ILP

and proposes a scheduling method for acyclic regions of code, we focus on loop level

parallelism. The work of Mei et al. [38] is closest to our work. They propose a

modulo scheduling algorithm for CGRAs based on simulated annealing. Our approach

differs significantly in that we apply systematic placement decisions and on a skewed

scheduling space to achieve better convergence and faster compilation times.

Similar to CGRAs, clustered VLIW machines are also spatial architectures. Much

work has been done towards compiling for clustered VLIW machines [15, 42, 50]. Al-

though some of the concepts from these works can be adapted for CGRA compilation,

they do not consider the issue of routing values through the sparse interconnection

network, which is a crucial step. The measure of affinity used in our scheduler is

similar to that used in Krishnamurthy’s affinity-based clustering [26].

[57] employs similar concept of affinity to minimize communication penalty in

the resource allocation phase. A graph is constructed where nodes are operations

and edges are inserted between nodes that have direct data dependences or common

consumers. This graph is then partitioned into cliques and resource allocation is

performed by assigning operations in each clique to the same resource. Time slots

41

for operations are later assigned in scheduling phase. However, this approach that

decouples resource allocation from scheduling is not suitable in modulo scheduling.

Since each resource can be utilized only II times, it is not always possible to find

proper time slots for operations on their pre-assigned resources. In our affinity graph

heuristic, resource allocation is considered jointly with time slot assignment.

3.5 Summary

This chapter proposes modulo graph embedding, an effective modulo scheduling

technique for CGRAs. The sparse interconnect and distributed register files of the

CGRA present difficult challenges to a compiler. Our approach leverages classic

graph embedding to draw loop bodies onto a three dimensional graph representing the

CGRA. We introduce two key concepts to generate high-quality solutions by reducing

routing cost. First, an affinity graph heuristic analyzes producer/consumer relations

to place operations with common consumers closely. Second, the scheduling space is

skewed by restricting the assignable FUs and time slots available for each group of

operations to enable dense packing of operations onto the array while still ensuring

operand routing paths are available. Overall, modulo graph embedding achieves

average compute utilization of 56–68% for three different register file configurations,

including a CGRA with no shared register files. Prior approaches have only achieved

such utilization rates in CGRAs augmented with multiported shared register files.

Our scheduler also performs substantially faster than existing solutions since we limit

the search space to operations at the same height and employ a systematic placement

42

based on the producer/consumer relations.

43

CHAPTER 4

Edge-centric Modulo Scheduling

4.1 Introduction

An effective compiler is essential for exploiting the abundance of computing re-

sources available on a CGRA. However, sparse connectivity and distributed register

files present difficult challenges to the scheduling phase of a compiler. Traditional

schedulers that just assign an FU and time slot to each operation are insufficient

because they do not take routing into consideration. Scalar operand values must be

explicitly routed between producing and consuming operations. Further, dedicated

routing resources are not provided. Rather, an FU can serve either as a compute

resource or as a routing resource at a given time. A compiler scheduler must manage

the computation and flow of operands across the array to effectively map applications

onto CGRAs.

To efficiently make use of the CGRA resources, modulo scheduling (or other soft-

ware pipelining variations) of loops is generally used [48]. This provides the opportu-

44

nity to exploit both loop-level and instruction-level parallelism to efficiently make use

of the CGRA resources. To deal with the complex topology and routing challenges,

the DRESC (Dynamically Reconfigurable Embedded System Compiler) proposes a

modulo scheduling algorithm based on simulated annealing [38]. It begins with a

random placement of operations on the FUs, which may not be a valid modulo sched-

ule. Operations are then moved between FUs until a valid schedule is achieved. The

strength of simulated annealing is its ability to deal with both sparse connectivity and

complex resource usage that are common in a CGRA. DRESC consistently achieves

the leading performance results over other methods on a variety of CGRAs. However,

the random movement of operations in the simulated annealing technique can result

in a long convergence time for loops with modest numbers of operations. Also, the

algorithm is ad-hoc in the sense that no information about the structure of the loop’s

dataflow graph is utilized in making scheduling decisions.

In this chapter, our goal is to develop a more systematic approach where com-

pilation time is a first-class constraint. We initially chose to adapt iterative modulo

scheduling to CGRAs because it both produces efficient results and offers short compi-

lation times even for large loops [48]. The central changes were adapting the scheduler

to understand the decentralized resources of a CGRA as well as performing routing

of operands between producing and consuming operations. While this approach was

successful at creating correct schedules, loop throughput was reduced by 10-50% in

comparison to the simulated annealing method. An analysis of the resultant loops

showed that node-centric modulo scheduling is a poor match for CGRAs. Traditional

45

schedulers are node-centric in that the focus is assigning operations (nodes) to FUs.

The straightforward adaptation of this approach is operation assignment followed

by operand routing to determine if the assignment is feasible. However, even with

large numbers of free FUs, the scheduler inevitably fails due to the inability to route

an operand. Further, backtracking is ineffective due to the complex interrelations

between scheduler decisions.

The key insight from this experience was that a CGRA scheduler must consider

routing efficiency as the primary objective. Selecting intelligent paths from producing

to consuming FUs that do not block other operand paths is essential to achieving

higher throughput schedules. Further, operation assignment can be viewed as a by-

product of a successful route, thus no successive placement step is required. In essence,

by getting an operand between two points, the necessary operations can be performed

along the way for free. We refer to this technique as edge-centric modulo scheduling ,

or EMS. This paper presents the design, implementation, and evaluation of the EMS

algorithm.

4.2 Core Concepts

Prior to describing the EMS algorithm, we describe several of the important con-

cepts along with their rationale. These concepts are described in isolation (and hence

will appear disconnected), but they are tied together in Section 4.3.

46

4.2.1 Integrated Placement and Routing

CGRA scheduling can be broken down into two tasks: placement of operations

into computation slots (FU and time) and routing of operands. Previous techniques

([38], [45]) address the scheduling problem in a node-centric manner, meaning that

the scheduler places operations first and then does the routing. When an operation is

scheduled, it is placed in a slot where it can execute, and operands from other produc-

ers or consumers are then routed to the scheduled slot. However, scheduling failures

usually occur during the routing phase because of the limited connectivity between

resources. In this work, we propose an edge-centric approach where the scheduler

primarily focuses on routing, and placement occurs during the routing process.

Node-centric Approach.

Node-centric approaches place operations in a way that minimizes a heuristic

routing cost. The routing cost consists of various metrics that determine the quality

of placement (e.g., the number of resources used for routing) [45]. The scheduler

visits candidate slots one by one until it finds a solution. The operation is placed

in each candidate slot, and edges to the placed producers and consumers are routed.

Figure 4.1(b) shows how an optimal placement is found with this approach. A DFG

containing two producers P1 and P2 and a shared consumer C is mapped onto the

hypothetical 1×5 CGRA in Figure 4.1(a). For illustration purposes, we assume no

register file in this architecture. P1 and P2 are already placed and the scheduler places

the consumer C by visiting all the empty slots as shown in Figure 4.1. The slots with

dotted circles are failed attempts where the scheduler could not route values from P1

47

or P2 due to resource conflicts. After visiting those slots, the scheduler successfully

places C on FU 4 at time 4 (slots will be referred as (FU #, time) hereafter).

One can observe two inefficiencies with this approach. First, the scheduler makes

unnecessary visits to empty slots (0,2), (0,3), and (0,4). This is because the scheduler

places operations without routing information. The second inefficiency is that there

are redundant routings made when the scheduler visits (2,1), (2,2), (2,3), (2,4), and

(3,4). For example, when the scheduler visits slot (3,4), it already knows that there

is a path P1→(2,1)→(2,2)→(2,3) since it was discovered when slot (2,3) was visited.

These observations show that placement without routing information can lead to

redundant routing calls, which increases compilation time. One can argue that a

different visiting order can solve this problem (visiting slots in the same FU first).

Even though this can work for this particular case, there is no general order that

works for all the cases in the node-centric approach.

A node-centric approach can also lead to a poor solution because it does not con-

sider routing information when placing an operation. Figure 4.1(d) shows a different

example where P is already placed and the edge from P to C is about to be routed.

Here, we assume that C can be placed in only two slots, (4,2) and (2,4). Note that

slot (3,1) is the only remaining memory access slot, thus it is critical to avoid using

this slot for routing if possible. Since the node-centric approach visits slot (4,2) be-

fore slot (2,4), it will simply choose the path to slot (4,2) in Figure 4.1(d), using the

memory slot for routing. If any memory operation still needs to be scheduled, the II

must be increased. Here, we are assuming that the node-centric approach visits slots

48

(b) (c)

FU 0 FU 1 FU 2 FU 3 FU 4FU 0 FU 1 FU 2 FU 3 FU 4

(a)

(d) (e)

: free slot : occupied slot : routing slot

FU 2

0

1

2

4

3

FU 4FU 3
MEM

FU 1FU 0time FU 2

0

1

2

4

3

FU 4FU 3
MEM

FU 1FU 0time FU 2

0

1

2

4

3

FU 4FU 3
MEM

FU 1FU 0time FU 2

0

1

2

4

3

FU 4FU 3
MEM

FU 1FU 0time

CC

C C C

C C C

C C

C

C

C

C

P2P1

C

P2P1

C

time FU 0 FU 1 FU 2 FU 3
MEM

FU 4

0

1

2

3

4

time FU 0 FU 1 FU 2 FU 3
MEM

FU 4

0

1

2

3

4

P

C

C

time FU 0 FU 1 FU 2 FU 3
MEM

FU 4

0

1 1 10

2 1 1 1 1

3 1 1

4 1 1 1

time FU 0 FU 1 FU 2 FU 3
MEM

FU 4

0

1 1 10

2 1 1 1 1

3 1 1

4 1 1 1

P

Figure 4.1: High level comparison of scheduling approaches: (a) 1x5 CGRA, (b)
compile time example of node-centric, (c) compile time example of edge-
centric, (d) performance example of node-centric, (e) performance ex-
ample of edge-centric. Shaded boxes in the reservation tables indicate
slots occupied by other operations.

in an increasing order of time. Although a different visiting order can give priority

to slot (2,4) over slot (4,2), that particular order cannot be applied to general cases

without routing information. In general, the node-centric approach needs to perform

an exhaustive search of all the available slots to handle this problem.

Edge-centric Approach. In an edge-centric approach, the placement of an op-

eration is integrated into the routing function, and the placement decision is deferred

until routing information is discovered. When scheduling an operation, the scheduler

49

does not place the operation up front. Instead, it picks an edge from the operation’s

previously-placed producers or consumers and starts routing the edge. The router

will search for an empty slot that can execute the target operation, rather than rout-

ing towards a placed operation. Once a compatible slot is found, the target operation

is placed in the slot and the scheduler continues routing edges to other producers or

consumers.

Figure 4.1(c) shows the same example of Figure 4.1(b), but the consumer is sched-

uled using an edge-centric approach. The scheduler begins with the edge from P1 to

C, instead of scheduling operation C directly. When an empty slot is encountered,

the scheduler temporarily places the target operation and checks if there are other

edges connected to the consumer; if so, it recursively routes those edges. For example,

when the router visits slot (2,1) in Figure 4.1(c), it temporarily places C there and

recursively calls the router function to route the edge from P2 to C. When it fails

to route the edge from P2 to C, routing resumes from slot (2,1), not from P1, and

a solution is eventually found at slot (3,4). So, slots (2,1), (2,2), (2,3), (2,4), and

(3,4) are all visited in one routing call. Compared to 11 routing calls made for the

edge from P1 to C in Figure 4.1(b), only one routing call is required to find the same

solution in the edge-centric approach. The number of routing calls for the edge from

P2 to C is same for both approaches (5 calls), as the router is only called for that

edge if the edge from P1 to C is routed successfully.

The second benefit of an edge-centric approach lies in the aspect of solution quality.

In the example in Figure 4.1(d), it is desirable not to use slot (3,1) for routing. The

50

edge-centric approach avoids using the memory slot (3,1) for routing by assigning a

higher cost to the slot as shown in Figure 4.1(e). Here, a cost of 10 was assigned to slot

(3,1) and all the other slots were assigned a cost of 1. Then, the edge-centric approach

will automatically find a path that avoids slot (3,1) by prioritizing the route path by

cost. So, it successfully finds a path to slot (2,4) using the left path in Figure 4.1(d).

An edge-centric approach can perform faster and achieve a better result than a

node-centric approach. However, it has a greedy nature in that it optimizes for a

single edge at a time, and the solution can easily fall into local minimum. There is

no search mechanism in the scheduler at the operation level and every decision made

in each step is final. We address this problem by employing intelligent routing cost

metrics explained in the next section.

4.2.2 Routing Cost Metrics

The routing function is the basic building block of the edge-centric scheduler, and

every scheduling task, including placement, occurs in the routing function. The final

schedule is formed by calling the routing function for each edge in the DFG.

It is important to achieve a good mapping for each individual edge. The routing

function needs to have a global perspective of the entire mapping since individual

decisions affect the routing of other edges. The order in which the router visits each

scheduling slot is determined by a routing cost associated with each slot. Thus, it is

crucial to develop a good routing cost function.

There are two main objectives when routing a single edge:

51

• Minimize the number of routing resources used, to leave more slots available for

routing other edges.

• Proactively avoid routing failure: avoid using resources that will block future

routes, and reserve computation slots for expensive operations.

4.2.2.1 Minimizing the Number of Routing Resources

Using the fewest routing resources is simple when considering a single edge. Each

routing resource is assigned a statically-determined fixed cost, and the router will find

a path that minimizes the total cost.

Typically, an operation is connected to multiple producers and consumers, so the

router must consider the usage of routing resources when the other edges are routed

as well. To address this issue, an affinity cost was proposed in previous work [45].

The affinity value for a pair of operations reflects their proximity in the DFG. In the

edge-centric scheduler, each slot is assigned an affinity cost depending on how close it

is to any already-placed operations that have high affinity with the target operation.

This gives a preference for placing an operation near its producers and consumers,

hence reducing the number of routing resources used.

4.2.2.2 Proactively Avoiding Routing Failure

Figure 4.2 gives an example of when näıve routing of an edge can lead to routing

failures of other edges. The DFG on the left is mapped onto the example CGRA

in Figure 4.1(a). The six operations at the top are being placed and the three at

52

the bottom have not been placed yet. The operation ST at the bottom is a store

operation; assume that only FU 4 can execute memory operations. When routing

the edge from P1 to C1, there are three possible paths (R0, R1, and R2) as shown in

Figure 4.2(b). All three paths use the same number of routing resources. However,

there is a preferred choice when routing of other edges is considered. First, the path

on the left (R0) should not be selected because it would block the only path between

P2 and C2, causing a subsequent routing failure from P2 to C2. The path in the

middle (R1) is preferred to the path on the right (R2) because occupying slot (4,3)

leaves only two memory slots of FU4 for the ST operation. So, the scheduler will

have fewer options when scheduling the ST, leading to a greater chance of routing

failure in the future.

From the previous example, we can see that the scheduler needs to know the

resources that are likely to be used by other edges in the future. To account for this,

the scheduler associates an occupancy probability with each scheduling slot. The

probabilities are calculated for two different types of operations: expensive operations

and placed operations.

Expensive operations are defined as ones that only a subset of FUs can execute,

such as memory and multiply operations. For each scheduling slot that can exe-

cute expensive operations, the probability is calculated by dividing the number of

unscheduled expensive operations by the number of remaining slots that are compat-

ible. When non-expensive operations are scheduled, the router prefers to avoid using

slots that are capable of supporting expensive operations. For operations already

53

(a) (b)

P1 P2

C1 C2

.

.

.

.

ST

(c)

: free slot : occupied slot : routing slot

6

3

2

4

0

FU 2

1

5

7

FU 4
MEM

FU 3FU 1FU 0time

6

3

2

4

0

FU 2

1

5

7

FU 4
MEM

FU 3FU 1FU 0time

P1

C1

P2

C2

R0

R1

R2

0.50.56

0.331.03

1.02

1.04

0.330

FU 2

0.331

0.50.55

7

FU 4
MEM

FU 3FU 1FU 0time

0.50.56

0.331.03

1.02

1.04

0.330

FU 2

0.331

0.50.55

7

FU 4
MEM

FU 3FU 1FU 0time

P1

C1

P2

C2

Figure 4.2: Routing cost example: (a) dataflow graph, (b) possible mappings, and
(c) probabilistic cost.

placed in the scheduling space, the scheduler determines how many routing options

there are for routing values to either producers or consumers.

For the placed operation P2 in Figure 4.2(c), probabilities are annotated in each

reachable slot depending on the number of routing options. Empty slots in FU 4

are also annotated with a probability of 0.33 calculated by dividing the number of

memory ops left by the number of available slots. These probabilities are accounted

for when the routing cost is calculated for each slot, and the router will visit slots in

the order of routing cost.

4.2.3 Stage Re-assignment

In modulo scheduling, better throughput (smaller II) is often achieved by schedul-

ing some operations up front. A good example is operations on recurrence cycles.

Since each iteration is executed every II cycles, all operations in the recurrence cy-

cle must be scheduled within II cycles. For this reason, most modulo scheduling

54

algorithms process operations on recurrence cycles prior to other operations.

When placing an operation in a recurrence cycle early in the scheduling process,

it is likely that there are no producers or consumers placed already. In a conventional

modulo scheduler, the scheduler utilizes ASAP/ALAP (as soon/late as possible) times

calculated statically by looking at the longest paths between operations. In CGRA

scheduling, the ASAP/ALAP time is not an accurate measure of the actual time slot

because routing can take multiple cycles. If an operation is scheduled too early, the

scheduler will fail to place its predecessors. If an operation is scheduled too late, there

can be a waste of routing resources or increase in register pressure.

Accurate ASAP/ALAP times are not easily obtained in CGRA scheduling because

they depend on routing latency which is not known a priori. Thus, we take an

alternative approach: placed operations can be lowered or hoisted along the time axis

by re-assigning the stage. Since only stage count is changed, the resource occupancy

status does not change. When an operation’s stage is changed, operations connected

to it in the scheduling space and routing between them must be moved as well. Since

all the connected components are moved together, the stage reassignment is a local

transformation and does not affect other operations.

An example of stage re-assignment is shown in Figure 4.3(a). Operations B and C

form a recurrence cycle and are initially scheduled in stage 1 (times 2 and 3). Later,

when operation A is being scheduled, the router is called for the edge from A to

B. Since resources are repeatedly used every II cycles, FU 3’s slot at time 6 is also

occupied by operation B. Operations A and B are not connected by any placed edge,

55

(a) (b)

stage 0

stage 1

stage 2

stage 3

0

1

6

2

73

4

5

8

B

C

A

.

.

.

.

6

3

2

4

0

FU 2

1

5

7

FU 4FU 3FU 1FU 0time

6

3

2

4

0

FU 2

1

5

7

FU 4FU 3FU 1FU 0time

B

C

A

B

C

Figure 4.3: (a) Stage re-assignment example (II = 2) that re-assigns the recurrence
cycle B-C from time 2-3 to time 6-7 after operation A is scheduled; (b)
Example dataflow graph to illustrate non-critical edges.

so B can be re-assigned to time 6 (in stage 3). Since operation C is connected to B

by a placed edge, it is also re-assigned to time 7.

4.2.4 Edge Categorization

Modulo scheduling for the CGRA is a problem of allocating a fixed number of

routing resources to the edges in the DFG. It is important to observe that not all

edges are the same in terms of how important they are to the overall schedule. In EMS,

edges in DFGs are categorized as described below, and different routing approaches

are applied for each edge type.

Recurrence edges. It is crucial to schedule the edges in a recurrence cycle ahead

of other operations, especially when the II is close to the length of the recurrence.

These edges are thus scheduled with highest priority.

Simple edges and high-fanout edges. Simple edges are defined as the outgoing

edge of an operation that has only one consumer. When there are multiple consumers,

56

the outgoing edges are called high-fanout edges. With the limited number of routing

resources, edges routed earlier are likely to use less routing resources than edges routed

later, since there is more flexibility when slots are not yet occupied. Therefore, the

scheduler needs to intelligently decide which edges are routed first.

The edge-centric scheduler gives priority to simple edges over high-fanout edges

for the following reason. When a simple edge is routed later and thus is not optimized

very well, it will likely end up using more resources than required. Since there is no

other consumer for the producer of the simple edge, those additional resources are

just being wasted. However, additional resources in a high-fanout edge can actually

be helpful when routing edges from the same producer to other consumers, since there

are more resource slots that contain the producer’s value.

An analysis on simulated annealing’s result also shows this trend. Frequently,

an operation that has multiple consumers is located far apart from its consumers

on the time axis, while operations connected with simple edges are located close to

each other. This observation motivates our priority calculation method using fanout

clustering, described in the next section.

Non-critical edges. When there are multiple disjoint paths between a pair

of nodes in the DFG, dependencies are generated between edges in different paths.

An example is shown in Figure 4.3(b). Assume the recurrence cycle at the bottom

(operations 5, 6, and 8) was scheduled first. When node 0 is scheduled, the scheduler

sees that its consumer node 6 is already scheduled. However, the edge from 0 to

6 should not be routed yet because it is not on the critical path from 0 to 6. The

57

scheduler should wait until all of the edges in the critical path are routed before

routing the 0→6 edge. Therefore, a dependency is generated from the 0→6 edge to

the critical path between 0 and 6. Similarly, dependencies are generated for edges on

paths between nodes 1 and 4. In this case, edges 1→7 and 7→4 depend on the critical

path between nodes 1 and 4. When an edge has a dependency on a pair of nodes, the

routing of the edge is deferred until the edges on the critical path are scheduled.

4.3 Implementation

This section describes the implementation of EMS. The system flow is shown

in Figure 4.6. First, the DFG of the target loop is converted into a reduced form

by collapsing some nodes. The reduced DFG is then clustered by ignoring high-

fanout edges and operations are prioritized based on the clustered result. Then, the

operations are scheduled either by calling a placement function or calling a routing

function depending on whether they have previously placed producers or consumers.

After finding a legal schedule for the given II, the collapsed nodes are expanded first

and configurations are generated for each component. If scheduling fails, the scheduler

increases II and repeats scheduling.

4.3.1 Prepass Steps

Generating the Reduced Dataflow Graph

First, the DFG is converted into a reduced form where certain nodes are collapsed

into edges. An operation is collapsible if it is inexpensive (can execute on any FU

58

Figure 4.4: An example dataflow graph from H.264.

in the array), and has only one producer and one consumer. When such a node is

found, the scheduler removes it and draws an edge directly from its producer to its

consumer. The new edge is annotated with the number of nodes that were collapsed.

This simplifies the DFG, and also allows the router to treat a path of nodes as a

single edge during routing, potentially leading to a better schedule for that path.

In the DFG in Figure 4.4, collapsible nodes are shown in white. When these nodes

are collapsed into edges, a reduced DFG (RDFG) is generated as shown in Figure 4.5.

In all, 17 out of 65 nodes were collapsed, resulting in a smaller scheduling problem.

For the loops in the media applications evaluated in Section 4.4, 18% of nodes were

collapsed on average.

Priority Calculation using Fanout Clustering

The scheduling priority of operations in the RDFG are calculated in such a way

that simple edges get higher priority than high-fanout edges, as described in Sec-

tion 4.2.4. First, the DFG is clustered by ignoring high-fanout edges. Each group

of nodes connected by simple edges forms a cluster as shown in Figure 4.5. The

scheduler processes clusters such that each cluster is scheduled as soon as all of its

59

1

1

1 1 1 11 1 1

1

1

1

1

1

1

1

1

1

C0 C1 C2 C3 C4 C5 C6

C8 C9

C7

C10 C11

Figure 4.5: Example from Figure 4.4 after fanout clustering.

producers are placed. Within a cluster, producer operations are also scheduled before

consumers. Basically, nodes are visited in a post-order traversal starting from the

bottom.

For the target loop in Figure 4.5, the operations in recurrence cycles are scheduled

up front. Then, the scheduling order of each cluster is determined. The scheduler

will start with C8, which is one of the clusters at the bottom. A post-order traversal

gives an order of C0, C3, C1, C4, C2, C7 and C8. The final order for clusters are C0,

C3, C1, C4, C2, C7, C8, C5, C9, C6, C10, and C11. Within a cluster, operations are

scheduled the same way.

4.3.2 Edge-centric Modulo Scheduler

Once priorities are calculated for all nodes in the RDFG, the nodes are scheduled.

For each target operation, first the scheduler determines whether there are any placed

producers or consumers. If not, the target operation is placed in a scheduling slot with

minimum cost; this is the only time where the placement function is called. For an

60

operation that has placed producers or consumers, the scheduler decides which edge

to route first. The decision is made based on various factors such as schedule time

and stage-changeability of producers or consumers, and how many routing options

are available.

When an edge is selected, the router is called and it first decides the routing

direction. Forward routing starts from the producer and finds a compatible slot

for the consumer; backward routing does the opposite. When both producer and

consumer are placed, both directions are possible, and the decision is made based on

stage-changeability of the producer and consumer. Since only operations at the end

of a route can have their stages re-assigned, the router will select a direction that

starts from a fixed operation.

4.3.2.1 Search Window Setup

The router will visit neighboring scheduling slots starting from a slot where a

source operation is placed. The scheduler needs to set up the time axis of the search

window with care. A search window that is too small can result in failure to find a

compatible slot, while there can be a waste of time if a window is too large. Even

though ASAP/ALAP times are not an accurate measure of the time slots for oper-

ations to be placed, they can be a good lower/upper bound for routing. The search

window is determined by ASAP/ALAP time of the target operation considering stage

re-assignment. When routing an edge from a placed producer (P) to a non-placed

consumer (C), ASAP time can be calculated by Equation 4.1. p denotes a placed

61

M
od

ul
o

Sc
he

du
le

r
Pr

ep
ro

ce
ss

Fanout clustering

Prioritize edges

Select target edge

Search window setup

Target placed ?

Final schedule

Generate reduced DFG

Route to others ?

Find value
Place target

Find slot

Cost calculation

Figure 4.6: System flow for edge-centric modulo scheduling.

predecessor of C. d(x, y) is the longest path delay between x and y. up(x) is the max

number of stages x can be hoisted and dn(x) is the maximum number of stages x can

be lowered. Similarly, ALAP time is calculated by Equation 4.2 where s denotes a

placed successor of C.

ASAP (C) = MAX(time(p) + d(p, C)− (up(p)− dn(P))× II) (4.1)

ALAP (C) = MIN(time(s)− d(C, s) + (up(P)− dn(s))× II) (4.2)

4.3.2.2 Routing Cost Calculation

When scheduling an edge, a routing cost is calculated for each available slot. This

cost is used by the router to determine the order in which to explore slots during

62

 Dataflow dead slot detection probabilities for P2->C2 probabilities for M1, M2 combined probabilities affinity cost final mapping

P1

P2

X

Y C1

Z

C2

M2

.

.

.

.

M1

12

10

11

9

13

0

1

7

5

4

6

2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

12

10

11

9

13

0

1

7

5

4

6

2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

P2 P1

X

C2

C2

Y

12

10

11

9

13

0

1.01

0.57

0.50.55

0.50.54

0.56

1.02

FU 2
MEM

0.50.53

0.58

FU 4FU 3
MUL

FU 1FU 0time

12

10

11

9

13

0

1.01

0.57

0.50.55

0.50.54

0.56

1.02

FU 2
MEM

0.50.53

0.58

FU 4FU 3
MUL

FU 1FU 0time

P2 P1

XY

0.212

0.210

0.211

9

0.213

0

0.21

0.27

5

0.24

6

0.22

0.2

0.2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

0.212

0.210

0.211

9

0.213

0

0.21

0.27

5

0.24

6

0.22

0.2

0.2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

P2 P1

XY

431012

10

421011

9

4321013

0

1

7

5

4

6

2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

431012

10

421011

9

4321013

0

1

7

5

4

6

2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

P2 P1P1

XY

Z

C1

4321012

10

321011

9

421013

0

1

7

5

4

6

2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

4321012

10

321011

9

421013

0

1

7

5

4

6

2

FU 2
MEM

3

8

FU 4FU 3
MUL

FU 1FU 0time

P2 P1P1

XY

C1

Z

0.212

0.210

0.211

9

0.213

0

0.21.01

0.67

0.50.55

0.60.54

0.56

0.21.02

0.2

0.2

FU 2
MEM

0.50.53

0.58

FU 4FU 3
MUL

FU 1FU 0time

0.212

0.210

0.211

9

0.213

0

0.21.01

0.67

0.50.55

0.60.54

0.56

0.21.02

0.2

0.2

FU 2
MEM

0.50.53

0.58

FU 4FU 3
MUL

FU 1FU 0time

P2 P1P1

XY

(a) (b) (c) (d) (e) (f) (g)

Figure 4.7: Routing cost calculation example: (a) dataflow graph, (b) - (g) reserva-
tion table with computed routing costs.

routing. Routing cost has three primary components, described below.

Static cost. A fixed cost Cstatic is assigned to each slot so that the scheduler can

minimize the number of routing resources used.

Affinity cost. As described in Section 4.2.2.1, affinity cost is calculated based on

a slot’s distance from placed producers. Equation 4.3 calculates the affinity between

two operations A and B. Affinity is given to a pair of operations that have common

consumers (direct or indirect use of the destination of A and B). Common consumers

within max dist in the DFG are considered for affinity calculation. num cons(A,B,d)

denotes the number of common consumers of A and B at the distance d in DFG.

affinity(A, B) =
max dist∑

d=1

2max dist−d × num cons(A, B, d) (4.3)

The affinity cost Caff is then calculated for each slot as follows, where dist is the

distance in hops from the current slot to the slot where the producer is placed. When

there are multiple placed producers, Caff is summed for all producers.

63

Caff =

0 affinity(A, B) = 0

dist
affinity(A,B)

affinity(A, B) > 0

(4.4)

Probability cost. The router should take care not to block certain slots because

they may be required for routing of future edges. Thus, a cost is assigned to each slot

reflecting the probability that it will be required in the future. There are two cases:

reserving expensive slots, and reserving slots to route results of previously placed

nodes. The individual probabilities are calculated as described in Section 4.2.2.2.

These probabilities must then be combined together, as a given slot may support

multiple types of expensive operations and/or be used to route multiple placed nodes.

Since the individual probabilities are correlated, getting the exact overall probability

for a slot is difficult. An approximation is obtained by treating the probabilities

independently. The following equation expresses the total probability P of a slot

given n individual probabilities pi:

P =
n∑

k=1

(
(−1)k−1

∑
I⊂{1,...,n}
|I|=k

∏
i∈I

pi

)
(4.5)

Total routing cost. The total routing cost C for a slot is obtained by combining

the three costs above:

C =

Cstatic + waff × Caff + wP × P P < 1

∞ P = 1

(4.6)

64

The costs are combined with weighting factors waff and wP . In addition, if P = 1,

the slot will definitely be required in the future and cannot be used for routing the

current edge; thus, routing cost is infinite.

4.3.2.3 Finding the Target

Once all routing costs are updated, the router will start finding a path from the

source to the target operation. Starting from a slot that contains the source operation,

the router visits neighboring slots in the CGRA using a maze routing technique. Each

neighboring slot is put into a priority queue and the router visits the slots in order of

their routing costs as calculated above.

When a collapsed edge is routed, the router ensures that it finds a path that goes

through at least as many FUs as the number of collapsed nodes, so that the collapsed

nodes can be expanded later into those FUs. A similar approach is taken for high-

fanout edges. Because the high-fanout edges are scheduled with low priority, the

corresponding values are likely to have long lifetimes. Therefore, when high-fanout

edges are routed, the scheduler attempts to find a path that goes through a register

file.

If the target is already placed, the route is towards the slot that contains the

target operation. Otherwise, it will find a slot that can execute the target operation.

Once a slot is found, the scheduler checks if other edges connected to the target need

to be placed, and recurses to route those edges. When an edge has a dependency

on other edges as described in Section 4.2.4, the routing is deferred until all edges in

65

more critical paths are scheduled. When all of the edges are successfully routed, the

scheduler moves on to the next operation in priority order.

When the scheduler places recurrence cycles, edges are placed even if their target

operations are not placed yet. By calling the router function recursively for all op-

erations in the cycle, the scheduler can put more effort into finding a legal mapping

for the recurrence cycles. To prevent exponential compile time for large recurrence

cycles, the number of recursive calls is limited to a fixed value. When the scheduler

successfully routes all the connected edges, it finalizes the placement of the target

operation and proceeds with the next one.

4.3.2.4 Routing Example

Figure 4.7 shows an example of how EMS routes an edge with updated routing

costs for each slot. Again, we assume no register files in the target architecture for

illustration purposes. The DFG in Figure 4.7(a) is mapped onto the 1x5 CGRA.

Here, we assume that P1, P2, X, and Y are already placed and the scheduler is about

to route the edge from P1 to C1. Further, C2 is a multiply operation and can only

execute on FU 3, and M1 and M2 are memory operations and can only execute on

FU 2. First, the scheduler calculates probabilities of routing slots generated for the

unplaced edge from P2 to C2 (Figure 4.7(b)). Then, it identifies dead slots that

will not lead to any compatible slots for C2 , as indicated by dark small dots in

Figure 4.7(b). Once all the dead slots are identified, probabilities are propagated

along the routing live slots. Figure 4.7(c) shows the final probabilities. Slot (0,2) gets

66

1.0 since there is only one path from P2. Slots (0,3) and (1,3) get the probability of

0.5 since there are two routing options from the previous slot.

Next, probabilities are generated for the expensive operations, M1 and M2, that

are not placed (Figure 4.7(d)). With two expensive operations and 10 available slots

on FU 2, each slots gets a 0.2 probability.

The probabilities in Figure 4.7(c) and Figure 4.7(d) are combined using Equa-

tion 4.5 resulting in Figure 4.7(e). Based on the probabilities calculated for unplaced

edges and nodes, the router finds a path for the edge from P1 to C1 as shown in

Figure 4.7(e). There are two candidate slots for C1; slot (3,11) and slot (4,11). Since

C1 and Y have a common consumer Z, the placement of C1 can affect the number of

routing resources used later when the edge from Y to Z is routed. As shown in Fig-

ure 4.7(f) and (g), slot (3,11) is preferred to slot (4,11) when considering the common

consumer Z. EMS utilizes the affinity heuristic [45] to make this decision. For each

slot, the affinity cost is assigned in a way that a higher cost is given as the distance

from Y increases. Therefore, the scheduler prefers slots that are close to Y and (3,11)

is selected. Later when Z is scheduled, the routing cost can be reduced since Y and

C1 are placed close to each other.

4.3.2.5 Register Constraints

In CGRAs, values with long live ranges can be more efficiently routed through dis-

tributed register files. The scheduler must carefully manage register resources so that

values stored in the register file are successfully routed to consumers. Traditionally,

67

register allocation is performed after scheduling, and spill code is inserted when the

register requirement exceeds the register file capacity. Spilling in the CGRA is quite

costly since it involves routing to/from the memory units and may require complete

rescheduling of the loop. Moreover, spilling can easily happen due to the small size

of the register files.

EMS performs register allocation during scheduling to avoid spilling and guarantee

routability through the register files. Register allocation occurs frequently, as it is

needed whenever the router visits a register file. So, a simple and fast allocation

scheme was developed that focuses on the routability of stored values. Since EMS

gives low priority to high-fanout edges, consumers of the same value are typically

scheduled in different times. The scheduler needs to ensure that values stored in

register files can be routed to all of their future consumers. The details are omitted

in this paper due to space constraints.

4.3.3 Postpass Steps

When EMS finds a legal schedule, it generates the contents of the CGRA’s con-

figuration memories. First, it expands the collapsed operations onto the FU slots

that were found. Then, control bits for the routing and computation resources are

generated, including MUX selection bits, FU opcode bits, and register file addresses.

68

4.4 Experimental Results

4.4.1 Experimental Setup

To evaluate the performance of EMS, we took 214 loops from four media appli-

cations from the embedded domain (H.264 decoder, 3D graphics, AAC decoder, and

MP3 decoder). The loops, varying in size from 4 to 142 operations, were mapped

onto different CGRA configurations.

The target CGRA architecture is a 4×4 heterogeneous array as shown in Fig-

ure 2.1. Functionality for memory access is limited to 4 FUs and multiplication to

6 FUs. The array contains a 64 entry (16 of which are rotating) central RF with 8

read and 4 write ports wherein only FUs in the first row can directly read/write. All

other FUs can only read from the central RF via column buses. The central RF is

primarily used for storing live-in values from the host processor. Each FU has its own

local RF consisting of 8 rotating register with one read and one write port. Local

RFs can be also written by FUs in diagonal directions (upper right/upper left/lower

right/lower left). For example, local RF in PE 5 can be written by FUs 0, 2, 5, 8 and

10 and only FU 5 can read from it.

We created three architecture instances by differentiating FU and RF connectivity:

mesh-plus, mesh-only and no-RF-sharing. In mesh-plus, FUs are connected in a

mesh network, meaning that each FU is connected to its immediate neighboring FUs.

Additionally, FUs that are two hops apart are also connected. This is a similar

configuration to ADRES [38]. In the mesh-only configuration, FU connectivity is

69

limited to a simple mesh network. The no-RF-sharing configuration has same FU

connectivity as mesh-only, but local RFs are not shared by FUs in diagonal directions,

meaning that each RF can be written/read only by the neighboring FU.

The performance and compile time of EMS were compared to three different mod-

ulo scheduling techniques: IMS: traditional iterative modulo scheduler that does not

consider routing efficiency; NMS: node-centric modulo scheduler that employs the

same heuristics as EMS, but scheduling is conducted in a node-centric way; and,

DRESC: IMEC’s simulated annealing based modulo scheduler. All evaluations were

taken on an Intel Core 2 Duo system running at 2.66GHz with 2GB memory. Com-

pile time was measured by using only one core of the system. Scheduling results were

verified with a cycle accurate simulator.

4.4.2 Results

In modulo scheduling, MII defines the theoretical upper bound of the performance

of the scheduled loop. Therefore, we calculated the performance of the modulo sched-

uler by dividing MII by the achieved II in each loop. The performance comparison of

the four different modulo scheduling techniques is shown in Figures 4.8, 4.9, and 4.10

for the mesh-plus, mesh-only, and no-shared-RF configurations, respectively. The

first four groups show the performance results of the loops within each domain and

the last group shows the overall performance across all 214 loops.

A more detailed view of the performance comparison between EMS and DRESC

is presented in Figure 4.11 for the mesh-plus configuration. The x-axis shows all 214

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H.264 3D AAC MP3 overall

pe
rfo

rm
an

ce
 ra

tio

IMS
NMS
EMS
DRESC

Figure 4.8: Performance comparison of scheduling strategies for the mesh-plus ar-
chitecture. The fraction of the theoretical maximum performance is
plotted.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H.264 3D AAC MP3 overall

pe
rfo

rm
an

ce
 ra

tio

IMS
NMS
EMS
DRESC

Figure 4.9: Performance comparison of scheduling strategies for the mesh-only ar-
chitecture.

target loops grouped by application. Within each application, loops are sorted by

increasing MII. The gray line shows the value of MII for each loop. The achieved II

for EMS is shown as solid circular dots. The achieved II for DRESC is shown only

when it differs from EMS’s achieved II, as a vertical line extending from the dot. For

the mesh-plus architecture, EMS achieves an average ILP of 9.6 across all the loops.

The final measurement performed is compilation time. The total compile time of

all 214 loops for each scheduling technique is shown in Table 4.1.

71

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H.264 3D AAC MP3 overall

pe
rfo

rm
an

ce
 ra

tio

IMS
NMS
EMS
DRESC

Figure 4.10: Performance comparison of scheduling strategies for the no-RF-sharing
architecture.

arch IMS NMS EMS DRESC
mesh-plus 655 2105 1185 22341
mesh-only 1122 3046 2228 48035

Table 4.1: Compile time comparison (in seconds).

4.4.3 Analysis and Discussion

Comparison with IMS. EMS always outperforms traditional IMS by more than

25% for both mesh-plus and mesh-only configurations. Even though IMS works quite

well for conventional VLIWs, the lack of a global resource management strategy causes

frequent routing failures which forces II to be increased.

Comparison with NMS. EMS and NMS share most of the heuristics developed

in this paper, such as the various cost metrics, stage reassignment, and the reduced

dataflow graph. However, EMS achieves 10-13% performance increase while compile

time was reduced by 27-46% compared to NMS. This demonstrates the benefits of the

edge-centric over the node-centric approach in both performance and compile time

measures, as illustrated in Section 4.2.1.

72

II

H.264 3D AAC MP3
0

2

4

6

8

10

12

14

MII

EMS
DRESC

Figure 4.11: Performance comparison of EMS and DRESC for the mesh-plus archi-
tecture.

Comparison with DRESC. DRESC consistently achieves the best IIs for most

of the applications, except MP3 in the mesh-plus architecture. Simulated annealing

is an effective strategy for CGRA scheduling, but its high performance comes at the

cost of slow compile time. When compared to DRESC, EMS shows quite competitive

performance results, achieving 98% and 91% of DRESC’s overall performance for

mesh-plus and mesh-only architectures, respectively.

For the mesh-plus architecture, EMS shows virtually the same performance as

DRESC, achieving the same II or better for more than 85% of loops (Figure 4.11).

For most of the loops that are scheduled at higher IIs, the large number of live-ins was

the bottleneck for EMS. Since all of the live-ins are stored in the central RF, there

is high contention for central RF ports among the operations that consume live-ins.

Though EMS reserves these high contention resources by calculating probabilities in

advance, it still fails to achieve the same II as DRESC when the contention is too

high.

For the mesh-only architecture, EMS does not perform as well, especially for H.264

and 3D. Those two domains have many communication patterns in which one pro-

73

ducer feeds multiple consumers. The execution of such communication patterns is

significantly limited with the sparse interconnect in the array. This trend is more

obvious when looking at the results of no-RF-sharing configuration 4.10. EMS is

achieving 85% of DRESC’s performance when interconnected further reduced by re-

moving shared links to local RFs. This result shows that EMS is more vulnerable to

a lack of routing resources. We are currently investigating CGRA designs that have

low hardware cost but still enable EMS to achieve high performance.

Compile time. Since there are no intelligent heuristics for global management of

routing resources in IMS, it shows the fastest compile time among the four schedul-

ing techniques. Except for IMS, EMS performs the fastest, showing more than 18x

speedup over DRESC. A systematic approach for placement and routing indeed al-

lows a reasonable compile time while achieving competitive performance. Compile

times for mesh-only are larger than mesh-plus because the achieved IIs are usually

higher. Since the scheduler starts at the MII for each loop, it takes more time to get

to the solutions with higher IIs.

Effectiveness of Heuristics. EMS employs various heuristics to guide the sched-

uler towards intelligent routing. The effectiveness of individual heuristics varies based

on the application characteristics. The probability heuristic is effective for loops that

have high contention on limited resources such as central RF ports or memory slots.

Prioritizing edges based on the edge dependency analysis effectively schedules loops

with large recurrence cycles, especially when there are many recurrence cycles and

some nodes are included in multiple cycles. Stage-reassignment is effective when

74

DFGs have narrow and tall shapes.

4.5 Related Work

Architectures. Many CGRA-like designs have been proposed in the literature.

The designs have different scalability, performance, and compilability characteristics

as discussed in Section 2.1. The ADRES architecture [38] is an example of an 8x8 mesh

of processing elements with both individual and central register files. MorphoSys [36]

is another example of an 8x8 grid with a more sophisticated interconnect network;

each node contains an ALU and a small local register file. In the RAW architec-

ture [52], each node is actually a MIPS processor, including memory, registers, and a

processor pipeline. In addition, there are both dynamic and static routing networks.

PipeRench [18] is a 1-D architecture in which processing elements are arranged in

stripes to facilitate pipelining. RaPiD [13] consists of heterogeneous elements (ALUs

and registers) in a 1-D layout, connected by a reconfigurable interconnection network.

Compilation Techniques. Many techniques have been proposed for compiling

to CGRAs. Lee et al. [29] propose a compilation approach for a generic CGRA. They

generate pipeline schedules for innermost loop bodies so that iterations can be issued

successively. The main focus of their work is to enable memory sharing between

operations of different iterations placed on the same processing element. Our work

proposes a generic scheduling strategy, and memory sharing and other such optimiza-

tions can be integrated into our system as a preprocessing step. [1] investigated

a loop-scheduling problem in CGRA by dividing it into covering, partitioning and

75

layout subproblems. It spatially partitions the CGRA and maps each loop iteration

onto the partitioned CGRA. Modulo scheduling differs from this approach in that it

time-multiplexes the array for different loop iterations.

RAWCC [30] tackles the scheduling problem for the RAW architecture where all

the communication is fully exposed to the compiler. The scheduling problem is bro-

ken down into two tasks: spatial assignment and temporal assignment. Operations

are placed in each tile first, and time slots are assigned for operations in each time.

Convergent scheduling [31] is another compiler technique proposed as a generic frame-

work for instruction scheduling on the RAW architecture. Their framework comprises

a series of heuristics that address independent concerns like load balancing, commu-

nication minimization, etc. [40] and [7] were also proposed for instruction scheduling

of tiled architectures. The scheduling problem in tiled architectures is quite similar

to our problem in that the compiler has to manage communications explicitly among

computation resources. The main difference is that tiled architectures usually have a

dynamically routed network that can sustain some level of routing congestion during

runtime. Having no such routing network in CGRAs, the scheduler is responsible for

orchestrating every communication so that no congestion occurs. Whereas [30], [31],

[40] and [7] focus on ILP and propose scheduling methods for acyclic regions of code,

we focus on loop level parallelism. The work of Mei et al. [38] is closest to our work,

as discussed in Section 4.1.

Similar to CGRAs, clustered VLIW machines are also spatial architectures. Much

work has been done towards compiling for clustered VLIW machines [15, 42, 50]. Al-

76

though some of the concepts from these works can be adapted for CGRA compilation,

they do not consider the issue of routing values through the sparse interconnection

network, which is a crucial step. The measure of affinity used in our scheduler is

similar to that used in Krishnamurthy’s affinity-based clustering [26].

Stage scheduling [14] re-assigns operations’ stages to minimize register pressure

for modulo scheduled loops. While stage scheduling is applied as a post pass, EMS

re-assigns stages during the modulo scheduling process.

4.6 Summary

In this chapter, we proposed edge-centric modulo scheduling, an effective modulo

scheduling technique for CGRAs. The distributed nature of CGRAs, including sparse

interconnect and distributed register files, presents difficult challenges to a compiler.

EMS focuses primarily on the routing problem, with placement being a by-product

of the routing process. Various routing cost metrics were introduced to give a global

perspective of resource management to the scheduler. Edges in the dataflow graph

are categorized based on their characteristics and EMS uses different strategies to

route them. Overall, EMS improves performance by 25% over traditional modulo

scheduling and achieves 85-98% of the performance compared to a state-of-the-art

simulated annealing technique. EMS also reduces compilation time by 18x compared

to simulated annealing.

77

CHAPTER 5

Control Path Optimization

5.1 Introduction

A major bottleneck for deploying CGRAs into a wider domain of embedded de-

vices lies in the control path. The appealing features in the datapath of CGRAs

ironically come back as a major overhead in the control path. The distributed inter-

connect and register files require a large number of configuration bits to route values

across the network. The abundance of computation resources simply adds up the list

for configurations to the control path. As a result, the total number of control bits to

configure the whole array can reach nearly 1000 bits each cycle, and the control path

takes up to 43% of the total power consumption in existing CGRA designs [25, 5].

Moreover, control bits are read from the on-chip memory every cycle regardless of

the array’s utilization. Even when only a small portion of the resources are active

in the array, the configurations for all the resources must be fetched, which makes

CGRAs very inefficient for the codes with limited parallelism. This inefficiency pre-

78

vents CGRAs from wider uses including outer loop level pipelining [49] or simply

running acyclic code to reduce the communication overhead with the host processors.

Finding an efficient way to reduce the control power reduction will not only relieve the

power overhead in the control path, but also opens the future application of CGRAs

to more variety of workloads.

While there are many studies on architecture exploration, code mapping, and

physical implementation [38, 1, 28], relatively little work has examined efficient control

in CGRAs and other tiled accelerators. One exception is [25] wherein a hybrid

configuration cache is proposed that utilizes the temporal mapping for control power

reduction. Temporal mapping only utilizes a single column of PEs in the array to

map the entire loop and the execution of the loop is pipelined by running multiple

iterations on different columns in the array. The control power can be substantially

reduced by transferring the configurations in one column to its right each cycle, letting

only the leftmost column read from the configuration memory. However, temporal

mapping can be applied to only certain types of loops and it is not a general approach

that can scale to different types of applications. [5] reduced the control path power

of CGRAs as a by-product of an architecture exploration. A Pareto optimal design

of a CGRA was discovered that required a lesser number of resources in the datapath

thereby resulting in a power reduction in the control path. In this chapter, we propose

a new control path design that improves the code efficiency of CGRAs by leveraging

token networks originally proposed for dataflow machines.

79

src0 const src1 route write

pred

FU
RF

opcode pred src0

8 3 4 4 4 3 3 3 941 Bits

PE PE PE PE

Central RF

PE PE PE PE

PE PE PE PE

PE PE PE PE

C
o
n
f
i
g

M

e
m

o
r
y

src1 route write waddr raddr const

Figure 5.1: CGRA overview: 4x4 array of PEs (left), a detailed view of a PE (right),
and a PE instruction (bottom)

5.2 Motivation

Figure 5.1 shows our target CGRA, similar to [38]. There are 16 PEs connected in

a mesh-style interconnect and a central register file for transferring values from/to the

host processor. Each PE has one FU for computations and an 8-entry local register

file that are shared by other neighboring PEs. An FU has three source multiplexors

(MUXes) for predicate and data inputs. Here, we assume an additional MUX(route)

in each PE to increase the routing bandwidth of the array. So, the PE can do

both computation and routing in one cycle. There are several MUXes as a result of

the distributed interconnect and each of them requires selection bits encoded in the

instruction field. Also, each register read/write port requires an RF address field.

Along with PE instructions, there are instructions for central register files, and other

buses that also require configuration. As a result, each PE instruction is 41 bits, and

a total of 845 bits is required to configure the CGRA each cycle. Typically, control

signals in CGRAs are stored as a raw data (fully decoded instructions) and directly

fed to the datapath as shown in Figure 5.2(a). Fetching 845 bits every cycle is indeed

80

(a)

(b)

Token Network

decoded inst w/ dest

Config Memory

Decoder

encoded inst

IF

to datapath

decoded inst

format

Config Memory

Decoder

Config Memory

to datapath

decoded inst

(c)

decoded inst w/ src

to datapath

format

encoded inst

F R F R F R F R

F R F R F R F R

F R F R F R F R

F R F R F R F R

Figure 5.2: Different Control Path Designs: (a) No compression, (b) Fine-grain code
compression with static instruction format, (c) Fine-grain code compres-
sion with a token network (F and R indicate FU token module and RF
token module, respectively)

a large overhead. Control path power can obviously be reduced by increasing code

efficiency through some form of code compression technique.

Conventionally, code compression is performed at the instruction level with no-

op compression or a variable length encoding. No-op compression is widely used in

VLIW processors and many DSPs [54, 51, 43, 32, 34]. However, instruction-level

compression does not work well in CGRAs due to the highly distributed nature of

the resources. Even if an FU is sitting idle, the register file in the same PE can

still be accessed by neighboring PEs. Also, the FU can be used for bypassing data

from one PE to another. We examined the schedules of several hundred compute-

intensive kernels taken from multimedia applications mapped onto our CGRA design

and discovered that only 17% of PE instructions are pure no-ops (all the components

in the same PE is not active), while the average utilization of FUs is 55%. Thus,

no-op compression would have limited effectiveness.

81

However, there is a good opportunity for a fine-grain code compression: compress-

ing instruction fields (e.g., opcode, MUX selection, register address) rather than the

whole instruction. On average, only 35% of all instruction fields contain valid data,

thus efficiency can potentially be increased by removing unused fields. Figure 5.2(b)

shows a high-level organization that utilizes a static fine-grain compression approach.

In the simplest variant, presence bits are added for each field to indicate whether

the field exists or not. Instruction encoding consists of the presence bits(instruction

format) followed by the subset of valid instruction fields concatenated together. With

this approach, decoding can become complex due to the variable length nature of the

encoding, but all unused fields can be removed in principle.

The biggest challenge for applying static fine-grain compression lies in the instruc-

tion formats. Using a simple fine-grain static compression scheme that we designed

for a CGRA, the code efficiency increases by 24% with the average number of in-

struction bits decreasing from 845 to 647. However, 172 of the 647 bits are used for

encoding the instruction formats. Since the instruction format of 172 bits needs be

read from the configuration memory every cycle regardless of the number of fields

present, the instruction format itself becomes a significant overhead in the control

path. To address this limitation, we propose to dynamically discover the instruction

formats by applying a dataflow token network explained in Section 5.3.

Another issue in employing the fine-grain code compression is decoder complexity.

Since compression is performed in a finer granularity, the overhead of the decoder is

more substantial than instruction-level code compression. In Section 5.4, we ana-

82

opcode

dest

pdest

p
r
e
d
_
s
e
l

s
r
c
0

_
s
e
l

(a) (b) (c) (d)

o
u
t
5

o
u
t
4

o
u
t
3

o
u
t
2

o
u
t
1

o
u
t
0

o
u
t
7

o
u
t
6

en dest

3:8 decoder

i
n
5

i
n
4

i
n
3

i
n
2

i
n
1

i
n
0

mux_sel has_token

s
r
c
1

_
s
e
l

opcode

processor

token

receiver

token

receiver

token

receiver

token

sender

token

sender

read_opcode

read_dest

read_pdest

pred src0 src1

pdest destto datapath

t
o

d
e
c
o
d
e
r

f
r
o
m

d
e
c
o
d
e
r

to datapath to datapath

token

receiver

token

sender

read_waddr0

token

sender

read_raddr0

read_raddr1

rf_dest0

rf_dest1

w
r
i
t
e
0

_
s
e
l

token_gen

to datapathread0 read1

write0

waddr0

w
e
0 raddr0

raddr1

t
o

d
e
c
o
d
e
r

f
r
o
m

d
e
c
o
d
e
r

Figure 5.3: Token Modules: (a) token receiver, (b) token sender, (c) FU token mod-
ule, (d) RF token module

lyze the decoder features that affect the overall complexity and discuss an efficient

partitioning of configuration memory to reduce decoder complexity.

5.3 Dynamic Discovery of Instruction Formats

In this section, we propose a dynamic discovery of instruction formats by adopting

the concept of a token network from dataflow machines. The concept is explained first,

and then we propose a token network that can assist the fine-grain code compression

to reduce the overall power consumption in the control path of CGRAs. Lastly, we

discuss how the token network is extended to support modulo scheduled loops [48] to

exploit loop-level parallelism in kernel loops.

5.3.1 Concepts

The basic idea of dynamic instruction format discovery is that resources need

configurations only when there is useful data that flows through them. By looking

at the locations of data coming into a PE, we can infer the instruction format of the

83

Cycle 1Cycle 0

0 1

2

3

Mapping

Cycle 2

0 1

2

3

DFG

Cycle 3 Cycle 4

Figure 5.4: Dynamic configuration of PEs using tokens

current instruction. For example, two data coming into src0 and src1 MUXes of the

FU in Figure 5.1 indicate that this FU will perform an ALU operation. So, an opcode

field and src0/src1 MUX selection fields are required in that cycle. If there is no data

coming into the predicate input MUX, the ALU operation is not predicated and the

selection bits for pred MUX is not needed. When there is only one data coming into

either the src0 or src1 MUX, the FU is performing a move operation and the opcode

field is not required. In the same way, a data coming out from the register file in

Figure 5.1 indicates a read address field is required.

We can utilize the token network in dataflow machines [44] to provide information

on where data flows in the distributed network. A token is sent from a producer to its

consumers one cycle ahead of the actual data execution. Originally, the consumer gets

fired when it accumulated sufficient tokens. However, this concept can be altered as

all tokens for a single instruction are guaranteed to arrive at the same time. Hence,

the set of tokens uniquely determine the instruction format so that the necessary

fields can be fetched from the instruction memory. When the actual data arrives in

84

the subsequent cycle, the required instruction fields are already decoded and the PE

is ready to execute the scheduled operation.

Figure 5.4 shows the big picture of how PEs are configured dynamically in the

token network. A simple dataflow graph (DFG) is shown on the far-left and its

mapping onto the CGRA datapath is shown next to it. PEs with a small dot indicate

they are used for routing. The PEs in the array are incrementally configured each

cycle using tokens as in the figure. In each cycle, dark grey PEs are configured and

send out tokens to their consumers. In the subsequent cycle, PEs executing the given

instructions are shown in light grey. At cycle 0, PE[0,0] (row 0, column 0) and PE[0,2]

are configured first to execute operations 0 and 1, respectively, and they send out the

tokens to their consumers. At the next cycle, PE[1,0] and PE[1,2] receive the tokens

from their producers and are configured to route the data to PE[1,1]. In a similar

fashion, PEs are configured as tokens flow over the array and all the necessary PEs

to execute the DFG are configured at cycle 4.

5.3.2 Token Network

To utilize tokens for instruction format discovery, a token network is inserted be-

tween the decoder and the datapath as shown in Figure 5.2(c). The token network

consists of two components: token interconnect and token modules. Each datapath

element, such as an FU, RF and MUX, has a corresponding token module in the token

network. Example token modules are presented in Figure 5.3. Token modules are

connected by a 1-bit token interconnect that has the same topology as the datapath

85

interconnect. The token network takes the decoded instructions from the decoder

and sends tokens across the token interconnect. The token network has two respon-

sibilities. First, the token network provides the instruction formats to the decoder.

Second, it generates control signals for the datapath.

5.3.2.1 Token Generation and Routing

Tokens are first generated at the start of data streams in the dataflow graph: live-

in values. A token generated at the top of the dataflow graph flows across the array

visiting different resources and finally terminates when it either reaches a register file

or merges into another token in an FU. A token terminated in a register file can be

re-generated later, creating another token stream.

For tokens generated from live-in, the generation information (time and resource)

needs be encoded in the configuration memory since there is no producer that sends

token to those nodes. The tokens coming out from register files also require their

generation information stored in the configuration memory since the tokens can be

re-generated anytime once they are stored in the register file. Therefore, the config-

uration memory will hold the token generation information for all the tokens coming

out from register file read ports. Each cycle, the token generation information stored

in the configuration memory fires tokens into the token network and the configura-

tions for the datapath are generated as tokens flow across the array. (token gen signal

in Figure 5.3(d)).

After tokens are generated, they are routed following the edges in the dataflow

86

graph. To send tokens from producers to consumers, the destination information is

stored in the configuration memory instead of the source information. The MUX se-

lection bits in a PE instruction (Figure 5.1) are replaced by dest fields. As in dataflow

machines, only two destinations are allowed for each data generating component (FU

output ports, RF read ports). An analysis on the scheduling result of our benchmark

loops shows that 86% of the communication patterns are unicast (requiring only one

destination), and 98% of communications can be covered by two destinations. There-

fore, the performance degradation with the limited number of destinations is minimal.

The impact of this limitation is discussed in Section 5.5. For illustration purposes,

only one dest field is shown in Figure 5.3(c) and (d).

5.3.2.2 Token Processing

Tokens flowing on the token network are utilized for two tasks. First, the instruc-

tion formats are discovered with tokens and they are sent back to the decoder. With

these instruction formats, the decoder can decode the compressed instructions for the

subsequent cycle. Also, the dest fields in the decoded instructions are converted into

the source fields for MUX selection bits and sent to the datapath.

Token Receiver: Since only destination fields are encoded in the configuration

memory, the source fields (MUX selection bits) for the datapath need be discovered

when tokens are coming into the input ports of each resource. For each MUX in

the datapath, a token receiver (Figure 5.3(a)) is created. A token receiver generates

the MUX selection bits(MUX sel) by looking at the position of an incoming token.

87

Since only one input of a token receiver can have incoming token, the MUX selection

bits can be generated with several OR gates as in the figure. Along with the MUX

selection bits, it also notifies the attached module (FU/RF token module) whether

there is a token coming into this input port or not (has token).

Token Sender: For each output port of a datapath element (FU output ports,

RF read ports), a token sender (Figure 5.3(b)) is created in the token network to

send out tokens to the consuming resources. It simply decodes the dest field (dest)

and sends out tokens to the connected modules.

FU token module: Figure 5.3(c) shows an example of FU token module that

has both predicate and data parts. The input MUXes of the FU have been translated

into token receivers and the FU itself is replaced with an opcode processor. For the

output ports of the FU, token senders are created in the figure. The opcode processor

first takes ’has token’ signals from the attached token receivers and discovers the

instruction format. The opcode processor sends out a ’read opcode’ signal when both

src0 and src1 have incoming tokens. Also, it sends out read signals for dest fields of

both data (dest) and predicate (pdest) if there is any incoming token in the input

ports. The opcode processor also determines the latency of computation by looking

at the opcode field. The dest fields from the decoder are fed into the token senders

directly. When the opcode processor signals the token senders with an enable signal,

they send out tokens to the designated consumers specified in the dest fields.

RF token module: A token module for a RF with 2 read/1 write ports is shown

in Figure 5.3(d). Similar to FU token modules, a token receiver and token senders

88

are created for the write port MUX and two read ports, respectively. Any incoming

token into the write port sends a read signal to the configuration memory for the write

address field and it also sends a write enable signal. For the read ports of register

files, there are no incoming tokens from the token network. Instead, the generation of

tokens from the read ports are encoded statically in the configuration memory. When

a token generation signal comes in, the RF module sends a read signal for the read

address and the dest field.

5.3.3 Supporting Modulo Scheduled Loops

Compute intensive loops are generally mapped onto CGRAs using modulo schedul-

ing: a software pipelining technique that exposes loop level parallelism by overlapping

the executions of different loop iterations. The basic concept of modulo scheduling is

illustrated in Figure 5.5(a). In modulo scheduling, each iteration starts execution be-

fore its previous iteration finishes. By overlapping the executions, modulo scheduling

can exploit loop-level parallelism when there are enough resources. The time differ-

ence between beginnings of successive iterations is called initiation interval (II). In

a steady state, modulo scheduling repeats the same pattern for II cycles and this is

called kernel code. Only the kernel code is encoded into the instruction memory, while

the pipeline fill/drain (prologue/epilogue) are controlled by staging predicates [48].

89

5.3.3.1 Initialization for Kernel Code Execution

In our encoding scheme, the configuration memory contains only the kernel code

of target loops and this requires special support for executing modulo scheduled loops

with the token network. Figure 5.5(b)-(c) illustrate the problem that arises. Here, we

assume the loop kernel in Figure 5.5(a) is mapped onto an 1x4 CGRA. Figure 5.5(b)

shows a possible mapping of operations X, Y, and Z on FU 2. The edges with an arrow

head indicate tokens flowing on the token network. For operation X, a token arrives at

cycle 3 and the operation is activated at stage 0. Similarly, operation Y and operation

Z receive tokens at cycles 4 and 9, respectively, and they are activated at stages 1

and 2, respectively. The kernel code of the loop is presented in Figure 5.5(c). In the

steady state, operations are executed in the order of Y, Z, and X and the opcodes for

them are stored in the configuration memory in the same order. Therefore, opcodes

in FU 2 should be consumed in the order of Y, Z, and X. The problem occurs in the

prologue when a token arrives at FU 2 in cycle 3. Since Y and Z are activated in later

stages (at cycles 4 and 9), the opcodes for Y and Z are not consumed yet from the

configuration memory. As a result, FU 2 reads the opcode Y instead of X’s opcode.

The solution for this problem is to maintain the kernel state from the beginning

of the loop execution. We can achieve this by initializing the token network with the

state of cycle II - 1. Once the state is initialized with the state of cycle II - 1, the

tokens can flow through the network and generate the kernel code from the beginning.

For initialization, the snapshot of the token network at cycle II-1 is stored separately

in the configuration memory. At cycle -1(one cycle before loop execution starts), the

90

(a)

(c)

(b)

t
i
m

e

F
U

0

F
U

1

F
U

2

F
U

3

stage 2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

t
i
m

e

II

iteration

stage 0stage 1stage 2

X

Y

Z

stage 0

stage 1

Z

Y

X

0

1

2

3

0

4

5

6

7

8

9

10

11

0

1

2

3

II

Figure 5.5: Modulo scheduling basics: (a) Concept, (b) An example mapping for
FU 2, (c) Kernel mapping.

initial state is loaded and the token network can maintain the kernel state during the

prologue.

5.3.3.2 Migrating Staging Predicates into Token Network

As previously mentioned, staging predicates are used to fill and drain the pipeline

by selectively enabling operations to fill and drain the pipeline. A staging predicate

is assigned to each stage of the schedule and it becomes true when current stage

is activated in the pipeline. Staging predicates are routed through the predicate

network in the datapath and separate configurations are required to manage the

routing. Nearly 15% of the configuration bits are used for routing staging predicates

in modulo scheduled loops. The kind of information carried with staging predicate is

actually control data, hence its inefficient to manage it in the datapath.

For this reason, we propose to migrate the staging predicates from the datapath

into the control path. We can simply increase the size of tokens by 1 bit and use the

91

extra bit (valid bit) for the staging predicates. If a resource receives a token with the

valid bit set, the incoming data is in the right stage and the operation mapped on the

resource can execute. When a token terminates in a register file, it needs to store the

valid bit in the register file so that the valid bit information can be retrieved when a

token is re-generated later from the same register file. Therefore, RF token modules

will include a 1 bit register file that has the same configuration as the original register

file in the datapath.

There are several benefits to migrating the staging predicates. First, the configu-

rations for routing the staging predicates in the datapath is not necessary anymore.

The routing information of the valid bit in the control path is same as the token

routing information, so no additional configuration is required. The second benefit is

a performance gain for loops. Removing the staging predicates in the datapath also

removes the staging predicate edges in the dataflow graphs. With less scheduling re-

strictions, the compiler can find better schedules for the same target loops. Also, the

predicate network in the datapath is not used for routing staging predicates anymore

and can be dedicated to support predicates for if-converted code. The overhead of

this approach is mainly in the hardware side. The interconnect in the token network

is increased by 1 bit and a 1 bit clone of each register file in the datapath is added

to the RF decoders. Also, there is an encoding overhead for the activation stages

for live-in values. The trade-off for migrating staging predicate will be discussed in

Section 5.5.

92

10 2 3 4

1 2 3

1 2 3

1 2

1 2

2

4

0 1

2 3

4

field0

field1

field2

field3

field4

align

offset

read0

read1

read2

read3

read4

config memory

input register

align unit

field reader

Figure 5.6: Decoder for fine-grained code compression

5.4 Configuration Memory Partitioning

The decoding logic for fine-grain code compression is shown in Figure 5.6. It is

composed of three components: input register, align unit, and field reader. Encoded

instructions are stored in the configuration memory as shown in the figure. Input

register buffers each word line of the configuration memory and align unit makes sure

that the instruction to be decoded is placed at the leftmost position in the field reader.

Based the instruction format given(read signals in Figure 5.6), each instruction field

is fetched in the field reader.

Obviously, having a giant 845-bit wide configuration memory is not a feasible

design and also increases the complexity of the decoder drastically. Therefore, the

configuration memory needs be partitioned and it needs be done in an efficient way

that reduces the complexity of the decoder. Configuration memories are generally

built with SRAMs and their power consumption is determined by the width of the

memories. Partitioning the configuration memory into smaller SRAMs increases the

total power consumption of all the SRAMs. This is because each individual SRAM has

93

its own peripherals and they add up to the total power consumption. When a single

128 bit-wide SRAM is partitioned into eight 16 bit-wide SRAMs, the total power

consumption for reading 128 bit data increases 46% for the partitioned case than the

original 128bit-wide SRAM. On the other hand, a small configuration memory has the

benefit of decreased complexity for the decoder attached to it. For example, a decoder

with 4 fields can be built with 22 MUXes, but doubling the number of fields require

71 MUXes. Therefore, having two decoders with 4 fields is 40% more efficient than

one decoder with 8 fields. Therefore, partitioning the configuration memory needs be

done efficiently considering the trade-off between the SRAM power consumption and

the complexity of decoders.

Field Uniformity: When partitioning the configuration memory, it is also im-

portant to determine which fields are bundled together and stored in the same mem-

ory. Different widths in the same configuration memory increase the complexity of

the align unit and introduce an encoding overhead with padding bits. Therefore, we

allow only same type of instruction fields to be bundled together.

Sharing of Field Entries: The width of each partitioned configuration memory

determines the maximum number of instruction fields that can be fetched in each

cycle. Since the width of the memory is also related to the complexity of the attached

decoder, we can optimize the decoder complexity by limiting the maximum instruction

fields for a single cycle. For example, let’s assume that 4 constant fields from four

FUs are bundled together and stored in the same memory. The worst case scenario

is that all 4 constant fields are used in the same cycle, and the decoder has to have

94

4 field entries. If the worst case rarely happens, we can limit the number of active

constant fields in each cycle. For example, the memory can have only 2 entries and

4 constant instruction fields can share them. While only two constant fields can be

active in the same cycle, the complexity of the decoder decreases. The trade-off here

lies between the performance of the schedule and the decoder complexity. We learned

that the average utilization of instruction fields varies from 10% to 80% depending

on the type of instruction fields. For under-utilized fields, it is definitely beneficial to

allow instruction fields to share field entries in the decoder.

Design Space Exploration: The design decisions in each component have trade-

offs with other components. Thus, we performed a design space exploration to find

a good partitioning of the configuration memory. The configuration memory was

partitioned differing the bundling of instruction fields, the number of partitioned

memories, and the sharing of field entries in a memory. Due to the space limitations,

only the final result is shown in Section 5.5.

5.5 Experiments

In this section, we evaluate our control path design with the token network. we

created four instances of the token network differing in multicasting capabilities and

staging predicate and compared them with design (a) and (b) in Figure 5.2.

95

5.5.1 Experimental Setup

Target Architecture: The target CGRA architecture is a 4×4 heterogeneous

CGRA shown in Figure 5.1. 4 PEs have load/store units to access the data memory

and 6 PEs have multiply units. There is a 64-entry central register file with 6 read

and 3 write ports wherein only FUs in the first row can directly read/write. All other

FUs can only read from the central RF via column buses. The central register file

is primarily used for storing live-in values from the host processor. There is also a

predicate register file that has 64 entries and 4 read/4 write ports. Each FU has

its own 8-entry local register file with one read and one write port. Local register

files can be also written by FUs in diagonal directions (upper right/upper left/lower

right/lower left). For example, local RF in PE 5 can be written by FUs 0, 2, 5, 8 and

10 and only FU 5 can read from it.

Target Applications: For performance evaluation, we took 214 kernel loops

from four media applications in embedded domains (H.264 decoder, 3D graphics,

AAC decoder, and MP3 decoder). The loops, varying in size from 4 to 142 operations,

were mapped onto the CGRAs and configurations were generated by the compiler.

The performance is measured by the average throughput of all 214 loops for each

control path design.

Compiler Support: We developed a modulo scheduler that can supports our

control path restrictions. First, the compiler makes sure that a value generated in

an FU or a register file read port can be consumed up to two neighboring resources

to meet the two destinations limit. Also, the compiler actively limits the number of

96

(a)

(b)

field type opcode dest const crf_read crf_write ldrf control
memory configurations 2x(8, 8) 4x(8, 5), 4x(8, 6) 2x(6, 10) 1x(11, 9) 1x(6, 7) 4x(6, 3) 1x(1,68)

power (mW) area (mm^2)
design m v # bits perf sram dec token total sram dec token total
baseline 1 0 845 100.0 104.0 5.4 0.0 109.4 0.539 0.015 0.000 0.554
static 0 0 647 98.5 56.4 18.2 0.0 74.6 0.412 0.120 0.000 0.532
token 0 0 0 485 98.5 31.9 16.5 3.5 51.9 0.309 0.109 0.030 0.448
token 1 1 0 606 99.6 37.2 22.2 3.5 62.9 0.386 0.139 0.029 0.555
token 2 0 1 456 103.8 27.2 17.1 4.8 49.1 0.291 0.113 0.048 0.452
token 3 1 1 567 105.4 30.6 23.1 4.7 58.4 0.361 0.145 0.046 0.553

Figure 5.7: (a) Configuration memory partitioning, (b) Performance, power and
area comparison of control path designs

active fields in each cycle as to the sharing degree of the configuration memories.

Power/Area Measurements: Area and power consumption were measured us-

ing the RTL Verilog model and synthesized with Synopsys design compiler using

typical operation conditions in IBM 65nm technology. Power consumption was cal-

culated using Synopsys PrimeTime PX. The SRAM memory power was extracted

from data generated by the Artisan Memory Compiler. The model contained both

the datapath and control path and was targeted at 200MHz. Our control path design

with the fine-grain code compression decoder and the token network fits in a single

pipeline stage between the configuration memory and the datapath, and it does not

affect the critical path of the datapath.

5.5.2 Configuration Memory Partitioning

We performed a design space exploration for partitioning the configuration mem-

ory as explained in Section 5.4. The final result of the optimal partitioning is shown

in Figure 5.7(a). The first row shows different types of instruction fields in our target

CGRA and the partitioning result is shown in the second row for each field type.

97

Three numbers in each entry of the table indicate the followings: the number of con-

figuration memories, the number of field entries in a memory, and the bitwidth of each

field. For example, there are two memories for opcode fields and each memory has

eight 8-bit field entries. Since the opcode fields are frequently utilized, the total num-

ber of field entries in the opcode memories is equal to the number of FUs. This means

that all 16 FUs can be activated at the same cycle. On the other hand, there are only

12 field entries for const fields(2 memories with 6 field entries). So, only 12 FUs can

utilize the const fields at the same cycle. In addition to the configuration memories

for instruction fields, the control memory in the last column is created to manage

the behavior of the token network. The control memory has the token generation

information as explained in Section 5.3.2.1 and read signals for other configuration

memories.

In the original control path design shown in Figure 5.2(a), 845 bits of configura-

tions are distributed in 7 configuration memories(six 128-bit memories and one 77-bit

memory) with 128 word lines. In our partitioning scheme, there are 19 configuration

memories and the total width of them is 881 bits. Even though the total bits of all

the configuration memories has slightly increased, these memories are less frequently

accessed since the code size is decreased. Therefore, we can achieve the power reduc-

tion in the control path. Also, the increased code efficiency decreases the memory

requirements and the number of word lines in each memory can be reduced, resulting

in area reduction of the SRAMs. When compared to a naive partitioning scheme

where configuration memories are partitioned for each PE, our optimal partitioning

98

Loop size (# operations)

SR
A

M
 a

cc
es

s
p

o
w

er
 /

 c
yc

le
 (

m
W

)

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

Figure 5.8: Cache effect on SRAM power consumption

achieves 22% power reduction and 33% area reduction for the decoder, while the

performance degradation due to sharing of field entries is less than 1%.

5.5.3 Token Network Evaluation

Six control path designs were evaluated for performance, area, and power con-

sumption and the results are shown in Figure 5.7(b). baseline design is the conven-

tional control path of CGRAs that has no code compression(Figure 5.2(a)). static

design employs a fine-grain code compression, but the instruction format is statically

encoded in the configuration memory as shown in Figure 5.2(b). For control path de-

signs with the token network, we created four instances that differ in multicasting ca-

pability and staging predicate support. The second column in Figure 5.7(b) indicates

whether the design allows only two destination fields for each datapath component

or allows multicasting as baseline design. The third column shows if the control path

design contains valid bit network to support staging predicates(Section 5.3.3.2). For

each control path design, the average number of configuration bits per cycle for all the

99

target loops are shown in the fourth column. The performance of each design is nor-

malized to the performance of baseline and shown in the fifth column. The rest of the

table contains power consumption and area of the designs. The control path is broken

down into three categories(SRAM, decoder, and token network) and each category’s

power and area are shown separately in the table. baseline and static don’t have a

token network and the decoder in baseline is composed of only a pipeline register

between the configuration memory and the datapath. For other designs, the pipeline

register is included in the decoder(static) or in the token network(token designs).

For the performance and the number of configuration bits, all 214 loops were

evaluated and the average is shown in the table. The SRAM power in the table is

the average power per cycle for all 214 loops. For power consumption of the decoder

and the token network, an average activity equivalent to the average utilization of

FUs(55%) was assumed. The area of SRAMs for each design was calculated based

on the amount of configurations required for the loops in MP3 decoder which require

128 word lines in baseline design.

Fine-grain Code Compression: Comparison between baseline and static de-

signs reveals that the fine-grain code compression can improve both power consump-

tion and area of the control path with increased code efficiency. Overall, the power

consumption was reduced by 32% and the area decreased by 4%. There is a small

performance degradation of 1.5% due to the sharing of field entries and lack of mul-

ticasting capability.

We can notice that the SRAM read power reduction ratio(46%) is greater than

100

the reduction ratio in the number of configuration bits(24%). This is due to the cache

effect of the input register in the decoder(Figure 5.6). If all the configurations of a

single loop can fit in the input register(two word lines in the configuration memory),

the SRAM access happens only at the beginning and the content in the input register

does not change throughout the execution of the loop. This occurs quite often when

fine-grain compression is applied especially for less frequently used fields such as const

fields or predicate fields. In baseline design, this cache effect is only achieved when

loops are scheduled at II=1 (only 5% in our target loops).

Figure 5.8 shows the overall cache effect for the 214 target loops. X-axis shows the

number of operations in each loop and Y-axis shows the average SRAM read power

per cycle for each loop. In this figure, SRAM access power for instruction formats is

not included. For small loops, the SRAM power is greatly reduced since most of the

configurations can fit in the input register. As the size of a loop increase, the cache

effect is minimized and the SRAM access power increases.

Among the average configuration bits of 647 in static design, the instruction for-

mat takes 172 bits and it needs be read from the memory every cycle. The power

consumption of reading instruction format alone is 24.6 mW, which is almost one-

third of the total power consumption in the control path. So, there is potential for

further enhancing the control path design in the instruction format.

Token Network: We can evaluate the token network by comparing token 0 to

static. The only difference between two designs is how the instruction format is dis-

covered. In token 0 design, the token network is added for dynamic discovery of the

101

instruction format. The overhead of the token network is relatively small, introducing

only 3% and 5% of baseline design’s power consumption and area, respectively. How-

ever, introducing the token network improves all three features of the control path:

code efficiency, power consumption, and area. token 0 design further reduces the

power consumption by 31% over static design and by 53% over baseline design. The

area of the control path also decreases even with the overhead of the token network

since the instruction format is no longer stored in the configuration memory.

To evaluate the limitation of two destinations, we created token 1 design by adding

multicasting capability in token 0 design. To enable multicasting, each destination

field is extended to a bit vector whose width equals to the number of destinations.

While there is a small performance gain of 1.1%, the lengthened destination fields

lead to poor code efficiency and the power consumption increases by 21%.

An interesting result can be found with migrating the staging predicates into the

control path. A valid bit was added to the token networks of token 0 and token

1 designs to create token 2 and token 3 designs, respectively. Although there is

some overhead for having valid bits in the token network, this overhead is mitigated

by the improvements in the SRAM, and the overall power consumption and area

decrease. This is because the configuration bits for routing staging predicates are not

necessary anymore and the code efficiency improves. Moreover, there is a performance

improvement of 6% in both cases of token 2 and token 3. By removing staging

predicate edges in the dataflow graph, scheduling restrictions are lessened and the

chance of the compiler’s finding a better schedule increases.

102

226.4 mW 170.0 mW

SRAM
46%

decoder
2%

FU
23%

CRF
10%

local RF
9%

interconnect
5%

data mem
5%

baseline

SRAM
18%

decoder
11%

token network
3%

FU
30%

CRF
13%

local RF
12%

interconnect
6%

data mem
7%

token 2

Figure 5.9: Power breakdown of baseline and token 2 designs for a kernel loop in
H.264

System Power Consumption: From the results in Figure 5.7(b), we concluded

that token 2 design is the most efficient control path design for our target CGRA.

When compared to baseline design, the power consumption was improved by 56%

and the area was decreased by 19%. Even with the limitation of two destinations,

migrating staging predicates into the control path provides the overall performance

improvement of 3.8% over the baseline design. Figure 5.9 shows the comparison of the

power consumption of the system including the control path and the datapath, with

two control path designs of baseline and token 2. Power was measured by running

a kernel loop in H.264 that was scheduled at II=5. The overall utilization of the

FUs for this loop is 61%. The numbers at the bottom indicate the overall power

consumptions of two designs. When the token network is introduced, the portion of

the control path power decreases from 48% to 35%, and the overall system power is

decreased by 25%.

103

5.6 Summary

This chapter proposes a new control path design for CGRAs that utilizes the

concept of a token network in dataflow machines for fine-grain code compression. The

datapath is cloned to create a token network where tokens are flowing to discover the

instruction formats. A design methodology for the control path with a token network

is provided and an optimized solution was found through design space exploration.

The resulting control path reduces the control power consumption by 56% while

enabling a performance gain of 4%. Also, the area of the control path decreases by 19%

since the configuration memory requirement is lowered with better code efficiency.

Overall, our new control path design achieves a 25% saving in the system power

consumption.

104

CHAPTER 6

Polymorphic Pipeline Array

6.1 Introduction

The PPA design is inspired by coarse-grain reconfigurable architectures (CGRAs)

that consist of an array of function units interconnected by a mesh style intercon-

nect [38, 39].

This chapter offers the following three contributions:

• An analysis of the available parallelism and its variability in three media ap-

plications (MPEG4 audio decoding, MPEG4 video decoding, and 3D graphics

rendering).

• The design, operation, and evaluation of the PPA - a customizable media ac-

celerator for mobile computing.

• A virtualized modulo schedule that can execute innermost loops with a run-time

varying number of PPA resources assigned to it.

105

Central Register File

FU4 FU5 FU6 FU7

FU0 FU1 FU2 FU3

FU8 FU9 FU10 FU11

FU14 FU15FU12 FU13

Mem
Config Register

FileFU

Register

To Neighbors

Central Register File
From Neighbors or

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2x1 2x2 3x2 2x3 3x3 4x4

ResMII = 1,2
ResMII = 3,4
ResMII = 5,6
ResMII = 7,8
ResMII = 9,10

(a) (b)

Figure 6.1: (a) CGRA loop accelerator, (b) Impact of the array size on the perfor-
mance

6.2 Analysis of Multimedia Applications

In this section, we examine three applications from different multimedia domains

that are expected to be used in mobile environments: audio decoding, video decod-

ing and 3D graphics acceleration. We first examine the different levels of available

parallelism, its variability over the run of the application, and finally and suggest

some high-level architectural choices to achieve a high single-thread performance in

power-constrained systems. The applications consist of:

• AAC decoder: MPEG4 audio decoding, low complexity profile

• H.264 decoder : MPEG4 video decoding, qcif profile

• 3D : 3D graphics rendering accelerator

As a baseline media accelerator, a coarse-grain reconfigurable architecture (CGRA)

similar to ADRES [38] (Figure 6.1(a)) is used. ADRES consists of 16 function units

(FUs) interconnected by a mesh style network. Register files are associated with each

106

FU to store temporary values. The FUs can execute common word-level operations,

including addition, subtraction, and multiplication. In contrast to FPGAs, CGRAs

sacrifice gate-level reconfigurability to increase hardware efficiency. As a result, they

have short reconfiguration times, low delay characteristics, and low power consump-

tion. With a large number of computing resources available on CGRAs, loop level

parallelism can be exploited by software pipelining compute intensive nested loops.

ADRES can also function as a VLIW processor to execute acyclic and outer loop

code. The first row of FUs and the central register file provide VLIW functionality,

while the remaining three rows of FUs are de-activated for non-innermost loop code.

Other CGRAs simply execute non-innermost loop code on the host processor and de-

activate the entire array. ADRES provides a higher performance option by eliminating

slow transfer of live-in values between the host and the array as well as dedicating

more functional resources to the acyclic code than a typical host processor would

have.

In this analysis, we first investigate how much fine-grain parallelism resides in the

benchmarks with software pipelining of the compute intensive innermost loops. Then,

we take a look at opportunities for exploiting coarse-grain pipeline parallelism.

6.2.1 Fine Grain Parallelism

Multimedia applications typically have many compute intensive kernels that are

in the form of nested loops. They can be efficiently accelerated by using software

pipelining that can increase the throughput of the innermost nest by overlapping

107

the executions of different iterations. For our three target benchmarks, we analyzed

how much fine-grain parallelism resides in each benchmark by looking at the number

and the execution time of loops that are software pipelineable. Figure 6.2(a) shows

the number of total loops and the number of software pipelineable loops in each

benchmark. The execution time breakdown between software pipelineable and the

remainder of the code is shown in Figure 6.2(b).

We implemented a modulo scheduler taking the concept of [46]. Modulo scheduling

is an efficient software pipelining technique that exploits loop level parallelism by

overlapping the execution of different iterations. Each bar in Figure 6.2(b) shows

the breakdown of execution time spent in the software pipelineable regions (swp

time) and the rest of the application (acyclic time). The left bar of each benchmark

in Figure 6.2(b) is the breakdown of execution time spent when only the VLIW

processor (top row of the CGRA accelerator) is used for the whole application (no

software pipelining), while the right bar shows the breakdown when swp regions are

executed on the entire CGRA. First, we can see that there are many opportunities

for exploiting fine-grain parallelism in the benchmarks. On average, 35% of loops are

software pipelineable and 71% of execution time is spent in swp regions. When the

CGRA accelerator is employed to map the software pipelineable loops, there are great

performance gains for all three benchmarks of 1.76, 3.25, and 1.48, respectively for

AAC, 3D, and H.264. So, it is very important for multimedia applications to exploit

fine-grain parallelism inherent in them, and CGRAs are effective platforms executing

such loops.

108

0

50

100

150

200

250

AAC 3D H.264

ex
ec

ut
io

n
tim

e
(m

illi
on

 c
yc

le
s) acyclic time

swp time

no swp swp no swp swp no swp swp

total loops swp loops
AAC 102 36
3D 260 83
H.264 269 81

(a) (b)

Figure 6.2: (a) Number of software pipelineable loops, (b) Breakdown of execution
time for software pipelineable region and acyclic region

An interesting question at this point is how we improve the performance even

further when more resources are available in an embedded system. One possible

solution is scaling the accelerator to a bigger array. By introducing more resources

into the accelerator, we can possibly reduce the execution time spent in swp regions.

To assess the impact of scaling the accelerator, we took all the swp regions in the

three benchmarks and mapped them onto accelerators with various array sizes. First,

we categorized the software pipelineable loops into groups based on the number of

instructions and measured how the average throughput of each group changes as the

size of the CGRA increases. The array sizes of the CGRA are shown in the X-axis of

Figure 6.1(b), and the scaled throughput on the Y axis. Throughput is normalized

to the theoretical upper bound of each loop when mapped onto the 4x4 array.

Here, we can notice that the throughput saturates as we increase the size of the

CGRA. Even for the biggest group, the throughput does not increase that much

beyond the size of 4x4. Moreover, the execution time spent on swp loops is relatively

small when all the software pipelineable loops are mapped onto the accelerator as

109

Input

HuffDecode

Output

InverseQuant

MSStereo

TNS

Imdct

PNS

IntensityStereo

PostProcess

EntropyDec

InverseQuant

InverseTrans

MotionComp

100

Deblock

Input

1

100

Output

(a) (b) (c)

30%

14.5%

1.8%

1.2%

1.0%

1.0%

46%

5.6%

31%

31%

27%

9%

13%

9%

8%

45%

25%

Input

RenderingA0

RenderingB

RenderingA1

RenderingA2

Output

Figure 6.3: Task Graphs: (a) AAC, (b) 3D, (c) H.264, nodes represent tasks, solid
edges show control flow, and dotted edges show data transfer

shown in Figure 6.2(b). For H.264, the execution time of swp region is only 20% of

the total time after accelerating them. By Amdahl’s law, we need to find a way to

increase the performance of acyclic region to further increase the overall performance

of these applications.

6.2.2 Coarse-Grain Pipeline Parallelism

In addition to fine-grain parallelism, coarse-grain pipeline parallelism is also avail-

able in these applications due to their streaming nature [20]. Figure 6.3 shows the

task graphs of the target benchmarks. Solid lines indicate control flow edges, while

110

data communications between tasks are shown as dotted lines. Data enters the in-

put node in a task graph and goes through various computing kernels represented

as oval nodes, and it finally exits at the output node. After a packet of input data

is processed, the next data packet can be processed in the same manner. Hence,

there is an implicit outer loop around these task graphs that loops over input data

packets. Coarse-grain pipeline parallelism can be extracted when the task graph can

be split into multiple stages that communicate in a feed-forward fashion and without

any inter-iteration dependences contained within a single stage. By mapping stages

into different pieces of hardware, the execution of the outer loop iterations can be

pipelined and the overall throughput can be increased. Stages can consist of loops

as well as acyclic blocks of code, hence parallelism of this form is not limited to in-

nermost loops. The amount of execution time in each stage is annotated next to the

nodes. Here, we assume no accelerator in the system and only a VLIW processor

(first row of the CGRA) is used.

Based on the execution time ratio, we can partition the task graph into pipeline

stages as shown as dotted horizontal lines in Figure 6.3. For AAC(Figure 6.3(a)),

there are two nodes that have high execution time ratio: HuffDecode and Imdct. So,

the task graph can be partitioned in a way that the two compute intensive nodes are

isolated. 3D has two major kernels that perform a rendering process: RenderingA and

RenderingB. Originally, RenderingA is encapsulated in a loop with three iterations,

but we fully unrolled to get the task graph in Figure 6.3(b). Pipelining for H.264

is a bit tricky since there is a data dependency between outer loop iterations. The

111

motion compensation kernel (MotionComp in Figure 6.3(c)) uses the output of the

deblocking filter(Deblock) from the previous iteration. Because of this dependency,

the execution of the outer loop iterations need be performed in a sequential manner,

preventing pipelining. However, we could find an opportunity for pipelining in an

inner loop in the solid box. Each frame in H.264 is broken into macroblocks and they

are individually processed in the inner loop. The iteration count of the inner loop is

quite large (100) and 75% of execution time is spent in this loop. So, we can partition

the task graph as shown in Figure 6.3(c).

When pipelining the three benchmarks with the stages shown in Figure 6.3, the

performance gain of AAC, 3D, and H.264 are 2.09x, 3.11x, and 1.93x, respectively.

Indeed, the coarse-grain pipeline parallelism can expose a great deal of performance

gain, but the opportunities for fine-grain parallelism are still available. The stages

that are limiting the overall throughput of the pipeline can be accelerated if fine-

grain parallelism is exploited. For example, Imdct in AAC can run 4.7x faster if it is

mapped on the full CGRA. Similarly, RenderingA in 3D and MotionComp in H.264

can run 3.9x and 2.4x faster, respectively.

6.2.3 Computation Variance

Another important behavior to characterize in these applications is the dynamic

variance in the computational requirements. This metric is important because it

indicates whether a static apportioning of resources would yield predictable execution

times and utilization of the hardware. Conventional wisdom is that processing time

112

0

1

2

3

4

5

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0

0

1

2

3

4

5

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0

0

1

2

3

4

5

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0 8 0 0 0 0 1 0 0 0 0 0

iter N, stage 4

0

5 0 0 0 0

1 0 0 0 0 0

1 5 0 0 0 0

2 0 0 0 0 0

2 5 0 0 0 0

1 2 1 4 1 6 1 8 1 1 0 1 1 2 1 1 4 1 1 6 1 1 8 1

cy
cl
es

iterat ion

AAC

3D

(a) (b)

16

12

8

4

0

16

12

8

4

0

16

12

8

4

0

iter N+1, stage 3

iter N+2, stage 2

Figure 6.4: Execution Pattern Variation in Coarse-Grain Pipelining: (a) Stage Ex-
ecution Time, (b) Resource Requirements

is relative constant for media applications, e.g., each iteration of a loop might operate

on the row of an image.

Figure 6.4(a) shows the execution time for one stage in AAC and 3D over the

first 200 frames (outer loop iterations). The x-axis is the iteration number and the

y-axis is the execution time in cycles on a 4x4 CGRA. As shown, execution time is not

constant. In fact, there is a large variation in execution time. AAC regularly oscillates

between 150k and 200k cycles, while 3D starts off high and gradually becomes less.

This behavior is due to several factors. First, there is an abundance of control flow

in these applications that changes the amount of processing required. Second, there

is some predictable regularity to the behavior. For example, frame of different types

occur at regular intervals and require relatively constant processing time. Finally, in

3D, the processing time levels off after the initial startup. Again, such behavior is

not constant, but is predictable.

To view the variability in a different manner, Figure 6.4(b) shows the resource

113

requirements for 3 consecutive coarse grain stages from AAC over time. The x-axis is

cycle number and the y-axis is the number of resources (function units apportioned as

2x2 units) that achieves the best performance. As can be seen, resource requirements

change during the execution of a single frame. For the top and bottom stages, the

resource requirements are dramatic, going from 16 to near zero. In general, resources

are allocated based on a worst-case scenario. In this case, each stage would require

16 resources. But, the utilization will be very poor with this approach. Rather, this

behavior indicates that idle resources could possibly be loaned to neighboring stages

or that shared resources could be designated.

6.2.4 Summary and Insights

The analysis of these media applications provides several insights. First, multi-

media applications are rich in both fine-grain and coarse-grain pipeline parallelism.

Further, these forms of parallelism are not mutually exclusive. Rather, they can co-

operate to eliminate the opportunities that were left out when only one of them was

exploited. Pipeline parallelism can accelerate the entire application including acyclic

regions, while fine-grain parallelism can accelerate the pipe stages that limit the over-

all throughput of the pipeline. These are typically innermost loops with large bodies

and/or high trip counts. Second, resource requirements not only vary statically across

different pipeline stages, but also dynamically both during the processing of a single

frame of data and across different frames. Dynamic partitioning of resources is thus

necessary to achieve high performance and utilization.

114

A central challenge is how to allocate finite resources across different pipeline

stages. Pipeline stages have different potentials for fine-grain parallelism. For exam-

ple, the HuffDecode kernel in AAC and Deblock in H.264 are inherently sequential

and putting more resources will not improve the performance. Conversely, Imdct

can greatly benefit with more resources by exploiting fine-grain parallelism. Also, the

high dynamic variance in computation continually changes the resource requirements.

For real time, worst-case execution times are often used. But, in these applications,

worst-case will grossly exaggerate the number of needed resources. The conclusion

is that a flexible execution substrate that facilitates changing the resource allocation

over time is necessary.

The rest of the paper is organized as follows. First, we propose a flexible mul-

ticore accelerator design that can exploit both fine-grain and pipeline parallelism.

Then, we describe the hardware extensions and compilation techniques that enable

dynamic resource partitioning. A virtual schedule is constructed that can properly

function under variable resource allocations. An experimental evaluation including

performance and power, followed by related work and conclusion constitute the last

three sections of the paper.

115

6.3 Polymorphic Pipeline Array

6.3.1 Overview

The Polymorphic Pipeline Array (PPA) is a flexible multicore accelerator for em-

bedded systems that can exploit both fine-grain parallelism found in innermost loops

and pipeline parallelism found in streaming applications. The PPA design is inspired

by CGRAs but with extensions for both static and dynamic configurability. A PPA

consists of multiple simple cores that are tightly coupled to neighboring cores in a

mesh-style interconnect. A PPA with eight cores is shown in Figure 6.5(a). There are

a total of 32 processing elements (PEs) in this PPA, each containing one FU and a

register file. Four PEs are combined to create a core that can execute its own instruc-

tion stream. Each core has its own scratch pad memory and column buses connect

four PEs to a memory access arbiter that provides sharing of scratch pad memories

among cores.

The main characteristics of PPA can be summarized as follows:

• Simple and distributed hardware: The resources are fully distributed including

register files and interconnect. Also, there is no dynamic routing logic. All the

communications are statically orchestrated by compiler.

• Fast inter-core communications via direct connections between register files

• Each core can have its own instruction stream. So, the host processor can

offload an entire application, not just the innermost loops, onto the PPA.

116

PE PE

PE PE

Core 0

MEM 0

Arbiter

PE PE

PE PE

Core 2

PE PE

PE PE

Core 1

PE PE

PE PE

Core 3

MEM 1 MEM 2 MEM 3

PE PE

PE PE

Core 4

MEM 4

Arbiter

PE PE

PE PE

Core 6

PE PE

PE PE

Core 5

PE PE

PE PE

Core 7

MEM 5 MEM 6 MEM 7

(a) (b)

FU 0 RF 0

I-CACHE Loop Buffer

FU 1 RF 1

PE 0 PE 1

FU 2 RF 2 FU 3 RF 3

PE 2 PE 3

Core 5

RF 1

RF 3

RF 0 RF 1

Loop

Buffer

Loop

Buffer

V-Control
pred
RF

Figure 6.5: PPA Overview: (a) PPA with 8 cores, (b) Inside a single PPA core

• Cores can be combined to create a larger logical core to exploit the available

fine-grain parallelism in large loop bodies.

• Virtualized execution: PPA can adapt to fluctuating resource availability and

dynamically partition the array during the execution

6.3.2 Core Description

Inside a Core: Figure 6.5(b) shows a detailed diagram of a single PPA core.

There is an instruction cache and a loop buffer. A loop buffer is a small SRAM

that stores instructions for modulo scheduled loops. A loop buffer minimizes the

instruction fetch power for high density code of loops. Each PE contains a 32 bit

FU and a 16 entry register file with 3 read/3 write ports. Four PEs in a core share

a 64 entry central predicate register file with 2 read/3 write ports, but there is no

central register file for data. All FUs can perform integer arithmetic operations and

117

one FU per core can do multiply operation. A simple mesh network connects the FUs

in a core. Register files are accessed by the same topology of mesh interconnect(not

shown in the figure). All the FUs can read/write from the central predicate file.

Inter-core Connectivity: Inter-core interconnect is shown in dotted lines in

the figure. There are three types of inter-core interconnect in a PPA: RFs, predicate

RF, and loop buffer. Direct connections between neighboring RFs in different cores

allow fast inter-core communications. These RF-to-RF connections can be utilized

when a loop is mapped onto multiple cores. We found the direct connections between

register files more efficient than FU connections especially for virtualization (discussed

later). Each predicate register file can be accessed by an FU in the neighboring cores.

Predicate register files are used for inter-core communications such as hand-shaking

for coarse-grain pipelining and resource availability for virtualized execution. Finally,

loop buffers can transfer instructions to the neighboring cores also for virtualized

execution. The hardware components for virtualized execution is explained in details

later in Section 6.4.

Memory System: For memory accesses, a memory bus connects FUs in the

same column to the memory access arbiter, allowing only one memory access per

cycle for FUs in the same column. A memory arbiter has three memory sharing con-

figurations and provides different load latencies when multiple scratch pad memories

are shared among FUs in different columns. The sharing modes for a memory arbiter

is as follows.

• No sharing : FUs can access the memory in the same column only. Load latency

118

loop virtualization info

. .
 .

.

Virtualization Controller

vt
ag

 0

vt
ag

 1

vt
ag

 2

vt
ag

 3

p
re

d

Lo
o

p
 B

u
ff

er
s

Neighboring Virtual Controllers

I-Cache / Loop Buffers

w
e

w
e

w
e

w
e

ArbitratorArbitrator

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

stage 0

stage 3stage 1

stage 2

(a)

MEM 0 MEM 1 MEM 2 MEM 3 MEM 4 MEM 5 MEM 6 MEM 7

in
st

(b)

P
Es

s
h

u
ff
le

 n
e

tw
o

rk

w
e

in
st

Figure 6.6: (a) An example of PPA running AAC in a pipelining fashion, (b) Vir-
tualization Controller

is 2 cycles.

• Sharing of 2 : FUs in two columns can share memories in the same columns.

Load latency is 4 cycles.

• Sharing of 4 : FUs in four columns can share memories in the same columns.

Load latency is 6 cycles.

For example, when the arbiter operates in the sharing 4 configuration, all the FUs

in four cores (i.e., cores 0, 1, 2, and 3) can access the four memories below them (mem

0, 1, 2, and 3) with a load latency of 6 and up to 4 memory accesses can be made per

cycle. Memory sharing only occurs when cores are combined to create a bigger logical

core for software pipelining of loops. The increased load latency is not really a big

issue since software pipelining can often hide the long latency of operations. Memory

sharing can also be used to form a bigger logical memory when memory requirement

is high, behaving as a banked memory system.

119

6.3.3 Supporting Coarse-Grain Pipeline Parallelism

Figure 6.6(a) shows how the applications can be accelerated using different static

resource partitions for a PPA with eight cores. Based on the analysis in Section 6.2,

we provided the possible mapping of AAC on the PPA shown in Figure 6.5(a). For

the stages with a high ratio of acyclic regions (not software pipelineable), a single

core is allocated for execution. Stage 0 performs a Huffman decoding that is very

sequential and one core is assigned to this stage. The memory requirement is not

high in AAC, so all the memories operate in the no sharing mode. Bold solid lines

in the figure show the stages that access memory. When a stage finishes processing

data, the output of each stage is transferred to the next stage’s memory by a DMA

engine. DMA transfers can be omitted when memories are shared by the arbiter.

For example, stage 2 can read the input from MEM 2 and write the processed data

in MEM 5 that can be accessed by stage 3 directly. Even though memory sharing

increases the load latency, both stage 2 and stage 3 contain high ratio of swp region

that can tolerate the latency overhead.

6.3.4 Supporting Fine-Grain Pipeline Parallelism

The abundance of computation resources makes PPA an attractive solution for

exploiting fine-grain parallelism. When there is large amounts of fine-grain parallelism

in a inner-most loop, multiple cores in the PPA are merged together to create a bigger

logical core. In the logical core, one core behaves as master and orchestrates the

execution of all the participating cores in lock step.

120

Static Partitioning: The PPA array can be partitioned statically based on

the resource requirements of each coarse-grain pipeline stage. For example, the third

stage of AAC contains a large number of compute intensive filters and the whole

application spends 71% of execution time in this stage. Therefore, a 2x2 core array

is assigned to the third stage. On the other hand, the first stage performs Huffman

decoding that is inherently a sequential process. Also, the execution times of the

other stages (second and fourth) are relatively small, thus accelerating these stage

does not necessarily lead to overall performance increase. Therefore, all the other

stages are assigned with a single core array. The benefit of static partitioning lies

in the highly optimized schedules since each compute intensive kernel is scheduled

targeting only one sub-array. However, this approach does not adapt to dynamically

changing resources availability discussed in Section 6.2.3. When an application has

a large variation in execution pattern, static partitioning can either result in low

utilization of resources, or not be able to fully accelerate the overall performance

when there is not enough resources available.

Dynamic Partitioning with Virtualization: Coarse-grain pipeline stages in

multimedia applications have different execution patterns. As a result, the resource

availability in the PPA fluctuates at run-time and it is crucial to adapt to different

availabilities and maximally utilize them for improving the overall throughput of the

applications. One approach is to statically generate a set of different schedules each

of which targets different numbers of resources. For example, a loop can be scheduled

for 1x1, 1x2, 2x1 add 2x2 PPA cores beforehand, and an appropriate schedule can be

121

selected at run-time depending on the availability of resources. Each schedule can be

highly optimized since the target is fixed. However, the resulting code bloat prevents

it from an attractive solution for embedded systems where minimizing code size is

important.

The code bloating problem can be minimized through virtualized execution where

a single schedule is converted into different schedules dynamically with regard to the

changing resource availability. For virtualization, both compiler and hardware sup-

port are required. The compiler is responsible for generating schedules that can be

easily converted at run-time (see Section 4). Then, the hardware can dynamically

allocate resources and perform the conversion of schedules. However, the major down

side is the sub-optimal scheduling result. Since the compiler has to target multi-

ple sub-arrays, the scheduling result might not be as efficient as static partitioning

approach. Also, there is run-time overhead for virtualization.

6.3.5 Hardware Support for Virtualization

The major challenges in hardware are how to migrate the schedule across different

cores at run-time for virtualized execution and how to communicate with neighbor-

ing cores for checking the resource availability. For these purposes, a virtualization

controller (VC) is implemented in each core (Figure 6.6(b)). Since each core has a

loop buffer, the PPA can prepare for a virtualized execution by migrating particular

sections of a schedule into neighboring cores from the owning core where the whole

schedule is stored.

122

Each instruction in the loop buffer is tagged with two bits of information (virtual-

ization tag). This information is used on two purposes. First, it tells to which core the

instruction is migrated when resource allocation is changed at run-time. When more

resources become available, the VC copies a subset of instructions to the neighbor-

ing cores through the connections between loop buffers. The loop buffer interconnect

goes through a shuffle network that can change the orientation of the copied schedule.

Depending on the location of the available core, the schedule needs to be flipped hor-

izontally or vertically. Another use of vtag is predicating the execution of inter-core

communications that only execute when the schedule is spread over multiple cores.

The VC compares the current resource allocation status and the vtag, and generates

a predicate input for the inter-core communication instructions.

6.4 Compiler Support for Virtualization

In this section, we present the compiler support for the PPA focusing on the

virtualized execution of modulo scheduled loops.

6.4.1 Edge-centric Modulo Scheduling

In the PPA, all the communications including inter-core communications are or-

chestrated by the compiler. To utilize the abundant resources available in a PPA,

an effective compiler technique is essential. The major challenge in scheduling with

the presence of distributed hardware is in managing the communications among re-

sources. Without any centralized resources, the communication is often the bottleneck

123

to achieve good performance, more so than the actual computation.

We have adopted the EMS [46] that emphasizes the routing of operands

We employ the Edge-centric Modulo Scheduling(Chapter 4)

on a distributed network to achieve high throughput of modulo scheduled loops.

EMS can achieve 98% of the theoretical best throughput on array-style architectures.

In our baseline accelerator(6.1), only the innermost loops are mapped onto the array

and the remaining (acyclic and outer loop) regions are executed on the VLIW pro-

cessor. Since we are offloading acyclic regions onto PPA as well as loops, we modified

the EMS algorithm so that it can support both cyclic and acyclic regions.

6.4.2 How to Virtualize

Virtualization requires the compiler to generate a single schedule that can be dy-

namically mapped onto different target arrays. There are two approaches for convert-

ing schedules: folding and expanding. In both approaches, converting (transforming

a schedule from one array to another) should be performed in a way that observes

the following constraints:

• Modulo constraint: each resource in a converted schedule is used only once in

every II cycles

• Register pressure: : virtualization should not drastically increase register pres-

sure

124

• Dependency constraint: producer-consumer relation is observed in a converted

schedule

6.4.2.1 Folding Approach

Figure 6.7(a) shows how the folding scheme works for 1x2 array(two cores). First,

the compiler generates a schedule shown on the left. Here, the schedule is composed

of two sections(A and B). Each section is divided into two sub-schedules for each core.

A0 and B0 run on core 0, and A1 and B0 run on core 1. Two iterations of the target

loop is shown in the figure; the light gray boxes show the first iteration, and the dark

gray ones for the second iteration. In kernel state(shown as an empty rectangle), all

the sub-schedules(A0, A1, B0, and B1) run in parallel across the two cores. When

only a single core is available, the whole schedule needs to run on a single core and

the original schedule is folded to create a narrower and longer schedule shown as A’

and B’. The new schedule is created by interleaving the two sub-schedules cycle by

cycle. For example, each operation at cycle N in A0 is placed at cycle 2N in A’,

and one at cycle N in A1 is placed at cycle (2N + 1) in A’. Cycle-wise interleaving

is the only way to observe the dependency constraint in the new schedule without

re-scheduling. The resource constraint is also kept naturally since (A0, B0) and (A1,

B1) time-share the resources in a single core. Since A0 and B0 execute in parallel in

the original schedule in the same core, the modulo constraint can be observed in the

new schedule(also observed for A1 and B1).

The major downside of folding is the increased register pressure. Since the two

125

A’

B’ A’

B’

A0

B0

A1

B1

A0

B0

A1

B1

A0

B0 A0

B0

A1

B1 A1

B1

2 cores 1 core 1 core core X core Y

(a) (b)

A0 A1

B0 B1 A0 A1

B0 B1

A0

A0A1

A1 B0

B0B1

B1

core X core Y

(c)

Figure 6.7: (a) Folding with interleaving, (b) Expanding with horizontal cut, (c)
Expanding with vertical cut

sub-schedules are interleaved cycle-wise, the communications bypassing the register

file in the original schedule need to be buffered for one cycle. They need either

passing through a register file(requires re-scheduling) or buffering latches inserted for

each interconnect(hardware overhead). Also, the register live ranges in each section

overlap with the other section, further increasing the register pressure.

6.4.2.2 Expanding Approach

The expanding scheme starts with a schedule targeting a single core as shown

on the left in Figure 6.7(b). Here, each section (A or B) is divided into two sub-

sections(A0, A1 or B0, B1). The first expanding approach is pipelining each section

across the two cores(shown on the right in Figure 6.7(b)). Basically, the original

kernel schedule is cut horizontally in half and each half runs on a different core. In

each core, the two sub-sections are running in parallel((A0, B0) or (A1, B1)). Since

they were already running in parallel in the original schedule, the modulo constraint

is naturally observed. The dependency constraint is also observed since operations

126

are placed in the original order. However, this approach results in frequent inter-

core communications shown as the dotted lines in the figure. The communications

across the sub-sections(i.g. A0 and A1) incur the register copy operations via RF

connections.

Another expanding approach is cutting the original schedule vertically as shown in

Figure 6.7(c). This approach pipelines each section within a single core, rather than

across two cores. Again, the dependency constraint is naturally observed. Also, the

inter-core communications are limited to the section boundary(between A1 and B0).

The register pressure does not increase since the consecutive sub-sections are running

back-to-back in a single core. The major challenge in this approach is the additional

modulo constraints between sub-sections((A0, A1) or (B0, B1)). For example, A0

and A1 were running sequentially in the original schedule, but they run in parallel

in the new schedule. Therefore, there is no guarantee that two sub-sections have

exclusive resources usage in a single core.

Finally, there is an approach that converts the original schedule in Figure 6.7(b)

into the left schedule of Figure 6.7(a). This cannot be done easily due to the de-

pendency constraint of A0 and A1. Since there can be producer-consumer relations

between A0 and A1, they cannot run in parallel without re-scheduling.

6.4.3 Virtualized Modulo Scheduling

Based on the observations in the previous section, we propose Virtualized Modulo

Scheduling that takes the expanding approach with vertical cut in Figure 6.7(c).

127

A

B

C

D

A

B

A

B

C

D

A

B

C

D

II = 8

II = 4

II = 4

II = 2

II = 2

II = 2

II = 2

core 0 core 0 core 1 core 0 core 1 core 2 core 3

II = 8

II = 4

II = 2

(a) (b) (c) (d)

A B

C D

A B C D

A

B C

D

(e)

A

B

C

D

A

BA

B A

B

C

D C

DC

D C

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

C

C

C

C

C

D

D

D

Figure 6.8: (a) Execution in a single core, (b) Execution in two cores, (c) Execution
in four cores, (d) Multi-level modulo constraints, (e) Code expansion

This approach has no hardware overhead of buffer latches in folding and less inter-

communication over horizontal expanding. Also, the register pressure is minimal

compared to both of them. We proceed the discussion on VMS with a running

example of a schedule that can be mapped onto three different target arrays: 1x1,

2x1, and 2x2 , shown in Figure 6.8. The major challenges for VMS are as follows.

• How to minimize the inter-core communication overhead

• How to impose the modulo constraints in different levels

• How to determine the IIs for different levels

• Register allocation

6.4.3.1 Minimizing Inter-core Communication Overhead

In VMS, a single iteration in a schedule targeting a smaller array is divided into the

same number of sections as the number of cores in a bigger array. When the schedule

128

is expanded at run-time, each section is individually pipelined in a single core. For

example, a loop in Figure 6.8(a) shows a schedule for 1x1 array. This schedule can be

dynamically converted into schedules for 1x2 and 2x2 arrays at run-time. Since it can

be mapped onto up to 4 cores, the whole iteration is divided into four sections(A, B,

C, and D). When it is mapped onto a 1x2 array, A and B run on core 0, and C and D

run on core 1(Figure 6.8(b). Each section will be mapped to an individual core when

2x2 array is available(Figure 6.8(c)). Therefore, the inter-core communications can

occur only at the section boundaries. Since they can only use the limited inter-core

interconnect and the live register values need be transferred across the cores, it is

important to minimize the communications across the section boundaries.

For this purpose, the dataflow graph of the target loop is partitioned into four

clusters minimizing the number of edge cuts. This is a traditional min-cut prob-

lem. Each edge-cut denotes inter-core communications through the interconnect or a

register transfer. For the register value transfer, we implemented direct connections

between register files across the cores. With this direct connectivity, register value

transfer can occur without wasting the existing computation resources with move

operations.

6.4.3.2 Multi-level Modulo Constraints

The biggest challenge in VMS is to enforce different levels of modulo constraints,

so that no resource conflict occurs when the schedule is converted at run-time. Fig-

ure 6.8 shows a schedule that can be mapped onto different target arrays. Since

129

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3A0

A1 A2

A3

A4

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

B0

B0

B0

B0

B1

B1

B1

B1

A0

A1 A2

A3

A0

A1 A2

A3

A4

A0

A1 A2

A3

A4

B0

B0

B0

B0

B1

B1

B1

B1

B2

B2

B2

B2B3

B3

B3

B3

A4

B0

B1 B2

B3

A0

A1 A2

A3

A4

B0

B1

B2

B3

A0

A1 A2

A3

A4

B1

B2

B0

B3

cycle

0

1

2

3

4

5

6

7

FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3 FU 0 FU 1 FU 2 FU 3

FU 0 FU 1 FU 2 FU 3

FU 0 FU 1 FU 2 FU 3

FU 0 FU 1 FU 2 FU 3

II = 4

II = 2

II = 2

(a) (b) (c) (d) (e) (f) (g)

Figure 6.9: (a) Dataflow graph, (b) - (e) Mapping examples, (f) Modulo schedule
for 1x1 array, (g) Modulo schedules for 1x2 array

there are three target arrays(Figure 6.8(a) - (c)), three levels of the modulo con-

strains are imposed to generate a schedule for 1x1 core as shown in Figure 6.8(d).

In general, modulo constraints limit the number of available scheduling slots to (II

x # resources). One might think that the additional modulo constraints can further

reduce the number of available slots. In reality, the number of available slot stays

the same since each level of modulo constraints has different scopes. The scopes of

three modulo constraints are shown in Figure 6.8(d). For example, when scheduling

the first section A, the scheduler needs to observe both II=8 and II=2 modulo con-

strains(B is not scheduled yet, so II=4 is not imposed yet). This reduces the number

of slots to 8(2 x 4), but this is actually what is available in a single core when section

A is individually pipelined in Figure 6.8(c). The scheduling slots that were limited

by II=2 can be used when section B is scheduled, since the scope of II=2 is only valid

for section A. When section B is scheduled, the modulo constraint of II=4 is imposed

instead between section A and B.

130

Scheduling example: An example of scheduling with multi-level modulo con-

straints are shown in Figure 6.9. A dataflow graph is shown in Figure 6.9(a) and it

is partitioned into section A and B. For illustration purposes, partitioning was per-

formed arbitrarily(not min-cut partitioning). The target arrays are 1x1 array(1 core)

and 1x2 array(2 cores) and target IIs are 4 and 2 for 1x1 and 1x2 array, respectively.

First, section A is scheduled onto 1x1 array with II=4 and II=2. Figure 6.9(b) shows

the scheduling result of section A on a single core with 4 FUs. Bold letters with

underline show the actual placement of the operations. Gray letters with underline

are occupancies due the to modulo constraint of II=4 and normal gray letters show

occupancies due to the modulo constraint of II=2. After the scheduling of section

A, only 12 slots are available(Figure 6.9(b)). However, when section B is scheduled,

occupied slots due to modulo constraint of II=2 becomes available since the modulo

constraint is limited to the section A. Figure 6.9(c) shows the available slots for sec-

tion B. First, operation B0 is placed at FU1 in cycle 2(slot (1, 2)) in Figure 6.9(d).

The II=4 modulo constraint marks slot (1, 6) as occupied and the II=2 modulo con-

straint makes slot (1, 0) and (1, 4) occupied. So, there is no resource conflict so

far. When operation B1 is placed at slot (2, 4) as in Figure 6.9(d), II=2 modulo

constraint marks slot (2, 2) and (2, 6) as occupied, but they are already occupied by

A3. However, this is not a real resource conflict since II=2 modulo constraint is only

valid for section B. II=2 modulo constraint becomes effective only when the schedule

is expanded to 1x2 array where section A and section B run on different cores. The

final schedule of section B is shown in Figure 6.9(e). Even though the II for a bigger

131

array is multiple of the smaller II in this example, the IIs don’t have to be multiple

of smaller one in reality. The constraints among the multi-level IIs are explained in

the following section.

Code migration at run-time is also shown in Figure 6.8(e). Here, a schedule in a

single core is expanded over to 2x2 array. Migration in this case is performed in two

steps.

Determining Multi-level IIs: In conventional modulo scheduling, the min-

imum II is selected based on the number of available resources(ResMII) and the

length of inter-iteration dependency cycles(RecMII). Starting from the minimum II,

the scheduler increases the II until it finds a valid schedule. In VMS, scheduling is

performed with multiple IIs as shown in Equation 6.1), where �N refers to the number

of cores in a target array. Before starting the scheduling for virtualization, VMS

generates test schedules for each target array without virtualization. The achieved II

of each level (TestIIk in Equation 6.3) determines the benefit of virtualization.

For the first level II, which targets the smallest array, ResMII and RecMII are

calculated in a conventional way While the ResMII for level �k changes depending

on the number of cores(C k in Equation 6.2), the RecMII stays the same since it is

not related to the number of resources available. The calculated ResMII and RecMII

for each level define the lower bound of II to try(Equation 6.3). The lower bound is

also determined by the II in the next level. When the II for a bigger array becomes

greater than the II for a smaller array, there is no point of running the loop on a bigger

array. Finally, the II(IIk in each level is limited to the achieved II of the previous

132

level (IIk+1) in the test run. This one also tests the benefit of the virtualization.

The scheduling order of II sets is determined by the weighted summation of all the

IIs(Equation 6.4).

IIs = (II1, II2, ..., IIN) (6.1)

ResMIIk = ResMII1 / Ck, RecMIIk = RecMII1 (k > 1) (6.2)

IIk ≥ max(ResMIIk, RecMIIk), IIk > IIk+1, IIk < TestIIk−1 (6.3)

cost(IIs) =
N∑

k=1

(
wk × IIk) (6.4)

Register Allocation with Multi-level IIs: Traditionally, register allocation

is performed after scheduling, and spill code is inserted when the register requirement

exceeds the register file capacity. Spilling in a highly distributed architecture like

PPA is quite costly since it involves routing to/from the memory units and may

require complete rescheduling of the loop. Moreover, spilling can easily happen due

to the small size of the register files. For this reason, EMS performs register allocation

during scheduling to avoid spilling and guarantee routability through the register files.

We take the same approach of concurrent scheduling and register allocation in VMS.

PPA supports rotating register files that implicitly copy the stored register values at

II boundaries so that values can stay in the register file more than II cycles. Since

VMS has multi-level of modulo constraints, register allocation needs be performed in

a way that all the modulo constrains are observed inside the register files. To simply

133

0

0 .5

1

1 .5

2

2 .5

3

3 .5

1 x 1 1 x 1 1 x 2 1 x 1 1 x 3 1 x 1 2 x 2 1 x 1 1 x 1 1 x 2 1 x 1 1 x 3 1 x 1 2 x 2 1 x 1 1 x 1 1 x 2 1 x 1 1 x 3 1 x 1 2 x 2

1 c o re 2 c o re s 3 c o re s 4 c o re s 1 c o re 2 c o re s 3 c o re s 4 c o re s 1 c o r e 2 c o re s 3 c o r e s 4 c o re s

A A C 3 D H.2 6 4

Pe
rf

or
m

an
ce

 R
at

io

Figure 6.10: Performance Evaluation of VMS

state, the same concept of different scopes in multi-level modulo constraints can be

applied to the register allocation. The details are omitted due to the space limitation.

6.5 Experiments

We evaluated the performance and power of a PPA that consists of eight cores as

shown in Figure 6.5(a). First, the performance of VMS is presented for kernel loops in

three multimedia applications. The performance was measured by the execution time

of the three multimedia applications with different configurations of core aggregation

and the power was measured only for H.264 application.

6.5.1 Virtualized Modulo Scheduling Evaluation

The performance of VMS was evaluated for 200 kernel loops that can be mod-

ulo scheduled in three benchmarks. Figure 6.10 shows the performance ratio of the

schedules targeting different set of PPA sub-arrays. The performance ratio of the

134

schedules was compared to the theoretical upper bound of each loop when mapped

onto a single PPA core(MinII). The first column in each benchmark shows the ratio

of schedules targeting a single core. For all three benchmarks, the VMS achieves 90%

of the maximum throughput for a single core. Considering the distributed hardware

in PPA, the Edge-centric approach indeed provide good quality of schedules.

The rest of the columns show how the ratio changes when loops are scheduled

targeting multiple sub-arrays for virtualization. The number of target sub-arrays is

limited to two since we discovered that targeting more than two sub-arrays does not

work well in VMS. The left column in each ’N core’ group shows the performance of

the schedule when running in a single core, and the right column shows the result

for running in multiple cores. As we expected, the performance of the virtualized

schedule in a single core decreases by 8% in average. due to the additional modulo

constraint. However, mapping these virtualized loops onto multiple cores allows a big

performance increase. On average, the speed up of virtualized schedules on 2, 3, and

4 cores are 1.96, 2.76, and 3.23, respectively. Even though there is some performance

degradation for a single core, virtualization can accelerate the overall performance of

the application in the presence of fluctuating resource availability.

6.5.2 Performance Evaluation of PPA

Figure 6.11 shows the performance from different configurations of the PPA across

three applications. The graph shows the execution time for each application in million

cycles. The first bar of each application(acyclic) represents the entire application

135

executing on a single PPA core without modulo scheduling. The execution time for

AAC and 3D go off the chart and their numbers are shown in the graphs. The second

bar(modulo) represents the application where the acyclic code runs on a single core,

and the inner-most loops are modulo scheduled and execute on 2x2 PPA sub-array.

The rest of the graphs shows the performance results when each application is mapped

onto different number of PPA cores. Within each ’N core’ group, both static(st) and

dynamic(dy) partitioning were applied.

First, we can notice that exploiting fine-grain pipeline parallelism with modulo

scheduling allows 2.53x speed up in average on a 2x2 PPA sub-array. As shown in

Section 6.2, increasing the number of cores beyond four does not allow much per-

formance gain due to the limited amount of parallelism. When more resources are

available, exploiting coarse-grain pipeline parallelism can further improve the overall

performance. In this work, our focus is on the back-end scheduling of streaming appli-

cations. Here, we manually extracted the task graphs (Figure 6.3). Other streaming

language such as StreamIt [20] can be employed to extract the coarse-grain pipeline

parallelism and be fed to our VMS framework as input. We varied the number of

PPA cores starting from the number of stages in each application, and increased up

to 8 cores available in the PPA. For H.264, we merged the second and the third stages

in Figure 6.3(c) since they have relatively small execution time. Since the outer-most

loop in H.264 was not pipelined due to the memory dependency, it does not get as

much benefit as AAC and H.264.

In general, increasing the number of cores provides the overall performance gain

136

0

20

40

60

80

100

120

st d y st d y st dy st d y st d y

acyclicm odulo 4 core s 5 core s 6 core s 7 core s 8 core sEx
ec

ut
io

n
Ti

m
e

(m
ill

io
n

cy
cl

es
)

A A C

0

20

40

60

80

100

st d y st d y st d y st dy

acyclic m odulo 5 core s 6 core s 7 core s 8 core sEx
ec

ut
io

n
Ti

m
e

(m
ill

io
n

cy
cl

es
)

3D

0

20

40

60

80

100

120

st d y st dy st d y st dy st dy st d y

acyclicm od u lo 3 core s 4 core s 5 core s 6 core s 7 core s 8 core sEx
ec

ut
io

n
Ti

m
e

(m
ill

io
n

cy
cl

es
)

H.264
238.3

Figure 6.11: Performance Evaluation of PPA

for all three applications and shows reduced execution time over both acyclic and

modulo configurations, with an exception of 4 cores with static partitioning for AAC.

This is because AAC spends most of the execution time in the third stage in Fig-

ure 6.3(c). Extracting fine-grain pipeline parallelism is mostly important to improve

the overall performance. However, static partitioning in 4 cores only allows a single

core to be utilized for the third stage. As a result, coarse-grain pipelining parallelism

does not gives benefit over modulo configuration. Dynamic partitioning with virtu-

alized execution becomes quite useful in this case. With virtualization, the compute

intensive kernels in the third stages can utilize additional resources from other stages

when they are sitting idle, allowing 1.55 speedup over static configuration.

The same trend appears on all three applications; the dynamic partitioning out-

performs the static partitioning when there is not enough resources to fully exploit

the available fine-grain pipeline parallelism. However, the benefit of virtualization

diminishes as more resources become available in the target PPA configurations. For

AAC, the static partitioning out-performs the dynamic partitioning when 5 cores

are utilized. For 3D and H.264, the reversion of performance appears later at 8

cores and 5 cores, respectively. This is because the amount of fine-grain pipeline

137

parallelism is richer in two applications than in AAC. To summarize, exploiting the

coarse-grain pipelining parallelism does provide the overall performance improvement

over modulo configuration with both static and dynamic partitioning. When there

is a large number of resources available, static partitioning in 8 cores can achieve

the speedup of 4.5 and 1.84 over acyclic and modulo respectively in average for three

applications. The dynamic partitioning can maximally utilize the available resource

in smaller arrays, out-performing the static partitioning.

Limitations on Virtualization

Virtualized Modulo Scheduling should be carefully applied to the kernel loops

since it incurs run-time overhead and performance degradation. The run-time over-

head includes the latency of hand-shaking between neighboring cores to check the

resource availability and the code migration latency. Since this overhead is incurred

in every invocation of a virtualized loop, virtualization can increase the overall exe-

cution time when the trip count is small. In this work, we virtualized all the modulo

scheduled loops without considering the benefit. We believe selectively virtualization

with profiling information can definitely improve the performance of dynamic par-

titioning results in Figure 6.11. Also, resource allocation at run-time is performed

in a greedy way in our evaluation. More sophisticated allocation that considers the

benefit of the additional resources can also improve the results. Attacking the current

limitations of virtualization is on the list of our future work.

138

6.5.3 Power and Area Measurement

Area and power consumption was measured using the RTL Verilog model of the

Polymorphic Pipeline Array (PPA) and synthesized using typical operation conditions

in TSMC 90nm technology. The model contained both the datapath and control path

and was targeted at 200MHz. Synthesizing higher frequencies was possible, but at

200MHz the target applications could be completed and more aggressive frequencies

would generate a less energy efficiency design. The memories were generated us-

ing standard library models found in the Artisan SRAM memory compiler. Power

consumption was calculated using Synopsys PrimTime PX. PrimTime calculates the

total power consumption of the PPA using the synthesized netlist and parasitic data

generated from Physical Compiler and activity files generated from behavioral simu-

lations. The SRAM memory power was extracted from data generated by the Artisan

Memory Compiler. The breakdown of average power when 8 PPA cores are executing

the whole code region of H.264 is shown Figure 6.12(a). The major portion is in

computation units like PEs and LRFs. The data memory power consumption is rel-

atively low because H.264 has a high ratio of computation over memory operations.

The average power for 8 cores running in pipelining mode is 255.06mW at 200Hz.

The toal area of 8 core PPA is 3.37 mm2.

Figure 6.12(b) plots the performance vs. power consumption of the PPA and

other existing architectures. The numbers were obtained from a graph in [16]. On

this plot, points on the same slope have roughly equivalent power efficiency in terms

of MIPS/mW, with points towards the upper left having greater power efficiency. As

139

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0

Pe
rf

or
m

an
ce

 (M
IP

S)

Pow e r Consum ption (m W)

Tensilica Diamond Core:
12 MIPS/mW

PPA: 9.6 MIPS/mW

TI C6x: 5 MIPS/mW

ARM11: 3.84 MIPS/mW

Itanium2: 0.08 MIPS/mW

XScale: 0.41 MIPS/mW

(a) (b)

P E

3 1 %

L RF

4 3 %

In te rc o n n e c t

1 2 %

D -M EM

3 % I-M EM

1 1 %

255.06 m W

Figure 6.12: (a) Power breakdown of PPA: running H.264, (b) Power/performance
comparison

can be seen from the plot, the PPA is able to achieve good power efficiency, only

beaten by The Tensilica Diamond Core [53]. Embedded procoeessors like ARM11

and TI C6x show reasonable power efficiency, but their performance is significantly

lower than PPA. Thus, they cannot meet the performance requirement of today’s

compute-intensive multimedia applications. The actual data points for XScale and

Itanium2 are outside the range of the plot, but their efficiency lines are shown. As

can be observed, the efficiency decreases significantly as the hardware becomes more

general and less tailored for embedded applications.

6.6 Related Works

Architectures: Combining cores to create a bigger logical core is quite a new

technique, recently proposed by Core fusion [22] and Composable Lightweight Proces-

sors [24]. Core Fusion is a CMP architecture that can dynamically allocate indepen-

dent cores together for a single thread execution maintaining ISA compatibility. CLPs

140

also allows dynamic allocation of cores to form a larger and powerful single-threaded

processors. It also keeps the binary compatibility for the special EDGE ISA. The ma-

jor difference between [22] and [24] is the target environment. PPA is designed to

exploit single thread performance in mobile environments where power consumption

and hardware cost is a first-class constraint. The building blocks of PPA is simple in-

order cores similar to clustered VLIW processors [59]. Also, the statically controlled

point-to-point interconnect provides a fast inter-core communication, allowing PPA

to exploit fine grain pipeline parallelism efficiently for multimedia applications.

The PE level view of PPA is similar to Coarse-Grained Reconfigurable Architec-

tures. ADRES [38] is a reconfigurable architecture where PEs are connected to a

mesh-style interconnect. Modulo scheduling using a simulated annealing is employed

to exploit fine grain pipeline parallelism of nested loops. The top row in the array

behaves as a VLIW processor with a multi-ported central register file. However, the

non software pipelineable region of the application can only utilize the VLIW part

of the array. So, it cannot pipeline the application in a coarser granularity as PPA.

PipeRench [18] is a 1-D architecture in which processing elements are arranged in

stripes to facilitate pipelining, but it has a fixed configuration of resource partitioning

for pipelining while PPA can partition the array differently as to the characteristics

of the target application. RaPiD [13] is another CGRA that consists of heteroge-

neous elements (ALUs and registers) in a 1-D layout, connected by a reconfigurable

interconnection network.

Exploiting Parallelism: Coarse-grained pipeline parallelism is becoming an

141

attractive approach to accelerate single thread performance as multicore architectures

enter the mainstream. [20] and [27] proposed to exploit coarse-grained pipeline paral-

lelism for StreamIt language. Even their target architectures(RAW architectures [30]

and Cell processors [21]) are not an embedded system, their technique of task level

software pipelining can be applied to our execution model in PPA. [55] has proposed

a practical approach to extract a pipeline parallelism from legacy C code. With a help

of the programmer, their static analysis tool can extract the potential for streaming

execution.

Virtualization: There is much related work on virtualization for binary com-

patibility for different architectures in literature. Transmeta Code Morphing Soft-

ware [9] dynamically converts x86 applications into VLIW programs. DynamoRIO [2],

Daisy [11, 12], and DIF [41] are all examples that dynamically translate applications

to target entirely different microarchitectures. Recent work [6] proposed dynamically

binding to cyclic accelerators with modulo scheduling at run-time. The trace in a host

processor is examined and run-time modulo scheduling is performed to map the kernel

loops onto the cyclic accelerator. While this work focuses on acyclic-to-cyclic con-

version, we propose dynamic conversion of modulo scheduled loops in homogeneous

multi-core architectures.

6.7 Summary

In this chapter, we proposes a flexible multicore accelerator for mobile multimedia

applications. Fine-grain and coarse-grain pipeline paralellism cooperatively improve

142

a single thread performance of computation-rich multimedia applications. To effi-

ciently extract both forms of parallelism on the same piece of hardware, the PPA

supports a flexible execution model where cores can be combined to create a powerful

core that can effectively exploit fine-grain and and pipeline parallelism to achieve up

to 8x speed up over a 4-wide VLIW processor. The array can be either statically or

dynamically partitioned depending on the computation requirement of the applica-

tion. For dynamic partitioning, we propose Virtualized Modulo Scheduling that can

generate a single schedule of a target loop that can be easily converted to target dif-

ferent sub-arrays at run-time. With both static and dynamic partitioning, the 8-core

PPA can achieve up to 4.5 speedup over a single core execution.

143

CHAPTER 7

Conclusion

7.1 Summary

Polymorphic Pipeline Array is a flexible multicore accelerator that improves upon

Coarse-Grained Reconfigurable Architectures for future mobile multimedia applica-

tions. The acceleration of applications is extended beyond the innermost loops to

the whole region of the applications. Both fine-grain and coarse-grain pipeline paral-

lelism rich in today’s multimedia applications can be effectively exploited by modulo

scheduling and streaming execution with tightly coupled cores. Also, PPA shares

the inherent power efficiency of CGRAs with fully distributed register files, nearest

neighbor interconnect, and simple control. Thus, PPA provides an attractive solution

that meets both high computing performance and tight power consumption budget

requirements in future embedded systems.

In this dissertation, various compiler and hardware optimizations are presented

for CGRAs that form the basic building block of PPA. Scheduling problem in highly

144

distributed architectures like CGRAs is quite different from conventional scheduling

in that the routing of operands should be explicitly orchestrated by the compiler.

Two modulo scheduling techniques are proposed to enhance the quality of schedules

in a fraction of compilation time over the traditional approach.

Modulo graph embedding leverages classic graph embedding to draw loop bod-

ies onto a three dimensional scheduling space. An affinity graph heuristic analyzes

producer/consumer relations to place operations with common consumers closely. A

skewed scheduling space allows dense packing of operations while ensuring operand

routing paths are available. Edge-centric modulo scheduling focuses primarily on the

routing problem, with placement being a by-product of the routing process. EMS

categorizes the edges in dataflow graphs based on their characteristics and apply dif-

ferent strategy to routing them. EMS achieves 98% of a state-of-the-art simulated

annealing approach, while reducing compilation time by 18x.

A novel control path design is proposed that adopts the concept of a token network

in dataflow machines for fine-grain code compressions in CGRAs. The datapath is

cloned to create a token network where resources observe the incoming tokens to

determine the instruction format in fine-grain code compression. The resulting control

path reduces the control power consumption by 56% while enabling a performance

gain of 4%.

While these optimizations attack the bottlenecks for deploying CGRAs for mobile

environments, CGRAs have two inherent weaknesses: scalability and accelerating

only innermost loops. With increasing technology, more resources are likely to be

145

available in future embedded systems. PPA can utilize large number of resources

by accelerating the whole region of applications with flexible execution model. By

adopting streaming execution model, target applications can be further accelerated

by running multiple tasks concurrently on partitioned sub-arrays of PPA. The most

distinguishing feature of PPA is its ability to dynamically partition the resources as

to the availability. Virtualized modulo scheduling generates a unified schedule that

can be dynamically converted to target different sub-arrays. The 8-core PPA can

achieve up to 4.5x speed up over a single core execution.

7.2 Future Directions

The research presented here can be extended in several directions. First, the

performance of dynamic partitioning can be improved in various ways. The current

VMS is in a initial development stage and can be improved with appropriate heuristics

that reduce the sub-optimality of the unified schedule. Also, virtualization of loops

should be carefully applied considering the run-time overhead and the scheduling

quality. We noticed that the VMS scheduling results vary across different loops (ie

some lose, some win). Selective application of virtualization combined with selective

generation of multiple independent schedules will improve the results dramatically.

More intelligent resource allocation at run-time is another feature that requires in-

depth investigation to improve the performance.

Another issue that requires more attention is how to extract the task graphs of

target applications for streaming execution. In this dissertation, all the applications

146

were manually analyzed and converted to streaming style applications. This defi-

nitely limits the number of applications that can be evaluated. It is well-known that

legacy C codes are hard to parallelize due to their complicated memory dependencies.

StreamIt [56] can be a good solution to obtain a wide range of applications. There

are already a large number of multimedia applications written in StreamIt language.

Replacing the front-end of the current framework with StreamIt compiler system is a

feasible and attractive solution.

147

BIBLIOGRAPHY

148

BIBLIOGRAPHY

[1] M. Ahn, J. W. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi. A spatial map-
ping algorithm for heterogeneous coarse-grained reconfigurable architectures. In
Proc. of the 2006 Design, Automation and Test in Europe, pages 363–368, Mar.
2006.

[2] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. In Proc. of the SIGPLAN ’00 Conference on Programming
Language Design and Implementation, pages 1–12, June 2000.

[3] K. Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss. Vector pro-
cessing as an enabler for software-defined radio in handheld devices. EURASIP
Journal Applied Signal Processing, 2005(1):2613–2625, 2005.

[4] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher. A programmable
platform for software-defined radio. In Intl. Symposium on System-on-a-Chip,
pages 15–20, Nov. 2003.

[5] F. Bouwens, M. Berekovic, B. D. Sutter, and G. Gaydadjiev. Architecture en-
hancements for the adres coarse-grained reconfigurable array. In Proc. of the
2008 International Conference on High Performance Embedded Architectures and
Compilers, pages 66–81, Jan. 2008.

[6] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized execution accelerator
for loops. In Proc. of the 35th Annual International Symposium on Computer
Architecture, pages 389–400, June 2008.

[7] K. Coons, X. Chen, S. Kushwaha, K. McKinley, and D. Burger. A spatial path
scheduling algorithm for edge architectures. In 14th International Conference on
Architectural Support for Programming Languages and Operating Systems, pages
129–140, Oct. 2006.

[8] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.
ACM Transactions on Graphics, 15(4):301–331, 1996.

[9] J. Dehnert et al. The Transmeta code morphing software: using speculation,
recovery, and adaptive retranslation to address real-life challenges. In Proc. of

149

the 2003 International Symposium on Code Generation and Optimization, pages
15–24, Mar. 2003.

[10] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160,
1984.

[11] K. Ebcioglu and E. Altman. Daisy: Dynamic compilation for 100% architectural
compatibility. In Proc. of the 24th Annual International Symposium on Computer
Architecture, pages 26–38, June 1997.

[12] K. Ebcioğlu, E. Altman, M. Gschwind, and S. Sathaye. Dynamic binary trans-
lation and optimization. IEEE Transactions on Computers, 50(6):529–548, June
2001.

[13] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
In Proc. of the 5th IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 106–115, Apr. 1997.

[14] A. E. Eichenberger and E. S. Davidson. Stage scheduling: A technique to reduce
the register requirements of a modulo schedule. In Proc. of the 28th Annual
International Symposium on Microarchitecture, pages 338–349, Nov. 1995.

[15] J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge,
MA, 1985.

[16] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging the computation gap be-
tween programmable processors and hardwired accelerators. In Proc. of the 15th
International Symposium on High-Performance Computer Architecture, pages
313–322, Feb. 2009.

[17] J. Glossner, E. Hokenek, and M. Moudgill. The sandbridge sandblaster com-
munications processor. In Proc. of the 2004 Workshop on Application Specific
Processors, pages 53–58, Sept. 2004.

[18] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia accel-
eration. In Proc. of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, June 1999.

[19] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. Lamb, C. Leger,
J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for
communication-exposed architectures. In Tenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages
291–303, Oct. 2002.

[20] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. In 14th International Confer-
ence on Architectural Support for Programming Languages and Operating Sys-
tems, pages 151–162, 2006.

150

[21] IBM. Cell Broadband Engine Architecture, Mar. 2006.

[22] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: Accommodating
software diversity in chip multiprocessors. In Proc. of the 34th Annual Interna-
tional Symposium on Computer Architecture, pages 186–197, 2007.

[23] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31:7–15, 1989.

[24] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler. Composable lightweight processors. In Proc.
of the 40th Annual International Symposium on Microarchitecture, pages 381–
393, Dec. 2007.

[25] Y. Kim, I. Park, K. Choi, and Y. Paek. Power-conscious configuration cache
structure and code mapping for coarse-grained reconfigurable architecture. In
Proc. of the 2006 International Symposium on Low Power Electronics and De-
sign, Oct. 2006.

[26] G. Krishnamurthy, E. Granston, and E. Stotzer. Affinity-based cluster assign-
ment for unrolled loops. In Proc. of the 2002 International Conference on Su-
percomputing, pages 107–116, June 2002.

[27] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on
multicore platforms. In Proc. of the SIGPLAN ’08 Conference on Programming
Language Design and Implementation, pages 114–124, June 2008.

[28] A. Lambrechts, P. Raghavan, M. Jayapala, F. Catthoor, and D. Verkest. Energy-
aware interconnect optimization for a coarse grained reconfigurable processor. In
Proc. of the 2008 International Conference on VLSI Design, pages 201–207, Jan.
2008.

[29] J. Lee, K. Choi, and N. Dutt. Compilation approach for coarse-grained reconfig-
urable architectures. IEEE Journal of Design & Test of Computers, 20(1):26–33,
Jan. 2003.

[30] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amaras-
inghe. Space-time scheduling of instruction-level parallelism on a RAW machine.
In Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 46–57, Oct. 1998.

[31] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent scheduling. In
Proc. of the 35th Annual International Symposium on Microarchitecture, pages
111–122, 2002.

[32] C. Lefurgy, P. Bird, I. Chen, and T. Mudge. Improving code density using
compression techniques. In Proc. of the 30th Annual International Symposium
on Microarchitecture, pages 194–203, Dec. 1997.

151

[33] W. Li and H. Kurata. A grid layout algorithm for automatic drawing of bio-
chemical networks. Bioinformatics, 21(9):2036–2042, 2005.

[34] S. Liao et al. Code optimization techniques for embedded DSP microprocessors.
In Proc. of the 32nd Design Automation Conference, pages 599–604, 1995.

[35] Y. Lin et al. Soda: A low-power architecture for software radio. In Proc. of the
33rd Annual International Symposium on Computer Architecture, pages 89–101,
June 2006.

[36] G. Lu et al. The MorphoSys parallel reconfigurable system. In Proc. of the 5th
International Euro-Par Conference, pages 727–734, 1999.

[37] A. Mahesri et al. Tradeoffs in designing accelerator architectures for visual com-
puting. In Proc. of the 41st Annual International Symposium on Microarchitec-
ture, pages 164–175, Nov. 2008.

[38] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proc. of the 2003 Design, Automation
and Test in Europe, pages 296–301, Mar. 2003.

[39] B. Mei, A. Lambrechts, J. Y. Mignolet, D. Verkest, and R. Lauwereins. Archite-
cure exploration for a reconfigurable architecture template. In Proc. of the 2005
Design, Automation and Test in Europe, pages 90–101, Mar. 2005.

[40] M. Mercaldi, S. Swanson, A. Petersen, A. Putnam, A. Schwerin, M. Oskin, and
S. J. Eggers. Instruction scheduling for a tiled dataflow architecture. In 14th
International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 141–150, Oct. 2006.

[41] R. Nair and M. Hopkins. Exploiting instruction level parallelism in processors by
caching scheduled groups. In Proc. of the 24th Annual International Symposium
on Computer Architecture, pages 13–25, June 1997.

[42] E. Nystrom and A. E. Eichenberger. Effective cluster assignment for modulo
scheduling. In Proc. of the 31st Annual International Symposium on Microar-
chitecture, pages 103–114, Dec. 1998.

[43] H. Pan and K. Asanovic. Heads and tails: a variable-length instruction format
supporting parallel fetch and decode. In Proc. of the 2001 International Con-
ference on Compilers, Architecture, and Synthesis for Embedded Systems, pages
168–175, Nov. 2001.

[44] G. M. Papadopoulos and D. E. Culler. Monsoon: an explicit token-store ar-
chitecture. In Proc. of the 17th Annual International Symposium on Computer
Architecture, pages 82–91, May 1990.

152

[45] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding: Mapping
applications onto coarse-grained reconfigurable architectures. In Proc. of the
2006 International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pages 136–146, Oct. 2006.

[46] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-centric mod-
ulo scheduling for coarse-grained reconfigurable architectures. In Proc. of the 17th
International Conference on Parallel Architectures and Compilation Techniques,
pages 166–176, Oct. 2008.

[47] M. Quax, J. Huisken, and J. Meerbergen. A scalable implementation of a re-
configurable WCDMA RAKE receiver. In Proc. of the 2004 Design, Automation
and Test in Europe, pages 230–235, Mar. 2004.

[48] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Annual International Symposium on Microarchitec-
ture, pages 63–74, Nov. 1994.

[49] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao. Single-
dimension software pipelining for multidimensional loops. ACM Transactions
on Architecture and Code Optimization, 4(1):7, 2007.

[50] J. Sánchez and A. González. Modulo scheduling for a fully-distributed clustered
VLIW architecture. In Proc. of the 33rd Annual International Symposium on
Microarchitecture, pages 124–133, Dec. 2000.

[51] S. Segars, K. Clarke, and L. Goudge. Embedded control problems, thumb and
the armt7tdmi. IEEE Micro, 15(2):22–30, 1995.

[52] M. B. Taylor et al. The Raw microprocessor: A computational fabric for software
circuits and general purpose programs. IEEE Micro, 22(2):25–35, 2002.

[53] Tensilica Inc. Diamond Standard Processor Core Family Architecture, July 2007.
http://www.tensilica.com/pdf/Diamond WP.pdf.

[54] Texas Instruments. TMS320C55x DSP CPU Programmer’s Guide, Aug. 2001.
http://focus.ti.com/lit/ug/spru376a/spru376a.pdf.

[55] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In Proc. of the 40th
Annual International Symposium on Microarchitecture, Dec. 2007.

[56] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for
streaming applications. In Proc. of the 2002 International Conference on Com-
piler Construction, pages 179–196, 2002.

153

[57] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, and W. Bohm. A
compiler framework for mapping applications to a coarse-grained reconfigurable
computer architecture. In Proc. of the 2001 International Conference on Com-
pilers, Architecture, and Synthesis for Embedded Systems, pages 116–125, 2001.

[58] M. Woh et al. From soda to scotch: The evolution of a wireless baseband proces-
sor. In Proc. of the 41st Annual International Symposium on Microarchitecture,
pages 152–163, Nov. 2008.

[59] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A distributed control path ar-
chitecture for VLIW processors. In Proc. of the 14th International Conference on
Parallel Architectures and Compilation Techniques, pages 197–206, Sept. 2005.

154

