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Abstract

Explicitly Restarted Arnoldi’s Method for Monte Carlo

Nuclear Criticality Calculations

by

Jeremy Lloyd Conlin

Chair: James Paul Holloway

A Monte Carlo implementation of explicitly restarted Arnoldi’s method is devel-
oped for estimating eigenvalues and eigenvectors of the transport-fission operator in
the Boltzmann transport equation. Arnoldi’s method is an improvement over the
power method which has been used for decades. Arnoldi’s method can estimate mul-
tiple eigenvalues by orthogonalising the resulting fission sources from the application
of the transport-fission operator. As part of implementing Arnoldi’s method, a solu-
tion to the physically impossible—but mathematically real—negative fission sources
is developed. The fission source is discretized using a first order accurate spatial
approximation to allow for orthogonalization and normalization of the fission source
required for Arnoldi’s method. The eigenvalue estimates from Arnoldi’s method are
compared with published results for homogeneous, one-dimensional geometries, and it
is found that the eigenvalue and eigenvector estimates are accurate within statistical
uncertainty.

The discretization of the fission sources creates an error in the eigenvalue esti-
mates. A second order accurate spatial approximation is created to reduce the error
in eigenvalue estimates. An inexact application of the transport-fission operator is
also investigated to reduce the computational expense of estimating the eigenvalues
and eigenvectors.

The convergence of the fission source and eigenvalue in Arnoldi’s method is anal-
ysed and compared with the power method. Arnoldi’s method is superior to the power
method for convergence of the fission source and eigenvalue because both converge
nearly instantly for Arnoldi’s method while the power method may require hundreds
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of iterations to converge. This is shown using both homogeneous and heterogeneous
one-dimensional geometries with dominance ratios close to 1.
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Chapter 1

Introduction

For decades [see 15, 13, 18, 19], the power method has been the technique of choice

for calculating eigenvalues and eigenvectors of the transport-fission operator of the

Boltzmann transport equation in Monte Carlo particle transport applications. The

power method is useful for estimating the fundamental or largest eigenvalue and

associated eigenvector. The fundamental eigenmode describes the reactivity of a

nuclear reactor operating in steady-state conditions.

The higher-order eigenmodes of the transport-fission operator are necessary to

calculate the space and time dependent reactivity where there are significant changes

in the flux [30]. When performing time and space dependent reactor kinetics, the

shape of the neutron flux is approximated by an expansion with the eigenfunctions.

The difference between the eigenvalues defines how quickly the contributions from

the higher order eigenmodes decay away [1]. Estimating the higher-order eigenmodes

with computer simulation provides the reactor designer with a tool to predict the

behavior of the reactor.

Recently, some work has been done to estimate higher-order eigenmodes using the

power method [3]. This dissertation will explore a heretofore unexplored approach to

estimating both the fundamental and higher-order eigenmodes of the transport-fission

operator: Arnoldi’s method [2]. Arnoldi’s method can estimate multiple eigenvalues
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of a linear operator, but is particularly useful when the linear operator is large, sparse,

or has no explicit form.

1.1 Particle Transport

The one-speed Boltzmann transport equation describing neutron transport for criti-

cality problems,

Ω · ∇ψ(r,Ω) + Σtψ(r,Ω) =
Σs

4π

∫

ψ(r,Ω′) dΩ′ +
1

k

νΣf

4π

∫

ψ(r,Ω′) dΩ′, (1.1)

can be written in operator form

(L + C − S)ψ =
1

k
Fψ (1.2a)

or

Tψ =
1

k
Fψ, (1.2b)

where L,C, and S are the leakage, collision, and scattering operators respectively, and

F is the fission multiplication operator; T = L+C−S is the transport-collision oper-

ator. The left-hand side of Equation (1.2b) represents the neutron loss and scattering

mechanisms, and the right-hand side represents the neutron gain mechanism.

If we define

v ≡ Fψ, (1.3a)

2



as the fission source and define

A ≡ FT
−1 (1.3b)

as the transport-fission operator and manipulate Equation (1.2b), we find

Av = kv. (1.4)

This is a standard eigenvalue problem with eigenvalue k and eigenvector v for the

transport-fission operator, A. The eigenvalue, k, is just the multiplication or critical-

ity factor and the eigenvector, v, is the fission source.

The application of A in Monte Carlo calculations is conceptually simple. Particles

are sampled from the fission source and transported in the medium until they initiate

a fission reaction. Sampling and transporting particles is repeated many times and

the fission sites are stored, creating a new fission source.

1.2 Krylov Methods

There is a class of techniques which approximate eigenvalues and eigenvectors from

a subspace of the form

Km(A, v) ≡ span
{

v,Av,A2v, . . . ,Am−1v
}

; (1.5)

Km(A, v) is called a Krylov subspace [see 22, chapter VI]. The basis vectors of a

Krylov subspace are calculated by repeated application of a linear operator A on an

initial starting vector v.
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The basis vectors defining a Krylov subspace are constructed iteratively. The

linear operator A is applied to the starting vector v, getting

v1 = Av.

In later iterations, rather than applying A multiple times, the operator is applied to

the result of the previous iteration

vi = Avi−1, for i = 1, 2, . . . , m− 1, (1.6)

with v0 = v, the starting vector. The vectors {vi}m−1
i=1 are the basis vectors for the

Krylov subspace. Equation (1.5) can thus be written as

Km(A, v) ≡ span
{
v0, v1, . . . , vm−1

}
(1.7)

It is important to note that the linear operator used to construct a Krylov sub-

space does not need to be known explicitly; rather, the repeated application of the

operator on a vector must be known. This characteristic is sometimes referred to as

a matrix-free method and makes Krylov subspace methods particularly attractive to

Monte Carlo criticality applications, where an explicit form for the transport-fission

operator does not exist. To illustrate how Krylov subspace methods can estimate the

eigenvalues and eigenvectors of A, the power method—a straightforward implemen-

tation of a Krylov subspace method—will first be described.

1.3 Power Method

The power method is ideally suited for calculating eigenvalues and eigenvectors of

A with Monte Carlo particle transport. The process of sampling and transporting

4



particles can be performed iteratively. To do this we begin with an initial estimate of

the fundamental eigenvalue and fission source,
(
k0, v0

)
, and apply the linear operator,

A. The resulting fission source can then be sampled for the next iteration.

To illustrate this iterative procedure we rearrange Equation (1.4) and add sub-

scripts obtaining

vj+1 =
1

kj
Avj. (1.8)

Neutron positions are sampled from vj and transported by the application of A,

forming a new fission source vj+1. The fission source vj+1 is a new estimate of the

fundamental eigenvector. A new estimate of the fundamental eigenvalue can be cal-

culated as

kj+1 = kj

∫
Avj
∫
vj

= kj

∫
vj+1
∫
vj

. (1.9)

The integral of the fission source
∫
vj is the fission rate. In Monte Carlo calculations

it is the number of fission sites in the fission source, vj .

If A has a dominant eigenvalue λ1, that is if λ1 > λ2 ≥ λ3 · · · then the eigenpair
(

kj , vj

)

approaches the fundamental eigenpair (λ1 and associated eigenvector) as

j becomes large. To see how this happens let us write the initial estimate of the

fundamental eigenvector as a linear combination of the eigenvectors of A

v0 = c1y1 + c2y2 + · · ·+ cnyn, (1.10)

where y1, . . . , yn are the eigenvectors of A and c1, . . . , cn are scalar constants. When

we apply A to v0, we get

Av0 = c1Ay1 + c2Ay2 + · · ·+ cnAyn

= c1λ1y1 + c2λ2y2 + · · · + cnλnyn. (1.11)
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After j applications of A (iterations), Equation (1.11) becomes

Ajv0 = c1Ajy1 + c2Ajy2 + · · ·+ cnAjyn

= c1λ
j
1y1 + c2λ

j
2y2 + · · · + cnλ

j
nyn. (1.12)

We can factor the dominant or fundamental eigenvalue λ1 out of Equation (1.12) to

obtain

Ajv0 = λj
1



c1y1 + c2

(

λ2

λ1

)j

y2 + · · · + cn

(

λn

λ1

)j

yn



 . (1.13)

Note that every multiple of an eigenvector is also an eigenvector—the magnitude does

not matter. We can simplify Equation (1.13) by letting vj = Ajv0/λ
j
1. Using this in

Equation (1.13) we have

vj = c1y1 + c2

(

λ2

λ1

)j

y2 + · · ·+ cn

(

λn

λ1

)j

yn. (1.14)

Since λ1 is larger than the other eigenvalues, the factors
(
λi/λ1

)j
decrease as j in-

creases and Equation (1.14) becomes

vj = c1y1 + O
(

λ2

λ1

)j

. (1.15)

The power method generally requires many iterations before it has converged to

the fundamental eigenvalue. We can see from Equation (1.15) that vj approaches

the fundamental eigenvector as
(
λ2/λ1

)j
goes to zero; the ratio λ2/λ1 is called the

dominance ratio.

In Monte Carlo particle transport, while the eigenvalue is converging to the fun-

damental eigenvalue the results of the iterations are discarded. These iterations are

called inactive iterations. Once the power method has converged to the fundamental

eigenvalue, active iterations are begun. The eigenvalue estimate calculated during
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each active iteration is stored. We can calculate the mean and standard deviation of

the active eigenvalue estimates. The standard deviation can be used to estimate the

statistical uncertainty in the estimate of the mean.

One major problem with the power method is the slow rate of convergence to the

fundamental eigenvalue. When λ2 ≈ λ1—as it often is for an optically thick system—

then the dominance ratio is large (close to 1) and the power method converges slowly.

When the dominance ratio is large, many inactive iterations must be performed and

discarded. It is clear that needing fewer inactive iterations is computationally more

efficient than when more inactive iterations are required. Unfortunately for the power

method the number of inactive cycles required is dependent on the dominance ratio

of the problem.

1.4 Alternatives to the Power Method

Krylov subspace alternatives to the power method exist, including the Lanczos and

Arnoldi’s method of minimized iterations[2]. The Lanczos method is Arnoldi’s method

applied to hermitian matrices. Arnoldi’s method was chosen as the focus of this

dissertation because it can estimate multiple eigenpairs of any linear operator.

Like the power method, Arnoldi’s method only needs to know the application

of the linear operator on a vector. The operator is still applied iteratively, but the

resulting vectors are orthogonalized against all previously calculated basis vectors.

Arnoldi’s method can calculate multiple eigenmodes with little additional computa-

tional expense than is required for estimating the fundamental eigenmode.

This dissertation explores using Arnoldi’s method instead of the power method

for estimating eigenvalues and eigenvectors of the transport-fission operator A. In

Chapter 2, the basic Arnoldi’s method is presented and implementation in a Monte

Carlo particle transport code is descrived. Some new techniques used to transport un-
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physical, but nevertheless important, negative sources are also defined. In Chapter 3,

some challenges associated with the spatial discretization required for orthogonaliza-

tion of the Krylov subspace vectors is discussed. In Chapter 4, a strategy used to

reduce the computational expense of Arnoldi’s method is shown. In Chapter 5, the

convergence of the fission source and the accuracy of the estimated uncertainty us-

ing Arnoldi’s method is discussed, both issues of current interest in the Monte Carlo

particle transport community. Finally, in Chapter 6, this work is summarized and

introduces research and enhancements to Monte Carlo Arnoldi’s method that needs

to be investigated.
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Chapter 2

Arnoldi’s Method for Monte Carlo

Particle Transport

As described in the introduction, the power method has been the method of choice

for calculating eigenvalues and eigenvectors for Monte Carlo criticality applications.

The power method is suited well for this type of calculation because of its simple,

matrix-free implementation.

The power method, however, has a few drawbacks. The rate of convergence to

the fundamental eigenvalue—determined by the dominance ratio of the first higher-

order eigenvalue to the fundamental eigenvalue—can be too small. It is also limited

to calculating one eigenvalue at a time. Other Krylov subspace methods exist that

have some of the same positive benefits of the power method, but also address the

negative aspects that make the power method slow and limited. Chief among these

is Arnoldi’s method.

Arnoldi’s method [2] is just one such method from the class of Krylov subspace

methods. While its implementation is not as straightforward as with the power

method, an explicit form of the transport-fission operator remains unnecessary; we

only need to know how to apply the operator to a fission source. In this sense,

Arnoldi’s method is as equally suited to Monte Carlo criticality applications as the

power method, but it has never been studied in this application. In this disserta-
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tion, the first Monte Carlo application of Arnoldi’s method for particle transport is

demonstrated.

Arnoldi’s method has advantages over the power method that may prove to make

the difficulty in its implementation a small matter. One benefit Arnoldi’s method

brings to Monte Carlo particle transport is the ability to calculate multiple eigen-

values and eigenvectors with minimal extra computational expense over what is re-

quired to calculate the fundamental mode. In addition, the fission source converges

faster in Arnoldi’s method than in the power method, reducing the number of in-

active iterations required. In this chapter the basic Arnoldi method and the Monte

Carlo implementation for particle transport is introduced. The ability of Monte Carlo

Arnoldi’s method to calculate multiple eigenpairs of the fission-transport operator is

also demonstrated. Arnoldi’s superior performance in converging the eigenvalue and

the fission source is shown in Chapter 5.

2.1 Arnoldi’s Method

Arnoldi’s method generates a Krylov subspace similar to Equation (1.7) except at

each iteration the basis vectors {vi}m
i=1 are orthogonalized against all the previously

calculated Arnoldi vectors and normalized. The basis vectors that form the Krylov

subspace are called Arnoldi vectors [see 31, pp. 435-438].

An Arnoldi process begins with a normalized vector

v1 =
v

‖v‖2

, (2.1)

where

‖v‖2 =





n∑

i=1

|vi|2




1/2

(2.2)
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is the Euclidean norm. We then apply the linear operator to v1 and orthogonalize

the result against v1, yielding

ṽ2 = Av1 − 〈Av1, v1〉v1 = Av1 − h1,1v1. (2.3)

where

hjm = 〈Avm, vj〉 (2.4)

is the inner product between the vectors vm and vj

∫

vm(x)vj(x) dx.

Then we normalize ṽ2

v2 =
ṽ2

‖ṽ2‖2

=
ṽ2

h2,1

. (2.5)

This process continues iteratively; at the m-th iteration we have

ṽm+1 = Avm −
m∑

j=1

hjmvj (Orthogonalization) (2.6a)

vm+1 =
ṽm+1

hm,m+1
(Normalization). (2.6b)

The process of orthogonalization and normalization involves the calculation of the

values hjm. These values are the elements of an upper-Hessenberg matrix, Hm+1,m.

(An upper Hessenberg matrix is upper triangular except that the first subdiagonal is

non-zero.) We can write the m-th Arnoldi iteration in matrix form as

AVm = Vm+1Hm+1,m, (2.7)

where the columns of Vm are the Arnoldi vectors and the elements of Hm+1,m are

the results of the inner products of Arnoldi vectors as described in Equation (2.4).
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If we separate the last column of Vm+1 and the last row of Hm+1,m we obtain from

Equation (2.7)

AVm = VmHm + vm+1hm+1,me
T
m (2.8)

where em is the m-th standard basis vector, vm+1 is the Arnoldi vector calculated

during the m-th Arnoldi iteration and hm+1,m is the normalization factor for the new

Arnoldi vector. Thus we see that at the m-th Arnoldi iteration we add a row and a

column to VmHm.

Equation (2.8) is called the Arnoldi factorization and is an important equation in

further analysis of Arnoldi’s method.

2.1.1 Finding Ritz Pairs from Arnoldi Factorization

The Arnoldi process generates an upper-Hessenberg matrixHm which is the projection

of A onto the Krylov subspace defined by the Arnoldi vectors. Since Hm is generated

after a small number of iterations its size is small and we can find its eigenvalues and

eigenvectors with relative ease. The eigenpairs of Hm,
(
µi, xi

)
can be used to find Ritz

pairs—approximate eigenpairs—of A. To see this multiply the Arnoldi factorization,

Equation (2.8) on the right by an eigenvector of Hm, xi

AVmxi = Vm

(
Hmxi

)
+ vm+1hm+1,me

T
mxi

AVmxi = Vm

(
µixi

)
+ vm+1hm+1,me

T
mxi

Ayi = µiyi + vm+1hm+1,me
T
mxi, (2.9)

where yi = Vmxi.
(
µi, yi

)
is a Ritz pair of A or an approximation to an eigenpair of

A. The Ritz vector yi is just the product of the Arnoldi vectors and an eigenvector

of Hm.

The residual is defined as

rm ≡ Ay − µy. (2.10)
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We can see from Equation (2.9) that the magnitude of the residual is just the mag-

nitude of the last element of the eigenvector xi times hm+1,m

|rm| =
∥
∥Ay − µy

∥
∥ =

∣
∣
∣hm+1,m

∣
∣
∣ |emxi| . (2.11)

It is easy to see that if the residual is zero, then the Ritz pair is an eigenpair of

A. The residual is therefore a good indication—but not a guarantee—of the quality

of the eigenpair approximation; in fact a small residual guarantees that
(
µ, x

)
is an

exact eigenpair of a matrix close to A [see 31].

2.1.2 Explicitly Restarted Arnoldi

As Arnoldi’s method proceeds, each iteration adds one Arnoldi vector, and the size

of Krylov subspace expands. The increase in the number of Arnoldi vectors and the

size of the Krylov subspace is problematic. First, the memory requirements increase

and second, it is computationally more expensive because there are more vectors that

the newest Arnoldi vector must be orthogonalized against.

Arnoldi’s method begins with an estimate of the fundamental eigenvector After a

few Arnoldi iterations we have a better estimate of the fundamental eigenvector than

what we started with. We can therefore restart Arnoldi’s method using the better

estimate of the eigenvector as the starting vector for the Arnoldi process. The idea of

starting Arnoldi’s method using the results of several previous iterations of Arnoldi’s

method is known as Restarted Arnoldi’s method (RAM) and was first proposed by

Saad [21].

Arnoldi’s method can be restarted repeatedly, each time starting with an improved

starting vector that is a linear combination of the estimates of the desired eigenvec-

tors of A. Each sequence of several iterations and a calculation of the Ritz pairs of

A is called a restart. Restarting Arnoldi’s method saves computational expense by
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reducing the number of Arnoldi vectors that we must orthogonalize against and re-

duces memory requirements as fewer Arnoldi vectors must be stored. Each iteration

adds one basis vector to the Krylov subspace so the size of the Krylov subspace is

the same as the number Arnoldi vectors. The size, m, of the Krylov subspace is also

the size of the upper-Hessenberg matrix Hm ∈ R
m×m and is therefore the number of

eigenpairs that can be estimated in one restart. Although not necessary, the number

of iterations in each restart is generally the same.

The estimated eigenvectors of A form a basis that we can use in a linear expansion

to represent a vector,

v̂ = c1y1 + c2y2 + · · ·+ cnyn, (2.12)

where the yi’s are the estimated eigenvectors of the linear operator A and the ci’s

are some expansion coefficients. If the j eigenvalues largest in magnitude are desired,

then we would like to have our initial vector be

v̂ = c1y1 + · · ·+ cjyj + 0 yj+1 + · · ·+ 0 yn; (2.13)

i.e., we want to suppress any information from the undesired portion of the spectrum

of A.

The initial vector will most likely contain significant components of all the eigen-

vectors. We can reduce the components from eigenvectors from the undesired region

of the spectrum by forcing cj+1 = · · · = cn = 0. The initial vector then becomes

v̂ = c1y1 + · · · + cjyj. (2.14)

The value of the coefficients c1, c2, . . . , cj are not important and are conveniently

chosen to be 1. When Arnoldi’s method is restarted using v̂ from Equation (2.14)

as the initial vector for a new Arnoldi restart, it is an explicit restart and will be
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referred to as explicitly restarted Arnoldi’s method (ERAM). It is implemented by

only summing the vectors x1 + · · ·+ xj and ignoring the other eigenvectors.

2.2 Monte Carlo Implementation of Explicitly Restarted

Arnoldi’s Method

Now that the basic restarted Arnoldi’s method has been described, we can proceed

to show how it can be implemented in a Monte Carlo particle transport application.

First we note that eigenvalue estimates are made at the end of every restart. Eigen-

value estimates could have been made at every iteration, but that takes additional

computational expense. A choice was made to calculate and store the eigenvalue

estimates at the end of every restart to reduce this cost. The mean and standard

deviation of these stored eigenvalue estimates can be calculated. In this sense, an

Arnoldi restart is similar to a power method iteration.

In conjunction with the eigenvalues, the eigenvectors of the transport-fission op-

erator are estimated at the end of each restart. The eigenvectors (yi) are normalized

such that
∫

yi(x)
2 dx = 1 (2.15)

and stored. The mean of the eigenvectors can also be calculated, but we must be

careful that we sum appropriate values of the eigenvectors. For example, suppose

the fundamental eigenvector estimate from one restart has the opposite sign as the

fundamental eigenvector estimate from another restart. (Eigenvectors are unique

only up to a multiplicative constant so both estimates are valid.) Prior to adding

a new eigenvector estimate when calculating the mean, the dot product of the new

eigenvector estimate with the previous eigenvector estimate is calculated. If the dot

product is negative, the new eigenvector is multiplied by −1. This preserves the

normalization given in Equation (2.15).
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The application of the linear operator in Equation (2.6a) was described in Sec-

tion 1.1. In brief, neutrons are sampled from the fission source vk, transported and

the position of the neutrons at the time they initiate fission is stored, creating a new

fission source, ṽk+1.

2.2.1 Negative Sources

When using the power method to calculate the fundamental eigenmode for critical-

ity calculations, we are guaranteed that the solution is everywhere positive and the

vectors that are sampled from at each iteration are also everywhere positive. With

Arnoldi’s method we are not so fortunate. The process of orthogonalization guaran-

tees that some of the Arnoldi vectors will be partially negative. This presents two

challenges to Monte Carlo particle transport: first, a negative source means a negative

flux which is not physical and second, to sample from a source it must be assumed

to be everywhere positive.

To sample from a distribution, it must be everywhere positive and integrate to 1.

If p(x) is a probability distribution function, the quantity p(x) dx is the probability

of choosing a point in dx about x. For a fission source v(x) which may have negative

regions it is first normalized such that

∫
∣
∣v(x)

∣
∣ dx = q (2.16a)

p(x) =

∣
∣v(x)

∣
∣

q
. (2.16b)

With this normalization, the quantity p(x) dx is the probability of choosing a point

in dx about x. A neutron position xs is sampled from p(x) and is given an initial

weight of

ω =
v(xs)
∣
∣v(xs)

∣
∣
, (2.17)
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or, alternatively

ω =







1, v(xs) > 0

−1, v(xs) < 1.

(2.18)

Neutrons sampled where v(xs) < 0 reduce the tally where they score; neutrons sam-

pled where v(xs) > 0 contribute positively to the tally where they score. A neutron

is never sampled where v(xs) = 0 because there the probability of choosing this point

is exactly zero.

Once a particle has been sampled, Monte Carlo transport proceeds as usual, with

the neutron scoring ω
(

νΣf/ΣT

)

in the proper bin at each collision. If non-analog

Monte Carlo is being done, particle weight is reduced at each collision and Russian

Roulette is played if the absolute value of the weight becomes small. Giving a neutron

a signed weight does not interfere with any variance reduction or tallying techniques.

At alternative approach to applying A to v(x) this way is to separate v(x) into its

positive and negative parts, v(+)(x) and v(−)(x) respectively, and apply the transport-

fission operator to each part independently

Av(x) = Av(+)(x) −A
∣
∣
∣v(−)(x)

∣
∣
∣ . (2.19)

The first approach does this directly by assigning the weights as described. The

first approach is also superior because it samples the positive and negative parts

proportionately to the magnitude of the positive or negative part; the second approach

would use the same number of particles to apply the linear operator for both the

positive and negative part, even if one part is significantly larger than the other.

Once the sampling of a fission source, transporting particles, and creation of a new

fission source is completed the new fission source is normalized per source particle
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and multiplied by integral of the absolute value of the previous source

vj+1(x) = Avj(x)
1

N

∫

|vj(x)| dx, (2.20)

where vj(x) is the source we sample from and Av(x) is the new source created after

sampling from vj(x) and transporting. This scaling is similar to the scaling performed

in the power method shown in Equation (1.8) and Equation (1.9). After the vector

has been properly scaled, Arnoldi’s method continues with orthogonalization and

normalization of the newest Arnoldi vector.

2.2.2 Spatial Discretization

The orthogonalization and normalization of the basis vectors in Arnoldi’s method

requires taking the inner product of two vectors

〈vj , vk〉 =

∫

vj(x)vk(x) dx. (2.21)

In Monte Carlo Arnoldi’s method we must take the inner product of two fission

sources. To do this, the fission source is represented as a linear combination of

piecewise constant functions

vΠ(x) =

B∑

b=1

abΠb(x), (2.22)

where B is the number of spatial bins and

Πb(x) =







(
1

∆xb

)1/2

, xb ≤ x < xb+1

0, otherwise,

(2.23)
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where ∆xb =
(
xb+1 − xb

)
is the width of bin b. The term ab

√
∆xb is the number

of fission neutrons generated in the spatial bin b, x ∈
[
xb, xb+1

)
. Note that, to sam-

ple from vΠ(x), we first sample a bin and then sample uniformly within the bin to

determine the position of the particle.

Representing the fission source with a piecewise-constant-in-space approximation,

the elements of the Arnoldi vectors are just the expansion coefficients

vΠ =
[
a1, a2, . . . , aB

]T
, (2.24)

and the inner product between two fission sources is defined as

〈v(j)
Π , v

(k)
Π 〉 =

B∑

b=1

a
(j)
b a

(k)
b , (2.25)

where a(j)
b and a(k)

b are the expansion coefficients from the fission sources v(j)
Π and v(k)

Π

respectively.

Applying A to a vector of coefficients {ab}B
b=1 simply requires sampling the piece-

wise constant source function vΠ(x) in Equation (2.22), transporting these neutrons

until they cause another fission, and tallying the resulting fission neutrons over the

bins [see 7]. This generates a truncation error.

With this representation of the fission source, the sampling techniques described

in Section 2.2.1 can be used and the inner product between two fission sources have

been defined. To estimate the mean eigenvector, we can simply calculate the mean

value of the coefficient in each bin.

2.3 Numerical Results

Everything necessary for a Monte Carlo application of explicitly restarted Arnoldi’s

method has been described. To demonstrate how Monte Carlo Arnoldi’s method can
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calculate multiple eigenvalues and eigenvectors of the transport-fission operatorm

a few simulations of a homogeneous, semi-infinite slab of multiplying material are

shown. The simulations shown here were chosen to match results published by [12, 20]

and [9]. The cross sections are: νΣf = 1.0, Σa = 0.2, Σs = 0.8 with Σt = 1.0, thus

the mean free path for this geometry is 1/Σt = 1.0. I will show the results of slabs

with width 0.2, 2.0 or 20 mfp.

For each slab width I have run two simulations; one simulation using Arnoldi’s

method and the other simulation using the power method for comparison. In every

simulation 105 particles are tracked in an iteration. The power method has 250

inactive and 1000 active iterations while Arnoldi’s method has 25 inactive and 100

active restarts with 10 iterations in each restart. Therefore the Krylov subspace size

is 10. The number of inactive and active iterations in each method is the same. The

total number of particles tracked in each simulation is also the same. The slab is

discretized into 50 spatial bins for the 0.2 mfp problem and 75 spatial bins for the 2.0

and 20 mfp problems.

The results of these simulations are shown in Table 2.1, along with the dominance

ratio (DR) for each of the three slab widths. The fundamental eigenvalue estimates

are shown for both the power method and Arnoldi’s as well as the first and second

harmonic eigenvalue estimates from Arnoldi’s method. The published results from

[12, 20] and [9] are given as the reference. Almost all the eigenvalue estimates are

within one standard deviation of the reference solution. The only exceptions are the

second harmonic estimates for the 2.0 and 20 mfp thick problems and they are both

within two standard deviations of the reference solution.

The figure of merit (FOM) and computational time for each simulation is given

in Table 2.2. The figure of merit is a measure of the efficiency of a Monte Carlo

calculation. The variance of a Monte Carlo eigenvalue calculation goes as
√

1/N ,

where N is the number of eigenvalue estimates. The computational expense should
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Width
Method Eigenvalue

Standard
Reference Error

(mfp) Deviation

0.2
Power 0.329979 6.3×10−5 0.330000 2.1×10−5

Arnoldi
0.33008 1.8×10−4 0.33000 8.3×10−5

DR = 0.23997
0.07911 1.5×10−4 0.07919 7.6×10−5

0.04493 1.6×10−4 0.04499 5.8×10−5

2.0
Power 2.09593 2.7×10−4 2.09599 6.0×10−5

Arnoldi
2.09652 6.9×10−4 2.09599 5.3×10−4

DR = 0.4015
0.84183 5.8×10−4 0.84150 3.3×10−4

0.48279 4.5×10−4 0.48230 4.9×10−4

20
Power 4.82734 6.3×10−4 4.82780 4.6×10−4

Arnoldi
4.8290 1.5×10−3 4.8278 1.2×10−3

DR = 0.9079
4.3827 1.4×10−3 4.3831 4.2×10−4

3.8152 1.4×10−3 3.8174 2.2×10−3

Table 2.1: Eigenvalue estimates from power method and Arnoldi’s method for slab
geometries of width 0.2, 2.0 and 20 mfp. Reference values taken from [12], and [9].

be directly proportional to the number of eigenvalue estimates. The figure of merit

is therefore defined to be

FOM ≡ 1

σ2T
(2.26)

where σ2 is the variance and T is the time required to perform the Monte Carlo

calculation.

Width
Method

Fundamental Standard
FOM

Time
(mfp) Eigenvalue Deviation (sec)

0.2
Power 0.329979 6.3×10−5 1.7×106 149.0
Arnoldi 0.33008 1.8×10−4 3.3×105 95.3

2.0
Power 2.09593 2.7×10−4 5.5×104 258.1
Arnoldi 2.09652 6.9×10−4 9.8×103 212.5

20
Power 4.82734 6.3×10−4 5.4×103 463.0
Arnoldi 4.8290 1.5×10−3 1.1×103 378.5

Table 2.2: Eigenvalue estimates, figure of merit for fundamental eigenvalue from the
power method and Arnoldi’s method for slab geometries of width 0.2, 2.0, and 20
mfp.
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We see that the figure of merit is always larger for the power method than for

Arnoldi’s method, but that the Arnoldi simulations run faster. The figure of merit

for the power method is larger than the figure of merit for Arnoldi’s method by a

factor of 5 while the computational time for the power method is 1.6 times larger

than Arnoldi’s method for the 0.2 mfp simulation and 1.2 times larger than Arnoldi’s

method for the 2.0 and 20 mfp simulations.

The power method has many (10 times for these simulations) more eigenvalue es-

timates because it calculates an estimate after every iteration while Arnoldi’s method

calculates an estimate after each restart consisting of many iterations. Thus for the

same number of particles tracked (computational expense, T ) the power method has

many more eigenvalue estimates and therefore its variance is smaller, and the FOM

is larger.

We can calculate the spread of the eigenvalue estimates from each method. The

spread is the root mean sqared difference of the eigenvalue estimates, xi, from x, the

mean eigenvalue estimate;

s ≡

√
√
√
√ 1

N

N∑

i=1

(xi − x)2.

This should not be confused with the population standard deviation

σ ≡

√
√
√
√
√

1

N − 1




1

N

N∑

i=1

(xi − x)2





which is called simply the standard deviation in this dissertation. The spread of the

fundamental eigenvalue estimates from the active iterations/restarts for the three slab

widths is shown in Table 2.3. We can see that even though the standard deviation of

the mean is larger in Arnoldi’s method than in the power method, the spread of the

eigenvalue estimates is smaller in Arnold’s method than in the power method. From
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this we can conclude that the estimate of the standard deviation (and thus the figure

of merit) is dominated by the number of eigenvalue estimates.

The figure of merit isn’t a complete comparison between these two methods. It

only measures the efficiency of estimating one eigenvalue, but in Arnoldi’s method

we have estimates of the first three eigenvalues at no additional cost. Furthermore,

because we are electing to compare multiple eigenvalues, we have fewer eigenvalue

estimates to average together in Arnoldi’s method.

0.2 mfp 2.0 mfp 20 mfp

Power 0.0020 0.0084 0.0201
Arnoldi 0.0018 0.0069 0.0153

Table 2.3: Spread of active fundamental eigenvalue estimates from the power method
and Arnoldi’s method for slab geometries of width 0.2, 2.0, and 20 mfp.

Graphical results for the 20 mfp thick slab are shown in figures 2.1–2.2. In Fig-

ure 2.1 we see the eigenvalue convergence for the fundamental and first two harmonic

eigenvalue estimates. Both inactive and active iterations are shown; the active iter-

ations are the running average of the active eigenvalue estimates. We can see that

the spread of the estimates of the fundamental eigenvalue from Arnoldi’s method is

smaller than the estimates from the power method. Black lines are drawn indicating

the reference values published in [12] and [9]. It appears that all three eigenvalue

estimates agree with the reference solution. However we know from Table 2.1 that

the estimate of the second harmonic is just outside of one standard deviation.

Figure 2.2 shows the fundamental eigenvector estimate from the power method

and Arnoldi’s method as well as a reference solution from an SN code. We see that

both the power method and Arnoldi’s method accurately estimate the fundamental

eigenmode. Figure 2.3 shows the fundamental eigenvector and the first two harmonics

all calculated by Arnoldi’s method. The higher-order eigenmodes of a semi-infinite
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slab are similar to the higher modes of the cosine function as expected [see 10, pg.

173].

The results of the 0.2 and 2.0 mfp simulations are shown in Figures 2.4a–2.5b.

The results are similar to what we have seen for the 20 mfp problem.
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Figure 2.1: Eigenvalue estimates for the power method and Arnoldi’s method for the 20 mfp thick slab. The heavy lines indicate
the reference eigenvalues.
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Figure 2.2: Fundamental eigenvector estimates from the power method and Arnoldi’s method for the 20 mfp thick slab. The
heavy line shows the SN solution.
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Figure 2.3: Fundamental and first and second harmonic eigenvector estimates from Arnoldi’s method for the 20 mfp thick slab.
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Figure 2.4: Eigenvalue and eigenvector estimates from power method and Arnoldi’s
method for the 0.2 mfp thick slab. Heavy lines show reference solution from [12] and
[9].
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Figure 2.5: Eigenvalue and eigenvector estimates from power method and Arnoldi’s
method for the 2.0 mfp thick slab. Heavy lines show reference solution from [12] and
[9].
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2.3.1 Discretization Error

One of the benefits of Monte Carlo particle transport is the ability to use exact

geometry without discretization. This is true for the transport of particles in the

power method, but the fission source must be discretized for tallying. Arnoldi’s

method, on the other hand, must have a discretized source in order to orthogonalize

the Arnoldi vectors, as described in Section 2.2.2.

The discretization of the fission source can lead to an error in the estimated

eigenvalue if an insufficient number of spatial bins are used to represent the fission

source. To illustrate this effect a series of simulations is shown using the same slab

of multiplying material with varying number of spatial bins. The slab here is exactly

the same as for the 20 mfp problem shown earlier (νΣf = 1.0, Σa = 0.2, Σs = 0.8

with Σt = 1.0). This time 105 histories are tracked per iteration with 50 inactive

restarts and 500 active restarts. The increase in the number of histories and restarts

is to reduce the statistical uncertainty to ensure the error can be seen outside the

noise. This simulation was performed eleven times varying the number of spatial

discretization bins from 10 to 150.

The results of these simulations are shown in Table 2.4 for the fundamental eigen-

value. We can see that the uncertainty in the eigenvalue estimate (standard deviation)

is relatively independent of the number of spatial bins. The error in the eigenvalue

estimate is the absolute value of the difference between the eigenvalue estimate and

the reference solution. We see that the error in the eigenvalue estimate is larger than

the statistical uncertainty for bin widths ≤ 0.5 mfp thick. For bin widths greater

than 0.5 mfp thick the error is less than the statistical uncertainty.

The data from Table 2.4 is shown graphically in Figure 2.6. The error in the

eigenvalue estimate for the first two harmonics are also shown in Figure 2.6. The

error in the eigenvalue estimate is denoted marked as B for each of the eigenvalue

30



estimates. Best fit lines are drawn through the points on the graph. We see that

there is a very good linear fit to these data points.

# of Bins Bin Width (mfp) Eigenvalue Uncertainty Error FOM

10 2.00 4.8003 6.6×10−4 2.7×10−2 831.2
25 0.80 4.8224 6.8×10−4 5.3×10−3 773.2
40 0.50 4.8251 6.3×10−4 2.6×10−3 872.0
50 0.40 4.8273 6.5×10−4 4.2×10−4 829.0
60 0.33 4.8258 6.9×10−4 2.0×10−3 704.3
75 0.27 4.8275 6.7×10−4 2.4×10−4 753.0
90 0.22 4.8277 6.7×10−4 4.2×10−5 746.1
105 0.19 4.8277 6.9×10−4 5.2×10−5 698.3
120 0.17 4.8282 6.5×10−4 4.1×10−4 767.8
135 0.15 4.8274 7.0×10−4 3.1×10−4 656.9
150 0.13 4.8285 6.4×10−4 7.5×10−4 792.0

Table 2.4: Eigenvalue estimates of the fundamental eigenvalue from Arnoldi’s method
and the error in the estimate. The error is the difference between the estimate and
the reference value (λ0 = 4.8278, see [12] and [9]).
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Figure 2.6: Discretization error for Arnoldi’s method. The error is the difference between the eigenvalue estimate from Arnoldi’s
method and the reference value given in Table 2.1.
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2.4 Variance

One of the problems with Monte Carlo particle transport is the underestimation of

the variance of the mean eigenvalue estimate. This topic has received considerable

attention lately [6]. In this section I will investigate how this issue manifests itself in

Arnoldi’s method.

The process of using the fission source calculated in a previous iteration as the

source of neutrons for the current iteration causes the uncertainty in the eigenvalue

(or some other tally) to be too small. The mean X and standard deviation σX for

some tally X are calculated as

X =
1

N

N∑

n=1

Xn, (2.27a)

σX =






1

N − 1




1

N

N∑

n=1

X2
n



−X
2






1/2

, (2.27b)

where Xn is one estimate of the tally and N is the number of estimates. Equations

(2.27) assume that each estimate is independent of all the others. Because of the

procedure of using previous sources to generate the next source, the sources are cor-

related. Kiedrowski and Brown [16] explain it best, “If the concentration of fission

neutrons at a location within a cycle [iteration] is statistically high, the concentra-

tion of fission neutrons in the next cycle is likely to be higher than average as well.

The same applies if the concentration is statistically low. This implies a positive

correlation between the fission source distributions.”

Using Equation (2.27b) to estimate the standard deviation with correlated esti-

mates causes the calculated standard deviation to be too small [see 6]. A standard

deviation that is too small would give immoderate confidence in the eigenvalue.
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2.4.1 Numerical Results

While there is no immediate way to reduce or eliminate the correlation between

iterations, we can calculate the true standard deviation by running many independent,

identical simulations and compute the mean and standard deviation of all of these.

This can then be compared to the standard deviation of an individual run.

For this calculation a 50 mfp thick, homogeneous slab is used with cross sections:

νΣf = 1.0, Σa = 0.2, and Σs = 0.8; Σt = 1.0. The fundamental eigenvalue for this

geometry is 0.997520. Both the power method and Arnoldi’s method are run so as

to compare the results. In Arnoldi’s method, 100 inactive and 100 active restarts are

used with 25 iterations per restart. For the power method 2500 inactive and 2500

active iterations are used. Both methods track 500,000 particles per iteration. Each

method has 100 independent simulations.

The results of this study are shown in Table 2.5. I show the mean of the eigenvalue

estimate from the 100 simulations, the mean of the standard deviations from the

simulations and the true standard deviation. The true standard deviation is the

standard deviation of eigenvalue estimates from all the simulations, while the mean

reported standard deviation is the mean of the reported standard deviations from the

simulations.

Method
Mean Mean Reported True Standard Percent

Eigenvalue Standard Deviation Deviation Difference

Power 0.99752 2.4×10−5 2.7×10−5 -11.1
Arnoldi 0.9974 1.1×10−4 9.7×10−5 13.4

Table 2.5: Mean eigenvalue estimate of fundamental eigenvalue from Arnoldi’s method
and the power method from 100 independent simulations. The mean reported stan-
dard deviation is the mean of the standard deviation from the 100 independent simu-
lations. The true standard deviation is the standard deviation of the eigenvalue esti-
mates from the 100 independent simulations. The difference is (Reported-True)/True.

We see from these results that both Arnoldi’s method and the power method

report a standard deviation that is different from the true standard deviation by about
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10%. The problem is that the power method underpredicts the standard deviation.

For Arnoldi’s method we can have confidence that—at least for this problem—the

reported standard deviation is larger than true standard deviation.

2.5 Summary

In this chapter the basic explicitly restarted Arnoldi’s method for Monte Carlo particle

transport has been described. It has been shown that Monte Carlo Arnoldi’s method

estimates the fundamental eigenvalue as well as first two higher-order eigenmodes

within statistical uncertainty of published results; the eigenvectors are similar to

cosine functions as they are expected to be.

Arnoldi’s method suffers from two problems; the discretization of the fission source

causes an error in the estimate of the eigenvalue, and a smaller figure of merit than the

power method. These issues are addressed in Chapter 3 and Chapter 4 respectively.
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Chapter 3

Spatial Discretization

In Chapter 2 necessity of spatially discretizing the fission source in order to take the

inner product was introduced. The inner product is necessary for orthogonalizing and

normalizing the Arnoldi vectors. The discretization causes an error in the eigenvalue

estimate if the discretization is too coarse.

The effect of discretization was demonstrated in Section 2.3 and in Figure 2.6 the

error in the eigenvalue estimate is shown as a function of the spatial bin width. We

see from this figure the importance of having a sufficient number of spatial bins to

eliminate discretization errors. Using a large number of spatial bins will remove the

error in the eigenvalue estimate associated with discretization, but can increase the

computational expense of sampling from and scoring in a fission source, as well as

taking the inner product of two fission sources if too many bins are used.

When sampling from a discretized fission source, or tallying in a discretized fission

source, the bin to sample/tally must be determined. The time required to find the

appropriate bin is proportional to the number of spatial bins used, so as the number

of spatial bins increases, the time required for sampling or tallying increases and the

figure of merit decreases.

When choosing a discretization strategy, it is important to find the smallest num-

ber of spatial bins that will reduce the eigenvalue error due to spatial discretization
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smaller than the statistical uncertainty. We must be careful not to use too many

spatial bins or the efficiency will suffer.

In Figure 2.6 we see that the slopes of the linear best fit approximations have

values ranging from 1.8 to 1.9. This indicates there is a nearly quadratic or second-

order relationship between the spatial discretization and the error in the eigenvalue

estimate. In this chapter I will demonstrate a higher order accurate approximation to

the spatial discretization and show how it reduces the error caused by the discretiza-

tion of the fission source. This idea is based on work performed by Griesheimer [14]

on Functional Expansion Tallies.

3.1 Second-Order Accurate Approximation—Linear

in Space

The spatial approximation used in Chapter 2 is a first-order accurate approximation,

i.e. constant in space. The fission source was approximated as

vΠ(x) =

B∑

b=1

abΠb(x), (3.1)

where B is the number of spatial bins and

Πb(x) =







(
1

xb+1−xb

)1/2

, xb ≤ x < xb+1

0, otherwise.

(3.2)

The fission source, vΠ(x) is represented in Arnoldi’s method as a vector of the form

vΠ =
[
a1, a2, . . . , aB

]T
. (3.3)
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A spatial discretization of order 2 is not very different from the first-order accurate

approximation given in Equation (3.1) and Equation (3.2). We approximate the

fission source as a linear combination of functions

vL(x) =
B∑

b=1

Lb(x, αb, βb), (3.4)

where B is the number of spatial bins. The fission source in each bin is approximated

by a linear function, Lb(x, αb, βb), over the range of the bin:

Lb(x, αb, βb) =







αb + βbx, xb ≤ x < xb+1

0, otherwise.

(3.5)

In this second-order accurate approximation the term βbx is included which preserves

some of the spatial information ignored in a first-order accurate approximation. Sim-

ilarly to the first-order accurate approximation, the Arnoldi vector representation of

vL is a vector of the form

vL =
[
α1, β1, α2, β2, . . . , αn, βB

]T
. (3.6)

The inner product between two piecewise linear in space fission sources is defined to

be

〈v(j)
Π , v

(k)
Π 〉 =

B∑

b=1

(

α
(j)
b α

(k)
b + β

(j)
b β

(k)
b

)

. (3.7)

3.1.1 Sampling

The integral

qb =

∫
∣
∣Lb(x, αb, βb)

∣
∣ dx (3.8)

38



represents the rate of fission neutrons generated in the range
[
xb, xb+1

)
and its magnitude—

relative to the integrals over every other bin—is the probability of sampling a neutron

from that bin. We can create a normalized, discrete distribution p(x) =
{
pb

}B

b=1
where

pb = qb/Q and Q =
∑B

b=1 qb is the total source strength. We can sample a bin from

p(x) as we did for a first-order fission source. Once a bin has been chosen, the position

of the neutron is sampled from within the bin with the distribution function defined

as

pb(x) =
1

qb

∣
∣Lb(x, αb, βb)

∣
∣ (3.9)

where qb is from Equation (3.8). Once the position of the neutron has been sampled

we give it a weight just as in Section 2.2.1

ω =







1 v(xs) > 0

−1 v(xs) < 1.

(3.10)

3.1.2 Determining the Expansion Coefficients α and β

With the fission source being approximated by the function in Equation (3.5) we turn

our attention to determining the expansion coefficients α and β. To do this we must

evaluate two integrals, something that is is well suited for Monte Carlo methods. We

first define the midpoint of bin b

xb,mid =
xb+1 + xb

2
. (3.11)
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Taking the zeroth and first spatial moments over the bin

∫ xb+1

xb

Lb(x, αb, βb) dx =
1

2

(
xb+1 − xb

) [

2αb + βb

(
xb+1 + xb

)]

(3.12a)

∫ xb+1

xb

(

x− xb,mid

)

Lb(x, αb, βb) dx =
βb

12

(
xb+1 − xb

)3
(3.12b)

gives two equations for αb and βb. The left-hand side of Equation (3.12) can be

evaluated via Monte Carlo

∫ xb+1

xb

Lb(x, αb, βb) dx =
1

N

N∑

i=1

ωi (3.13a)

∫ xb+1

xb

(

xi − xb,mid

)

Lb(x, αb, βb) dx =
1

N

N∑

i=1

(

x− xb,mid

)

ωi (3.13b)

where N is the number of source particles and ωi and xi are the weight and position

of the particle that induces fission in bin b. Note that ωi can be negative. By equating

Equation (3.12a) with Equation (3.13a) and Equation (3.12b) with Equation (3.13b)

we can obtain expressions for αb and βb

αb =
1

xb+1 − xb

1

N

N∑

i=1

ωi −
βb

2

(
xb+1 + xb

)
(3.14a)

βb =
12

(
xb+1 − xb

)3

1

N

N∑

i=1

(

xi − xb,mid

)

ωi (3.14b)

For Monte Carlo particle transport this means every time a fission is caused in bin

b the tallies ωi and
(

xi − xb,mid

)

ωi are recorded. At the end of the iteration, when

the sampling and tallying are finished, the fission source is normalized similarly to

the constant in space approximated source (Equation (2.20))

v
(j+1)
L

(x) = Av(j)
L

(x)

∫

|v(j)
L

(x)| dx. (3.15)
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Notice the difference between Equation (3.15) and Equation (2.20) is the term 1/N

is missing here. The source is still scaled by the number of source particles in Equa-

tion (3.14a) and Equation (3.14b).

3.2 Numerical Results

To demonstrate the difference between a first and second-order accurate approxima-

tion to the fission source a series of simulations, similar to those given in Section 2.3.1

has been performed. In Section 2.3.1 the effect of the coarseness of the spatial dis-

cretization on the bias of the eigenvalue estimate was shown by performing the same

calculation but varying the number of spatial bins. Here, the same set of calculations

is performed, a second-order accurate, linear in space approximation is used to the

fission source. The results will be compared with the results from Section 2.3.1.

The problem is a 20 mfp thick semi-infinite homogeneous slab of multiplying

material with cross sections νΣf = 1.0, Σa = 0.2, and Σs = 0.8; Σt = 1.0. In each

iteration 105 histories are tracked, 10 iterations per restart with 50 inactive restarts

and 500 active restarts. The number of spatial bins range from 10 to 150. Both first

and second order approximations start with a uniform source across the entire slab.

First-order accurate results are denoted with a subscript Π and second-order accurate

results are denoted with a subscript L.

On the following pages I present tables showing the numerical results of the bias

and uncertainty of the estimated eigenvalues. Tables 3.1a and 3.1b show the results for

the fundamental eigenvalue for the first and second-order accurate approximations,

respectively. In each of these tables is the eigenvalue estimate (λ), the standard

deviation (σ), the error in the eigenvalue estimate (B) and the figure of merit (FOM).

The error is the absolute value of the difference between the estimated eigenvalue and

the published reference values from [12] and [9].
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# Bins Bin Width (mfp) λΠ σΠ BΠ FOM (Π)

10 2.00 4.8003 6.6×10−4 2.7×10−2 831.2
25 0.80 4.8224 6.8×10−4 5.3×10−3 773.2
40 0.50 4.8251 6.3×10−4 2.6×10−3 872.0
50 0.40 4.8273 6.5×10−4 4.2×10−4 829.0
60 0.33 4.8258 6.9×10−4 2.0×10−3 704.3
75 0.27 4.8275 6.7×10−4 2.4×10−4 753.0
90 0.22 4.8277 6.7×10−4 4.2×10−5 746.1
105 0.19 4.8277 6.9×10−4 5.2×10−5 698.3
120 0.17 4.8282 6.5×10−4 4.1×10−4 767.8
135 0.15 4.8274 7.0×10−4 3.1×10−4 656.9
150 0.13 4.8285 6.4×10−4 7.5×10−4 792.0

(a) First-order accurate (Π) spatial discretization

# Bins Bin Width (mfp) λL σL BL FOM (L)

10 2.00 4.8302 1.2×10−3 2.5×10−3 259.5
25 0.80 4.8280 4.4×10−4 2.1×10−4 1765.7
40 0.50 4.8283 4.5×10−4 5.7×10−4 1675.6
50 0.40 4.8277 4.5×10−4 6.2×10−5 1470.6
60 0.33 4.8283 3.9×10−4 5.4×10−4 2171.6
75 0.27 4.8276 4.0×10−4 1.5×10−4 2069.3
90 0.22 4.8275 3.8×10−4 2.0×10−4 2251.3
105 0.19 4.8259 5.9×10−4 1.8×10−3 877.1
120 0.17 4.8172 1.3×10−3 1.1×10−2 189.4
135 0.15 4.8110 2.1×10−3 1.7×10−2 66.2
150 0.13 4.8102 2.0×10−3 1.8×10−2 73.0

(b) Second-order accurate (L) spatial discretization

Table 3.1: Error (B) in the fundamental eigenvalue estimate (λ) for first-order accu-
rate (a) and second-order accurate (b) discretization as a function of the bin width.
Figure of merit is also given for first and second-order accurate spatial discretizations.
1E5 particles were tracked in each iteration.
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The purpose of going to a second-order accurate accurate approximation to the

fission source is to reduce the error in the eigenvalue estimate associated with dis-

cretizing the fission source. We can see from tables 3.1a and 3.1b that for bin widths

between 0.4 and 2.0 mfp thick the error in the eigenvalue estimate from the second-

order accurate approximation is an order of magnitude smaller than the error from

the first-order accurate approximation. Thus, moving to a second-order accurate

approximation to the fission source can greatly reduce the error.

The second-order accurate approximation has a smaller statistical uncertainty

than the first-order accurate approximation for bin widths between 0.8 and 0.22 mfp

and is fairly independent of the bin width in this range. The uncertainty for the first-

order accurate approximation appears to be independent of the size of the bin width

over the whole range of bin widths. The largest and three smallest bin widths from

the second-order accurate approximation however have large errors in the eigenvalue

estimate and large statistical uncertainties. For thin bins, the number of neutrons

that are born in those bins is small, causing the Monte Carlo noise to dominate the

results. The behavior of the linear-in-space approximation in the 2 mfp wide bins is

a mystery.

The figure of merit is 2-3 times larger for the second-order accurate approximation

than the first-order for bin widths between 0.8 and 0.22 mfp. For very small bin widths

or for the largest bin width, the figure of merit is smaller for the second-order accurate

approximation than the first-order. The figure of merit as a function of bin width is

shown graphically in Figure 3.1.

In the first-order accurate approximation, the shape of the eigenvectors were lim-

ited by the flat approximation in each bin. Since the second-order accurate approx-

imation is a linear approximation in each bin, we expect the second-order accurate

approximation to have an improved eigenvector than the first-order accurate approxi-

mation. In Figure 3.2 the eigenvectors from the second-order accurate approximation
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Figure 3.1: Figure of merit as a function of bin width for a slab of width 20 mfp and tracking 1E5 particles per iteration.
Included are results from a first-order (Π) and second-order (L) approximation to the fission source.
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with 60 spatial bins are shown. In Figure 3.3, the same eigenvectors are plotted along

with the eigenvectors from the first-order accurate approximation to show they have

the same shape. From these figures we see that the second-order accurate approxima-

tion is a smooth approximation to the fission source and appears continuous across

the bin boundaries.

For small bin widths the second-order accurate approximation seems to have dif-

ficulties due to too few particles scoring in a bin. If more particles were tracked in

an iteration we expect more particles to score in each bin and the statistical un-

certainty to improve. The above simulations have been repeated, but have tracked

1E6 particles in each iteration—ten times more particles—to improve the statistics

in each simulation. The results for the first-order accurate approximation are given

in Table 3.2a and the results for the second-order accurate approximation are given

in Table 3.2b.

Tracking more particles in an iteration seems to have made a big improvement

for the second-order accurate approximation with very small bin widths. Now all the

results, except the large bin width of 2 mfp, estimates the fundamental eigenvalue

within statistical uncertainty. Tracking ten times more particles per iteration has

improved the poor results from the simulation with small bins and has reduced the

standard deviation by approximately one-third, as we expect for the second-order

accurate approximation. The standard deviation was also reduced for the first-order

accurate approximation simulations. The error in the eigenvalue estimate is also sig-

nificantly smaller for the second-order accurate approximation but remains essentially

unchanged for the first-order accurate approximation.

In Figure 3.4 the figure of merit is shown for the first and second-order spatial

approximations, where 1 million particles are tracked for each iteration. We see that

when tracking more particles in an iteration, the figure of merit improves for second-

order accurate approximations with small bin widths. This is because now we have
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Figure 3.2: Estimates of the fundamental and first two harmonic eigenvectors, tracking 1E5 particles per iteration and, using
60 spatial bins with a second-order accurate approximation to the fission source.
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Figure 3.3: Estimates of the fundamental and first two harmonic eigenvectors tracking 1E5 particles per iteration and using 60
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an accurate estimate of the eigenvalue as well as a reduced standard deviation. With

the exception of simulations with very large bin widths, the figure of merit for second-

order accurate approximations are two times larger than that for first-order accurate

approximations. It should be noted that the linear-in-space approximation is not

only more efficient than the power method, but it is in fact computing 3 eigenpairs

compared to the power methods single eigenvector.

The anomaly in these results is the second-order accurate approximation with a

bin width of 2.0 mfp. The error in the eigenvalue estimate is smaller than the error for

the same problem but with a first-order accurate approximation, but the eigenvalue

estimate is not within statistical uncertainty regardless of the number of particles

tracked. In addition, the error in the eigenvalue estimate is larger than for any other

bin width.
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# Bins Bin Width (mfp) λΠ σΠ BΠ FOM (Π)

10 2.00 4.8003 2.1×10−4 2.7×10−2 838.5
25 0.80 4.8232 2.2×10−4 4.5×10−3 751.1
40 0.50 4.8258 2.1×10−4 1.9×10−3 832.9
50 0.40 4.8267 2.1×10−4 1.1×10−3 796.1
60 0.33 4.8270 2.1×10−4 7.3×10−4 751.0
75 0.27 4.8269 2.1×10−4 8.3×10−4 787.5
90 0.22 4.8275 2.2×10−4 2.7×10−4 694.3
105 0.19 4.8274 2.1×10−4 3.4×10−4 768.8
120 0.17 4.8276 2.0×10−4 1.6×10−4 846.8
135 0.15 4.8275 2.0×10−4 2.6×10−4 793.9
150 0.13 4.8280 2.1×10−4 2.7×10−4 746.8

(a) First-order (Π) spatial discretization

# Bins Bin Width (mfp) λL σL BL FOM (L)

10 2.00 4.8329 4.1×10−3 5.1×10−3 2.0
25 0.80 4.8274 1.5×10−4 3.1×10−4 1607.8
40 0.50 4.8278 1.4×10−4 6.8×10−5 1742.0
50 0.40 4.8276 1.5×10−4 1.7×10−4 1512.8
60 0.33 4.8276 1.3×10−4 1.1×10−4 1832.8
75 0.27 4.8277 1.4×10−4 5.2×10−5 1692.6
90 0.22 4.8278 1.4×10−4 7.8×10−5 1730.6
105 0.19 4.8279 1.4×10−4 1.1×10−4 1701.9
120 0.17 4.8278 1.3×10−4 4.8×10−5 1985.2
135 0.15 4.8279 1.3×10−4 1.9×10−4 1757.3
150 0.13 4.8277 1.2×10−4 6.2×10−5 2015.0

(b) Second-order (L) spatial discretization

Table 3.2: Error (B) in the fundamental eigenvalue estimate (λ) for first-order (a) and
second-order (b) discretization as a function of the bin width. Figure of merit is also
given for first and second-order spatial discretizations. 1E6 particles were tracked in
each iteration.
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Figure 3.4: Figure of merit as a function of bin width for a slab of width 20 mfp and tracking 1E6 particles per iteration.
Included are results from a first-order (Π) and second-order (L) approximation to the fission source.
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3.3 Summary

In this chapter first and second-order accurate approximations to the fission source

have been investigated. These were demonstrated on a semi-infinite, homogeneous

slab of multiplying material of width 20 mfp. Both techniques have an error associated

with the discretization. The power method does not suffer from this kind of error. It

has been shown that for a sufficient number of spatial bins the error in the eigenvalue

estimate is smaller than the standard deviation of the eigenvalue estimates.

Using a second-order accurate approximation for the fission source is a signifi-

cant improvement over the first-order accurate approximation; the standard devi-

ation is smaller and the error in the eigenvalue estimate is an order of magnitude

smaller when a sufficient number of particles is used. The standard deviation be-

comes smaller for both first and second-order accurate approximations as the number

of particles tracked in an iteration increases. The error in the eigenvalue estimate is

not significantly improved for the first-order accurate approximation as the number

of particles tracked increases, while the error decreases for the second-order accurate

approximation.

The second-order accurate approximation has much better approximation to the

eigenvectors. Because the approximation is linear in space, the eigenvector approxi-

mation is smoother in the second-order accurate approximation than in the first-order

accurate approximation. The results shown in this chapter show that the eigenvectors

are nearly continuous across bin boundaries for the second-order accurate approxi-

mation.

Both the first and second-order accurate approximations have errors in the eigen-

value estimate that are less than the statistical uncertainty for bin widths in the

0.5–0.2 mfp range. If the spatial discretization is too coarse, too much information

is lost; if the discretization is too fine, the Monte Carlo transport is too noisy within

each bin to give good results. In both extreme cases an error eigenvalue estimates
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arises. In the second-order accurate approximation, the figure of merit significantly

decreases in these extreme case because the variance of the mean of the eigenvalue

estimates is larger.

Using a moderate number of spatial bins can give excellent results. When tracking

more particles per iteration, a finer discretization can be used. Further work needs

to be performed to identify—if possible—a general rule for the granularity of the

discretization.
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Chapter 4

Relaxed Arnoldi

In Monte Carlo particle transport the figure of merit (FOM) is a measure of efficiency

of a particular algorithm or simulation. FOM was given in Equation (2.26) and again

here for clarity

FOM ≡ 1

σ2
λT

. (4.1)

The variance of an estimated eigenvalue λ in a Monte Carlo approach is

σ2
λ =

1

N
σ2, (4.2)

where N is the number of estimates of the eigenvalue and σ2 is the variance of the

distribution of the estimates. A larger FOM indicates a more efficient calculation, i.e.

the variance is smaller for a given amount of computer time or number of particles

tracked. To increase the FOM, one must increase N while keeping T as small as

possible which, in turn, will decrease σ.

In this thesis the focus has been on estimating the eigenvalues of the fission-

transport operator A. In Chapter 2, I compared the figure of merit for Arnoldi’s

method to that produced by the power method for estimating the fundamental eigen-

value. The power method had a FOM that was much larger than that of Arnoldi’s

method, even though both methods tracked the same number of particles in each

iteration.
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The power method calculates an estimate of the fundamental eigenvalues at the

end of every iteration, while in Arnoldi’s method it was chosen to calculate an eigen-

value estimate at the end of an Arnoldi restart. The simulations used in Chapter 2 had

ten iterations in each Arnoldi restart. Even though the power method and Arnoldi’s

method used the same number of particles to apply the linear operator at each it-

eration, the power method had ten times more eigenvalue estimates than Arnoldi’s

method—for the same number of particles tracked. The FOM shown in Table 2.1 is

nearly exactly ten times larger for the power method than for Arnoldi’s method. This

indicates that the variance is driven primarily by the number of eigenvalue estimates.

4.1 Relaxed Arnoldi’s Method

Recently [29, 25, 24, 11] there has been some interest in Krylov subspace methods

where the application of the linear operator is performed inexactly; for example when

the application of the operator A is an iterative process and the iterations are ter-

minated before the calculation converges. By terminating early, computation time is

saved at the expense of the precision of the application of A.

A group of researchers [4] discovered experimentally that under certain circum-

stances the inexact application of the linear operator has little or no effect upon the

convergence of the eigenpair calculation. They discovered that, as Arnoldi’s method

proceeds and the size of the Krylov subspace increases, the precision to which the

matrix-vector product is calculated can be decreased, or relaxed. Their results have

been further investigated leading to more formal theories and proofs (see [5] and [23]).

When a linear operator is applied inexactly we can obtain the inexact vector v̂k

by computing

v̂k =
(
A + ∆Ak

)
v̂k−1, (4.3)
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where ∆Ak is some perturbation matrix. Of course, when the linear operator is

applied inexactly, we are no longer forming a true Krylov subspace as shown in

Equation (1.5) but have rather

K̂ = span
{
v0, v̂1, v̂2, . . . , v̂m−1

}
, (4.4)

where v̂k is given in Equation (4.3) and is orthogonalized against the previously

calculated Arnoldi vectors V̂k =
[
v0 v̂1 . . . v̂k−1

]
.

The basic idea presented by Bouras and Frayssé is to reduce the precision to which

the linear operator is applied in an iteration of Arnoldi’s method, but limit the size

of ∆Ak to some fraction of A. To show how this is done, let η be the final tolerance

required and let αk be a scalar defined by

αk =
1

min
(∥
∥rk−1

∥
∥ , 1

) , (4.5)

where
∥
∥rk−1

∥
∥ is the magnitude of the residual as given in Equation (2.11). The limit

to ∆Ak’s size is defined as

∥
∥∆Ak

∥
∥ = εk

∥
∥A
∥
∥ (4.6)

where

εk = min
(
αkη, 1

)
. (4.7)

.

If we put together Equation (4.5), Equation (4.6), and Equation (4.7) we see that

as the residual decreases the size of ∆Ak is allowed to become larger—the precision

to which the linear operator A is applied is relaxed.
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Relaxed Monte Carlo Application of Fission-Transport Operator

In Monte Carlo particle transport the magnitude of the perturbation matrix,
∥
∥∆A

∥
∥ is

proportional to 1/
√
N where N is the number of particles tracked when applying the

fission-transport operator. Relaxing the application of the fission-transport operator

means simply reducing the number of particles used in applying the operator

Nk = f
(∥
∥rk−1

∥
∥

)

N0, (4.8)

where Nk is the number of particles to be used in iteration k and N0 is the number

of particles tracked when not relaxed. The scalar f
(∥
∥rk−1

∥
∥

)

is the fraction of the

number of particles N0 that should be tracked in iteration k.

In Monte Carlo particle transport the parameter η < 1 is some input value defining

when relaxing can occur. We want to relax the application of A when the residual is

smaller than η and to track N0 particles when the residual is larger than η. To do

this we define

εk =







η/
∥
∥rk−1

∥
∥
∥
∥rk−1

∥
∥ < η

1
∥
∥rk−1

∥
∥ ≥ η.

(4.9)

and insert into Equation (4.6). We note that

∥
∥∆A

∥
∥ =

C√
Nk

where C is just some constant of proportionality, we can obtain an equation for Nk,

Nk =
1

ε2
k

(

C
∥
∥A
∥
∥

)2

. (4.10)
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To determine the fraction of particles to be tracked in iteration k we equate the

right-hand sides of Equation (4.10) and Equation (4.8),

f
(∥
∥rk−1

∥
∥

)

N0 =
1

ε2
k

(

C
∥
∥A
∥
∥

)2

. (4.11)

The term
(

C/
‚

‚A
‚

‚

)2
is just some constant which we conveniently choose to be N0.

Therefore the fraction we are seeking must be

f
(∥
∥rk−1

∥
∥

)

=
1

ε2
k

=







(∥
∥rk−1

∥
∥ /η

)2 ∥
∥rk−1

∥
∥ < η

1
∥
∥rk−1

∥
∥ ≥ η.

(4.12)

So if the residual is less than η the number of particles tracked in an iteration is

reduced, but the number of particles tracked in an iteration will never be more than

N0. From Equation (4.8) we then have

Nk =







(∥
∥rk−1

∥
∥ /η

)2

N0

∥
∥rk−1

∥
∥ < η

N0

∥
∥rk−1

∥
∥ ≥ η.

(4.13)

This method of relaxation is not the only strategy that can be used. Here we have

a quadratic function. A less aggressive strategy would be a linear function where

f
(∥
∥rk−1

∥
∥

)

=
1

εk

=







∥
∥rk−1

∥
∥ /η

∥
∥rk−1

∥
∥ < η

1
∥
∥rk−1

∥
∥ ≥ η.

(4.14)

What is important is that as the residual decreases, relaxation increases and fewer

particles are tracked in that iteration.

57



With the number of particles used in an iteration defined by Equation (4.13) we

have a procedure for relaxing the precision to which the fission-transport operator

is applied; as the residual decreases—the estimate of the eigenvalue improves—fewer

particles are tracked in an iteration. We expect this relaxation to have no negative

effect on the convergence of the eigenvalue estimate and therefore have a positive

effect on the figure of merit as the computational expense required to apply the linear

operator is decreased with the decrease in the number of particles tracked.

4.2 Numerical Results

To demonstrate the effect of relaxing Arnoldi’s method, a similar problem to those al-

ready displayed in this thesis is shown. I will keep the same cross sections (νΣf = 1.0,

Σa = 0.2, and Σs = 0.8; Σt = 1.0) but the width of the slab will be 50 mfp. This is a

more difficult problem than the thinner slabs because the dominance ratio is 0.9924,

which is larger than for the thinner geometries previously used.

For these simulations the more aggressive relaxation shown in Equation (4.13) is

used and the relaxation parameter, η, is varied from 1E-8 to 1.0. As η increases,

the number of particles tracked in an iteration/restart decreases. To keep the total

number of particles the same among all simulations, the number of active restarts

was increased when necessary. (The number of inactive restarts is 100 for all the

simulations. Relaxation is done during inactive restarts as well as active restarts.)

This means that for larger values of η there will be more eigenvalue estimates and

a lower uncertainty in the eigenvalue estimate. When the uncertainty decreases the

figure of merit increases.

If what Bouras and Frayssé suggest for relaxed Arnoldi is valid for Monte Carlo

criticality calculations, we expect to see the estimates of the eigenvalue unaffected

by relaxation. In addition, we expect the figure of merit to increase when relaxation
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Figure 4.1: Eigenvalue estimates for the fundamental and first two harmonics for varying values of the relaxation parameter η.
The number of particles tracked in a non-relaxed iteration is 5E5. The heavy lines are the reference eigenvalues from [12] and
[9].
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increases (i.e. η becomes larger) because fewer particles are being tracked in an

iteration and therefore less time required to calculate an eigenvalue estimate. This

doesn’t hold for every value of η; eventually it will become so large the application of

A is so imprecise—too relaxed—the eigenvalue estimate is just wrong.

The eigenvalue estimates as a function of relaxation parameter are graphed in

Figure 4.1. The heavy lines are the eigenvalue estimates when no relaxation is used.

We see that the eigenvalue estimates all fall within one standard deviation of the

estimate calculated without any relaxation (shown in the dark heavy lines) until the

relaxation becomes too great at around η = 0.005.

In Figure 4.2 the fundamental eigenvalue estimates are plotted along with the

FOM for varying values of η. The dashed line in the Figure 4.2 is the figure of merit

when Arnoldi’s method is not relaxed. It appears that no relaxation (η = 0.0) is

better than a little bit of relaxation (η = small). There are a few values for η which

show about a 50% increase in the figure of merit. However the range of η where there

is an improvement over no relaxation is small. Also, at the same value of η where the

eigenvalue estimate starts to diverge from the true value we see the figure of merit

decrease by 1–2 orders of magnitude.

In Table 4.1 the eigenvalue estimates, standard deviation and the figure of merit

are shown for these simulations. For η ≤ 0.0025 the standard deviation is constant,

∼ 1 × 10−4. When η > 0.0025 the eigenvalue estimates diverge and the standard

deviation increases. This is what causes the figure of merit to drop.

Bouras and Frayssé [4] suggest that the first few Arnoldi vectors need to be known

with “full accuracy” and that Arnoldi vectors calculated in later iterations can be

relaxed. Given that Monte Carlo Arnoldi can never really apply A with full precision

it is important to know how accurately the first Arnoldi vectors really need to be

applied. In the next set of results, an attempt to come closer to full accuracy for

the initial applications of the fission-transport operator by repeating the simulations
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η
Active Total #

λ FOM
Time

Restarts Particles (s)

0 100 2.500e+09 0.9973 ± 1.0×10−4 12427.9 7776.7
1E-08 100 2.500e+09 0.9974 ± 1.0×10−4 12861.4 7741.5

2.5E-08 100 2.500e+09 0.9974 ± 1.2×10−4 8371.5 7732.8
5E-08 100 2.500e+09 0.9974 ± 1.1×10−4 10072.6 7734.8

7.5E-08 100 2.500e+09 0.9974 ± 1.0×10−4 11854.2 7809.2
1E-07 100 2.500e+09 0.9974 ± 1.0×10−4 12249.2 7727.9

2.5E-07 100 2.500e+09 0.9975 ± 1.1×10−4 11235.8 7734.2
5E-07 100 2.500e+09 0.9974 ± 1.1×10−4 11123.8 7757.4

7.5E-07 100 2.500e+09 0.9974 ± 9.8×10−5 13221.0 7835.0
2.5E-06 100 2.500e+09 0.9974 ± 1.0×10−4 12407.1 7753.4
7.5E-06 100 2.499e+09 0.9974 ± 9.5×10−5 14125.4 7817.1
1E-05 100 2.500e+09 0.9975 ± 1.1×10−4 10430.4 7741.5

2.5E-05 105 2.555e+09 0.9975 ± 1.1×10−4 10501.4 7910.3
5E-05 112 2.621e+09 0.9973 ± 8.2×10−5 18382.2 8122.4

7.5E-05 109 2.565e+09 0.9972 ± 1.0×10−4 12444.6 8006.8
0.0001 110 2.544e+09 0.9973 ± 1.1×10−4 11280.2 7871.7
0.00025 124 2.541e+09 0.9973 ± 8.2×10−5 19072.5 7853.4
0.0005 140 2.554e+09 0.9974 ± 1.0×10−4 12433.1 7909.4
0.00075 150 2.562e+09 0.9973 ± 8.9×10−5 15879.3 7945.2
0.001 160 2.585e+09 0.9973 ± 8.1×10−5 19017.0 8010.1
0.0025 187 2.551e+09 0.9973 ± 7.7×10−5 21433.5 7899.2
0.005 220 2.498e+09 0.9978 ± 3.5×10−4 1069.1 7754.7
0.0075 270 2.559e+09 0.9980 ± 2.3×10−4 2437.4 7938.2
0.01 316 2.537e+09 0.9983 ± 3.6×10−4 962.5 7879.3
0.05 1250 2.476e+09 1.0028 ± 3.5×10−4 1042.8 7724.8
0.1 1800 2.520e+09 1.0084 ± 3.9×10−4 851.8 7872.8
0.5 2300 2.506e+09 1.0281 ± 4.2×10−4 710.5 7854.4
1 2350 2.502e+09 1.0460 ± 4.2×10−4 710.3 7824.0

Table 4.1: Eigenvalue estimates for fundamental eigenvalue, figure of merit, and time
for a relaxed Arnoldi simulation of a 20mfp thick slab. Also shown is the number
of active restarts and the total number of particles tracked in the simulation. 5E5
particles were tracked in each non-relaxed iteration.
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but increasing the number of particles tracked in a non-relaxed iteration to 5E6—ten

times more than in the previous simulations.

In Figure 4.3 and in Table 4.2 the results of these simulations are shown. We see

a similar pattern for these as we did with the simulations tracking 5E5 particles per

iteration; the eigenvalue estimates are unaffected by relaxation until the relaxation

parameter becomes too large at which point the eigenvalue estimate diverges.

These simulations have been repeated using 1E5 and 5E4 particles per iteration.

The data is not given here in tables, but it has been plotted. In Figure 4.5 I show the

effect of relaxation on the eigenvalue estimates similar to Figure 4.1 and Figure 4.3,

but have plotted for the different numbers of particles per iteration each with a

different line dashing. Plotting these together helps to identify the effect of running

more or fewer particles per iteration. We see that all cases can accurately estimate

the eigenvalues for small values of η, but as η becomes large the eigenvalue estimate

will diverge. The value of η at the point where the eigenvalue estimate diverges

(η ≈ 0.005) depends upon the number of particles tracked in an iteration; the greater

the number of particles tracked, the larger η can be and still obtain a good estimate

of the eigenvalue.

In Figure 4.6 the figures of merit for calculating the fundamental eigenvalue for

the four cases of different particles tracked per iteration have been plotted. We see

what we have already seen previously, that at roughly the same value of η where the

eigenvalue estimate begins to diverge, the figure of merit becomes small. The highest

figure of merit occurs for values of η just smaller than that for which the eigenvalue

estimate diverges. This is not too surprising; as η increases, the number of particles

tracked in an iteration decreases and the computational time decreases. Eventually

the increase in variance due to poor estimates of the eigenvalue become the dominate

factor in the figure of merit.

63



λ2

λ1

λ0

Relaxation Parameter η

E
ig

en
va

lu
e

E
st

im
at

e

10.10.010.0010.00011e-051e-061e-071e-08

1.025

1.02

1.015

1.01

1.005

1

0.995

0.99

0.985

0.98

0.975

Figure 4.3: Eigenvalue estimates for the fundamental and first two harmonics for varying values of the relaxation parameter η.
The number of particles tracked in a non-relaxed iteration is 5E6. The heavy lines are the reference eigenvalues from [12] and
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η
Active Total #

λ FOM
Time

Restarts Particles (s)

0 100 2.500e+10 0.9974 ± 3.3×10−5 11697.8 78476.2
1E-08 100 2.500e+10 0.9974 ± 3.5×10−5 10452.8 78779.5

2.5E-08 100 2.500e+10 0.9974 ± 3.1×10−5 13470.2 78307.7
5E-08 100 2.500e+10 0.9974 ± 3.2×10−5 12606.0 77916.5

7.5E-08 100 2.500e+10 0.9974 ± 3.1×10−5 13150.2 78104.0
1E-07 100 2.500e+10 0.9974 ± 3.1×10−5 13628.3 78784.8

2.5E-07 100 2.500e+10 0.9974 ± 3.1×10−5 12913.8 78219.4
5E-07 100 2.500e+10 0.9974 ± 3.2×10−5 12823.6 77835.0

7.5E-07 100 2.500e+10 0.9974 ± 3.8×10−5 8847.1 78099.9
2.5E-06 100 2.500e+10 0.9974 ± 3.3×10−5 11857.0 78717.5
7.5E-06 100 2.497e+10 0.9975 ± 3.0×10−5 13944.0 78135.7
1E-05 100 2.492e+10 0.9973 ± 3.1×10−5 13334.8 77898.4

2.5E-05 100 2.452e+10 0.9974 ± 3.2×10−5 12592.5 76967.0
5E-05 118 2.544e+10 0.9975 ± 2.8×10−5 16472.7 79677.3

7.5E-05 125 2.550e+10 0.9974 ± 3.1×10−5 12717.2 79890.8
0.0001 129 2.544e+10 0.9974 ± 2.9×10−5 15565.5 78825.1
0.00025 153 2.560e+10 0.9974 ± 2.3×10−5 24056.5 79514.8
0.0005 172 2.556e+10 0.9974 ± 2.6×10−5 19015.5 79022.0
0.00075 186 2.548e+10 0.9974 ± 2.4×10−5 22290.5 78981.0
0.001 194 2.515e+10 0.9974 ± 2.1×10−5 28311.4 78137.4
0.0025 237 2.523e+10 0.9974 ± 2.0×10−5 33610.1 77832.7
0.005 272 2.534e+10 0.9978 ± 3.2×10−4 121.7 78369.7
0.0075 307 2.470e+10 0.9975 ± 8.3×10−5 1906.6 76614.9
0.01 395 2.525e+10 0.9977 ± 1.3×10−4 758.7 78486.7
0.05 1571 2.515e+10 0.9991 ± 2.2×10−4 256.2 81338.9
0.1 2024 2.487e+10 1.0012 ± 1.8×10−4 389.9 77344.4
0.25 2291 2.497e+10 1.0065 ± 3.3×10−4 113.5 78881.1
0.5 2361 2.504e+10 1.0123 ± 3.1×10−4 132.7 78254.0
0.75 2377 2.503e+10 1.0165 ± 2.7×10−4 175.2 78251.1
1 2385 2.503e+10 1.0201 ± 3.9×10−4 81.1 79328.2

Table 4.2: Eigenvalue estimates for fundamental eigenvalue, figure of merit, and time
for a relaxed Arnoldi simulation of a 20mfp thick slab. Also shown is the number
of active restarts and the total number of particles tracked in the simulation. In
non-relaxed iterations, 5E6 particles were tracked.
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Figure 4.5: Eigenvalue estimates for the fundamental and first two harmonics for varying values of the relaxation parameter η.
The different curves indicate the number of particles tracked in a non-relaxed iteration.
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Figure 4.6: Figure of merit for varying values of the relaxation parameter η. The different curves indicate the number of particles
tracked in a non-relaxed iteration.
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4.2.1 Linear relaxation

With Equation (4.14) it was mentioned that different relaxation strategies could be

employed. All the results shown so far have used a quadratic relaxation as given

in Equation (4.13). To demonstrate the effect using a different relaxation strategy,

I have performed simulations using a linear relaxation strategy for the same prob-

lems that have already been shown using the quadratic relaxation. (See also Conlin

and Holloway [8].) In this section is shown the results of this strategy and a brief

comparison between the two methods.

Any relaxation strategy begins to relax at the same time, whenever the residual

is less than η. A quadratic strategy will reduce the number of particles tracked

in an iteration more aggressively than will a linear strategy. Figure 4.7 shows the

eigenvalue estimates for both linear and quadratic relaxation strategies. (The data

for the linear strategy is given in Table 4.3.) The quadratic results are shown with

the solid, colored lines while the linear results used the dashed lines. We see that for

the quadratic strategy for relaxation the eigenvalue estimates begin to diverge from

the true eigenvalue for smaller values of η as compared to the linear strategy.

Figure 4.8 shows the figure of merit for both strategies. The dashed lines show

the figure of merit for an Arnoldi calculation with no relaxation. Both strategies

demonstrate similar behavior in that a small amount of relaxation is actually worse

than no relaxation at all. The range of values of η for which relaxation may benefit

the calculation is larger for the linear strategy.
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Figure 4.7: Eigenvalue estimates for the fundamental and first two harmonics for varying values of the relaxation parameter η.
The number of particles tracked in a non-relaxed iteration is 5E5. The solid lines show a quadratic approach to relaxing and
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Figure 4.8: Fundamental eigenvalue estimate and figure of merit for varying values of the relaxation parameter η. The red lines
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η
Active Total #

λ FOM
Time

Restarts Particles (s)

0 100 2.500e+09 0.9975 ± 1.0×10−4 11799.5 7806.2
1E-08 100 2.500e+09 0.9974 ± 1.0×10−4 11845.8 7795.1

2.5E-08 100 2.500e+09 0.9973 ± 1.1×10−4 10801.6 7812.4
5E-08 100 2.500e+09 0.9974 ± 1.2×10−4 9595.2 7817.4

7.5E-08 100 2.500e+09 0.9974 ± 9.8×10−5 13357.0 7790.3
1E-07 100 2.500e+09 0.9974 ± 1.1×10−4 10614.9 7796.8

2.5E-07 100 2.500e+09 0.9975 ± 1.1×10−4 10629.2 7793.8
5E-07 100 2.500e+09 0.9973 ± 1.1×10−4 10606.7 7818.0

7.5E-07 100 2.500e+09 0.9973 ± 1.0×10−4 12324.6 7917.3
2.5E-06 100 2.500e+09 0.9974 ± 1.2×10−4 9345.4 7809.8
7.5E-06 100 2.500e+09 0.9974 ± 1.2×10−4 8686.7 7801.4
1E-05 100 2.500e+09 0.9973 ± 1.3×10−4 8029.7 7803.3

2.5E-05 100 2.497e+09 0.9974 ± 9.8×10−5 13247.9 7800.2
5E-05 100 2.484e+09 0.9972 ± 1.2×10−4 9080.7 7764.0

7.5E-05 100 2.471e+09 0.9972 ± 1.1×10−4 10451.4 7706.1
0.0001 100 2.437e+09 0.9975 ± 1.2×10−4 9302.1 7596.6
0.00025 114 2.493e+09 0.9976 ± 9.2×10−5 15038.1 7785.9
0.0005 124 2.481e+09 0.9974 ± 9.3×10−5 14997.3 7766.4
0.00075 133 2.505e+09 0.9974 ± 9.0×10−5 15698.0 7889.1
0.001 140 2.491e+09 0.9973 ± 9.1×10−5 15544.8 7781.8
0.0025 166 2.492e+09 0.9974 ± 8.0×10−5 20047.8 7783.3
0.005 194 2.472e+09 0.9974 ± 8.0×10−5 20003.4 7728.1
0.0075 224 2.475e+09 0.9974 ± 7.5×10−5 22830.9 7746.0
0.01 262 2.501e+09 0.9975 ± 7.6×10−5 22131.4 7840.6
0.05 817 2.520e+09 0.9975 ± 9.3×10−5 14582.1 7871.5
0.1 1173 2.483e+09 0.9979 ± 1.1×10−4 10302.1 7832.0
0.25 1649 2.503e+09 0.9992 ± 1.6×10−4 5219.9 7918.0
0.5 1917 2.506e+09 1.0004 ± 1.7×10−4 4533.4 7921.6
0.75 2037 2.515e+09 1.0016 ± 2.0×10−4 3143.8 7944.6
1 2090 2.496e+09 1.0028 ± 2.2×10−4 2609.6 7953.4

Table 4.3: Eigenvalue estimates for fundamental eigenvalue, figure of merit, and
time for a relaxed Arnoldi simulation of a 20mfp thick slab. The relaxation for this
simulation is linear. Also shown is the number of active restarts and the total number
of particles tracked in the simulation. 5E5 particles were tracked in each non-relaxed
iteration.
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4.3 Summary

Relaxing the precision to which a linear operator is applied to a vector is an interesting

topic. Bouras and Frayssè have shown—as well as many others citing their work—

that relaxing Arnoldi’s method can reduce the computational expense of Arnoldi’s

method while maintaining the convergence properties.

We have also seen that relaxation can reduce computational expense for Monte

Carlo Arnoldi’s method. This allows us to perform more restarts and calculate more

eigenvalue estimates for a relaxed Arnoldi’s method in the same amount of time

required for a non-relaxed Arnoldi’s method. The problem however is that it can

be difficult to determine the optimal value for the relaxation parameter η. For the

problems shown here, the range of values that gives better results than a non-relaxed

Arnoldi calculation is small. If a poor value of η is chosen, it can cause the calculation

to be slow or even wrong.

We have seen that for a variety of particles tracked in an iteration, the eigenvalue

estimate still diverges and the figure of merit plummets when η becomes too large,

but with more particles tracked η can be larger than with fewer particles tracked

without any problems in calculating the eigenvalue estimate. The figure of merit can

be larger when tracking more particles. Even so the range of good values of η is

relatively small.
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Chapter 5

Fission Source Convergence

Monte Carlo criticality calculations have come a long way since their beginning in the

1950s. Along with the increase in the speed and complexity of computers the problems

for which Monte Carlo techniques have been used have increased. Problems that were

prohibitively expensive in the past have now become routine. Some problems still

remain, however, with Monte Carlo criticality calculations. Two of those problems

are fission source convergence and the underestimation of the variance of the mean

eigenvalue [see 6]. In this chapter we will discuss how a Monte Carlo application of

Arnoldi’s method improves the source convergence as compared with the traditional

power method.

5.1 Shannon Entropy and Fission Source Conver-

gence

In Section 1.3 it was observed that a Monte Carlo code must discard initial iterations

as the eigenvalue estimate converges to the fundamental eigenmode. The number of

iterations required for convergence of the power method to the fundamental depends

on the dominance ratio (λ1/λ0) for the problem. Also of concern is the convergence of

the fission source. To obtain good estimates of the fission source—or eigenfunction of
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the fission-transport operator—the fission source should be converged before tallying

begins.

Knowing how many cycles to discard can be a challenge. One could monitor

the eigenvalue estimates to see if they have converged and begin active cycles once

convergence has been achieved. Brown [6] suggests that when the dominance ratio

is close to 1, the fundamental eigenvalue will converge sooner than the fission source

distribution. We must, therefore, monitor both the convergence of the eigenvalue as

well as the convergence of the fission source. It is clear that convergence in fewer

iterations is desired because fewer iterations will have to be discarded and tallying

can begin sooner.

One problem for which source convergence in the power method is problematic is

a geometry with multiplying regions separated by large region of a highly-absorbing

material. This is because of the particles born in one multiplying region only a few,

rare, neutrons would ever transport through the absorbing region to cause fission in

the other multiplying region. In the power method, the only way in which particles

can move from the initial source to a new location is through the scattering that

occurs in the application of the fission-transport operator. The fission source for

the next iteration contains only the points at which neutrons induced fission in the

previous iteration.

When restarting, Arnoldi’s method uses all of the available information about the

operator applied to a source to estimate an eigenvector; the power method only uses

information from the latest application of the operator to estimate the fundamental

eigenvector. Using all available information makes it possible for the fission source to

be converged more quickly.

To monitor the convergence of the fission source Ueki and Brown [27] have used

information theory to calculate the Shannon entropy, H , of the fission source. The
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Shannon entropy of a spatially discretized fission source S(x) is defined as

H(S(x)) ≡ −
B∑

b=1

Sb log(Sb), (5.1)

where B is the number of spatial bins and Sb is the number of fission neutrons in

bin b. As the calculation proceeds, the Shannon entropy will converge to some value.

The actual value of the Shannon entropy is not important in determining the fission

source convergence. What is important is that it converges to some value.

To calculate the Shannon entropy when using the power method the fission source

must be discretized. This discretization is most easily performed using a first order—

or histogram—approximation as described in Equations (3.1), (3.2) and (3.3). The

discretization of the fission source will not bias the estimate of the eigenvalue in the

power method as it does for Arnoldi’s method. The power method samples from the

non-discretized source and only uses the discretized fission source for tallying bins

and calculating the Shannon entropy.

In Arnoldi’s method, we can’t calculate the Shannon entropy of the Arnoldi vec-

tors. We must, therefore, calculate the Ritz vectors of A and use the fundamental

Ritz vector as S(x) in Equation (5.1). With the first order approximation to the

fission source

Sb =

∫ xb+1

xb

∣
∣Πb(x)

∣
∣ dx. (5.2)

This is equivalent to calculating the Shannon entropy for the Power method. When

using a second order approximation,

Sb =

∫ xb+1

xb

∣
∣Lb(x, αb, βb)

∣
∣ dx. (5.3)

In both Equation (5.2) and Equation (5.3) Sb is the number of neutrons that have

tallied in bin b.
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5.2 Numerical Results

Homogeneous Slab

To demonstrate the eigenvalue and fission source convergence both the power method

and Arnoldi’s method have been run on a homogeneous slab, 50 mfp thick with

νΣf = 1.0, Σa = 0.2, and Σs = 0.8; Σt = 1.0. This geometry is the same as in Chap-

ter 4. Arnoldi’s method has 25 iterations per restart and both methods track 5E5

particles per iteration. The dominance ratio for this problem as estimated by Arnoldi’s

method is 0.992201. For this problem I have used a second order approximation to

the fission source as described in Chapter 3.

In Figure 5.1a I show the eigenvalue estimates (red) and Shannon entropy conver-

gence (blue) from the power method. The solid black line shows the reference value of

0.997520 from a deterministic S32 code with 200 equally-spaced regions. The dashed

black line shows the entropy at the end of the simulation. Figure 5.1b shows the eigen-

value estimate and Shannon entropy convergence as calculated by Arnoldi’s method.

In this figure, the dashed black line is the mean value of the Shannon entropy.

From Figure 5.1a and Figure 5.1b, we see that Arnoldi’s method converges imme-

diately for both the eigenvalue estimate and the fission source. The power method,

however, requires approximately 250 iterations to converge. We do see something dif-

ferent in these figures that we did not see before. In Figures 5.4a–5.3b, it appears that

the spread in the eigenvalue estimates was approximately the same between Arnoldi’s

method and the power method. For the homogeneous slab, however, the spread in

the eigenvalue estimates from the power method is 0.00052 while the spread from

Arnoldi’s method is approximately 0.0012—the eigenvalue estimates from Arnoldi’s

method are less noisy than the estimates from the power method.
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Thus we see that Arnoldi’s method is superior to the power method for eigenvalue

and fission source convergence, both converge immediately. The eigenvalue estimates

from Arnoldi’s method are also less noisy that those from the power method.

Heterogeneous Slab

We now turn to a heterogeneous geometry used in Kornreich and Parsons [17] and

Ueki and Brown [28]. Two problems are studied in these papers. The first problem

is a symmetrical, five-region slab with vacuum boundary conditions. The slab widths

(left-to-right) are 1.0, 1.0, 5.0,1.0, 1.0 cm thick. The second problem is identical

except the right most fuel slab has a width of 1.01 cm. The materials are of three

types (left-to-right): fuel, scatterer, absorber, scatterer, fuel. The cross sections for

these materials are

Fuel Σt = 1.0, Σs = 0.8, Σγ = 0.1, Σf = 0.1, ν = 3.0,

Scatterer Σt = 1.0, Σs = 0.8, Σa = 0.2,

Absorber Σt = 1.0, Σs = 0.1, Σa = 0.9.

A graphical description of this geometry is shown in Figure 5.2.

This geometry is particularly difficult for source convergence. The initial source

for this problem lies entirely in the leftmost bin. With a large highly absorbing slab in

the center, it is difficult to move particles from the left to the right side and therefore

it will take many histories for the fission source to converge. The dominance ratio for

the symmetric problem is 0.999566 and it is 0.992504 for the asymmetric problem.

For these simulations, 1E5 particles are tracked in each iteration; Arnoldi’s method

uses 10 iterations per restart and calculated 2 eigenvalues.

The results for the asymmetric problem will be shown first; with a smaller dom-

inance ratio it should be easier to converge the fission source and eigenvalue. Fig-

ure 5.3a shows the convergence of the eigenvalue estimates and fission source as cal-
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(a) Power method.
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(b) Arnoldi’s method.

Figure 5.1: Convergence of eigenvalue estimate and Shannon entropy for 50mfp thick,
homogeneous slab. Solid black line is the SN eigenvalue solution for the fundamental
eigenvalue (λ0 = 0.997520).
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Figure 5.2: Diagram of heterogeneous slab geometry.

culated by the power method. In Figure 5.3b are shown the eigenvalue estimates and

fission source convergence for Arnoldi’s method. The solid black line again shows the

reference eigenvalue from Kornreich and Parsons [17] which is 0.427425. The dashed

line shows the Shannon entropy at the end of the simulation for the power method

and the mean of the Shannon entropy for Arnoldi’s method.

The differences in convergence between Arnoldi’s method and the power method

are easy to see by comparing Figure 5.3a and Figure 5.3b. We see that Arnoldi’s

method has converged both the eigenvalue and fission source almost immediately,

just like with the homogeneous slab. The power method however requires 800–900

iterations before the eigenvalue estimates have converged and approximately 1200

iterations before the fission source converges.

The symmetric problem shows a different convergence for the power method as

displayed in Figure 5.4a. Figure 5.4b shows convergence of the eigenvalue estimates

and fission source as calculated by Arnoldi’s method. The solid black lines show the

published eigenvalue [17], 0.424316. The dashed black line for the power method
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(a) Power method.
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(b) Arnoldi’s method.

Figure 5.3: Convergence of eigenvalue estimate and Shannon entropy for asymmetric
geometry. Solid black line is the fundamental eigenvalue (λ0 = 0.427425 [17]); dashed
black line is the entropy at the end of the simulation for the power method and mean
entropy for Arnoldi’s method. 81



shows the final value of the Shannon entropy. The dashed black line for Arnoldi’s

method shows the mean value of the Shannon entropy.

In the power method we see that the eigenvalue estimate has converged almost

immediately, but the fission source takes much longer to converge. The power method

ran for an extra 2000 iterations and it looks like the fission source might be converged

after 4500 iterations, but it looks like the Shannon entropy may still be trending

upwards and therefore still has not converged. In Arnoldi’s method both the eigen-

value estimate and the fission source from Arnoldi’s method have converged almost

immediately.

In Figure 5.5 is shown the fundamental eigenvector estimates of the symmetric,

heterogeneous problem from the power method and Arnoldi’s method. These eigen-

vectors are the mean of the last 1250 power iterations or 125 Arnoldi restarts. We

can see that height of the eigenvector in the fuel regions is not the same, but we know

that they must be because the slab is symmetric. Not enough particles are being

transported into the right fuel region causing the eigenvector estimate to be smaller

in that region.

In Figure 5.6 is shown the fundamental eigenvector for the same symmetric, het-

erogeneous problem, but this time 1E7 particles were tracked in each iteration. The

results for the previous problem are included for comparison. We can see that when

more particles are used, more particles reach the right fuel region and the eigenvec-

tor estimate becomes larger. We expect that if enough particles are tracked, the

eigenvector will become symmetric.
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Figure 5.4: Convergence of eigenvalue estimate and Shannon entropy for symmetric
geometry. Solid black line is the fundamental eigenvalue (λ0 = 0.424316 [17]); dashed
black line is the entropy at the end of the simulation for the power method and mean
entropy for Arnoldi’s method. 83



Arnoldi
Power

Slab width (mfp)

E
ig

en
ve

ct
or

9876543210

1

0.8

0.6

0.4

0.2

0

Figure 5.5: Fundamental eigenvector estimates for the symmetric, heterogeneous problem from the power method and Arnoldi’s
method.
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Figure 5.6: Fundamental eigenvector estimates for the symmetric, heterogeneous problem from Arnoldi’s method using 1E6 and
1E7 particles per iteration.
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5.3 Summary

When doing Monte Carlo particle transport, it is important that the eigenvalue esti-

mates and fission source have converged before we begin tallying. If convergence has

not been achieved then estimates of the eigenvalue (or some other tally) which are

wrong will be used thus affecting the final result. Using the Shannon entropy of the

fission source, it is easy to monitor the convergence of both the eigenvalue estimate

and fission source. Brown [6] suggests that the number of inactive iterations can be

estimated by running the simulation with a small number of particles tracked in an

iteration and see how many iterations are required for convergence.

Regardless of how the number of necessary inactive iterations is determined, the

inactive iterations must still be performed; for Arnoldi’s method only one inactive

restart is required. Because of its rapid convergence, Arnoldi’s method can save

computational expense because it does not require the many hundreds of inactive it-

erations to converge like the power method. Arnoldi’s method converges immediately

for the three problems shown in this chapter and does not appear to need any inactive

iterations.
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Chapter 6

Conclusions

In this dissertation I have developed the first Monte Carlo implementation of Arnoldi’s

method for neutron transport. This implementation uses explicitly restarted Arnoldi’s

method to estimate multiple eigenvalues of the transport-fission operator of the Boltz-

mann transport equation (1.1).

Using Arnoldi’s method for estimating eigenvalues is a new technique in the

Monte Carlo particle transport field; traditionally, the power method has been used.

Arnoldi’s method has been used in the numerical analysis community for many years

to estimate multiple eigenvalues and eigenvectors of a linear operator, but this is the

first time it has been used with a Monte Carlo application of the linear operator.

I have demonstrated the ability to use Arnoldi’s method to estimate up to three

eigenvalues of the transport-fission operator for a variety of homogeneous and hetero-

geneous one-dimensional problems. The eigenvalue estimates have been compared to

and agree with published results and independent deterministic calculations within

statistical uncertainty. The eigenvectors have also been estimated and compared with

deterministic calculations; again the results from Arnoldi’s method are in harmony

with the deterministic calculations. In some situations, Arnoldi’s estimated eigenvec-

tors are improvements over the power method estimated eigenvectors.

Arnoldi’s method can be used to calculate more than three eigenmodes. Calculat-

ing additional higher-order eigenmodes will require additional iterations in a restart,
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and it may be necessary to track more particles in an iteration or use a finer spatial

discretization.

Arnoldi’s method requires the fission source to be discretized. The simplest way

to discretize the fission source is to use a constant in space or first-order accurate

spatial approximation of the fission source which can, unfortunately, cause an error

in the eigenvalue estimate if too few spatial bins are used to discretize the source. I

have implemented a second order accurate approximation to the fission source and

have used it to reduce the error in the eigenvalue calculation by an order of magnitude

for the same number of particles tracked. The eigenvector estimates from the second

order accurate approximation are a great improvement over the first order accurate

approximation. Rather than a jagged, step-wise approximation to the eigenvector,

the second-order accurate approximation is a smooth and nearly continuous function

across bins. In addition, the figure of merit for the second-order accurate approxima-

tion is 2–3 times larger than the first order accurate approximation.

I have investigated relaxing the precision to which the transport-fission operator

is applied at every Arnoldi iteration. Studies have shown that relaxing Arnoldi’s

method has no effect on the convergence to the correct eigenvalues. Relaxing Arnoldi’s

method in a Monte Carlo particle transport application simply involves tracking fewer

particles in an iteration than was initially specified; tracking fewer particles is less

computationally expensive and reduces the overall time for the simulation.

Relaxing Arnoldi’s method for Monte Carlo criticality applications can save on

computation time. Relaxing too much, however, can cause the eigenvalue estimates

to be incorrect. In addition, relaxing Arnoldi’s method only a little can cause the

figure of merit to be smaller than for a non-relaxed Arnoldi’s method. Relaxing

Arnoldi’s method turns out to be not a sufficient improvement to make it worthwhile

to use in practice.
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Two important topics currently being investigated in the Monte Carlo particle

transport community are the underestimation of the variance of the mean eigenvalue

estimate and the convergence of the fission source. The power method underestimates

the variance because it ignores the correlation between power method iterations.

My implementation of Arnoldi’s method also ignores the inter-iteration correlation,

but the reported variance appears to be more conservative. In one of the problems

discussed in this dissertation, I have shown that Arnoldi’s method overestimates the

uncertainty in the eigenvalue estimate by approximately 10%.

The power method can take a long time to converge the fission source—especially

for problems with a large dominance ratio. In Monte Carlo criticality calculations,

both the eigenvalue estimate and the fission source must be converged before tallying

begins. If convergence is slow, more iterations must be discarded and computation

wasted. I have shown that Arnoldi’s method is superior to the power method in

converging both the eigenvalue estimate and the fission source. Arnoldi’s method

appears to converge both the eigenvalue estimate and the fission source immediately,

while the power method can require several hundreds of iterations.

6.1 Future Work

Work on Monte Carlo Arnoldi’s method for criticality calculations is far from com-

plete. This dissertation represents the first work performed in this field. Some of the

many topics that still need to be explored are described next.

6.1.1 Implicit Restarts

One of the most intriguing ways that restarted Arnoldi’s method could be improved

is by implementing implicit restarts. Implicit restarts were developed by Sorensen

[26] as a way to restart Arnoldi’s method with an improved starting vector, and at
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the same time reduce the computational expense of the algorithm and increase the

stability of maintaining orthogonality between Arnoldi vectors.

Implicitly restarted Arnoldi’s method (IRAM), as it is called, performs iterations

of the shifted QR algorithm on the upper Hessenberg matrix, Hm, in the Arnoldi

factorization in exchange of Arnoldi iterations. It can be shown that performing these

shifted QR iterations allows Arnoldi’s method to jump into the middle of the next

restart, skipping several iterations. IRAM is mathematically equivalent to picking a

vector for the beginning of a new restart as a linear combination of the eigenvectors

associated with the desired region of the spectrum of A as we did in explicitly restarted

Arnoldi’s method. The full derivation and proof of implicitly restarted Arnoldi’s

method is given in Appendix A.

In Arnoldi’s method, applying the linear operator A is the most computationally

expensive part, using greater than 80% of the computer cycles in a given iteration.

Since the number of iterations in an Arnoldi restart is small, performing QR iterations

on Hm will be inexpensive. Trading computationally expensive applications of A

for inexpensive QR iterations on Hm should significantly reduce the computational

expense of Arnoldi’s method.

6.1.2 Calculating Eigenvalue Estimates at Every Iteration

In Chapter 2 it was suggested that an Arnoldi restart could be treated similarly to the

power method; that is, at the end of an Arnoldi restart an estimate for the eigenvalues

are calculated and stored. In the power method, an eigenvalue estimate is calculated

at every iteration; since multiple iterations make up one Arnoldi restart, the power

method has many more eigenvalue estimates than does Arnoldi’s method for the same

number of iterations and number of particles tracked.

The variance of the mean of the eigenvalue estimates goes as one over the square-

root of the number of eigenvalue estimates. Thus, the power method has an advantage
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over Arnoldi’s method in that it has more eigenvalue estimates—the variance for the

mean eigenvalue from the power method will almost certainly be smaller.

There is no reason why an eigenvalue estimate could not be calculated at every

Arnoldi iteration instead of just at the end of a restart. Of course, after the first iter-

ation we could only estimate the fundamental eigenvalue; we would have to wait for

additional iterations to estimate higher order eigenvalues. It would be slightly more

computationally expensive, but the decrease in the variance may be worth the extra

expense. In all of the calculations in which Arnoldi’s method was directly compared

to the power method, the figures of merit from the power method calculations were

larger than the figures of merit for Arnoldi’s method even though both methods took

approximately the same amount of computational time. The figure of merit is larger

for the power method because the variance is smaller. Calculating an eigenvalue esti-

mate at every iteration would increase the number of estimates in Arnoldi’s method,

but is more computationally expensive.

A preliminary test has been performed to see how estimating the eigenvalue at

each iteration might work. I have repeated the 20 mfp simulation in Chapter 2 from

Arnoldi’s method, but instead of estimating three eigenvalues only the fundamental

eigenvalue is estimated and only two iterations are done per restart. In each iteration

1E5 particles are tracked. The number of restarts are 125 inactive and 500 active.

The total number of particles tracked and the total number of iterations is the same

for this simulation and the power method and Arnoldi’s method from Chapter 2.

The results of this simulation are given in Table 6.1. The results for the new

simulation are given first and denoted with a star. The eigenvalue estimate is within

statistical uncertainty of the reference value of λ0 = 4.82780. We can see that the

standard deviation of this simulation is identical to the power method simulation

from Chapter 2, but that the figure of merit is larger.
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λ0 σ FOM

Arnoldi* 4.82806 6.3×10−4 6.6×103

Power 4.82734 6.3×10−4 5.4×103

Arnoldi 4.8290 1.5×10−3 1.1×103

Table 6.1: Eigenvalue estimate and figure of merit for Arnoldi’s method (Arnoldi*)
with just 2 iterations per restart and only saving the fundamental eigenmode. Also
included are results from Table 2.1 for comparison. (Reference λ0 = 4.82780.)

Figure 6.1a shows the eigenvalue estimate convergence as well as the Shannon

Entropy. In this particular simulation, Arnoldi’s method does not converge the eigen-

value estimate or the Shannon entropy immediately as we have seen previously, but

it still only requires a few restarts to converge. Figure 6.1b shows the estimated fun-

damental eigenvector along with the reference solution. Again we see that Arnoldi’s

method can accurately estimate the fundamental eigenvector.

These preliminary results show two important things. First, if we are interested

in just one eigenmode we should use a smaller Krylov subspace (fewer iterations

per restart) and have more active restarts; this reduces the variance and increases the

figure of merit. Second, we see that computing an eigenvalue estimate more frequently

can reduce the variance for the mean eigenvalue.

6.1.3 Condensing Arnoldi’s Method

One suggestion that has been made1 for Arnoldi’s method is to eliminate restarts and

just do a few highly accurate iterations. We have seen that Arnoldi’s method does

not need many inactive restarts to converge the fission source. The only remaining

reason to use many restarts is to obtain an estimation of the statistical uncertainty of

the eigenvalue estimate. However we also know that the estimate of the uncertainty

is wrong.

1very determinedly, in fact
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Figure 6.1: Preliminary calculation of eigenvalue estimates, eigenvector, and Shanon
entropy from an Arnoldi’s method with just 2 iterations per restart and only saving
the fundamental eigenmode. The black line is the reference solution.
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It has been proposed that rather than performing many Arnoldi restarts, it may

be beneficial to track many more particles during just one or two Arnoldi restarts

with sufficient Krylov subspace size. The application of A would be performed much

more accurately and the eigenvalue estimates would be much better.

With only one or two Arnoldi restarts the statistical uncertainty could not be

calculated as described in this dissertation; the variance of just two estimates isn’t

helpful. In principle the statistical uncertainty could be calculated by propagating

the statistical error through the iterations of Arnoldi’s method. This would be a pro-

found change in how statistical uncertainties are calculated in Monte Carlo eigenvalue

computations, no one has done this before.

A preliminary simulation has been done using this idea. We return to the 20

mfp slab geometry introduced in Chapter 2. We will use the same total number of

particles, but will put all of them into one inactive restart and one active restart; each

restart has 10 iterations with 6.25×106 particles tracked in each iteration.

The eigenvalues from this simulation are given in Table 6.2 and the estimated

eigenvectors in Figure 6.2; the “Condensed” Arnoldi is Arnoldi’s method with just

two restarts, but many particles tracked in each iteration. We see that the eigenvalue

estimates are not exactly the same as the reference solution but that the eigenvector

is an excellent estimate as with the regular Arnoldi’s method. However we do not

have a way yet of estimating the statistical uncertainty of these values so we do not

know if the eigenvalue estimates are within statistical uncertainty of the reference

solution.

λ0 λ1 λ2

Condensed Arnoldi 4.8309 4.3824 3.8131
Reference 4.8278 4.3831 3.8174

Table 6.2: Eigenvalue estimates for 20 mfp thick slab geometry from a condensed
Arnoldi’s method and Reference eigenvalues from [12], and [9].
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Figure 6.2: Preliminary calculation of eigenvectors from condensed Arnoldi.

6.1.4 Multi-dimensional and Real-world Problems

All of the simulations demonstrated in this dissertation have been one-dimensional.

Restricting a prolem to one-dimension is sufficient for a proof-of-concept but it cer-

tainly does not represent a real-world problem. As of yet, there have been no attempts

at using Arnoldi’s method in a three-dimensional, production code such as MCNP;

any estimates of how Arnoldi’s method may operate in three-dimensions is just spec-

ulation.

Most likely the biggest issue when moving to three-dimensions is the length of

the Arnoldi vectors. It is expected that the number of discretization bins necessary

for three dimensions would be at least N3 where N is the number of bins for a one-

dimensional problem. Increasing the size of the Arnoldi vectors by this magnitude

would increase the computational expense of orthogonalizing the Arnoldi vectors as

well as the expense of sampling and scoring in and from a three-dimensional source.
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The size of the Krylov subspace (number of iterations in a restart) necessary for

a three-dimensional problem would seem to be greater than for a one-dimensional

problem. In this dissertation, the more difficult problems (i.e. problems with larger

dominance ratios) required additional iterations for an accurate eigenvalue estimate.

A three-dimensional problem would almost certainly require more iterations than a

one-dimensional problem and would therefore require more time.

Arnoldi’s method, while having been used extensively in the numerical analy-

sis community has yet to be incorporated in Monte Carlo particle transport algo-

rithms. This dissertation represents the first work in this area. Arnoldi’s method has

many promising qualities; further investigation will determine the ability of Arnoldi’s

method to be used in production Monte Carlo codes.
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Appendix A

Implicitly Restarted Arnoldi’s

Method

A good restart vector is one where the undesired region of the spectrum of our linear

operator is suppressed while the desired region is enhanced. This is done by zeroing

out the Ritz vectors associated with the Ritz values from the undesired region of the

spectrum. This is done explicitly in equation (2.14) and repeated here for clarity;

v̂ = c1y1 + · · ·+ cjyj + 0 yj+1 + · · ·+ 0 yn; (A.1)

In addition to saving computational expense the improved restarts implicitly restart

Arnoldi’s method with an improved restart vector and is thus called an implicit restart

or implicitly restarted Arnoldi’s method (IRAM). To see how this is done, a brief

discussion of the QR algorithm will first be presented and then IRAM will be shown.

QR Algorithm

A matrix A ∈ Rn×ncan be decomposed into two matrices

A = QR (A.2)

97



where Q,R ∈ C
n×n with Q unitary (orthonormal columns) and R upper triangular.

The QR decomposition (equation (A.2)) is unique [see 31, Chapter 3, pg. 204] for

nonsingular matrices and R with positive main diagonal entries. The QR factors can

be recombined in reverse order to form a new matrix

Â = RQ. (A.3)

The decomposition of a matrix and the recombination of the factors is typically

performed iteratively. A simple change of notation makes this illustration clear

An−1 = QnRn (A.4a)

An = RnQn. (A.4b)

Using this notation A0 = A. The decomposition of An−1 and formation of An consti-

tutes one QR iteration.

We can see from equation (A.4a) that Rn = Q∗
nAn−1. Substituting this in equa-

tion (A.4b) we obtain an alternative form for An

An = Q∗

nAn−1Qn. (A.5)

Shifted QR Iteration

The QR iteration can be shifted by subtracting the identity matrix multiplied by some

scalar shift. The factors in the shifted QR iteration can be recombined similarly to

the non-shifted counterpart

An−1 − νnI = QnRn (A.6a)

An = RnQn + νnI (A.6b)
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where Qn and Rn are the same as in the non-shifted QR iteration, I is the identity

matrix, and νn is the shift being applied. Similarly to the non-shifted QR iteration,

we can form An alternatively. To see this first note from equation (A.6a) that

Rn = Q∗

nAn−1 − νnQ
∗

n.

Substituting this into equation (A.6b) we obtain

An =
[
Q∗

nAn−1 − νnQ
∗

n

]
Qn + νnI

= Q∗

nAn−1Qn − νnQ
∗

nQn + νnI

= Q∗

nAn−1Qn − νnI + νnI

An = Q∗

nAn−1Qn (A.7)

Equation (A.7) generalizes the alternative form of Am from equation (A.5) to the

shifted QR algorithm.

Now that the basic QR algorithm has been given we will proceed to to develop

some identities that will be of use to us in analyzing implicit restarts for Arnoldi’s

method.

Lemma A.0.1. Let Qn, An be defined by equations (A.6) and let

Q̂n ≡ Q1Q2 · · ·Qn, (A.8)

then

An = Q̂∗

nAQ̂n (A.9)

Q̂nAn = AQ̂n. (A.10)
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Proof. For n = 1, we know from equation (A.6)

A1 = Q∗

1A0Q1 = Q̂∗

1AQ̂1. (A.11)

For n = 2, after a second iteration, we have

A2 = Q∗

2A1Q2

= Q∗

2

(
Q∗

1AQ1

)
Q2

= Q̂∗

2AQ̂2 (A.12)

where Q̂2 = Q1Q2. We can prove this in general by induction on n:

An = Q∗

nAn−1Qn

= Q∗

n

(

Q̂∗

n−1An−2Q̂n−1

)

Qn

= Q∗

nQ
∗

n−1 · · ·Q1AQ1 · · ·Qn−1Qn

= Q̂∗

nAQ̂n (A.13)

where Q̂n = Q1Q2 · · ·Qn, as defined in equation (A.8). Equation (A.10) immediately

follows from equation (A.9) since Q̂n is a unitary matrix.

Lemma A.0.2. Let Qn, An be defined by equation (A.6a) and let
{
ν1, . . . , νm

}
be the

shifts, then
(
A− νnI

)
Q̂n = Q̂n

(
An − νnI

)
, (A.14)

where Q̂n ≡ Q1Q2 · · ·Qn.
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Proof. Using equation (A.10) this becomes trivial:

(
A− νnI

)
Q̂n = AQ̂n − νnQ̂n

= Q̂nAn − νnQ̂n

(
A− νnI

)
Q̂n = Q̂n

(
An − νnI

)
. (A.15)

With these two lemmas we now proceed to the theorem that is important to

showing how IRAM restarts with the ideal restart vector.

Theorem A.0.3. Let Q̂n be defined as in equation (A.8) and

R̂n ≡ RnRn−1 · · ·R1 (A.16)

and using
{
ν1, ν2, . . . νn

}
as the shifts of a shifted QR algorithm, then

pj(A) = Q̂jR̂j , (A.17)

where pj is a polynomial of degree j with zeros ν1, . . . , νj

pj(z) =
(
z − ν1I

) (
z − ν2I

)
· · ·
(

z − νjI
)

. (A.18)

Proof. For n = 1 equation (A.17) is true by definition of the shifted QR decomposition

given in equation (A.6a)

(
A− ν1I

)
= Q1R1 = Q̂1R̂1. (A.19)
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In general we can prove this by induction

(
A− νnI

) [(
A− νn−1I

)
· · ·
(
A− ν1I

)]

=
(
A− νnI

) [

Q̂n−1R̂n−1

]

=
[

AQ̂n−1 − νnQ̂n−1

]

R̂n−1

=
[

Q̂n−1An−1 − νnQ̂n−1

]

R̂n−1

= Q̂n−1

(
An−1 − νnI

)
R̂n−1

= Q̂n−1

(
QnRn

)
R̂n−1

(
A− νnI

) [(
A− νn−1I

)
· · ·
(
A− ν1I

)]

= Q̂nR̂n. (A.20)

Equation (A.17) shows that the product of the unitary (Q̂n) and upper triangular

(R̂n) matrices from the QR algorithm are equivalent to a polynomial of A of degree n

with the shifts as the zeros of the polynomial. This is an important point in IRAM.

Updating Arnoldi Factorization by Shifted QR Itera-

tions

To show how IRAM uses the QR algorithm we begin with the Arnoldi factorization

first introduced in equation (2.8)

AVm = VmHm + vm+1hm+1,me
T
m. (A.21)

Implicitly restarted Arnoldi’s method performs shifted QR iterations on Hm using

the eigenvalues estimates from the undesired region of the spectrum of A. For Monte

Carlo reactor analysis the eigenvalues largest in magnitude are of particular interest

however, the following treatment is independent of what region of the spectrum is

desired.
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We note that the Arnoldi factorization in equation (A.21) is shown after m Arnoldi

iterations. For this discussion we assume that k eigenvalues are desired and m = k+j

iterations are performed in each restart where k ∼ j. After m Arnoldi iterations we

have m Ritz values—eigenvalue estimates—of A; k of them are the eigenvalues of

interest and the other j values are used as shifts for the shifted QR algorithm.

IRAM performs j iterations of the shiftedQR algorithm onHm using the undesired

Ritz values as described previously. After j iterations we obtain

Ĥj = Q̂∗

jHmQ̂j (A.22)

where Q̂j is defined in equation (A.8). Because Hm is upper Hessenberg, we can show

that Qi is upper Hessenberg and Q̂j is properly j-Hessenberg.

Theorem A.0.4. Let j be a non-negative integer. A matrix H is called j-Hessenberg

if hrc = 0 whenever (r − c) > j. An Hessenberg matrix is said to be properly j-

Hessenberg if hrc 6= 0 whenever (r − c) = j,

hrc =







0 r − c > j

x otherwise.

(A.23)

Then the product of a properly j-Hessenberg matrix (Hj) and a properly k-Hessenberg

matrix Hk is properly (j + k)-Hessenberg (Hj+k).

Proof. The rth row of a properly j-Hessenberg matrix has max
[
r − j − 1, 0

]
leading

zeros. The cth column of a properly k-Hessenberg matrix has max
[

m−
(
c+ k

)
, 0
]

trailing zeros. The elements of Hj+k, hrc, are zero if the sum of the leading zeros of the

rth row of Hj is greater than or equal to the difference of the size of the matrix m and

the trailing zeros of the cth column ofHk; hrc = 0 if
(
r − j − 1

)
≥ m−

[

m−
(
c+ k

)]

.
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Simplifying we obtain
(
r − j − 1

)
≥
(
c + k

)
or equivalently

hrc =







0 r − c >
(
j + k

)

x otherwise.

(A.24)

We see that equation (A.24) is equivalent to equation (A.23) for a
(
j + k

)
-Hessenberg

matrix.

When performing theQR decomposition on an upper Hessenberg matrix we obtain

Hm = Q1R1 (A.25)

with Q1 and R1 defined in equation (A.2). This can be re-written as

Q1 = HmR
−1
1 (A.26)

where we note that the inverse of an upper triangular matrix is an upper triangular

matrix. An upper triangular matrix is properly 0-Hessenberg and Hm is 1-Hessenberg

so we can apply Theorem A.0.4 on the preceding page to show that Q1 is properly

1-Hessenberg.

Corollary A.0.5. Let Q̂n ∈ Cm×m be the combined unitary matrix resulting from

n iterations of the QR iteration on an upper Hessenberg matrix, H. Then Q̂n is a

properly n-Hessenberg matrix and that the row vector eT
mQ̂n has m − n − 1 leading

zeros.

Proof. We know that the unitary matrix from the QR decomposition of an upper

Hessenberg matrix is also upper Hessenberg. Q̂n is the product of n upper Hessenberg

matrices, therefore Q̂n is properly n-Hessenberg.
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The elements of product eT
mQ̂n are non-zero when the element of the mth or last

row of Q̂n is also non-zero. The last row of Q̂n has m− n− 1 leading zeros as given

in Theorem A.0.4 on page 103.

Let’s return to the Arnoldi method. Solving equation (A.22) for Hm and substi-

tuting into equation (A.21) we obtain

AVm = Vm

(

Q̂jĤjQ̂
∗

j

)

+ vm+1hm+1,me
T
m. (A.27)

Now operate on the right by Q̂j ,

AVmQ̂j = VmQ̂jĤjQ̂
∗

jQ̂j + vm+1hm+1,me
T
mQ̂j

AV̂m = V̂mĤm + vm+1hm+1,me
T
mQ̂j, (A.28)

where

V̂m = VmQ̂j. (A.29)

The row vector eT
mQ̂j in equation (A.28) has

(
m− j − 1

)
leading zeros according

to Theorem A.0.5 on the preceding page. If we drop the first j columns of equa-

tion (A.28) we obtain

AV̂k = V̂k+1Ĥk+1,k + vm+1hm+1,mβe
T
k

= V̂kĤk +
(

v̌k+1ȟk+1,k + vm+1hm+1,mβ
)

eT
k (A.30)

where βeT
k is the first k + 1 columns of eT

mQ̂j and we have defined

v̂k+1 = γ
(

v̌m+1ȟm+1,m + vm+1hm+1,mβ
)

(A.31)

105



where γ is chosen to normalize v̂k+1, ‖v̂k+1‖2 = 1. If we let ĥk+1,k = 1/γ then

equation (A.30) becomes

AV̂k = V̂kĤk + v̂k+1ĥk+1,ke
T
k (A.32)

which is exactly like equation (A.21) except we have added some hats on some symbols

and replaced m with k. It can be shown [see 31] that the Arnoldi vectors contained

as the columns of V̂k are exactly those that would have been generated by explicitly

starting with v̂1. Thus with IRAM we don’t have have to start at the beginning of

a restart, therefore we can jump right in at the kth iteration of the restart. After j

additional steps we will have a Krylov subspace of size m, exactly as we would have

had after m iterations in explicit Arnoldi.

Being able to jump into the middle of an Arnoldi restart can save considerable

computational expense by reducing the number applications of the linear operator A

required. (The application of the linear operator in Monte Carlo particle transport

is responsible for > 80% of the computational runtime.) In short, IRAM exchanges

Arnoldi iterations for shifted QR iterations. Shifted QR iterations are faster than

Arnoldi iterations because Hm is small.

How Implicit Restarts Suppresses Unwanted Eigen-

value Information

We have just shown that implicit restarts can be computationally more efficient.

Here we show that implicit restarts are mathematically equivalent to restarting with

a linear combination of the Ritz vectors from the desired region of the spectrum of A

[see 31, Chapter 5, pg. 456].
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Theorem A.0.6. Suppose we have the Arnoldi factorization

AVm = VmHm + vm+1hm+1,me
T
m (A.33)

and let pj be a polynomial of degree j < m as shown in equation (A.18). Then

pj(A)Vm = Vmpj(Hm) + Ej, (A.34)

where Ej ∈ Cn×m is identically zero, except in the last j columns.

Proof. For m = 1 we can just apply a shift ν1 to the Arnoldi factorization, equa-

tion (A.21),
(
A− ν1I

)
Vm = Vm

(
Hm − ν1I

)
+ E1 (A.35)

where E1 = hm+1,mvm+1e
T
m. We can see that E1 is zero except for the last column

by the product vm+1e
T
m.

(
A− ν1I

)
and

(
Hm − ν1I

)
are polynomials of A and Hm

respectively with degree j = 1, both with root ν1.

Assuming this theorem holds for polynomials of degree j− 1 (we have just shown

this to be true for j − 1 = 1) we can now show it is valid for polynomials of degree j.

We know:

(

A− νj−1I
)

· · ·
(
A− ν1I

)
Vm = Vm

(

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)
+ Ej−1 (A.36)

operate on the left by
(

A− νjI
)

(

A− νjI
)(

A− νj−1I
)

· · ·
(
A− ν1I

)
Vm =

(

A− νjI
)

Vm

(

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)
+
(

A− νjI
)

Ej−1. (A.37)

107



Substituting νj for ν1 in equation (A.35) we see that

(

A− νjI
)

Vm = Vm

(

Hm − νjI
)

E1 (A.38)

which can be inserted into the previous equation

(

A− νjI
)

· · ·
(
A− ν1I

)
Vm

=

[(

A− νjI
)

Vm

](

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)
+
(

A− νjI
)

Ej−1

=

[

Vm

(

Hm − νjI
)

+ E1

](

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)
+
(

A− νjI
)

Ej−1

= Vm

(

Hm − νjI
)

· · ·
(
Hm − ν1I

)
+ E1

(

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)

+
(

A− νjI
)

Ej−1

= Vm

(

Hm − νjI
)

· · ·
(
Hm − ν1I

)
+ Ej (A.39)

where

Ej = E1

(

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)
+
(

A− νjI
)

Ej−1. (A.40)

We can simplify equation (A.39) further and write

pj(A)Vm = Vmpj(Hm) + Ej, (A.41)

where

pj(A) =
(

A− νjI
)

· · ·
(
A− ν1I

)

is a polynomial of degree j on A and

pj(Hm) =
(

Hm − νjI
)

· · ·
(
Hm − ν1I

)
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is a polynomial of degree j on Hm. Equation (A.41) is exactly what we want to prove

equation (A.34).

We know that the columns of Ej−1 are zero except the last j − 1 columns. We

can see by inspection that the second term on the right hand side of equation (A.40)

has the same structure. From Theorem A.0.4 on page 103 we know that the product
(

Hm − νj−1I
)

· · ·
(
Hm − ν1I

)
is properly j-Hessenberg. Multiply this by E1 on the

left and we obtain a zero matrix except in the last j columns. The right hand side of

equation (A.40) is therefore as we expected.

Now that we have the necessary mathematical basis to understand what happens

with an implicit Arnoldi restart we can investigate how IRAM generates it’s starting

vector. In IRAM the shifts ν1, ν2, . . . , νj are chosen from the region of the eigenvalue

spectrum that is to be suppressed. These shifts are then used in j iterations of the

shifted QR algorithm on Hm resulting in Ĥj = Q̂∗
jHmQ̂j where Q̂j is the combined

unitary factor in the QR factorization

pj(Hm) = Q̂jR̂j (A.42)

where j indicates the number of shifted QR iterations performed and pj(z) is defined

in equation (A.18). When we apply Theorem A.0.6 on page 106 and substitute

equation (A.42) we obtain

pj(A)Vm = VmQ̂jR̂m + Ej . (A.43)

The Arnoldi factorization is uniquely defined by the starting vector and the linear

operator. If we multiply equation (A.43) by e1 we get

pj(A)Vme1 = VmQ̂jR̂je1 + Eje1. (A.44)
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Eje1 = 0 because the first column of Ej is zero. Since R̂j is upper triangular

R̂je1 = r11e1 = αe1 and the first term on the right hand side is αVmQ̂m = αv̂1. The

left hand side of equation (A.44) is just a polynomial of degree j of A multiplied by

v1 the starting vector for this Arnoldi process. From equation (A.44) we can deduce

v̂1 =
1

α
pj(A)v1. (A.45)

Let’s return to the starting vector for an Arnoldi procedure. We can write the

vector as a linear combination of a set of basis vectors

v1 = c1x1 + c2x2 + · · ·+ cnxn, (A.46)

where the xi’s are the basis vectors and the ci’s are some expansion coefficients. If

we choose the eigenvectors of our linear operator A as our basis vectors then things

become interesting with respect to IRAM. To see this, multiply v1 by a polynomial

of degree 1 of A

p1(A)v1 =
(
A− ν1I

)
(c1x1 + c2x2 + · · ·+ cnxn)

= c1
(
Ax1 − ν1x1

)
+ · · · cn

(
Axn − ν1xn

)
(A.47)

where we remember the xi’s are the eigenvectors of A and that ν1 is the first undesired

eigenvalue, λk+1. Equation (A.47) becomes

p1(A)v1 = c1
(
λ1x1 − ν1x1

)
+ · · ·

+ ck+1

(
λk+1xk+1 − ν1xk+1

)

︸ ︷︷ ︸

=0

+

· · ·+ cn
(
λnxn − ν1xn

)
(A.48)

where the vector xk+1 has been completely eliminated.
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If we include all the terms of the polynomial pj(A) then all j eigenvectors from

the undesired region of the spectrum are removed from our restart vector

pj(A)v1 = c1
(
λ1x1 − ν1x1

) (
λ1x1 − ν2x1

)
· · ·
(

λ1x1 − νjx1

)

+ · · ·

+ ck
(
λkxk − νkxk

)
· · ·
(
λkxk − νkxk

)
+ 0. (A.49)

We can plug this result into equation (A.45) and get our optimal restart vector as

described in equation (A.1).

Thus we see that implicitly restarted Arnoldi’s method is mathematically equiv-

alent to explicitly restarted Arnoldi’s method but can skip into the restart after k

iterations. IRAM can save computational expense by trading expensive applications

of the linear operator for cheap shifted QR iterations.
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