
Structural and dynamical properties of complex

networks

by

Gourab Ghoshal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Physics)

in The University of Michigan
2009

Doctoral Committee:

Professor Mark E. Newman, Chair
Professor Leonard M. Sander
Associate Professor Cagliyan Kurdak
Associate Professor Michal R. Zochowski
Assistant Professor Lada A. Adamic

I guess I should warn you, if I turn out to be particularly clear, you’ve probably
misunderstood what I said.
—Alan Greenspan, 1988 speech, as quoted in The New York Times, October 2005

To see a world in a grain of sand,
And a heaven in a wild flower,
Hold infinity in the palm of your hand,
And eternity in an hour. . .
—William Blake, Auguries of Innocence

c© Gourab Ghoshal 2009
All Rights Reserved

To my parents

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Mark Newman for his diligent guidance over

the past five years. Mark’s unique insight into various research problems, coupled

with his sense of excellence and sharp wit, has been a source of great inspiration. As

a direct academic descendant, I hope to employ the lessons learnt under his tutelage

in a constructive fashion. I’d also like to thank Dr. Leonard Sander, Dr. Michal

Zochowski, Dr. Lada Adamic and Dr. Cagliyan Kurak for serving on my dissertation

committee.

Special thanks to Brian Karrer, Petter Holme, Lada Adamic, Bob Ziff and an

anonymous referee, whose often harsh but richly deserved comments on earlier ver-

sions of this manuscript have greatly improved the final product. Extra special thanks

to my once and perhaps future officemates, Juyong Park, Petter Holme, Elizabeth

Leicht, Brian Karrer and Beth Percha who have proven themselves to be excellent

colleagues, friends and fellow-procrastinators. A collective thanks goes out to the

faculty, staff and students of the Department of Physics, for providing me with a

stimulating and exciting environment to work in, as well as contributing to a very

enjoyable stay at Ann Arbor. Finally, I would like to thank my parents, to whom I

owe all.

The work presented in this dissertation was funded through a combination of

grants DMS-0405348, PHY-0200909 and DMS-0804778 from the National Science

Foundation, as well as support from the James McDonnell foundation.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

LIST OF TABLES . x

CHAPTER

I. Introduction . 1

1.1 Historical overview . 3
1.2 Interest to Physicists . 7
1.3 Types of networks . 10
1.4 Standard metrics and tools for measuring network structure 12

1.4.1 Adjacency matrix . 12
1.4.2 Degree distribution . 15
1.4.3 Transitivity . 20
1.4.4 Assortativity and degree correlations 22
1.4.5 Centrality . 24
1.4.6 Components . 27
1.4.7 Generating functions . 29

1.5 Random Graphs . 32
1.5.1 Poisson random graphs . 32
1.5.2 Generalized random graphs . 36

1.6 Network growth models . 40
1.6.1 The model of Price and Barabási-Albert 41
1.6.2 Extensions to the Barabási-Albert model 47

1.7 Percolation and network resilience . 49
1.8 Outline of the dissertation . 52

II. Network resilience: The case of bicomponents and k-components 55

2.1 Introduction . 55
2.2 Bicomponents . 57

2.2.1 Basic properties . 57
2.2.2 Size of the giant bicomponent . 59
2.2.3 Percolation . 62

2.3 Comparison with real world data . 65
2.4 Discussion . 69

III. Random Hypergraphs and their applications 71

iv

3.1 Introduction . 71
3.2 Tripartite graphs . 73
3.3 Random tripartite graphs . 77

3.3.1 The model . 77
3.3.2 Generating functions . 80
3.3.3 Projections . 80
3.3.4 Formation and size of the giant component 82
3.3.5 Other types of components . 87
3.3.6 Percolation . 88
3.3.7 Simulations . 90

3.4 Comparison with real-world data . 92
3.5 Discussion . 97

IV. Network growth models I: Equilibrium degree distributions for networks

with vertex and edge turnover . 99

4.1 Introduction . 99
4.2 The model . 101

4.2.1 Rate equation . 103
4.3 Solutions for specific cases . 105

4.3.1 Uniform attachment and constant size 105
4.3.2 Preferential attachment and constant size 108
4.3.3 Preferential attachment in a growing network 112

4.4 Discussion . 116

V. Network growth models II: Design and generation of networks with de-

sired properties . 119

5.1 Introduction . 119
5.2 Growing networks with desired properties . 120

5.2.1 Example: power-law degree distribution 124
5.3 A practical implementation . 127
5.4 Example application . 131

5.4.1 Definition of the problem . 131
5.4.2 Search time and bandwidth . 132
5.4.3 Search strategies and search time 133
5.4.4 Bandwidth . 136
5.4.5 Choice of network . 137
5.4.6 Item frequency distribution . 139
5.4.7 Estimating network size . 141

5.5 Discussion . 143

VI. The Diplomats Dilemma: A Game theory model of Social Networks . . . 145

6.1 Introduction . 145
6.2 Definition of the Model . 149

6.2.1 Preliminaries . 149
6.2.2 Moves and Strategies . 151
6.2.3 Strategy updates and stochastic rewiring 153
6.2.4 The algorithm . 155

6.3 Numerical results . 155
6.3.1 Time evolution . 155
6.3.2 Example networks . 157
6.3.3 Effects of strategies on the network topology 159

v

6.3.4 Transition probabilities . 165
6.3.5 Dependence on system size and noise 166

6.4 Discussion . 168

VII. Conclusion . 173

BIBLIOGRAPHY . 180

vi

LIST OF FIGURES

Figure

1.1 An epidemic network of HIV transmission, generated from the data of Potterat et al. [125].
Vertices are individuals, and an edge between any two represents transmission of
HIV (either through sexual contact or intravenous drug usage). Picture courtesy

of Mark Newman. 5

1.2 A visualization of the network structure of the Internet. Vertices represent servers,
and edges represent fiber-optic links. Image by the OPTE corporation. 8

1.3 Various ways to represent networks: a) a simple unipartite undirected network; b)
a directed network with edges pointing in one direction; c) a network with weighted
vertices and edges representing some discrete characteristics; d) a bipartite network
with two types of vertices with edges running only between unlike types. 11

1.4 A simple undirected network consisting of five nodes and four regular edges. 13

1.5 Three different ways to plot the degree distribution as described in the text. From
left to right, the degree distribution plotted via linear binning, logarithmic binning
and finally the plot of the cumulative distribution. The data is taken from a
collaboration network of condensed matter physicists [106]. 19

1.6 A network with three connected components. The sets of two and three vertices
are referred to as small components, while the larger set is the giant component. . 28

1.7 Visual representation of the sum rule for connected components of vertices reached
by following a randomly selected edge as per Eqn (1.43). Each component (squares)
can be expressed as the sum of the probabilities of a having a single vertex (circles),
a single vertex connected to one component, to two components and so on. 38

2.1 A network containing k-component structure. The nested property of k-components
can be seen clearly. In the example above, the entire network is a regular 1-
component, within which are nested the bicomponents (lighter shade). 58

2.2 Size of the giant component and bicomponent as a function of vertex removal for
random networks with exponential(e−λk with λ = 0.4, blue circles) and poisson
(mean = 1.5, red squares) degree distributions. Solid lines are the analytical solu-
tions and the points are numerical results for networks of size 106 vertices averaged
over a 100 instances of the network. 65

2.3 Size of giant bicomponent as vertices are randomly removed from three real-world
networks, a metabolic network for C. Elegans [55], a collaboration network of sci-
entists working in condensed matter phyiscs [106], and the Western States Power
Grid of the United States [149]. 68

vii

3.1 Vertices in our networks come in three types, represented here by the red circles,
green diamonds, and blue squares, and are connected by three-way hyperedges that
each join together exactly one circle, one diamond, and one square. 73

3.2 Ways of projecting a tripartite graph onto one of its vertex types (red in this case).
Red vertices in the projected graph can be connected if they share a green neighbor
(green edges in the projected graph), a blue neighbor (blue edges), or a neighbor
of either kind (all edges together). 76

3.3 If a hyperedge (outlined in bold) is not to belong to the giant component, then it
must be that none of the hyperedges reachable via, for instance, its red vertex are
themselves members of the giant component. 84

3.4 The degree distribution for the projection of our Poisson hypergraph onto its red
vertices alone, in which two red vertices are joined by an edge if they have either a
green or a blue neighbor in common on the original tripartite network. The solid
line is the exact solution, Eq. (3.36), and the points are the results of numerical
simulations averaged over a hundred realizations of the network. 91

3.5 The three degree distributions of the tripartite Flickr folksonomy network for photos
(red), tags (green), and users (blue). 93

3.6 Circles show the cumulative distribution function for the degree distribution of the
projection of the Flickr network onto its photograph vertices, while the upper solid
line shows the predictions of the random graph model for the same quantity. 96

3.7 Cumulative distribution functions for the degree distributions of the projection of
the Flickr network onto its user vertices, both before and after pruning of the data. 97

4.1 The degree distribution of our model for the case of uniform attachment (πk =
constant) with fixed size n = 50 000 and c = 10. The points represent data from
numerical simulations and the solid line is the analytic solution. 107

4.2 The degree distribution for our model in the case of fixed size n = 50 000 and c = 10
with linear preferential attachment. The points represent data from our numerical
simulations and the solid line is the analytic solution for k ≥ c. 111

4.3 Degree distribution for a growing network with linear preferential attachment and
r = 1

2
, c = 10. The solid line represents the analytic solution, Eqs. (4.48),

and (4.51), for k ≥ c and the points represent simulation results for systems with
final size n = 100 000 vertices. 115

5.1 The degree distribution for a network of n = 50 000 vertices generated using the
biased random walk mechanism described in the text with µ = 10. The points
represent the results of our simulations and the solid line is the target distribution,
Eq. (5.30). 131

5.2 The time τ for the random walk search to find an item deposited at a random
vertex, as a function of the number of vertices n. 139

6.1 An illustration of the myopia (the restricted knowledge of the network). The agents
are assumed to have knowledge of, and be able to affect the second neighborhood
Γ2 (shaded in the figure). 151

viii

6.2 An illustration of the strategies employed by the agents. At a given time step, an
agent can delete one edge and add another in order to improve its score. The way
to select a neighbor to delete an edge to (or a next-nearest neighbor to attach an
edge to) is to consecutively omit possibilities by applying “actions” in a “strategy
vector”. 154

6.3 Output from an example run of a n = 200 system with pr = 0.012. Panels (a)
and (b) show the fraction of vertices having a particular leading action for addition
σadd

1 and deletion σadd
1 respectively. 157

6.4 Four different example networks from a run with the same parameter values as in
Fig. 6.3. The symbols indicate the leading addition action. 158

6.5 The probability density function of scores (a), (b), degrees (c), (d), and relative
sizes of the largest connected component (e), (f) averaged over multiple realizations
of the network . 160

6.6 The degree distribution (log-log scale) for systems with the same parameter values
as in Fig. 6.3. Panel (a) shows the averaged degree distribution when more than
half of the agents have MAXC as their leading addition actions. 161

6.7 Average values of four different network structural quantities for different domi-
nating addition and deletion actions (i.e. that more than half of the agents have a
specific σadd

1
, or σdel

1
). 163

6.8 The system’s dependence on the topological noise level (via the fraction of random
rewirings pr) for different system sizes n. Panels (a), (b) and (c) show the fraction
〈Σadd

1 〉 of leading addition actions σadd
1 for systems of n = 200, 400 and 800. 168

ix

LIST OF TABLES

Table

2.1 Statistics of a number of real-world networks. The second to fifth columns give the
number of vertices in the network, the fractions occupied by the largest component
and bicomponent, and the fraction occupied by small components. 67

6.1 Values for the T matrices (6.6) for addition strategies. (Tij is the deviation from
the expected value in a model of random transitions given the diagonal values.) The
values are averaged over 100 realizations of the algorithm. All digits are significant
to one standard deviation. The parameter values are the same as in Fig. 6.3.
Numbers in parentheses are the standard errors in units of the last decimal. 165

6.2 Same as in Tab. 6.1 but for deletion, instead of addition, strategies. 166

x

CHAPTER I

Introduction

A network is a mathematical object consisting of a set of points (called vertices

or nodes) that are connected to each other in some fashion by lines (called edges).

There are a number of systems in the real world that match this description, rang-

ing from technological ones such as the Internet and World Wide Web, biological

networks such as that of connections of the nervous systems or blood vessels, food

webs, protein interactions, infrastructural systems such as networks of roads and the

power-grid, to patterns of social acquaintance such as friendship, network of holly-

wood actors, connections between business houses and many many more. Research

involving networks in some form of the other can be traced back as early as the

beginning of the 20th century1—where it was mostly the domain of mathematicians

and social scientists—leading upto current developments where it is now the subject

of scrutiny of a bewildering array of researchers from fields as diverse as biology,

ecology, economics, computer science and physics, to name just a few.

The involvement of physicists seems to have generated some mixed reactions.

Duncan Watts, a noted social scientist has made the following pithy observation in

his popular account on network research Six Degrees [148],

1Well, actually as early as the 18th century as we will see shortly, however, network research here is meant in
terms of analyzing real world networks, whereas previous developments (largely) dealt with theoretical mathematical
objects

1

2

Physicists, it turns out, are almost perfectly suited to invading other peo-

ple’s disciplines, being not only extremely clever but also generally much

less fussy than most about the problems they choose to study. Physicists

tend to see themselves as the lords of the academic jungle, loftily regarding

their own methods as above the ken of anybody else and jealously guarding

their own terrain. But their alter egos are closer to scavengers, happy to

borrow ideas and techniques from anywhere if they seem like they might be

useful, and delighted to stomp all over someone else’s problem. As irritat-

ing as this attitude can be to everybody else, the arrival of physicists into

a previously non-physics area of research often presages a period of great

discovery and excitement. Mathematicians do the same thing occasionally,

but no one descends with such fury and in such great a number as a pack

of hungry physicists, adrenalized by the scent of a new problem.

Whether the above is a frank assessment or a backhanded compliment is a matter of

debate, nevertheless it is indeed a fact that the involvement of physicists (especially

over the last decade) in network research has led to a lot of progress in the field both

in theoretical as well as empirical terms. As a fellow pack member of this group, the

burden is on the author to continue this trend, and it is hoped the material presented

in this dissertation will have contributed to the phenomena of “great discovery and

excitement . . . ” by presenting research on various aspects on the structural and

dynamical properties of networks, often (but not always) drawing on methods and

concepts inspired by developments in physics.

We will begin by providing a brief overview of some of the important historical

contributions in network research leading upto the 1990s, following which we will

then motivate why recent developments have led physicists to “descend[ing] with

3

such fury and in such great a number. . . ”. In Sections 1.3 and 1.4 , we will describe

the various types of network representations that researchers use to mimic systems

in the real world, as well as the standard metrics and mathematical tools employed

to investigate their properties. Sections 1.6–1.7 will provide a brief description of

the theoretical developments on which most of the work in this dissertation is based.

Finally in Sec. 1.8 we will outline the content of the remaining chapters of this

dissertation.

1.1 Historical overview

One of the first instances of research related to networks, can be found in Leonhard

Euler’s 1735 work Solutio problematis ad geometriam situs pertinentis (The solution

of a problem relating to the geometry of position), in which he presented a resolution

to the “Seven bridges of Königsberg problem”2 . The city of Königsberg in Prussia

(present day Kaliningrad, Russia) was set on both sides of the Pregel River, and

included two large islands which were connected to each other and the mainland by

seven bridges. The problem was to find a walk through the city that would cross each

bridge once and only once. The islands could not be reached by any route other than

the bridges, and every bridge must have been crossed completely every time. Euler’s

genius was to reformulate the problem in abstract terms, eliminating all features

except the list of landmasses and the bridges connecting them. In modern jargon,

one replaces each landmass with an abstract vertex (or node), and each bridge with

an abstract connection, an edge, which only serves to record which pair of vertices

(landmasses) is connected by that bridge. The resulting mathematical structure is

called a graph. Euler’s formulation of the problem in these terms and his subsequent

2While the work was presented to the St. Petersburg Academy in 1735, it was actually published in 1741 in the
journal Commentarii academiae scientiarum Petropolitanae.

4

solution (to put it briefly, no, one cannot cross the bridges as proposed) laid the

foundations of what is now known as mathematical graph theory, which has been,

and to a certain extent still is, the primary analytical method used to study the

property of networks.

In the 19th century, further advances in the field of graph theory were carried

out by the likes of Thomas Kirkman, William Hamilton (of Hamiltonian fame),

Gustav Kirchoff (who employed graph theoretical ideas in the calculation of electri-

cal currents in circuits), Arthur Cayley and Alexander Polya. Although the devel-

opments that emerged from their work—primarily topological measures of various

graph properties—are widely employed in contemporary research in networks, strictly

speaking, their inspiration and focus were more driven by theoretical mathematical

objects, rather than systems that conform to the real world (the study of which is

what we really mean by network theory in the modern context).

Arguably, the first group of academics to study real-world networks, were social

scientists. As early as the 1930s sociologists had speculated that the patterns of

connections between individuals in society must somehow relate to their function-

ing in general. Consequently they embarked on a series of quantitative studies to

discern this connection. Notable among the earlier efforts is the work of the Austro-

American psychiatrist and sociologist Jacob Moreno who pioneered the systematic

recording and analysis of social interaction in small groups, especially classrooms

and work groups, believing that the pattern of social connections had some observ-

able structure, and by drawing them on a piece of paper and looking at them, one

could discern that structure and thus make some prediction of the functioning of the

group [105]. The networks he constructed (which he called sociograms) consisted of

vertices that represented individuals, with edges connecting any two of them if they

5

Figure 1.1: An epidemic network of HIV transmission, generated from the data of Pot-
terat et al. [125]. Vertices are individuals, and an edge between any two represents
transmission of HIV (either through sexual contact or intravenous drug usage). Picture

courtesy of Mark Newman.

professed to have some kind of acquaintance. Studies along similar lines, were con-

ducted about the same time by Davis et al. [44] who examined social circles among

women in the American south, while a Harvard group led by W. Lloyd Warner and

Elton Mayo explored interpersonal relations at work, such as in the case of Chicago

factory workers [130].

The general method that social scientists used to gather data was by directly

querying participants, through the use of surveys and questionnaires. For example,

if one wanted to construct a network of friendships, first a list of participants had to

be made and then each individual in the list had to be asked who they considered

a friend. As one can imagine, this was a fairly labor-intensive effort and thus the

networks that were studied were fairly limited in size, ranging from tens to at most

hundreds of vertices. In such a setting, researchers focussed on the properties of

individual vertices and their pattern of connections. Typically studies addressed

6

the issue of centrality (in the sense of which individuals have the most connections

or influence in the group) or connectivity (how individual are connected or not to

others). A modern version of a social network with size comparable to those studied

at the time is shown in Fig. 1.1.

The quantitative studies undertaken by social scientists in turn led to further ad-

vances in mathematical techniques. The mathematical psychologist Anatol Rapoport

suggested that the frequency distribution of links incident on vertices is an important

measure in determining the properties of networks. Along with R. Solomonoff, he

proposed a simple model for a network, known as the random graph [139], which

was independently studied by the prolific mathematician Paul Erdős and his collab-

orator Alfréd Rényi [56]. In the model a network is created by placing undirected

edges between n fixed vertices in which each of the possible
(

n
2

)

edges are present

independently with some probability p. We will describe the details of this model in

detail in Sec. 1.5.1.

At about the same time, the physicist and historian Derek de Solla Price, was

studying citation networks. In a citation network, vertices represent academic publi-

cations, and if a particular paper cites another paper, then there is an edge between

them. Price in part was continuing already existing work on publication patterns,

starting from the pioneering work of Alfred Lotka who in 1926 formulated his “Law

of Scientific Productivity”, which states that the distribution of scientific publica-

tions follows a power-law [100]. In other words the number of scientists who have

published k papers falls of as k−α for some constant exponent α. Price was the

first to study this in network form and he found that both the number of papers

that receive citations, as well as the number of papers a particular paper cites also

follow power-laws. This discovery had far reaching implications and inspired future

7

developments in the field, which we will discuss in detail in Sec. 1.6.1.

Based on these developments a number of other researchers from different fields

took up the mantle and started to study systems as networks, however the primary

impetus until the 1990s was still provided by social scientists who continued to make

impressive contributions to the field—see the book by Wasserman and Faust for a

review [147]. A notable exception is the early work on biological networks done by

Stuart Kauffman who studied genetic regulatory networks, so-called boolean nets [87,

88], which greatly influenced future studies in the field.

1.2 Interest to Physicists

The research on real-world networks described upto this point shared some com-

mon salient features. Most networks studied were limited in size, with the most

extreme cases consisting of a few hundreds of vertices. Moreover, the standard

procedure was to study a single instance of a network and focus on the individual

properties of vertices or edges.

With the 1990s, however, came the availability of widespread computing resources—

in particular reasonably cheap and powerful desktop computers—as well as the emer-

gence of large scale communication systems such as the Internet and World Wide

Web, that were eminently well suited to be modeled as networks. The Web in partic-

ular, being simultaneously a technological, information and social network garnered

much interest from a diverse background of researchers. However, the change in scale

(from hundreds of vertices to millions or potentially billions), presented a set of new

challenges.

Consider the image shown in Fig. 1.2. This is a visualization of the Internet at

the autonomous systems level—groups of computers each representing hundreds of

8

Figure 1.2: A visualization of the network structure of the Internet. Vertices represent servers, and
edges represent fiber-optic links. Image by the OPTE corporation.

thousands of computers. In the case of small social networks, such as those studied

by Moreno, visualizing them by drawing on a piece of paper is a fairly useful device,

as a lot of information about the structure can be discerned upon mere examination.

For example, in the social network shown in Fig. 1.1, even a cursory glance can reveal

the most promiscuous individuals in the group (in this case those with the highest

number of links). However, it is highly questionable, whether we can say anything

about the Internet by looking at Fig. 1.2, apart from the fact that it resembles

a “hairball”. In fact the futility of such an approach has led some researchers to

derisively term such visualizations as “ridiculograms”3, whose meaning we think is

fairly self-explanatory.

More importantly, in such large systems, asking questions such as which individual

3Attributed to Harvard biologist Marc Vidal. Incidentally, some have suggested that pictures such as these tend
to be suitable for publications in popular journals such as Nature or Science. A set of criteria for what constitutes a
ridiculogram have also been devised, however we shall not list them here.

9

vertex is the most central or most crucial for connectivity, is clearly meaningless in

much the same way as it is (with apologies to Newtonian Determinists) to try and

trace the trajectory of a single molecule in a cloud of Helium gas. This change in

scale, therefore forces us to change our analytic approach, as well as the type of

questions that we seek to answer. Rather than focussing on the properties of a single

vertex or edge, it is more useful to look at statistical properties of networks, such as

fractions of vertices that affect network connectivity.

It is largely this change of approach in studying the large-scale properties of net-

works that began to interest physicists, since in particular, techniques from statistical

physics are well suited to be employed in such studies. Moreover, unlike social sci-

entists who are primarily interested only in social systems, or mathematicians who

study graphs as purely theoretical objects, physicists are relatively unshackled, in

that their approach is largely inspired by empirical studies of a variety of real-world

networks, including social, biological, technological and other systems. When talking

about the large-scale properties of networks, one might ask questions such as: how

do the emergent collective behaviors depend on the connectivity of the network?

Physicists have thoroughly studied this question in magnetic spin systems, for which

it has long been recognized that the details of a phase diagram depend on the di-

mensionality of the system, the symmetries of the spin-spin interactions, and the

range of these interactions. Attempts by physicists to find analogs of these concepts

in networks have led to the discovery of a number of previously unknown and in-

triguing network properties, which in turn have inspired an impressive array of new

theories, techniques, algorithms, models, and measures to describe and illuminate

their function.

10

1.3 Types of networks

In the beginning of this chapter, we mentioned that a network is a set of vertices

connected together by edges. One can think of this as the simplest representation of

a network—its most canonical form—however there are a number of extensions that

we can add to reflect more complicated forms of connections. Let us consider an

acquaintance network, where vertices represent people, and there is an edge between

them if they are friends. One way to represent this is to use the basic representation

of a network (also known as a unipartite network). However, as we all know, there

are levels of acquaintance, some people are more familiar with each other than with

others. An obvious way to represent this in networks is to assign weights to the edges.

Taking it still further, edges do not have to represent friendship, but also animosity,

so we can assign different types of edges between people. Yet another embellishment

we can add is to add direction to the edges. Sometimes, we might call someone our

friend, but the sentiment is not necessarily reciprocated (a common phenomena in

certain high schools), so an edge can point only in one direction—if person A claims

to be acquainted with person B, but not vice versa. Such networks are called directed

graphs or digraphs for short. (A better example of this is an e-mail network, where

vertices represent individuals and an edge represents the act of sending an e-mail,

which at a given point of time clearly goes in one direction.)

Edges are not the only ones that can be assigned weights or characteristics. Ver-

tices themselves might take on attributes that represent different categories. For

example, a vertex in the acquaintance network described above can be assigned

scalar characteristics such as gender, race, nationality, income level and a variety of

other things. Speaking of different types of vertices, some networks can be naturally

11

Figure 1.3: Various ways to represent networks: a) a simple unipartite undirected network; b)
a directed network with edges pointing in one direction; c) a network with weighted
vertices and edges representing some discrete characteristics; d) a bipartite network
with two types of vertices with edges running only between unlike types.

partitioned in various ways. One example is an affiliation network, where people

are joined together by common membership of some group, say a network of profes-

sionals and the companies they work for. Here, there are two types of vertices, one

representing people and the other the companies, with edges running only between

the two types and not within them. This is an example of a bipartite graph. In

general, networks consisting of different types of vertices with edges running only

between unlike types, are called multipartite networks, of which the bipartite graph

is a special case.

One can also organize vertices into groups, where edges connect more than two

vertices. Such graphs are called hypergraphs and are typically used in social networks

to organize vertices into some kind of familial, topical or vocational group. In a

network representing communities in a city neighborhood for example, those living

in a particular house can be considered as a single unit, and a family of five can

12

be represented as a single hyperedge. Hypergraphs can consist of hyperedges joining

together the same or different number of vertices, or they might consist of different

types of vertices, and so on.

In addition to these, there are networks that evolve in time, such that vertices or

edges might appear or disappear or their characteristics (such as weights or types)

might change. We will see examples of most of the networks described here, in

the remainder of this dissertation, however, we hope that the reader appreciates

that there are many other ways we can represent networks (indeed there surely are

representations not conceived of yet). In Fig. 1.3 we show a visual representation of

some of the different forms that networks can take.

1.4 Standard metrics and tools for measuring network structure

Having described the various types of networks, we now move on to describe

some of the more common statistical and topological structural measures that are

commonly used to quantify their properties.

1.4.1 Adjacency matrix

Perhaps, the simplest (and most common) way to represent a network is by means

of the so-called adjacency matrix. Let us assume that there are n vertices in the

network, that are connected to each other in some fashion, via m edges. Furthermore

let these edges be undirected. Then it is possible to completely specify the connection

structure of the network by an n × n matrix A whose elements are,

(1.1) Aij =

1 if there is an edge joining vertices i, j,

0 otherwise.

Consider for example, the simple network shown in Fig. 1.4. The adjacency matrix

13

Figure 1.4: A simple undirected network consisting of five nodes and four regular edges.

representation of this network is,

(1.2) A =

0 1 0 0 0

1 0 1 0 0

0 1 0 1 1

0 0 1 0 0

0 0 1 0 0

.

This manner of representation is not just restricted to the case of undirected graphs,

but can be extended to many different types of networks. In a directed graph, for

example, the elements of the matrix are still (0, 1) depending on the existence or not

of an edge, however, Aij = 1 only if there is an edge emanating from j incident on i

and not the other way round (that is in general Aij 6= Aji). The only change in the

matrix is that it might no longer be symmetric. For graphs with weights assigned to

their edges, the elements of the matrix take on the values of the assigned weights,

which one can write explicitly (say 2.3) or normalize them such that it takes on a

value between 0 and 1. In addition, one can think of a number of embellishments

and extensions to reflect other more complicated types of networks.

Despite its relative simplicity, the adjacency matrix is quite a powerful tool while

analysing networks, in the sense that a lot of information is encoded in it. Reverting

14

back to the simple example of Fig. 1.4, if one were interested in the number of edges

incident on a particular vertex—conventionally referred to as the degree—one can

easily compute it via the expression,

(1.3) ki =
n

∑

j=1

Aij ,

where ki refers to the degree of vertex i. The total number of edges in the network

can be computed by summing all elements of the adjacency matrix and from this

one can calculate the mean number of edges 〈k〉 incident on a vertex,

(1.4)
1

n

n
∑

i,j=1

Aij =

∑

i ki

n
=

2m

n
= 〈k〉,

where the factor of 2 comes from the fact that our example network is undirected,

and we are double counting the number of edges due to the symmetric nature of the

matrix. An alternative statement is that we are really summing over the edge ends,

and each edge clearly has two ends.

Apart from the degrees of vertices we can also calculate a number of other prop-

erties from the adjacency matrix. For example, one might be interested in finding

vertices that are reachable from a given node, apart from the ones that it is directly

connected to. In the network shown in Fig. 1.4, node 3 is directly connected to

nodes 2, 4 and 5, but also to node 1 via node 2. A simple way to measure this is

to look at the existence of paths in the network. In the language of graph theory,

a path is a sequence of vertices such that from each vertex there exists an edge to

the next vertex in the sequence. In this context the length of a path l between two

given vertices is just the number of edges that it traverses before it terminates at

one of the two vertices. An interesting question then is, given two vertices i and

j, does there exist a path connecting the two in some fashion, and if so, are there

more than one? Happily enough this can be computed in a straightforward fashion

15

by employing the adjacency matrix. Say, we would like to find the number of paths

between two vertices i and j that are connected by a common neighbor k—this is an

example of all paths of length 2—then the corresponding expression for this is,

(1.5)

n
∑

k=1

AikAkj = [A2]ij ,

where the sum is over all common neighbors and the last term denotes the ij-th

element of the square of the adjacency matrix. It is relatively straightforward to

convince oneself that the general expression for a path of any length l between two

vertices is given by taking the matrix to the power l and then picking out its ij-th

element.

Note that in the expression above, we have not imposed any restrictions on the

nature of the path. The sum takes into account all possible paths even if they share

a number of common vertices and edges. Sometime it is of interest to look at paths

that do not share any common vertex apart from the start and end vertices. Such

paths are conventionally referred to as vertex-disjoint or vertex-independent paths.

A useful application of this concept is the subject of Chapter II.

Apart from the simple properties described above, one can look at more com-

plicated aspects of network structure by examining the spectral distribution of the

adjacency matrix. We desist from describing the details here, as it is not a subject

dealt with in this dissertation, and instead move onto other things. The interested

reader can consult [68] and the references contained therein.

1.4.2 Degree distribution

One of the most important and widely studied metrics of network structure is the

degree distribution. As discussed, the degree ki is the number of edges connected

to a vertex i. If, however we are to consider the network as a whole, then a more

16

sensible measure is to look at the fraction of vertices in the network that have degree

k. We call this the degree distribution pk. Alternatively, pk represent the probability

of a randomly chosen vertex to have exactly k edges connected to it.

The degree distribution is useful for a number of reasons. From a practical stand-

point, most mathematical models based on it are relatively straightforward and one

can make precise calculations. In terms of characterizing networks in the real world,

the simplest thing to measure is the degree of a vertex, and from that one can

easily construct a histogram to represent the degree distribution. Perhaps most im-

portantly, the degree distribution (usually) is an excellent indicator or guide to a

network’s properties both in terms of its topology as well its dynamics.

Since pk is a probability distribution it satisfies the normalization condition,

(1.6)
∞

∑

k=0

pk = 1.

From this we can calculate the various moments (of the degree) in the usual fashion.

For example, the first two moments are given by,

(1.7) 〈k〉 =

∞
∑

k=0

kpk, 〈k2〉 =

∞
∑

k=0

k2pk,

where 〈k〉 is the average degree for the entire network, and 〈k2〉 is the mean squared

degree.

One can also define degree distributions for more complicated forms of networks.

In a bipartite graph which consists of two different types of vertices, with edges

running only between unlike types, there is a separate degree distribution for each

type of vertex. Consider for example, an affiliation network of M movies and N

actors where each actor has appeared in an average of µ movies and each movie has

an average cast of ν actors. Suppose that there are m edges in the network, then the

17

first thing to note is that µ and ν are fixed by the condition,

(1.8) Nµ = Mν = m,

since each edge joins together exactly one movie and one actor. We then define pj

to be the fraction of actors who have appeared in j movies, and qk to be the fraction

of movies that have had a cast of k actors. These then satisfy the sum rules

(1.9)
∞

∑

j=0

pj =
∞

∑

k=0

qk = 1,

and,

(1.10)

∞
∑

j=0

jpj = µ,

∞
∑

k=0

kqk = ν.

For directed networks, on the other hand, each vertex has separate in-degree and

out-degree for links running in and out of that vertex. The degree distribution in

this case is a function of two variables pjk representing the fraction of vertices that

simultaneously have in-degree j and out-degree k. Since every edge in a directed

graph must leave some vertex and enter another, the net average number of edges

entering a vertex is zero, and pjk is thus constrained by the condition,

(1.11)
∑

jk

(j − k)pjk = 0.

In a similar fashion one can define a degree distribution for a variety of other cases. In

Chapter III we present a model where we extend the concept of degree distributions

to hypergraphs.

In the real world the degree distribution comes in a variety of flavors such as ex-

ponential and Gaussian, although these are relatively rare. By far the most common

type is where vertices have degrees that are highly right-skewed, implying that their

18

distribution has a long right-tail of values that are far above the mean. Typically

(but not always) these take on the form of power-laws,

(1.12) pk ∼ k−α,

where α (in most cases) takes on a value between 2 and 3. Although as mentioned

before, one can just construct a histogram of the degrees to represent its distribution,

measuring the tail is particularly cumbersome, as in most cases one does not have

an accurate sample of measurements to get good statistics.

There are usually two methods to get around this problem. The first method is

to progressively increase the bin size (usually exponentially with the degree). The

simplest way to do this is to double it at intervals, for example, a series of bins

might look like, 1, 2-3, 4-7, 8-15 and so on. The number of samples in each bin is

then divided by its width to normalize the measurement. If the histogram is plotted

on a logarithmic scale, the widths of the bin will appear even. As we get near the

tail, the bins get much wider and thus the problems with the statistics are reduced.

A significant drawback with this method, however, is that any differences between

values that fall in the same bin are lost.

A much cleaner way to present the degree data that avoids these problems is to

make a plot of the cumulative distribution,

(1.13) Pk =
∞

∑

k′=k

p′k,

which is the probability of a vertex to have degree greater than or equal to k. This

is also known as a rank frequency plot, since in effect it ranks the fraction of vertices

with degree k in decreasing order of their occurrence. Plotting the distribution in

this fashion significantly reduces the noise in the tail as all data points are included.

19

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

k

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

k

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

k

Figure 1.5: Three different ways to plot the degree distribution as described in the text. From
left to right, the degree distribution plotted via linear binning, logarithmic binning and
finally the plot of the cumulative distribution. The data is taken from a collaboration
network of condensed matter physicists [106].

To illustrate this, in Fig. 1.5 we show three different ways to plot the degree

distribution. The data in the plot is taken from a collaboration network of condensed

matter physicists [106], where the vertices in the network represent physicists, and

there is an edge between two of them if they have written a paper together. From

the figure, one can see the advantages and drawbacks of each of these methods. The

leftmost plot is just a linear binning of the degree distribution plotted on a log-log

scale. Towards the tail of the distribution, the plot tends to get messy due to the

scarcity of sample data points in that region. The central plot is an example where

the data is binned logarithmically and as the figure clearly shows, the noise in the

tail is significantly reduced, however at the cost of making the bin sizes much larger

and thus throwing out (potentially) valuable information. In the rightmost plot, we

show the cumulative distribution of the degrees that shares none of the disadvantages

20

of the previous plots—all data points are included, and the tail is relatively clean.

1.4.3 Transitivity

In many real networks—particularly social networks—it is found that if a vertex

1 is connected to vertex 2 and vertex 3, then it is very likely that vertices 2 and 3

are also connected to each other. In the context of acquaintance networks, this is

equivalent to saying that the friend of my friend is quite likely my friend as well.

This property is conventionally referred to in the literature as transitivity. In terms

of network topology, transitivity is the measure of the presence of triangles in the

network—sets of three vertices that are all connected to each other. This prop-

erty can be quantified by means of a coefficient (also referred to as the clustering

coefficient) defined in the following manner,

(1.14) C =
3n△

ntriples
,

where n△ refers to the number of triangles in the network and ntriple refers to the

number of connected triples—a single vertex with edges running to a pair of other

vertices. The factor of 3 in the numerator comes from the fact that each triangle

contributes three triples, and thus ensures that C lies in the range 0 ≤ C ≤ 1.

Essentially the clustering coefficient C measures the fraction of triples, that are

closed by the presence of a third edge thus converting it into a triangle, however it

might be easier to think of it in terms of the mean probability of two neighbors to

share a common third neighbor.

There is an alternative definition of the clustering coefficient, first proposed by

Watts and Strogatz [149], who considered a local measure Ci for a vertex i defined

in the following manner,

(1.15) Ci =
ni
△

ni
triples

,

21

where the numerator represents the number of triangles connected to vertex i, and the

denominator refers to the the number of triples centered on i. The overall clustering

coefficient for the network is then simply,

(1.16) C =
1

n

∑

i

Ci.

Note, that Eqns (1.14) and (1.16) give different results for the overall value of C.

In the former case, we take the ratio of the mean values of n△ and ntriple whereas

in the latter case we compute the mean of the ratio of these two values. The main

difference between the two definitions is that Eqn. (1.16) assigns a higher weight to

connected triplets incident on lower degree nodes. Nevertheless both definitions of

the clustering coefficient are in wide use in the literature, and the choice of one or

the other is a function of the type of question that researchers are trying to answer.

It is worth noting that interest in the phenomenon of clustering has been inspired

mostly by empirical measurements on real networks, where this is fairly common-

place. Networks generated by standard mathematical models (mostly random graph

models, described in detail in the next section), on the other hand, do not have a

high degree of clustering. In fact it a well known result that on the random graph

C = O(n−1), which is to say for large graphs sizes, as n → ∞ (the standard limit

in the study of theoretical graph models, also known as the thermodynamic limit in

statistical physics), this is a vanishing quantity. In the real world, in contrast, one

expects C to tend to a non-zero limit as the network gets larger.

Most attempts to reproduce finite clustering in theoretical network models have

fallen short, see [142, 31, 123], however, recently Newman [112] has proposed a

random graph model that seems to reproduce clustering in a reasonable fashion. In

particular one can specify the level of clustering in the graph a priori and then have

the model reproduce it in the networks that it generates.

22

The clustering coefficient is a measure of the presence and density of triangles in

the network, which is just a closed loop of length three. An obvious generalization

of this concept is to look at loops of longer length. There have been some studies in

this direction [23, 33, 62], however as of this writing there is no complete theory of

such structures.

1.4.4 Assortativity and degree correlations

As mentioned earlier in the text, vertices in a network can be endowed with

certain extrinsic characteristics. Consider for example, a network of academics in a

university setting, vertices here represent Professors or researchers, and edges might

represent some manner of acquaintance. An obvious way to distinguish between

vertices in this case, is if there is some scalar attribute which represents academic

discipline (physics, mathematics, biology, political science etc.). Another example is

provided by networks in a food web. Vertices in this case represent organisms, and

edges run between them if one organism is a source of nourishment for the other. One

can then classify vertices in terms of trophic levels, say plants, herbivores, omnivores,

carnivores and so on.

In these types of networks, an obvious question to ask, is whether vertices of a

certain type connect only to vertices of a similar type, or to unlike types, or are

connections distributed in some fashion between multiple types? In an academic ac-

quaintance network, two physicists are more likely to know each other than someone

who is a political scientist. In the food web, there are a number of edges connecting

plants and herbivores, many more that link herbivores and carnivores, but not too

many that link a plant to another plant, or a herbivore to a herbivore. This type of

selective linking is conventionally referred to as assortative mixing or homophily. It

is also occasionally referred to as assortative matching in the ecology literature.

23

This phenomenon of assortative mixing can be quantified by means of an assor-

tative coefficient [107]. Let Eij be the number of edges in the network that connect

a vertex of type i to one of type j, with i, j = 1, . . . , n, then similar in spirit to the

adjacency matrix for vertices, we can represent these edges in the form of an edge

incidence matrix E, with elements Eij . We then define a normalized mixing matrix,

(1.17) e =
E

||E|| ,

where ||E|| refers to the sum of the elements of the matrix E. The entries eij in the

normalized matrix represent the fraction of edges that connect vertices of types i

and j, and satisfies the normalization condition,

(1.18)
∑

ij

eij = 1.

The assortativity coefficient r is then defined thus,

(1.19) r =
Tr(e) − ||e||2

1 − ||e||2
,

where Tr(e) is the standard matrix trace—the sum of the diagonal elements eii. The

value of the coefficient r lies in the range −1 ≤ r ≤ 1, where 1 represents a perfectly

assortative network, 0 a randomly mixed one and -1 a perfectly disassortative net-

work. Note that the definition of r in the equation above is closely related to the

Pearson correlation coefficient widely used in Statistics [129].

A special case of assortative mixing based on the degrees of vertices is referred

to as degree correlation. In this case, we are interested in the question: Do high-

degree vertices in a network preferentially associate themselves with other high-

degree vertices or do they instead connect to low-degree ones? Reverting back to

our example of friendship networks, this is similar to asking whether popular people

tend to associate with each other, or otherwise. Since the degree is an important

24

topological measure, degree correlations assume a significant amount of relevance as

they can give rise to complicated network structural effects. The degree correlation

can be computed using Eqn. (1.19), where the elements eij represent the fraction of

edges that connect a vertex of degree i to that with degree j.

The concept of assortativity can also be generalized to more complicated struc-

tures such as directed networks, we refer the interested reader to [107] for further

details.

1.4.5 Centrality

A question of practical importance, that has been considered by many researchers

in the field of networks and graph theory, is to determine the relative importance of a

vertex within a graph. For example, in a social network, we might want to determine

who is the most important person, or in a information network like the World Wide

Web, try and identify the most popular web-page. The amount of importance of a

particular vertex is conventionally referred to as its centrality. There are a number

of ways of defining centrality depending on the type of network, and the type of

question we seek to answer.

The simplest measure of centrality is the degree centrality. The degree centrality

is defined as the number of links incident on a node, so the higher the degree of the

node the more central it is. This is a fairly straightforward measure, and is easy to

understand in the context of the popular search engine Google, which, by virtue of

popularity of its usage has an extensive fraction of hyperlinks to other web-pages. It

is thus considered highly central in the sense considered here. Mathematically the

degree centrality of a vertex i is written as,

(1.20) cd(i) =
ki

n − 1
,

25

where ki is the degree of vertex i and n is the number of nodes in the network.

Having a large number of connections to other vertices is not the only way for

a node to be central. For example, in the corporate world it is common wisdom

that the road to success is not a function of how many people we know, but more

importantly it’s who we know (something that is achieved by a process coincidentally

referred to as networking). In this case importance or centrality of a particular vertex

is a function of the centralities of all of its neighbors. If a node is connected to highly

central neighbors, then the more central it is itself. This definition of centrality is

referred to as the eigenvector centrality [25]. The centrality of a vertex i, say xi can

be written as

(1.21) xi = λ−1
n

∑

j=1

Aijxj ,

where λ is some constant and Aij is the adjacency matrix. The equation essentially

states that the centrality of i is equal to the sum of the centralities of all its neighbors

upto a multiplicative constant. The equation can be recast in the following matrix

form,

(1.22) Ax = λx,

which is just the standard eigenvalue equation, with x an eigenvector of A. The

requirement that all entries of the eigenvector x be positive implies that the one

corresponding to the leading or largest eigenvalue λ gives us the correct centrality

measure (this follows from the Perron-Frobenius theorem, a well-known result in

the field of linear algebra). Once this eigenvector is determined, the centrality of

a vertex i is given by the ith component of the eigenvector. A practical way to

find this eigenvector is to use the multiplication method, where we guess an initial

eigenvector—the unit vector with all ones as its components for example—and then

26

repeatedly multiply it into Eqn. (1.22) until it converges to a fixed value for x.

Note that Google employs a variant of this measure called PageRank [27] to rank

web-pages in order of their importance.

In some networks vertices are central in that they have a large number of connec-

tions (high degree centrality), but nevertheless occupy a peripheral position in the

network in terms of having a large average distance to other vertices. Consequently

yet another way to define the centrality is related to the concept of path lengths,

that we talked about in an earlier section. The definition of centrality in this case,

called the closeness centrality, is related to the distance between vertices in terms of

the sequence of edges connecting them [133]. Vertices are considered to be close to

each other in the sense of the shortest possible path connecting them. Let dij denote

the shortest possible path connecting two vertices i and j—also referred to as the

geodesic—then the closeness centrality of a vertex i is defined as,

(1.23) cc(i) =
n − 1

∑

j 6=i dij
,

where the condition j 6= i ensures that the sum does not diverge (since i is at a

distance of zero from itself). Equation (1.23) measures the reciprocal of the average

geodesic distance of a vertex to all others reachable from it, thus the smaller the

distance, the larger the contribution to the centrality. In Chapter VI we discuss a

game theoretical model on networks based on the concept of the closeness centrality.

Apart from the measures described here, there are a number of other ways to

define the centrality, such as the Katz centrality, betweenness centrality, information

centrality etc.—see for instance [86, 61, 141].

27

1.4.6 Components

A particularly useful measure of network structure (and a subject dealt with

extensively in this dissertation) is the connected component of a graph. In the

context of an undirected graph a connected component is defined as a set of vertices

in the the network that are all linked to each other such that there exists some

path between any two pairs in the set. The network shown in Fig. 1.4 constitutes a

connected component as per the definition considered here.

The notion of a component assumes particular significance while studying the

spread of epidemics on a network. For example, we might represent a village or a town

as a network where the nodes represent people, and edges represent acquaintance.

In such a setting, starting from an infected individual we can study the spread and

contagion of diseases such as the flu virus, or malaria. If the source of an infectious

disease is an individual who is part of the network consisting of only a few people

then it’s quite likely that it will not cause much damage and die out fairly soon.

If however the infected individual is part of a group of people that encompasses

an extensive fraction of the network, then this could lead to dire consequences, as

the disease has the potential to spread to the entire town. This brings us to the

idea of the giant component. A giant component of a graph is defined as the set

of vertices of size O(n)—n being the number of nodes in the network—such that

any two in the set are reachable by some path. A large amount of research has

been devoted to the study of the giant component and its properties in both real and

model networks. The majority of studies have focussed on two aspects. The first is to

determine whether a network has a giant component to begin with, and if so measure

its size. The second is to examine the effects of node and edge removal (in some

fashion) on the size of the giant component—this is similar to simulating epidemic

28

Figure 1.6: A network with three connected components. The sets of two and three vertices are
referred to as small components, while the larger set is the giant component.

spreading on a network, or the effect of disruptions on a communication network. The

latter is closely related to percolation theory in physics, and in that sense the giant

component is equivalent to the infinite or spanning cluster in percolation, though

strictly speaking the comparison is valid only in the thermodynamic limit.

Most networks, both real and model, are found to have at most one giant com-

ponent, and a number of other connected components of size O(1), conventionally

referred to as small components. As an example of this, Fig. 1.6 shows a network

consisting of a single giant component of ten nodes and two small components of size

three and two.

Just as in the case of other properties, component structure can be extended to

more complicated types of networks. For directed graphs there are two types of com-

ponents, strongly connected and weakly connected. The definition of the component

is the same as before, however we need to account for the direction of the edges.

Thus a strongly connected component in a directed graph is defined as the set of

vertices in the network, such that for any pair i and j, there exists a path from i to

j and from j to i, which in a directed graph is not necessarily the case. If we relax

this condition, then we have a weakly connected component, which is just the analog

for a component in an undirected graph.

29

For multipartite graphs, we can have components for each type of vertex, or

components consisting of multiple types and so on. In Chapter III we describe in

detail the component structure of a tripartite graph consisting of three types of

vertices.

1.4.7 Generating functions

A significant part of the mathematical material presented in this dissertation is

treated with the technique of generating functions. Before we move on, it is worth

providing a brief primer on the use of this method.

In mathematical terms a generating function is a formal power series whose coef-

ficients contain information about a sequence, say ak, where k is a natural number.

There are various types of generating functions depending on the type of sequence,

for example Exponential and Dirichlet generating functions have found wide use in

certain branches of physics, however the type we consider here is the most basic type,

known as the ordinary generating function.

The most fundamental generating function that we will use in our analysis is

one for the degree distribution pk. Let us consider a unipartite undirected graph

consisting of n vertices with n large, then we define,

(1.24) G0(z) =

∞
∑

k=0

pkz
k.

Since pk is a probability, the distribution is assumed normalized, i.e
∑

k pk = 1. Thus

we have,

(1.25) G0(1) = 1.

The coefficients of G0(z) represent probabilities and the function is therefore called

a probability generating function. As the probability distribution is normalized and

30

positive-definite, G0(z) is absolutely convergent for all |z| ≤ 1 and therefore has no

singularities in this region. All the calculations in which we will employ generating

functions are restricted to the region |z| ≤ 1.

There are a number of properties of generating functions that make them a par-

ticularly powerful tool in performing analytical calculations. For example, the prob-

ability pk for any k can be found simply by taking the kth derivative of G0(z),

(1.26) pk =
1

k!

dkG0

dxk

∣

∣

∣

∣

z=0

,

from which we can see that G0(z) contains all the information about pk, or in other

words G0(z) generates the distribution pk. Calculating the moments of the distribu-

tion is also a fairly simple exercise. The average degree 〈k〉 is given by,

(1.27) 〈k〉 =
∑

k

kpk = G′
0(1).

Higher moments can be calculated by taking larger derivatives of the function, and

in general,

(1.28) 〈ks〉 =
∑

k

kspk =

[(

z
d

dz

)s

G0(z)

]

z=1

.

An important property of generating functions is the powers property. Say k rep-

resents a property of an object (degree for instance) whose distribution is generated

by some generating function. The distribution of the total of k summed over m

multiple independent realizations is generated by the m’th power of the generating

function. For example, if we pick two vertices at random from a network, then the

distribution of the sum of the two degrees is given by,

[G0(z)]2 =

[

∑

k

pkz
k

]2

=
∑

jk

pjpkz
j+k(1.29)

= p0p0z
0 + (p0p1 + p1p0)z

1 + (p0p2 + p1p1 + p2p0)z
2

+(p0p3 + p1p2 + p2p1 + p3p0)z
3 + . . .

31

As can be seen clearly from the equation, each coefficient of the power of zs is the sum

of all the possible combinations of the product pjpk such that j + k = s, which gives

us the correct expression for the probability of the two vertices to have a combined

degree equal to s. It is straightforward to see that the corresponding expression for

an arbitrary number of vertices is just [G0]
m.

Apart from G0(z), there is another type of generating function that we will be

using extensively. In certain situations—primarily in calculating properties of net-

works generated by the configuration model (discussed in Sec 1.5.2)—it is of interest

to us to look at the distribution of edges of a vertex that we arrive at by following a

randomly chosen edge, which in general is not the same as pk. The edge arrives at a

vertex with probability proportional to the degree of that vertex, and therefore the

distribution of edges of that vertex is proportional to kpk. The correctly normalized

distribution is generated by,

(1.30)

∑

k kpkz
k

∑

k kpk
= z

G′
0(z)

G0(1)
.

Thus if we choose a vertex with degree k at random and follow each of its k edges

to its neighbors, then the vertices arrived at each have the distribution of outgoing

remaining edges generated by this function, less one power of z to account for the

edge that we arrived along,

(1.31) G1(z) =
G′

0(z)

G0(1)
=

1

〈k〉G
′
0(z).

The outgoing edges of a vertex are also referred to as the excess degree of the vertex

and the probability of a vertex to have excess degree k is denoted qk, where,

(1.32) qk =
(k + 1)pk+1

〈k〉 ,

32

thus we can also write G1(z) more compactly as,

(1.33) G1(z) =
∑

k

qkz
k.

Taken together G0(z) and G1(z) are the fundamental generating functions for the

network, and in most cases it is these that we will use to calculate the properties of

interest. When appropriate we will define more complex forms of generating func-

tions, however the underlying concepts and principles are identical to that discussed

here.

There are of course a number of other important properties and measures of

networks such as community structure, modularity, motif counts and so on. These

are however beyond the scope of this dissertation and we therefore have restricted

ourselves to what is relevant to the material to follow. For those with an interest

in material other than covered in this dissertation, we recommend they have a look

at [53, 113, 108], which are all excellent reviews of major developments in the field.

1.5 Random Graphs

Having defined some of the basic structural quantities and analytical tools used

to describe networks, we are now in a position to formulate mathematical models to

describe network properties. One of the most important models are those that fall

in the category of random graphs.

1.5.1 Poisson random graphs

The simplest (and perhaps most influential) model for a network was proposed

by Solomonoff and Rapaport [139] and independently by Erdős and Rényi [56]. If

there are n vertices in a network, then with some fixed probability p we connect

each pair (or not) with an edge. This is what is known as the Gn,p model—since

33

the main parameters are the number of vertices n and the connection probability p.

The Gn,p model is the ensemble of all graphs in which a graph with m edges occurs

with probability pm(1 − p)M−m, where M = 1
2
n(n − 1) is the maximum number of

possible edges in a network of n nodes. A related model defined by the same authors,

called Gn,m, is the ensemble of all graphs having n vertices and m edges where each

possible graph occurs with equal probability. Both these models are equivalent to

the canonical and grand-canonical ensembles in statistical physics. For example the

probability p plays the role of a field and m is equivalent to an order parameter. One

can define the analog of the Gibbs and Helmholtz free energies, which in this case

correspond to generating functions for moments of graph properties.

The model as described above is exactly solvable for a number of properties in

the limit of large graph size—as shown by Erdős and Rényi in a series of famous

papers [56, 57, 58]. The degree distribution for the model is binomially distributed

since each edge occurs with independent fixed probability and therefore,

(1.34) pk =

(

n

k

)

pk(1 − p)n−k.

The mean degree of the graph, say µ is just µ = (n − 1)p. If we take the limit

n → ∞ while keeping the average degree fixed, then Eqn. (1.34) tends to a Poisson

distribution,

(1.35) pk =
µke−µ

k!
.

Consequently the model is also referred to as the Poisson random graph.

The structure of the networks generated by the model clearly depend on the

value of p. For low values of p there will be very few edges between vertices, whereas

on the other end of the spectrum with p close to one we will get networks where

almost all vertices are connected to each other. Intuitively then, one expects to

34

find some transition between these two states and in fact that is precisely what the

model predicts. Both sets of authors have demonstrated that there exists a phase

transition between a low density, low p state, where vertices are connected together

in small components whose sizes are exponentially distributed with a finite mean, to

a high density, high p state where an extensive fraction of vertices (size O(n)) clump

together to form a giant component with the remainder of vertices still connected

together in small components.

Using a simple argument, we can calculate the expected size of the giant com-

ponent for networks generated by the model. (This is not how Erdős and Rényi

derived it, but it has the virtue of simplicity and gives the same result.) Let u be the

probability that we pick a vertex at random and that it does not belong to the giant

component. Equivalently u represents the fraction of vertices in the network that are

not part of the giant component. In order for the vertex to not belong to the giant

component, it must be that none of its neighbors are part of it either, which happens

with probability uk for a vertex with degree k. Averaging over the distribution in

Eqn. (1.35) we get the following self-consistency relation,

(1.36) u =
∑

k

pku
k = e−µ

∑

k

(µu)k

k!
= eµ(u−1).

The fraction of vertices that are part of the giant component (which we will denote

S) is S = 1 − u and therefore, we get the expression,

(1.37) S = 1 − eµ(u−1) = 1 − e−µS .

There is no closed-form solution for Eqn. (1.36). The standard way to solve for these

types of transcendental equations is to guess an initial solution for u, say u = 1
2

and

then repeatedly iterate the equation until it converges to a fixed value. Intuitively

though it is easy to see that the only non-negative solutions to Eqn. (1.36) are S = 0

35

for µ < 1 and another solution for µ > 1 that corresponds to the expected size of

the giant component. The phase transition takes place at µ = 1. It is not too hard

to show this explicitly; in order for there to be a giant component, there must be a

solution for u that is less than 1, otherwise by definition of u there are no vertices in

the giant component. Let it take on a value slightly less than 1 thus,

(1.38) u = 1 − ǫ,

Substituting this into Eqn. (1.36) and performing a Taylor expansion we get,

1 − ǫ = 1 − µǫ + O(ǫ2)(1.39)

ǫ = µǫ + O(ǫ2),

which tells us that the condition for there to be a giant component is µ ≥ 1. It can

also be shown that the mean size 〈s〉 of a cluster to which a randomly chosen node

belongs to is given by the expression,

(1.40) 〈s〉 =
1

1 − µ + µS
,

which as can be seen diverges at the point µ = 1. In the language of the theory of

phase transitions, S functions as an order parameter, and 〈s〉 plays the role of the

order-parameter fluctuations. Consequently there are a series of critical exponents

that describe the behavior of the system at and near the phase transition, and all of

these are known. In addition to this a variety of other results are known, such as the

distribution of sizes of small components above and below the transition, the mean

path length between vertices and many more.

Unfortunately the properties of the random graph do not correspond well to that

found in real world networks. To begin with, degree distributions in real networks,

36

are very far from resembling a Poisson distribution. Properties such as cluster-

ing, assortativity, and correlations between degrees are also virtually non-existent.

Nevertheless, from a pedagogical point of view the random graph still retains its

importance. Even though it is not exactly an accurate representation of real net-

works, it qualitatively captures some of the basic features. When one talks about

the existence of a giant component and a number of smaller components, a phase

transition from a low density to high density state—features found in most real and

sophisticated model networks—these ideas have all been inspired by the study of the

random graph.

1.5.2 Generalized random graphs

There are a number of ways in which we can extend random graph models to

better reflect properties of networks in the real world. An obvious improvement is

to incorporate more realistic degree distributions, and this leads us to consider the

configuration model.

In the configuration model we specify a degree distribution pk a priori. From this

distribution, we then choose a set of n values of degrees ki, with i = 1, . . . , n (n being

the number of vertices). This is equivalent to assigning each vertex i, ki stubs or edge-

ends chosen from this sequence. Having done this, we then choose pairs of stubs at

random and connect them together. The process generates all possible configurations

of graphs (hence the name configuration model) with the specified degree sequence,

each instance or configuration occurring with equal probability [102]. The networks

generated by the model are thus drawn from the ensemble of all graphs with a given

degree sequence, with each realization having equal weight.

A variety of precise results are know about the configuration model—see [9, 21, 38,

39, 101, 102, 117] for instance. We will give a brief description of some of the more

37

important results related to components, using the generating function formalism

that we described in Sec. 1.4.7. (First introduced by Newman et al. [117].)

In the model the probability of an edge occurring between two vertices i and j is

given by the expression,

(1.41) Pij =
kikj

2m
,

where ki and kj are the degrees of vertices i, j and m is the total number of edges. As

in the case of the Poisson random graph, calculations are made in the large n limit.

If we let n → ∞, while keeping the average degree 〈k〉 = 2m/n fixed, we see that

the number of edges m is of O(n)—networks of this type are called sparse graphs.

In this limit, the probability of an edge occurring between two vertices i and j is

proportional to n−1. Among other things, one of its implications is that the graph is

locally tree-like, or in other words, the probability of finding a closed loop of vertices

in a small component of the graph goes as n−1. This is crucial in terms of finding

solutions to the configuration model.

Keeping this point in mind, we define two generating functions, one for the regular

degree pk and one for the excess degree qk, that we discussed in Sec. 1.4.7 thus,

(1.42) G0(z) =

∞
∑

k=0

pkz
k, G1(z) =

∞
∑

k=0

qkz
k.

Using these we can for instance, calculate the distribution of sizes of connected com-

ponents in the graphs. Let H1(z) be the generating function for the size distribution

of components—excluding the giant component—that are reachable by following a

randomly chosen edge and then following it to one of its ends. Exploiting the local

tree-like property of the graph we can conclude that the components themselves are

tree-like in structure consisting of the single site we reach by following an initial edge,

including any number of other tree-like clusters, with the same size distribution con-

38

Figure 1.7: Visual representation of the sum rule for connected components of vertices reached by
following a randomly selected edge as per Eqn (1.43). Each component (squares) can
be expressed as the sum of the probabilities of a having a single vertex (circles), a single
vertex connected to one component, to two components and so on.

nected to it by single edges. Using the powers property discussed in Sec. 1.4.7, the

function H1(z) must satisfy the following self-consistency relation,

(1.43) H1(z) = zq0 + zq1H1(z) + zq2[H1(z)]2 + . . .

A visual representation of this is shown in Fig. 1.7. This is however just the function

G1(z) evaluated at H1(z) with an overall multiplicative factor of z. We can thus

re-write it as,

(1.44) H1(z) = zG1(H1(z)).

If we instead pick a vertex at random then the corresponding distribution is,

(1.45) H0(z) = zG0(H1(z)),

as there is a component at the end of each edge connected to the vertex apart from

itself.

All information about the component sizes is encoded in the functions H0(z) and

H1(z). These equations are typically transcendental in nature and it’s usually hard

to find closed-form solutions, however recently specialized analytical and numerical

techniques have been devised to solve for them [111]. Using these methods one can,

for example, extract the coefficients of H0(z), which tells us the probability of a

randomly chosen vertex to belong to a component of a particular size.

39

The average properties of clusters can be found in a straightforward fashion. The

mean size of a cluster below the phase transition (no giant component in the graph)

is given by,

(1.46) 〈s〉 = H ′
0(1) = 1 +

G′
0(1)

1 − G′
1(1)

.

This diverges at the point G′
1(1) = 1, which marks the phase transition at which a

giant component first appears.

Above the transition there is a giant component that occupies a fraction S of the

graph. The size of the giant component can be calculated in similar fashion to the

method we used for the Poisson random graphs with some subtle differences. Let

u be the probability that a randomly chosen edge—in the previous case it was a

vertex, however for a Poisson distribution the result is the same regardless—leads to

a vertex that is not part of the giant component, which is possible only if none of its

remaining edges lead to the giant component. These edges are distributed according

to qk, and therefore u must satisfy the self-consistency condition,

(1.47) u =
∑

k

qku
k = G1(u),

where k is the excess-degree. The probability of randomly choosing a vertex that is

not part of the giant component is G0(u), and therefore S is given by,

(1.48) S = 1 − G0(u),

with u the solution to Eqn. (1.47).

As an example of the application of the results, let us consider a network with

links distributed exponentially, such that,

(1.49) pk = (1 − e−λ)e−λk,

40

where λ is some constant. Substituting this into Eqn. (1.42), we get,

(1.50) G0(z) =
eλ − 1

eλ − z
, G1(z) =

(

eλ − 1

eλ − z

)2

.

The phase transition occurs at the point G′
1(1) = 1 which for our example network

can be written as,

(1.51) 2 = eλ − 1,

which gives us a critical value λc = 1.09861 . . . In other words, a giant component

exists only if λ < λc. The value of u in Eqn. (1.47) is a solution of the equation,

(1.52) u =

(

eλ − 1

eλ − u

)2

,

which is a cubic equation in u and can be solved analytically—the exponential distri-

bution is one of the few cases that has an analytic solution—after which we substitute

it into Eqn. (1.48) to get the size of the giant components S. For example, if λ = 0.5,

the corresponding values are u ≈ 0.2 and S ≈ 0.55.

The configuration model can be extended to reflect even more complicated struc-

tures such as directed and bipartite graphs [117]. In Chapter III we adapt the

configuration model to the case of tripartite hypergraphs. Apart from that we use it

extensively to determine a large number of results in the dissertation.

In addition to the models described here there are a number of other random

graph models, most notably Markov graphs and their general forms, exponential

random graps [75, 142] as well as the small-world model of Watts and Strogatz [149].

1.6 Network growth models

In the previous section we described examples of models, where we take observed

properties from real networks, such as the degree sequence or clustering, and then

41

use that as an input-parameter to the model to generate networks that share similar

properties. These models however, do not tell us much about why networks have

these properties to begin with. Consequently, there are a different class of models—

collectively referred to as network evolution or growth models—that try to explain

the origin of these properties on the basis of some kind of evolution process. The

typical approach is to let the network grow by the addition of vertices and edges in

some fashion, intended to reflect the growth process that might actually be taking

place on real networks. The hypothesis is that the growth process itself is what gives

a network its characteristic structural features.

Among these growth models, by far the most widely studied and influential are

those that aim to explain the origin of the highly right-skewed degree distributions

that are ubiquitous in real networks. In fact, one can argue that the recent wide-

spread interest in networks has been inspired in a major way by these models and

its implications.

In this section we will focus on the two most famous examples; the archetypal

model of Price [48, 49] and the closely related model of Barabási and Albert [13]

that has been the inspiration for much of the work in this area.

1.6.1 The model of Price and Barabási-Albert

The first example of a right-skewed, or what is now known as a scale-free network,

was provided in 1965 by the English physicist and later science historian Derek de

Solla Price. Price studied the network of citations between scientific papers, and

found that distributions for both the number of times a paper is cited, as well as

the number of other papers that a paper cites (the in-degree and out-degree) appear

to follow power-laws [48]. Some years later he published another paper in which

he proposed an explanation for the origin of these power-laws [49]. His work was

42

based on the seminal work done by the noted economist, sociologist and general

polymath Herbert Simon who in the 1950’s showed that power-laws arise by the

so-called “rich-get-richer” mechanism, where, the amount one gets, goes up as the

amount one already has. Simon was referring to wealth distributions, and later on

it was applied to other concepts, for example in sociology it is amusingly referred

to as the Matthew effect4. Price however, was the first to apply this concept to a

networked system, and in that context he called it cumulative advantage.

His basic idea was that the rate at which a paper receives citations should be

proportional to the number of times it already has been cited. This is not too hard a

proposition to swallow. It seems reasonable that the probability that we come across

a particular paper, while reading the literature should increase with the number of

citations to it (in fact that’s probably how we came across it in the first place) and

similarly the probability that we cite the paper in a paper we write should increase

due to the same reasons. A similar argument can be applied to the Web, in the

context of web-pages that link to each other (one can think of a hyperlink as a

citation). Although we can assign complex forms for the dependency of the citation

probability on previous citations, the simplest choice is that it is linear, and this is

what Price assumed. The following is the description of the model.

Consider a directed graph of n vertices, and let pk be the fraction of vertices with

in-degree k. The network evolves by the addition of new vertices each with a fixed

out-degree—the number of papers it cites. The out-degree is allowed to vary from

vertex to vertex and can take on non-integer values, however the mean value, let’s call

it µ, is fixed. Clearly µ is also the mean in-degree for the network, i.e. µ =
∑

k kpk.

The probability of a newly arriving edge to attach to a previously extant vertex—

4From the biblical verse: For to every one that hath shall be given . . .Matthew(25:26)

43

the act of citing a paper—is assumed to be proportional to the in-degree of the

vertex. There is, however, a flaw in the formulation. As the model stands, each new

vertex has in-degree zero and therefore the probability of it receiving any new edges

will forever remain zero. Price proposed a reasonable fix for this. He suggested that

the probability of attachment be proportional to k + k0 where k0 is some fixed value

that corresponds to the initial number of citations that a paper enters the network

with. A fair suggestion is that k0 be one, which can be interpreted as the initial

publication of a paper is its first citation (to itself). We can thus write down the

probability of a freshly arrived edge to attach to a vertex of degree k, that is already

part of the network as,

(1.53)
(k + 1)pk

∑

k(k + 1)pk
=

(k + 1)pk

µ + 1
,

where the denominator is included to make sure that it is properly normalized.

At any given time the the number of vertices with in-degree k is given by npk. The

mean number of edges added to each vertex is µ and thus the mean number added

to vertices with in-degree k is just µ times the attachment probability of Eqn. (1.53).

This implies that vertices with degree k now have degree k+1 and thus npk decreases

by this amount. On the other hand there is also a corresponding increase, due to the

influx from vertices that had previously k − 1 edges and now have k. Vertices with

degree zero have to be treated separately as they have an influx of exactly one.

If for a network of n nodes, we denote the fraction of nodes that have degree k as

pk,n, then the change in that value after the addition of new vertices and edges can

be written with the help of a rate equation (or master equation) thus,

(1.54) (n + 1)pk,n+1 − npk,n =

[kpk−1,n − (k + 1)pk,n] × µ/µ + 1 for k ≥ 1,

1 − p0,n × µ/µ + 1 for k = 0.

44

Assuming the distribution tends to a stationary state, we set pk,n+1 = pk,n = pk, and

then Eqn. (1.54) can be re-arranged to give,

(1.55) pk =
k(k − 1) . . . 1

(k + 2 + 1/µ) . . . (3 + 1/µ)
× p0 = (1 + 1/µ)B(k + 1, 2 + 1/µ),

where B(a, b) = Γ(a)Γ(b)/Γ(a+b) is the Euler Beta function (also called the Legendre

function by some authors) [1]. It can be shown that for fixed b and large a, B(a, b)

goes asymptotically as a−b, which implies that for large values of k—that is in the

tail of the distribution,

(1.56) pk ∼ k−(2+1/µ).

In the limit of large n then the tail of the distribution behaves as a power-law

pk ∼ k−α with an exponent α = 2 + 1/µ. This typically leads to exponents between

the range 2 ≤ α ≤ 3, which is similar to what is seen in the real world. Price himself

compared his results to data taken from the Science Citation Index, and found good

agreement. Note, that it is fairly straightforward to extend the results to the case

k0 6= 1, however the form of the exponent is the same.

Although Price’s model of cumulative advantage is now widely accepted as the

most probable explanation for why networks such as citation nets or the World

Wide Web have power law degree distributions, his results were largely unknown

in the scientific community, until its rediscovery some twenty odd years later by

Barabási and Albert who applied the same idea to a different setting from what

Price did. During the 1990s it was widely surmised that pages on the World Wide

Web, owing to its decentralized nature, are connected purely at random, meaning

that the degree distribution of web-pages should resemble a Poisson distribution.

Empirical measurements showed [60] that this was far from the truth, and in fact

the distributions were highly right-skewed and resembled power-laws. To explain

45

this phenomenon, in a highly influential paper [13], Barabási and Albert proposed a

mechanism virtually identical to Price’s—with some subtle differences as we will see

shortly—to which they gave the name preferential attachment (we will refer to this

as the BA model for short).

In the BA model, as in Price’s, vertices are added to the network with a fixed

value µ, which is never changed thereafter. However the difference between the

two models is that in the BA model, edges are assumed undirected. This has the

benefit that it gets round the problem that Price faced—regarding how a paper gets

its first citation—since each vertex in the graph arrives with initial degree µ and

thus has a non-zero probability of receiving new links. Although from a technical

standpoint, in order for the model to be solvable using the master-equation method,

µ is the same for every vertex and is not allowed to vary around some mean value.

Another drawback of the model, is that by assuming that edges are undirected, it

sacrifices realism, since the Web really is a directed graph. Nevertheless the model

has the virtue of simplicity, and it does approximate well the behavior of power-law

networks. Moreover its importance can be attributed more to the subsequent work

that it inspired, rather than the accuracy of its results.

The model is exactly solvable in the limit of large size, Barabási and Albert

themselves gave an approximate solution, but subsequently, Krapivsky et al. [96]

and independently Dorogovtsev et al. [54] have used the rate equation method to

solve for a number of its properties.

The equivalent expression for Eqn. (1.53), the probability that a new edge attaches

to an existing vertex is,

(1.57)
kpk

∑

k kpk
=

kpk

2µ
,

where the mean degree of the network is now 2µ since each vertex added has µ

46

edges, and since the edges are now undirected and have two ends they contribute

twice to the mean value for the network. Keeping in mind that in this case there are

no vertices with degree k < µ and accounting for for the change in the attachment

probability, the corresponding rate equation for the evolution process can be written

as,

(1.58) (n + 1)pk,n+1 − npk,n =

1
2
[(k − 1)pk−1,n − kpk,n] for k > 1,

1 − 1
2
µpµ,n for k = µ.

Then in a similar fashion as in Eqn (1.54), we seek a stationary solution to the

equation above, and after some algebra it can be shown that,

(1.59) pk =
(k − 1)(k − 2) . . . µ

(k + 2)(k + 3) . . . (µ + 3)
× pµ =

2µ(µ + 1)

(k + 2)(k + 1)k
,

which in the limit of large k goes as,

(1.60) pk ∼ k−3.

As we can see an additional limitation of the model, when compared to Price’s, is that

it produces only a single value for the exponent α = 3. Nevertheless, the simplicity

of the model lends itself well to analytical calculation and a variety of authors have

provided solutions for other properties. For example, Krapivsky and Redner [93]

have conducted a detailed analytical study of the model and among other things

have demonstrated that it has two important correlations. First, there is a correlation

between the age of vertices—the time that a vertex is present in the network measured

on some time-scale—and their degrees. They have also demonstrated that vertices

have degree correlations of the type discussed in Sec. 1.4.4. There are also a number

of papers describing the results of extensive numerical simulations of the model,

notable among them are those by Dorogovtsev and Mendes [50] and Krapivsky and

Redner [94].

47

1.6.2 Extensions to the Barabási-Albert model

As we mentioned before, the BA model has received an exceptional amount of

attention since its publication, and over the last few years a number of authors have

extended the model to better reflect the behavior of real networks. An extensive

review of these developments is provided in [6], here we describe some notable ex-

amples.

We saw in the previous section that the BA model is limited by the fact that it

only produces a single value of the exponent, α = 3. To remedy this, Dorogovtsev

and collaborators [54] as well as Krapivsky and Redner [93] (most readers will by

now recognize that these two authors have been extraordinarily prolific in dealing

with this subject matter), have proposed and studied an extension to the model,

where the attachment probability is proportional to k + k0, where k0 is a fixed offset

as in Price’s model. Unlike the Price model, however, k0 is allowed to be negative

and can take on any value between the range −µ < k0 < ∞. Through a similar

sequence of arguments leading upto Eqns. (1.55) and (1.59), the solution for the

degree distribution pk is,

(1.61) pk =
(k − 1) . . . µ

(k + 2 + k0/µ) . . . (µ + 3 + k0/µ)
× pµ =

B(k, 3 + k0/µ)

B(m, 2 + k0/µ)
,

where as before B(a, b) is the Beta function. in the large k limit this gives a power-

law pk = k−α, with an exponent of the form α = 3 + k0/µ. If the value of µ is

negative, then this leads to values for α < 3 seen in many real world networks.

In all the variations of the model described so far, the probability of attaching

to a vertex has been assumed to be linear in its degree k. Krapvisky et al. [96,

93] have extended the model to the case where the attachment probability goes as

some general power of the degree kγ . They found that the model displays three

48

general classes of behavior. For γ = 1 the results are the same as for normal linear

preferential attachment. For γ < 1, the degree distribution is a power-law multiplied

by a stretched exponential, whose exponent is a complex function of γ. For γ >

1, there is a condensation phenomenon, in the sense that a single vertex has an

extensive connection to all vertices in the network, while for γ > 2, there is a non-

zero probability for a single vertex to connect to every other node in the network.

Dorogovtsev and Mendes have considered the case where the mean degree of

vertices added are allowed to vary in time [51]. In particular they assume that the

number of new edges added µ is allowed to grow as a function of the the number of

nodes in the networks n as na for some constant a, and the attachment probability

is proportional to k +Bna for constant B (not to be confused with the beta function

B discussed before). They conclude that the degree distribution is a power-law with

exponent α = 2 + B(1 + a)/(1−Ba). Note, that the constants a, B can be tuned to

match the observed values of the exponents in real world networks.

A crucial feature missing in all these models, is that vertices and edges are only

added to the network and there is no accounting for the deletion of these. In the

real world, such as in the case of the Web, it is a matter of common experience, that

web-pages are both added as well as deleted. The same applies to a variety of other

networks. To account for this, Sarshar and Roychowdhury [136] and independently

Chung and Lu [40] and Cooper et al. [43] studied a model of preferential attachment,

where in addition to the deposition of vertices and edges, the network was also allowed

to lose these in some random fashion. While they provided approximate results

for the asymptotic limit in the tail, Moore et al. [103] provided exact solutions for

the degree distribution for a variety of addition schemes, in addition to preferential

attachment—the details of which is the subject of Chapter IV.

49

There are a number of other interesting extensions to the model, see for example [2,

5, 22, 143, 98].

1.7 Percolation and network resilience

A subject that has received much attention in the network literature is the study

of percolation processes. In the context of networks, a percolation process is one in

which vertices or edges are deemed “occupied” or “unoccupied” in some fashion—

random or otherwise—and then one examines the properties of the resulting patterns

of connections. If we focus only on the vertices, then the process is referred to as site

percolation, instead if we consider the edges, then it is referred to as bond percolation,

and as one can imagine, we can consider a combination of both. Percolation theory

will be familiar to physicists working in condensed matter theory, where it has been

the subject of intense scrutiny [90, 46, 140]. One of the main motivations for its

formulation, however, was to model the spread of diseases [28, 73, 70], and in fact it

was first applied to networks in a similar context [118]. Most work on percolation,

however, has focussed on the subject of network resilience. Consider the following

as motivation.

As discussed in Sec. 1.4.6, most networks consist of a set of connected components,

with the largest set being the giant component. If we consider a simple communica-

tion network for example, in which the existence of a path between any two vertices

means that the two can communicate with each other, then those vertices in the

giant component can communicate with an extensive fraction of the network, while

those in the small components have a limited set of fellow nodes that they can reach.

A particularly simple way of measuring resilience then, is to progressively eliminate

vertices (or edges), and then examine the variation (or not) in the fraction of vertices

50

that are part of the giant component. In this context, a variety of numerical studies

have been conducted on real networks [30, 8], the results of which led to the realiza-

tion that the problem of resilience of networks to failures—node or edge removal—is

equivalent to studying site/bond percolation on the network.

Using networks generated by the configuration model as a template on which to

simulate this process, a number of analytical results are known [41, 34]. While [41]

considered the case of random site percolation, here we present some details from

the more general formulation of [34] who using generating function methods extend

the analysis to both site and bond percolation as well as the case of non-random

deletion.

Let pk represent the fraction of vertices in a network that have degree k, and rk

be the probability that a vertex is occupied—that it hasn’t been removed from the

network—given that it has degree k. Note, that rk can take on a variety of forms.

For example, if we choose to remove vertices with degree above a certain threshold

value kmax, then rk = θ(k−kmax), where θ(x) is the Heaviside step function; random

removal implies, rk = φ, where φ is some constant. The total probability that a

vertex of degree k is occupied, is then rkpk, and we define a generating function for

this distribution thus,

(1.62) F0(z) =

∞
∑

k=0

rkpkz
k,

where F0(1) = r is the total fraction of vertices that are occupied. Similarly we

can write down a generating function for vertices that are reached by following a

randomly chosen edge,

(1.63) F1(z) =

∞
∑

k=0

rk+1qkz
k,

where k now is the excess-degree and qk is the excess degree distribution as discussed

51

in Sec. 1.5.2. Using a similar sequence of arguments leading upto the development

of Eqns. (1.44) and (1.45), it can be shown that the size distribution of components

is generated by H0(z), where,

(1.64) H0(z) = 1 − F0(1) + zF0(H1(z)), H1(z) = 1 − F1(1) + zF1(H1(z)).

The term 1 − F0(1) represents the case where we pick a vertex at random that is

not occupied to begin with (and thus not part of any component), while 1 − F1(1)

represents the same for the case of picking a random edge and following it to one of

the vertices at its ends. Using H0 and H1 we can calculate a variety of properties, for

example the mean size of a component to which a randomly chosen vertex belongs

to is given by,

(1.65) 〈s〉 = F0(1) +
F ′

0(1)F1(1)

1 − F ′
1(1)

,

from which we can see that the point marking the emergence of the giant component

is given by F ′
1(1) = 1. In much the same way that we derived the equations for the

size of the giant component for the “static” configuration model, it can be shown

that the corresponding equations in this case are,

(1.66) S = F0(1) − F0(u),

with u the solution to,

(1.67) u = 1 − F1(1) + F1(u).

Note that in the case of random deletion, rk = φ, F0(z) = φG0(z) and F1 = φG1(z),

where G0(z), G1(z) are the standard generating functions (1.42).

More detailed versions of the calculations shown here, as well as those for other

properties can be found at [34]. In Chapter II we use similar methods to extend the

calculation to more complicated definitions of resilience.

52

1.8 Outline of the dissertation

We have described so far a number of structural measures, analytical tools as well

as mathematical models that are typically employed in analyzing the properties of

networks. In this dissertation, with the aid of these, we examine a diverse set of

new problems related to both the structural and dynamical properties of a variety

of model as well as real networks. We formulate our theory using a combination

of detailed analytical and computational techniques, and test them rigorously on

artificially generated model networks. Finally we compare the predictions and results

of our theory against data gathered from real networks, and find that in most cases,

the theory is a good approximation to the real world.

The material dealt with in the dissertation is roughly divided into three parts.

Chapters II and III deal with structural aspect of networks, Chapters IV and V

focus on network dynamics and finally Chapter VI seeks to combine a bit of both.

While the first two parts employ a combination of theory, simulation and empirical

measurements, the last part is based on computer simulations in the spirit of what

is conventionally referred to as agent based modelling [16].

As we discussed in the previous section, the traditional way to measure the re-

silience of a network, is to examine the size of the giant component as a function of

various schemes of node and edge removal. This can be thought of as simple model

for the performance of a communication network such as the World Wide Web un-

der the failure or removal of web-pages. In the real world, however, it is considered

fallacious to depend on simple connections between vertices, and typically infras-

tructural and communication networks rely on redundant connections, such that the

failure of any one connection between two vertices does not disrupt performance.

53

This concept of redundancy leads us to define network resilience in terms of more

complicated structures such as bicomponents—sets of vertices that are connected by

at least two paths such that the failure of any one path does not disconnect the set.

In Chapter II we study these bicomponents, and with the aid of analytical techniques

and computer simulations calculate a number of properties of interest. In particular

we calculate the size of the giant bicomponent and the conditions for its existence, as

well as measure its size as a function of vertex and edge removal. We then compare

our results to a variety of real world networks to test our predictions.

The material in Chapter III is inspired by the emergence of new types of social

networks called folksonomies. These are tripartite structure of users, resources, and

tags—labels collaboratively applied by the users to the resources in order to im-

part meaningful structure on an otherwise undifferentiated database. We propose

a mathematical model of such tripartite structures which represents them as ran-

dom hypergraphs. We show that it is possible to calculate many properties of this

model exactly in the limit of large network size and we compare the results against

observations of a real folksonomy, that of the on-line photography web site Flickr.

In Chapter IV we change focus, and build upon the ideas discussed in Sec. 1.6.1.

We formulate a model of a network that evolves under the addition and deletion of

vertices and edges, and solve for the equilibrium degree distribution for a variety

of cases of interest, including preferential attachment. Using similar methods, in

Chapter V we consider networks whose structure can be manipulated by adjusting

the rules by which vertices enter and leave the network. We focus in particular on

degree distributions and show that, with some mild constraints, it is possible by a

suitable choice of rules to arrange for the network to have any degree distribution

we desire. In addition we define a simple local algorithm based on biased random

54

walks by which appropriate rules can be implemented in practice. As an example

application of our ideas, we describe and simulate the construction of a candidate

network with certain optimized properties of interest.

In Chapter VI, we formulate a model of interacting agents, that seek to optimize

their closeness centrality (as discussed in Sec. 1.4.5), while at the same time keep the

number of connections (their degree) low. The ideas are inspired by similar models

found in game theory, where agents (as the participants of the game are called)

progress in the game by balancing a set of competing interests. With the aid of

extensive computer simulations we track the performance of the agents as well as

a number of structural network properties as a function of time. We propose that

our model captures some of the features in the real world, such as a set of political

lobbyists or diplomats who compete with each other to rise to a position of influence.

A brief summary of our results described in Chapter VII will conclude this dis-

sertation.

Note, that each chapter is written in a self-contained fashion, such that if a par-

ticular chapter catches a reader’s fancy, he or she can “get to meat of the matter”,

as it were, without necessarily having to read any of the other chapters. However,

when necessary, we refer the reader to the appropriate material described in this

introduction. The work presented here is adapted from a combination of previously

published papers and book chapters—see [63, 64, 65, 76, 77, 103, 116].

CHAPTER II

Network resilience: The case of bicomponents and

k-components

2.1 Introduction

The issue of the robustness of connections in networks has received considerable

attention from the physics community, as an elegant application of percolation theory

and other concepts of statistical physics, to a problem of substantial practical impor-

tance in many areas such as communication networks and epidemiology [8, 41, 34].

The typical approach is to consider the largest set of vertices in a network that are

connected to one another by at least one path—the giant component—and examine

how its size varies as vertices are removed from the network. This can be thought

of as a simple model for the performance of, for instance, a communication network

such as the Internet under failure of vertices. The vertices removed can be chosen at

random [41], as if failing because of random technical faults, or in a targeted fash-

ion [34], as if an adversary were deliberately removing them in an effort to destroy

network connectivity.

In the real world, however, it is often considered inadequate to rely for commu-

nication on just a single path between vertices. It is a well known fact that large

organizations such as corporate entities maintain at least two or more independent

data connections to the internet, such that the failure of any one connection does

55

56

not leave them disconnected from the network. Two examples with rather different

outcomes spring to mind. In August of 2003, there was a major power outage in the

Northeastern part of the United States whose effects quickly spread to some of the

Midwestern states, as well as parts of Ontario, Canada [18]. Investigations revealed

that the fault was caused by a disruption in the power lines, that led to a series of cas-

cading failures resulting in a major blackout. One of the main reasons for the failure

was the lack of excess capacity in the power cables as electricity re-routed through

alternative lines [89]. An example with a happier outcome is provided by the case

of the Fiber-Optic Link around the Globe (FLAG), which is a 28,000-kilometre long

submarine communications cable containing optical fiber, that supports much of the

world’s Internet bandwidth. In early 2008, the failure of cables in the Mediterranean

sea, led to disruption of Internet services in the Middle East and the Indian sub-

continent, which had the potential to lead to major financial losses, as a significant

fraction of Information Technology and financial back office operations for companies

in the United States are provided by firms in India [144]. However, the Indian com-

panies had accounted for such a situation, and were able to re-route their services

via lines in the Pacific Ocean, thus keeping service disruptions to a minimum, a fact

that contributed in no small measure to their reputation.

This concept of redundancy, leads us to an obvious generalization of robustness

in networks, in which we focus on the set or sets of vertices in a network that are

connected by two or more independent paths (in the sense that they share no common

vertices) such that the failure of any one vertex does not disconnect the set(s). Such

sets are called bicomponents.

In this chapter we study the resilience of networks to disruptions, by studying

its bicomponent structure, in both real and model networks. In particular, using

57

standard network models, we show that there exists at most one giant bicomponent

in a given network that is nested within the regular giant component, and whose

appearance coincides with the emergence of the giant component. We also provide

expressions for the expected size of the giant bicomponents and higher k -components

along with their variation as a function of vertex removal. In addition we compare

our theoretical results to data gathered from a variety of networks in the real world.

2.2 Bicomponents

2.2.1 Basic properties

Consider two paths that connect the same pair of vertices in a network. They are

said to be vertex-independent, or simply independent, if they share none of the same

vertices other than the starting and ending vertices. A k-component is a maximal

subset of the vertices of a network such that every vertex in the set is connected to

every other by k independent paths [151]. For the special cases of k = 2, 3 the k-

components are also called bicomponents and tricomponents, respectively. Note that

not all vertices need belong to a k-component for k ≥ 2, which contrasts with the

case for ordinary components (k = 1), where every vertex belongs to a component.

The vertices in a bicomponent have the property that no two can be disconnected

by the failure of any other single vertex. Another observation that will become

important shortly is that the k-components of a network are nested. That is, every

bicomponent is, trivially, a subset of an ordinary component, every tricomponent

is a subset of a bicomponent–since there are at least two independent paths in a

tricomponent, and so forth—see Fig. 2.1 for an example illustration. In what is to

follow we will primarily concentrate on bicomponents, although we will give some

results for k ≥ 3 where appropriate.

To gain an understanding of the expected behavior of the bicomponents in a

58

Figure 2.1: A network containing k-component structure. The nested property of k-components
can be seen clearly. In the example above, the entire network is a regular 1-component,
within which are nested the bicomponents (lighter shade). In the left side of the figure,
we can see a tricomponent (darker shade) nested within a bicomponent. Note the
isolated vertex, that does not belong to any component for k ≥ 2.

network, we will make use of the configuration model for unipartite graphs (cf.

Sec. 1.5.2). As discussed before, the probability of an edge falling between two

vertices i and j in such a network is given by the expression,

(2.1) Pij =
kikj

2m
,

where ki is the degree of vertex i and m is the total number of edges in the network.

For a sparse network—where the network is allowed to grow to large size, while

keeping the average degree fixed—the model predicts the existence of at most one

giant regular component (1-component) of size O(n) and many small components of

size O(1), a pattern that is seen in most real-world networks as well [102, 101, 117].

A first interesting result to note is that, by contrast with the case for 1-components,

there are in general (almost) no small bicomponents in the configuration model. To

see this consider the small 1-components of the configuration model, which, are gen-

erally tree-like, meaning they are not bicomponents. In order to turn them into

59

bicomponents, we would need to add at least one edge to the tree, thereby closing

a loop and creating two paths between some vertices. Since the small components

have size O(1) and hence also O(1) pairs of vertices, there are O(1) opportunities

to perform such a closure in each small component. Each closure occurs with prob-

ability Pij as in Eqn. (2.1), which is of O(n−1) on a sparse network and hence the

total probability of converting a small component into a bicomponent is O(n−1).

Since there are O(n) small components, this means that the total number of small

bicomponents formed in this way is O(1). Small bicomponents can also be formed

out of tree-like subsets of the giant component, but a similar argument shows that

such bicomponents are also O(1) in number.

Thus in the limit of large network size the probability that a randomly chosen

node belongs to a small bicomponent vanishes as 1/n. Speaking loosely, there are

no small bicomponents in the network.

2.2.2 Size of the giant bicomponent

There may, however, be a giant bicomponent, and moreover it turns out to be

possible to calculate the expected size of the giant bicomponent exactly in the limit

of large graph size. In order for a vertex to belong to the giant bicomponent at

least two of the edges incident on that vertex must lead to the giant bicomponent

by independent paths. However, since the giant bicomponent is a subset of the giant

1-component, it follows that any edge that leads to the giant 1-component also leads

to the giant bicomponent, so an equivalent statement is that at least two of our

vertex’s neighbors must be in the giant 1-component.

The probability that the neighbor of a vertex belongs to the giant component is

straightforward to calculate [117]. Let the degree distribution of our network be pk,

meaning that a randomly chosen vertex has degree k with probability pk. If, however,

60

we choose an edge at random and follow it to one of the vertices at its ends, then

the number of edges incident on that vertex, other than the one we arrived along,

follows the excess degree distribution:

(2.2) qk =
(k + 1)pk+1

〈k〉 ,

as shown in [117], for example. Here 〈k〉 =
∑

k kpk is the mean degree for the entire

network.

At this point it will be convenient to define the following generating functions for

the degree and excess-degree distributions,

(2.3) G0(z) =
∞

∑

k=0

pkz
k, G1(z) =

∞
∑

k=0

qkz
k.

Let u be the probability that upon following an edge we arrive at a vertex that

does not belong to the giant component, then it must be that none of the other

edges emanating from that vertex leads to the giant component. If k denotes the

excess-degree of that vertex then, the probability for this to happen is uk. Averaging

over the distribution qk, we have,

(2.4) u =
∑

k

qku
k = G1(u).

In order for there to be a giant component there must be a solution to Eq. (2.4),

where u < 1. It is a fairly easy exercise to show that this condition is satisfied,

provided G′
1(1) > 1, which leads to the well know criterion of Molloy and Reed for

the existence of the giant component [102].

Armed with these results it is now a simple task to write down the probability

that a randomly chosen vertex belongs to the giant bicomponent. The probability

that it does not is the probability that either zero or one, but not more, of its edges

61

lead to vertices in the giant component, which is

(2.5)
∑

k

pku
k +

∑

k

kpku
k−1 = G0(u) + (1 − u)G′

0(u).

Thus, the probability that the vertex does belong to the giant bicomponent is just

one minus this quantity,

(2.6) S2 = 1 − G0(u) − (1 − u)G′
0(u),

where S2 can also be thought of as the expected size of the giant bicomponent as a

fraction of the size of the entire network.

We have not, in this derivation, demonstrated that the two paths from our vertex

to the giant bicomponent are independent. However, since the diameter of a random

graph is O(lnn) [11], and since the diameter provides an upper bound on the lengths

of the paths in our derivation, the probability of their intersecting is O(n−1 ln2 n),

which vanishes as n → ∞, so our result will be correct provided again that our

networks are large.

There can of course be no giant bicomponent when there is no giant 1-component,

since the former is a subset of the latter. Equation (2.6) shows that, in general,

the reverse is also true: when there is a giant 1-component there is also a giant

bicomponent. Only in the special case where

(2.7) 1 − G0(u) = (1 − u)G′
0(u),

can the giant bicomponent vanish. Thus the giant bicomponent appears, in general,

at the same time as the giant component: for any specific family of degree distribu-

tions, if there is a phase transition marking the appearance of the giant component,

the same transition point also marks the appearance of the giant bicomponent.

It is a straightforward exercise to generalize the expression for the size of the

giant bicomponent to any k-component. For example if we consider the case of

62

tricomponents, there will be an additional term in Eq. (2.5), which includes the case

where two edges lead to the giant component, but excludes higher ones. Similarly

for the four-component, there will be a fourth term for three edges leading to the

giant component. It is then easy to see that the expression for the size of the k’th

component is given by,

(2.8) Sk = 1 −
k−1
∑

m=0

(1 − u)m

m!

dmG0

dzm

∣

∣

∣

∣

z=u

,

which implies that in fact the transition marking the appearance of all k-components

coincide with that of the ordinary giant component.

2.2.3 Percolation

As the presence of k-components in a network is a desirable property, it is instruc-

tive to ask how robust this property is to the removal of vertices or edges. In the

previous section we established the size of the giant bicomponent and other higher

k-components, and found that they all occur at the same time as the giant compo-

nent, in other words as we start removing vertices the threshold for the destruction

of connectivity for all orders coincide. However, this does not necessarily tell the

whole story. Using a simple variant of the arguments above we can also calculate

the size of the giant k-component as vertices are removed.

Let rk be the probability that a vertex of degree k is operational (i.e., it hasn’t

failed or been removed from the network). Then the probability that the vertex

has degree k and is occupied is just pkrk. Common choices for rk are rk = constant,

which corresponds to uniformly random failure of vertices, or rk = θ(kmax−k), where

θ(x) is the Heaviside step function, which corresponds to removal of all vertices with

degree k > kmax, a form of targeted attack against the best-connected vertices [8].

63

The corresponding probability generating functions are then,

(2.9) F0(z) =

∞
∑

k=0

pkrkz
k, F1(z) =

∞
∑

k=0

qkrk+1z
k.

It is then straightforward to see that the probability u that an edge does not lead

to such a vertex in the giant component, is a sum of two terms, the first corresponding

to the vertex being not operational, or 1− rk+1, and the second representing the fact

that it is operational but none of its remaining edges lead to the giant component,

i.e , rk+1u
k. Averaging over the distribution gives us,

(2.10) u = 1 − F1(1) + F1(u).

The calculation of the expected size of the giant k-component is then the same as

in equations (2.5) and (2.6), with the generating function G0(u) replaced by F0(u)

taking into account the vertex occupation probability. The general expression for

the giant k-component is then simply,

(2.11) Sk = F0(1) −
k−1
∑

m=0

(1 − u)m

m!

dmF0

dzm

∣

∣

∣

∣

z=u

.

The percolation transition at which the giant 1-component in a network is de-

stroyed is typically second-order in nature. For k-components with k ≥ 2 on the

other hand, we can show using the results above that the transition is of higher or-

der. Consider for instance the case of uniform random failure of vertices, for which

rk = φ independent of k. Then Eq. (2.10) simplifies to,

(2.12) u = 1 − φ + φG1(u).

Performing a Taylor expansion of G1(u) around the point u = 1, writing u = 1 − ǫ

and making use of the fact that G1(1) = 1, we can write ǫ as,

(2.13) ǫ = φ[ǫG′
1(1) − 1

2
ǫ2G′′

1(1)] + O(ǫ3).

64

This can be rearranged to give us,

(2.14) ǫ =
2[φG′

1(1) − 1]

φG′′
1(1)

,

which tells us that 1− u is linear in the term φ− φc, where φc = 1/G′
1(1) marks the

point at which the giant component emerges [41].

Referring back to Eq. (2.11), we can recast it in the following manner. Performing

a Taylor expansion of the function F0(z) around the point z = u, leads to,

(2.15) F0(z) =

∞
∑

m=0

(z − u)m

m!

dmF0

dzm

∣

∣

∣

∣

z=u

.

Setting z = 1 and making use of (2.11), we get a difference of two sums which can

be re-written as,

(2.16) Sk =
∞

∑

m=k

(1 − u)m

m!

dmF0

dzm

∣

∣

∣

∣

z=u

.

The leading order term in Eq. (2.16) for a given k is of order (1 − u)k. Combining

this with our result from Eq. (2.14) we see that the expected size of a k-component

Sk is of O(φ − φc)
k.

The equation above has interesting implications. It suggests that the network

undergoes a infinite series of continuous phase transitions marking the appearance

of giant components for all k, and occurring at the same critical point φc. However

the phase transitions are not of the same order, the transition for each k being of

order k + 1. What this means is that although, say the giant bicomponent, appears

at the same time as the giant component, its initial growth in size is much slower

than that of the giant component. Consequently the network does not achieve a

high level of robustness, in this sense, until a significant fraction of the vertices are

occupied/operational.

Before comparing our theoretical results with data from real networks, we first test

it on computer-generated random graphs. Figure 2.2 shows the variation in the size of

65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

si
ze

 o
f c

om
po

ne
nt

occupation probability φ

Poisson, k = 1
Poisson, k = 2

Exponential, k = 1
Exponential, k = 2

Figure 2.2: Size of the giant component and bicomponent as a function of vertex removal for random
networks with exponential(e−λk with λ = 0.4, blue circles) and poisson (mean = 1.5,
red squares) degree distributions. Solid lines are the analytical solutions and the points
are numerical results for networks of size 106 vertices averaged over a 100 instances of
the network. Error bars in all cases are smaller than the size of the points.

the giant (bi)-component as a function of vertex removal for two example networks

with poisson and exponentially distributed links. Both networks were generated

artificially using the configuration model. The third order phase transition of the

bicomponents for both networks can be clearly seen. In addition, the figure shows

that the two types of components are destroyed at the same value of φ.

2.3 Comparison with real world data

Let us now examine the bicomponent structure in real-world networks. The stan-

dard and optimal method for finding bicomponents in a network is the the depth-first

search based algorithm of Hopcroft and Tarjan [80] that runs in time O(n). Table 2.1

summarizes the results of applying this algorithm to a variety of previously docu-

mented networks. The table reveals some interesting features. First we note that,

with two exceptions, the networks all have large giant bicomponents. Certainly the

66

giant bicomponents are smaller than the giant components, but in each case the net-

works have a substantial fraction of robust connections in the sense considered here.

The two exceptions are the collaborations of network scientists and the high-school

dating network. The former has quite a small giant component, so the giant bicom-

ponent cannot be very large, although it is still quite a small fraction of the giant

component size. The dating network, however, is clearly anomalous, having a very

substantial giant component but a very small giant bicomponent. It is interesting to

consider whether there might be sociological reasons for this anomaly.

Second, we note that in all but two cases the networks have no small bicompo-

nents, or very nearly none. This observation agrees well with our calculations for

random graphs above, but is otherwise somewhat surprising. It has recently been

observed that most real-world networks contain a high density of short loops [149],

a feature that random graphs lack and one that should automatically give rise to

bicomponents. Our observations indicate however, that in most cases such bicompo-

nents are attached to the giant bicomponent, rather than forming independent small

bicomponents, and that most portions of the network not in the giant bicomponent

are tree-like. Apparently the structure of these networks is, in this respect at least,

relatively close to that of the corresponding random graphs. This finding stands

in sharp contrast with studies of other network properties such as clustering and

assortative mixing, in which random graph models have been found to be in poor

agreement with those of real networks.

It is also interesting to examine the robustness of the bicomponent structure to

removal of vertices—either random or targeted—as we did for our model networks.

The Hopcroft–Tarjan algorithm is a poor choice for this calculation, since we would

have to perform n runs of the algorithm to find the bicomponents after the removal

67

network n S1 S2 small bicomp.
Internet (AS) 22 963 1 0.651 0.012
world wide web 325 729 1 0.414 0.076
power grid 4941 1 0.615 0.062
C. Elegans neural 297 1 0.949 0
C. Elegans metabolic 453 1 0.934 0.049
physics collaborations 16 726 0.829 0.588 0.243
network scientists 1589 0.239 0.084 0.634
friendship 795 0.979 0.940 0
dating 573 0.503 0.072 0.014

Table 2.1: Statistics of a number of real-world networks. The second to fifth columns give the
number of vertices in the network, the fractions occupied by the largest component and
bicomponent, and the fraction occupied by small components. The networks are, in
order, a snapshot of the Internet topology at the autonomous system (AS) level, the
symmetrized web graph of a university web site [7], the Western United States power
grid [149], the neural [149] and metabolic [55] networks of the nematode C. Elegans,
coauthorship networks of physicists [106] and network scientists [110], and friendship
and dating networks from a study of US school students [19].

of each vertex, for a total running time O(n2). For the larger networks studied this

is prohibitive, so instead we employ a different algorithm, similar in spirit to the fast

percolation algorithm of Newman and Ziff [119], that makes use of established meth-

ods based on data trees to keep track of bi-connected subgraphs dynamically [152].

Briefly, it works in the following manner.

The algorithm starts with an empty network and adds vertices, rather than taking

them away, and avoids finding the bicomponents anew after each addition by calcu-

lating instead only the change in the bicomponent structure from the previous step,

which is usually minor. The algorithm stores the structure of the components and

bicomponents in two separate “forest” data structures (i.e., sets of trees) with one

tree for each (bi)component. Vertices within components contain pointers that point

to others in the same component, such that by following a sequence of such pointers

we can reach the root of the tree, thereby identifying the component uniquely. As

each new vertex is added to the network we check in this way to which components its

neighbors belong, amalgamating those components if necessary by adding a pointer

from the root of one tree to the root of the other. If the added vertex joins neighbors

68

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
iz

e
of

 g
ia

nt
 b

ic
om

po
ne

nt
 S

2

φ

C. Elegans metabolic
physics collaborations

power-grid

Figure 2.3: Size of giant bicomponent as vertices are randomly removed from three real-world net-
works, a metabolic network for C. Elegans [55], a collaboration network of scientists
working in condensed matter phyiscs [106], and the Western States Power Grid of the
United States [149].

that already belong to the same component, a loop—and hence new bicomponent—

has been created, or old ones extended or joined, and the bicomponent trees are

updated appropriately. The tree traversals employed by the algorithm take O(ln n)

time on average and hence the algorithm can add all n vertices in a total running

time O(n ln n). In practice, this gives about a factor 100 improvement in running

time or more over the Hopcroft–Tarjan algorithm for the networks studied here, and

renders the calculations easily doable on a standard desktop computer.

Figure. 2.3 shows the results of the application of this algorithm to three of the

networks from Table 2.1, the metabolic network, the physicist collaborations, and the

power grid. For each network there appears to be a transition point below which the

giant bicomponent is destroyed and the network can no longer be said to be robustly

connected. For two of the networks, however, the transition appears to be at or

close to φ = 0, indicating that the networks are highly robust in the sense considered

69

here: nearly all the vertices have to be removed from the network before the giant

bicomponent is destroyed. The third network, the power grid, shows a much higher

transition probability, indicating that this network is relatively fragile to random

node removal. On the other hand, we also see in all cases that the transition at

which the giant bicomponent appears is a gradual one; the gradient at the transition

is shallow—perhaps even zero—so that the giant bicomponent grows very slowly at

first above the transition. In this respect these networks again appear to behave in

a manner similar to our random graph models.

2.4 Discussion

In this chapter we have proposed an alternative and perhaps more realistic mea-

sure of network resilience—its bicomponent and k-component structure. Using a

combination of analytical and numerical techniques, we have studied bicomponents

in both model and real networks. In particular we have shown that for a given

network, there are no small bicomponents, however there exists at most one giant

bicomponent that is nested within the regular giant component. In addition we have

also provided expressions for the expected size of the giant bicomponents and higher

k -components along with their variation as a function of vertex removal. Finally we

have tested our theoretical results on a series of data taken from networks in the real

world.

The analytic and numerical results presented give an interesting picture of the

behavior of network bicomponents. The real-world networks investigated are found

to be quite robust in the sense of having large giant bicomponents and moreover

the existence of these bicomponents is, at least in some cases, itself robust to the

deletion of vertices. In practice, however, although the giant bicomponent may

70

persist as vertices are removed from the network, its size dwindles rapidly so that

large portions of the network lose robust connection considerably before the transition

point at which the giant bicomponent finally vanishes. In each of these respects the

behavior of our networks is surprisingly similar to the behavior of exactly solvable

random graph models, which predict a giant bicomponent that persists down to the

point at which the ordinary giant component disappears, but with an unusual third-

order transition at that point that ensures that the size of the bicomponent will be

small as we approach the transition.

CHAPTER III

Random Hypergraphs and their applications

3.1 Introduction

In its simplest form a network consists of a set of nodes or vertices, connected by

lines or edges, but as discussed in Chapter I, many extensions and generalizations

have also been studied, including networks with directed edges, networks with labeled

or weighted edges or vertices, and bipartite networks, which have two types of vertices

and edges running only between unlike types [108, 24, 53, 113, 32]. In the previous

chapter, we saw an example of an unipartite, network. In this chapter, we will look

at a more involved representation of a network, a hypergraph. As motivation for why

we study such systems, consider the following.

In recent times, particularly in the last two or three years, new and more complex

types of network data have become available, especially associated with on-line so-

cial and professional communities, that cannot adequately be described by existing

network formats. One example is the folksonomy. Folksonomy is the name given to

the common on-line (and sometimes off-line) process by which a group of individu-

als collaboratively annotate a data set to create semantic structure [35]. Typically

mark-up is performed by labeling pieces of data with a short text description called

tags. A good example is provided by the on-line photography resource Flickr, a

71

72

web site to which users upload photographs that can then be viewed by other users.

Flickr allows any user to give a short description of any photo they see, usually just a

single word or a few words. These are the tags. In principle, tags can allow users to

do many things, such as searching for photos with particular subjects or clustering

photos into topical groups. There are also many other websites and on-line resources

with similar tagging capabilities, but dealing with different resources. On the web-

site CiteUlike, for example, users upload academic papers as opposed to photographs

and label them with descriptive tags.

Researchers have taken a variety of approaches to the representation of folksonomy

data using network methods, including modeling them as simple unipartite graphs

and bipartite graphs as well as limited forms of tripartite graphs [69, 36, 97, 122].

Each of these approaches, however, fails to capture some elements of the structure

of the data and hence limits the conclusions that can be drawn from subsequent

network analysis.

The fundamental building block in a folksonomy is a triple consisting of a resource,

such as a photograph, a tag, usually a short text phrase, and a user, who applies the

tag to the resource. Any full network representation of folksonomy data needs to

capture this three-way relationship between resource, tag, and user, and this leads

us to the consideration of hypergraphs.

A hypergraph is a generalization of an ordinary graph in which an edge (or hyper-

edge) can connect more than two vertices together. To represent our folksonomy we

make use of a tripartite hypergraph, a generalization of the more familiar bipartite

graph, in which there are three types of vertices representing resources, tags, and

users, and three-way hyperedges joining them in such a way that each hyperedge

links together exactly one resource, one tag, and one user. Each hyperedge corre-

73

Figure 3.1: Vertices in our networks come in three types, represented here by the red circles, green
diamonds, and blue squares, and are connected by three-way hyperedges that each
join together exactly one circle, one diamond, and one square. In the language of
folksonomies, the circles represent, say, the resources, the diamonds the tags, and the
squares the users.

sponds to the act of a user applying a tag to a resource and hence the tripartite

hypergraph preserves the full structure of the folksonomy—see Fig. 3.1.

In this chapter, we study the theory of such tripartite graphs, starting with basic

network properties such as degree distributions and then developing a random graph

model that allows us to make analytic predictions of a variety of network properties.

We test our predictions by comparing them with data from the Flickr folksonomy

and find good agreement in some, but not all, cases.

3.2 Tripartite graphs

We begin our study of tripartite hypergraphs by outlining some of the basic prop-

erties of such networks. Our tripartite graphs have three different types of vertices,

which, to preserve generality, we will refer to as red, green, and blue vertices. (In this

paper, when discussing applications of the theory to folksonomies, red will represent

resources, green tags, and blue users, but the theory itself is entirely agnostic about

what the colors represent.) Let us suppose that there are nr red vertices, ng green

ones, and nb blue ones.

74

The edges in our network are three-way hyperedges that each connect one red,

one green, and one blue vertex. (We might say that the hyperedges are “colorless” or

“white,” since red, green, and blue make white when combined in the human visual

system.) Let us suppose there to be m hyperedges in total.

There are a number of ways in which vertex degree can be defined for a hyper-

graph. Some authors, for instance, have defined degree as the total number of other

vertices to which a given vertex is connected by hyperedges. This corresponds to

the definition of degree in an ordinary graph (at least when there are no multiedges

or self-edges), but in failing to distinguish between the different types of vertices to

which hyperedges are connected, it can lead to confusion in the hypergraph case. The

best, and also simplest, definition of degree for a vertex in a hypergraph is simply

the number of hyperedges attached to that vertex. Thus a red vertex participating

in four hyperedges has degree four. This might mean that it has four green and four

blue neighbors in the network, but it is also possible that some neighboring vertices

are common to more than one hyperedge, in which case the number of neighboring

vertices of a given color may be smaller than four.

The mean degree cr of a red vertex in our network is given by the number of

hyperedges in the network divided by the number of red vertices, and similarly for

green and blue:

(3.1) cr =
m

nr

, cg =
m

ng

, cb =
m

nb

.

Rearranging these equations to give three separate expressions for m, we also have,

(3.2) nrcr = ngcg = nbcb = m.

Thus the mean degrees of the different vertex types cannot be chosen independently,

but are linked via the fact that the same hyperedges connect to the red, green and

75

blue vertices.

One of the most important parameters of a network is its degree distribution.

Just as bipartite networks have two distinct degree distributions, our tripartite ones

have three: we define pr(k) to be the fraction of red vertices in the network that have

degree k, and pg(k) and pb(k) to be the corresponding quantities for green and blue

vertices. These distributions satisfy the standard sum rules

(3.3)
∞

∑

k=0

pr(k) =
∞

∑

k=0

pg(k) =
∞

∑

k=0

pb(k) = 1,

and

(3.4)
∞

∑

k=0

kpr(k) = cr,
∞

∑

k=0

kpg(k) = cg,
∞

∑

k=0

kpb(k) = cb.

As with bipartite graphs, it is sometimes convenient to form “projections” of

tripartite graphs onto a subset of their vertices. In a bipartite graph of red and

green vertices, for instance, one forms a projection onto the red vertices alone by

constructing the network of red vertices in which vertices are connected by an edge

if they share a common green neighbor in the original bipartite graph [117].

While for bipartite graphs there is essentially only one way of performing projec-

tions, there are several distinct possibilities for tripartite graphs—see Fig. 3.2. One

can again join two red vertices if they share a green neighbor—in our Flickr example

from the introduction, two photos would be connected if they have a tag in common.

Or one can join two red vertices that share a common blue neighbor—two photos

that were tagged by the same user. Or one could join vertices that share either a

green or a blue neighbor. And of course one can define the equivalent projections

onto the green and blue vertices.

But it doesn’t stop there. In a tripartite network, one can also form projections

onto two of the colors. For instance, one can form a projected bipartite network

76

Figure 3.2: Ways of projecting a tripartite graph onto one of its vertex types (red in this case). Red
vertices in the projected graph can be connected if they share a green neighbor (green
edges in the projected graph), a blue neighbor (blue edges), or a neighbor of either kind
(all edges together).

of red and green vertices, in which a red and a green vertex are connected by an

ordinary edge if they were connected by a hyperedge in the original network. Thus

one can create a network of, for example, photos and the tags applied to them,

while dropping information about which users applied which tags. And again one

can also construct the equivalent projections onto red/blue and blue/green vertex

combinations. Alternatively, one can construct a red/green network by connecting

any pair of vertices—of different colors or not—if they share a common blue neighbor.

Thus a tag would be connected to a photo if any user applied that tag to that photo,

but tags would also be connected to other tags that were used by the same user.

Many other standard concepts in the theory of networks can be generalized to

tripartite graphs, including clustering coefficients, correlations between the degrees

77

of adjacent vertices (including three-point correlations), community structure and

modularity, motif counts, and more. The concepts introduced above, however, will

be sufficient for what is to follow in this chapter.

3.3 Random tripartite graphs

In theoretical studies of networks, random graph models have received particular

emphasis because they capture many of the essential properties of networked systems

in the real world while simultaneously being amenable to analytic treatment. A va-

riety of random graph models have been studied, from models of simple undirected

or directed graphs to more complicated examples with correlations, communities,

or bipartite structure [57, 102, 10, 117, 107]. In this section we develop the theory

of random tripartite hypergraphs with given degree distributions, which turn out

to model many of the properties of real tripartite graphs quite effectively. Random

hypergraphs have received some attention previously within the mathematics com-

munity [37, 59, 137], particularly in the context of combinatorical problems such

as graph coloring, and some general results are known concerning the component

structure [138, 42, 47]. Here we concentrate more narrowly on results relevant to our

primary interest in tripartite graphs.

3.3.1 The model

Consider a model hypergraph with nr red vertices, ng green vertices, and nb blue

vertices. Each vertex is assigned a degree, corresponding to the number of hyperedges

it will have. These degrees can be visualized as “stubs” of hyperedges emerging from

each vertex in the appropriate numbers. The degrees must satisfy Eq. (3.2), so that

the total number of stubs emerging from vertices of each color is the same and equal

to the total desired number of hyperedges m.

78

A total of m three-way hyperedges are now created by choosing trios of stubs

uniformly at random, one each from a red, green, and blue vertex, and connecting

them to form hyperedges. This model is the equivalent for our tripartite graph

of configuration model for unipartite graphs [102] and the random bipartite graph

model of [117] for bipartite graphs.

Given the definition of the model, we can, for example, calculate the probability

that a hyperedge exists between a given trio of vertices i, j, k. In the process of cre-

ating a single hyperedge, the probability that we will choose a specific stub attached

to red vertex i is 1/m, since there are a total of m stubs attached to red vertices

and we choose uniformly among them. If i has degree ki then the total probability

of choosing a stub from vertex i is ki/m. Similarly the probability of choosing stubs

from green and blue vertices j and k are kj/m and kk/m. Given that there are m

hyperedges in total, the overall probability of a hyperedge between i, j, and k is then

(3.5) Pijk = m × ki

m
× kj

m
× kk

m
=

kikjkk

m2
.

Via a similar argument, the probability that there is a hyperedge connecting a par-

ticular red/green pair i, j (or any other color combination) is kikj/m. Note that

in a sparse graph in which the typical degrees remain constant as the size of the

graph increases, both of these probabilities vanish as 1/m. Among other things, this

implies that the chance of occurrence of small loops in the network vanishes in the

limit of large graph size. In the language of graph theory, one says that the network

is locally tree-like, a property that will be important in the developments to follow.

Rather than specifying the degree of every vertex in the network, we can alterna-

tively specify just the degree distributions pr(k), pg(k), and pb(k) of the three vertex

types (constrained to satisfy the sum rules (3.3) and (3.4)), then draw a specific

sequence of degrees from those distributions and connect the vertices as before. As a

79

practical matter, if one wanted to generate actual example networks on a computer,

one would need to ensure that the degrees satisfied Eq. (3.2), which in general they

will not on first being drawn from the distributions. A simple strategy for ensuring

that they do is first to draw a complete set of degrees and then repeatedly choose

at random a trio of vertices, one of each color, discard the current values of their

degrees, and redraw them from the appropriate distributions until the constraint is

satisfied.

The degree distributions represent the probability that a vertex of a given color

chosen at random from the entire network has a given degree. If we choose a hy-

peredge at random, however, and follow it to the red, green, or blue vertex at one

of its corners, that vertex will not have degree distributed according to pr(k), pg(k),

or pb(k), and the reason is easy to see: vertices with many hyperedges are propor-

tionately more likely to be encountered when following edges. A vertex of degree ten,

for instance, has ten times as many chances to be chosen in this way than a similarly

colored vertex of degree one. (And a vertex of degree zero will never be chosen at all.)

Thus the distribution of degrees of vertices encountered is proportional to kpr(k) for

red vertices, and similarly for green and blue. Requiring this distribution to sum to

unity, the correctly normalized distribution is kpr(k)/
∑

k kpr(k) = kpr(k)/cr.

As in other random graph models, we are in fact usually interested not in the

degree of the vertex we encounter but in the number of hyperedges attached to it

other than the one we followed to reach it. This is the hypergraph analog of the

excess degree, which is 1 less than the total degree, has the same distribution as

above, but with the replacement k → k + 1, giving an excess degree distribution of

(3.6) qr(k) =
(k + 1)pr(k + 1)

cr
,

and similarly for other vertex colors.

80

3.3.2 Generating functions

The fundamental tools we will use in calculating the properties of the random tri-

partite graph are probability generating functions. We begin by defining generating

functions for the degree distributions thus:

r0(z) =

∞
∑

k=0

pr(k)zk,(3.7a)

g0(z) =

∞
∑

k=0

pg(k)zk,(3.7b)

b0(z) =
∞

∑

k=0

pb(k)zk.(3.7c)

Given these generating functions we can, for instance, easily calculate the means of

the distributions: cr = r′0(1) and so forth. Higher moments are also straightforward.

We also define corresponding generating functions for the excess degree distribu-

tions:

(3.8a) r1(z) =

∞
∑

k=0

qr(k)zk =
1

cr

∞
∑

k=0

(k + 1)pr(k + 1)zk =
r′0(z)

r′0(1)
,

and

g1(z) =

∞
∑

k=0

qg(k)zk =
g′
0(z)

g′
0(1)

,(3.8b)

b1(z) =
∞

∑

k=0

qb(k)zk =
b′0(z)

b′0(1)
.(3.8c)

3.3.3 Projections

As a first example, we use our generating functions to calculate the degree distri-

bution for the projection of a tripartite random graph onto one of its vertex types,

as described in Section 3.2. Consider first the projection onto (say) red vertices in

81

which two red vertices are joined by an edge if they share a green neighbor. (The

blue vertices are ignored in this projection.)

Suppose a given red vertex A has s green neighbors and each of those green neigh-

bors has t red neighbors other than vertex A. Given that s is distributed according

to pr(s) and t is distributed according to qg(t), the probability ρg(k) that A has

exactly k neighbors in the projected network is

(3.9) ρg(k) =

∞
∑

s=0

pr(s)

∞
∑

t1=0

qg(t1) . . .

∞
∑

ts=0

qg(ts) δ

(

k,

s
∑

n=1

tn

)

,

where δ(i, j) is the Kronecker delta. Multiplying both sides by zk and summing

over k, the generating function for this probability distribution is,

Rg(z) =

∞
∑

k=0

zk

∞
∑

s=0

pr(s)

×
∞

∑

t1=0

qg(t1) . . .
∞

∑

ts=0

qg(ts) δ

(

k,
s

∑

n=1

tn

)

=

∞
∑

s=0

pr(s)

∞
∑

t1=0

qg(t1) . . .

∞
∑

ts=0

qg(ts)z
P

n tn

=

∞
∑

s=0

pr(s)

∞
∑

t1=0

qg(t1)z
t1 . . .

∞
∑

ts=0

qg(ts)z
ts

=
∞

∑

s=0

pr(s)

[∞
∑

t=0

qg(t)z
t

]s

=
∞

∑

s=0

pr(s)
[

g1(z)
]s

= r0(g1(z)).(3.10)

We can also calculate the generating function for the projection in which two red

vertices are connected by an edge if they share either a green or a blue neighbor.

The probability for a vertex to have k neighbors in this network is

ρgb(k) =

∞
∑

s=0

pr(s)

∞
∑

t1=0

qg(t1) . . .

∞
∑

ts=0

qg(ts)

×
∞

∑

u1=0

qb(u1) . . .
∞

∑

us=0

qb(us) δ

(

k,
s

∑

n=1

(tn + un)

)

,(3.11)

82

and the corresponding generating function is

Rgb(z) =

∞
∑

k=0

zk

∞
∑

s=0

pr(s)

∞
∑

t1=0

qg(t1) . . .

∞
∑

ts=0

qg(ts)

×
∞

∑

u1=0

qb(u1) . . .
∞

∑

us=0

qb(us) δ

(

k,
s

∑

n=1

(tn + un)

)

=

∞
∑

s=0

pr(s)

[∞
∑

t=0

qg(t)z
t

]s[∞
∑

u=0

qb(u)zu

]s

= r0(g1(z)b1(z)).(3.12)

We can use this result to calculate, for instance, the average degree in the projected

network, which is given by

(3.13) R′
gb(1) = r′0(1)

[

b′1(1) + g′
1(1)

]

.

We will also use it in Section 3.4 to compare predictions of the random graph model

with real-world networks.

3.3.4 Formation and size of the giant component

In this section we examine the component structure of our model network, fo-

cusing on the giant component. As with all networks, if our tripartite network is

sufficiently sparse—if it has very few edges for the given number of vertices—then

vertices will be connected together only in small groups or small components. If,

however, the number of edges is sufficiently high, then a fraction of the vertices will

join together into a single large group, the giant component, with the remainder in

small components. There is a phase transition with increasing density at which the

giant component forms that is closely analogous to the phase transition in classical

percolation.

There is more than one possible definition of a component in our tripartite net-

work, but the simplest approach is to define it as a set of vertices of any colors that

83

are connected via hyperedges such that every vertex in the set is reachable from every

other by some path through the network. Thus the collection of vertices depicted in

the top panel of Fig. 3.2 constitutes a component in this sense.

When viewed in the context of folksonomies, components, and particularly the

giant component, play an important practical role. In a folksonomy such as that of

Flickr, the photography web site, users can “surf” between photographs by traversing

the hypergraph. A user can, for example, click on the tag associated with a photo

and see a list of other photos with the same tag. Similarly a user can click on the

name of another user and see a list of photos that user has tagged. The existence,

or not, of a giant component in the network dictates whether this type of surfing is

actually useful or not. If there is no giant component, then surfing users will find

themselves restricted to the small set of photos, tags, and users in the component in

which they start their surfing. But if there is a giant component then users will be

able to surf to a significant fraction of all photos on the entire web site just by clicking

on tags or users that seem interesting. The same considerations affect automated

surfing by computerized “crawlers” that crawl web sites either to perform directed

searches (so-called “spiders”) or to create indexes for later search. If there is no giant

component in the folksonomy, then it cannot be crawled in a useful way.

We can calculate properties of the giant component in our tripartite random

graph by methods similar to those used for ordinary random graphs [117]. Consider

a randomly chosen hyperedge in the full hypergraph, as depicted in Fig. 3.3, and let

us calculate the probability that this hyperedge is not a part of the giant component.

We define ur to be the probability that the hyperedge is not connected to the giant

component via its red vertex, and similarly for ug and ub, so that the total probability

of not belonging to the giant component is urugub.

84

Figure 3.3: If a hyperedge (outlined in bold) is not to belong to the giant component, then it must
be that none of the hyperedges reachable via, for instance, its red vertex are themselves
members of the giant component.

Suppose that the excess degree of the red vertex—the number of other hyperedges

attached to it—is k. (In the example shown in Fig. 3.3 we have k = 3.) In order that

the hyperedge be not connected to the giant component via the red vertex it must

be that none of these other hyperedges are connected to the giant component either.

Any one hyperedge satisfies this criterion with probability ugub—the probability that

neither of its other corners lead to the giant component—and all k of them together

do so with probability (ugub)
k.

The excess degree is distributed according to the distribution qr(k) defined in

Eq. (3.6). Averaging over this distribution, we then derive an expression for ur thus:

(3.14) ur =

∞
∑

k=0

qr(k)(ugub)
k = r1(ugub).

Similarly we can show that

(3.15) ug = g1(ubur), ub = b1(urug).

The simultaneous solution of these three equations for ur, ug, and ub then allows us

to calculate the probability 1 − urugub that a randomly chosen hyperedge is in the

giant component. Alternatively, the probability that a randomly chosen red vertex

85

is not in the giant component is the probability that none of its k hyperedges lead to

the giant component, which is
∑

k pr(k)(ugub)
k = r0(ugub), so the that a red vertex

is in the giant component with probability

(3.16) Sr = 1 − r0(ugub),

and we can write similar equations for Sg and Sb. Sr can also be thought of as the

fraction of red vertices in the giant component, and hence is a measure of the size

of that component. The absolute number of red vertices in the giant component is

nrSr and the number of vertices of all colors is nrSr + ngSg + nbSb.

As in other random graph models, it is in most cases not possible to solve

Eqs. (3.14) and (3.15) for ur, ug, and ub in closed form, but a numerical solution

can be found easily by iteration starting from suitable initial values.

We can also derive a condition for the existence of a giant component in the

network. A giant component exists if and only if ur, ug, and ub are all less than 1.

(They must all be less than 1 because an extensive giant component of vertices of

any one color automatically implies an extensive component of the other two colors,

since, with only mild conditions on the degree distribution, the first color must be

connected into a giant component by an extensive number of hyperedges, and each

hyperedge is attached to one vertex of each color.)

Consider values of the variables that are only slightly different from 1 thus:

(3.17) ur = 1 − ǫr, ug = 1 − ǫg, ub = 1 − ǫb,

where ǫr, ǫg, and ǫb are small. Then, from Eq. (3.14),

ǫr = 1 − ur = 1 − r1(ugub) = 1 − r1(1 − ǫg − ǫb + ǫgǫb)

= (ǫg + ǫb)r
′
1(1) + O(ǫ2),(3.18)

86

where we have performed a Taylor expansion of r1 and made use of r1(1) = 1 (which

is necessarily true if qr(k) is a properly normalized distribution). We can derive

similar equations for ǫg and ǫb and combine all three into the single vector equation

(3.19)

ǫr

ǫg

ǫb

=

0 r r

g 0 g

b b 0

ǫr

ǫg

ǫb

,

where we have introduced the shorthand r = r′1(1), g = g′
1(1), and b = b′1(1).

If ur, ug, and ub are to be less than 1, meaning the corresponding ǫ’s must all be

non-zero, then this equation implies the determinant condition

(3.20)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1 r r

g −1 g

b b −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

or

(3.21) 2rgb + rg + gb + br = 1.

This condition defines the point at which the phase transition takes place. Equiv-

alently, 2rgb + rg + gb + br crosses 1 at the transition. In fact it is greater than 1

when there is a giant component and less 1 when there is none (rather than the

other way around) as can be shown by exhibiting any example where this is the case.

A suitable example is provided by a network in which all vertices have degree one,

which clearly has no giant component. This choice makes r = g = b = 0 and the

result follows.

Thus our condition for the existence of a giant component is,

(3.22) 2rgb + rg + gb + br > 1.

87

This is the equivalent of the well known condition of Molloy and Reed for the exis-

tence of a giant component in a unipartite random graph [102].

An alternative form for this condition can be derived by making use of Eqs. (3.6)

and (3.8) to write

r = r′1(1) =
∞

∑

k=0

kqr(k) =
1

cr

∞
∑

k=0

k(k + 1)pr(k + 1)

=
1

cr

∞
∑

k=0

k(k − 1)pr(k) =
〈k2〉r
〈k〉r

− 1,(3.23)

and similarly for g and b. Here 〈. . .〉r indicates an average over the degree distribution

of the red vertices and cr = 〈k〉r.

Substituting these expressions into (3.22), we find, after some algebra, that

(3.24)
〈k〉r
〈k2〉r

+
〈k〉g
〈k2〉g

+
〈k〉b
〈k2〉b

< 2.

This form is particularly pleasing, since it has the same general shape as the criterion

of Molloy and Reed for the unipartite case, which can be written as 〈k〉/〈k2〉 < 1
2
.

3.3.5 Other types of components

The definition of a component used in the previous section is not the only one

possible for our tripartite graph. In some folksonomies one cannot surf over connec-

tions formed by both users and tags. In some cases, for instance, one is barred from

seeing which resources a particular user has tagged for privacy reasons, meaning one

can surf between resources with the same tag, but not with the same user. In this

case we are surfing on the network formed by two colors of vertices only, say red and

green.

We can approach this situation using the same techniques as in the previous

section. We define probabilities ur and ug as before and find that they satisfy the

88

equations,

(3.25) ur = r1(ug), ug = g1(ur).

Linearizing around the point ur = ug = 1 we then find that the transition at which

the giant component appears takes place when

(3.26)

∣

∣

∣

∣

∣

∣

∣

−1 r

g −1

∣

∣

∣

∣

∣

∣

∣

= 0,

or equivalently rg = 1, with r and g defined as before. By considering appropriate

special cases, one can then show that the giant component exists if and only if rg > 1.

Substituting from Eq. (3.23), we can also write this condition in the form,

(3.27)
〈k〉r
〈k2〉r

+
〈k〉g
〈k2〉g

< 1.

Note that this expression is not symmetric with respect to permutations of the three

color indices, as Eq. (3.24) was. This means that in general giant components for

different color pairs will appear at different transitions, and it is possible to have a

giant component for one pair without having a giant component for another. Thus

for instance in our Flickr example one might be able to surf the network of photos

and tags, but not the network of photos and users. (Actually, one can surf both just

fine in the real Flickr network.)

3.3.6 Percolation

One can also consider percolation processes on tripartite networks. If some ver-

tices are removed from the network then the remaining network may or may not

percolate, i.e., possess a giant component. For example, on the Flickr web site users

can designate photos as publicly viewable or not, and those that are not are, for

all intents and purposes, removed from the network. One cannot use them, for in-

stance, for surfing across the network. There are many ways in which vertices might

89

be removed, but as a simple example let us assume that vertices of only one kind

are removed and make the standard percolation assumption that they are removed

uniformly at random. (More complicated percolation schemes are certainly possible,

with more than one type of vertex removed, different probabilities of removal for

different types, or nonuniform removal, and all of these schemes can be studied by

methods similar to those outlined here.)

Suppose a fraction φ of the red vertices in our network are present (or functional)

and 1 − φ are removed (or nonfunctional). In the language of percolation theory, a

fraction φ of the vertices are occupied. Then define ur as before to be the probability

that the red vertex attached to a random hyperedge does not belong to the giant

component, or the giant cluster as it is more commonly called in the percolation

context. There are two different ways in which this can happen. If the vertex itself

has been removed, then it does not belong to the giant cluster. Alternatively, it may

be present but, as before, none of its neighbors, either blue or green, are in the giant

cluster. This allows us to write down an expression for ur thus:

(3.28) ur = 1 − φ + φr1(ugub).

The corresponding expressions for ug and ub are the same as in our previous calcula-

tion, ug = g1(ubur), ub = b1(urug), and the fractions of red, green, and blue vertices

in the giant percolation cluster are

Sr = φ[1 − r0(ugub)],(3.29a)

Sg = 1 − g0(ubur),(3.29b)

Sb = 1 − b0(urug).(3.29c)

90

We can also calculate an expression for the value of φ at which the percolation

transition happens. As before we perturb around the point ur = ug = ub = 1 that

corresponds to no giant cluster and the equivalent of Eq. (3.19) is

(3.30)

ǫr

ǫg

ǫb

=

0 φr φr

g 0 g

b b 0

ǫr

ǫg

ǫb

,

with r, g, and b defined as before. This implies that the transition happens at φ = φc

where φc is the solution of 2φrgb + φrg + gb + φbr = 1. That is,

(3.31) φc =
1 − gb

r(2gb + g + b)
.

Making use of Eq. (3.23) and the corresponding expressions for g and b we then find

that

(3.32) φc =

(〈k2〉r
〈k〉r

− 1

)−1[(

2 − 〈k〉g
〈k2〉g

− 〈k〉b
〈k2〉b

)−1

− 1

]

.

3.3.7 Simulations

Before looking at real-world tripartite networks, we first compare our calculations

with simulation results for computer-generated random graphs.

Consider a tripartite random graph with Poisson degree distributions thus:

(3.33) pr(k) = e−cr
ck
r

k!
, pg(k) = e−cg

ck
g

k!
, pb(k) = e−cb

ck
b

k!
,

where the average degrees cr, cg, and cb satisfy Eq. (3.2). The corresponding gener-

ating functions are

r0(z) = r1(z) = e−cr

∞
∑

k=0

ck
r

k!
zk = ecr(z−1),

g0(z) = g1(z) = e−cg

∞
∑

k=0

ck
g

k!
zk = ecg(z−1),

b0(z) = b1(z) = e−cb

∞
∑

k=0

ck
b

k!
zk = ecb(z−1).(3.34)

91

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200

ρ g
b

k

 0.8

 0.6

 0.4

 0.2

 0
 0.8 0.6 0.4 0.2 0

S r
(φ

)

φ

Figure 3.4: The degree distribution for the projection of our Poisson hypergraph onto its red vertices
alone, in which two red vertices are joined by an edge if they have either a green
or a blue neighbor in common on the original tripartite network. The solid line is
the exact solution, Eq. (3.36), and the points are the results of numerical simulations
averaged over a hundred realizations of the network. The error bars are smaller than
the size of the points in all cases. Inset: The fraction of red vertices belonging to the
giant percolation cluster for site percolation on the tripartite network, as a function of
occupation probability φ. The solid line is the exact solution and the points are the
results of numerical simulations.

We can use these to calculate, for instance, the degree distribution of the projection

of the network onto the red vertices in which two vertices are connected if they share

either a green or a blue neighbor. The generating function for this distribution is

given by Eq. (3.12) to be

(3.35) Rgb = r0(g1(z)b1(z)) = ecr(e(cg+cb)(z−1)−1).

Expanding in powers of z, we then find that the probability ρgb(k) of a red vertex

having exactly k neighbors in the projected network is

(3.36) ρgb(k) =
(cg + cb)

k

k!
ecr(e−(cg+cb)−1)

k
∑

m=1

{

k

m

}

[

cre
−(cg+cb)

]m
,

where
{

k
m

}

is a Stirling number of the second kind, i.e., the number of ways of

92

dividing k objects into m nonempty sets [1].

The main panel of Fig. 3.4 shows the form of this distribution for the case cr = 3,

cg = 10, cb = 6. In the same plot we show the results of simulations in which random

tripartite graphs with the same degree distributions and nr = 100 000, ng = 30 000,

and nb = 50 000 were generated and then explicity projected onto the red vertices

and the resulting degree distribution measured directly. As the figure shows, the

agreement between the two is excellent.

The inset of Fig. 3.4 shows the size of the giant cluster for percolation on the red

vertices of the same network as a function of the occupation probability φ, calcu-

lated both by numerical solution of Eqs. (3.28)–(3.29) and by direct measurement

on simulated networks. Again the agreement is excellent.

3.4 Comparison with real-world data

In this section we compare the predictions of our tripartite random graph model

against data for the folksonomy of the Flickr photo-sharing web site. As we show,

the theory and empirical observations agree well in some respects, but less well

in others. In many ways the discrepancies are at least as interesting as the cases

of agreement, since they indicate situations in which the structure of the observed

network cannot be explained by a simple random model that ignores social and other

effects. When data and model disagree it is a sign that these effects are important in

determining the network structure. Thus, as with other random graph models, one

of the most significant roles our model can play may be as a null model that allows

the experimenter to determine when a network is doing something nontrivial.

Our example data set represents the folksonomy network of 266 198 photos added

to the Flickr web site by its users during 2007, along with the tags applied to those

93

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 10 100 1000

P
(k

)

k

Figure 3.5: The three degree distributions of the tripartite Flickr folksonomy network for photos
(red), tags (green), and users (blue).

photos and the users who applied them. The first step in analyzing the data is to

measure the three degree distributions for the three types of vertices. The degree

distributions are shown in Fig. 3.5. As is common in most social networks, they

are highly right-skewed, meaning there are many vertices of low degree and a small

number of very high degree, although the distributions do not follow power-law forms

as the distributions in some networks do. Using these distributions, we can, following

Eqs. (3.7) and (3.8), construct the corresponding generating functions, which are

simple polynomials (albeit of high order) that can be easily evaluated numerically.

We can use our generating functions to calculate, for example, the generating

functions Rgb(z) and so forth for the degree distributions of the projections of the

network onto one vertex type, using Eqs. (3.10) and (3.12) and their equivalents for

other vertex types. Again these functions can be rapidly evaluated for any argument z

numerically. The degree distributions themselves are then given by derivatives of the

94

generating functions thus:

(3.37) pk =
1

k!

dkRgb

dzk

∣

∣

∣

∣

z=0

.

Direct numerical evaluation of derivatives is plagued by problems with noise and

should be avoided, but one can get good results [104] by instead employing Cauchy’s

integral formula for the kth derivative of a function:

(3.38)
dkf

dzk

∣

∣

∣

∣

z=z0

=
k!

2πi

∮

f(z)

(z − z0)k+1
dz,

where the integral is around a contour enclosing the point z0 but excluding any poles

of f(z). Applying this formula to (3.37) we get

(3.39) pk =
1

2πi

∮

Rgb(z)

zk+1
dz.

We then calculate the degree distribution by performing the contour integral nu-

merically around a suitable contour (the unit circle |z| = 1 works well). One can

without difficulty calculate to good precision the first thousand or so coefficients of

the generating function in this fashion.

We have performed this calculation using the degree distributions of the Flickr

network and projecting onto the resources, i.e., the photos. Figure 3.6 shows a com-

parison of the results with the degree distribution for the actual projected network.

The upper solid line in the figure represents the theoretical result, while the circles

represent the measurements. Although the two curves have the same general shape,

it’s clear from the figure that the agreement between them is only moderately good

in this case. Upon closer inspection, however, it turns out that there is a relatively

simple reason for this.

As discussed in Section 3.3.1, our random graph model assumes a locally-tree like

structure for the tripartite network, a structure with no short loops. The Flickr

95

network, on the other hand, turns out to have many short loops, which is why

empirical measurements and model do not agree in Fig. 3.6. As we now show,

however, the loops in the Flickr network are primarily of a trivial kind that can

easily be allowed for in the calculations.

Typically, photos are not added to the Flickr network individually, but in sets.

The most common practice is for a user to upload a set of photos on a particular

subject—say, pictures of a Ferrari motor car—and then label all of the photos in the

set with the same set of tags—Ferrari, automobile, sports car, and so forth. This

creates short loops between photos in the set of the form P1 → T1 → P2 → T2 → P1,

where the P s are the photos and the T s are tags. These loops will have an adverse

affect on the calculation of the number of neighbors a photo has in the projected

network, since in many cases two projected edges from a photo will lead to the same

neighboring photo, rather than to different neighbors, and hence give a lower degree

in the projected network than our naive random graph calculation.

To test the effect of these “trivial” loops in the network structure, we have pruned

the data set to remove instances of multiple tagging. In the pruned data set the

application by a user of many tags to the same photo is represented by just a single

hyperedge, rather than many. In this representation, hyperedges represent the act

of tagging a photo, rather than a specific tag, and only one hyperedge is included

between a user and a photo no matter how many tags the user applies. Similarly we

also represent the tagging of many photos with the same tag by a single hyperedge,

so that hyperedges represent the act of tagging an entire photo set, rather than just

a single photo. This should remove most instances of trivial loops in the projected

network of the type described above. We note, that a similar observation on the

effects of multiple tagging was made by [35].

96

 0.1

 1

 1 10 100 1000

P
(k

)

k

Figure 3.6: Circles show the cumulative distribution function for the degree distribution of the
projection of the Flickr network onto its photograph vertices, while the upper solid
line shows the predictions of the random graph model for the same quantity. Squares
show the same function after pruning of the data to remove multiple tagging as de-
scribed in the text and the lower solid curve shows the corresponding model prediction,
recalculated from the new degree distributions after pruning.

Now we calculate again the projection of the hypergraph onto the set of photos.

We also recalculate the theoretical predictions to reflect the changed degree distribu-

tions of the hypergraph following pruning. The results are shown in Fig. 3.6 (squares

and lower solid curve) and, as the figure shows, the agreement is now quite good be-

tween theory and observation. This suggests that the earlier disagreement between

the two is indeed primarily a result of the presence of the loops in the hypergraph

introduced by the practice of multiple tagging.

We can perform similar calculations for projections onto other types of vertices.

In Fig. 3.7 we show degree distributions, before and after pruning of the data set,

for the projection onto users. Agreement between theory and observation for the

unpruned data is again quite poor in this case but significantly better for the pruned

data.

These calculations provide, in many ways, a good example of the utility of random

97

 0.1

 1

 1 10 100 1000

P
(k

)

k

Figure 3.7: Cumulative distribution functions for the degree distributions of the projection of the
Flickr network onto its user vertices, both before and after pruning of the data. The
points represent the observations, unpruned (circles) and pruned (squares), while the
solid lines represent the predictions of the model.

graph models. When compared with the raw data from the Flickr network, our

random graph model agrees qualitatively, but not quantitatively, indicating that

there are effects present in the network that are not accounted for by simple random

hyperedges. On the other hand, once one prunes the data to remove multiple tagging,

the agreement becomes much better, suggesting that multiple tagging is the primary

nonrandom behavior taking place in the network and that in other respects the

network is in fact quite close to being a random graph. Thus the model allows us

not only to say when the network deviates from the random assumption, but also

the particular nature of the deviation.

3.5 Discussion

Motivated by the emergence of new types of social networks, such as folksonomies,

we have in this chapter proposed and studied a model of random tripartite hyper-

graphs. We have defined basic network measures, such as degree distributions and

98

projections onto individual vertex types, and calculated a variety of statistical prop-

erties of the model in the limit of large network size. Among other things we have

calculated the explicit degree distributions for projected networks, conditions for the

emergence of a giant component, the size of the giant component when there is one,

and the location of the percolation threshold for site percolation on the network. In

principle, the techniques introduced could be extended to hypergraphs with more

vertex types or additional types of edges, although we have not pursued any such

extensions here.

We have compared our results against measurements of computer-generated ran-

dom hypergraphs and a real-world tripartite network, the folksonomy of the on-line

photo-sharing web site Flickr. In the latter case, we have focused on the degree

distributions of projections of the hypergraph onto one vertex type and find that in

some instances the theory makes predictions in moderately good agreement with the

observations while in others the agreement is poorer. In all cases, however, we find

that agreement becomes significantly better when we remove instances of multiple

tagging from the network—instances in which a user applies many tags to the same

photo or the same tag to many photos—suggesting that the disagreement is primar-

ily a result of relatively trivial structures in the network, rather than more subtle or

large-scale social network effects.

CHAPTER IV

Network growth models I: Equilibrium degree distributions

for networks with vertex and edge turnover

4.1 Introduction

In the previous two chapters we focussed on the properties of static networks—

those in which the number of vertices and edges are fixed—here, we revert to the

case of dynamic networks. In particular we will examine the case of growing net-

works (discussed in Sec. 1.6.1), where the network evolves by the addition/deletion

of vertices and edges.

A huge amount of of work has been devoted to the case of growing networks,

with citation networks [48, 126] and the worldwide web [7, 91] receiving the most

attention. Perhaps the best-known body of work on this topic is that dealing with

“preferential attachment” models [49, 13], in which vertices are added to a network

with edges that attach to preexisting vertices with probabilities depending on those

vertices’ degrees—see Sec. 1.6.1 for a detailed description. When the attachment

probability is precisely linear in the degree of the target vertex the resulting degree

sequence for the network follows a Yule distribution in the limit of large network size,

meaning it has a power-law tail [49, 13, 96, 50, 12]. This case is of special interest

because both citation networks and the worldwide web are observed to have degree

distributions that approximately follow power laws.

99

100

The preferential attachment model may be quite a good model for citation net-

works, which is one of the cases for which it was originally proposed [49, 96]. For

other networks, however, and especially for the worldwide web, it is, as many au-

thors have pointed out, necessarily incomplete [50, 5, 95, 143, 71]. On the web there

are clearly other processes taking place in addition to the deposition of vertices and

edges. In particular, it is a matter of common experience that vertices (i.e., web

pages) are often removed from the web, and with them the links that they had to

other pages. Models of this process have been touched upon occasionally in the

literature [136, 40, 43] and the evidence suggests that in some cases vertex deletion

affects the crucial power-law behavior of the degree distribution, while in other cases

it does not.

In this chapter, we study the general process in which a network grows (or, poten-

tially, shrinks) by the constant addition and removal of vertices and edges. We show

that a class of such processes can be solved exactly for the degree distributions they

generate by solving differential equations governing the probability generating func-

tions for those distributions. In particular, we give solutions for three example prob-

lems of this type, having uniform or preferential attachment, and having stationary

size or net growth. The case of uniform attachment and stationary size is of interest

as a possible model for the structure of peer-to-peer filesharing networks (discussed

in detail in the following chapter), while the preferential-attachment stationary-size

case displays a nontrivial stretched exponential form in the tail of the degree distri-

bution. Our solution of the preferential attachment case with net growth confirms

earlier results indicating that this process generates a power-law distribution, al-

though the exponent of the power-law diverges as the growth rate tends to zero,

giving degree distributions that are numerically indistinguishable from exponential

101

for small growth rates. This suggests that the clear power law seen in the real world-

wide web is a signature of a network whose rate of vertex accrual far outstrips the

rate at which vertices are removed. The relative rates of addition and removal could,

however, change as the web matures, possibly leading to a loss of power-law behavior

at some point in the future.

4.2 The model

Consider a network that evolves by the addition and removal of vertices. In each

unit of time, we add a single vertex to the network and remove r vertices. When a

vertex is removed so too are all the edges incident on that vertex, which means that

the degrees of the vertices at the other ends of those edges will decrease. Non-integer

values of r are permitted and are interpreted in the usual stochastic fashion. (For

example, values r < 1 can be interpreted as the probability per unit time that a

vertex is removed.) The value r = 1 corresponds to a network of fixed size in which

there is vertex turnover but no growth; values r < 1 correspond to growing networks.

In principle one could also look at values r > 1, which correspond to shrinking

networks, and the methods derived here are applicable to that case. However, we are

not aware of any real-world examples of shrinking networks in which the asymptotic

degree distribution is of interest, so we will not pursue the shrinking case here.

We make two further assumptions, which have also been made by most previous

authors in studying these types of systems: (1) that all vertices added have the same

initial degree, which we denote c; (2) that the vertices removed are selected uniformly

at random from the set of all extant vertices. Note however that we will not assume

that the network is uncorrelated (i.e., that it is a random multigraph conditioned on

its degree distribution as in the configuration model). In general the networks we

102

consider will have correlations among the degrees of their vertices but our solutions

will nonetheless be exact.

Let pk be the fraction of vertices in the network at a given time that have degree k.

By definition, pk has the normalization

(4.1)
∞

∑

k=0

pk = 1.

Our primary goal in this paper will to evaluate exactly the degree distribution pk for

various cases of interest.

Although the form of pk is, as we will see, highly nontrivial in most cases, the

mean degree of a vertex 〈k〉 =
∑∞

k=0 kpk is easily derived in terms of the parameters r

and c. The mean number of vertices added to the network per unit time is 1−r. The

mean number of edges removed when a randomly chosen vertex is removed from the

network is by definition 〈k〉. Thus the mean number of edges added to the network

per unit time is c − r〈k〉. For a graph of m edges and n vertices, the mean degree

is 〈k〉 = 2m/n. After time t we have n = (1 − r)t and, assuming that 〈k〉 has an

asymptotically constant value, m = (c − r〈k〉)t. Thus

(4.2) 〈k〉 = 2 × c − r〈k〉
1 − r

,

or, rearranging,

(4.3) 〈k〉 =
2c

1 + r
.

In the special case r = 1 of a constant-size network, this gives 〈k〉 = c, which is

clearly the correct answer.

We must also consider how an added vertex chooses the c other vertices to which

it attaches. Let us define the attachment kernel πk to be n times the probability

that a given edge of a newly added vertex attaches to a given preexisting vertex of

103

degree k. The factor of n here is convenient, since it means that the total probability

that the given edge attaches to any vertex of degree k is simply πkpk. Since each

edge must attach to a vertex of some degree, this also immediately implies that the

correct normalization for πk is

(4.4)
∞

∑

k=0

πkpk = 1.

For the particular case of πk ∝ k and r < 1, which we consider in Section 4.3.3,

models similar to ours have been studied previously by Sarshar and Roychowd-

hury [136], Chung and Lu [40], and Cooper, Frieze, and Vera [43]. While these

authors did not seek an exact solution, our results on the power-law tail of the

degree distribution in this case coincide with theirs.

4.2.1 Rate equation

Given these definitions, the evolution of the degree distribution is governed by a

rate equation as follows. If there are at total of n vertices in the network at a given

time then the number of vertices with degree k is npk. One unit of time later this

number is (n + 1 − r)p′k, where p′k is the new value of pk. Then

(4.5) (n + 1 − r)p′k = npk + δkc + cπk−1pk−1 − cπkpk + r(k + 1)pk+1 − rkpk − rpk.

The term δkc (Kronecker delta function) in Eq. (4.5) represents the addition of a

vertex of degree c to the network. The terms cπk−1pk−1 and −cπkpk describe the

flow of vertices from degree k − 1 to k and from k to k + 1 as they gain extra edges

when newly added vertices attach to them. The terms (k+1)pk+1 and −kpk describe

the flow from degree k + 1 to k and from k to k − 1 as vertices loose edges when one

of their neighbors is removed from the network. And the term −rpk represents the

removal with probability r of a vertex with degree k. Contributions from processes

104

in which a vertex gains or loses two or more edges in a single unit of time vanish in

the limit of large n and have been neglected.

We will be interested in the asymptotic form of pk in the limit of large times for

a given πk. Setting p′k = pk in (4.5) gives

(4.6) δkc + cπk−1pk−1 − cπkpk + r(k + 1)pk+1 − rkpk − pk = 0.

We can write the solution to (5.2) in terms of generating functions as follows. Let

us define

F0(z) =

∞
∑

k=0

πkpkz
k,(4.7)

G0(z) =

∞
∑

k=0

pkz
k.(4.8)

Then, upon multiplying both sides of (5.2) by zk and summing over k (with the

convention that p−1 = 0), we derive a differential equation for G0(z) thus:

(4.9) r(1 − z)
dG0

dz
− G0(z) − c(1 − z)F0(z) + zc = 0.

Note also that we can easily generalize our model to the case where the degrees of

the vertices added are not all identical but are instead drawn at random from some

distribution rk. In that case, we simply replace δkc in Eq. (5.2) with rk and zc in

Eq. (4.9) with the generating function H0(z) =
∑

k rkz
k.

In the following sections we solve Eq. (4.9) for a number of different choices of

the attachment kernel πk. Note that, since the definitions of both F0(z) and G0(z)

incorporate the unknown distribution pk, we must in general solve implicitly for

G0(z) in terms of F0(z). In all of the cases of interest to us here, however, it turns

out to be straightforward to derive a explicit equation for G0(z) as a special case

of (4.9).

105

4.3 Solutions for specific cases

In this section we study three specific examples of the class of models defined

in the preceding section, namely linear preferential attachment models (πk ∝ k) for

both growing and fixed-size networks, and uniform attachment (πk = constant) for

fixed size. As we will see, each of these cases turns out to have interesting features.

4.3.1 Uniform attachment and constant size

For the first of our example models we study the case where the size of the network

is constant (r = 1) and in which each vertex added chooses the c others to which it

attaches uniformly at random. This means that πk is constant, independent of k, and,

combining Eqs. (4.1) and (4.4), we immediately see that the correct normalization

for the attachment kernel is πk = 1 for all k. Then we have πkpk = pk so that

F0(z) = G0(z) in (4.9), which gives

(4.10)

[

c +
1

1 − z

]

G0(z) − dG0

dz
=

zc

1 − z
.

Noting that (1−z)e−cz is an integrating factor and that G0(z) must obey the bound-

ary condition G0(1) = 1, we readily determine that

G0(z) =
ecz

1 − z

∫ 1

z

tce−ct dt

=
ecz

1 − z
c−(c+1)

[

Γ(c + 1, cz) − Γ(c + 1, c)
]

,(4.11)

where

(4.12) Γ(c + 1, x) =

∫ ∞

x

tce−t dt.

is the incomplete Γ-function [1].

One can easily check that this gives a mean degree G′
0(1) = c, as it must, and

that the variance of the degree G′′
0(1)+G′

0(1)− c2 is equal to 2
3
c, indicating a tightly

peaked degree distribution.

106

To obtain an explicit expression for the degree distribution, we make use of

Γ(c + 1, x) = Γ(c + 1) e−x
c

∑

m=0

xm

m!
,(4.13)

ex =

∞
∑

m=0

xm

m!
,(4.14)

(1 − z)−1 =

∞
∑

k=0

zk,(4.15)

to write

G0(z) = c−(c+1) ×
∞

∑

k=0

zk

[

Γ(c + 1)

c
∑

m=0

(cz)m

m!
− Γ(c + 1, c)

∞
∑

m=0

(cz)m

m!

]

.

The z-dependence in the first term of this expression can be rewritten

∞
∑

k=0

zk

c
∑

m=0

(cz)m

m!
=

c
∑

m=0

∞
∑

k=m

zk cm

m!

=

∞
∑

k=0

zk

min(k,c)
∑

m=0

cm

m!

= ec ×
∞

∑

k=0

zk Γ
(

min(k, c) + 1, c
)

Γ
(

min(k, c) + 1
) ,(4.16)

where min(k, c) denotes the smaller of k and c and we have again employed (4.13).

A similar sequence of manipulations leads to an expression for the second term also,

thus:

(4.17)
∞

∑

k=0

zk
∞

∑

m=0

(cz)m

m!
= ec ×

∞
∑

k=0

zk Γ(k + 1, c)

Γ(k + 1)
.

Combining these identities with (4.16), it is then a simple matter to read off the term

in G0(z) involving zk, which is by definition our pk. We find two separate expressions

for the cases of k above or below c:

pk =
ec

cc+1

[

Γ(c + 1) − Γ(c + 1, c)
]Γ(k + 1, c)

Γ(k + 1)
, for k < c,(4.18)

and

(4.19) pk =
ec

cc+1
Γ(c + 1, c)

[

1 − Γ(k + 1, c)

Γ(k + 1)

]

, for k ≥ c.

107

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 10

P
ro

ba
bi

lit
y

P
k

Degree k

Figure 4.1: The degree distribution of our model for the case of uniform attachment (πk = constant)
with fixed size n = 50 000 and c = 10. The points represent data from numerical
simulations and the solid line is the analytic solution.

Note that the quantity Γ(k+1, c)/Γ(k+1) appearing in both these expressions is the

probability that a Poisson-distributed variable with mean c is less than or equal to k.

Thus the degree distribution has a tail that decays as the cumulative distribution of

such a Poisson variable, implying that it falls off rapidly. To see this more explicitly,

we note that for fixed c and k ≫ c

(4.20) pk =
Γ(c + 1, c)

cc+1

∞
∑

m=k+1

cm

m!
≃ Γ(c + 1, c)

Γ(k + 2)
ck−c,

since the sum is strongly dominated in this limit by its first term. Applying Stirling’s

approximation, Γ(x) ≃ (x/e)x
√

2π/x, this gives

(4.21) pk ≃ Γ(c + 1, c)

cc
× k−3/2ek

(

c

k

)k

,

which decays substantially faster asymptotically than any exponential.

As a check on these calculations, we have performed extensive computer simu-

lations of the model. In Fig. 4.1 we show results for the case c = 10, along with

the exact solution from Eqs. (4.18) and (4.19). As the figure shows, the agreement

108

between the two is excellent.

Before moving on to other issues, we note a different and particularly simple case

of a growing network with uniform attachment, the case in which the vertices added

have a Poisson degree distribution cke−c/k! with mean c. In that case the factor

of zc in Eq. (4.10) is replaced with the generating function H0(z) for the Poisson

distribution:

(4.22) H0(z) =

∞
∑

k=0

cke−c

k!
zk = ec(z−1),

and the solution, Eq. (4.11), becomes

(4.23) G0(z) =
ecz

1 − z

∫ 1

z

h(t) e−ct dt = ec(z−1),

which is itself the generating function for a Poisson distribution. Thus we see partic-

ularly clearly in this case that the equilibrium degree distribution in the steady-state

uniform attachment network is sharply peaked with a Poisson tail. In fact, the net-

work in this case is simply an uncorrelated random graph of the type famously studied

by Erdős and Rényi [57]. It is straightforward to see that if one starts with such

a graph and randomly adds and removes vertices with Poisson distributed degrees,

the graph remains an uncorrelated random graph with the same degree distribution,

and hence this distribution is necessarily the fixed point of the evolution process, as

the solution above demonstrates.

4.3.2 Preferential attachment and constant size

Our next example adds an extra degree of complexity to the picture: we consider

vertices that attach to others in proportion to their degree, the so-called “preferential

attachment” mechanism [13]. This implies that our attachment kernel πk is linear in

the degree, πk = Ak for some constant A. The normalization requirement (4.4) then

109

implies that

(4.24)

∞
∑

k=0

πkpk = A ×
∞

∑

k=0

kpk = A〈k〉 = 1,

and hence A = 1/〈k〉. For the moment, let us continue to focus on the case r = 1 of

constant network size, in which case 〈k〉 = c (Eq. (4.3)) and

(4.25) πk =
k

c
.

Then

(4.26) F0(z) =
1

c
×

∞
∑

k=0

kpkz
k =

z

c
G′

0(z),

and Eq. (4.9) becomes

(4.27)
G0(z)

(1 − z)2
− dG0

dz
=

zc

(1 − z)2
.

The appropriate integrating factor in this case is e−1/(1−z), which, in conjunction

with the boundary condition G0(1) = 1, gives

(4.28) G0(z) = e1/(1−z)

∫ 1

z

tc

(1 − t)2
e−1/(1−t) dt.

Changing the variable of integration to y = 1/(1 − t) this expression can be written

G0(z) = e1/(1−z)

∫ ∞

1/(1−z)

(

1 − 1

y

)c

e−y dy

= e1/(1−z)
c

∑

s=0

(−1)s

(

c

s

) ∫ ∞

1/(1−z)

e−y

ys
dy

= 1 + e1/(1−z)

c
∑

s=1

(−1)s

(

c

s

)

Γ

(

1 − s,
1

1 − z

)

.(4.29)

where Γ(1−s, x) =
∫ ∞

x
e−y y−s dy is again the incomplete Γ-function, here appearing

with a negative first argument.

A useful identify for the case s ≥ 1 can be derived by integrating by parts thus:

(4.30) Γ(−s, x) =
1

s

[

e−x

xs
− Γ(1 − s, x)

]

.

110

Iterating this expression then gives

(4.31) Γ(1 − s, x) = − (−1)s

(s − 1)!

[

Γ(0, x) + e−x

s−1
∑

m=1

(−1)m(m − 1)!

xm

]

,

where Γ(0, x) =
∫ ∞

x
(e−y/y) dy is also known as the exponential integral function

−Ei(−x) [1]. Applying this identity to (4.29) gives

G0(z) = 1 −
c

∑

s=1

(

c

s

)

1

(s − 1)!

×
[

e1/(1−z) Γ

(

0,
1

1 − z

)

+

s−1
∑

m=1

(−1)m(m − 1)! (1 − z)m

]

= q(z) − Ac e1/(1−z) Γ

(

0,
1

1 − z

)

,(4.32)

where q(z) is a polynomial of degree c− 1 and Ac =
∑c

s=1

(

c
s

)

/(s− 1)! depends only

on c. For k ≥ c, then, the degree distribution pk is given by the coefficients of zk

in −Ac e1/(1−z) Γ
(

0, 1/(1− z)
)

. We determine these coefficients as follows. Changing

the variable of integration to x = y − z/(1 − z), we find

(4.33) −e1/(1−z) Γ

(

0,
1

1 − z

)

= −e

∫ ∞

1

e−x

x + z/(1 − z)
dx.

Then we expand the integrand to get

(4.34)
1

x + z/(1 − z)
=

1

x
−

∞
∑

k=1

(

1 − 1

x

)k−1
zk

x2
.

Commuting the sum and the integral, we obtain

(4.35) −e1/(1−z) Γ

(

0,
1

1 − z

)

=

∞
∑

k=0

akz
k,

where for k = 0,

(4.36) a0 = −e

∫ ∞

1

e−x

x
dx = −e Γ(0, 1),

and for k ≥ 1

(4.37) ak = e

∫ ∞

1

(

1 − 1

x

)k−1
e−x

x2
dx.

111

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

P
ro

ba
bi

lit
y

P
k

Degree k

Figure 4.2: The degree distribution for our model in the case of fixed size n = 50 000 and c = 10
with linear preferential attachment. The points represent data from our numerical
simulations and the solid line is the analytic solution for k ≥ c. Note that the tail of
the distribution does not follow a power law as in growing networks with preferential
attachment, but instead decays faster than a power law, as a stretched exponential.

Integrating by parts, we obtain a slightly simpler expression,

(4.38) ak =
e

k

∫ ∞

1

(

1 − 1

x

)k

e−x dx.

While the coefficients ak can be expressed exactly using hypergeometric functions,

a perhaps more informative approach is to employ a saddle-point expansion [45].

The integrand of (4.38) is unimodal in the interval between 1 and ∞, and peaks at

x = 1
2
(1 +

√
4k + 1) ≃

√
k. Approximating the integrand as a Gaussian around this

point, we obtain as k → ∞

(4.39) ak ≃
√

πe k−3/4 e−2
√

k

and pk = Ac ak for k ≥ c as stated above.

Figure 4.2 shows the form of this solution for the case c = 10. Also shown in

the figure are results from computer simulations of the model on systems of size

n = 50 000 with c = 10, which agree well with the analytic results. The appearance

112

of the stretched exponential in Eq. (4.39) is worthy of note. We are aware of only a

few cases of graphs with stretched exponential degree distributions that have been

discussed previously, for instance in growing networks with sublinear preferential

attachment [93] as well as in empirical network data [115].

4.3.3 Preferential attachment in a growing network

We now come to the third and most complex of our example networks, in which we

combine preferential attachment with net growth of the network, r < 1. Logically, we

should perhaps first solve the case of a growing network without preferential attach-

ment, which in fact we have done. But the solution turns out to have no qualitatively

new features to distinguish it from the constant size case and is mathematically te-

dious besides. Given the large amount of effort it requires and its modest rewards,

therefore, we prefer to skip this case and move on to more fertile ground.

As before, perfect linear preferential attachment implies πk = k/〈k〉 or

(4.40) πk =
k(1 + r)

2c
,

where we have made use of Eq. (4.3). Then F0(z) = (1 + r)zG′
0(z)/2c and Eq. (4.9)

becomes

(4.41) G0(z) − (1 − z)

2

[

2r − (1 + r)z
] dG0

dz
= zc.

An integrating factor for the left-hand side in this case is
∣

∣(α−z)/(1−z)
∣

∣

−2/(1−r)
where

α = 2r/(1+r). (Note that α < 1 when r < 1.) Unfortunately, this integrating factor

is non-analytic at z = α, which makes integrals traversing this point cumbersome. To

circumvent this difficulty, we observe that the second term in Eq. (4.41) vanishes at

z = α, giving G0(α) = αc. This provides us with an alternative boundary condition

on G0(z), allowing us to fix the integrating constant while only integrating up to z =

113

α. It is then straightforward to show that

G0(z) =
2

1 + r

(

α − z

1 − z

)−2/(1−r)

×
∫ α

z

(

α − t

1 − t

)2/(1−r)
tc dt

(1 − t)(α − t)
,(4.42)

for z ≤ α. Since the degree distribution is entirely determined by the behavior of

G0(z) at the origin, it is adequate to restrict our solution to this regime.

Changing variables to u = (α − t)/(1 − α), we find

G0(z) =
2

1 + r

(

α − z

1 − z

)1−γ

(1 − α)−1

×
∫ α−z

1−α

0

(

u

1 + u

)γ
[

α − (1 − α)u
]c du

u2
,(4.43)

where γ = (3−r)/(1−r). If we expand the last factor in the integrand, this becomes

G0(z) =
2

1 + r

c
∑

s=0

(−1)s

(

c

s

)

(1 − α)s−1αc−s

×
(

α − z

1 − z

)1−γ ∫ α−z
1−α

0

us+γ−2

(1 + u)γ
du.(4.44)

We observe the following useful identity:

∫ x

0

uβ

(1 + u)γ
du =

∫ x

0

(

u

1 + u

)β

(1 + u)β−γ du

=
xβ

(β − γ + 1)(1 + x)γ−1
− β

β − γ + 1

∫ x

0

uβ−1

(1 + u)γ
du,(4.45)

where the second equality is derived via integration by parts. Setting β = s + γ − 2

and x = (α − z)/(1 − α) and noting that the last integral has the same form as the

first, we can employ this identity iteratively s − 1 times to get

(

α − z

1 − z

)1−γ ∫ α−z
1−α

0

us+γ−2

(1 + u)γ
du = (−1)s+1Γ(s + γ − 1)

Γ(s)

×
[

1

Γ(γ)

(

α − z

1 − z

)1−γ∫ α−z
1−α

0

uγ−1

(1 + u)γ
du

+

s−1
∑

m=1

(−1)m

Γ(γ + m)

(

α − z

1 − z

)m]

.(4.46)

114

The final sum can be evaluated in closed form in terms of the incomplete Γ-function,

but our primary focus here is on the preceding term. Substituting into Eq. (4.44),

we see that G0(z) = q(z) + Ac,rh(z), where

(4.47) h(z) = −
(

α − z

1 − z

)1−γ ∫ α−z
1−α

0

uγ−1

(1 + u)γ
du,

(4.48) Ac,r =
2

1 + r

c
∑

s=0

(

c

s

)

(1 − α)s−1αc−sΓ(γ + s − 1)

Γ(γ)Γ(s)
,

and q(z) is a polynomial of order c − 1 in z.

Since Ac,r depends only on c and r and q(z) has no terms in z of order zc or higher,

the degree distribution for k ≥ c is, to within a multiplicative constant, given by the

coefficients in the expansion of h(z) about zero. Making the change of variables

(4.49) u =
y

(1 − z)/(α − z) − y
,

we find that

(4.50) h(z) = −
∫ 1

0

yγ−1 dy

(1 − z)/(α − z) − y
,

and expanding the integrand in powers of z we obtain h(z) =
∑∞

k=0 akz
k with

ak = (1 − α)

∫ 1

0

(1 − y)k−1

(1 − αy)k+1
yγ−1 dy

=
γ − 1

k

∫ 1

0

(

1 − y

1 − αy

)k

yγ−2 dy,(4.51)

for k ≥ 1, where the second equality follows via an integration by parts.

As in the case of constant size, we can express these coefficients in closed form

using special functions, but if we are primarily interested in the form of the tail of the

degree distribution then a more revealing approach is to make a further substitution

y = x/k, giving

(4.52) ak = (γ − 1) k−γ

∫ k

0

(1 − x/k)k

(1 − αx/k)k
xγ−2 dx.

115

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

P
ro

ba
bi

lit
y

P
k

Degree k

Figure 4.3: Degree distribution for a growing network with linear preferential attachment and r = 1

2
,

c = 10. The solid line represents the analytic solution, Eqs. (4.48), and (4.51), for k ≥ c

and the points represent simulation results for systems with final size n = 100 000
vertices.

In the limit of large k this becomes

ak ≃ (γ − 1) k−γ

∫ ∞

0

e−(1−α)xxγ−2 dx

=
Γ(γ)

(1 − α)γ−1
k−γ,(4.53)

and pk = Ac,r ak for k ≥ c as stated above.

Thus the tail of the degree distribution follows a power law with exponent

(4.54) γ =
3 − r

1 − r
.

Note that this exponent diverges as r → 1 so that the power law becomes ever

steeper as the growth rate slows, eventually assuming the stretched exponential form

of Eq. (4.39)—steeper than any power law—in the limit r = 1. In the limit r → 0

we recover the established power-law behavior ak ∼ k−3 for growing graphs with

preferential attachment and no vertex removal [49, 13, 54, 96].

In Fig. 4.3 we show the form of the degree distribution for this model for the

case r = 1
2
, c = 10, along with numerical results from simulations of the model

116

on networks of (final) size n = 100 000 vertices. The power-law behavior is clearly

visible on the logarithmic scales used as a straight line in the tail of the distribution.

Once again the analytic solution and simulations are in excellent agreement.

We note that Sarshar and Roychowdhury [136] and, subsequently, Chung and

Lu [40] and Cooper, Frieze, and Vera [43], independently demonstrated power-law

behavior in the degree distribution of networks in the case r < 1. Their results focus

on the tail of the distribution rather than on exact solutions, but they find the same

dependence of the exponent on the growth rate.

4.4 Discussion

In this chapter we have studied models of the time evolution of networks in which,

in addition to the widely considered case of addition of vertices, we also include vertex

removal. We have given exact solutions for cases in which vertices are added and

removed at the same rate, a potential model for steady-state networks such as peer-

to-peer networks, and cases in which the rate of addition exceeds the rate of removal,

which we regard as a simple model for the growth of, for example, the worldwide

web.

We find very different behaviors in these various cases. For a steady-state network

in which newly added vertices attach to others at random we find a degree distri-

bution, Eqs. (4.18) and (4.19), which is sharply peaked about its maximum and has

a rapidly decaying (Poisson) tail. This distribution is quite unlike the right-skewed

degree distributions found in many real-world networks, but as a possible form for

a “designed” network such as a peer-to-peer network it might be preferable over

skewed forms, being more homogeneous and hence distributing traffic more evenly.

If newly appearing vertices attach to others using a linear preferential attachment

117

mechanism, whereby vertices gain new edges in proportion to the number they al-

ready possess, we find that the degree distribution becomes a stretched exponential,

Eqs. (4.38) and (4.39), a substantially broader distribution than that of the random

attachment case, though still more rapidly decaying than the power laws often seen

in growing networks.

And in the case where the network shows net growth, adding vertices faster than

it loses them, we find that the degree distribution follows a power law, Eqs. (4.51)

and (4.53), with an exponent γ that assumes values in the range 3 ≤ γ < ∞,

diverging as the growth rate tends to zero.

This last result is of interest for a number of reasons. First, it shows that power-law

behavior can be rigorously established in networks that grow but also lose vertices.

Most previous analytic models of network growth have focused solely on vertex ad-

dition. And while the real worldwide web and other networks appear to have degree

distributions that closely follow power laws, these networks also clearly lose vertices

as well as gaining them. The results presented here demonstrate that the widely

studied mechanism of preferential attachment for generating power-law behavior also

works in this regime.

On the other hand, the large values of the exponent γ generated by our model

appear not to be in agreement with the behavior observed in real-world networks,

most of which have exponents in the range from 2 to 3 [6, 52, 108]. There are well-

known mechanisms that can reduce the exponent from 3 to values slightly lower—

specifically the generalization of the preferential attachment model to the case of

a directed network [49, 54], which is in any case a more appropriate model for the

worldwide web. In the limit of low growth rate, however, our model predicts a

diverging exponent and, while the exact value may not be accurate because of a

118

host of complicating factors, it seems likely that the divergence itself is a robust

phenomenon; as other authors have commented, there are good reasons to believe

that net growth is one of the fundamental requirements for the generation of power-

law degree distributions by the kind of mechanisms considered here.

Thus the fact that we do not observe very large exponents in real networks appears

to indicate that most networks are in a regime where growth dominates over vertex

loss by a wide margin. It is possible however that this will not always be the case.

The web, for example, has certainly being enjoying a period of very vigorous growth

since its appearance in the early 1990s, but it could be that this is a sign primarily of

its youth, and that as the network matures its size will grow more slowly, the vertices

added being more nearly balanced by those taken away. Were this to happen, we

would expect to see the exponent of the degree distribution grow larger. A sufficiently

large exponent would make the distribution indistinguishable experimentally from

an exponential or stretched exponential distribution, although we do not realistically

anticipate seeing behavior of this type any time in the near future.

CHAPTER V

Network growth models II: Design and generation of

networks with desired properties

5.1 Introduction

In the previous chapter, we proposed and examined a model for a network that

evolved via the addition/deletion of nodes and edges using a variety of schemes. Here

we will use the insight that the model afforded us—particularly our first example

solution in Sec. 4.3.1—to use it for a practical application.

Driven by the fact that degrees of vertices have a strong effect on the overall

behavior of a network, a large amount of effort has been devoted to the study of

degree distributions, their measurement and the formulations of theories to explain

how they take their observed forms, and models of the effect of particular degree

distributions on dynamical processes on networks, network resilience, percolation

and many other phenomena—indeed much of the material of the preceding chapters

has dealt with precisely these matters. Such studies are appropriate for “naturally

occurring” networks, whose structure evolves under rules not directly under our

control. Representative examples are the Internet, World Wide Web and a majority

of social networks, which though man-made are distributed in nature, in the sense

that their evolution is not governed by a central authority.

There is a different class of networks, mostly infrastructure related, such as the

119

120

transportation and power grids, communication networks such as telephone networks,

that are designed by a centrally controlled authority. For these networks, it is worth-

while to determine if one can design a structure that optimizes some desired property.

For instance, Paul et al. [124] have considered how the structure of a network should

be chosen to optimize the network’s robustness to deletion of its vertices.

Finally, there are a relatively new class of networks that falls in between these

two types, the best known example being peer-to-peer file-sharing networks. These

networks grow in a collaborative, distributed fashion so that although we have no

direct influence over their structure, we can manipulate some of the rules by which

they form, giving us a limited but potentially useful influence over their properties.

A peer-to-peer filesharing network is a virtual network of linked computers that share

data among themselves. The network is formed by a dynamical process under which

individual computers continually join or leave the network, and the rules of joining

and leaving can be manipulated to some extent by changing the behavior of the

software governing computers’ behaviors. It is well established that the structure

of peer-to-peer networks can have a strong effect on their performance [3, 135] but

to a large extent that structure has in the past been regarded as an experimentally

determined quantity [79]. Here we consider ways in which the structure can be

manipulated by changing the behavior of individual nodes so as to optimize network

performance.

5.2 Growing networks with desired properties

In this chapter we focus primarily on creating networks with desired degree dis-

tributions. There are two basic problems we need to address if we want to create a

network with a specific degree distribution solely by manipulating the rules by which

121

vertices enter and leave the network. First, we need to find rules that will achieve the

desired result, and second, we need to find a practical mechanism that implements

those rules and operates in reasonable time. We deal with these questions in order.

Our approach to growing a network with a desired degree distribution is based on

the idea of the attachment kernel πk discussed in Sec. 4.2. We assume that vertices

join our network at intervals and that when they do so they form connections—

edges—to some number of other vertices in the network. By designing the software

appropriately, we can in a peer-to-peer network choose the number of edges a newly

joining vertex makes and also, as we will shortly show, some crucial aspects of which

other vertices those edges connect to. It is the attachment kernel that we will ma-

nipulate to produce a desired degree distribution.

In a peer-to-peer network users may exit the network whenever they want and

we as designers have little control over this aspect of the network dynamics. We will

assume in the calculations that follow that vertices simply vanish at random. We

will also assume that, on the typical time-scales over which people enter and leave

the network, the total size n of the network does not change substantially, so that the

rates at which vertices enter and leave are roughly equal. For simplicity let us say

that exactly one vertex enters the network and one leaves per unit time (although

the results presented here are in fact still valid even if only the probabilities per unit

time of addition and deletion of vertices are equal and not the rates).

Now let us chose the initial degrees of vertices when they join the network, i.e., the

number of connections that they form upon entering, at random from some distribu-

tion rk. Building on our previous results in Sec. 4.2.1, we observe that the evolution

of the degree distribution of our network can be described by a rate equation as fol-

lows. The number of vertices with degree k at a particular time is npk. One unit of

122

time later we have added one vertex and taken away one vertex, so that the number

with degree k becomes

(5.1) np′k = npk + cπk−1pk−1 − cπkpk + (k + 1)pk+1 − kpk − pk + rk,

with the convention that p−1 = 0, and c =
∑∞

k=0 krk, which is the average degree

of vertices added to the network. The terms cπk−1pk−1 and −cπkpk in Eq. (5.1)

represent the flow of vertices with degree k−1 to k and k to k+1, as they gain extra

edges with the addition of new vertices. The terms (k + 1)pk+1 and −kpk represent

the flow of vertices with degree k+1 and k to k and k−1, as they lose edges with the

removal of neighboring vertices. The term −pk represents the probability of removal

of a vertex of degree k and the term rk represents the addition of a new vertex with

degree k to the network.

As before, we assume pk has an asymptotic form in the limit of large time, and

set p′k = pk:

(5.2) cπk−1pk−1 − cπkpk + (k + 1)pk+1 − kpk − pk + rk = 0.

Defining the standard generating functions for the degree distribution as well as for

the degrees of vertices added and for the attachment kernel,

G0(z) =

∞
∑

k=0

pkz
k,(5.3)

H0(z) =

∞
∑

k=0

rkz
k,(5.4)

F0(z) =

∞
∑

k=0

πkpkz
k,(5.5)

and multiplying both sides of (5.2) by zk and summing over k, we then find that the

generating functions satisfy the differential equation

(5.6) (1 − z)
dG0

dz
− G0(z) − c(1 − z)F0(z) + H0(z) = 0.

123

We are interested in creating a network with a given degree distribution, i.e., with a

given G0(z). Rearranging (5.6), we find that the choice of attachment kernel πk that

achieves this is such that

(5.7) F0(z) =
1

c

[

dG0

dz
+

H0(z) − G0(z)

1 − z

]

.

Taking the limit z → 1, noting that normalization requires that all the generating

functions tend to 1 at z = 1, and applying L’Hopital’s rule, we find

(5.8) 1 =
1

c
[〈k〉 + 〈k〉 − c] ,

where we have made use of the fact that the average degree in the network is 〈k〉 =

G′
0(1) and c = H ′

0(1). Rearranging, we then find that c = 〈k〉. In other words,

solutions to Eq. (5.6) require that the average degree c of vertices added to the

network be equal to the average degree of vertices in the network as a whole. Making

use of this result, we can write Eq. (5.7) in the form

(5.9) F0(z) = G1(z) +
H0(z) − G0(z)

c(1 − z)
,

where G1(z) = G′
0(z)/G′

0(1) =
∑

k qkz
k is the generating function for the excess

degree distribution

(5.10) qk =
(k + 1)pk+1

〈k〉 ,

Now it is straightforward to derive the desired attachment kernel. Noting that

(5.11)
1

1 − z
=

∞
∑

k=0

zk,

we can simply read off the coefficient of zk on either side of Eq. (5.9), to give

(5.12) πkpk = qk +
1

c

k
∑

m=0

(rm − pm),

124

or equivalently

(5.13) πk =
1

cpk

[

(k + 1)pk+1 + Pk+1 − Rk+1

]

,

where Pk is the cumulative distribution of vertex degrees and Rk is the cumulative

distribution of added degrees:

(5.14) Pk =
∞

∑

m=k

pm, Rk =
∞

∑

m=k

rm.

Since we are at liberty to choose both rk and πk, we have many options for

satisfying Eq. (5.13); given (almost) any choice of the distribution rk of the degrees

of added vertices, we can find the corresponding πk that will give the desired final

degree distribution of the network. One simple choice would be to make the degree

distribution of the added vertices the same as the desired degree distribution, so that

Rk = Pk. Then

(5.15) πk =
qk

pk
=

(k + 1)pk+1

cpk
.

In other words, if we have some desired degree distribution pk for our network, one

way to achieve it is to add vertices with exactly that degree distribution and then

arrange the attachment process so that the degree distribution remains preserved

thereafter, even as vertices and edges are added to and removed from the network.

Equation (5.15) tells us the choice of attachment kernel that will achieve this. Equa-

tion (5.15) will work for essentially any choice of degree distribution pk, except choices

for which pk = 0 and pk+1 > 0 for some k. In the latter case Eq. (5.15) will diverge

for some value(s) of k.

5.2.1 Example: power-law degree distribution

As an example, consider the creation of a network with a power-law degree distri-

bution. Adamic et al. [3] have shown that search processes on peer-to-peer networks

125

with power-law degree distributions are particularly efficient, so there are reasons

why one might want to generate such a network.

Let us choose

(5.16) pk =

Ck−γ for k ≥ 1,

p0 for k = 0,

where γ and p0 are constants and the normalizing factor C is given by

(5.17) C =
1 − p0

ζ(γ)
,

where ζ(γ) is the Riemann zeta-function [1]. Then the mean degree is

(5.18) 〈k〉 = c = (1 − p0)
ζ(γ − 1)

ζ(γ)
,

and Eq. (5.15) tells us that the correct choice of attachment kernel in this case is

(5.19) πk =
1

1 − p0

ζ(γ)

ζ(γ − 1)

kγ

(k + 1)γ−1
,

for k ≥ 1 and

(5.20) π0 =
1

p0ζ(γ − 1)
.

It is interesting to note that as k becomes large, this attachment kernel goes as

πk ∼ k, the so-called (linear) preferential attachment form in which vertices connect

to others in simple proportion to their current degree. In growing networks this

form is known to give rise, asymptotically, to a power-law degree distribution—

see Chap. IV. It is important to understand, however, that in the present case the

network is not growing and hence, despite the apparent similarity, this is not the same

result. Indeed, it is known that for non-growing networks, purely linear preferential

attachment does not produce power-law degree distributions [136, 43], but instead

126

generates stretched exponential distributions [103]. Thus it is somewhat surprising

to observe that one can, nonetheless, create a power-law degree distribution in a non-

growing network using an attachment kernel that seems, superficially, quite close to

the linear form.

Sarshar and Roychowdhury [136] showed previously that it is possible to generate

a non-growing power-law network by using linear preferential attachment and then

compensating for the expected loss of power-law behavior by rewiring the connec-

tions of some vertices after their addition to the network. Our results indicate that,

although this process will certainly work, it is not necessary: a slight modification

to the preferential attachment process will achieve the same goal and frees us from

the need to rewire any edges.

Note also that (5.19) is not the only solution of Eq. (5.13) that will generate a

power-law distribution. If we choose a different (e.g., non-power-law) distribution

for the vertices added to the network, we can still generate an overall power-law

distribution by choosing the attachment kernel to satisfy Eq. (5.13). Suppose, for

instance, that, rather than adding vertices with a power-law degree distribution, we

prefer to give them a Poisson distribution with mean c:

(5.21) rk = e−c ck

k!
.

In this case Rk = 1 − Γ(k, c)/Γ(k), where Γ(k) is the standard gamma function and

Γ(k, c) is the incomplete gamma function. Then the power law is correctly generated

by the choice

πk =
1

1 − p0

ζ(γ)

ζ(γ − 1)
kγ

×
[

(k + 1)−γ+1 + ζ(γ, k + 1) − ζ(γ)

1 − p0

(

1 − Γ(k + 1, c)

Γ(k + 1)

)]

,(5.22)

127

for k ≥ 1, where ζ(γ, x) is the generalized zeta function ζ(γ, x) =
∑∞

k=0(k + x)−γ

and for k = 0,

(5.23) π0 =
1

p0ζ(γ − 1)

[

1 +
e−c − p0

1 − p0
ζ(γ)

]

.

5.3 A practical implementation

In theory, we should be able use the ideas of the previous section to grow a network

with a desired degree distribution. This does not, however, yet mean we can do so

in practice. To make our scheme a practical reality, we still need to devise a realistic

way to place edges between vertices with the desired attachment kernel πk. If each

vertex entering the network knew the identities and degrees of all other vertices, this

would be easy: we would simply select a degree k at random in proportion to πkpk,

and then attach our new edge to a vertex chosen uniformly at random from those

having that degree.

In the real world, however, and particularly in peer-to-peer networks, no vertex

“knows” the identity of all others. Typically, computers only know the identities

(such as IP addresses) of their immediate network neighbors. To get around this

problem, we propose the following scheme, which makes use of biased random walks.

A random walk, in this context, is a succession of steps along edges in our network

where at each vertex i we choose to step next to a vertex chosen at random from the

set of neighbors of i. In the context of a peer-to-peer computer network, for example,

such a walk can be implemented by message passing between peers. The “walker”

is a message or data packet that is passed from computer to neighboring computer,

with each computer making random choices about which neighbor to pass to next.

Starting a walk from any vertex in the network, we can sample vertices by al-

lowing the walk to take some fixed number of steps and then choosing the vertex

128

that it lands upon on its final step. We will consider random walks in which the

choice of which step to make at each vertex is deliberately biased to create a de-

sired probability distribution for the sample as follows. The use of random walks in

this way has been considered previously by Gkantsidis et al. [67], who found that in

certain circumstances random walks can provide an efficient mechanism for growing

appropriately structured networks. They however, considered only unbiased walks,

which limits the range of possible outcomes. In our work, by contrast, we consider

walks in which the choice of which step to make at each vertex is deliberately biased

to create a desired probability distribution for the sample as follows.

Consider a walk in which a walker at vertex j chooses uniformly at random one

of the kj neighbors of that vertex. Let us call this neighbor i. Then the walk takes

a step to vertex i with some acceptance probability Pij. The total probability Tij of

a transition from j to i given that we are currently at j is

(5.24) Tij =
Aij

kj
Pij,

where kj is the degree of vertex j and Aij is an element of the adjacency matrix:

(5.25) Aij =

1 if there is an edge joining vertices i, j,

0 otherwise.

If the step is not accepted, then the random walker remains at vertex j for the current

step.

This random walk constitutes an ordinary Markov process, which converges to

a distribution pi over vertices provided the network is connected (i.e., consists of a

single component) and provided Tij satisfies the detailed balance condition

(5.26) Tijpj = Tjipi.

129

In the present case we wish to select vertices in proportion to the attachment

kernel πk. Setting pi = πki
, this implies that Tij should satisfy

(5.27)
Tij

Tji

=
pi

pj

=
πki

πkj

.

Or, making use of Eqs. (5.15) and (5.24) for the case where rk = pk, we find

(5.28)
Pij

Pji
=

(ki + 1)pki+1

kipki

kjpkj

(kj + 1)pkj+1
=

qki
qkj−1

qkj
qki−1

,

where qk is again the excess degree distribution, Eq. (5.10).

In practice, we can satisfy this equation by making the standard Metropolis-

Hastings choice [114] for the acceptance probability:

(5.29) Pij =

qki
qkj−1/qkj

qki−1 if qki
/qki−1 < qkj

/qkj−1,

1 otherwise.

Thus the calculation of the acceptance probability requires only that each vertex

know the degrees of its neighboring vertices, which can be established by a brief

exchange of data when the need arises.

As an example, suppose we wish to generate a network with a Poisson degree

distribution

(5.30) pk = e−µ µk

k!
,

where µ is the mean of the Poisson distribution. Then we find that the appropriate

choice of acceptance ratio is

(5.31) Pij =

kj/ki if ki > kj ,

1 otherwise.

(As discussed above, we must also make sure to choose the mean degree c of vertices

added to the network to be equal to µ.)

130

Our proposed method for creating a network is thus as follows. Each newly

joining vertex i first chooses a degree k for itself, which is drawn from the desired

distribution pk. It must also locate one single other vertex j in the network. It might

do this for instance using a list of known previous members of the network or a

standardized list of permanent network members. Vertex j is probably not selected

randomly from the network, so it is not chosen as a neighbor of i. Instead, we use

it as the starting point for a set of k biased random walkers of the type described

above. Each walker consists of a message, which starts at j and propagates through

the network by being passed from computer to neighboring computer. The message

contains (at a minimum) the address of the computer at vertex i as well as a counter

that is updated by each computer to record the number of steps the walker has taken.

(Bear in mind that steps on which the walker doesn’t move, because the proposed

move was rejected, are still counted as steps.) The computer that the walker reaches

on its t’th step, where t is a fixed but generous constant chosen to allow enough time

for mixing of the walk, establishes a new network edge between itself and vertex i

and the walker is then deleted. When all k walkers have terminated in this way,

vertex i has k new neighbors in the network, chosen in proportion to the correct

attachment kernel πk for the desired distribution. After a suitable interval of time,

this process will result in a network that has the chosen degree distribution pk, but

is otherwise random.

As a test of this method, we have performed simulations of the growth of a network

with a Poisson degree distribution as in Eq. (5.31). Starting from a random graph of

the desired size n, we randomly add and remove vertices according to the prescription

given above. Figure 5.1 shows the resulting degree distribution for the case µ = 10,

along with the expected Poisson distribution. As the figure shows, the agreement

131

10-6

10-5

10-4

10-3

10-2

10-1

100

 1 10 100

P
ro

ba
bi

lit
y

P
k

Degree k

Figure 5.1: The degree distribution for a network of n = 50 000 vertices generated using the biased
random walk mechanism described in the text with µ = 10. The points represent the
results of our simulations and the solid line is the target distribution, Eq. (5.30).

between the two is excellent.

5.4 Example application

As an example of the application of these ideas we consider peer-to-peer net-

works. Bandwidth restrictions and search times place substantial constraints on the

performance of peer-to-peer networks, and the methods of the previous sections can

be used to nudge networks towards a structure that improves their performance in

these respects. More sophisticated applications are certainly possible, but the one

presented here offers an indication of the kinds of possibilities open to us.

5.4.1 Definition of the problem

Consider a distributed database consisting of a set of computers each of which

holds some data items. Copies of the same item can exist on more than one com-

puter, which would make searching easier, but we will not assume this to be the

case. Computers are connected together in a “virtual network,” meaning that each

132

computer is designated as a “neighbor” of some number of other computers. These

connections between computers are purely notional: every computer can commu-

nicate with every other directly over the Internet or other physical network. The

virtual network is used only to limit the amount of information that computers have

to keep about their peers.

Each computer maintains a directory of the data items held by its network neigh-

bors, but not by any other computers in the network. Searches for items are per-

formed by passing a request for a particular item from computer to computer until

it reaches one in whose directory that item appears, meaning that one of that com-

puter’s neighbors holds the item. The identity of the computer holding the item is

then transmitted back to the origin of the search and the origin and target comput-

ers communicate directly thereafter to negotiate the transfer of the item. This basic

model is essentially the same as that used by other authors [3] as well as by many

actual peer-to-peer networks in the real world. Note that it achieves efficiency by

the use of relatively large directories at each vertex of the network, which inevitably

use up memory resources on the computers. However, with standard hash-coding

techniques and for databases of the typical sizes encountered in practical situations

(thousands or millions of items) the amounts of memory involved are quite modest

by modern standards.

5.4.2 Search time and bandwidth

The two metrics of search performance that we consider in this example are search

time and bandwidth, both of which should be low for a good search algorithm. We

define the search time to be the number of steps taken by a propagating search query

before the desired target item is found. We define the bandwidth for a vertex as the

average number of queries that pass through that vertex per unit time. Bandwidth

133

is a measure of the actual communications bandwidth that vertices must expend to

keep the network as a whole running smoothly, but it is also a rough measure of the

CPU time they must devote to searches. Since these are limited resources it is crucial

that we not allow the bandwidth to grow too quickly as vertices are added to the

network, otherwise the size of the network will be constrained, a severe disadvantage

for networks that can in some cases swell to encompass a significant fraction of all

the computers on the planet. (In some early peer-to-peer networks, issues such as

this did indeed place impractical limits on network size [127, 128].)

Assuming that the average behavior of a user of the database remains essentially

the same as the network gets larger, the number of queries launched per unit time

should increase linearly with the size of the network, which in turn suggests that

the bandwidth per vertex might also increase with network size, which would be a

bad thing. As we will show, however, it is possible to avoid this by designing the

topology of the network appropriately.

5.4.3 Search strategies and search time

In order to treat the search problem quantitatively, we need to define a search

strategy or algorithm. Here we consider a very simple—even brainless—strategy,

again employing the idea of a random walk. This random walk search is certainly

not the most efficient strategy possible, but it has two significant advantages for our

purposes. First, it is simple enough to allow us to carry out analytic calculations

of its performance. Second, as we will show, even this basic strategy can be made

to work very well. Our results constitute an existence proof that good performance

is achievable: searches are necessarily possible that are at least as good as those

analyzed here.

The definition of our random walk search is simple: the vertex i originating a

134

search sends a query for the item it wishes to find to one of its neighbors j, chosen

uniformly at random. If that item exists in the neighbor’s directory the identity of

the computer holding the item is transmitted to the originating vertex and the search

ends. If not, then j passes the query to one of its neighbors chosen at random, and

so forth. (One obvious improvement to the algorithm already suggests itself: that j

not pass the query back to i again. As we have said, however, our goal is simplicity

and we will allow such “backtracking” in the interests of simplifying the analysis.)

We can study the behavior of this random walk search by a method similar to the

one we employed for the analysis of the biased random walks of Section 5.3. Let pi

be the probability that our random walker is at vertex i at a particular time. Then

the probability p′i of its being at i one step later, assuming the target item has not

been found, is

(5.32) p′i =
∑

j

Aij

kj
pj,

where kj is the degree of vertex j and Aij is an element of the adjacency matrix,

Eq. (5.25). Under the same conditions as before the probability distribution over

vertices then tends to the fixed point of (5.32), which is at

(5.33) pi =
ki

2m
,

where m is the total number of edges in the network. That is, the random walk visits

vertices with probability proportional to their degrees. (An alternative statement of

the same result is that the random walk visits edges uniformly.)

When our random walker arrives at a previously unvisited vertex of degree ki, it

“learns” from that vertex’s directory about the items held by all immediate neighbors

of the vertex, of which there are ki − 1 excluding the vertex we arrived from (whose

items by definition we already know about). Thus at every step the walker gathers

135

more information about the network. The average number of vertices it learns about

upon making a single step is
∑

i pi(ki − 1), with pi given by (5.33), and hence the

total number it learns about after τ steps is

(5.34)
τ

2m

∑

i

ki(ki − 1) = τ

[〈k2〉
〈k〉 − 1

]

,

where 〈k〉 and 〈k2〉 represent the mean and mean-square degrees in the network and

we have made use of 2m = n〈k〉. (There is in theory a correction to this result because

the random walker is allowed to backtrack and visit vertices visited previously. For

a well-mixed walk, however, this correction is of order 1/〈k〉, which, as we will see,

is negligible for the networks we will be considering.)

How long will it take our walker to find the desired target item? That depends

on how many instances of the target exist in the network. In many cases of practical

interest, copies of items exist on a fixed fraction of the vertices in the network, which

makes for quite an easy search. We will not however assume this to be the case here.

Instead we will consider the much harder problem in which copies of the target item

exist on only a fixed number of vertices, where that number could potentially be

just 1. In this case, the walker will need to learn about the contents of O(n) vertices

in order to find the target and hence the average time to find the target is given by

(5.35) τ

[〈k2〉
〈k〉 − 1

]

= An,

for some constant A, or equivalently,

(5.36) τ = A
n

〈k2〉/〈k〉 − 1
.

This equation is related to previous results by Broder et al.. [29], who showed that

the number of steps required for a random walker to visit a fixed fraction of vertices

in a network can be expressed in terms of the second eigenvalue of the transition

matrix for the walk.

136

Consider, for instance, a network with a power-law degree distribution of the form,

pk = Ck−γ, where γ is a positive exponent and C is a normalizing constant chosen

such that
∑∞

k=0 pk = 1. Real-world networks usually exhibit power-law behavior only

over a certain range of degree. Taking the minimum of this range to be k = 1 and

denoting the maximum by kmax, we have

(5.37)
〈k2〉
〈k〉 ∼ −k3−γ

max − 1

k2−γ
max − 1

.

Typical values of the exponent γ fall in the range 2 < γ < 3, so that k2−γ
max is small for

large kmax and can be ignored. On the other hand, k3−γ
max becomes large in the same

limit and hence 〈k2〉/〈k〉 ∼ k3−γ
max and

(5.38) τ ∼ nkγ−3
max.

The scaling of the search time with system size n thus depends, in this case, on the

scaling of the maximum degree kmax.

As an example, Aiello et al. [4] studied power-law degree distributions with a

cut-off of the form kmax ∼ n1/γ , which gives

(5.39) τ ∼ n2−3/γ .

A similar result was obtained previously by Adamic et al. [3] using different methods.

5.4.4 Bandwidth

Bandwidth is the mean number of queries reaching a given vertex per unit time.

Equation (5.33) tells us that the probability that a particular current query reaches

vertex i at a particular time is ki/2m, and assuming as discussed above that the

number of queries initiated per unit time is proportional to the total number of

vertices, the bandwidth for vertex i is

(5.40) Bn
ki

2m
= B

ki

〈k〉 ,

137

where B is another constant.

This implies that high-degree vertices will be overloaded by comparison with low-

degree ones so that, despite their good performance in terms of search times, networks

with power-law or other highly right-skewed degree distributions may be undesirable

in terms of bandwidth, with bottlenecks forming around the vertices of highest degree

that could harm the performance of the entire network. If we wish to distribute load

more evenly among the computers in our network, a network with a tightly peaked

degree distribution is desirable.

5.4.5 Choice of network

A simple and attractive choice for our network is the Poisson distributed network

of Section 5.3. For a Poisson degree distribution with mean µ we have 〈k〉 = µ and

〈k2〉 = µ2 + µ. Then, using Eq. (5.36), the average search time is

(5.41) τ = A
n

µ
.

As we have seen, a network of this type can be realized in practice with a biased-

random-walker attachment mechanism of the kind described in Section 5.3.

Now if we allow µ to grow as some power of the size of the entire network, µ ∼ nα

with 0 ≤ α ≤ 1, then τ ∼ n1−α. For smaller values of α, searches will take longer,

but vertices’ degrees are lower on average meaning that each vertex will have to

devote less memory resources to maintaining its directory. Conversely, for larger α,

searches will be completed more quickly at the expense of greater memory usage. In

the limiting case α = 1, searches are completed in constant time, independent of the

network size, despite the simple-minded nature of the random walk search algorithm.

The price we pay for this good performance is that the network becomes dense,

having a number of edges scaling as n1+α. It is important to bear in mind, however,

138

that this is a virtual network, in which the edges are a purely notional construct whose

creation and maintenance carries essentially zero cost. There is a cost associated with

the directories maintained by vertices, which for α = 1 will contain information on

the items held by a fixed fraction of all the vertices in the network. For instance,

each vertex might be required to maintain a directory of 1% of all items in the

network. Because of the nature of modern computer technology, however, we don’t

expect this to create a significant problem. User time (for performing searches) and

CPU time and bandwidth are scarce resources that must be carefully conserved, but

memory space on hard disks is cheap, and the tens or even hundreds of megabytes

needed to maintain a directory is considered in most cases to be a small investment.

By making the choice α = 1 we can trade cheap memory resources for essentially

optimal behavior in terms of search time and this is normally a good deal for the

user.

We note also that the search process is naturally parallelizable: there is nothing

to stop the vertex originating a search from sending out several independent random

walkers and the expected time to complete the search will be reduced by a factor of

the number of walkers. Alternatively, we could reduce the degrees of all vertices in

the network by a constant factor and increase the number of walkers by the same

factor, which would keep the average search time constant while reducing the sizes

of the directories substantially, at the cost of increasing the average bandwidth load

on each vertex.

As a test of our proposed search scheme, we have performed simulations of the

procedure on Poisson networks generated using the random-walker method of Sec-

tion 5.3. Figure 5.2 shows as a function of network size the average time τ taken by

a random walker to find an item placed at a single randomly chosen vertex in the

139

 90

 100

 110

 120

 130

 140

 150

 160

 170

 0 5000 10000 15000 20000

 T
im

e
τ

Network size n

Figure 5.2: The time τ for the random walk search to find an item deposited at a random vertex,
as a function of the number of vertices n.

network. As we can see, the value of τ does indeed tend to a constant (about 100

steps in this case) as network size becomes large.

We should also point out that for small values of µ vertices with degree zero could

cause a problem. A vertex that loses all of its edges because its neighbors have all left

the network can no longer be reached by our random walkers, and hence no vertices

can attach to them and our attachment scheme breaks down. However, in the case

considered here, where µ becomes large, the number of such vertices is exponentially

small, and hence they can be neglected without substantial deleterious effects. Any

vertex that does find itself entirely disconnected from the network can simply rejoin

by the standard mechanism.

5.4.6 Item frequency distribution

In most cases, the search problem posed above is not a realistic representation

of typical search problems encountered in peer-to-peer networks. In real networks,

copies of items often occur in many places in the network. Let s be the number of

140

times a particular item occurs in the network and let ps be the probability distribution

of s over the network, i.e., ps is the fraction of items that exist in s copies.

If the item we are searching for exists in s copies, then Eq. (5.41) becomes

(5.42) τs = A
n

µs
,

since the chance of finding a copy of the desired item is multiplied by s on each step

of the random walk. On the other hand, it is likely that the frequency of searches for

items is not uniformly distributed: more popular items, that is those with higher s,

are likely to be searched for more often than less popular ones. For the purposes of

illustration, let us make the simple assumption that the frequency of searches for a

particular item is proportional to the item’s popularity. Then the average time taken

by a search is

(5.43) 〈τ〉 =

∑∞
s=1 spsτs

∑∞
s=1 sps

= A
n

µ〈s〉 ,

where we have made use of
∑

s ps = 1 and
∑

s sps = 〈s〉.

One possibility is that the total number of copies of items in the network increases

in proportion to the number of vertices, but that the number of distinct items remains

roughly the same, so that the average number of copies of a particular item increases

as 〈s〉 ∼ n. In this case, 〈τ〉 becomes independent of n even when µ is constant, since

we have to search only a constant number of vertices, not a constant fraction, to find

a desired item. Perhaps a more realistic possibility is that the number of distinct

items increases with network size, but does so slower than n, in which case one can

achieve constant search times with a mean degree µ that also increases slower than n,

so that directory sizes measured as a fraction of the network size dwindle.

An alternative scenario is one of items with a power-law frequency distribu-

tion ps ∼ s−δ. This case describes, for example, most forms of mass art or culture

141

including books and recordings, emails and other messages circulating on the Inter-

net, and many others [109]. The mean time to perform a search in the network then

depends on the value of the exponent δ. In many cases we have δ > 2, which means

that 〈s〉 is finite and well-behaved as the database becomes large, and hence 〈τ〉,

Eq. (5.43), differs from Eq. (5.41) by only a constant factor. (That factor may be

quite large, making a significant practical difference to the waiting time for searches

to complete, but the scaling with system size is unchanged.) If δ < 2, however, then

〈s〉 becomes ill-defined, having a formally divergent value, so that 〈τ〉 → 0 as system

size becomes large. Physically, this represents the case in which most searches are

for the most commonly occurring items, and those items occur so commonly that

most searches terminate very quickly.

While this extra speed is a desirable feature of the search process, it’s worth noting

that average search time may not be the most important metric of performance for

users of the network. In many situations, worst-case search time is a better measure

of the ability of the search algorithm to meet users’ demands. Assuming that the

most infrequently occurring items in the network occur only once, or only a fixed

number of times, the worst-case performance will still be given by Eq. (5.41).

5.4.7 Estimating network size

One further detail remains to be considered. If we want to make the mean degree µ

of vertices added to the network proportional to the size n of the entire network, or

to some power of n, we need to know n, which presents a challenge since, as we have

said, we do not expect any vertex to know the identity of all or even most of the other

the vertices. This problem can be solved using a breadth-first search, which can be

implemented once again by message passing across the network. One vertex i chosen

at random (or more realistically every vertex, at random but stochastically constant

142

intervals proportional to system size) sends messages to some number d of randomly

chosen neighbors. The message contains the address of vertex i, a unique identifier

string, and a counter whose initial value is zero. Each receiving vertex increases the

counter by 1, passes the message on to one of its neighbors, and also sends messages

with the same address, identifier, and with counter zero to d − 1 other neighbors.

Any vertex receiving a message with an identifier it has seen previously sends the

value of the counter contained in that message back to vertex i, but does not forward

the message to any further vertices. If vertex i adds together all of the counter values

it receives, the total will equal the number of vertices (other than itself) in the entire

network. This number can then be broadcast to every other vertex in the network

using a similar breadth-first search (or perhaps as a part of the next such search

instigated by vertex i.)

The advantage of this process is that it has a total bandwidth cost (total number

of messages sent) equal to dn. For constant d therefore, the cost per vertex is

a constant and hence the process will scale to arbitrarily large networks without

consuming bandwidth. The (worst-case) time taken by the process depends on the

longest geodesic path between any two vertices in the network, which is O(log n).

Although not as good as O(1), this still allows the network to scale to exponentially

large sizes before the time needed to measure network size becomes an issue, and

it seems likely that directory size (which scales linearly with or as a power of n

depending on the precise algorithm) will become a limiting factor long before this

happens.

143

5.5 Discussion

In this chapter, we have considered the problem of designing networks indirectly

by manipulating the rules by which they evolve. For certain types of networks, such

as peer-to-peer networks, the limited control that this manipulation gives us over

network structure, such as the ability to impose an arbitrary degree distribution of

our choosing on the network, may be sufficient to generate significant improvements

in network performance. Using generating function methods, we have shown that

it is possible to impose a (nearly) arbitrary degree distribution on a network by

appropriate choice of the “attachment kernel” that governs how newly added vertices

connect to the network. Furthermore, we have described a scheme based on biased

random walks whereby arbitrary attachment kernels can be implemented in practice.

We have also considered what particular choices of degree distribution offer the

best performance in idealized networks under simple assumptions about search strate-

gies and bandwidth constraints. We have given general formulas for search times and

bandwidth usage per vertex and studied in detail one particularly simple case of a

Poisson network that can be realized in straightforward fashion using our biased

random walker scheme, allows us to perform decentralized searches in constant time,

and makes only constant bandwidth demands per vertex, even in the limit where the

database becomes arbitrarily large. No part of the scheme requires any centralized

knowledge of the network, making the network a true peer-to-peer network, in the

sense of having client nodes only and no servers.

One important issue that we have neglected in our discussion is that of “supern-

odes” in the network. Because the speed of previous search strategies has been

recognized as a serious problem for peer-to-peer networks, designers of some net-

144

works have chosen to designate a subset of network vertices (typically those with

above-average bandwidth and CPU resources) as supernodes. These supernodes are

themselves connected together into a network over which all search activity takes

place. Other client vertices then query this network when they want a search per-

formed. Since the size of the supernode network is considerably less than the size of

the network as a whole, this tactic increases the speed of searches, albeit only by a

constant factor, at the expense of heavier load on the supernode machines. It would

be elementary to generalize our approach to incorporate supernodes. One would

simply give each supernode a directory of the data items stored by the client vertices

of its supernode neighbors. Then searches would take place exactly as before, but on

the supernode network alone, and client vertices would query the supernode network

to perform searches. In all other respects the mechanisms would remain the same.

CHAPTER VI

The Diplomats Dilemma: A Game theory model of Social

Networks

6.1 Introduction

We now come to the final topic of the dissertation. The material covered so far,

has primarily dealt with using mathematical methods to try and explain the observed

properties (both structural and dynamic) of real networks.

Here, we switch gears and instead use computer modeling to simulate dynamical

processes in networks. In particular, we study in detail an example of what is referred

to as an adaptive network. In adaptive networks, there is a direct link between the

structure as well as function, in the sense that one is directly dependent on the other

and vice-versa. The system that we study has been inspired by a rather common

situation in society. As motivation consider the following.

In many walks of life, particularly in situations involving conflict or competition,

it is a goal of individuals to aspire to a position of power or influence. Moreover, once

these individuals have attained this goal, it is reasonable to suppose that they will try

and expend a considerable amount of effort to stay in that position of influence. A

good example of this is provided by a network of diplomats or political lobbyists, who

as we know seek to make connections to important folks, such that they can lobby

for the interests they serve. Now, at this point we must come up with a reasonable

145

146

definition of what we mean by “power” or “influence” and as it turns out, we are not

the first to ask this question. Over the past century many sociologists have tried to

define this concept, and although there are varied suggestions, most agree that it not

an intrinsic property of an individual or actor1, but rather a result of interactions

between people. One well-known definition by the German polymath Max Weber,

reads [150]:

‘Power’ is the probability that one actor within a social relationship will

be in position to carry out his own will despite resistance, regardless of the

basis on which this probability rests.

Definitions like this suggest that there is a link between the power of an actor

and its position in a network of social relationships. It seems reasonable, then, that

if we were to study the dynamics of a a social network, we should be able to say

something about the power of the agents, or indeed, their efficacy in exercising that

privilege. Consequently, a major theme in the study of social networks has been to

discern the power structures in organizations based on the contact patterns of their

members [92]. In a network of actors, coupled pairwise by their social ties, one idea

of measuring, or defining power is to say that an actor that is closer to others has

greater influence than a more peripheral one [133]. Closeness in this context, refers

to the distance between two individuals in a network. So for example, immediate

neighbors are one’s closest friends, friends of friends are the next closest, and so

on. One way to measure this definition of friendship or influence is to employ the

closeness centrality that we defined in Sec. 1.4.5.

Naively then, one way to achieve a degree of primacy in a social network would

be to position oneself as close to everyone else as possible, i.e. to have a social tie

1A person, or other well-defined social unit. In the context of our model we will use the term agent.

147

to each one of the network’s actors. However in practical terms, establishing and

maintaining a social tie requires an individual to invest a significant amount of effort

in terms of time and other resources. To have a direct tie to an extensive fraction

of the network is thus neither feasible, nor desirable. We call this situation of two

competing interests—to maximize power (in terms of being central), while at the

same time keeping the number of social ties to a minimum—the diplomat’s dilemma.

Traditionally problems of this type have been studied under the aegis of game

theory. Roughly speaking, game theory is a branch of applied mathematics that

attempts to capture the behavior in strategic situations where an individual’s suc-

cess depends on his/her performance in relation to the other participants in the

game. Though initially developed [146] to study situations where a participant does

well at the expense of another, so called zero-sum games, it has been expanded to

include many different types of criteria, such as co-operative and non-co-operative

games, symmetric and non-symmetric, simultaneous and sequential, among many

others [14]. The connection between networks and game theory has been precipi-

tated by the increased availability of large-scale data-sets of a diverse nature ranging

from socio-economic data (the traditional subject of scrutiny in game theory) to tech-

nological and biological data. On the one hand this had led to a discovery of new

interactions and processes that can be scrutinized through the lens of game theory;

on the other hand the sheer scale of the data, along with the powerful computational

resources available to researchers nowadays, makes it well suited to be represented

and studied as a network. For an extensive review of research combining aspects of

network analysis and game theory, see the book by Matthew Jackson [82].

Some of the more interesting game-theoretical problems have been inspired by

situations where the agents have conflicting objectives. In, for example, the iterated

148

prisoner’s dilemma [15], agents have to choose between trying to achieve short-term

benefits by exploiting other agents, and trying to optimize their long-term profit

(referred to in the literature as payoff) by building a relationship of mutual trust, but

at the same time making them vulnerable to exploitation. In the spirit of competing

interests, then, a potentially interesting question in the interface between complex

networks and game theory would be: How can agents simultaneously maximize their

centrality and minimize their degree?

In this chapter, we develop and examine a model of adaptive agents that try to

solve this problem as the network evolves [76] in response to their decisions. We

then examine in detail the output of this model, in terms of both the evolution of

the network as well as that of the strategies of the agents. We note that in most

models of a similar nature [72], the performance of the agents is related to some ex-

ogenous traits assigned to the agents. For example, Jackson and Wolinsky [83] have

studied a more general version of this problem, where in addition to a distance mea-

sure between vertices, they consider the value and cost of maintaining connections

between agents, which they define by means of an utility function that keeps track

of a vertex’s performance in the game. However, their main focus is in identifying

stable structures—given the conditions of the game (which are stringent)—that also

lead to efficiency, in the sense of maximizing an individual agent’s utility function.

Our model differs from this approach in that the success of our agents can be mea-

sured only from the topological features of the network rather than some extremal

attribute artificially ascribed to the agents. Moreover, the stable structures they

identify are comparatively trivial—star graphs for example. By defining our analog

of the utility function based only on an agent’s position in the network, we uncover

far richer dynamical and topological variations of the network.

149

6.2 Definition of the Model

6.2.1 Preliminaries

The template for our study is a graph G(t) = {V, E(t)} of n vertices V , and m(t)

edges E(t). The vertex set V is fixed, but the edge set E(t) is allowed to vary (both

in its configuration and size) as a function of time. The vertices represent the agents

in our network, while the edges mark the social ties between them.

Let dij denote the shortest distance (geodesic) between two agents i and j, i.e, the

smallest sequence of adjacent edges connecting them. Then for a connected graph

G—a network where any two pairs of vertices are connected by some path—the

closeness centrality (see Sec. 1.4.5) for a vertex i is defined as:

(6.1) cc(i) =
n − 1

∑

j 6=i dij

,

where n is the number of vertices in the graph. In other words, it is the reciprocal

of the average geodesic distance from a vertex i to all other vertices in the network.

Thus, smaller distances lead to a large centrality measure, whereas larger distances

of O(n) make a negligible contribution.

In order to gauge the success of our agents, we will need some measure or score

function, that takes into account our conflicting objects of high centrality and low

degree. The simplest choice for such a function is cc(i)/ki (where ki represents the

degree of vertex i), since it decreases with the number of ties, and increases with

centrality. However, we do not want to restrict ourselves to connected networks. If

the network is split up into disconnected components, we would like to impose the

condition, that a vertex that belongs to a larger component of the network, has a

larger contribution to its centrality (since a vertex that is connected to a thousand

other vertices is likely to be more central or influential than one connected to just

150

ten). One way of modifying our definition of closeness centrality, such that both

small distances as well as membership in a large component contribute positively, is

to redefine it as:

(6.2) c(i) =
∑

j 6=i

1

dij
.

The number of elements in the sum of Eq. (6.2) is proportional to the number of

vertices of i’s connected component (as vertices that are disconnected have dij = ∞

which makes zero contribution to the sum) and thus large components make a strong

positive contribution. Equation (6.2) measures the average of the reciprocal distance,

rather than the reciprocal of the average distance (as in the original definition of

closeness centrality). This adjusted definition assigns a higher weight on the count

of closer vertices, but nevertheless captures similar features as the traditional version

shown in Eqn. (6.1).

With the definitions established above, we are now in a position to state our score

function:

(6.3) s(i) =

c(i)/ki if ki > 0

0 if ki = 0

,

where the condition for ki = 0 naturally follows, since a vertex with no connections

is not likely to be central to anyone but itself.

Before we move on, we must decide on a choice of network on which to run

our game. For the sake of simplicity, our starting network will be an Erdős-Rényi

network [56] with m0 number of initial edges, where the network is generated by

adding m0 edges one-by-one to n (isolated) vertices such that no multiple or self-edges

are formed (in the context of our model it is unclear what such an edge would mean).

This is just the Gn,m model discussed in the first Chapter, see Sec. 1.5.1. Other

151

Γ2

Figure 6.1: An illustration of the myopia (the restricted knowledge of the network). The agents
are assumed to have knowledge of, and be able to affect the second neighborhood Γ2

(shaded in the figure). Each agent is aware of the centrality and degree of its neighbors
and their accumulated scores. Based on this information the agents can, during a time
step, based on their strategies, decide to delete an edge to a neighbor, and reconnect to
a vertex two steps away.

complicated choices are certainly possible, however as we will see, the dynamical

evolution of the model is sufficiently rich, such that even this simple choice leads to

very striking results.

6.2.2 Moves and Strategies

We have outlined so far the basic setup for the game—the underlying graph rep-

resenting the actors and their social network, and the score function that the agents

want to optimize. However, to go from this point to a sensible simulation scheme,

we need to determine how an agent can update its connections.

To begin with, we will assume that the agents are myopic—they can receive

information from, and affect others in the network, only within a fixed neighborhood.

This assumption is fairly common to much of the studies dealing with social networks

and is probably a fairly accurate assessment of situations in the real world as well (a

physicist working at the physics department in a university is more likely to know

members of the same department rather than someone from the history department.)

152

Based on this property of myopia, we assume that an agent i can change connections

(affect the network) only within its second neighborhood Γ2 = {j ∈ V : dij ≤ 2},

and that i can see the score s(j), centrality c(j) and degree kj of vertices in Γ2.

Note that s and c are global quantities, therefore some global information reaches

i indirectly. Nevertheless, since the actual contact network cannot be inferred from

this information, we still consider the agents myopic. See Fig. 6.1 for an illustration.

Ideally one would like to provide the agents with some intelligence and use no

further restrictions for how they update their positions to increase their scores. This

is however a rather difficult proposition from a simulation point of view, and there-

fore we would have to impose some additional (sensible) restrictions for purposes of

tractability. We will assume the agents can change their neighborhood through only

two ways—attaching an edge to a new vertex, or deleting an edge from an existing

neighbor. In terms of a friendship network, one can think of the first action as mak-

ing new friends for profit, and the second action as unceremoniously dumping old

ones should they not prove useful to one’s objectives (a rather common phenomena

in the real world!).

Despite the simplicity of the moves themselves, the criteria an agent applies to

decide on a particular move, can be made quite complex. We will assume that an

agent i updates its position (either by deleting or attaching an edge), by applying a

sequence of tie-breaking actions chosen from the following set:

• MAXD Choose vertices with maximal degree.

• MIND Choose vertices with minimal degree.

• MAXC Choose vertices with maximal centrality in the sense of Eq. (6.2).

• MINC Choose vertices with minimal centrality.

153

• RND Pick a vertex at random.

• NO Do not add (or remove) any edge.

The sequences of actions define the strategies of the agents. The strategy of an agent

i can be stored in two six-tuples sadd = (sadd
1 , · · · , sadd

6) and sdel = (sdel
1 , · · · , sdel

6)

representing a priority ordering of the addition and deletion actions respectively.

If for example, sadd(i) = (MAXD, MINC, NO, RND, MIND, MAXC) then i tries

at first to attach an edge to the vertex in Γ2(i) with highest degree. If more than one

vertex has the highest degree, then one of these is selected by the MINC strategy. If

still no unique vertex is found, nothing is done (by application of the NO strategy).

Note that such a vertex is always found after strategies NO or RND are applied. If

the neighborhood set of a vertex is X = ∅, no edge is added (or deleted).

The simulations proceed iteratively where at each time step, every vertex can

update its network position by adding an edge to a vertex in Γ2 and delete an edge

to a neighbor. An example of the possible moves and strategies available to an agent

is shown in Fig. 6.2.

6.2.3 Strategy updates and stochastic rewiring

The strategy vectors are initialized to random permutations of the six actions.

Every tstratth time step an agent i updates its strategy vectors by finding the vertex

in Γi = {j : dij ≤ 1} with the highest accumulated score since the last strategy

update. This practice of letting the agent mimic the best-performing neighbor is

common in spatial games [120], and is closely related to the bounded rationality

paradigm of economics [84], which is also an inspiration for the myopic property of

the agents. When updating the strategy, i copies the parts of sadd(j) and sdel(j) that

j employed in the previous time step, and let the remaining actions come in the same

154

1

2 3

4

delete:

add: RND MIND MAXC MINC

MIND

NO

MINC MAXC MAXD RND

MAXD

NO

c = 0.23

c = 0.11c = 0.41

c = 0.55

Figure 6.2: An illustration of the strategies employed by the agents. At a given time step, an
agent can delete one edge and add another in order to improve its score. The way to
select a neighbor to delete an edge to (or a next-nearest neighbor to attach an edge to)
is to consecutively omit possibilities by applying “actions” in a “strategy vector”. In
the cartoon above, the agent’s leading deletion strategy is MIND, meaning its initial
preference is to sever ties to neighbors with the lowest degree. In this example there are
three neighbors with degree three (marked in black). To further eliminate neighbors the
agent applies the MINC strategy (ranking the neighbors in order of minimum centrality
c. In this case vertex 3 is the least central neighbor. So, at this time step, the agent
will delete the edge to 3. As for addition of edges the leading action is NO, meaning no
edge will be added.

order as its own strategy vectors prior to the update. For the purposes of making

the set of strategy vectors ergodic, driving the strategy optimization [121, 99], and

modeling irrational moves by the agents [84]; we swap, with probability ps, two

random elements of sadd(j) and sdel(j) every strategy vector update.

In addition to the strategy space we also would like to impose ergodicity in the

network space (i.e. the game can generate all n-vertex graphs from any initial con-

figuration). In order to ensure this, disconnected clusters should have the ability to

reconnect to the graph. We allow this by letting a vertex i attach to any random

vertex of V with probability pr every trndth time step. This is not unreasonable as

even in real social systems, edges may form between agents out of sight from each

155

other in the social network. As many authors have pointed out, in addition to infor-

mation spreading processes, there are other factors that lead to the evolution of the

social networks (cf. Ref. [149]).

6.2.4 The algorithm

To summarize, the algorithm works as follows:

1. Initialize the network to a Erdős-Rényi network with n vertices and m0 edges.

2. For all agents, start with random permutations of the six actions as strategy

vectors sadd and sdel.

3. Calculate the score for all agents.

4. Update the agents synchronously by adding and deleting edges as selected by

the strategy vectors. With probability pr, add an edge to a random vertex

instead of a neighbor’s neighbor.

5. Every tstratth time step, update the strategy vectors. For each agent, with

probability ps, swap two elements in its strategy vector.

6. Increment the simulation time t. If t < ttot, go to step 3.

For the purposes of our simulation, we will use the parameter values m0 = 3n/2 (for

different values of n), ps = 0.005, tstrat = 10, ttot = 105 and navg = 100, where navg

denotes the average of quantities over multiple realizations of the network.

6.3 Numerical results

6.3.1 Time evolution

As a first look at the time evolution, we start by plotting quantities characterizing

the strategies of the agents and the network structure. The most important parts

156

of the strategy vectors are its first components, sadd
1 and sdel

1 . In practice, ∼ 90%

of the decisions–whether or not to add (or delete) a specific edge—do not pass this

first tiebreaker. In Fig. 6.3(a) and (b) we can see how complex the time-evolution

of sadd
1 and sdel

1 can be. Each sector of the plot corresponds to a leading addition

(or deletion) action. The vertical axis is a measure of the fraction of agents having

that leading action value. The time evolution is complex, having sudden cascades of

strategy changes and quasi-stable periods. Cascades in the leading addition action

seem to be accompanied by cascades in the leading deletion action. For the parameter

values of Fig. 6.3, cascades involving more than 75% of the vertices happens about

once every 105 time steps.

In Fig. 6.3(c) we measure the average score function 〈s〉 as a function of time.

Being a non-zero-sum game, the value of 〈s〉 can vary significantly, a fact which

can be seen upon examining the figure. Most of the time, the system is close to

the observed maximum 〈s〉 ≈ 80. A possible explanation for the periods with lower

scores can be seen in Fig. 6.3(d) where we plot the average degree 〈k〉. For some

time steps, the network becomes very dense with an average degree of almost 20. As

high degree is counter-productive to the objectives of the game, the average score

is low during this period. The rise in degree has, naturally, a corresponding peak

in the leading deletion action NO, since as a consequence of not dropping links, the

agents accumulate a large number of neighbors.

Another reason for the occasional dips in the average score can be seen in Fig. 6.3(e)

where we plot the fraction of agents, n1, that belong to the largest connected com-

ponent. This quantity is usually close to one, meaning that all agents are connected

(directly or indirectly), however as can be seen from the figure, there are periods

when the fraction drops substantially. The corresponding strategic cause for these

157

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

n 1
〈k
〉

〈s
〉

σ
de

l
1

σ
ad

d
1

0

0.25

0.75

0.5

265000 270000 275000

0

10

15

5

0
20
40
60
80

0

0.25

0.5

1

0.75

0.25

0.5

0.75

1

t

(e)

(d)

(b)

(a)

(c)

M
A

X
C

M
IN

C
M

A
X

D
M

IN
D

R
N

D
N

O

Figure 6.3: Output from an example run of a n = 200 system with pr = 0.012. Panels (a) and (b)
show the fraction of vertices having a particular leading action for addition σadd

1 and
deletion σadd

1
respectively. Panel (c) shows the average score 〈s〉, (d) the average degree

〈k〉 and (e) the fraction of vertices in the largest connected component n1.

fragmented states is not immediately obvious. They seem to correspond to a state

of inactivity—the leading action for both deletion and addition is NO—however, as

we will see, this feature becomes less pronounced with increasing system size.

6.3.2 Example networks

In light of the complex time evolution of the system, it is not surprising that the

system attains a great variety of network topologies as time progresses. In Fig. 6.4

we show four snapshots of the system for a run with the same parameter values

158

(c) (d)

(a) (b)

MAXC RND NOMINDMAXDMINC

Figure 6.4: Four different example networks from a run with the same parameter values as in
Fig. 6.3. The symbols indicate the leading addition action. (a) shows the common
situation where MAXC is the leading addition action, σdel

1 is MAXC for almost all
agents; (b) shows a transition stage between σadd

1
being mostly MAXD to σadd

1
being

primarily MAXC; (c) shows another transient configuration where a large number of
different addition strategies coexist; (d) shows the addition strategies in a fragmented
state.

as in Fig. 6.3. In Fig. 6.4(a) the network is a result of the most common strategy

configuration where both the leading deletion and addition actions are MAXC for

a majority of the agents (in this situation, we call the actions dominating). In

this configuration the network is centered around two indirectly connected hubs.

The vertices between these two hubs have the highest centrality, and since they are

within the second neighborhood of most vertices in the network, and most agents

have σadd
1 = MAXC, these vertices will get an edge from the majority of agents (thus

becoming hubs in the next time-step). There are 18 isolated agents with σadd
1 = NO.

These will continue to stay isolated until their strategy vectors are mutated, which

occurs (on average) every tstrat/ps = 2000th time step.

Figure 6.4(b) shows a rather similar network topology with the difference that

a majority of the vertices have MAXD as their leading addition action (almost all

vertices have σdel
1 = MAXC). For this configuration, the MAXC vertices will move

159

their edges to the most central vertices whereas the MAXD vertices will not move

theirs. In Fig. 6.4(c) we show a rare, high-〈k〉 configuration. Here the leading deletion

action is NO for about a quarter of the agents, and consequently the system is rapidly

accumulating edges.

InFig. 6.4(d) we show a fragmented state, where a number of vertices have the

leading addition action NO. The vertices in the connected component with leading

addition action σadd
1 = NO also have corresponding leading deletion action σdel

1 =

NO, so they will not fragment the network further. On the other hand, the vertices

with σadd,del
1 = MAXC and σadd,del

1 = MAXD have the potential to further split up

the network.

6.3.3 Effects of strategies on the network topology

We now turn our attention to how the evolution of the strategies affects the

network topology. To do so, we measure a variety of metrics describing the structure

of networks, starting with averages of various quantities and then moving on to

more complicated measure such as assortatitvity and the clustering coefficient (cf.

Chap. I). We address each of these turn.

As a first glimpse, in Fig. 6.5 we plot the probability density functions of the

different structural quantities shown in Figs. 6.3(c), (d) and (e) after averaging them

over multiple realizations of networks each allowed to evolve for a period of 105 time-

steps. As the figure shows, these all have two peaks—one with low 〈s〉, 〈k〉 and 〈n1〉

values (where the network is fragmented, the number of edges small and the scores

low), and another broader peak corresponding to a connected network with higher

scores and more edges. Interestingly, the various leading actions are not completely

localized to different peaks but spread out over the whole range. Another counter-

intuitive observation is that there seems to be more agents with σadd
1 = NO in the

160

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������
��������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

0

5

10

p(
〈s
〉)

0

5

10

p(
〈s
〉)

0

1

2

3

3

p(
〈k
〉)

0

1

2

3

p(
〈k
〉)

0

5

10

p(
〈n

1〉
)

0

5

10

p(
〈n

1〉
)

0 0.2 0.4 0.6 0.8 1
〈n1〉 〈n1〉

0 0.2 0.4 0.6 0.8 1

2
〈k〉0 1 40 1 2 3 4

〈k〉

0 20 40 60 80 100 0 20 40 60 80 100
〈s〉 〈s〉

(f)

(d)

(b)(a)

(c)

(e)

Figure 6.5: The probability density function of scores (a), (b), degrees (c), (d), and relative sizes
of the largest connected component (e), (f) averaged over multiple realizations of the
network, denoted by brackets 〈. . .〉. The fields represent different leading addition ac-
tions (a), (c), (e), and different leading deletion actions (b), (d), (f). The vertical size
of a field represents the probability density function conditioned to that leading action.
The curves are averages over ten runs of 105 timesteps with the same parameter values
as in Fig. 6.3. The color codes of the actions are the same as in Fig. 6.3.

more dense peaks. These vertices (with σadd
1 = NO) seem to be primarily isolated

and do not affect the majority of vertices (connected in the largest component).

They will therefore stay isolated until their strategies have changed or they have

been connected to the rest of the network by random connections. We also observe

that there is a larger variety of leading addition actions than leading deletion actions.

A possible interpretation of this is that the success of agents is more sensitive to their

addition strategies rather than their deletion ones.

We next turn our attention to the the degree distribution pk—the fraction of

vertices in the network with exactly k links. In Fig. 6.6 we plot the degree dis-

161

10−5

10−4

0.001

0.01

0.1

1

1 10 100
k

p k

10−5

10−4

0.001

0.01

0.1

1

1 10 100
k

p k

(a) (b)

NOMAXC

10−5

10−4

0.001

0.01

0.1

1

1 10 100
k

p k

10−5

10−4

0.001

0.01

0.1

1

1 10 100
k

p k

(a) (b)

NOMAXC

Figure 6.6: The degree distribution (log-log scale) for systems with the same parameter values as
in Fig. 6.3. Panel (a) shows the averaged degree distribution when more than half
of the agents have MAXC as their leading addition actions. Panel (b) displays the
corresponding plot for the leading addition action NO.

tribution for agents (averaged over multiple realizations) with dominating actions

σadd
1 = MAXC (a) and σadd

1 = NO (b). The σadd
1 = MAXC graph has two high-k

peaks, corresponding to the hubs in the network. The existence of two broad peaks

as opposed to only one is strange, and the reasons for this are not immediately ap-

parent. The σadd
1 = NO graphs are more dense, as expected. However, they also have

a large-k peak, which is probably related to, either the strategies of other agents,

or a residue from the preceding period (remember that the periods of dominating

σadd
1 = NO are very short compared with the σadd

1 = MAXC periods). This implies

that one can separate system-wide effects of some strategy driving the decisions of

the majority, but there will also be other effects present in the network.

We now proceed to look at the relation between the score s and the degree k of

vertices for specific strategies employed by the agents. In Fig. 6.7(a) and (b) we

plot the average score 〈s〉 as a function of the average degree 〈k〉 for each addition

and deletion strategy respectively. The plot is the result of ten separate runs for 105

time steps, with network quantities measured every tenth time step. During these

162

runs, σadd
1 = MINC and σdel

1 = MIND were never employed as leading actions. It

turns out that the most common strategies used by the agents (for both addition

and deletion) MAXC and MAXD lead to the highest average score, although this

does not necessarily imply that all agents are doing well—from Figs. 6.4(a) and (b)

we know that the score can differ much from one agent to another.

The degrees are low for these strategies, which is a necessary (but not sufficient)

condition for a low score. For σadd
1 = NO the average degree is also low, but the score

is much lower than for σadd
1 = MAXC and MAXD. The reason, as pointed out above,

is that the network can become heavily fragmented for this leading addition action.

The addition strategy σadd
1 corresponding to the highest degree is RND, which might

seem strange, but during these runs (also visible in Fig. 6.3) σadd
1 = RND is correlated

with σdel
1 = NO which is a state naturally leading to a comparatively dense network.

The other leading actions σadd
1 = MIND and σdel

1 = MINC result in low scores and

sparse networks.

Next we measure the assortativity and clustering coefficients. The assortativity

r is a measure of vertices’ tendency to connect to other vertices of similar type, in

this case those with similar degree [108]. In mathematical terms, r is the Pearson

correlation coefficient [129] of the degrees at either side of an edge. Before we measure

this quantity we will need to make a slight modification. The edges in our networks

are undirected, and therefore r has to be symmetric with respect to edge-reversal (i.e.

replacing (i, j) by (j, i)). However the standard definition of the Pearson correlation

coefficient does not account for this symmetry. An easy fix to this problem is to let

one edge contribute twice to r, i.e. to represent an undirected edge by two directed

edges pointing in opposite directions. If one employs an edge list representation (i.e.,

if edges are stored in an array of ordered pairs (i1, j1), · · · , (iM , jM)) then we can

163

MINC MAXD MIND RND NOMAXC

0

20

40

60

0

0.1

0.2

5 10 15

−0.8 −0.6 −0.4 −0.2 0
〈r〉

〈k〉
〈s
〉

〈C
〉

0

20

40

60

0

0.1

0.2

5 10 15

−0.8 −0.6 −0.4 −0.2 0
〈r〉

〈s
〉

〈C
〉

(a)

(c)

〈k〉

(d)

(b)

Figure 6.7: Average values of four different network structural quantities for different dominating
addition and deletion actions (i.e. that more than half of the agents have a specific σadd

1
,

or σdel
1); (a) shows the average score as a function of degree for different dominating

σadd
1

; (b) is the corresponding plot for σdel
1

; (c) displays the clustering coefficient as
a function of assortativity for different dominating σadd

1
; (d) is the corresponding plot

for different σdel
1 . The bars indicate standard errors. The data comes from simulation

of ten runs (different random number generator seeds) of 105 time steps. Two actions
were never seen during these runs: σadd

1
= MINC and σdel

1
= MIND.

write r as,

(6.4) r =
4〈k1 k2〉 − 〈k1 + k2〉2

2〈k2
1 + k2

2〉 − 〈k1 + k2〉2
,

where, for a given edge (i, j), k1 is the degree of the first argument (i.e., the degree

of i), k2 is the degree of the second argument and the brackets 〈· · · 〉 denote averag-

ing. The range of r is [−1, 1] where negative values indicate a preference for highly

connected vertices to attach to low degree vertices, and positive values imply that

vertices tend to be attached to other vertices with degrees of similar magnitudes.

The clustering coefficient is a measure of transitivity in the network. In other

words it checks whether neighbors of a node are also connected to each other (thus

forming triangles). It is a well known empirical fact that social acquaintance networks

164

have a strong tendency to form triangles [74] and it is therefore a worthwhile exercise

to examine whether the networks generated by our model display this feature. There

is in principle, more than one way to define the clustering coefficient. Here we employ

the most commonly used one [17],

(6.5) C = 3n∆

/

ntriple,

where n∆ is the number of triangles and ntriple is the number of connected triples

(subgraphs consisting of three vertices and two or three edges). The factor of three

is included to normalize the quantity to the interval [0, 1].

In Fig. 6.7 (c) and (d) we plot the clustering coefficient as a function of the

assortativity r for different strategies, once again averaged over multiple networks.

As the figure shows the most popular strategies σadd,del
1 = MAXC and MAXD have

the lowest 〈C〉 and 〈r〉 values. There is very likely a fairly simple explanation for

this. Consider a situation where three agents are all connected to each other in the

form of a triangle. The removal of any one edge between two agents does not lead

to much of a loss as they are still connected to each other via the third member of

the triangle. In a situation where edges are expensive, this kind of redundancy is

not desired. For this reason, it seems natural that, on average, the most successful

strategies MAXC and MAXD have few triangles.

A negative value for the assortativity—high degree agents with low degree ones as

neighbors—is also a conspicuous feature of the examples shown in Figs. 6.4(a) and

(b) (most vertices there are only connected to the two hubs, but the hubs are not

connected to each other). For networks with a broad spectrum of degrees, it is known

that 〈C〉 and 〈r〉 are relatively strongly correlated [78]. This is also true in Figs. 6.7(c)

and (d) where the relationship between 〈C〉 and 〈r〉 is monotonically increasing. The

network configurations with highest 〈C〉 and 〈r〉 are the ones with σadd
1 = MIND

165

MAXC MINC MAXD MIND RND NO
MAXC 1 0.0164(3) 0.0088(2) 0.0107(4) 0.0151(5) 0.0010(0)
MINC 0.0169(3) 1 0.0113(6) 0.036(2) 0.025(2) 0.0017(3)

MAXD 0.0093(3) 0.0104(7) 1 0.0103(6) 0.0206(9) 0.0003(0)
MIND 0.0115(4) 0.030(2) 0.0130(7) 1 0.059(5) 0.0020(2)
RND 0.0157(5) 0.024(2) 0.020(1) 0.064(5) 1 0.0023(5)

NO 0.0007(0) 0.0031(2) 0.0009(0) 0.0036(2) 0.0042(4) 1

Table 6.1: Values for the T matrices (6.6) for addition strategies. (Tij is the deviation from the
expected value in a model of random transitions given the diagonal values.) The values
are averaged over 100 realizations of the algorithm. All digits are significant to one
standard deviation. The parameter values are the same as in Fig. 6.3. Numbers in
parentheses are the standard errors in units of the last decimal.

and σdel
1 = MINC. Since these networks are both sparse and fragmented, some

components must have a large number of triangles (probably close to being fully

connected). The denser states, with σadd
1 = RND and σdel

1 = NO, have intermediate

〈C〉 and 〈r〉 values, meaning that the edges are more homogeneously spread out,

similar to the network in Fig. 6.4(c).

6.3.4 Transition probabilities

From Fig. 6.3 it seems likely that the ability of one leading action to grow in the

population depends on the other predominant strategies in the system. For example,

σadd
1 = RND dominates after a period of many agents employing σadd

1 = MIND as

the leading strategy. Consequently, it is worth asking the question: How does the

probability of one leading action depend on the configuration at earlier time steps?

We investigate this qualitatively by calculating the “transition matrix” T′ with

elements T ′(s1, s
′
1) that represent the probability of a vertex with the leading action

s1 to have the leading action s′1 at the next time step. Note that T′, is not a

transition matrix in the sense of other physical models, as the dynamics are not

fully determined by its elements. If that were the case (i.e. the current strategy

is independent of the strategy adopted in the previous time step) we would have

the relation T ′
ij =

√

T ′
iT

′
j . To study the deviation from this null-model, we assume

166

MAXC MINC MAXD MIND RND NO
MAXC 1 0.0100(2) 0.0131(4) 0.0094(2) 0.0266(3) 0.0126(3)
MINC 0.0098(2) 1 0.0070(3) 0.010(1) 0.0105(4) 0.0050(3)

MAXD 0.0133(4) 0.0067(3) 1 0.0055(2) 0.0124(3) 0.0062(2)
MIND 0.0087(2) 0.011(1) 0.0054(2) 1 0.0101(2) 0.0055(3)
RND 0.0269(3) 0.0094(4) 0.0128(3) 0.0083(2) 1 0.0072(3)

NO 0.0097(3) 0.0076(3) 0.0053(2) 0.0078(3) 0.0131(3) 1

Table 6.2: Same as in Tab. 6.1 but for deletion, instead of addition, strategies.

the diagonal (i.e. the frequencies of the strategies) given, and calculate T with its

elements defined by,

(6.6) Tij = T ′
ij/

√

T ′
iT

′
j .

The values of T for the parameters defined in Fig. 6.3 are displayed in Tabs. 6.1

and 6.2. The off-diagonal elements have much lower values than 1 (the average values

are 0.014 for addition strategies and 0.010 for deletion). This reflects the contiguous

periods of one dominating action. Note that transitions between MAXC and RND

are over-represented: T ′del
MAXC,RND ≈ T ′del

RND,MAXC ≈ 0.027, which is more than twice

the value of any other off-diagonal element involving MAXC or RND. As another

token of the problem’s complexity, the matrix is not completely symmetric T ′del
RND,NO

is twice (∼ 3 standard deviations) as large as T ′del
NO,RND meaning that it is easier for

RND to invade a population with NO as a leading deletion action, than vice versa.

6.3.5 Dependence on system size and noise

In this section we investigate how the behavior of the system is affected by the

number of agents n participating in the game as well as the noise level (degree of

randomness) in the deletion and attachment mechanism.

In Fig. 6.8, we tune the fraction of random attachments, pr for three system

sizes. In panels (a)–(c) we show the fraction of leading addition actions among the

agents 〈Σadd
1 〉 (averaged over ∼ 100 runs and 105 time steps). The quantities Σadd,del

1

167

denotes the fraction of agents having a specific σadd,del
1 . As observed in Fig. 6.3(a) the

leading action is MAXC followed by MAXD and RND. The leading deletion actions,

as seen in panels (d)–(f), are ranked similarly except that MAXD has a larger (and

increasing) presence. If pr = 1, then all actions are equally likely (they do not have

any meaning—all strategies will result in random moves equal to sadd
1 = sdel

1 = RND).

There are trends in the pr-dependences of 〈σadd
1 〉, but apparently no emerging

discontinuity. This observation, (which also seems to hold for the ps-scaling), that

there is no phase transition for any parameter value governing the probability of

random permutations in the strategy vectors, is an indication that the results above

can be generalized to a large parameter range. We also note that, although the

system has the opportunity to be passive (i.e. agents having sadd
1 = sdel

1 = NO), this

does not happen. This situation is reminiscent of the “Red Queen hypothesis” of

evolution [145]—organisms need to keep evolving to maintain their fitness.

Next we look at the how the average degree 〈k〉 as well as the fraction of agents in

the largest component, n1, are affected by system size n as well as pr. The average

degree, plotted in Fig. 6.3(g) monotonously increases with pr. There is, however, a

qualitative difference in the size scaling—for pr . 0.12 the average degree increases

with n, for pr & 0.12 this situation is reversed.

In Fig. 6.3(h) we plot the average largest-component size as a function of pr for

different system sizes. This as well is a monotonously increasing function of both

pr and n—larger randomness, or a larger system size, means higher 〈n1〉. In most

network models, a decreasing average degree implies a smaller giant component. For

pr & 0.12, in our model, the picture is the opposite—as the system grows the giant

component spans an increasing fraction of the network. This also means that the

agents, on average, reach the twin goals of keeping the degree low and the graph

168

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

0.1 0.2 0.1 0.2
prpr

0.1 0.2
pr

0.1 0.2 0.1 0.2
prpr

0.1 0.2
pr

〈Σ
de

l
1
〉

〈Σ
ad

d
1
〉

〈Σ
de

l
1
〉

〈Σ
ad

d
1
〉

1

0

0

1

0.5

0.5

5

4

3

1

pr

0.40.30.20.1

(h)

(g)

(c)(b)(a)

(f)(e)(d)

〈Σ
de

l
1
〉

〈Σ
ad

d
1
〉

1

0

0

1

0.5

0.5

1

0

0

1

0.5

0.5

N
=

20
0

N
=

40
0

N
=

80
0

0.9

0.8

0.7

〈n
1〉

〈k
〉

pr

0.40.30.20.1

Figure 6.8: The system’s dependence on the topological noise level (via the fraction of random
rewirings pr) for different system sizes n. Panels (a), (b) and (c) show the fraction
〈Σadd

1 〉 of leading addition actions σadd
1 for systems of n = 200, 400 and 800. Panels (d),

(e) and (f) show the fraction of preferred deletion actions for the same three system sizes,
while (g) shows the average degree and (h) the average size of the largest connected
component 〈n1〉.

connected.

6.4 Discussion

Inspired by situations in the real world—particularly in the areas of diplomacy

and politics—where individuals often aspire to a situation of profit or advantage, by

balancing competing interests, we have presented, in this chapter, a general game-

theoretic network problem—The diplomat’s dilemma: How can an agent in a network

simultaneously maximize closeness centrality and minimize degree? The diplomat’s

169

dilemma is one of the simplest models of such situations in a networked system,

because, unlike in most models of a similar nature, the performance of agents solely

depends on their position relative to others in the network, and not on any artificially

ascribed extrinsic traits.

In order to run the objectives of the game, we have devised an iterative simulation

where at every time step, an agent can delete its connection to a neighbor and add an

edge to a second neighbor, based on the information it possesses about the network

characteristics of vertices within its local neighborhood (upto second neighbors). The

agents use strategies that they update by imitating the best performing neighbor

within this information horizon. The dynamics are driven by occasional random

moves and random permutations of the vectors encoding the strategies of the agents.

Despite the simplicity of our model, the time evolution of the simulation is strik-

ingly complex, with quasi-stable states, trends, spikes and cascades of strategies

among the agents. This complex dynamics is also captured in various metrics mea-

suring different levels of network structure. Furthermore, the network structure and

the agents’ strategies directly influence one another. For example, If the agents

stop deleting edges, the average degree of the network will grow rapidly, which is

counter-productive to the objectives of the game. This feedback between the net-

work topology, and the dynamical processes running on it is a central theme in the

field of adaptive, coevolutionary networks [72]. We believe that all forms of social

optimization involve such feedback loops, which is a strong motivation for studying

adaptive networks.

The complexity of the time-evolution, especially in the network structural dynam-

ics is more striking for intermediate system sizes. Indeed, many interesting features

of our simulation are not emergent in the large-system limit, but rather present only

170

for small sizes. Models in theoretical physics have traditionally focused on proper-

ties of the system as n → ∞. In models of social systems however, extrapolating

to infinite size is not necessarily a natural limit in the same way (it will of course

be interesting to examine the limiting behavior of such models). We believe this is

a good example of the dangers of taking the large-size limit by routine—the most

interesting relevant features of the model may be neglected.

In a majority of the cases in our simulations, most of the agents use a strategy

where they both delete, and attach to vertices according to the MAXC action. This

implies that the agent first deletes the edge to the most central vertex in the second

neighborhood (in the sense of a modified closeness centrality), and then reattaches to

the most central vertex two steps away (before the deletion). In practice this means

that an agent typically transfers an edge from its most central immediate neighbor

to its most central neighbor two steps away. This strategy makes the agent move

towards the center without increasing its degree, which clearly seems like a reasonable

procedure in the context of the model. However, this strategy is not evolutionary

stable in the presence of noise (hence the complex time evolution). The strategy

also leads to networks with low levels of transitivity, i.e., there are a comparatively

small number of triangles. Since forming a triangle introduces an extra edge, which

is expensive, without changing the size of connected component, it seems reasonable

that agents are reluctant to form such connections per se in our formulation of the

problem.

Different strategies have different ability to invade one another. To test this we

measure the deviation from random transitions from one dominating action to an-

other (given the frequency of particular strategies), concluding for example that it

is about twice as easy for RND to invade NO as a leading deletion action. Another

171

interesting aspect is that (for some noise levels), as the system size increases, the

network becomes both more connected (the relative fraction of vertices in the largest

connected component increases), and more sparse (the average degree decreases).

This is in sharp contrast to most other generative network models, but definitely

consistent with the objectives of the general problem (where large connected com-

ponents and low degrees are desired).

What does this result tell us about the real professional life of diplomats? Maybe

that they can, by selfishly optimizing their positions in the network, self-organize to

a connected business network where they need only a few business contacts, without

knowing more about the network than the second neighborhood. However to make

a stronger and more conclusive statement about the optimal strategy, more results

are needed. This is something we hope to gather from future studies.

For the sake of flexibility, the definition of the problem as stated in this chapter,

is deliberately vague. To turn it into a mathematically well-defined problem, one

has to specify how the agents can affect their position in the network and what

information they can use for this objective. There are of course many choices for

how to do this. Although we believe our formulation is natural, it would be very

interesting to rephrase these assumptions. A future enhancement would be to equip

the agents with methods from the machine learning community to optimize their

position, and to tune the amount of information accessible to the agents. Following

the prescription of Jackson and Wolinsky [83] one could add an additional constraint

on the model that would require an edge to represent an agreement between both

vertices, so that an agent i cannot add an edge (i, j) unless both i and j find this

mutually profitable—so-called pairwise stability. It would then be interesting to see

if we still retain the complex evolution of the network, as this additional constraint

172

reduces the number of possible graphs than can be generated by our game.

One of the main drawbacks with this type of mechanistic modeling of social infor-

mation processes [76, 66, 131, 132], is that they are very hard to validate. Information

spreading in social systems is neither routed from agent to agent like the information

packets in the Internet, nor do they spread in the same fashion as epidemics. Instead

the spreading dynamics is (usually) content dependent. Different types of informa-

tion may be spreading over different social networks, following different dynamic

rules. There are some promising datasets for studying social information spreading.

For example, networks of blogs, Internet communities, or social networking sites gen-

erate large amounts of potentially valuable data, although these data sets are not

necessarily conducive to the questions that adaptive models such as the one described

in this chapter seek to address. In the near future, we hope there will be sufficient

enhancements in devising such models, so that we can make extensive comparisons

with data from the real world.

CHAPTER VII

Conclusion

Broadly speaking, the study of networks in the existing scientific literature can be

separated into three areas. In the first case, a lot of work has been done on defining

and measuring structural properties of networks, such as, degree distributions, clus-

tering coefficients, assortativity, among others. In the second approach, researchers

have used networks as templates on which to simulate various dynamical processes

such as epidemic spreading, voter opinion, phase synchronization, biological pro-

cesses and so on. In addition to this, they have studied the structural evolution of

networks under various sets of rules, to try and explain the origin of its properties.

Finally, there is a relatively new line of enquiry which seeks to combine both as-

pects, in that there is a direct link between the structure as well as function, with

one directly dependent on the other, and thus the properties of both have to be

treated simultaneously. In this dissertation, using methods and ideas drawn from

statistical physics, computer science and discrete mathematics, we have investigated

the properties of networks using all three approaches.

In Chapter II, we have proposed an alternative and perhaps more realistic mea-

sure of network robustness, the presence (or not) of bicomponents—sets of vertices

in which any two in the set are connected by at least two independent paths. Using

173

174

standard network models, we have shown that for a given network, there are no small

bicomponents, however there exists at most one giant bicomponent that is nested

within the regular giant component. In addition we have also provided expressions for

the expected size of the giant bicomponents along with their variation as a function

of vertex removal. We have shown that as vertices are removed, the giant bicompo-

nent persists down to the point at which the ordinary giant component disappears,

but with an unusual third-order transition at that point that ensures that the size

of the bicomponent will be small as we approach the transition. We have tested our

theoretical results on a series of data taken from networks in the real world. The real-

world networks investigated are found to be quite robust in the sense of having large

giant bicomponents and moreover the existence of these bicomponents is, at least in

some cases, itself robust to the deletion of vertices. In practice, however, although

the giant bicomponent may persist as vertices are removed from the network, its size

dwindles rapidly so that large portions of the network lose robust connection consid-

erably before the transition point at which the giant bicomponent finally vanishes.

In this respect, it seems that real world networks (with some notable exceptions) are

remarkably similar to exactly solvable random graph models. An obvious generaliza-

tion of this problem is to extend it to the case of directed networks. An immediate

challenge then would be to define analogs for weak and strong connections (as in the

case of the regular 1-components) for bicomponents and other higher components.

In addition to this, one would have to devise an appropriate algorithm to find these

types of directed bicomponents in real networks. It is not obvious that the results

would be the same as in the undirected case, and it certainly merits further enquiry.

In Chapter III, we have proposed and studied in detail a model of random tri-

partite hypergraphs. Our study has been motivated by the emergence of new types

175

of social networks, such as folksonomies, a tripartite structure consisting of users

that apply a short text description called tags, to a set of resources. In particu-

lar we have defined the tripartite analog of basic network measures, such as degree

distributions, the various types of components, and projections onto individual ver-

tex types, and using an extension of the configuration model, calculated a variety

of statistical properties in the limit of large network size. Among other things we

have calculated the explicit degree distributions for projected networks, conditions

for the emergence of a giant component, the size of the giant component when there

is one, and the location of the percolation threshold for site percolation on the net-

work. We have compared our results against measurements of computer-generated

random hypergraphs and a real-world tripartite network, the folksonomy of the on-

line photo-sharing web site Flickr. In the latter case, we have focused on the degree

distributions of projections of the hypergraph onto one vertex type and find that in

some instances the theory makes predictions in moderately good agreement with the

observations while in others the agreement is poorer. We have shown, however, that

the agreement between the theory and observation is much improved, if we remove

instances of multiple tagging—instances in which a user applies many tags to the

same photo or the same tag to many photos. The results seems to suggest that, at

least in terms of the connection structure as measured by the degree distribution,

the primary disagreement between model and theory is due to trivial loop structures,

rather than any subtle social effects—although this warrants further investigation.

In a follow-up paper [153], we extended our model by defining hypergraphs analogs

of the clustering coefficient, assortativity, degree correlations among other topologi-

cal measures and then measured them on real world tripartite networks. Based on

our findings, a recent paper by Bradde and Bianconi [26] extended our theoretical

176

analysis by including correlations between the different classes of vertices.

While these two chapters have dealt with properties of “static networks”, Chap-

ters IV and V investigate the properties of networks whose structure evolves in time.

In Chapter IV we have studied models of the time evolution of networks in which, in

addition to the widely considered case of addition of vertices, we also include vertex

removal. Using a master-equation approach and with the aid of generating functions,

we have given exact solutions for cases in which vertices are added and removed at

the same rate, and cases in which the rate of addition exceeds the rate of removal,

which we regard as a simple model for the growth of, for example, the World Wide

Web. Among the most interesting of our results is where newly appearing vertices

attach to others using a linear preferential attachment mechanism, whereby vertices

gain new edges in proportion to the number they already possess. If the rate of

adding vertices is balanced with that of losing them, then we find that the network

has degrees distributed according to a stretched exponential. If however the rate

of adding vertices exceeds that of removing them—the regime of net growth—the

degree distribution follows a power law, with an exponent γ dependent on the rate

and that assumes values in the range 3 ≤ γ < ∞, diverging as the growth rate tends

to zero. This is of interest for a number of reasons. First, it shows that power-law

behavior can be rigorously established in networks that grow but also lose vertices.

Most previous analytic models of network growth have focused solely on vertex addi-

tion (as discussed in detail in Sec 1.6.1). The results presented here demonstrate that

the widely studied mechanism of preferential attachment for generating power-law

behavior also works in this regime. An interesting implication of our model is that

the origin of power-laws in real networks might very well be a consequence of robust

growth. The Web, for example, has certainly being enjoying a period of very vigor-

177

ous growth since its appearance in the early 1990s, but it could be that this is a sign

primarily of its youth, and that as the network matures its size will grow more slowly,

the vertices added being more nearly balanced by those taken away. Were this to

happen, we would expect to see the exponent of the degree distribution grow larger.

We note that a number of authors have extended our model by incorporating more

complex modes of growth—see for example [81, 134, 20]. An interesting application

of the model was proposed by Karrer and Ghoshal [85] where they used the mathe-

matical framework to show that degree distributions of networks can be dynamically

preserved from disruptions, by re-attaching nodes and edges using appropriate rules

to compensate for various types of attacks.

In Chapter V we have used the theoretical insight afforded by the previous chap-

ter in a practical application. We considered the case of distributed networks, whose

structure can be manipulated by appropriate adjustments of the rules by which ver-

tices join and leave the network. We have shown that, with some minor constraints,

it is possible to devise appropriate attachment rules for vertices, to generate networks

with any degree distributions that we desire. We have also described in detail a local

algorithm based on biased random walks via which the the attachment schemes can

be realized in practice. As an example application, we have employed our ideas in

the construction of a peer-to-peer file sharing network, with a topology optimized to

minimize the time it takes to search files, as well as the average bandwidth require-

ments.

Finally, in Chapter VI, we have devised and studied a model where the structural

and dynamical evolution of the network are intricately linked—one is the direct result

of the other and vice versa. In our model, a set of agents compete with each other

to optimize their position in the network (as measured by their closeness centrality),

178

while attempting to keep the costs of doing so (their degree) low. In other words

the success of an agent increases with its closeness centrality, while it decreases with

its degree. Such a situation may occur in diplomacy, lobbying or business networks,

where an agent wants to be central in the network (for the purpose of having access

to information and thus be more actively involved in influencing outcomes) but not

at the expense of having too many direct contacts (which takes up too much time and

effort). The dynamics proceed by the agents deleting edges and attaching new edges

to neighbors two steps away, according to strategies based on local information. Once

in a while the agents evaluate the strategies of the neighborhood and imitate the best

performing neighbor to optimize their strategy. As the vertices of our model have

no additional traits, their competitive situation is completely determined by their

position in the network—the time evolution of strategies is immediately tied to the

evolution of network structure. We have shown with the aid of extensive computer

simulations, that the evolutionary trajectories are strikingly complex having long

periods of relative stability followed by sudden transitions, spikes, or chaotic periods

visible in both the strategies and the network structure. One such instability is

manifested in a transient fragmentation of the network. We have demonstrated that

as the size of the network is increased, this instability vanishes and the network has

larger connected components, accompanied with a decreasing fraction of links—thus,

with a growing number of actors the system gets better at achieving the common goal

of being connected and keeping the degree low. Among other things, our simulations

have revealed that the network dynamics never reaches a fixed point of passivity

(where the network is largely static), this suggests situation similar to the Red Queen

hypothesis—agents have to keep on networking to maintain their success.

While the work presented in this dissertation, is fairly broad in scope and inves-

179

tigates the properties of networks from a variety of angles, this represents merely “a

drop in the ocean” compared to the sheer scale of active research in the field, as well

as the potential future questions (of which there are many). Nevertheless, we hope

that the material and the ideas presented here will do some justice in advancing our

knowledge of the field, and we look forward to many future developments building

on these ideas.

BIBLIOGRAPHY

180

181

BIBLIOGRAPHY

[1] M. Abramowitz and I.A. Stegun (eds.), Handbook of mathematical functions, Dover Publish-
ing, New York, 1974.

[2] L.A. Adamic and B.A. Huberman, Power-law distributions of the world wide web, Science
287 (2001), 2115a.

[3] L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman, Search in power-law net-

works, Phys. Rev. E 64 (2001), 046135.

[4] W. Aiello, F. Chung, and L. Lu, A random graph model for massive graphs, Proceedings
of the 32nd Annual ACM Symposium on Theory of Computing (New York), Association of
Computing Machinery, 2000, p. 171.

[5] R. Albert and A.-L. Barabási, Topology of evolving networks: Local events and universality,
Phys. Rev. Lett. 85 (2000), 5234.

[6] , Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002), 47.

[7] R. Albert, H. Jeong, and A.-L. Barabási, Diameter of the world-wide web, Nature 401 (1999),
130.

[8] , Attack and error tolerance of complex networks, Nature 406 (2000), 378.

[9] B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labeled regular

graphs, European J. Combin. 1 (1980), 311.

[10] B. Bollobás (ed.), Random graphs, Academic Press, New York, 1985.

[11] B. Bollobás and O. Riordan, The diameter of a scale free random graph, Combinatorica 24

(2004), 5.

[12] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády, The degree sequence of a scale-free

random graph process, Random Struct. Algorithms 18 (2001), 279.

[13] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286 (1999),
509.

[14] R.J. Aumann, Game theory, The New Palgrave Dictionary of Economics (New York) (S.N.
Durlauf and L.E. Blume, eds.), Palgrave Macmillan, 2008, p. 460.

[15] R. Axelrod (ed.), The evolution of cooperation, Basic Books, New York, 1984.

[16] R. Axelrod (ed.), The complexity of cooperation: Agent-based models of competition and col-

laboration, Princeton University Press, Princeton, 1997.

[17] A. Barrat and M. Weigt, On the properties of small-world network models, Eur. Phys. J. B
13 (2000), 547.

[18] J. Barron, Power surge blacks out northeast, New York Times, August 2003.

182

[19] P.S. Bearman, J. Moody, and K. Stovel, Chains of affection: The structure of adolescent

romantic and sexual networks, Am. J. Sociol. 110 (2004), 44.

[20] E. Ben-Naim and P.L. Krapivsky, Addition-deletion networks, J. Phys. A: Math. Theor. 40

(2007), 8607.

[21] E.A. Bender and E.R. Canfield, The asymptotic number of labeled graphs with given degree

sequences, J. Combin. Theory Ser. A 24 (1978), 296.

[22] G. Bianconi and A.-L. Barabási, Bose-einstein condensation in complex networks, Phys. Rev.
Lett. 90 (2003), 078701.

[23] G. Bianconi and A. Capocci, Number of loops of size h in growing scale-free networks, Phys.
Rev. Lett. 90 (2003), 078701.

[24] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang, Complex networks: Struc-

ture and dynamics, Phys. Rep. 424 (2006), 175.

[25] P.F. Bonacich, Power and centrality: A family of measures, Amer. J. Sociol. 92 (1989), 1170.

[26] S. Bradde and G. Bianconi, Percolation transition in correlated hypergraphs,
arXiv:0905.4455v1, 2009.

[27] S. Brin and L. Page, The anatomy of a large-scale hypertextual Web search engine, Comput.
Netw. 30 (1998), 107.

[28] S.R. Broadbent and J.M. Hammersley, Percolation processes: I. crystals and mazes, Proc.
Cambridge Philos. Soc. 53 (1957), 629.

[29] A. Broder and A. Karlin, Bounds on the cover time, J. Theor. Probab. 2 (1989), 101.

[30] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener, Graph structure in the web, Comput. Netw. 33 (2000), 309.

[31] Z. Burda, J. Jurkiewicz, and A. Krzywicki, Network transitivity and matrix models, Phys.
Rev. E 69 (2004), 026106.

[32] G. Caldarelli (ed.), Scale-free networks, Oxford University Press, Oxford, 2007.

[33] G. Caldarelli, R. Pastor-Satorras, and A. Vespignani, Structure of cycles and local ordering

in complex networks, Eur. Phys. J. B 38 (2004), 183.

[34] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Network robustness and

fragility: Percolation on random graphs, Phys. Rev. Lett. 85 (2000), 5468.

[35] C. Cattuto, V. Loreto, and L. Pietronero, Semiotic dynamics and collaborative tagging, Proc.
Nat. Acad. Sci. USA 104 (2007), 1461.

[36] C. Cattuto, C. Schmitz, A. Baldassarri, V.D.P. Servedio, V. Loreto, A. Hotho, M. Grahl, and
G. Stumme, Network properties of folksonomies, AI Commun. 20 (2007), 245.

[37] F. Chung and R. Graham, Quasi random hypergraphs, Proc. Nat. Acad. Sci. USA 86 (1989),
8175.

[38] F. Chung and L. Lu, The average distances in random graphs with given expected degrees,
Proc. Natl. Acad. Sci. USA 99 (2002), 15879.

[39] , Connected components in random graphs with given degree sequences, Ann. Comb. 6

(2002), 1125.

[40] , Coupling online and offline analyses for random power law graphs, Internet Mathe-
matics 1 (2004), 409.

183

[41] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin, Resilience of the internet to random

breakdowns, Phys. Rev. Lett. 85 (2000), 4626.

[42] C. Cooper, The cores of random hypergraphs with a given degree sequence, Rand. Struct.
Algorithms 25 (2004), 353.

[43] C. Cooper, A. Frieze, and J. Vera, Random deletion in a scale-free random graph process,
Internet Mathematics 1 (2004), 463.

[44] A. Davis, B.B. Gardner, and M.R. Gardner (eds.), Deep South, University of Chicago Press,
Chicago, 1941.

[45] N.G. de Bruijn (ed.), Asymptotic methods in analysis, Dover, New York, 1981.

[46] P.G. de Gennes, La notion de percolation, La Recherche 72 (1976), 919.

[47] A. Dembo and A. Montanari, Finite size scaling for the core of large random hypergraphs,
Ann. Appl. Probab. 18 (2008), 5.

[48] D.J. de S. Price, Networks of scientific papers, Science 149 (1965), 510.

[49] , A general theory of bibliometric and other cumulative advantage processes, J. Amer.
Soc. Inform. Sci. 27 (1976), 292.

[50] S.N. Dorogovtsev and J.F.F. Mendes, Scaling behaviour of developing and decaying networks,
Europhys. Lett. 52 (2000), 33.

[51] , Effect of the accelerating growth of communication networks on their structure, Phys.
Rev. E. 63 (2001), 025101.

[52] , Evolution of networks, Adv. Phys. 51 (2002), 1079.

[53] S.N. Dorogovtsev and J.F.F. Mendes (eds.), Evolution of networks: From biological nets to

the internet and www, Oxford University Press, Oxford, 2003.

[54] S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin, Structure of growing networks with

preferential linking, Phys. Rev. Lett. 85 (2000), 4633.

[55] J. Duch and A. Arenas, Community detection in complex networks using extremal optimiza-

tion, Phys. Rev. E 72 (2005), 027104.

[56] P. Erdős and A. Rényi, On random graphs, Publ. Math. Debrecen 6 (1959), 290.

[57] , On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5 (1960), 17.

[58] , On the strength of connectedness of a random graph, Acta. Math. Acad. Sci. Hungar.
12 (1961), 261.

[59] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related

questions, Colloq. Math. Soc. Janos Bolyai 10 (1975), 609.

[60] M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet

topology, Computer Communications Rev. 29 (1999), 251.

[61] L.C. Freeman, A set of measures of centrality based on betweenness, Sociometry 40 (1977),
35.

[62] A. Fronczak, J.A. Holyst, M. Jedynak, and J. Sienkiewiecz, Higher order clustering coefficients

in Barabasi-Albert networks, Physica A 316 (2002), 688.

184

[63] G. Ghoshal, Some New Applications of Network Growth Models, Dynamics On and Off Com-
plex Networks: Applications to Biology Computer Science and the Social Sciences (N. Gan-
guly, A. Deutsch, and A. Mukherjee, eds.), Birkhäuser, Boston, 2009, p. 217.

[64] G. Ghoshal and M.E.J. Newman, Growing distributed networks with arbitrary degree distri-

butions, Eur. Phys. J. B 58 (2007), 175.

[65] G. Ghoshal, V. Zlatić, G. Caldarelli, and M.E.J. Newman, Random hypergraphs and their

applications, Phys. Rev. E 79 (2009), 066118.

[66] S. Gil and D.H. Zanette, Coevolution of agents and networks: Opinion spreading and com-

munity disconnection, Phys. Lett. A 356 (2006), 89.

[67] C. Gkantsidis, M. Mihail, and A. Saberi, Random walks in peer-to-peer networks, Proceedings
of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies
(New York), Institute of Electrical and Electronics Engineers, 2004.

[68] C. Godsil and G. Royle (eds.), Algebraic graph theory, Springer-Verlag, New York, 2001.

[69] O. Gorlitz, S. Sizov, and S. Staab, Tagster -tagging-based distributed content sharing, The
Semantic Web (S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarikis, eds.), vol.
5021, Springer-Verlag, Berlin, 2008, p. 807.

[70] P. Grassberger, On the critical behavior of the general epidemic process and dynamic perco-

lation, Math. Biosci. 63 (1983), 57.

[71] A. Grönlund, K. Sneppen, and P. Minnhagen, Correlations in networks associated to prefer-

ential growth, Phys. Scr. 71 (2005), 680.

[72] T. Gross and B. Blausius, Adaptive coevolutionary networks: a review, J. Roy. Soc. Interface
5 (2008), 259.

[73] J.M. Hammersley, Percolation processes: II. the connective constant, Proc. Cambridge Philos.
Soc. 53 (1957), 642.

[74] P.W. Holland and S. Leinhardt., Some evidence on the transitivity of positive interpersonal

sentiment, Am. J. Sociol. 72 (1972), 1205.

[75] , An exponential family of probability distributions for directed graphs, J. Amer. Statist.
Assoc. 76 (1981), 33.

[76] P. Holme and G. Ghoshal, Dynamics of networking agents competing for high centrality and

low degree, Phys. Rev. Lett. 96 (2006), 098701.

[77] , The diplomats dilemma: Maximal power for minimal effort in social networks, Adap-
tive Networks: Theory, Models and Applications (T. Gross and H. Sayama, eds.), Springer-
Verlag, Heidelberg, 2009.

[78] P. Holme and J. Zhao, Exploring the assortativity-clustering space of a network’s degree se-

quence, Phys. Rev. E 75 (2007), 046111.

[79] T. Hong, Performance, Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology
(Sebastopol, CA) (A. Oram, ed.), O’Reilly and Associates, 2001, p. 203.

[80] J.E. Hopcroft and R.E. Tarjan, Efficient algorithms for graph manipulation, Comm. ACM 16

(1973), 372.

[81] K. Iguchi and H.S. Yamda, General connectivity distribution functions for growing networks

with preferential attachment of fractional power, J. Math. Phys. 48 (2007), 113303.

[82] M. Jackson (ed.), Social and Economic Networks, Princeton University Press, Princeton, 2008.

185

[83] M.O. Jackson and A. Wolinsky, A Strategic Model of Social and Economic Networks, J. Econ.
Theory 71 (1996), 44.

[84] D. Kahneman, Maps of bounded rationality: psychology for behavioral economics, The Amer-
ican Economic Review 93 (2003), 1449.

[85] B. Karrer and G. Ghoshal, Preservation of network degree distributions from non-uniform

failures, Eur. Phys. J. B 62 (2008), 239.

[86] L. Katz, A new status index derived from sociometric analysis, Psychometrika 18 (1953), 39.

[87] S.A. Kauffman, Metabolic stability and epigenesis in randomly connected nets, J. Theor. Bio.
22 (1969), 437.

[88] , Gene regulation networks: A theory for their structure and global behavior, Current
topics in Developmental Biology (A. Moscana and A. Monroy, eds.), vol. 6, Academic Press,
New York, 1971, p. 145.

[89] R. Kinney, P. Crucitti, R. Albert, and V. Latora, Modelling cascading failures in the North

American power grid, Eur. Phys. J. B 46 (2005), 101.

[90] S. Kirkpatrick, Percolation and conduction, Rev. Mod. Phys. 45 (1973), 574.

[91] J.M. Kleinberg, S.R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, The Web as

a graph: Measurements, models and methods, Proceedings of the 5th Annual International
Conference on Combinatorics and Computing (Berlin) (T. Asano, H.I mai, D.T. Lee, S.-I.
Nakano, and T. Tokuyama, eds.), Lecture Notes in Computer Science, vol. 1627, Springer-
Verlag, 1999, p. 1.

[92] D. Knoke. (ed.), Political networks: The structural perspective, Cambridge University Press,
Cambridge, 1990.

[93] P.L. Krapivsky and S. Redner, Organization of growing random networks, Phys. Rev. E 63

(2001), 066123.

[94] , Finiteness and fluctuations in growing networks, J. Phys. A 35 (2002), 9517.

[95] , A statistical physics perspective on web growth, Comput. Netw. 39 (2006), 261.

[96] P.L. Krapivsky, S. Redner, and F. Leyvraz, Connectivity of growing random networks, Phys.
Rev. Lett. 85 (2000), 4629.

[97] R. Lambiotte and M. Ausloos, Collaborative Tagging as a Tripartite network, Proceeding of
the 6th International Conference on Computer Science, Part III, Lecture Notes in Computer
Science, vol. 3993, Springer-Verlag, Berlin, 2006, p. 1114.

[98] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph Evolution: Densification and Shrinking

Diameters, ACM Transactions on Knowledge Discovery from Data 1 (2007), 1.

[99] K. Lindgren and M. G. Nordahl, Evolutionary dynamics of spatial games, Physica D 75

(1994), 292.

[100] A.J. Lotka, The frequency distribution of scientific productivity, Journal of the Washington
Academy of Sciences 16 (1926), 317.

[101] T. Luczak, Sparse random graphs with a given degree sequence, Proceedings of the Symposium
on Random Graphs, Poznań (New York) (A.M. Frieze and T. Luczak, eds.), John-Wiley, 1992,
p. 165.

[102] M. Molloy and B. Reed, The critical point for random graphs with a given degree sequence,
Random Struct. Algorithms 6 (1995), 161.

186

[103] C. Moore, G. Ghoshal, and M.E.J. Newman, Exact solutions for models of evolving networks

with addition and deletion of nodes, Phys. Rev. E 74 (2006), 036121.

[104] C. Moore and M.E.J. Newman, Exact solution of site and bond percolation on small-world

networks, Phys. Rev. E 62 (2000), 7059.

[105] J.L. Moreno (ed.), Who shall survive?, Beacon House, Beacon, New York, 1934.

[106] M.E.J. Newman, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci.
USA 98 (2001), 404.

[107] , Assortative mixing in networks, Phys. Rev. Lett. 89 (2002), 208701.

[108] , The structure and function of complex networks, SIAM Review 45 (2003), 167.

[109] , Power laws, Pareto distributions and Zipf’s law, Contemp. Phys. 46 (2005), 323.

[110] , Finding community structure in networks using the eigenvectors of matrices, Phys.
Rev. E 74 (2006), 036104.

[111] , Component sizes in networks with arbitrary degree distributions, Phys. Rev. E 76

(2007), 045101.

[112] , Random graphs with clustering, arXiv:0903.4009v1, 2009.

[113] M.E.J. Newman, A.-L. Barabási, and D.J. Watts (eds.), The structure and dynamics of net-

works, Princeton University Press, Princeton, 2006.

[114] M.E.J. Newman and G.T. Barkema (eds.), Monte carlo methods in statistical physics, Oxford
University Press, Oxford, 1999.

[115] M.E.J. Newman, S. Forrest, and J. Balthrop, Email networks and the spread of computer

viruses, Phys. Rev. E 66 (2002), 035101.

[116] M.E.J. Newman and G. Ghoshal, Bicomponents and robustness of networks to failures, Phys.
Rev. Lett. 100 (2008), 138701.

[117] M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Random graphs with arbitrary degree distri-

butions and their applications, Phys. Rev. E 64 (2001), 026118.

[118] M.E.J Newman and D.J. Watts, Scaling and percolation in the small-world network, Phys.
Rev. E 60 (1999), 7332.

[119] M.E.J Newman and R.M. Ziff, Efficient monte carlo algorithm and high-precision results for

percolation, Phys. Rev. Lett. 85 (2000), 4104.

[120] M. Nowak and R. M. May, Evolutionary games and spatial chaos, Nature 359 (1992), 826.

[121] M. Nowak and K. Sigmund, A strategy of win-stay, lose-shift that outperforms tit-for-tat in

the prisoner’s dilemma game, Nature 346 (1992), 56.

[122] G. Palla, I. J. Farkas, P. Pollner, I. Derényi, and T. Vicsek, Fundamental statistical features

and self-similar properties of tagged networks, New J. Phys. 10 (2008), 123026.

[123] J. Park and M.E.J. Newman, The statistical mechanics of networks, Phys. Rev. E 70 (2004),
066117.

[124] G. Paul, T. Tanizawa, S. Havlin, and H.E. Stanley, Optimization of robustness of complex

networks, Eur. Phys. J. B 38 (2004), 187.

187

[125] J.J Potterat, L. Phillips-Plummer, S.Q. Muth, R.B. Rothenburg, D.E. Woodhouse, T.S.
Maldonado-Long, H.P. Zimmerman, and J.B. Muth, Risk network structure in the early epi-

demic phase of HIV transmission in Colorado Springs, Sexually Transmitted Infections 78

(2002), i159.

[126] S. Redner, How popular is your paper? an empirical study of the citation distribution, Eur.
Phys. J. B 4 (1998), 131.

[127] M. Ripenau, I. Foster, and A. Iamnitchi, Mapping the Gnutella network: Properties of large-

scale peer-to-peer systems and implications for system design, IEEE Internet Computing 6

(2002), 50.

[128] J.P. Ritter, Why Gnutella can’t scale. No, really, http://www.darkridge.com/ jpr5/doc/gnutella.html,
2000.

[129] J.L. Rodgers and W.A. Nicewander, Thirteen ways to look at the correlation coefficient, The
American Statistician 42 (1988), 59.

[130] F.J. Roethlisberger and W.J. Dickson (eds.), Management and the Worker, Harvard Univer-
sity Press, Cambridge, MA, 1939.

[131] M. Rosvall and K. Sneppen, Modelling dynamics of information networks, Phys. Rev. Lett.
91 (2003), 178701.

[132] , Modeling self-organization of communication and topology in social networks, Phys.
Rev. E 74 (2006), 016108.

[133] G. Sabidussi, The centrality index of a graph, Psychometrika 31 (1966), 581.

[134] J. Saldaña, Continuum formalism for modeling growing networks with deletion of nodes, Phys.
Rev. E 75 (2007), 027102.

[135] N. Sarshar, P.O. Boykin, and V.P. Roychowdhury, Scaleable percolation search in power-law

networks, Proceedings of the 4th International Conference on Peer-to-Peer Computing (New
York), IEEE Computer Society, 2004, p. 2.

[136] N. Sarshar and V.P. Roychowdhury, Scale-free and stable structures in complex ad hoc net-

works, Phys. Rev. E 69 (2004), 026101.

[137] J. Schmidt-Pruzan and E. Shamir, A threshold for perfect matching in d-pure random hyper-

graphs, Discrete Math. 43 (1982), 315.

[138] , Component structure in the evolution of random hypergraphs, Combinatorica 5

(1985), 81.

[139] R. Solomonoff and A. Rapoport, Connectivity of random nets, Bull. Math. Biophys. 13 (1951),
107.

[140] D. Stauffer and A. Aharony (eds.), Introduction to Percolation Theory, Taylor and Francis,
London, 1994.

[141] K. Stephenson and M. Zelen, Rethinking centrality: Methods and applications, Soc. Netw. 11

(1989), 1.

[142] D. Strauss, On a general class of models for interaction, SIAM Review 28 (1986), 513.

[143] B. Tadić, Temporal fractal structures: Origin of power laws in the world-wide web, Physica A
314 (2002), 278.

[144] H. Timmons, 2 communication cables in the mediterranean are cut, New York Times, January
2008.

188

[145] L.M. van Valen, A new evolutionary law, Evolutionary Theory 1 (1973), 1.

[146] J. von Neumann and O. Morgenstern (eds.), The theory of games and economic behavior,
Princeton University Press, Princeton, 1944.

[147] S. Wasserman and K. Faust (eds.), Social Network Analysis: Methods and Applications, Cam-
bridge University Press, Cambridge, 1994.

[148] D.J. Watts (ed.), Six degrees: The science of a Connected Age, Norton, New York, 2003.

[149] D.J. Watts and S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393

(1998), 440.

[150] M. Weber (ed.), The theory of social and economic organization, Oxford University Press,
New York, 1947.

[151] D.B. West (ed.), Introduction to graph theory, Prentice Hall, Upper Saddle River, NJ, 1996.

[152] J. Westbrook and R.E. Tarjan, Maintaining bridge-connected and biconnected components

on-line, Algorithmica 7 (1992), 433.

[153] V. Zlatić, G. Ghoshal, and G. Caldarelli, Hypergraph topological quantities for tagged social

networks, arXiv:0905.0976v1, 2009.

