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ABSTRACT

Context-Aware Network Security

by

Sushant Sinha

Chair: Farnam Jahanian

The rapid growth in malicious Internet activity, due to the rise of threats like automated worms,

viruses, and botnets, has driven the development of tools designed to protect host and network

resources. One approach that has gained significant popularity is the use of network based security

systems. These systems are deployed on the network to detect, characterize and mitigate both new

and existing threats.

Unfortunately, these systems are developed and deployed in production networks as generic

systems and little thought has been paid to customization. Even when it is possible to customize

these devices, the approaches for customization are largely manual or ad hoc. Our observation of the

production networks suggest that these networks have significant diversity in end-host characteris-

tics, threat landscape, and traffic behavior – a collection of features that we call the security context

of a network. The scale and diversity in security context of production networks make manual or

ad hoc customization of security systems difficult. Our thesis is that automated adaptation to the se-

curity context can be used to significantly improve the performance and accuracy of network-based

security systems.

In order to evaluate our thesis, we explore a system from three broad categories of network-

based security systems: known threat detection, new threat detection, and reputation-based mitiga-

tion. For known threat detection, we examine a signature-based intrusion detection system and show

that the system performance improves significantly if it is aware of the signature set and the traffic

characteristics of the network. Second, we explore a large collection of honeypots (or honeynet) that

x



are used to detect new threats. We show that operating system and application configurations in the

network impact honeynet accuracy and adapting to the surrounding network provides a significantly

better view of the network threats. Last, we apply our context-aware approach to a reputation-based

system for spam blacklist generation and show how traffic characteristics on the network can be

used to significantly improve its accuracy.

We conclude with the lessons learned from our experiences adapting to network security context

and the future directions for adapting network-based security systems to the security context.
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CHAPTER 1

Introduction

The Internet has significantly simplified public communication and enabled a variety of elec-

tronic activities such as shopping, banking, reading blogs, and social networking. Many of these

activities require end-users to divulge personal information, which is then automatically stored and

processed by software components. With the increasingly ubiquitous nature of the Internet and the

large number of vulnerabilities in software systems, the Internet has become an easy medium for

information theft and abuse. Threats in the form of worms, viruses, botnets, spyware, spam, and

denial of service [13, 19, 78, 48] are rampant on today’s Internet.

To counter these threats, a number of systems have been developed to protect host and network

resources. The host-based security systems have visibility into the filesystem, processes, and net-

work access on the machine at a very fine level of granularity. However, they require instrumenting

end-hosts, and that can adversely impact the availability and performance of a production service.

On the other hand, network-based security systems are easy to deploy because they require little or

no modifications to the end-hosts. They receive an aggregated view of the network but have limited

visibility into the end-hosts.

Due to the ease of deployment, network-based security systems have gained significant popular-

ity in recent years. They can be broadly classified into three categories, i.e., known threat detection

systems, new threat detection systems, and reputation-based detection systems. Known threat detec-

tion systems generally use signatures of known threats and include systems like Nessus [5] to detect

vulnerable network services and Snort [67] to detect and mitigate known intrusions. New threat de-

tection systems include anomaly detection systems and unused resource monitoring systems such as

1



honeypots (e.g., honeyd [63]). Reputation-based systems use some measure of good or bad activity

and then use it to detect new threats. These include domain blacklisting like Google Safe Browsing

API [38] and spam blacklists like SpamHaus [11]. Since reputation-based systems use some known

way to detect good or bad and then use the reputation to detect future threats, they fall somewhere

in between the known threat detection systems and the new threat detection systems.

While network-based security systems themselves have improved considerably over time, they

still take a “one-size fits all” approach when deployed in different networks. These systems are

typically viewed as generic solutions and fail to leverage the contextual information available in

the networks to customize their deployment. Unfortunately, this information may be critical to the

performance and accuracy of these systems as the networks they are deployed in differ significantly

with each other in terms of policy, the topological layout, the vulnerability landscape, the exploits

observed, the traffic characteristics, etc.

Many network-based security systems acknowledge the need to adapt to the network. However,

such adaptation is often decided in an ad hoc fashion or left to be manually configured. For ex-

ample, honeypot systems like honeyd [63] come with a default configuration file for the operating

system and the vulnerability configuration of the honeypots. While such systems can be manually

configured by a network administrator, the scale of configuration and the diversity among different

networks make it very challenging. For example, configuring honeynet in a network may require

one to come up with operating system and application configuration for thousands of hosts. In ad-

dition, the diversity among networks make it difficult for people to share their configurations and

mitigate this effort.

Our thesis is that automatic adaptation to the network context will significantly improve the

performance and accuracy of network-based security systems. In order to evaluate our thesis, we

explore a system from three broad categories of network-based security systems: known threat

detection, new threat detection, and reputation-based mitigation. For known threat detection, we

examine a signature-based intrusion detection system and show that the system performance im-

proves significantly if it is aware of the signature set and the traffic characteristics of the network.

Second, we explore a large collection of honeypots (or honeynet) that are used to detect new threats.

We show that operating system and application configurations in the network impact honeynet ac-

curacy and adapting to the surrounding network provides a significantly better view of the network

2



threats. Last, we apply our context-aware approach to a reputation-based system for spam blacklist

generation. We show how traffic characteristics on the network impact its accuracy and then develop

a technique for automatically adapting the system to the traffic characteristics.

While we do not propose an automated way to adapt any network-based security system, we

lay down a rigorous path for analyzing the impact of context on the performance and accuracy of

the system and then developing techniques that automatically take the context into account. The

extensive studies that we present lay down the foundation for adapting a new security system to a

given network context.

Adding context to computing so that they can better serve human needs has received significant

attention from the academic community. Explicitly adding context for each user is too cumbersome

and so most of these attempts have tried to leverage user group activities to automatically infer the

context. In the mobile computing community, context in the form of location, role and time has been

used to automatically adapt a mobile device [52]. For example, a cell phone can vibrate instead of

ringing if it knows that a person is in a meeting. Search engine technologies have leveraged user

clicks to determine the context for a query and improve search ranking [42]. They do not take

explicit feedback from the users but automatically determine the context for a query by exploiting

the large amount of click-through data.

In the following sections, we first explain what is meant by the security context of a network

and argue that security context changes significantly over time and space. We then provide a brief

overview of our techniques to automatically adapt three types of network-based security systems and

show how these techniques significantly improve the performance and accuracy of these systems.

1.1 Context

Context can mean a variety of things to computer scientists, from one’s physical location, to

one’s current desktop environment, to the task being performed, etc. We begin, therefore, by pro-

viding a definition of what we mean by context and more specifically, context-aware security. We

show that the properties important to context-aware security are, in fact, non-trivial to measure.

However, we argue that if they can be measured, context may be used in a variety of ways that

improve performance and accuracy of existing and new security applications.

3
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Figure 1.1: (a) Packet rate as seen by each sensor normalized by /24 (from [24].) (b) The number
of darknets (of 31) reporting a port in the top 10 ports over a day, week, and month time frame
(from [17].). Different networks have different attack surfaces.
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1.1.1 What is Security Context?

Short of unplugging our computers from the network and locking them in a room, there is no

absolute security. At its most fundamental level, the security is a risk analysis activity in which prac-

titioners decide what they wish to protect from whom and at what cost. The key to understanding

these tradeoffs are three properties, which we define to make up a network’s security context:

• Vulnerability profile: The vulnerability profile represents the space of all possible targets

and ideally all methods of unauthorized access to those services. In the traditional sense, this

is a mapping between the device (i.e., machine), operating system, applications, and the list

of known vulnerabilities for each. More broadly, this encompasses unknown vulnerabilities

in server software and the social engineering path for access acquisition in client software.

• Attack surface: The attack surface represents the unique threats posed by attackers to the

defenders of a particular network. In a traditional sense, it is a measure of the remote network

exploits (either attempted or successful) directed at a particular network. In a broader sense,

it encompasses the notion of who the attackers are, what resources they are interested in, and

the current techniques for acquiring those resources. For example, while a network might

run a large number of (potentially vulnerable) printer services, attackers may avoid these

services due to their uniqueness (and hence difficulty in exploiting), as well as the limited

value in compromising them. Of course, other attackers may feel just the opposite about

having access to printed documents – the context matters.

• Usage model: While the attack surface helps prioritize the potential targets specified in the

vulnerability surface by defining what the attackers are interested in and the current tools used

to achieve them, the usage model helps defenders prioritize the importance of the services on

the network. This prioritization may be as simple as defining what services are most used on

a network, but may layer in notions of data importance, disclosure liability, opportunity costs

on failure in availability, etc.

1.1.2 Does Security Context Change?

In the previous section, we defined security context to include a network’s attack surface, its

vulnerability profile, and its usage model. However, before we talk about adaptation of security
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Operating Networks
System A/16 B/16 C#1/17 D#1/19
Windows 44 25 76 77
Cisco IOS 14 7 - -
Apple 9 36 - -
Linux 9 7 15 6
.HP printer 3 13 - -
Solaris 9 7 1 2
*BSD 1 - 8 15

TCP Networks
Port A/16 B/16 C#1/17 D#1/19
139 42 17 - -
22 41 53 30 25
135 39 10 42 69
23 27 34 4 5
445 27 11 - -
80 21 26 93 96
25 12 10 70 83
21 8 24 77 79
427 4 26 - -
497 3 28 - -
110 1 - 39 17

Operating Systems TCP ports

Table 1.1: Comparing the vulnerable population in four networks, by operating systems and TCP
ports(from [72]). Different networks have different vulnerability profiles.

Hospital Library Regional Network Government Small College
APPL. IN OUT APPL. IN OUT APPL. IN OUT APPL. IN OUT

RTSP 96.25 1.91 HTTP 17,590 2,200 HTTP 1,390 231.43 HTTP 58,420 13,710
DNS 1.69 1.85 HTTPS 651.6 116.39 SSH 11.85 195.87 FLASH 4,080 84.75

HTTPS 3.49 .001 FLASH 706.02 13.13 HTTPS 108.49 98.11 HTTPS 1,280 1,400
SMTP 1.99 1.32 TCP/81 16.41 287.16 ESP 98.97 32.64 XBOX 1,010 1,610

LOTUS 1.73 .158 SMTP 100.83 166.51 SMTP 55.72 73.00 UNIDATA 947.91 950.88
NOTES -LDM

Table 1.2: The network application usage (Kbps) at 4 different networks. Different networks have
different usage models.

device to the security context it is important to determine whether the security context changes. In

this section, we examine the two main reasons for context change: the diversity among networks

(spatial variation) and the dynamic nature of context (temporal variation). We argue that these

changes are significant making any manual approach to context adaptation very difficult.

1.1.2.1 Spatial Variation of Context

As network and security practitioners, it should come as no surprise that different networks

exhibit different characteristics. What we have found during our research, however, is that these

differences are surprisingly large, pervasive, and have significant impacts on all aspects of the se-

curity in an organization. For example, consider the issue of an organization’s vulnerability profile.
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Table 1.1 compares the vulnerable population in these of four networks in two ways: by the operat-

ing system and by the TCP port. Of the four production networks (A/16, B/16, C/17 and D/19), two

of these networks (A/16 and B/16) are academic networks and two (C/17 and D/19) are web server

farms. The second largest operating system in network A/16 is surprisingly Cisco IOS, which is

found in the wireless access points and routers in the academic campus. On the other hand, Apple

Mac OS is the dominant operating system in network B/16. As expected, the web-server farms were

dominated by Windows servers. While SSH seems to be predominant service found in A/16 and

B/16, HTTP, FTP and SMTP seems to be the dominant services in the web server farms. Therefore,

the vulnerability profile may differ significantly depending on the network.

Today’s attacks are global and everyone see the “same stuff” right? Unfortunately, the threat

landscape also differs significantly for different networks. Cooke et al. [24] monitored unused

address spaces (darknets) in different networks. Since unused addresses do not have any legitimate

services, the traffic directed to these addresses are suspicious. Figure 1.1 shows the packet rates

observed by different sensors and normalized by /24 address range. It shows that some networks

receive significantly more suspicious traffic than others. In Bailey et al. [17], we examined, for 31

darknets, the top 10 destination ports, based on the number of packets, and compared these lists

across darknets. Figure 1.1 shows the number of darknets that had a particular destination port in

their top 10 list. The analysis is performed for the top 10 destination ports over a day, a week, and

a month time span. This figure shows that there are over 30 destination ports that appear on at least

one darknet’s top 10 list. A small handful of these destination ports appear across most darknets

(1433, 445, 135, 139), but most of the destination ports appear at less then 10 of the darknets. Not

only are there more or less attacks based on where you are, those attacks are targeting different

services as well.

The traffic characteristics of a network may also be significantly different than others. For ex-

ample, the list of IP addresses that legitimately access services on a given network may be different

from other networks. Similarly, HTTP may be the most prominent protocol in web server farms and

SMTP may be the most prominent protocol in a mail service provider network. Consider the data in

Table 1.2. While some applications (e.g., web) are global popular, many are not (e.g., Lotus Notes,

XBox). Note also the stark differences in the magnitude of traffic as well as the different behavior

as either servers (e.g., high in bound traffic) or clients (i.e., high outbound traffic) of a particular
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service.

1.1.2.2 Temporal Variation of Context

Another interesting observation of our work is that these unique individual contexts are highly

dynamic in nature. Attack surfaces, usage models, and even vulnerability profiles change rapidly

as new attacks are released, flash crowds are formed, or new application emerge. As an example,

consider Table 3.2 which shows the top five TCP ports and the number of packets observed over a

day for five months on the a /24 darknet in the B/16 network. We find that new services were targeted

heavily each month. The TCP ports 6000 and 1080 were the unusual ones targeted in April, the TCP

port 5000 was targeted in May, the TCP ports 22 and 5900 were targeted in June, and TCP port 4444

in July. The highly variable nature of this threat landscape makes chasing exploits difficult for the

defenders, who must adjust their vision of the attack surface to today’s or this week’s most popular

attacks.

1.2 Main Contributions

In the previous section, we found that the security context changes significantly with time and

space. Our thesis is that such differences can be exploited to significantly improve the performance

and accuracy of network-based security system. We justify our thesis by showing such improvement

for three types of security systems namely: the known threat detection systems, the new threat

detection systems and the reputation-based systems. We first explore how context information in

the form of network traffic and signature set can be used to improve performance of signature-based

security systems. We then look at why end-host characteristics and application configuration is

important in the accuracy of the honeynet system and show how it can be automatically used to

improve detection of new threats. Third, we investigate how network traffic impacts the accuracy

of a reputation-based system like blacklist generation and show how traffic on a network may be

utilized to generate accurate blacklists. We elaborate on these ideas in the remaining part of the

thesis and we start by providing an overview of our main contributions:

• Workload-aware intrusion detection
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Intrusion detection and prevention systems (IDS/IPS) take a set of signatures and detect in-

trusions by matching them with network traffic. Existing approaches to signature evaluation

apply statically-defined optimizations that do not take into account the network in which the

IDS or IPS is deployed or the characteristics of the signature database. We argue that for

higher performance, IDS and IPS systems should adapt according to the workload, which

includes the set of input signatures and the network traffic characteristics.

We developed an adaptive algorithm that systematically profiles attack signatures and net-

work traffic to generate a high performance and memory-efficient packet inspection strategy.

We implemented our idea by building two distinct components over Snort: a profiler that ana-

lyzes the input rules and the observed network traffic to produce a packet inspection strategy,

and an evaluation engine that pre-processes rules according to the strategy and evaluates in-

coming packets to determine the set of applicable signatures. We have conducted an extensive

evaluation of our workload-aware Snort implementation on a collection of publicly available

datasets and on live traffic from a border router at a large university network. Our evaluation

shows that the workload-aware implementation outperforms Snort in the number of packets

processed per second by a factor of up to 1.6x for all Snort rules and 2.7x for web-based

rules with reduction in memory requirements. Similar comparison with Bro shows that the

workload-aware implementation outperforms Bro by more than six times in most cases.

• Network-aware honeynet configuration

Honeynet is a collection of sacrificial hosts explicitly deployed to be scanned, compromised,

and used in attacks. Honeynets have recently become popular to detect and characterize

threats such as worms, botnets and malware. Unfortunately, existing approaches to deploying

honeynets largely ignore the problem of configuring operating systems and applications on

individual hosts, leaving the user to configure them in a manual and often ad hoc fashion. We

demonstrate that such ad hoc configurations are inadequate: they misrepresent the security

landscape of the networks they are trying to protect and are relatively easy for attackers to

discover. Therefore, a honeynet configuration should take the deployment context i.e., the

network in which it is deployed to provide visibility into attacks and resistance to fingerprint-

ing.
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We show that manually building honeynet configurations for each network is hard, as each

network has its own unique threat and vulnerability spaces, and the potential number of hosts

to configure in the honeynet is quite large. We argue that honeynets with individually consis-

tent hosts and proportional representation of the network will achieve the two desired goals

of visibility into network attacks and resistance to discovery. We develop an automated tech-

nique based on profiling the network and random sampling to generate these honeynet con-

figurations. Through experimental evaluation and deployment of configurations generated by

our technique, we demonstrate significantly more visibility and higher resistance to discovery

than current methods.

• Context-aware blacklist generation system

Blacklists have become popular among the operational community to filter or block the ex-

plosive growth of unwanted traffic on the Internet. Blacklists generated from firewall logs are

used to block compromised hosts and blacklists generated from spamtraps are used to block

spam. While these techniques have gained prominence, little is known about their effective-

ness and potential draw backs.

We performed a preliminary study on the effectiveness of reputation-based blacklists namely

those that are used for spam detection. We examined the effectiveness, in terms of false

positives and negatives, of four blacklists, namely NJABL, SORBS, SpamHaus and SpamCop

and investigated into the sources of the reported inaccuracy. We found that the black lists

studied in our network exhibited a large false negative rate. NJABL had a false negative rate

of 98%, SORBS had 65%, SpamCop had 35% and SpamHaus had roughly 36%. The false

positive rate of all blacklists were low except that of SORBS, which had an overall false

positive rate of 10%. The false positive of SORBS came mostly from blacklisting six Google

mail servers that sent significant amount of ham to our network. However, since very little

is known about the approaches taken by these services to generate their blacklists, and only

the results of the generation are available (not the raw data), no one has explored in depth the

reasons for these failures.

To solve this problem, we propose a new context-aware approach to blacklist generation. By

making use of local usage and reachability information, as well as the global information
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provided by blacklists, we can provide a significant improvement over existing approaches.

In particular, this context-aware paradigm enables two specific techniques: ratio-based black-

listing and speculative aggregation. In the ratio-based blacklisting approach, the traffic on the

live network is compared to the traffic on the spamtraps to determine if it is safe to blacklist

an IP address. We call this approach the ratio-based approach as the ratio of email messages

on the live network to the email messages on the spamtrap is used as a measure to blacklist

an IP address. In the second approach, speculative aggregation, we use local reachability

information as well as application history to predict where new spam messages will come

while limiting the chance that these predicted hosts or networks are of use to the local net-

work. A deployment of context-aware blacklists for over a month in a large academic network

demonstrated significant improvement in blacklist accuracy.

1.3 Organization of the Dissertation

The remaining dissertation is structured as follows: Chapter 2 shows how performance of an

intrusion detection and prevention system can be significantly improved by adapting to the network

traffic and the rule set. Chapter 3 argues that configuration of a honeynet should account for sur-

rounding network and proposes an automated approach to configure such honeynets. Chapter 4

shows that the current methods for generating blacklists are inaccurate and presents a more accurate

blacklist generation approach that is aware of the network context. Finally, Chapter 5 concludes

our current work and presents future plans to explore new types of context information to improve

network-based security systems.
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CHAPTER 2

Workload Aware Intrusion Detection

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) are widely deployed

in a large number of organizations to detect and prevent attacks against networked devices. This

chapter explores the performance bottlenecks of IDSs and IPSs and demonstrates that an adaptation

to the deployment context will significantly speed up these systems.

The core component of popular IDSs, like Snort [67], is a deep packet inspection engine that

checks incoming packets against a database of known signatures (also called rules). The perfor-

mance of this signature-matching system is critical to the scalability of IDS and IPS systems, in-

cluding packet per second rate. The dominant factor in determining the performance of this signa-

ture matching engine, whether implemented in software or hardware, is the number and complexity

of the signatures that must be tested against incoming packets. However, both the number and

complexity of rules appears to be increasing. For example, the recent Windows Meta-File (WMF)

exploit [49] required inspecting and decoding more than 300 bytes into the HTTP payload which

could quickly overwhelm the CPU of the IDS or IPS, causing massive packet drops [43].

As a result, there has been significant effort in developing methods for efficient deep packet

inspection. Current IDSs like Snort and Bro attempt to evaluate as few rules as possible in a highly

parallel way. For example, Snort pre-processes rules to separate them by TCP ports, and then

parallelizes the evaluation based on port. However, these groupings can be inefficient because all of

the rules in a given group do not apply to incoming packets. Moreover, separating rules by multiple

protocol fields in a naive way does not solve the problem because of the additional memory overhead

associated with managing groups.
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In this chapter, we argue that IDS and IPS should dynamically adapt the parallelization and

separation of rules based on the observed traffic on the network and the input rules database. That

is, all IDS and IPS workloads are not the same, and systems should adapt to the environment in

which they are placed to effectively trade-off memory requirements for run-time rule evaluation.

To demonstrate this idea, we have developed an adaptive algorithm that systematically profiles the

traffic and the input rules to determine a high performance and memory efficient packet inspection

strategy that matches the workload. To effectively use memory for high performance, the rules

are separated into groups by values of protocol fields and then these rule groups are chosen to be

maintained in memory following a simple idea of “the rule groups that have a large number of rules

and match the network traffic only a few times should be separated from others.” This idea follows

our observation that if rules with value v for a protocol field are grouped separately from others,

then for any packet that does not have value v for the protocol field, we can quickly reject all those

rules, and if only a few packets have that value, then those rules will be rejected most of the time.

Therefore, our workload-aware scheme aims to determine a small number of effective groups for a

given workload.

Our algorithm determines which rule groups are maintained in the memory by choosing pro-

tocol fields and values recursively. It first determines the protocol field that is most effective in

rejecting the rules, and then separates those groups with values of the chosen protocol field that

reject at least a threshold number of rules. After forming groups for each of these values, the algo-

rithm recursively splits the groups by other protocol fields, producing smaller groups. In this way,

we generate a hierarchy of protocol fields and values for which groups are maintained. By lower-

ing the threshold, memory can be traded-off for performance. Using this systematic approach for

computing a protocol evaluation structure, we automatically adapt an IDS for a given workload.

In this chapter we develop a prototype Snort implementation based on our workload-aware

framework, which we call Wind. The implementation has two main components. The first com-

ponent profiles the workload (i.e., the input rules and the observed network traffic) to generate the

hierarchical evaluation tree. The second component takes the evaluation tree, pre-processes the

rules, and matches incoming packet to the rules organized in the tree.

We evaluate our prototype workload-aware Snort implementation on the widely recognized

DARPA intrusion detection datasets, and on live traffic from a border router at a large live aca-
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demic network. We find that our workload-aware algorithm improves the performance of Snort up

to 1.6 times on all Snort rules and up to 2.7 times for web-based rules. Surprisingly, we also find that

the algorithm reduces memory consumption by 10− 20%. We also compare the workload-aware

algorithm with Bro, and find it outperforms Bro by more than six times on most workloads.

To summarize, the main contributions of this chapter are:

• We propose a method for improving the performance of IDS and IPS systems by adapting to

the input rules and the observed network traffic.

• To demonstrate our idea, we constructed a workload-aware Snort prototype called Wind that

consists of two components: a component that profiles both the input rules and the observed

network traffic to produce an evaluation strategy, and a second component that pre-process

the rules according to the evaluation strategy, and then matches incoming packets.

• We evaluate our prototype on publicly-available datasets and on live traffic from a border

router. Our evaluation shows that Wind outperforms Snort up to 1.6 times and Bro by six

times with less memory requirements.

The rest of the chapter is organized as follows: Section 2.1 discusses the related work. Sec-

tion 2.2 presents the design of Wind and Section 2.3 presents empirical results comparing Wind

with existing IDSs. Section 2.4 discusses techniques for dynamically adapting Wind to changing

workloads. We finally conclude with directions for future work in Section 2.5.

2.1 Related Work

The interaction between high-volume traffic, number of rules, and the complexity of rules has

created problems for Intrusion Detection Systems that examine individual flows. Dreger et. al. [29]

present practical problems when Intrusion Detection Systems are deployed in high-speed networks.

They show that current systems, like Bro [60] and Snort [67], quickly overload CPU and exhaust

the memory when deployed in high-volume networks. This causes IDS to drop excessive number

of packets, some of which may be attack incidents. Therefore, they propose some optimizations to

reduce memory consumption and CPU usage which are orthogonal our approach.
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Lee et. al. [46] find that it is difficult to apply all possible rules on an incoming packet. There-

fore, they evaluated the cost-benefit for the application of various rules and determined the best set

of rules that can be applied without dropping packets. However, they trade-off accuracy for achiev-

ing high bandwidth. Kruegel and Valeur [45] propose to slice traffic across a number of intrusion

detection (ID) sensors. The design of their traffic slicer ensures that an ID sensor configured to

apply certain rules on a packet does not miss any attack packet.

Sekar et. al. [69] developed a high-performance IDS with language support that helps users eas-

ily write intrusion specifications. To specify attack signatures within a payload, they used regular

expressions. This specification is different from Snort in which attack signatures contain exact sub-

strings, in addition to regular expressions, to be matched with a payload. Using regular expressions

is a more generic approach than using substrings to specify an attack signature. However, regu-

lar expressions are more expensive to evaluate than exact substring matches. (The complexity of

checking a regular expression of size m over a payload of size n is O(mn) [40] and it is more expen-

sive than checking for exact substring within a payload, which has a time complexity of O(n) [40]).

Aho-Corasick [40] matches a set of substrings over a payload in O(n). Alternative schemes like

Wu-Manber [86] speed up matching by processing the common case quickly. The multi-pattern

optimizations to speed up an Intrusion Detection System are complementary to our approach, as we

speed up an IDS by reducing the expected number of patterns to be checked with a packet.

Versions of Snort prior to 2.0 evaluated rules one by one on a packet. This required multiple

passes of a packet and the complexity of intrusion detection grew with the number of rules. To elim-

inate redundant checking of protocol fields, rules that have the same values for a protocol field can

be pre-processed and aggregated together. Then, a check on the protocol field value would equiva-

lently check a number of rules. By clustering rules in this way and arranging the protocol fields by

their entropy in a decision tree, Kruegel and Toth [44], and Egorov and Savchuk [30] independently

demonstrated that Snort (version 1.8.7) performance can be improved up to three times. However,

these papers only examined the input rules to determine the rule evaluation order. In contrast, we

analyze the traffic, as well as the rules, to determine the rule evaluation order. Secondly, they use

entropy as an ordering metric, whereas we use a more intuitive metric for selecting as few rules as

possible. Lastly, a naive arrangement of protocol fields would drastically increase memory usage,

and these papers have not considered the memory costs associated with their approaches. Wind
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improves performance and at the same time reduces the memory usage of an intrusion detection and

prevention system.

Snort 2.0 [56] uses a method in which rules are partitioned by TCP ports, and a packet’s des-

tination and source port determines the sets of applicable rules. Then, the content specified by

these applicable rules are checked in one pass of the payload, using either the Aho-Corasick or the

Wu-Manber algorithm, for multiple substring search. If a substring specified in some attack rule

matches with the packet, then that rule is evaluated alone. We found that the parallel evaluation sig-

nificantly sped up Snort. Snort now takes 2-3 microseconds per packet, when compared to earlier

findings of 20-25 [30] microseconds per packet for Snort versions prior to 2.0 1. This optimization

significantly improved Snort performance. Nevertheless, we further speed up a multi-rule Snort on

many workloads. This is achieved by leveraging the workload to partition rules in an optimized

evaluation structure.

Recently, specialized hardware [68, 21] for intrusion detection in high-volume networks has

been developed. These solutions have used Field-programmable gate array (FPGA) to implement

the intrusion detection systems. As a result hardware-based solutions are complex to modify (e.g.,

to change the detection algorithm). The automated adaptation technique presented in this paper can

be implemented using FPGA’s as well and further improve the performance of these systems.

Our work is also related, and inspired, by database multi-query optimization methods that have

long been of interest to the database community (see [32, 71, 70, 59] for a partial list of related

work). However, rather than finding common subexpressions amongst multiple SQL queries against

a static database instance, the problem that we tackle requires designing a hierarchical data structure

to group network rules based on common subexpressions, and using this data structure in a data

streaming environment.

2.2 Designing a Workload-Aware IDS

In this section, we first show that checking a protocol field can reject a large number of rules,

and the number of rejected rules varies significantly with the protocol field. Then, we take this

observation a step further and construct an evaluation strategy that decomposes the set of rules

recursively by protocol fields and constructs a hierarchical evaluation tree. However, a naive strategy

1The difference in computing systems and rules are not taken into account for a rough discussion.
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that separates rules by all values of a protocol field will use too much memory. To address this

issue, we present a mathematical model that addresses the trade-off between memory occupied by

a group of rules and the improvement in run-time packet processing. Finally, we present a novel

algorithm and a concrete implementation to capture statistical properties of the traffic and the rule

set to determine a high-performance and memory-efficient packet inspection strategy.

2.2.1 Separating Rules by Protocol Fields

An IDS has to match a large number of rules with each incoming packet. Snort 2.1.3 [67] is

distributed with a set of 2,059 attack rules. A rule may contain specific values for protocol fields

and a string matching predicate over the rest of the packet. For example, a Snort rule that detects

the Nimda exploit is shown below:

alert tcp EXTERNAL NET any -> HOME NET 139 (msg:‘‘NETBIOS nimda .nws’’;

content:‘‘|00|.|00|N|00|W|00|S";)

This rule matches a packet if the value of transport protocol field is TCP, the value in the source

address field matches the external network, the destination address field contains an address in the

home network, the value of destination TCP port field is 139, and if the payload contains the string

‘‘|00|.|00|N|00|W|00|S".

A simple approach for evaluating multiple rules on an incoming packet is to check each rule,

one-by-one. However, this solution involves multiple passes over each packet and is too costly to be

deployed in a high-speed network. Therefore, the evaluation of the rules should be parallelized as

much as possible and evaluated in only a few passes over the packet. To evaluate a protocol field in

the packet only once, we need to pre-process rules and separate them by the values of the protocol

field. Then, by checking the value of just one protocol field, the applicable rules can be selected.

The advantage of separating rules by the protocol field values is that a large number of rules can

be rejected in a single check. In Snort, the rules are pre-processed and grouped by destination port

and source port. The TCP ports of an incoming packet are checked to determine the set of rules

that must be considered further, and all other rules are immediately rejected. The expected number

of rules that will be rejected by checking a protocol field of an incoming packet depends on two

factors: the traffic characteristics and the rule characteristics. Consider an input rule set with a large

number of rules that check if the destination port is 80. Assuming that the rules are grouped together
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by the destination port, for a packet not destined to port 80, a large number of port-80 rules will be

rejected immediately. If only a few packets are destined to port 80, then a large number of rules will

be rejected most of the time.

Figure 2.1 shows the number of rules that can be rejected immediately for an incoming packet

when rules are grouped by different protocol fields. For this figure, we used the 2,059 rules that

came with Snort 2.1.3 distribution and the traffic is from the Thursday on the fourth week of 99

DARPA dataset (99-test-w4-thu). Figure 2.2 shows a similar graph, using the same set of rules on

a border router in a large academic network. The graphs show that checking the destination port

rejects the maximum number of rules, which is followed by destination IP address and then by the

check that determines whether the packet is from a client. The source IP address is fourth in the list

for the border router traffic and seventh in the DARPA dataset. After this, most other protocol fields

reject a small number of rules. Therefore, the graphs show that the rule set and the traffic mix cause

varying number of rules to be rejected by different protocol fields.

Now, checking whether a payload contains a particular string is a costly operation, but checking

the value of a protocol field is cheap. So, it is preferable to check protocol fields to reduce the

number of applicable rules. To use multiple protocol fields for reducing the applicable rules, the

rules have to be pre-processed in a hierarchical structure in which each internal node checks a

protocol field and then divides the rules by the values of the protocol field. Finally, the leaf node

is associated with a set of rules and a corresponding data structure for evaluating multiple patterns

specified in the rules. We are agnostic to the multi-pattern search algorithm and the only objective of

this hierarchical evaluation is to reduce the number of applicable rules, so that a packet is matched

with as few rules as possible.

Figure 2.3 shows an example of an evaluation tree in which protocol fields are hierarchically

evaluated to determine the set of applicable rules. It first checks for destination port. If the desti-

nation port matches a value for which the set of rules is maintained then those groups of rules are

further analyzed, or else the generic set of rules is picked. If the destination port is 21, the connec-

tion table is checked to determine if the packet came from the client who initiated the connection,

and the corresponding rules are picked. If the destination port is 80, then the destination IP address

of the packet is checked. Then, depending on whether the packet is destined to the Home Network

or not, the correct set of rules are picked to further evaluate on the packet. However, maintaining
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Figure 2.1: Average number of rules (out of 2,059) rejected by checking different protocol fields
for the DARPA dataset (99-test-w4-thu).
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Figure 2.2: Average number of rules (out of 2,059) rejected by checking different protocol fields
for data from the border router of a large academic network.
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Figure 2.3: An example evaluation tree that checks protocol fields to determine the set of rules for
matching an incoming packet.

a naive hierarchical index structure, in which every specific value of a protocol field is separated,

consumes a significant amount of memory for the following two reasons:

1. Groups require memory: Multiple patterns from a set of rules have to be searched in a

payload in only one pass of the payload. Therefore, additional data structures are maintained

for fast multi-pattern matching. This structure can be a hash table as in the case of the Wu-

Manber [86] algorithm, or a state table as in the case of the Aho-Corasick [40] algorithm.

These structures consume a significant amount of memory.

2. Rules are duplicated across groups: If groups are formed by composing two protocol fields

hierarchically, then the number of distinct groups may increase significantly. For example,

assume that the rules are first divided by destination port, and then each group so formed is

further divided by source port. A rule that is specific in source port but matches any desti-

nation port has to be included in all groups with a particular destination port. If the groups

that are separated by destination port are further divided by source port, then separate source

port groups would be created within all the destination port groups. For a set of rules with n

source port groups and m destination port groups, the worst number of groups formed, when

rules are hierarchically arranged by the two protocol fields, is n×m.
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Figure 2.4: Memory usage when rules are hierarchically arranged by protocol fields in the specified
order using the DARPA dataset (99-w4-thu).

To investigate the memory consumed when rules are grouped hierarchically by different proto-

col fields, we instrumented Snort to construct this structure for a given list of protocol fields. We then

measured the memory consumed for different combinations of protocol fields. Figure 2.4 shows the

memory consumed when different protocol fields are hierarchically arranged, and a separate bin

is maintained for every specific value in a protocol field (trace data was 99-w4-thu from DARPA

dataset and the 2059 rules of Snort-2.1.3 distribution). This shows that the memory consumed by

the combination of destination port and client check is 50% more than just the destination port. The

memory required for the combination of destination port and destination IP address is two times,

and for the combinations of destination port, destination IP address and client check, the memory

consumed is three times than only using the base destination port. From the graph, the increase in

memory is evident when the rules are hierarchically grouped by destination port and source port.

Therefore, constructing such a hierarchy immediately raises two important questions:
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1. What is the order in which the protocol fields are evaluated in the hierarchy?

2. What are the values of a protocol field for which groups are maintained?

In what follows, we first present a mathematical description of this problem, analyzing the

cost and benefit of different orders of protocol fields and the field values for which the rules are

maintained. We then argue that these questions can be answered by capturing properties of the

workload, namely the traffic-mix characteristics and the input rule set characteristics.

2.2.2 Formal Description

In this section, we formulate the problem of determining the order of evaluation and the values

of protocol fields for which the groups are maintained. As argued earlier, the cost in maintaining a

separate group is mostly the memory consumed by the group. Intuitively, the benefit obtained by

maintaining a group of rules can be measured by how many rules this group separates from the rule

set and how frequently this group is rejected for an incoming packet. We begin by formalizing the

problem.

Consider n protocol fields F1,F2, . . . ,Fn. Let vi
1,v

i
2, . . . ,v

i
mi

be mi specific values of the protocol

field Fi present in various rules in the rule set. Let P = (Fr1 = vr1
j1)∧ (Fr2 = vr2

j2)∧ . . .∧ (Fri = vri
ji) be

the predicate for a group that is picked only when the packet matches specific values for i protocol

fields, and f (P ) denote the probability that the protocol fields for an incoming packet matches the

predicate P , i.e., vr1
j1 for protocol field Fr1 , vr2

j2 for protocol field Fr2 , . . . , vri
ji for protocol field Fri .

f (P ) actually captures statistics on the network traffic. The probability that an incoming packet does

not have the values for protocol fields as the predicate P is 1− f (P ). Let the benefit of rejecting rule

R be measured by improvement of bR in run time. Then, every time a packet does not have the values

for protocol fields as P , benefit of ∑R=rule with value P bR is obtained by maintaining a separate group

of rules with values P . Therefore, the overall benefit of creating a group with specific values for

protocol fields present in the predicate P includes traffic characteristics in f (P ) and rule properties

in the rule set as:

(1− f (P ))× ∑
R=rule with value P

bR (2.1)

Assume that c(P ) is the memory cost of creating a group for a set of rules that satisfies the
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predicate P . Then, the problem of an effective hierarchical structure is to determine the set of groups

such that they maximize the benefit measured by improvement in run time for a given total cost,

measured by the total amount of memory that is available. Formally, the objective is to determine

m and m distinct predicates P1,P2, . . . ,Pm that maximizes

m

∑
i=1

[(1− f (Pi))× ∑
R=rule with value Pi

bR] (2.2)

with the cost constraint
m

∑
i=1

c(Pi)≤ maximum memory (2.3)

The problem is similar to minimizing the number of leaf nodes in a decision tree [31]. However,

decision tree problem assumes that there is no ambiguity in element classification and that there is

no overlap between the groups. In our problem, a rule can be possibly placed in multiple groups

and the objective is to identify the set of groups that maximizes the benefit function.

2.2.3 Our Approach

In this section, we design an algorithm that captures the properties of input rules and traffic

characteristics to produce an effective set of rule groups, separated by values of protocol fields.

These groups are then arranged in a hierarchical evaluation structure, which determines the order in

which protocol fields are evaluated on an incoming packet. We begin with some assumptions that

simplify the above mathematical model for a realistic treatment and then present our algorithm.

2.2.3.1 Assumptions

It is not easy to precisely determine the cost of creating a data structure for matching multiple

patterns and the absolute benefit achieved by rejecting a rule. For some exact substring-match algo-

rithms (like Aho-Corasick), the memory space occupied by the data structure may not grow linearly

with the number of patterns. For hash-based algorithms, the memory consumed is independent of

the number of patterns. This makes estimating cost for a multi-pattern-matching algorithm difficult.

At the same time, for most algorithms that perform multi-pattern matching, it is hard to estimate

the benefit of excluding a single pattern. Therefore, we will make two simplifying assumptions that

allows us to easily compute the cost and benefit:
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1. The cost of creating a multi-pattern data structure for any group of patterns is constant. This

assumption is valid for hash-based matching algorithms, like Wu-Manber, that allocate fixed

hash space. However, this assumption is incorrect for the Aho-Corasick algorithm in which

the required space may increase with the increase in the number of patterns.

2. The benefit of rejecting any rule is a one-unit improvement in run time (i.e., bR = 1) except

for rules that have content of maximum length one. The rules that have content length one

significantly degrade multi-pattern matching and should be separated if possible. Therefore,

rules with a content length of one are assigned a large benefit (mathematically infinity). It

is possible that other patterns may adversely impact the performance in multi-pattern search,

but we choose to ignore such interactions for simplicity.

It is important to note that our assumptions help us to easily estimate the cost and benefit of

creating a group, and more accurate estimates will only improve our scheme.

2.2.3.2 The Algorithm

Instead of specifying a fixed memory cost and then maximizing the benefit, we specify the trade-

off between the cost and the benefit. We say that any specific value of a protocol field that rejects

at least a minimum THRESHOLD number of rules should be assigned a separate group and hence,

memory space. This specification allows us to more easily tune real-time performance.

The mathematical model allows us to compare two groups with specific values for a number

of protocol fields. The problem is then to determine a set of groups in which each group rejects

at least a THRESHOLD number of rules and the set maximizes the overall benefit. However, this

may require generating all possible sets, which is computationally infeasible. Therefore, we do not

attempt to produce an optimal set of groups, but instead to discover possible groups heuristically.

The main intuition behind our algorithm is to place all rules in a bin and iteratively split that bin by

the protocol field that produces the maximum benefit, and at each split separate values of the chosen

protocol field that reject at least a THRESHOLD number of rules on average.

We now explain our algorithm in detail. First, all rules are placed in a bin. Then, a few packets

are read from the network and protocol fields in each rule are evaluated. Then, the benefit obtained

by a value in a protocol field is computed using the benefit Equation 2.1. For value vi
j of the protocol
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field Fi, f (P ) reduces to f (Fi = vi
j) and ∑R=rule with value P bR reduces to SFi=vi

j
where SP indicates

the number of rules with protocol field values specified by the predicate P . This simplification is

possible because bR is one. The overall benefit of a protocol field is the sum of benefit of all values,

and the protocol field is chosen that produces maximum benefit. Then groups are formed for each

specific value in the protocol field that rejects at least THRESHOLD number of rules, or has a

rule with content length one. Then, we partition the bin into those specific values and recursively

compute other protocol fields for each of these bins. We stop splitting a bin if none of the protocol

fields can reject at least THRESHOLD number of rules.

When we partition a bin into specific values, we replicate a rule that may match multiple of these

specific values in all those bins. For example, if the rules are divided by destination port, then a rule

that matches ‘any’ destination port is included in all of those bins. This ensures that when a set of

rules with a specific value for a protocol field are picked, other applicable rules are also matched

with the packet. This is essential for correctness. Generally a rule with value v j for a protocol field

is included in a rule set with specific value vi if v j ∩ vi 6= 0. If there is an order in which the values

are checked during run-time, then a rule v j is included in vi only if it appears before it, and if it

satisfies the previous property.

Packets rejected by a protocol field may correlate with packets rejected by another protocol field,

and so computing protocol fields independently may give misleading information. For example, a

source port and a source IP address may reject exactly the same packets, in which case we do not

gain anything by checking both of them. Our recursive splitting of a bin removes this problem of

correlated values. This is because for a bin, we evaluate the benefit of remaining protocol fields only

on those packets that match the values specified in the bin. For example, to split a bin containing

port-80 rules, we only evaluate the remaining protocol fields on packets that have port 80. This

ensures that the remaining protocol fields reject only the rules that were not rejected by port 80.

By choosing the protocol field that produces maximum benefit for each bin, we get an order in

which the protocol field is checked for a packet. By choosing values that produce benefit above a

threshold, we get the values that determines which groups should be maintained.
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2.2.3.3 Implementation

We implemented two distinct components to develop a workload-aware Intrusion Detection

System. The first component profiles the workload (i.e., the input rules and the live traffic) to

generate the evaluation tree. The second component takes the evaluation tree, pre-processes the

rules, and matches any incoming packet on the tree. These components are general enough to be

applied to any IDS. We implemented our algorithm that generates an evaluation tree for a given

workload over Snort 2.1.3. We chose Snort as it already provides an interface to read the rules

into proper data structures. It also provides an interface to read the incoming traffic and check for

different protocol fields.

As a second component, we modified Snort 2.1.3 to take the bin profiles and construct a hier-

archical evaluation plan. Snort 2.0 [56] introduced an interface for parallel evaluation of rules on a

packet. Our hierarchical evaluation tree provides the set of applicable rules for a packet according

to its values for different protocol fields. We pre-computed the data structure required for parallel

matching for each of these groups. For every packet, we used our evaluation tree to determine the

set of applicable rules and allowed Snort to perform the evaluation. We implemented three protocol

fields by which the hierarchical structure can be constructed, namely: destination port, source port,

destination IP address, and whether the packet is from the client. Since rules contain a large number

of distinct protocol fields and we want to immediately detect the applicable rules, we implemented a

check for destination port using an array of 65,536 pointers. Source port and destination IP address

was checked by looking for possible match in a linked list. We did this because only a few des-

tination IP addresses/source ports have to be checked, and because maintaining a pointer for each

specific value consumes significant memory. For client checks the rules were divided into two parts:

those that required to check if the packet is coming from client, and the rest were others. Every time

a bin was split, we ensured that a rule was included in all new bins whose specific value can match

the value in the rule. This ensured the correctness of our approach. We also validated our system by

matching the number of alerts that our system raises, when compared to the number of alerts raised

by unmodified Snort on a large number of datasets.
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2.3 Evaluation

In this section, we evaluate Wind on a number of publicly-available datasets and on traffic from a

border router at a large academic network. On these datasets, we compared real-time performance of

Wind with existing IDSs using two important metrics: the number of packets processed per second

and the amount of memory consumed. To measure the number of packets processed per second, we

compiled our system and the unmodified Snort with gprof [39] options and then evaluated the dataset

with each one of them. Then we generated the call graph, using gprof, and examined the overall time

taken in the Detect function, which is the starting point of rule application in Snort. Finally, using

the time spent in Detect and the number of times it was called, we computed the number of packets

processed per second. To compute the memory used, we measured the maximum virtual memory

consumed during the process execution by polling each second the process status and capturing the

virtual memory size of the process. We now describe the datasets and the computing systems that

we used for our experiments.

2.3.1 Datasets and Computing Systems

We evaluated the performance of our system on a number of publicly-available datasets and on

traffic from a large academic network. For publicly available datasets, we used traces that DARPA

and MIT Lincoln Laboratory have used for testing and evaluating IDSs. We used two-week testing

traces from 1998 [47], and two-week testing traces from 1999 [50]. This gave us 20 different

datasets with home network 172.16.0.0/12. For evaluating the system on real-world, live traffic, we

chose a gateway router to a large academic network with address 141.212.0.0/16. This router copies

traffic from all ports to a span port, which can be connected to a separate machine for analyzing the

traffic.

For DARPA dataset experiments, we used a dual 3.06 GHz Intel Xeon machine with 2 GB of

main memory. The machine was running FreeBSD 6.1 with SMP enabled. We connected the span

port of the gateway router to a machine with dual 3.0 GHz Intel Xeon processors and 2GB of main

memory. The machine was running FreeBSD 5.4 with SMP enabled. The results that follow are the

averages over 5 runs and with the THRESHOLD value set to 5.
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Figure 2.5: Factor improvement, in terms of number of packets processed per second, when com-
pared to Snort for the 1998 and 1999 DARPA testing datasets.
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Figure 2.6: Percentage of memory saved for each of the 1998 and 1999 DARPA datasets, when
compared to Snort.
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2.3.2 Processing Time and Memory Usage

We compared Wind with Snort 2.1.3 for all rules included with the distribution. There were

2,059 different rules, and both Wind and Snort were run using default configuration. Figure 2.5

shows the amount by which we improved the number of packets processed per second by Snort.

For most datasets, we find that our system processes up to 1.6 times as many packets as Snort. We

also compared the memory used by our system with that of Snort. Figure 2.6 shows the memory

saved by our system when compared to Snort. We find that our system uses about 10-20% less

memory when compared to the unmodified Snort. In other words, we perform up to 1.6 times better

in processing time and save 10-20% of the memory.

Wind and Snort were run on the border router for analyzing a million packets at a few discrete

times in the week. Figure 2.7 shows the amount by which Wind improved the number of packets

processed per second by Snort. It shows that the improvement factor on this dataset varied from

1.35 to 1.65. During the runs, Wind consumed 10-15% less memory than Snort.

2.3.3 Application-specific Rules

Until now, all our experiments were conducted by enabling all rules that came with the Snort

distribution. However, in many networks, only application-specific rules can be used. For example,

in many enterprise networks, the only open access through the firewall is web traffic. Since web

traffic forms the dominant application allowed in many networks, we compared our system with

Snort for web-based rules 2. Figure 2.8 shows the magnitude by which our system improves Snort,

in the terms of number of packets processed per second, for traffic at the border router. We found

that for web-based rules, our system improves performance by more than two times when compared

to Snort. Figure 2.9 shows a similar graph for the DARPA datasets. We observed that Wind out-

performs Snort by a factor of up to 2.7 times. In this case, we saved 2-7% of the memory when

compared to Snort.

2web-cgi, web-coldfusion, web-iis, web-frontpage, web-misc, web-client, web-php, and web-attack rules with Snort
2.1.3
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Figure 2.7: Factor improvement in number of packets processed per second, when compared to
Snort, on data from a border router in an academic network.
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Figure 2.8: Factor improvement in number of packets processed per second, when compared to
Snort, for web-based rules. These experiments were on traffic from a border router at an academic
network.
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Figure 2.9: Factor improvement in number of packets processed per second by Wind when com-
pared to Snort for web-based rules. The datasets include the 1998 and 1999 DARPA intrusion
detection datasets.
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Figure 2.10: The change in number of packets processed with the threshold for minimum number
of rules to be rejected, when compared to Snort (dataset: 98-test-w1-mon).

2.3.4 Variation with Threshold

In order to investigate how the threshold affects the performance of our system, we evaluated

the DARPA dataset, 98-test-w1-mon, for different values of the threshold. Figure 2.10 shows the

performance variation of our system with the increasing threshold. As expected, the performance

of the system decreases with increasing cost assigned by threshold. However, we find that the

changes are more pronounced only for lower threshold values. We find that the memory saved by

our system increases with increasing threshold values, significantly only for lower threshold values.

Therefore, we find that increasing the threshold reduces performance, but saves more memory, and

this difference is more pronounced for lower threshold values.
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Figure 2.11: Variation in memory saving with the threshold for minimum number of rules to be
rejected, when compared to Snort (dataset: 98-test-w1-mon).
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Figure 2.12: Factor improvement when comparing Bro with Snort and Wind for the number of
packets processed per second (dataset: 99-test-w1-wed).

2.3.5 Comparison with Bro

We also compared Wind with another IDS Bro [60]. We first converted Snort signatures using

a tool already provided by Bro [75]. However, only 1,935 signatures were converted and regular

expressions in the rules were ignored. We then compared Bro 0.9 with Wind and Snort for various

DARPA workloads. As shown in Fig. 2.12, Snort is faster than Bro by 2 to 8 times, and Wind is 3

to 11 times faster than Bro. This result is partly because Bro uses regular expression for signature

specification rather than Snort, which uses exact substrings for signature matching. Bro uses a

finite automata to match regular expressions [75], whereas Snort uses the Wu-Manber algorithm for

matching sets of exact substrings.
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2.4 Dynamically Adapting to Changing Workload

The Wind system that we have described so far analyzes observed network traffic and input

rules to speed up the checking of network packets in an IDS in a memory-efficient way. However,

traffic characteristics can change over time, or the rule set can change as new vulnerabilities are

announced. Therefore, we need to adapt our evaluation structure dynamically without restarting the

system.

To adapt to changing traffic characteristics, we plan to collect traffic statistics in the intrusion

detection system itself, and reorganize the evaluation structure when necessary. It would be too

intrusive and costly to update statistics for each packet. Therefore, one could update statistics for

a small sample of incoming packets. Then, we can use these statistics to determine the utility of

specific groups in the structure, and determine the benefit that rules in the generic group would

provide if they are separated from other rules in the generic group. We can then remove specific

groups whose utility decreases over time and make new groups for rules in the generic group that

provide increased benefit. However, to ensure the correct application of rules, these changes may

require updating a portion of the evaluation tree atomically, thereby disrupting the incoming traffic.

Therefore, one could develop algorithms that use the updated statistics to dynamically detect a sig-

nificant change in traffic and trigger reconfiguration of the structure when the benefits far outweigh

the disruption.

Vulnerabilities are announced on a daily basis. Sometime a number of vulnerabilities for a sin-

gle application are announced in a batch, demanding a set of rules to be updated with the intrusion

detection and prevention system. One naive solution is to add the set of rules to the existing evalu-

ation structure, and then let the reconfiguration module decide over time if there is a need to create

additional groups. However, this strategy may affect the performance significantly if a large set of

rule is added to the generic group. This performance degradation would continue till new groups are

created. Therefore, one could add rules whose values match with already existing groups directly to

those specific groups. If a large number of rules still remain to be added to the generic group, then

we can use our algorithm described in this chapter to determine the groups that should be separated.

Then, additional groups can be created within the existing structure and the new rules added into

those groups.
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2.5 Conclusions and Directions for Future Work

In this chapter, we have argued that an intrusion detection and prevention system should adapt

to the observed network traffic and the input rules, to provide optimized performance. We have

developed an adaptive algorithm that captures rules and traffic characteristics to produce a memory-

efficient evaluation structure that matches the workload. We have implemented two distinct com-

ponents over Snort to construct a workload-aware intrusion detection system. The first compo-

nent systematically profiles the input rules and the observed traffic to generate a memory-efficient

packet evaluation structure. The second component takes this structure, pre-processes the rules, and

matches any incoming packet. Finally, we have conducted an extensive evaluation of our system on

a collection of publicly-available datasets and on live traffic from a border router at a large academic

network. We found that workload-aware intrusion detection outperforms Snort by up to 1.6 times

for all Snort rules and up to 2.7 times for web-based rules, and consumes 10-20% of less memory.

A Snort implementation of Wind outperforms existing intrusion detection system Bro by six times

on most of the workloads.

In this chapter, we demonstrated that deployment context can be used to improve performance

of signature-based systems that detect known threats. In the next chapter, we show how accuracy

of a new threat detector like honeynet is impacted by surrounding network and then present an

automated approach to honeynet configuration that improves the accuracy of honeynets.
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CHAPTER 3

Network Aware Honeynet Configuration

This chapter explores the importance of deployment context for capturing new threats to a net-

work. In particular it examines why it is important for a new threat detector to be aware of its

deployment and how can it automatically take deployment context to provide more accurate threat

detection.

A number of tools [26, 53, 54, 55] have been developed to instrument live hosts and to detect

new threats. The fundamental problem in instrumenting live (i.e., production) hosts is that such

instrumentation affects the performance and availability of these systems. A security approach that

alleviates these problems is to create a non-productive host (also called a honeypot) and place it at

an unused or dark address. Honeypots are host and network resources that do not have production

value and so any interaction with a honeypot is suspicious. For example, a honeypot deployment

might consist of a mail server that is configured identical to a production mail server and placed

nearby to detect possible intrusions against the real mail server. Because no legitimate clients are

configured to use the honeypot mail server, any traffic to it is the result of malicious activity or

misconfiguration.

Individual honeypots provide excellent visibility into threats that affect specific host and op-

erating system configurations. However, detecting threats quickly with only a few honeypots is

difficult. In order to quickly capture threat details, a number of commercial and non-profit organi-

zations [4, 79], academic projects [16, 51, 83, 88], and tools [14, 62] have started monitoring large

numbers of unused and dark addresses. We collectively call honeypot systems that monitor multiple

unused and dark addresses honeynets.
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Unfortunately, as systems have moved from a single honeypot to a network of honeypots, the

problem of determining the configuration of these systems has largely been ignored. A single honey-

pot is easily configured with the operating system and applications matching an existing production

system. However, for a large number of addresses, the network administrator must make decisions

about what systems they want to protect and what attacks they wish to observe. For example, a

single academic network in this study with 5,512 hosts had over 1,386 unique host and network

configurations (see Table 3.4), and over 3000 unused addresses available for monitoring [23]. This

effort is further complicated as the number of vulnerable services and potential attacks increase on

the Internet. For example, Symantec documented 1,896 new software vulnerabilities from July 1,

2005 to December 31, 2005, over 40% more than in 2004 [78]. In spite of the difficulty of the

task, little work has been done on how to automate honeynet configuration, leaving administrators

to perform the task manually, and often in a generic or ad hoc fashion.

In this chapter, we show the potential limitations of generic and ad hoc approaches to hon-

eynet configurations, and demonstrate that they lack visibility into network attacks. As an example,

Table 3.1 shows that the most popular service on an example network is SSH, but attackers are

focused primarily on nonexistent services such as Microsoft SQL Server. The honeynets in this

network report neither of the two as the most critical security threat, indicating NetBIOS instead.

As the example illustrates, these system do not represent the services running on the network (i.e.,

the vulnerable population) and fail to capture the existing attacks observed at the network (i.e., the

threat landscape). Furthermore, we show that these honeynet configurations present very unusual

operating systems and service configurations in many production networks and are trivially easy to

detect, avoid, and corrupt (i.e., fingerprint). However, configuring honeynets is not trivial, as we

find that there is lack of generality in vulnerable populations and threat landscapes over time and

across networks. Furthermore, the potential number of addresses to configure may be very large

and therefore, we require automated processes to configure a honeynet.

In order to automatically generate honeynet configurations with the goals to provide visibility

into the vulnerable population and avoid detection, we argue that honeynets should be configured

with individually consistent hosts and proportionally represent the surrounding network. We provide

a simple, automated approach based on profiling the network and random sampling to generate

honeynets with individual host consistency and proportional representation of the network. We
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evaluate our approach by applying it to live networks and deploying the configurations generated.

We find that the honeynets achieve the desired goals of providing an accurate view of threats to

the networks and resistance to discovery. For example, the honeynets representative to academic

networks accurately show that SSH brute force attacks are the most widely impacting threat, and

those representative to web server farms accurately show web proxy attacks as the most widely

impacting threat during the period analyzed.

To summarize, the main contributions of this chapter are:

• We show that ad hoc configurations do not provide visibility into the vulnerable population

or into the threat landscape, and they are highly unusual in many networks, causing easy

detection and fingerprinting.

• We justify the need for automatic configuration methods and then identify visibility and re-

sistance to fingerprinting as the two goals of such a configuration system.

• We develop a simple technique that achieves the two critical goals automatically and we eval-

uate this technique through network monitoring and deployment of honeynets in production

networks.

The remainder of this chapter is structured as follows: Section 3.1 presents the existing ap-

proaches to honeynet configuration and Section 3.2 shows the limitations of existing approaches.

Section 3.3 provides the compelling reasons for automatically generating configurations, and dis-

cusses individual host consistency and proportional representation of the network as important prop-

erties that make such a configuration. Section 3.4 describes our algorithm for honeynet configuration

and its evaluation. Section 3.5 concludes our work with directions for future work.

3.1 Background

The way in which honeynets are configured greatly impacts their effectiveness. In an effort to

understand how honeynets are currently configured, we have examined publicly available honeynet

deployment data. We find that these deployments are often tied with a specific honeynet tool or

technique. Each of these tools, in turn, has its own set of configuration capabilities. One of the

main factors that distinguishes each of these honeypot systems is their level of interactivity [76].
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Interactivity defines the degree to which a honeypot behaves like a real end-host system, as a broad

spectrum of end-host behaviors can be emulated in order to capture increasing amounts of attack

details. Therefore, we group these deployments by their level of interactivity and discuss the con-

figuration capabilities of each as well as their limitations.

On the lowest end of interactivity, a passive monitor logs incoming traffic to unused addresses

without any response [51]. For example, the Team Cymru [27] and Moore et. al. [51] have deployed

passive monitors in unused addresses. Passive monitors do not allow for any response and have no

service configurations. Because they do not emulate any services, they provide limited visibility

into threats and require advanced techniques to fingerprint [64].

A light-weight TCP responder replies with a TCP SYN-ACK packet for every TCP SYN packet

received on every TCP port in order to recover the first payload from TCP worms [16]. The Internet

Motion Sensor project [25] has deployed a lightweight TCP responder in 28 monitored blocks within

18 networks, with sizes of these blocks varying from /24 to /8 [15]. These systems emulate part

of the network stack, accept incoming connections on all ports, but provide no application-level

response. They provide minimal visibility into all applications, but are trivial to find. We call this

configuration All TCP Responder.

Honeyd emulates network stacks of multiple hosts on a single machine and has a plug-in system

for service emulation modules [62]. The Brazilian Honeynet Team [77] deployed numerous sensors

of sizes from /28 to /24 with Honeyd, and the German Honeynet Team has also deployed a /18 hon-

eyd sensor [37]. Finally, the French Honeynet Project [34] and the Norwegian Honeynet Team [57]

have also deployed Honeyd sensors. Honeyd has a great deal of flexibility in honeypot configura-

tion, enabling arbitrary personalities to be specified for each host. We call the default Honeyd 1.1

configuration [76] Generic Honeyd. To simplify configuration of large addresses, Honeyd allows

declaration of default host configuration and ties it to all dark addresses that have not been assigned

any host configuration. To automatically generate Honeyd configurations, RandomNet [74] allows

operators to choose operating systems and emulated services, and constructs hosts with random

combinations of chosen OSs and services. We call this configuration Random Honeyd.

Nepenthes emulates certain vulnerabilities to recover more exploits for the vulnerabilities [14].

The Chinese Honeynet Team has deployed a /24 Nepenthes sensor [20], the UK Honeynet Team [80]

has deployed two Nepenthes sensors, the German Honeynet Team has deployed a /18 Nepenthes
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sensor [37], and the Georgia Honeynet Team [36] has started experimenting with Nepenthes. While

some configuration of these systems exists, as various vulnerability modules can be turned on or off,

most deployments are limited to those modules that already exist. We call the default Nepenthes

0.1.7 configuration Nepenthes.

Numerous end-host systems can be run on the same hardware platform by using virtual machine

tools such as VMWare [61]. A variety of academic projects have deployed VMWare-based solutions

including Georgia Tech [28], UCSD [83], and Purdue [41]. The configuration of end-hosts is lim-

ited only by the number of operating system and application compatibilities. However, a common

approach is a vanilla operating system install, such as those promoted in [61].

In summary, we find that most published honeynet deployments use well-known techniques for

honeynet construction. These techniques have a variety of configuration characteristics that range

from no configuration to a fixed configuration and finally, to fully configurable. When configuration

options exist, there is no automated system to choose between these options and are left to the

administrator for manual configuration.

3.2 Limitations of Ad Hoc Honeynet Configurations

One of the original goals of deploying honeynets is to provide protection to an organization by

understanding the means and motives of attackers. However, this important goal can be achieved

only if the honeynets are configured to represent the network and services. In the previous section,

we showed that the configuration of honeynets has largely been ignored by existing deployments

and tools. In this section, we argue that ignoring this problem is dangerous because lack of proper

configuration impacts both the visibility that these honeynets can provide as well as their ability to

avoid detection.

3.2.1 Impact of Ad Hoc Configuration on Visibility

In the previous section, we observed that, while some flexibility exists in how honeynets can be

configured, the absence of automated techniques has caused this process to be manual. If careful

attention is not paid to this manual process, these configurations can drastically impact the effec-

tiveness of the monitoring systems. The effectiveness depends on the honeynet ability to protect
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TCP % of % of Honeynet Configurations
Port Vulnerable Attacks % of % of % of

Population Nepenthes Generic Honeyd Random Honeyd
hosts hosts hosts

21 24 - 100 4 45
22 53 - 100 3 -
23 34 - - 3 65
80 26 0.4 100 4 62
106 14 - - - -
135 9 0.6 100 - -
139 17 0.5 100 96 74
311 14 - - - -
427 26 - - - -
445 10 1.4 100 1 40
497 28 - - - -
554 - 0.9 - - -

1080 - 1.7 - - -
1433 - 6.8 - - -
1521 - 0.9 - - -
4444 - 0.5 - - -
5900 24 0.9 - - -

Table 3.1: The lack of visibility into both the threat landscape, as well as the vulnerable populations
for a variety of different honeynet configurations.

important network resources from the most likely threats. As a result, improperly configured hon-

eynets can fail to be effective if they can not accurately represent:

• the vulnerable population. The vulnerable population is the set of services on the network

that can be remotely accessed. It is important to note that this definition of vulnerable popu-

lation includes all services on the network rather than only those with known vulnerabilities.

• the threat landscape. The threat landscape describes the current attacks on the network.

To understand the impact of ad hoc configurations on visibility, we compared them to the threat

landscape and the vulnerable population. Table 3.1 shows the top 10 open TCP ports found on an

academic /16 network together with the top 10 attacked ports on a /24 honeynet in the network,

and several honeynet configurations. TCP ports represent broad characterization of the vulnerable

population, the threat landscape, and the threats a honeynet configuration can capture. All TCP

Responder provides minimal visibility into all ports and is not shown in the table. The results
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of the comparison are rather startling. The ad hoc configurations of honeynets do a poor job of

representing both the attacks to the network as well as the potentially vulnerable population. This

lack of visibility has profound implications, as the monitoring system will fail to provide any insight

into attacks at large numbers of vulnerable hosts (e.g., those running TCP/106, TCP/311, TCP/427).

In addition, these systems fail to capture the attacks prevalent on the network (e.g., those targeting

TCP/1433, TCP/1080, TCP/1521, TCP/5900) and may make certain attacks (e.g., TCP/139) appear

to be more important on the network than they in fact are. Interestingly, it also appears that attackers

do not necessarily target the most popular services. In fact, only a small number of common ports

are actually popular across the threat landscape, vulnerable population, and configurations including

80, 135, 139, and 445. We will show in the next section that the threat landscape and the vulnerable

populations change over time and networks, and these honeynet configurations will have difficulty

in representing them too.

3.2.2 Impact of ad hoc configuration on fingerprinting

As we saw in the previous section, ad hoc honeynet configurations do not represent either the

exploit space or the vulnerable population. In addition to reducing important visibility, this be-

havior can be effectively used by attackers to detect, or fingerprint, the locations of the honeynets

within a network. This type of activity is important to defenders, as fingerprinted honeynets can be

actively avoided or corrupted by attackers. The key insight that makes this fingerprinting possible

is the observation that some combination of services and operating systems on an ad hoc config-

ured honeynet may seem highly anomalous when compared with the rest of the network. In the

next two sections, we discuss a novel technique for fingerprinting honeynets and show how ad hoc

configurations are easy to spot within productions network using this technique.

3.2.2.1 Fingerprinting Algorithm

Honeynets configured in an ad hoc fashion provide inconsistent view of services on a network.

Because we do not know of any systematic approach to detect such configurations in a network, we

developed a general approach that involves comparing service configurations within a subnet to the

configuration of the entire network. A naive approach, such as examining each individual host in the

subnet to see if it is anomalous with respect to the rest of the network, will only determine if that host
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has a unique configuration in the network. In order to compare collections of host configurations, we

first perform active tests to detect host configurations, aggregate these configurations by common

operating systems and services, and then compare the distribution of a new service in the subnets

with the network as a whole.

Consider a set of tests {T1,T2, . . . ,Tn} that can be performed on an Internet host, with the result

of test Ti being any member of the set Ri = {r1
i ,r

2
i , . . . ,r

mi
i } of size mi. For example, a test (or

variable) that checks whether TCP port 139 is open or not on an Internet host has results (or values)

in the set {open,closed} of size 2. The combination of test values for an Internet host makes a host

profile. For example, checking port 139 and port 445 on an Internet host might have host profiles

in the set {(closed, closed), (closed, open), (open, closed), (open, open)}. While the algorithm is

test-set independent, in this chapter we utilize three sets of tests. Tests constructed based on existing

tools, such as nmap [35], easily differentiate TCP software by exploiting ambiguities in RFCs and

implementations, and we call them tcp. We similarly developed a set of 26 new tests to identify a

web server and its configurations and call them http. Finally, we test open TCP ports from 1-1024

with a simple program that attempts connection to these ports that we call ports.

Our main idea is to group hosts by test values and then compare the subnet with the network as

a whole for the values of a new test. First, we order tests by the increasing value of their entropy,

each of which is computed by the distribution of test values among the hosts in the network. The

tests are ordered by increasing entropy because a test with lower entropy has most certain values for

the hosts on the network and hence, a significant anomaly can be detected if a subnet differs from

the dominant values found in the network. Second, we compare each subnet with the network for

the values of first test, then we aggregate by values of this test and compare for values of the second

test. We iterate this comparison between the subnet and the network over the determined test order

until the last test.

To quantify anomalies for a new test, the values for the test is arranged on a normal distribution

curve using the frequency associated with each value. Then, we measure the anomaly using a test of

significance called z-statistics [33] because of three specific reasons. (1) The anomaly quantified by

z-statistics is significant if the values of a new test for hosts on the subnet are significantly different

from those on the network. (2) If the network exhibits significant variation in the values of the

new test chosen for analysis, then the anomaly is of low magnitude. (3) If only a few hosts in the
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Figure 3.1: The rank of the first anomaly with ad hoc honeynet configurations in six networks for
various combinations of tests that identify operating systems and services. Most honeynets represent
the first, or most, anomalous subnet in a network

network are aggregated by test values, then it causes an anomaly of smaller magnitude for the new

test values. For a formal definition and a small discussion of z-statistics, please refer to Appendix

A. A complete illustrative example of the above algorithm is presented in Appendix B.

There are a wide variety of techniques for fingerprinting honeypots. Our goal is not to enumer-

ate all possible attacks but rather to illustrate the importance of configuration artifacts in honeynet

fingerprinting. One relevant approach for detecting honeypots involves probing and analyzing pub-

lished records from honeypots [18] . However, this attack is possible only when attack statistics

from honeypots are publicly available. Rajab et. al. [64] fingerprint passive darknets that do not

respond to any probe whereas we discover active honeynets without a prior knowledge of how they

are configured. This is achieved by comparing subnet configurations with the surrounding network

and detecting anomalous configurations.
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3.2.2.2 Detecting Ad Hoc Configurations

In order to study the impact of ad hoc configurations in terms of their ability to be discov-

ered, we embedded different honeynet configurations into six network (A/16 and B/16 are academic

networks, and C#1/17, C#2/19, D#1/19 and D#2/19 are web-server farms) profiles. The network

profiles were created by probing live networks and storing their configurations. The honeynet con-

figurations were created by a variety of existing approaches. We then applied our fingerprinting

algorithm to create a list of anomalous subnet configurations in each of these networks and sorted

them into descending order of how anomalous they were (i.e., by z-values). Ideally, each of the em-

bedded subnets (i.e., honeynets) should appear on the top of these lists. Therefore, we will evaluate

a honeynet resistance to fingerprinting by the position (or rank) in the lists.

Figure 3.1 presents the rank of the first honeynet anomaly in six networks when the honeynet is

configured using All TCP responder, Nepenthes, Generic Honeyd and Random Honeyd (aver-

age of ten random honeyd configurations). We find that the ad hoc honeynet configurations surface

as the most anomalous configurations in almost all of the networks for many set of tests. This

result is perhaps easy to realize for honeynets such as All TCP Responder with all ports turned

on, but quite surprising for honeynets configured with individually consistent hosts (i.e., they look

like a real host). This is because Nepenthes, Generic Honeyd, and Random Honeyd often em-

ulate services or run service combinations that are anomalous in many networks. As was the case

with visibility, the impact of ad hoc configurations can be profound, allowing attackers to easily

fingerprint honeynets.

3.3 The Properties of Honeynet Configuration

In previous sections, we have shown that existing methods for honeypot configuration are largely

manual in nature. We have shown that if proper care is not taken in the construction of these

configurations, they can produce honeynet systems that fail to provide visibility and that are easy to

fingerprint. In this section, we describe the process of generating honeynet configurations. First, we

motivate the need to automate honeynet configuration by showing the lack of temporal generality

of exploits and spatial generality of vulnerable populations, the diversity of systems in networks,

and the large number of addresses to be configured. Second, we present visibility into vulnerable
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04/19/2006 05/19/2006 06/19/2006 07/19/2006 08/19/2006
6000 445 22 135 1433
445 139 5900 80 1080
1433 5000 3128 4444 445
1080 1433 8080 445 5900
135 80 80 1433 1521

Table 3.2: The top 5 TCP ports observed in a /24 sensor in network B/16, over a period of 5 months.
Exploits change quickly over time.

population and resistance to fingerprinting as the two desired objectives and argue that a honeynet

configuration with individually consistent hosts and proportional representation of the network will

achieve the desired objectives.

3.3.1 Need for Automatic Configuration

While we have clearly shown that ad hoc configurations are a danger to the goals of any hon-

eypot deployment, we have not yet shown that the process of generating these requires anything

more than careful manual configuration. We believe that two properties of the configuration space

motivate the need for automatic configuration:

3.3.1.1 Lack of Generality

A major impact on the effort of manual configuration of honeynets is the lack of temporal gen-

erality of attacks. Table 3.2 shows the top five TCP ports and the number of packets observed over

a day for last five months on the /24 honeynet in the B/16 network. We find that new services were

targeted heavily each month. The TCP ports 6000 and 1080 were the unusual ones targeted in April,

the TCP port 5000 was targeted in May, the TCP ports 22 and 5900 were targeted in June, and TCP

port 4444 in July. Moreover, the exploits observed vary significantly with locations, as demonstrated

by significantly different data observed on sensors deployed in different networks [24]. Therefore, a

highly variable nature of threat landscape makes chasing the exploits really difficult for the defend-

ers, who must manually configure their honeynets.

Spatial generality also impacts the effectiveness of manually generating honeynet configura-

tions. Differences in attack behaviors and vulnerable populations across networks make sharing

of configuration a near impossibility. For example, Table 3.3 compares vulnerable population in
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Operating Networks
System A/16 B/16 C#1/17 D#1/19
Windows 44 25 76 77
Cisco IOS 14 7 - -
Apple 9 36 - -
Linux 9 7 15 6
HP printer 3 13 - -
Solaris 9 7 1 2
*BSD 1 - 8 15

TCP Networks
Port A/16 B/16 C#1/17 D#1/19
139 42 17 - -
22 41 53 30 25
135 39 10 42 69
23 27 34 4 5
445 27 11 - -
80 21 26 93 96
25 12 10 70 83
21 8 24 77 79
427 4 26 - -
497 3 28 - -
110 1 - 39 17

Operating Systems TCP ports

Table 3.3: Comparing the vulnerable population in four networks, by operating systems and TCP
ports. The vulnerable populations are different across networks.

various networks in two ways, by the operating system and the TCP ports. The second largest oper-

ating system in network A/16 is surprisingly Cisco IOS, which is found in the wireless access points

and routers in the academic campus. On the other hand, Apple Mac OS is the dominant operating

system in network B/16. As expected, the web-server farms were dominated by Windows servers.

While SSH seems to be predominant service found in A/16 and B/16, HTTP, FTP and SMTP seems

to be the dominant services in the web server farms. Therefore, the vulnerable population varies

significantly with the nature of the networks making it difficult for a single honeynet configuration

to represent the vulnerable population across networks.

3.3.1.2 Scale of Configuration

Traditionally, a small number of individual honeypots were configured manually. For example,

a dedicated host will be configured as a clone of a valuable network resource, such as a mail server.

However, as the number of services and the number of hosts running them on the network have

increased, defenders have been under increasing pressure to manage and provide visibility into these

new services. Unfortunately, manual honeynet approaches for achieving this visibility are difficult

to apply. Consider the data presented in Table 3.4, which shows surprisingly large numbers of TCP

implementations, HTTP implementations, services, and the complex associations between them in
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Network Type Hosts Web- TCP HTTP TCP+ TCP+ TCP+
of servers Ports HTTP Ports+
organization HTTP

A/16 university network 5512 1237 352 241 1210 699 1386
B/16 university network 1289 169 156 73 392 249 463
C#1/17 web-server farm 11342 10080 256 862 1625 1764 3394
C#2/19 web-server farm 2438 2208 93 293 394 559 811
D#1/19 web-server farm 1859 1513 118 221 330 451 590
D#2/19 web-server farm 1652 1171 137 208 266 417 487

Table 3.4: The number of unique host configurations observed at six production networks for various
tests and their combinations. Each network has a surprisingly large number of unique configura-
tions.

various production networks. For example, in network A/16, we find that the 5,512 hosts result in

352 unique TCP stack implementations. Of those 5,512 hosts, 1,237 were running Web servers,

and when probed, yielded 241 differing servers and configurations. This included TCP stacks and

Web-servers from a bewildering variety of devices including NATs, wireless access points, printers,

power switches, and webcameras.

In addition to the diversity in the numbers and types of individual host configurations, network

administrators are also required to configure a potentially large number of unused addresses in order

to maximize visibility. Traditional honeynet deployments of statically allocated network blocks are

giving way to dynamic discovery of all unused addresses [23]. The number of addresses available

can be surprisingly large, even in small organizations.

3.3.2 Individual Host Consistency and Proportional Representation

A number of objectives can be used to define honeynet configurations. For example, one may

choose the easiest set of configurations to deploy, or one may want to represent global host or

threat distribution. In this chapter, we set our objective as providing visibility into the vulnerable

population on the defender’s network and resistance to fingerprinting. We chose these objectives so

that the honeynet provides intelligence into zero-day threats to the network quickly. Even though

we chose specific objectives, we believe that the general approach described in this chapter (sample

and configure) can be applied to configure honeynets representing other distributions (e.g., threat).

To provide visibility into network threats and resistance to fingerprinting, we argue that a hon-

eynet configuration must have individually consistent hosts and should proportionally represent the
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network. An individually consistent host is one whose configuration appears in a live network. Indi-

vidual consistency is necessary for two reasons. First, in order to provide visibility into threats that

impact the defenders network, the configuration must provide the same opportunities for attackers

as they occur in the real network. It is obvious that in order to capture threats against a service,

you must run that service. Perhaps less obvious is that sophisticated worms, like Slapper, attempt to

identify specific services and versions of operating systems to deliver the correct exploit [66]. In ad-

dition to visibility, individual host consistency provides resistance to fingerprinting against attackers

that look for unusual services on the host.

In addition to individual consistency, we argue that visibility and resistance require proportional

representation of the network. Honeynets are primarily deployed for detecting new threats. How-

ever, we do not know the operating systems and the service configurations that will be targeted

by a new attack. Since we cannot anticipate any particular configuration, the ratio of honeynet

hosts for any combination of operating system and services should be equal to the ratio of network

hosts with those combinations. Proportionality provides visibility in that the most prominent soft-

ware on the live network appear more frequently and hence can capture new threats to the software

quickly. This also helps in prioritizing attacks by their widespread possible impact on the network,

and hence arranging attacks by the maximum number of honeynet hosts that observed each one

of them. Furthermore, when configuring large addresses with realistic operating systems and ser-

vices, proportionality ensures resistance to fingerprinting in that the system will not add a number

of configurations that skew the distributions of these configurations in the network as a whole.

3.4 A Simple Technique for Honeynet Configuration

Our algorithm for generating representative and consistent configurations has two components:

profiling the network and generating configurations. Profiling the network is the process of de-

termining the configuration of the existing production network for which we want visibility. After

profiling the live network, we need to determine host profiles to be deployed on the honeynet. While

we limit our discussion to the widest vulnerable population, our approach is also valid for specific

vulnerabilities scanned by a tool such as Nessus [5].

The generated host profiles should be individually consistent and proportionally represent the

network for all combination of tests values (as they identify operating systems and services). For

53



example, consider a network with three hosts whose profiles for port (139, 445) tests are [(open,

open), (open, closed), (closed, closed)]. A honeynet proportional to this network should meet mul-

tiple constraints. When each port is considered separately, 2/3 of their hosts should have port 139

open, and 1/3 of their hosts should have port 445 open. When the ports are considered in combina-

tion, 1/3 of their hosts should have both ports open, 1/3 of their hosts with port 139 open and port

445 closed, and finally 1/3 of their hosts with both ports closed 1. Due to resource (address space

and machines) constraints, a honeynet may only approximate the network. Therefore, we need to

develop an algorithm that best approximates proportional representation for all combinations of test

values, and at the same time, produces individually consistent profiles. However, it is difficult to

construct an algorithm that minimizes error in proportional representation for all possible combina-

tions of test values. Surprisingly a simple technique to select a random sample [22] of hosts in a

network ensures our two critical properties:

• Proportional representation. The probability that a combination of test values (Ti1 = r j1
i1 ,Ti2 =

r j2
i2 , . . . ,Tik = r jk

ik ) is selected by the sampling algorithm is equal to the fraction of live hosts

that satisfy them. Therefore, simple random sampling chooses host profiles with a probabil-

ity distribution present in the actual network and approximates it in the selection of hosts.

If n hosts are picked from a total population of N, then the standard error in estimating the

ratio on the honeynet for a combination of test values with standard deviation σ is equal to

σ

√
(1

n −
1
N ) [22]. Therefore, as more and more hosts are picked up to be represented on the

honeynet, the better the honeynet represents the actual network.

• Individual host consistency. To be effective in capturing threats and in warding off possible

fingerprinting efforts, we would like the configuration for each host on the honeynet to be

individually consistent. This means that none of the hosts should be assigned an unusual

configuration that is not possible in the real world. Since a configuration is assigned to a host

in the honeynet only if there is a host with that particular configuration in the network, every

host in the honeynet has a realistic configuration. Hence, for a subset of configuration values,

a honeypot host will match a number of live hosts, yet represent a very specific live host when

all configuration values are considered together.

1an open port by may be preferred over a closed port, and we will discuss this later.
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% of % of
Network Representative

Hosts Hosts

Operating Systems

Apple 36 35
Windows 25 23
HP printer 13 15

Linux 7 5
Solaris 7 6

TCP Ports

22 53 54
23 34 34

497 28 31
427 26 27
80 26 24

Table 3.5: Evaluating representative honeynet configuration by visibility into the vulnerable popu-
lation. The percentage of vulnerable hosts for the top five services and top five operating systems in
network B/16 match closely to the representative honeynet.
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Figure 3.2: Evaluating representative honeynet configuration by resistance to fingerprinting. The
representative honeynet is very resistant to fingerprinting.
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The simple random sampling is effective because we do not know the host configuration that

will be targeted by a new attack. However, when we know certain tests are more important than

other ones, then we can achieve better proportionality to the important tests. For example, if we

know that services are frequently being targeted, then we can achieve better proportionality for

the service distribution than say the operating system distribution. This is usually achieved using

stratified sampling [22]. Stratified sampling involves hierarchically separating the population and

allocating the size to be sampled proportionally at each point in the hierarchy.

Previously we have assumed that all hosts in a network are equally important. Situations can

easily arise in which this will not hold true. An operator might need better visibility to specific

machines. For example, a system administrator may wish to weigh his DNS server, a single point

of failure, twice when compared to other hosts on the network. To provide additional visibility to

a machine when compared to others, additional matching configurations are added to the configu-

ration pool before sampling. In addition, the operator might indicate a particular value for a test

variable as more important than other values. For example, configuring a host with port80 open is

more important than when it is closed. To account for these cases, we allow users to specify such

preferences as input to tune honeynet configuration. Then a host is replaced by a preferred host

before sampling. For example, if port 80 open is preferred over closed, then a Windows XP host

might be replaced by Windows XP with IIS web server found in the network. This ensures that

honeynet hosts are individually consistent even with user input.

Now we evaluate our approach to configuring honeynets. Recall that our objective was to cre-

ate configurations that provide visibility into network attacks and resistance against fingerprinting.

To demonstrate this, we validated our configurations by comparing with the vulnerable population

and by applying the fingerprinting algorithm. To evaluate visibility of honeynets into real network

threats, we created and deployed various honeynet configurations in production networks. Then,

we examined the attacks observed by each of the honeynets, and show that non-representative con-

figurations provide skewed views of the network threats. Finally, we deploy representative config-

urations for various other networks in our academic network and show that they provide different

insights, even when deployed in a single network.
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Rank Exploit % Network % Representative
Hosts Hosts

1 RPC portmap rusers request UDP 90 100
2 NETBIOS SMB-DS C$ share unicode access 7 10
3 NETBIOS SMB-DS IPC$ share unicode access 7 10
4 BARE BYTE UNICODE ENCODING 4 24
5 WEB-MISC robots.txt access 4 24

Table 3.6: The visibility of configurations into the exploits on the network. The percentage of
network hosts that observed each of the top five exploits in network B/16 is compared with the
distribution in the representative configuration.

3.4.1 Evaluating Correctness of Representative Configurations

In order to achieve visibility, we have argued that a configuration needs to provide proportional

representation of the target network. Table 3.5 shows the visibility that a representative honeynet

provides into the vulnerable population. We find that the distribution of network services and op-

erating systems on the representative honeynet closely match the vulnerable population. The com-

bination of operating systems and services between a representative honeynet and the network also

matched closely and we omit those results here.

To evaluate honeynet configurations by their resistance to fingerprinting, the representative con-

figurations for six networks were embedded in the networks and the anomaly detection algorithm

from Section 3.2 was used on all of the networks. Figure 3.2 shows the rank of the first honeynet

anomaly for six networks when the honeynet is configured to be Representative to these networks.

It shows that a representative honeynet is very resistant to techniques that attempt to detect network-

wide anomalies.

3.4.2 Evaluating Visibility of Representative Configuration by Network Monitoring

We demonstrated that the broad characterization of vulnerable population on the network matches

the representative honeynet. In this section, we explore the visibility of representative honeynet into

specific exploits on the network. For this, we capture exploits on the network B/16 using an intru-

sion detection system called Snort [67] and then compare honeynet visibility to those threats.

We monitored the gateway router to B/16 via a span port connected to a FreeBSD machine

running Snort 2.1.3 configured with default signature distribution and recent bleeding-snort [2] sig-
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Configuration Exploits % of % of
Honeynet Susceptible

hosts Network
Hosts

Representative

1. SSH Brute-Force attack 41 53
2. NETBIOS DCERPC ISystemActivator
path overflow attempt 8 9
3. SHELLCODE x86 NOOP 6 9
4. NETBIOS SMB-DS C$ share unicode access 1 10
5. NETBIOS SMB-DS IPC$ share unicode access 1 10

All TCP Responder

1. NETBIOS DCERPC ISystem Activator
path overflow attempt 60 9
2. WEB-IIS view source via translate header 17 26
3. P2P GNUTella GET 5 0
4. LSA exploit 4 10
5. SHELLCODE x86 NOOP 4 9

Generic Honeyd

1. SSH Brute-Force attack 8 53
2. SCAN Proxy Port 8080 attempt 2 100
3. BACKDOOR typot trojan traffic 1 100
4. Behavioral Unusual Port 135 traffic 1 9
5. Squid Proxy attempt 1 100

Random Honeyd

1. WEB-IIS view source via translate header 21 26
2. LSA exploit 6 10
3. FTP anonymous login attempt 6 24
4. MS04011 Lsasrv.dll RPC exploit (WinXP) 3 10
5. MS04011 Lsasrv.dll RPC exploit (Win2k) 3 10

Table 3.7: The impact of different configuration approaches into threat visibility. Non-representative
configurations are misleading about the real threats to the network.

natures. The experiment was conducted for five hours on 2nd May, 2006. The detected exploits were

ordered by spread of the attack i.e., by the percentage of network hosts that observed the attack. We

then grouped hosts that received a particular exploit and identified host characteristics necessary to

receive the exploit. Finally, we analyzed the honeynet profile to discover susceptible hosts on the

Representative honeynet. Table 3.6 shows the top five attacks (server-based) discovered on the

network and compares it with the percentage of susceptible hosts on the honeynet. Ninety percent

of the network hosts observed attempts to list currently logged users. This was targeting UDP port

111 and would have been visible on all honeynet hosts. Seven percent of network hosts observed

administrative access attempts to SMB service on TCP port 445 and would have been visible on

10% of the honeynet hosts. The rest of the exploits were slow moving attacks and were observed on

a few hosts on the network. Therefore, existing exploits on the network would be detected on the
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A/16 C#1/17 C#2/19 D#1/19 D#2/19

1. SSH Brute-Force 1. Web Proxy GET 1. Web Proxy GET 1. NETBIOS 1.NON-RFC HTTP
attack Request Request DCERPC ISystem- DELIMITER

Activator path
overflow attempt

2. NETBIOS 2. WEB-IIS view source 2. NETBIOS 2. SSH Brute-Force 2. NETBIOS
DCERPC ISystem via translate header DCERPC ISystem attack DCERPC ISystem-
Activator path Activator path Activator path
overflow attempt overflow attempt overflow attempt
3. MS04-007 Kill- 3. NETBIOS 3. HTTP Challenge/ 3. WebDAV search 3. FTP anonymous
Bill ASN1 DCERPC ISystem- Response access login attempt
exploit attempt Activator path Authentication

overflow attempt

Table 3.8: The importance of context. The top three attacks captured on honeynets representatively
configured for five different production networks, but placed within the same network.

honeynet depending on their impact on the network.

3.4.3 Evaluating Visibility of Honeynet Configurations by Real Deployments

In this section, we deploy honeynet configurations in B/16 and evaluate them by the accuracy

of threat view they provide. First, we compare threat observed on different honeynet configurations

with the vulnerable population on the network. Second, we deploy representative configurations for

various networks in B/16 and observe how representative honeynets provide unique view of threats

to a network.

We deployed a real /24 honeynet (monitoring 256 addresses) with different honeynet configura-

tions in the B/16 network and exposed it to the present day attacks. Each honeynet configuration was

deployed with Honeyd 1.0 [63], for a period of one day using the service scripts for FTP, SMTP,

FINGER, HTTP and IIS-emulator, and the entire experiment lasted from 22nd April, 2006 to 1st

May, 2006. We evaluated the results across two dimensions: the affect of various configuration

approaches on the threats observed, and the impact of context in representative configurations. It

is important to note that comparisons across configurations in this experiment are not valid due to

temporal changes in threat. Instead, our goal is to evaluate a honeynet configuration by comparing

it with the vulnerable population.

Table 3.7 compares a honeynet representative of network B/16 with three other honeynet config-

urations. It shows the top five exploits, ordered by the number of honeynet hosts that observed the

exploit. For the Representative configuration, we found that the SSH Brute-Force attack was ob-

served on a large number of honeynet hosts and it matched with the university network B/16, which
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has a significant number of hosts configured with SSH service. An attack on NETBIOS DCERPC

service on port 135 was observed on a small percentage of hosts, as only 9% of the network hosts

were susceptible to this attack. On the other hand, All TCP Responder observed a NETBIOS

DCERPC attack on a 60% honeynet hosts. The Generic Honeyd configuration observed the SSH

brute-force attack on only 8% of the hosts, but 53% of the hosts were susceptible to this attack. The

Random Honeyd configuration observed an IIS attack on 21% of the hosts, which was close to

26% of Web servers in the network. However, around 50% of Random Honeyd hosts were capable

of receiving the exploit (much higher than what actually received) but did not receive it because of

slow moving attacks. When examining these results, we find that the non-representative configu-

rations bias the threat view of a network away from the exploits that are actually the most widely

affecting, and hence most important.

To analyze how well a representative configuration reflected attacks on a network, we deployed

honeynet configuration representatives for five other networks. Each of them were deployed for

one day in the /24 unused address space in the B/16 network. Table 3.8 compares representative

honeynet configurations with the susceptible network population for five networks. We find that

the SSH Brute force attack was commonly observed on honeynet hosts, and it coincided with the

large number of hosts in the university network A/16 that were configured with SSH service. The

dominant exploits found on the web server farms were those impacting web service and the TCP

port 135, which are the dominant services in those networks. What is interesting to note is that,

although these configurations were placed within the same network, the configurations observed

vastly different views depending on the network vulnerability spaces.

In this section, we have examined a variety of different aspects of visibility. We have shown

that the representative honeynet provides accurate view of threats on the network than ad hoc con-

figuration methods whose results are often misleading. We also demonstrated that representative

configurations observes different threat views depending on the network vulnerability space.

3.5 Conclusion

In this chapter, we addressed the problem of honeynet configuration. We showed that the ex-

isting approaches to configure a honeynet are manual, causing honeynets to be configured either

in a generic or ad hoc fashion. We demonstrated the limitations of generic and ad hoc configu-
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ration in that they provide poor visibility into network attacks and they are easy to discover. We

show that providing visibility into network attacks is not trivial because the threat landscape and

the vulnerable populations change with time and across networks. Furthermore, large number of

dark addresses available in an organization requires automated approaches to configure honeynets.

We identify individual host consistency and proportional representation as two properties required

to achieve the desired goals of providing visibility into vulnerable population and resistance to dis-

covery. We then described an automatic approach based on profiling the network with active tests

and random sampling that achieves the desired goals. We evaluated the efficacy of representative

honeynets through deployment of these configurations in a production network.

In this chapter, we have explored and evaluated honeynet configurations only for public facing

networks. However, the deployment of firewalls and NATs have led to the need for internal hon-

eynets [23] and we plan to evaluate the effectiveness of our techniques in these types of deployment.

There are numerous means of discovering honeynets, and we by no means attempt to address all of

them. In this chapter, we only examined configuration artifacts that can be used to aid attackers.

Having demonstrated the utility of deployment context for honeynet configuration, we now

show how network traffic characteristics impacts accuracy of reputation-based system like blacklist

generation. We then show how traffic characteristics on a network can be automatically exploited

for improving blacklist accuracy.
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CHAPTER 4

Context-Aware Blacklist Generation

Compromised hosts on the network provide a resource-rich environment from which attackers

launch denial of service attacks, host phishing sites, send spam, and perform a variety of other

malicious activities. The scope of this problem is huge, with current estimates of the number of

compromised hosts on the Internet ranging into the hundreds of millions [84]. The massive scale

of these attacks and the diversity of attack methods have stymied existing security solutions. For

example, a recent evaluation of popular anti-viruses showed that they detected less than 60% [58]

of recent attacks.

Acknowledging this lack of effectiveness, defenders have begun looking for new mechanisms to

deal with the increasing number of compromised hosts. One technique becoming increasingly pop-

ular, especially in the network operation community, is that of reputation-based blacklists. In these

blacklists, URLs, hosts, or networks are identified as containing compromised hosts or malicious

content. Real-time feeds of these identified hosts, networks, or URLs are provided to organizations

who then use the information to block web access, emails, or all activity to and from the malicious

hosts or networks. Currently a large number of organizations provide these services for spam detec-

tion (e.g., NJABL [6], SORBS [9], SpamHaus [11] and SpamCop [10]) and for intrusion detection

(e.g., DShield [81]). While these techniques have gained prominence, little is known about their

effectiveness or potential draw backs.

We examined the effectiveness of four popular reputation-based blacklists [73] that are used for

spam detection. We found that these blacklists exhibit a significant number of false negatives and

a non-trivial amount of false positives. SORBS had a false negative rate of 65% and SpamCop and
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Spamhaus had false negative rates of around 35%. We also found that SORBS exhibited a false

positive rate of 10% after it blacklisted six prominent Gmail servers. We speculated that many

of these false positives and false negatives may have been caused by the way the blacklists are

generated. However, since very little is known about the approaches taken by these services to

generate their blacklists, little research exists on the reasons for these failures.

To help answer these questions, this chapter examines a variety of methods for generating black-

lists and evaluates these approaches through our own production spamtrap deployment covering 11

live domains and with access to a separate production email network covering thousands of hosts.

We first explore a simple threshold-based approach to blacklist generation in which an IP address

that exceeds a threshold number of spams sent to a spamtrap is blacklisted. As a representative

technique for generation, we show that the method fails for a variety of reasons including: a lack of

local awareness that leads to blacklisting popular servers like Gmail, targeted spam that misses the

spam traps, low volume spammers that slide under the thresholds, and the necessary delay between

the spam hitting a spam trap and the publication of the blacklist.

To address the problems of the threshold-based approach, we propose a new context-aware

method for blacklist generation. By making use of the local email usage, reachability information,

and the global information provided by spamtraps, we can provide a significant improvement over

existing approaches. In particular, this context-aware paradigm enables two specific techniques:

ratio-based blacklisting and speculative aggregation. In the ratio-based blacklisting approach, the

traffic on the live network is compared to the traffic on the spamtraps to determine if it is safe to

blacklist an IP address. We call this approach the ratio-based approach as the ratio of email messages

on the live network to the email messages on the spamtrap is used as a measure to blacklist an IP

address. In the second approach, speculative aggregation, we use global information provided by

spamtraps and local email usage to identify good and bad neighborhoods relative to a given network.

Such identification enables better prediction of spam sources while limiting the chance that these

predicted hosts or networks are of use to the local network.

To validate our technique of the threshold-based approach, the ratio-based approach and the

speculative aggregation are evaluated on a production email system deployment, which received 2.5

million mails, and our own separate spamtrap deployment, which received 14 million mails, during

the month-long evaluation period in February-March, 2009. We find that the ratio and speculative
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context-aware approaches perform better than the threshold approach in terms of false positives

and false negatives for all threshold values. We find that the detection rate for the ratio-based

approach is three times that of the threshold-based approach for a false positive rate below 0.5%

and the speculative aggregation approach provides five times the detection rate when compared to

the simple threshold-based approach for a false positive rate below 0.5%.

To summarize, the main contributions of this chapter are:

• An investigation of spam prevalence and spam blacklist effectiveness on a large academic

network. We show that current blacklists have significant amount of false negatives and non

trivial amount of false positives.

• An investigation into the causes of inaccuracy of current blacklists and of the current blacklist

generation techniques.

• We propose and evaluate a new paradigm for reputation-based blacklist generation called

context-aware blacklists in which we address the limitations discovered. We argue that black-

list generation techniques should take into account both local usage and reachability infor-

mation as well as global reputation data when making policy decisions. The new paradigm is

shown to be significantly more effective than existing approaches.

The remaining chapter is structured as follows: Section 4.1 describes the background and work

related to Internet blacklists. Section 4.2 presents an evaluation of four prominent blacklists. Sec-

tion 4.3 presents an investigation into the causes of inaccuracy of current blacklists and of the cur-

rent blacklist generation techniques. We present our context-aware blacklist generation technique

in Section 4.4 and a detailed evaluation of the approaches in Section 4.5. Finally, we conclude in

Section 4.6 and present future directions for reputation-based blacklist.

4.1 Background and Related Work

Access control devices, like firewalls, enforce reputation that is statically decided. In recent

years, more powerful dynamic reputation-based systems in the form of blacklists have evolved.

A number of organizations support and generate dynamic blacklists. These organizations include

spam blacklist providers like SORBS [9], SpamHaus [11] and SpamCop [10] and the network-based
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Figure 4.1: Existing approaches to blacklist generation. Blacklisting policy is set globally and
enforced locally.

blacklist providers like DShield [81].

In order to understand how the blacklists are currently generated, we examined publicly avail-

able information on blacklist generation. Spam blacklist providers set up and monitor a number of

unused email addresses called spamtraps. The spamtraps are deployed in two fashions. The first

approach is to set up a mail server for an unused domain. For example, the Project Honeypot [82]

takes unused sub-domains, like mail1.umich.edu, within legitimate domains, like umich.edu, and

monitors all emails to these domains. The second approach is to use unused users within a legiti-

mate domain. In this deployment model, the mail server delivers all emails directed to existing users

to their respective folders but any email directed to a non-existant user is delivered to a separate ac-

count. We used the second approach to collect spamtrap emails and monitored non-existent users on

11 legitimate domains. Mails sent to spamtraps are then aggregated by a blacklist provider as shown

in Figure 4.1. The mails are aggregated by source IP and then IP addresses that exceed a threshold

number of hits in a time window are blacklisted. Since legitimate mail servers like yahoo.com can

also be used by spammers, a threshold-based approach can put legitimate mail servers into a black-

list, causing wide-spread email disruption. So commercial blacklist providers may also maintain a

white list and then use “Received” headers added by those legitimate servers to determine the IP

addresses of the sender. This scheme does not work with Gmail because Gmail does not add the
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source IP of the client if the web interface is used for sending the mail [73]. Further, the white list

used by the providers is not publicly available. SpamCop also uses a sample of DNS lookups to

determine if some IP addresses can avoid being blacklisted, which may not be a reliable estimate

of actual mails delivered because of DNS caching. In our approach, we evaluate a context-aware

approach in which the ratio of actual number of emails delivered in the network to the number of

spamtrap hits is used for deciding blacklisting.

Recently a number of research papers have looked at the algorithms to generate blacklists. Ra-

machandran et. al. [65] proposed a new method to blacklist source IPs based on their mail sending

patterns. However, their experiment is only based on mails received on the spamtraps and not on

mails received on the live network. As a result, they only evaluate the false negatives of spamtrap

received mail and not the false positives of their approach. In our study, we generate blacklists

based on spamtrap mails and then apply them to the mail on the live network, so we evaluate the

false positive and false negatives for the mail on the live network.

Xie et al. [87] have shown that a large number of IP addresses are dynamically assigned and

mails from these IP addresses are mostly spam, so they recommend adding dynamic IP ranges into

blacklists to reduce the false negatives.

DShield [81] aggregates intrusion detection alerts and firewall logs from a large number of

organizations. It then publishes a common blacklist that consists of source IPs and network blocks

that cross a certain threshold of events. Zhang et al. [89] argued that a common blacklist may contain

entries that are never used in an organization. So they proposed an approach to reduce the size of the

blacklists and possibly reduce the computational overhead in blacklist evaluation. However, they

do not evaluate the effectiveness in terms of the false positive rate and the false negative rate of the

blacklists.

4.2 Effectiveness of Current Blacklists

4.2.1 Experimental Setup

We monitored traffic using a traffic tap (i.e., span port) to the gateway router which provides

visibility into all the traffic exchanged between the network and the Internet. The TCP streams on

port 25 were reassembled using libnids [85]. The data sent by the client constitutes a full SMTP
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mail that can be used for blacklist evaluation.

However, there is a small problem in this setup. The email that we see is slightly different than

the email received on the server. This is because a mail server adds a Received header in the email

after receiving the email. The received header contains the senders DNS name (or IP address) and

the recipient DNS name (or IP address). In order to overcome this problem, we used the source IP

address and the destination IP address to fake a Received header and added it to each email.

The emails are then fed to a spam detector and the sources in the legitimate received headers are

consulted with the blacklists. A number of spam detectors can be used for our study. The two most

popular and open source spam detectors are SpamAssassin [1] and DSpam [7]. DSpam requires

manual training of individual mail boxes and so we used SpamAssassin in our experimental setup.

SpamAssassin uses a number of spam detectors and assigns scores for each detector. The total score

for a message is computed by adding the score of all detectors that classified the message as spam.

If the total score exceeds the default threshold of 5.0, then the message is classified as spam. We

used the default SpamAssassin configuration that came with the Gentoo Linux [3] distribution. We

configured SpamAssassin with two additional detection modules namely Pyzor [8] and Razor [12]

for improving SpamAssassin accuracy.

Blacklist lookups are done by reversing the IP addressing, appending the blacklist zone (eg,

combined.njabl.org) and then making a DNS lookup. Remote DNS look ups cause significant la-

tency, which makes evaluation on a large number of emails quite difficult. Therefore, we maintained

a local copy of SORBS and NJABL and forwarded DNS queries for SpamHaus (Zen zone) blacklist

to a local mirror. SpamCop queries were sent to the actual servers. We used BIND DNS server for

these purposes and rbldnsd for serving local blacklists of SORBS and NJABL. The local copies of

SORBS and NJABL were refreshed every 20 minutes.

SpamAssassin can itself be erroneous and so we need to first validate the usage of SpamAssas-

sin as an oracle for spam detection. We do this by evaluating false positive and false negative of

SpamAssassin on hand classified data sets of ham and spam.

4.2.2 Validating SpamAssassin

We evaluated SpamAssassin on email mailboxes that were hand classified into spam and ham.

Table 4.1 shows four email accounts that we used for SpamAssassin evaluation. Account #1 contains
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Spam- Account #1 Account #2 Account #3 Account #4
Assassin ham: 2,019 ham: 5,547 ham: 897 ham: 4,588

Threshold spam: 11,912 spam: 107 spam: 873 spam: 482
Threshold FP FN FP FN FP FN FP FN

4.0 1.14 4.17 0.25 3.08 0.89 3.67 0.76 5.39
4.5 0.84 4.47 0.02 3.08 0.56 3.78 0.61 5.60
5.0 0.45 4.88 0.02 4.02 0.56 4.24 0.50 5.60
5.5 0.30 5.80 0.02 4.02 0.45 5.27 0.22 6.22
6.0 0.25 6.06 0.02 4.02 0.33 6.41 0.11 6.85

Table 4.1: The false positive and false negative rates for SpamAssassin (at different thresholds) on
four mail accounts that were manually sorted into spam and ham. Overall, SpamAssassin performs
well.

all spam and ham collected in a work email account for over three years. Account #2 has been used

for communicating with open source mailing lists. Account #3 belongs to a separate user who has

used it for work and personal use. Account #4 belongs to another user who has used it for personal

purposes for a number of years.

A message is a false positive for SpamAssassin if the message is ham and the SpamAssassin

score for the message is greater than the given threshold. On the other hand, a message is a false

negative for SpamAssassin if the message is spam and the SpamAssassin score is less than the

threshold. The false positive rate is then computed as the ratio of false positives to the number of

ham. The false negative rate is computed as the ratio of false negatives to the number of spam.

Table 4.1 shows the false positive rate and false negative rate of Spam Assassin on the four email

accounts. We find that the false positive rate for SpamAssassin is very small and is close to 0.5%

for a threshold of 5.0 (the default threshold in SpamAssassin). On the other hand, SpamAssassin

has false negative rates of around 5%. Overall, SpamAssassin has very few false positive with

manageable false negatives.

4.2.3 Evaluation

We deployed the entire system on an academic network for a period of around 10 days in June

2008. Figure 4.2 shows the number of mails per hour observed on the network. On an average,

we observed 8,000 SMTP connections per hour. However, half of these SMTP connections were

aborted before the actual mail was transferred. This is because many mail servers in our network
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Figure 4.2: Number of mails per hour observed on the academic network. The overall mail rate is
further divided by ham, spam, and failed connections.
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Figure 4.3: Cumulative distribution of SpamAssassin score for successfully delivered mail on the
network (total = 1,074,508).

were configured to reject a mail if the recipient was not a valid user in the domain. Spam and ham

were separated using SpamAssassin and the rate of spam was significantly higher than the ham. In

what follows we first present the characteristics of spam and ham observed on the network and then

present the results on blacklist effectiveness.

4.2.3.1 Email Characteristics

Over the period of our experiment, we found that a total of 1,074,508 emails were success-

fully delivered. Figure 4.3 shows the SpamAssassin score distribution for those mails. We find

that roughly 15% of the mails received a score of 0 and around 20% of the mails were below the

SpamAssassin threshold of 5.0. Over 70% of the mails received a score of more than 10.

Then we looked at the email sources and destinations. We observed a total of 53,579 mail
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Figure 4.4: The source IP distribution and the destination IP distribution for spam and ham.

destinations with 64 of them within the academic network. Overall, we saw 609,199 mail sources

with 111 within the academic network. Figure 4.4 shows the distribution of ham and spam by their

sources and destinations. While spam was distributed across a large number of sources, the ham

was concentrated to a very few sources. For example, while the top 10 hosts covered 80% of ham,

the top 10 spamming sources covered less than 10% of spam. On the other hand the targets of spam

were very concentrated when compared to ham. For example, while the top 10 destinations covered

80% of the spam, the top 10 destinations covered only 50% of ham. Overall, we find that the spam

is well distributed across a large number of sources but targeted towards a few destinations. This is

quite in contrast to the network level behavior of ham.

4.2.3.2 Blacklists Effectiveness

We now evaluate the false positive and false negative rates of four blacklists namely NJABL,

SORBS (all zones), SpamCop (main zone) and SpamHaus (Zen zone). Table 4.2 shows the false

positive rate of the four blacklists for different SpamAssassin thresholds. First, we find that the

NJABL has the least false positives followed by SpamHaus. Second, the false positive rate of

SpamCop and SpamHaus increases significantly when the SpamAssassin threshold is increased

from 5.0 to 5.5. This indicates that the blacklists were positive for a number of messages that

received the overall SpamAssassin score between 5.0 and 5.5. Finally, we look at unique source

IPs for determining the false positive and false negative rates. We find that the false positive rates

for unique source IPs are significantly higher when compared to the overall false positive rates.

For example, SORBS has an overall false positive rate of 9.5%, but when unique source IPs are
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SpamAssassin NJABL SORBS SpamCop SpamHaus
Threshold total source IP total source IP total source IP total source IP

4.0 0.1 0.3 9.4 24.8 1.5 8.9 0.5 4.6
4.5 0.1 0.4 9.2 25.6 1.8 11.4 0.5 4.5
5.0 0.2 0.5 9.5 26.9 2.3 13.6 0.6 5.2
5.5 0.2 0.5 10.3 28.0 5.7 26.7 4.0 19.6
6.0 0.2 0.5 10.6 29.1 6.3 28.6 4.5 21.3

Table 4.2: False positive rate in percentage (overall and unique source IPs) for four different black-
lists.

SpamAssassin NJABL SORBS SpamCop SpamHaus
Threshold total source IP total source IP total source IP total source IP

4.0 98.4 98.1 65.4 59.2 36.4 40.4 38.0 41.4
4.5 98.4 98.1 64.9 59.2 35.4 40.3 36.9 41.2
5.0 98.4 98.1 64.8 59.2 34.9 40.2 36.3 41.0
5.5 98.4 98.1 64.5 59.1 34.7 40.2 36.2 41.0
6.0 98.4 98.1 64.4 59.1 34.5 40.1 35.9 40.8

Table 4.3: False negative rate in percentage (overall and unique source IPs) for the blacklists. Black-
lists have a small false positive rate, but a large false negative rate.

considered the false positive rate increases to 26.9%. Overall, we find that SORBS has unreasonable

amount of false positives but the other blacklists have few false positives.

Table 4.3 shows the false negative rates of the four blacklists for different SpamAssassin thresh-

olds. While NJABL had a very few false positives, it has a huge false negative. For a threshold of

5.0 the false negative rate is 98.4%. SpamCop has the smallest false negative rate at around 36.3%.

While the SpamAssassin threshold significantly impacted the false positive rate, its impact on the

false negative rate is quite small. The false negative rates are around 59% for SORBS, 35% for

SpamCop and 36% for SpamHaus. Overall the blacklists seem to have significantly higher false

negative than we expected.

4.2.3.3 Exploring Overlap in Blacklists

In order to evaluate the coverage of different blacklists, we computed the number of times

different blacklists agree on a spam. Figure 4.5 shows the percentage of spam detected by different

blacklists and their mutual overlap. NJABL has been omitted because of its low detection rate.

Surprisingly we find that the blacklists agree on a large number of spam. For example, SpamHaus

71



SPAM

SPAMHAUS SPAMCOP

SORBS

2.6

4.5

21.2

4.7

35.3

3.8

6.8
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Figure 4.6: A venn diagram to show the overlap in blacklists in incorrectly flagging ham as spam
(overlap in false positive). The blacklists rarely agree on these email messages.

and SpamCop agree on 57% of the spam, SORBS and SpamCop agree on 26% of the spam, and

SORBS and SpamHaus agree on 24%. All three agree on 21% of the spam. The exclusive detection

rate for the blacklists is small: 4.5% for SpamHaus, 3.8% for SpamCop and 6.8% for SORBS.

Overall the four blacklists detect 79% of the spam. This implies that the spamtrap deployment

for individual blacklists may overlap significantly and may not be diverse enough to capture the

remaining 21% of the overall spam.

Figure 4.6 shows the overlap among blacklists for false positives with respect to SpamAssassin.

We find that the blacklists disagree with each other on most false positives.
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Top level Emails % of total unique
domain received spamtrap mails sources

.org 289,991 2.1 137,725

.org 449,803 3.2 216,291

.org 571,856 4.1 253,777
.com 1,090,611 7.8 407,838
.net 1,159,353 8.3 439,152
.net 1,306,411 9.4 473,686
.net 1,321,232 9.5 18

.com 1,458,865 10.5 486,675

.com 1,552,240 11.2 521,321
.net 1,698,295 12.2 513,057
.net 3,004,583 21.6 689,633

Table 4.4: Our spamtrap deployment by top level domains, number of emails received, and number
of unique sources.

4.3 Exploring Inaccuracy of Current Techniques

We now embark on an exploration of the reasons for the false positives and false negatives we

observed. Since neither the data nor the algorithms used to create the commercial blacklists are

available, we begin by describing a new spamtrap deployment that allows us to look inside the

blacklist generation processes at the root causes of the blacklist limitations. We then examine a

variety of reasons for the false positives and false negatives observed including: target mail, low

rate spam, detection delay, and a lack of local awareness.

4.3.1 New Spamtrap Deployment

Because the production blacklists do not provide any insight into their spamtrap deployment

(e.g., spamtrap placement, number of spamtraps) or their techniques for translating mails received

at their spamtraps into blacklist entries (e.g., thresholding), it is exceptionally difficult to examine

the root causes of the false positives and false negatives they produce. As a result, we deployed our

own spamtrap deployment covering 11 domains during the measurement period. The mail server

in these domains copied mails sent to non-existent users to a separate account for post analysis. In

total we observed 13,903,240 emails from 1,919,911 unique sources between February 10, 2009 to

March 10, 2009. Table 4.4 shows the number of emails received and the number of unique sources

observed on each of these domains. Over 14 million spam emails were captured and analyzed.

73



4.3.2 Fixing Inaccuracy in SpamAssassin

Earlier we found out that SpamAssassin had a false positive rate of less than 1% and a false

negative rate of around 5%. It is important to understand the limitations of using SpamAssassin to

evaluate blacklist accuracy so that we can guide our efforts of hand classification. A false negative

for the SpamAssassin (i.e., a spam classified as ham) may appear to be a false positive for the

blacklist if the blacklist is correctly pointing to it as spam. The false positive rates for our blacklist

generation techniques in this paper are around 1% and the false negative rates of interest will be

above 20%. Given the inaccuracy of SpamAssassin, the accuracy of false positives for the blacklist

will be FPblacklist ±FNspamassassin or 1%± 5% and the accuracy of false negatives for the blacklist

will be FNblacklist ±FPspamassassin or > 20%±1%.

While the false positive rate of SpamAssassin is reasonable for evaluating the false negative

rate of the blacklists, the false negatives of the SpamAssassin will clearly limit the conclusions

in this paper. In order to overcome this problem, we hand classified the false negatives of the

SpamAssassin. Instead of manually examining all false negatives of the SpamAssassin (potentially

all legitimate mail), we only hand classified sources that hit spamtraps and also sent mails classified

as ham by the SpamAssassin.

4.3.3 Mails on the Live Network

For these classes of experiments, we expanded our previous 10 day analysis to a month-long

period from February 10, 2009 to March 10, 2009. Our month-long observation shows that roughly

75% of the delivered mail (i.e., ham and spam) was spam. Only 16% of the attempted connections

(i.e., ham, spam, and failed connection) were legitimate mails. We observed 764,248 unique IP

addresses during this period in 35,390 distinct BGP prefixes announced by 85 unique autonomous

systems. Most of the spam messages (1,448,680) came from sources external to our network. How-

ever, we had a sizable number of spams (392,192) within the network, which was roughly four times

the number of spam messages (98,679) from hosts within the network to the rest of the Internet (we

send much more spam to ourselves than the rest of the Internet). Ham messages were dominated by

internal to internal mails (369,431), followed by internal to external (151,860) and then by external

to internal (114,792). The top five external senders (i.e., autonomous systems) of spam observed

during this period at our network were Turk Telekom (69,278), Verizon (34,819), Telecomunica-
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Number OR of domains AND of domains
of FP FN FP FN

domains rate rate rate rate
1 2.2 71.5 2.2 71.5
2 2.2 66.7 1.0 80.58
3 2.2 63.6 1.0 83.54
4 2.3 61.6 0.0 100.0
5 2.3 61.6 0.0 100.0
6 2.3 60.4 0.0 100.0
7 2.3 59.2 0.0 100.0
8 2.4 58.2 0.0 100.0
9 2.4 57.5 0.0 100.0

10 2.4 57.0 0.0 100.0
11 2.4 56.8 0.0 100.0

Table 4.5: The false positive and false negatives rates when the spamtrap deployment is expanded
domain by domain.

coes Brazil (34,175), TELESC Brazil (27,360), and Comcast (25,576). The top five destinations

(i.e., autonomous systems) for legitimate email from our network were Google (87,373), Inktomi

(4,559), Microsoft (3,466), Inktomi-II (2,052), and Merit Networks (1,793). The average message

size for all mails was 5,301 bytes, with averages of 4,555 bytes, 15,152 bytes, and 1,916 bytes for

spam, ham, and failed connections respectively.

4.3.4 Causes of Inaccuracy

We now investigate four potential causes for the inaccuracy of current techniques by generating

blacklists from our global spamtrap deployment and then applying them to the mails observed on

the live network.

4.3.4.1 Targeted Mail

One possible explanation for the false negative rates observed by the blacklists is that some of

the emails are part of a targeted spam campaign. Obviously, if a spammer sends targeted spam to a

domain in which there are no spamtraps, it is impossible to blacklist the host. To explore the impact

of this potential cause of false negatives, we examined the impact of spamtrap deployment size on

accuracy. By building blacklists from spamtrap deployments of size 1, 2, ..., 11 we can explore

the targeted nature of spam. Table 4.5 shows the result of this analysis. We consider two cases
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for blacklist generation, one in which an IP address is blacklisted if a spam host appears on any

spamtrap domain, and one in which it is blacklisted if it appears on every spamtrap domain. The

false negative rate for the OR of domains converge to roughly 56.8%, indicating that roughly 57%

of the spam does not appear in any of the spam traps—a reasonable upper bound on the amount of

targeted email. A lower bound on the amount of global mail can be seen in the false negative of rate

the AND of domains, 100% after just three spamtrap domains are combined. Clearly, global spam

seems to be quite limited. While a precise estimate is difficult without a universal deployment, it is

clear that the blacklists are impacted by global and targeted behavior.

4.3.4.2 Low Volume Spam

Another potential explanation of the false negatives observed is that although the campaigns are

global, the vast number of hosts available to spammers makes it feasible to send a small handful of

mails from each host to each target user or domain and still send millions of mails. This contributes

to the problem of false negatives, in that most blacklist providers will not blacklist hosts for a single

spam sent to a spamtrap. In order to investigate this phenomenon, we examined the spam sent to our

network that was not observed on ANY of our spamtraps. For each spamming source, we calculated

the number of spams sent to our network over the measurement period. As shown in Figure 4.7(a),

while some spammers clearly sent numerous spams, the vast majority of sources sending spam to

our network only sent a single spam. Therefore, any approach that requires multiple spamtrap hits

will never report these high volume, single target sources as spammers.

4.3.4.3 Detection Delay

A third potential source of false negatives is the reactive nature of blacklist generation. By their

nature, hosts are not put on blacklists until they send enough mail to spamtraps. During a fast global

campaign, it is possible that we might receive the spam at the production network before it reaches a

spamtrap or before the blacklist provider can send out an update. To explore the impact of this delay,

we examined the idea of retroactive detection. That is, we created blacklists as expected, creating

blacklist entries for spamming hosts only if they sent spam over a given threshold. We then enabled

retroactive detection, that is, we classified hosts as spam if they sent mail to the spamtraps at anytime

during our observations (potentially several weeks after we observed the spam). Figure 4.7(b)
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Figure 4.7: (a) Number of mails sent by external spamming sources that were not observed on any
spamtrap. Most of these sources sent just one spam to our network. (b) The difference in false
negatives when blacklisting only spammers whose activity appears in a short window, versus those
whose activity appear at anytime in the past. (c) The amount of legitimate mail sent by our network
to networks that sent us spam and legimate mail.
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shows the result of this analysis. For small threshold values (i.e., blacklisting when we see only one

spam) the decrease in false negatives from retroactive detection is 10%. For higher thresholds, this

value decreases. Thus 10% approximates a reasonable upper bound on the false negatives caused

by delay.

4.3.4.4 Lack of Network Policy

False positives occur from blacklists when legitimate mail servers are blocked. Often times this

occurs when a legitimate mail sever has been compromised or is being used by compromised hosts.

In many cases this can be avoided, as the mail server can add the IP address of the sending host in

the mail headers, but this is not always the case. For example, mails sent from Gmail web interface

do not include the client’s IP address, and as a result, blacklists are only left with the choice of

blacklisting the server itself. What these blacklists lack is a notion of what servers are used and

not used by a specific network. For example, consider the data in Figure 4.7(c). In this figure, we

examine the amount of mail we sent to those networks that sent us spam and those that sent us

ham. Note the stark contrast between the mail we sent to legitimate networks and those we send to

spamming networks—90% of ham senders received more than one mail from us, while over 60%

of spammers never received a single mail from our network. A few spamming domains received a

large number of emails from us. As expected, these are false positives from web hosting sites as

in the example above: Google (87,373), Inktomi (4,559), Microsoft (3,466). These sites could be

whitelisted, but without knowing what services a network uses, this whitelisting may create false

negatives. What blacklists need is a way to figure out what remote networks are important to a given

network.

4.4 Context Aware Blacklist Generation

In the previous section, we saw that existing production reputation-based blacklists have a sig-

nificant amount of false negatives and a non-trivial amount of false positives. We explored the rea-

sons for these limitations through our own spamtrap deployment and discovered two broad classes

of problems that hamper the creation of these lists: blacklists cannot block spam sources they have

not seen (e.g., low volume, targeted, delayed) nor can they make decisions about which sources to

blacklist unless they know if those sources are important to the networks. In this section, we describe
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Figure 4.8: Our approach to reputation-based blacklist generation. Rather than enforcing a global
“one size fits all” policy, a local generation algorithm combines local usage patterns (i.e, email
usage), allocation information (i.e., BGP reachability), and global information (i.e., spamtraps) to
make localized, tailored blacklist policies.

our approach to mitigating these limitations by incorporating the idea of local context. A represen-

tation of this approach can be seen in Figure 4.8. Rather than a “one size fits all” approach, which is

embodied by the generation schemes for existing production blacklists and shown in Figure 4.1, our

approach decides on blacklisting policy with the help of local information including usage patterns

(i.e., email usage), network routing visibility (i.e., BGP information), as well as global information

(i.e., spamtraps). With local context in hand, the policy generation mechanisms can eliminate false

positives that occur from blacklisting locally important mail servers. In addition, the blacklisting

can be more aggressive in blacklisting networks rather than individual sources—if these networks

are not important in the local context. In this section we see how this general idea is applied in two

specific improvements to blacklist generation: ratio-based blacklisting and speculative aggregation.
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Figure 4.9: The cumulative distribution function for cardinal distance between spamming sources.

4.4.1 Ratio-based Blacklisting

In a simple threshold-based approach, a threshold is decided and an IP address is blacklisted if

the number of mails sent to spamtraps crosses that threshold. However, the simple threshold mecha-

nism can blacklist important mail servers (e.g., Gmail) if they are used to send even a small amount

of spam. One solution to this problem is to compare local network traffic to the spamtrap emails.

The assumption here is that a valid mail server will have significantly more mails delivered to valid

addresses than to spamtraps while a spamming source will hit significantly more spamtraps than

legitimate users in the live network. Therefore, we propose a ratio-based approach that computes

the ratio of mails on the live network to the number of mails seen at the spamtrap and blacklists

sources if the computed ratio is below a configured ratio. For example, consider that the configured

ratio is 1 and a source IP is observed 5 times on the mail server and 10 times on the spamtrap. The

ratio is 5/10 = 0.5, which is lower than the provided ratio of 1, and will be blacklisted.

4.4.2 Speculative Aggregation

While a ratio-based approach addresses the false positive issues with the blacklists, the blacklists

still exhibit a significant amount of false negatives. Recall from the previous section that this may

be the result of low volume spammers, limited visibility, or detection delays. In each case, we

can not blacklist that which we did not see or did not cross our threshold. In order to attack false

positives resulting from sources we have not seen, the only solution we have is to speculate about
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potentially bad sources. One potential source of information that we have to inform our prediction is

the list of previous spamming sources. In Figure 4.9, we examine the impact of previous spamming

sources to predicting future sources, by examining the distance of new spamming sources to existing

spamming sources. Surprisingly, we note that most spamming sources are very close in IP address

to the other spamming sources, most within a few hundred IP addresses of each other. Whether this

is a result of dynamic address ranges or clustering of hosts into bad neighborhoods, we can make

use of this technique to effectively predict spamming sources.

In order to detect these sources that do not hit spamtraps, we can use the context of local net-

work traffic to determine bad and good neighborhoods with respect to the network. For example,

consider a /24 network address range that has 75 active sources. However, if 50 of them are already

blacklisted then it is quite likely that the remaining 25 are also spammers from the perspective of

the network. So a heuristic that also looks at the bad neighborhood may be able to filter out these

sources. For enlarging the scope of the blacklists we leveraged topological information available

through Border Gateway Protocol (BGP). BGP is used to exchange routing information between

autonomous systems (AS) and helps identify organizational and logical boundaries.

We aggregated traffic from spamtrap feeds and the live network by BGP prefixes and au-

tonomous systems. Then we used three parameters for deciding to blacklist a network as oppossed

to individual sources. First, the ratio of good to bad emails for the network is below the ratio pro-

vided in ratio-based approach. Second the ratio of bad to active sources in a network should be

above a provided ratio. This parameter decides when we can speculatively classify an entire net-

work as bad. However, we may blacklist networks even when we have seen very few sources from

that network. Therefore the final parameter is the ratio of the minimum number of bad sources to

total possible sources and, as such, increasing it would delay blacklisting a network.

4.4.3 Implementation

Having described our broad approach, we now provide the details on how mails from live net-

works and spamtraps will be aggregated, how blacklists will be generated and applied using our

approach, and how entries will be removed from the blacklists.
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4.4.3.1 Aggregating Sources in a Moving Time Window

The two streams of email messages, the spamtrap (bad events) and the live network mail (good

events), are merged together using the timestamp on the emails. Sources are extracted and fed to the

blacklist generation algorithms. We use a jumping window model to store network history. In this

model, the events are stored for a given time window and the time window jumps periodically. For

example, in a system with a history window size of 10 hours and a periodic jump of 15 minutes, the

events are kept for 10 hours and the window jumps by 15 minutes. The counts in the last 15 minutes

are then aged out. We accomplish this by keeping the count of each source in each jump window in

a circular buffer and moving the current pointer to the circular buffer.

4.4.3.2 Generating Blacklists

For the threshold-based approach, we count the number of bad events (i.e., spamtrap hits) for

each source IP and send the sources that cross a given threshold. For the ratio-based approach, we

calculate the ratio of good events to bad events and send the sources for which the ratio is below a

given ratio. The count for each address is taken over the history window. To enlarge blacklists from

source IP address to BGP prefixes and autonomous systems, we take two additional parameters. A

BGP prefix or an autonomous system is blacklisted if all three conditions are satisfied—the ratio of

good events to bad events for the prefix is below the given ratio, the number of bad IP addresses to

active addresses is above the minimum fraction, and the ratio of bad IP addresses to total possible

addresses is above the specified threshold.

4.4.3.3 Applying Blacklists

The blacklists are generated periodically and the lists are refreshed each time. To save on mes-

saging, the blacklist generation technique only emits new entries or instructions to remove old en-

tries. These blacklists are then checked on the emails from live network until a new list is refreshed.

In our implementation, we maintained the blacklist as a list of IP addresses in the open source

database PostgreSql. We used the gist index ip4r for quickly checking whether a source IP is black-

listed.
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4.4.3.4 Removal from Blacklists

Finally we need to lay down the policy for removing entries from the blacklist. For the threshold-

based approach, an IP address is in blacklist until the network history has enough bad events from

that IP address. When the network history for an IP address goes lower than the threshold, then the

IP address is removed the blacklist. For the ratio-based approach, an IP address is removed from the

blacklist when the ratio of good events to bad events goes above the specified ratio. BGP prefixes

and autonomous systems are removed from blacklist if any of the three conditions fail—the ratio

of good to bad events exceeds the specified ratio, or if the number of bad IP addresses to active

IPs from the network falls below the provided threshold, or the ratio of bad IP addresses to total

possible addresses falls below the threshold.

4.5 Evaluation

In this section, we evaluate the effectiveness of the existing techniques and compare it to the

proposed techniques. In particular, we compare the three approaches to blacklist generation—the

threshold-based approach, the ratio-based approach, and the speculative aggregation approach—

by the false positive rate and the false negative rate. Since a bad human-chosen parameter can

significantly impact blacklist generation, we compare the stability of the threshold-based approach

with the ratio-based approach for a variety of chosen parameters. We further evaluate the impact

of different parameters involved in speculative aggregation. Finally, because the blacklist sizes can

increase over time, we compare the approaches by the CPU and memory requirements.

We used mails to spamtraps deployed in 11 domains as instances of bad events for generating

blacklists. We used mails on a large academic network of 7,000 as instances of good activity as well

for evaluating the effectiveness of blacklists. Both of these datasets were from February 10th, 2009

to March 10, 2009. We provided more details on the dataset and our experimental setup earlier.

For evaluating these techniques, we kept a history window of 10 hours and generated blacklists

every 15 minutes. The history window jumped by 15 minutes after generating blacklists. The

history window determines the time period for which source statistics are kept for generating the

blacklists. Every 15 minutes the entries were added or removed from the blacklists and the new

refreshed list was applied to the remaining network traffic. Each experimental run was performed
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on roughly 2.5 million emails of live network traffic and 14 million emails on the spamtrap. Each

run took almost one day on a machine with a Pentium Xeon 3.0 Ghz processor and was mostly I/O

bound.

4.5.1 Comparing the Three Approaches

We now compare the simple threshold-based approach with the two approaches proposed in the

paper: ratio-based approach and the speculative aggregation approach. Recall that in the threshold-

based approach, an IP address is blacklisted if it has equal to or more spamtrap hits than the provided

threshold. In the ratio-based approach, an IP address is blacklisted if the ratio of the number of

good events (mails to the live network) to the number of bad events (mails to the spamtrap) is below

the specified ratio. In the speculative aggregation approach, the IP addresses are aggregated by

BGP prefixes and autonomous systems. Then BGP prefixes or autonomous systems are blacklisted

instead of individual IP addresses if it is found that these networks are not of importance to one’s

network. Since the speculative approach uses a ratio-based technique for blacklisting individual IP

addresses, it is essentially a combination of the ratio-based and speculation approaches.

Figure 4.10 shows the trade-off between the false negative rate and the false positive rate for

the three approaches. First, we find that the ratio-based approach provides s significantly better

false negative rate for any false positive rate provided by the threshold-based approach. Conversely,

the ratio-based approach provides significantly better false positive rate for any false negative rate

provided by threshold-based approach. For example, the false negative rate for the ratio-based

approach is roughly 20% better than the threshold-based approach for false positive rates below

0.5%, which is roughly three times the detection rate of the threshold-based approach.

The speculation further improves detection rates over the ratio-based approach. The false nega-

tive rate improvement of the speculative approach over the threshold-based approach is between 30-

40% for false positive rates below 0.5%, which is roughly 4-5x of the detection rate of the threshold-

based approach. For false positive rates greater than 0.5%, the ratio-based approach provides slight

improvement over threshold-based approach. Over this range, the speculative aggregation provides

almost double the detection rate over the threshold-based approach.

The operational point for an approach is usually the knee in the false negative and false positive

curve. For the threshold-based approach the knee is at 0.67% of false positive and 71% of false
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Figure 4.10: Trade-off curve of the false positive rate and the false negative rate for the three meth-
ods.

negatives and for the ratio-based approach the knee is at 0.31% of false positives and 67% of false

negatives. For the speculative aggregation approach the knee is at 0.40% of false positives and 48%

of false negatives.

4.5.2 Stability of the Threshold-based Versus the Ratio-based Approach

In both the threshold-based approach and the ratio-based approach, a network operator has to

choose the threshold or the ratio for blacklisting. Since the thresholds are chosen by hand, we

need to investigate how stable these schemes are for any given threshold. Table 4.6 shows the false

positives and false negatives of the two approaches for different values of the thresholds and the

ratios. For the threshold-based approach, the false positive rate increases suddenly from 0.67% to

1.54% when the threshold is reduced from 2 to 1. For the ratio-based approach, the increase in false

positives is far more gradual. Looking at the data, we find that many mail servers in the network

had one spamtrap hit in the time window of 10 hours.

4.5.3 Impact of Parameters on Speculative Aggregation

Recall that in speculative aggregation, BGP prefixes or autonomous systems are blacklisted if

three conditions are satisfied. The first is if the ratio of good events (mails to the live network) to bad

events (mails to the spamtraps) is below a specified ratio. The second is if the ratio of bad sources

to total active sources is above a given threshold. Finally, is if the ratio of bad sources to total size
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Threshold-based Approach Ratio-based Approach
Threshold FP FN Ratio FP FN

1 1.54 65.9 100.000 1.30 65.8
2 0.67 70.9 75.000 1.20 65.8
3 0.54 74.6 50.000 1.05 65.8
4 0.51 77.3 25.000 0.83 65.8
5 0.50 79.6 10.000 0.64 65.8

10 0.47 86.8 5.000 0.52 65.9
15 0.29 90.7 1.000 0.31 66.9
20 0.28 92.6 0.010 0.15 74.1
25 0.09 93.7 0.005 0.11 76.3
30 0.08 96.9 0.001 0.09 76.4

Table 4.6: The values of the threshold-based and ratio-based approaches and the corresponding false
positive and false negative rates.

of the BGP prefix or the autonomous system is above a given threshold.

Figure 4.11 shows the variation in the false positive rate and false negative rate for the specu-

lative approach when the above three parameters are varied. The default ratio was kept at 0.1 and

varied from 0.01 to 100. The ratio of bad IPs to total active sources was kept at 0.4 and varied from

0.1 to 0.99. The minimum ratio of bad IPs to total possible IPs in the network was kept at 0.01 and

varied from 0.001 to 0.1. First, we find that the first and third parameters have significant impact on

the false positive and false negative rates of the speculative aggregation approach. But varying the

second parameter has very limited impact on the approach. Second, changing the minimum number

of bad IP addresses provides a much better trade-off between false positive rate and false negative

rate when compared to changing the ratio of good to bad events.

4.5.4 Performance

Figure 4.12(left) shows the growth of blacklists for the three techniques: threshold-based, ratio-

based and speculative aggregation. We find that the growth of blacklist size is highest for the ratio-

based techniques and lowest for the speculative-aggregation technique as it combines many sources

into BGP prefixes. In order to see how blacklist size may impact the performance of the system,

we created tables with different blacklist sizes in the database Postgresql (which is what we have

used in our system). Then we created an index on the IP addresses and prefixes using GIST index

in Postgresql. Table 4.12(right) shows the time to look up an entry and the index size for different

sizes of the blacklist. We find that the time to look up an entry does not increase significantly, and
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for the month’s operation, the index size is easily manageable.

4.6 Discussions

In this paper, we presented a detailed investigation of blacklist generation techniques using 2.5

million emails from a large academic network and 14 million emails from a spamtrap deployment

in 11 domains. We first validated existing studies on effectiveness of commercial blacklists and

observed that these blacklists have a significant amount of false negatives and a non-trivial amount

of false positives. In order to better understand these issues and improve upon them, we presented a

detailed analysis of ham and spam sources, based on our own spamtrap deployment. We then pro-
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posed two improvements to the standard threshold-based blacklist approach. The first one reduces

false positives by comparing traffic on the live network to the spamtrap hits for blacklisting sources.

The second takes network traffic into account to safely aggregate bad sources into bad neighbor-

hoods. The proposed techniques when combined together improved the false negative rate by 4-5x

for false positive rates below 0.5% and 2x for false positive rates above 0.5%.

While effective at its goal of addressing the limitations of blacklist generation, this work has

several limitations and opportunities for future work. First, the speculative aggregation technique

presented in this paper is somewhat preemptive in nature. While our evaluation shows that the

proposed technique provides significantly better trade-offs, it may be unacceptable to block traffic

from hosts preemptively. Second, like other reputation-based systems, our blacklist generation

system is also exposed to the attacks that increase or decrease the reputation of sources. While

the ratio-based technique provides protection against attacks to blacklist a mail server, it is still

vulnerable to attackers increasing the reputation of sources by sending a large number of mails to

a legitimate user. Currently, our system only counts the total number of mails on the live network

and is vulnerable to such an attack. A system that counts the number of unique users to which

a source sends mail may be resilient to such an attack and will be explored in the future. Third,

blacklist providers often indicate that they are not responsible for the blocking email as they only

generate the blacklists, and it is the network administrators who are blocking the mails. However,

these blacklists currently are generated centrally. The only option a network administrator has is

to accept or reject a given blacklist. Our proposed deployment model requires either publication of

raw spamtrap data to subscribers or the publication of (aggregate) local network traffic statistics to

the blacklist providers. Finally, in our current implementation we only extracted the first “Received”

header in the email messages. In our ratio-based mechanism, we could not blacklist sources if we

did not blacklist the first source. In the future, we may like to add support for blacklisting of sources

in received headers after the first one.
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CHAPTER 5

Conclusions and Directions for Future Work

In the previous chapters we enhanced three network security systems by leveraging their deploy-

ment context. First, we demonstrated how the performance of a signature-based intrusion detection

and prevention systems can be significantly improved by exploiting the rule-set and the network

traffic characteristics. Then we showed how the configuration of a honeynet impacts its accuracy

in threat detection and its ability to avoid fingerprinting. We demonstrated that a honeynet config-

ured representative of the network will provide more accurate threat view on the network and will

reduce its chances of getting fingerprinted. Finally, we introduced a blacklist generation system that

leverages network traffic characteristics to significantly enhance blacklist accuracy.

5.1 Lessons Learned

While we investigated the impact of context information on three types of security systems,

we did not produce a technique in the dissertation that can automatically adapt a new security

system to the network context. Our general approach has been to identify contextual information

that may be relevant to a security system and then rigorously analyze its impact on the accuracy

and performance of the security system. Once we have identified the contextual information that is

important, we developed techniques to automatically collect the information from the network and

then modify the corresponding security system to incorporate the contextual information.

When we find a new security system, we would like to use our general approach to automatically

adapt a security system to the network context. We now present a systematic way by which our

general approach can be used to adapt a new security solution.
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5.1.1 Determining the Contextual Information

Recall that the three broad types of security context in a network are the vulnerability profile,

the attack surface, and the traffic usage model. The vulnerability profile relates to the applications

and operating systems on a network. The attack surface relates to the observed attacks on a network,

and the traffic usage model refers to how network-based applications are used on the network.

Determining the type of contextual information that is relevant and the granularity of such in-

formation is often the critical piece. For example, in our adaptation of intrusion detection system,

we found that the traffic usage model and the security device configuration impacts the performance

of the system. We aggregated this contextual information by the protocol fields and then used it

for determining the rule evaluation strategy. Therefore, we used the contextual information at the

granularity of protocol fields.

In honeynet configuration, we analyzed the attack surface as well as the vulnerability profile

of a network. We then identified the vulnerability profile to be critical to honeynet accuracy. We

used the vulnerability profile information at the granularity of operating system and application

configuration for adapting the honeynet system.

For blacklist generation system, we found the traffic usage model to be relevant for accuracy.

In particular, we found the mail delivery rate on a network for different IP addresses as the useful

factor in blacklist accuracy.

So while determining the relevant contextual information, the following questions need to be

answered:

• Relevant contextual information: Does a change in vulnerability profile, attack surface or

traffic usage affect the accuracy or the performance of the security system? The information

types that significantly impact the security system security system need to be considered for

adaptation.

• Granularity of information: At what granularity does the relevant contextual information

matter? The contextual information can then be aggregated at such granularity while adapting

the security system to a new network.
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5.1.2 Discovery of Contextual Information

Once the relevant contextual information is determined, we need to discover such information

when deploying in a new network. To discover such information, the following questions need to

be answered:

• Manual discovery: Is it difficult to manually discover? If so, we need to build automated

tools for gleaning such information from a network.

• Temporal variation: Does the contextual information change with time? If so, the contextual

information needs to be refreshed regularly and the security system to be accordingly updated.

• Host modifications: Does contextual information discovery require host modification? Usu-

ally network-based security systems do not require host modifications, but it may be required

in certain systems that leverage host as well network views.

• Active probing: Does the discovery require active probing or passive monitoring? Passive

monitoring should be preferred over active probing. However, if active probing is required,

then it should be executed with care as it may impact the availability of the host and network

resources.

5.1.3 Incorporating Context Into the Security System

The final step is to incorporate the contextual information available in the security system. The

following questions may help one to decide how to adapt the system:

• Design from scratch: Are we designing a new system or modifying an existing system? Usu-

ally it is much easier to incorporate context in a system that is being designed from scratch, but

a new system would also require more time to develop. So the amount of effort in modifying

system should be estimated before designing a new system.

• Cost of context awareness: How much is the processor and memory overhead for context-

aware changes? Usually adding more code for context awareness may require more CPU

cycles and memory. So the potential cost should be benchmarked and compared with the

potential benefit.
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• Mechanisms for reconfigurations: Are the temporal context changes significant enough to

cause regular updates to the system? If the answer is yes, then the system needs a mechanism

for reconfiguring when the context changes.

5.2 Extending Context Aware Security To New Domains

Having described the broad approach for making a new security system context-aware, we now

present two new types of security systems that may benefit from context adaptation.

• Context-Aware Reputation-Based Systems: Networks are threatened constantly with a

large number of exploits and malware. The existing technologies for their detection like the

intrusion detection systems and the anti-virus engines are constantly failing to come up with

reliable signatures. We find that the detection rates for anti-virus engines have fallen below

60%. Because of the increasing difficulty in gaining visibility into current day attacks and

developing reliable signatures, coarse-grained dynamic reputation-based systems are gaining

ground.

Reputation-based systems employ a wide variety of listing techniques including whitelists

and blacklists of identifiable entities or behaviors. We believe a combination of such listing

techniques will be a part of all security systems in future. However, for them to achieve the

desired accuracy and performance, we believe that they will need to understand the context

of their operation. We already demonstrated the utility of such context-awareness for one

type of reputation-based systems, namely the spam blacklists. We now outline two types of

reputation-based systems that will benefit by adapting to the network environment.

– Perimeter defense: Enterprise networks are routinely facing attacks on their networks.

On the other hand, there is a constant demand to open up the network for newer clients,

customers, and applications. The traditional way of protecting the networks using static

firewall rules is fast becoming un-manageable. One approach to resolve the tradeoff

between functionality and security is to come up with dynamic generation of reputation-

based whitelists and blacklists.

The reputation-based system can aggregate suspicious traffic on the Internet and com-

bine it with its local traffic characteristics to automatically generate whitelists and black-
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lists. Such whitelists/blacklists will identify the regions of IP addresses and the services

which are safe/dangerous from the perspective of a network.

– Web application attacks:

Web applications have become very popular over time. However, these applications may

have numerous vulnerabilities like remote code execution, cross-script scripting, and

SQL injections that threaten the integrity of web service and the identity of web users.

Web applications are inherently open but need to be protected against the unknown

attacks.

Often web application attacks are triggered by accessing a specific resource on the web

application. For example, the CodeRed worm exploited the IIS server by accessing a

.ida file on the server together with malicious argument. So if we can determine the part

of the URL that is used for an attack, we can temporarily disable access to the resource to

prevent the attack. We plan to aggregate legitimate usage on a network together with the

suspicious traffic to determine reputation of different URLs. URLs are hierarchical in

nature. We can aggregate the reputations in a hierarchy and then determine the broadest

possible URLs that can be safely blocked and automatically stop the exploits.

• Semantics-Aware Aggregates for Anomaly Detection Systems: Netflow-based anomaly

detection systems aggregate network traffic by different attributes like source IP, TCP desti-

nation port etc. Then these aggregates are monitored over time and an anomaly is flagged

when the aggregate count changes significantly. For example, total bytes transferred can

be aggregated by /24 networks, then byte counts are monitored for these aggregates and an

anomaly is flagged when the count changes significantly. One of the problems is to deter-

mine which all aggregates to monitor. So traffic is aggregated at multiple granularities of an

attribute in a hierarchy. For example, traffic can be aggregated at multiple granularities of

source IP: individual IP addresses, /24 address space, /16 address space and /8 address space.

However, such hierarchies are often statically and structurally decided. They do do not con-

sider the semantic usage of the attribute and so the extracted aggregates do not reflect the

semantic usage of the network. We plan to develop semantic hierarchies for network at-

tributes like IP address and TCP ports. Aggregating traffic in these hierarchies will expose

more accurate aggregates that better segment the network usage. For example, a semantic
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hierarchy for IP address can be constructed by combining global routing data like BGP routes

with the local routing data available via OSPF. Similarly, TCP ports can be aggregated into

broad port classes like peer-to-peer applications, interactive applications, instant messengers

etc. Then extract prominent aggregates, monitor the aggregates, and flag anomalies. We plan

to evaluate the accuracy improvement in anomaly detection by using netflow data from a

university network.
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