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CHAPTER I

Introduction

1.1 Background

Globalization is leading to new paradigms for product development and manufac-

turing enterprises. Manufacturers are facing increasing pressures from diverse global

markets to deliver higher-quality, lower-cost products with shorter turnaround. In

addition, corporations, both federal and private, recognize the need and advantages of

harnessing global talents through geographically distributed, cross-functional teams.

At the same time, significant advances in computing and database capabilities

have led to improved performance in every phase of the product’s lifecycle. Man-

ufacturers use the advances in Computer-Aided Design (CAD), Computer-Aided

Manufacturing (CAM), Product Data Management (PDM) and other tools, along

with available knowledge to develop the physical form, logic, specifications and other

information that defines a product.

There is an increasing emphasis on unifying the multiple activities within the

knowledge-intensive, distributed, multi-functional enterprise. This has led to the

vision of Product Lifecycle Management (PLM) as a business strategy that views the

1
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above-mentioned value chain as one product-centric enterprise, and not a set of silo-ed

processes. Ameri and Dutta [3] discuss several aspects of PLM and synthesize that

it is “a computational framework which effectively enables capture, representation,

retrieval and reuse of product knowledge.”

The overall idea is to utilize emerging software technologies in areas, such as

knowledge management, data translation and web-based collaboration to facilitate

innovation through integration, i.e., by allowing faster and effective product data in-

teroperability and seamless collaboration between various functions of the enterprise.

1.2 Semantics-based product data interoperability

An important feature of product information is its meaning (semantics) in the

context in which it is generated and used. Product knowledge (product description,

configuration, attributes and requirements), in contrast to text data, is not self-

descriptive. This knowledge should ideally be available to the stakeholders (e.g.,

Original Equipment Manufacturers (OEMs), suppliers) in a manner that will enable

consistent interpretations of the data.

The growth of the Internet has ensured connectivity among the various stakehold-

ers, i.e., right information could be made available at the right time. Yet, conservative

estimates in a study by Brunnermeier and Martin [1] for the National Institute of

Standards and Technology (NIST) suggest that imperfect interoperability costs at

least 1 billion dollars per year to the United States automotive supply chain. The

majority of these costs are due to resources spent in correcting and recreating data

that is not usable by the receiving applications. This inability to use translated
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Section 3 — Technical Issues in Product Data Exchange

3-3

Figure 3-1.  Multiple CAD/CAM Systems Used in the Automobile Supply Chain
Multiple translators are required to exchange data between the various players in the U.S. automotive industry.
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➤ native format transfer, in which the sender creates the data
file in the same software that the receiver will use,
eliminating the need for translation for that particular
transfer;1

➤ point-to-point translation, which uses a conversion program
that transforms the data from the form used by one system
to the form used by another system;

➤ manual reentry of product data into the receiving system;
and

➤ neutral format translation, in which the data are translated
from the originating format into a neutral format by the
sender, and translated from the neutral format to the desired
format by the receiver.

                                               
1Although a translation is not required in native format transfer, it is important to

note that a translation may be required before a native format transfer takes
place.  For example, if design data are created in Pro/E, but the customer
requires the data in CATIA format, the sender must translate the data into
CATIA and verify that it has been translated correctly before forwarding the
native format data to the customer. Problems related to native format transfers
are discussed in Section 3.2.

Figure 1.1: Multiple CAD/CAM Systems Used in the Automobile Supply Chain
(Adapted from [1])

product information is mainly because its semantics is lost during the translation to

a new domain. In a follow-up study, Gallaher et al. [4] present a similar impact of

the lack of interoperability for the aerospace and shipbuilding industries.

It is necessary for the success of OEMs, federal departments such as the U.S.

Army [5], their suppliers and software vendors that interoperability is correct and

efficient, i.e., it is not merely syntactic data exchange. This becomes even more

important in the context of increasing and changing capabilities (evolving semantics)

of existing systems in distributed product development as shown in Figure 1.1.

Therefore, there is a need to promote drastically increased levels of interoperabil-

ity of product data across a broad spectrum of stakeholders while ensuring that the

semantics of product knowledge are preserved, and when necessary, translated.

Semantic technologies include standards and methodologies aimed at providing

and using these semantics. A semantics-based integration can be achieved through

the following steps:
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1. Representation of the semantics of the participating domains

Currently, semantics of product data is rarely accessible by the software other

than the one which created the data. For example, the semantics of CATIA

part files is only accessible in CATIA. Although partial semantics are sometimes

accessible through the Application Programming Interface (API) provided by

the software, there is no standard for APIs of different software, and it is

impossible for a generic method to access the semantics of product data created

with different software tools. Therefore, an explicit standard representation of

semantics is an essential part for any generic method to interpret the data.

2. Automated mapping of concept semantics across representations

Explicit semantic representations do not guarantee the compatibility of differ-

ent representations, and the next step toward interoperability is to identify the

semantic map between the concepts across different representations. Determin-

ing semantic maps requires determining similarities across several thousands of

pairs of concepts (and attributes). Furthermore, maps need to be determined

across several different systems that are used in the product development area.

This process, if done manually, is labor intensive and error-prone. Therefore,

there is a need for an automated approach to calculate the semantic similarities

and thereby determine the semantic maps across different representations.

3. Automated translation of data based on the pre-determined semantic

maps

Once the semantic maps across the different representations are obtained, the
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next phase uses the maps for actual translation of the syntax from the sending

system to that of the receiving system. This can be facilitated by determination

of translation rules as some combination of possible functions to convert an

instance form to another, e.g., converting date from mm/dd/yyyy form to

dd/mm/yyyy form. However, several thousands of such rules would need to be

determined corresponding to each pair of concepts and attributes in the map

across each system. Therefore, there is a need for an automated system to

determine such translation rules.

Research has focused on developing ontologies/representations [6, 6, 7, 8], and this

research focuses on the second and third step: automated mapping and translation.

Next section describes the issues faced in those steps.

1.3 Issues faced during product concept mapping/translation

Mapping (or matching) and translation of concepts across different representa-

tions in product development is challenging because of the heterogeneities in the

representations, and the uncertainties in the semantic maps.

1.3.1 Heterogeneities in product development systems

Heterogeneities are mainly structural differences in the two systems that need to

be integrated. These are of the following types:

Naming Conflicts The multiple information resources used in product develop-

ment are disparate. This leads to heterogeneities such as the following:
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• Different ways of representing same information, e.g., a Pad in CATIA is

called as an Extrude in NX, the former Unigraphics.

• Similar names for different information, e.g., Fillet in NX is called as a

Blend in Solidworks, and Blend in NX is called as a Fillet in Solidworks.

Composite concept relationships One concept from a representation might match

to a combination of a set of concepts from the other representation. This may

present itself in the following forms:

• Concept Generalization A concept in one ontology (e.g., Base_Extrude

in Solidworks) can match only to its generalized counterpart in the other

ontology (e.g., Extrusion in NX). This requirement could have been ne-

glected as translation to a system that does not support some concepts;

yet, the product is still valid in both systems.

• Disparate information across representations Different representa-

tions capture different amounts and types of information. For example,

NX supports more concepts, e.g., primitives, such as block, cylinder, as

compared to Solidworks, although both are commercial CAD software.

In addition, NX can store both design and manufacturing information,

whereas ADAMS can handle only product-motion knowledge. Solidworks,

on the other hand, does not have a manufacturing module.

• Concept aggregation In some cases, maps should be from a concept

that represents the higher level definition in one representation to its lower

level composition in another representation. Concept aggregation indi-
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cates the relationship between a part and a whole, in this case, across dif-

ferent representations. For example, the concept, Orientation in ADAMS

can only be equated to its composition in the form of angle constraints

on each of the 3 axes.

• Concept enumeration In a simplest form, an instance belonging to

concept a in ontology A may belong to either concept b or c in ontology

B, where a is said to be the aggregation of b and c. For example, a

coincidence constraint in CATIA can be Coincident, PointOnCurve or

PointOnString in NX depending on the associated geometry objects.

1.3.2 Uncertainties in semantic maps

Semantics-based integration also needs to overcome uncertainties in the semantic

maps due to the following:

• Incompletely developed representations These could be due to limited

expressiveness of the representation language or implicit meanings associated

with some terms. This adds to uncertainty in the semantic maps, because they

will be based on partial semantics.

• Maps with multiple options Several cases with multiple options may ex-

ist across different representations resulting in multiple correct solutions. For

example, consider the concept cylinder created in NX. CATIA has at least

two options for this solid: pad, and shaft. It is not clear how one of the two

options should be selected, because while cylinder is a shape-defining element,

pad (shaft) captures the method of creating the solid.
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• Lack of formal basis to capture designer’s intent There is a lack of

a formal meaning of “information” or “feature vectors” attached to a product

concept. In addition, there is no single accepted approach to formally capture

or represent correct maps. For example, emerging exchange standards include

numeric shape-based invariants to determine the accuracy of translation of

product data from one system to another. However, there is no formal basis

to justify their use for this purpose. Kuzminykha and Hoffmann [9] discuss

how these quantities alone are insufficient to exclude many translation errors

caused due to differing semantics.

This section described the issues faced during the mapping and translation of the

product concepts. Although some issues have been considered by existing methods,

many remain unsolved. Next section presents the goals of the dissertation.

1.4 Dissertation goals

The goal of this research is to design and develop techniques to determine maps

across product representations that will enable semantically correct translation/interoperability

of product data.

We focus on the following specific tasks:

1. Methods to identify maps between the different representations to identify se-

mantically aligned concepts. For this, we consider:

a) A method that uses implicit semantics captured in the instances of product

data to determine the maps. This is necessary to address problems that pre-
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vious research in this area have been unable to address (See Section 1.3.2)

because of focus on using explicitly defined schema or data definition exclu-

sively. The proposed method should address 1:n maps across the represen-

tations and should work without complete and explicit representations.

b) A method that unifies the multiple individual views used to determine maps.

This is necessary because any single matching method is not enough to

determine the semantic maps across the different systems, since each method

presents only one view. The proposed method must handle the complex

interrelationships among the individual matchers.

2. A method to identify translation rules to enable physical translation of con-

cepts from one system to another. This is necessary, because even after the

semantic maps are obtained, the syntax in the sending system should properly

transform to the syntax in the receiving system.

Evaluation

We are not aware of other research/literature in this area that could be used to

evaluate our approaches objectively. Therefore, for this thesis, we will develop case

studies, and evaluate the resulting semantic maps manually, at times comparing with

possibly competitive techniques.

Next section presents the outline of the dissertation to address the tasks.
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1.5 Outline of the dissertation

This chapter discussed product data interoperability as the requirement for the

modern product development systems, and the specific tasks to enable the interoper-

ability. Especially, we emphasized the role of semantic mapping and the translation

based on the map, and explained the challenges in finding the map and the transla-

tion rules between heterogeneous product development systems. Next chapters will

further discuss the details.

Chapter II first explains concepts and terminologies used throughout the disser-

tation, and documents related work for the 3 research tasks identified in the previous

section.

Chapter III describes a method - Instance-Based Concept Matching (IBCM) that

uses instances of product models to capture implicit semantics, and ultimately to find

the semantic map. It elaborates how to collect necessary information, and to process

them to obtain the map.

Chapter IV explains a procedure to combine multiple views / matching methods

to find more accurate semantic maps between the concepts; we propose FEedback

Matching Framework with Implicit Training (FEMFIT), a method incorporates ex-

pert knowledge to find the underlying relation, thereby the combination of the indi-

vidual methods which enables more reliable approximation on the semantic map.

Chapter V defines a translation problem for product data, and explains a method

toward the translation. The proposed method automatically finds a translation rule

for a concept to translate based on a graph search algorithm.
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Chapter VI summarizes the research tasks and discusses the expected academic

and industrial contributions of this work. It also includes a discussion about the

limitations of the present work and future research.



CHAPTER II

Literature review

This chapter discusses related work in the field of concept matching - the focus

is on the work in the product domain, but we also include the work in more generic

domain when necessary. Next section presents the terminologies that will be used

throughout the dissertation, and following sections will discuss specific literature for

3 research topics explained in the previous chapter.

2.1 Terminologies

Product developments systems have their own representations and terminologies

are not always shared. In this research, we adopt entity-relationship model [10] to

represent the product data throughout the dissertation. Some important terms are:

• Concept is an abstraction of the things with common characteristics in a specific

domain. It can be something physically recognizable, e.g., Cylinder or Line,

or something conceptual like Pad or Shaft (operation). Concept has both

intensional and extensional aspects; 1) a set of attributes defines a concept

(intensional), and 2) the concepts can also be explained with its instances

12
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(extensional).

• Attribute is a field associated with a concept that describes a relation to other

instances. For example, in CATIA, a CAD system, a feature Pad can be defined

with a set of attributes Name, Profile and Length. In product domain,

we classify attributes into 3 types - character, numeric and reference. In the

example, Name is a character field that defines a specific name for the Pad

instance, and Profile is a reference field linking to a specific instance of Sketch

concept, the sketch on which Pad is created. Length defines the height of the

Pad instance in numeric value, such as inch or mm.

• Instance is a specific entity which can be characterized with a specific concept;

instance of a certain concept can be created by assigning specific values to

the attributes of that concept. Thus, when the concept has n attributes, the

instance of the concept is of n-tuple. For example, an instance of Pad can be

given as (“Pad.1”, Sketch.1, 20).

Figure 2.1 shows an example where one product geometry is represented with the

explained terms: (a) a product concept hierarchy, (b) product data which instantiates

the concepts, and (c) a visual representation of the example product data.

Typically, concept matching problem is defined as to find a matching or corre-

sponding concept in the receiving system, given a concept in the sending system.

Because we discuss matching in the context of translating information across sys-

tems, we say concept A matches or is correspondent to concept B when all instances

of A can be represented as an instance of B.
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Name Profile Length
Pad.1 20

Pad

Name Object Axis
Sketch.1 ...

Sketch

Name Radius ...
Circle.1 10 ...

Circle

Product concepts

Geometry

Pad

Constraint

Sketch Circle ... ...

...

Data valueAttribute

(a) (b) (c)

R=10mm

20mm

Figure 2.1: (a) An example of product concept hierarchy, (b) Example product data
(instance) of Pad. Instances have attributes and data values, (c) the
visual representation of the product data described in (b)

However, such comparison of instances are virtually impossible; it is not possible

to collect all instances of a specific concept, and furthermore, there is no formal

basis to determine whether two instances in different domains represent the same.

Therefore, matchers or matching algorithms find the matching concept based on

similarity (or similarity value) calculation; given a concept in the sending system,

the most similar concept in the receiving system is recommended as the matching

concept. For this reason, matchers are sometimes called similarity measure.

Rahm and Bernstein [11] present a detailed survey of various matchers, and ac-

cording to the classification, matchers are classified either into individual or combin-

ing matchers; individual matchers use one criteria, e.g., concept name or data types

for the concept, to determine the similarity, while combining matchers combine mul-

tiple individual matchers to obtain the similarity based on multiple views or aspects.

In this dissertation, for simplicity, we use matcher or matching method to indicate

individual matcher.
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Next section reviews the existing work on matching methods.

2.2 Related work: Matching methods

This section discusses related work for the problem 1.a discussed in Section 1.4.

More details on the problem are presented in Chapter III.

Rahm and Bernstein [11] classify any (individual) matching methods into either

schema-based and instance-based methods. So far, in product domain, all exist-

ing work rely only on schema information, e.g., concept names [12, 13], structural

(hierarchical) information [7, 14] and concept definition [7, 14, 12, 13] are used for

matching.

Schema, however, is not always available detailed enough to find correct matches.

Most of the existing work in product domain [7, 14, 12, 13] assume the existence of

ontological/complete definitions, which has several problems as discussed in Sec-

tion 1.3.2. To overcome those issues, therefore, we will develop an instance-based

method in this research.

In the Computer Science domain, instance-based methods have been proposed to

capture the semantics which schema does not explicitly define. It can be used alone

or can be combined with schema-based methods for better accuracy. Although no

approach has been found in product domain, there are some work in generic database

matching.

Instance-based matching approaches can be classified into two groups depend-

ing on the availability of doubly annotated instances, which means the instances

in different systems can be identified to be whether equal or not. For example, Ya-
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hoo! (www.yahoo.com) and dmoz (www.dmoz.org), two large Internet directory service

pages, have different directory structures. But the specific instances, which is a link

to web pages, can be compared across since instances always have a unique address.

When the information is available, set theoretic measure is used to calculate

the similarity between the concepts, e.g., schema for books [15], genes [16] and

the Internet directories [17, 18]. Set theoretic measures, such as Jaccard coeffi-

cient [15, 18] and κ-statistics [17], are used to get the similarity from the number

of common/uncommon instances. In some cases, the instance matching is not given

directly, but machine learning techniques are used to determine the instance mem-

berships and use information theoretic measure to calculate similarity [19, 20].

In this research, however, we cannot compare the instances of product concepts

from different product development systems directly, therefore, it is impossible to

determine if two instances are common or uncommon. When the annotation is not

available, the (mostly statistical) patterns of dataset associated with the concepts

are compared. Larson et al. [21] compares concepts, specifically, database attributes,

based on their domain relations - {EQUAL, CONTAINS, OVERLAP, CONTAINED-

IN and DISJOINT}.

Li and Clifton [22] argue that the evaluation based on domain information is

susceptible to noise - small errors could lead to a wrong conclusion, and propose

using statistical signatures, e.g., min/max, average, coefficient of variation (CV) and

standard deviation (SD). With the signatures, attributes can be projected onto a

vector space where dissimilarity can be obtained from the distance between vectors.



17

However, both techniques ([21], [22]) have been applied to the concepts whose

instances are single numeric values. Concepts in product development systems typi-

cally have multiple attributes, and the instances of the concepts cannot be compared

directly - it is impossible to extract numeric patterns from the instances directly. In

this research, therefore, attributes will be compared with the statistical signatures

first, and the attribute similarities will be used to measure similarity between the

concepts to which the attributes belong. More details are provided in Chapter III.

2.3 Related work: Combination methods

This section discusses related work for the problem 1.b discussed in Section 1.4.

More details on the problem are presented in Chapter IV.

Semantic maps can be better approximated by considering more views or aspects,

that is, by combining multiple matching methods, and the existing approaches mostly

propose multiple matching methods and combine those into a combined similarity

measure.

Patil [14] employs a two-level approach: set-based comparison of concept de-

scriptions and semantic contexts from the logical product data ontologies, and then

linearly combines the individual metrics to determine the overall semantic similarity.

Lee et al. [12] obtain three individual similarities by comparing ontological con-

cepts using: character strings, ontological definitions, and the Bayesian similarities

obtained from the ontological structure. Then, they use a linear combination of these

concepts to obtain the overall similarities between concepts across CAD and PDM

document data.
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Zhang and Gu [23] propose the sequential application of methods based on con-

cept names, class hierarchy and class description. At a given stage, only those concept

pairs that have similarities above a certain threshold are selected for further analysis

by the next similarity metric.

However, there is no formal procedure to decide weights or thresholds for the

linear combination. Moreover, especially in product domain where concepts have

relatively complex relations, the relations between the individual matching methods

and the overall or combined similarity is not necessarily linear, and the existing com-

bining schemes cannot properly estimate the model to represent the overall similarity.

There is a lack of research in the area of product development that has attempted to

formalize and determine the requirements on the combination of matching methods.

In the Computer Science domain, there are some approaches using learning

method - the relation can be extracted from the user’s input on the match result

in the training dataset. For example, Doan et al. [19] applied machine learning

techniques to decide the weight values for two individual matchers. They used linear

regression to fit the training data set where matching pairs are given value 1, and 0 for

non-matching pair - the maximum and minimum of the similarity value range. Wang

et al. [24] use the same training procedure - positive label for matching pair, and

negative label for non-matching pair, but use Support Vector Machine (SVM) rather

than linear regression to combine multiple instance based matchers and schema-based

matchers.

For those learning methods the labels should be converted to a numeric value
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before actual calculation, for example, the similarity with match label is considered

to be similarity 1, and 0 for the one with non-match label. In the area of product

development, however, such training input leads to biased training, that is, all the

pairs are biased to the extreme value regardless of their actual similarity. For exam-

ple, Extrusion in NX matches to Pad in CATIA. However, Extrusion also matches

to Pocket in CATIA and is not identical to neither Pad nor Pocket. That is, setting

similarity value 1 for the pair Extrusion - Pad will overestimate the actual similarity.

Likewise, Edge Blend in NX does not match to Chamfer in CATIA, but they share

many properties, e.g., based on edge object and requires one numeric value (radius

or angle).

Therefore, we believe that assigning similarity value of 0 to such non-matching

but similar pair underestimates the actual similarity and such estimation can add up

to a large error in a domain where relation among concepts are relatively complicated

like product development domain.

In our previous effort [13], to reduce such estimation error, we proposed a match-

ing method based on Support Vector Regression (SVR) where we actually assign

continuous values of [0, 1] for training data, instead of 0 and 1. The result has shown

that SVR outperforms linear regression in terms of matching accuracy.

However, the new approach creates another issue - it requires domain experts to

further provide the actual similarity value, for which no formal basis is available, and

it is much harder than just saying match or non-match. In this research, therefore, we

propose a method which reduces the estimation error, and at the same time, without
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numeric similarity values as user input. More details are provided in Chapter IV.

2.4 Related work: Translating the concepts

This section discusses related work for the problem 2 discussed in Section 1.4.

More details on the problem are presented in Chapter V.

In product domain, research focus has been on the concept matching - either

individual matching methods or combination methods, but there have been little

research efforts toward automating the development of any translators.

In the Computer Science domain, literature documents not many but some re-

search efforts toward ontology translation, e.g., OntoMorph [25], Web-PDDL [26],

ODEDialect [27], MBOTL [28]. The common approach is first to categorize the

types of heterogeneities and necessary translations. The basic division is between

syntactic and semantic heterogeneities, and some with more categories like lexical

and pragmatic. For further explanation of the categorizations, refer to Corcho and

Gómez-Pérez [27].

The next step is to provide representations for the translation. For example,

Corcho and Gómez-Pérez [27] propose a set of declarative languages (ODEDialect)

and a list of translation rules in the proposed languages, and Silva Parreiras et al.

[28] present another language called MBOTL for a similar purpose.

However, to the best of our knowledge, finding a specific translation rule auto-

matically given a source and target concept is not considered in any approaches, and

is left to the manual identification. Therefore, this research will present a method to

automate the process to find translation rules given source and the target concepts.
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More details are provided in Chapter V.

2.5 Summary

This chapter started with important terminologies used throughout this disser-

tation - we adopted entity-relation model [10] to represent product data. With the

terminologies clarified, we presented related work for each of 3 research tasks dis-

cussed in this dissertation:

• Matching methods: In the field of product development, research only

considered schema-based matching methods with an assumption that concept

definitions are available. However, such definitions are only partially available,

and furthermore, schema cannot capture the implicit semantics. There are

some instance-based matching methods in the Computer Science domain, but

those approaches work with rather simple concepts whose instances are single

numeric values. Therefore, we need a matching method which uses instance

information to find similarity between the product concepts of which instances

are represented as a set of attribute values. More details are provided in Chap-

ter III.

• Combination methods: In the field of product development, research used

weighted average to combine multiple matching methods. But there has been

no formal procedure to determine the weight values for each method/measure,

and furthermore, there is an intrinsic estimation error due to the linear ap-

proximation of nonlinear relation. There have been some approaches in the
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Computer Science domain with machine learning approaches, but using the

learning methods typically involves an explicit training which further requires

extra effort from the user. In this research, therefore, we need a method which

can handle the nonlinearity, and at the same time, without such explicit train-

ing data set. More details are provided in Chapter IV.

• Translating the concepts: In the field of product development, research has

focused on the first part of translation - finding semantic maps, but there has

been little effort to find the translation rules given the map. In the Computer

Science domain, there have been several efforts, but limited to the representa-

tion of translation rules. In this research, therefore, we focus on the procedure

to find the translation rules automatically given the semantic maps. More

details are provided in Chapter V.

The following chapter presents our approach - Instance-Based Concept Matching

(IBCM) to address the problems in finding semantic maps.



CHAPTER III

Instance-Based Concept Matching (IBCM)

As discussed in chapter I, there is a need for a matching method that accurately

identifies the semantic map between the concepts from the sending and the receiving

product development systems. This chapter explains the approach developed in this

research to enable the same.

3.1 Motivation

To enable interoperability, standard for data representation is a key require-

ment [29]. ISO 10303, informally known as STandard for the Exchange of Product

model data (STEP), is an international effort toward standardizing the computer-

interpretable representation and exchange of product data for engineering purposes.

In spite of wide acceptance and success, its coverage is rather limited and important

data semantics is lost during translation [14, 30]; there have been efforts toward new

standards, such as Core Product Model (CPM) [31, 32, 6] and Product Semantic

Representation Language (PSRL) [7].

Given the standard, translation between individual format and standard is also

required, and first step toward translation is matching between the concepts from

23
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disparate systems. Finding the mapping manually is a long and error-prone task, and

automating the procedure is an area of research in product domain [14, 12, 33, 13],

as well as in generic database matching [11, 34, 35, 36].

There are, however, some important challenges remain unsolved with the existing

approaches:

• Some concepts have multiple definitions and such concepts can map to different

concepts in the receiving system depending on the specific instances. In other

words, the exact definition is decided when it is instantiated. Therefore, schema

information alone which only deals with explicit semantic cannot remove such

ambiguity.

• Attributes explain much about the concepts, and it has been a useful source for

the concept matching. However, at the attribute level, there is no such infor-

mation to use for attribute matching, and explicit semantics are very limited

- in most cases, name itself with data types. Most existing methods assumed

the matching at the attribute level, but it is not practical in real cases.

Next section presents the objective of this research.

3.2 Objective

The objective of this research phase is to develop a semantic matching method

that addresses the challenges discussed in the previous section. We will use instance

information, rather than schema information on which existing method heavily de-

pend, to capture implicit semantics of the given representation for accurate identifi-
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cation of semantic matching between the concepts. The proposed method should:

• identify the multiple definitions for a given concepts, and find a map for specific

definitions.

• find a map at the attribute level using the implicit semantics.

Next section explains the overview of our method: Instance-Based Concept Match-

ing (IBCM).

3.3 Overview of IBCM

This section presents the overview of IBCM, and explains the difference of IBCM

from existing work. Figure 3.1 shows the procedure of the proposed method. Overall,

the procedure takes instances of sending and receiving systems as input, and calcu-

lates the similarities between concept partitions of sending and receiving system.

The procedure is divided into 3 steps:

Step 1: Preprocessing

The input to IBCM is a set of instances from sending and receiving system, each

tagged with a concept from which it is instantiated. The first step, preprocessing, is

further divided into Concept partitioning and Attribute collection.

Not all concepts have unique definitions; some have multiple definitions and a

specific definition is decided when it is instantiated. In Concept partitioning process,

the concepts with multiple definitions are divided into partitions where each parti-

tion has a unique definition. This process removes ambiguities in concepts before

matching.
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Figure 3.1: Overall procedure of the proposed method. From the instances of sending
and receiving system, it calculates concepts similarity through 3 step
procedure

Now, each partition has a set of instances belonging to the partition. The in-

stances in the same partition has the same set of attributes (because they have

unique definition), and Attribute collection process collects all the attributes as a set

of values; this prepares the next step - attribute matching.

Step 2: Attribute matching

From the previous step, partitions are identified with a set of attributes, and

each attribute can be characterized as a set of data values. In this step, Attribute

matching, attribute similarities between the attributes from the partitions of sending

and receiving systems are calculated.

Each attributes are described as a set of values extracted from the instances,

and the calculation is based on the implicit semantics captured from the instance

information, rather than using explicit semantics which is very limited - mostly,
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attribute names or data types.

The output of the process is the similarities of all the pairs of attributes.

Step 3: Concept partition matching

From the previous step, attribute similarities are obtained for all the pairs of at-

tributes from sending and receiving systems. In this step, Concept partition match-

ing, similarities between the (concept) partitions are calculated.

In the process, attribute similarities are adjusted as weighted attribute similari-

ties reflecting the relative importance of the attributes, and based on those, attribute

map will be identified between two partitions. The map is the outcome of the process

in addition to the similarity value between the partitions.

3.4 Details of IBCM

This section describes the 3 components of the proposed method.

3.4.1 Preprocessing

In preprocessing stage, attributes and its data values are collected from the in-

stances after clustering the instances into the homogeneous groups through 1) concept

partitioning, and 2) attribute collection.

Concept partitioning

Each concept in the sending and receiving system has a set of instances associ-

ated with it. Instances of the same concept does not always have the same set of
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Figure 3.2: Preprocessing of input into the attributes and its data values. First,
instances of a concept are partitioned so that instances in the same par-
tition have the same set of attributes (partitioning). Now, each partition
can be represented as a set of attributes of which each attribute has a
set of data values (attribute collection).

attributes because concepts may have more than one definitions. For example, a

concept Pad can be defined as 〈Name, Profile, Length〉, or it can also be defined as

〈Name, Profile, Profile〉, Profiles being upper and bottom one respectively. There-

fore, instances of Pad have either set of attributes. Figure 3.2 includes schematic of

the partitioning process.

In concept partitioning, instances of a concept with more than one definitions

are partitioned so that within same partition, all instances have the same set of

attributes. Now, each concept partition can be characterized with a unique definition

- a fixed set of attributes.

In existing work, either in product domain [7, 14, 12, 13] or in general case match-

ing [36, 34, 35, 11], a concept is assumed to have a unique definition, and thereby,

do not require such partitioning process, and thus cannot properly handle the cases

described above.
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Attribute collection

After the partitioning, each partition has one or more instances, say m instances.

When the partition has a fixed definition, say a set of n attributes, each instance is

n-tuple, which can be represented as a column vector of n-dimension. Now, a data

value matrix V can be created by concatenating those m vectors. Then, the matrix

V is given as:

V =



v11 v12 · · · v1m

v21 v22 · · · v2m

· · · · · · · · · · · ·

vn1 vn2 · · · vnm


,

where vij is data value for ith attribute of jth instance. Then, data values for ith

attribute is amultiset, a set with possible repetition in members, of all the elements in

ith row in the matrix V . Figure 3.2 includes schematic of the collecting process. Next

section explains the procedure to calculate attribute similarity from the attributes

and data values.

3.4.2 Attribute matching

From the preprocessing, a set of attributes are identified for each partition, and

one or more data values are associated with each attribute. In this step, attribute

similarity is calculated with the data values of the attributes. The problem can be
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stated as:

For: attribute a with a set of data values from sending system and,

attribute b with a set of data values from receiving system

Given: two multisets of data values associated with a and b respectively

Find: attribute similarity, T (a, b) ∈ [0, 1]

The overall idea of calculating attribute similarity is that two attributes are sim-

ilar, i.e., higher similarity value, when they have similar multisets. In product do-

main, we classify attributes into 3 categories: 1) numeric, 2) character and 3) refer-

ence attributes. We will first explain how the similarity of the attributes of the same

types can be calculated for each of 3 types, and then discuss the similarity between

the attributes of different types.

Numeric attribute

There are attributes with numeric values as its data, such as length or angle

attributes. IBCM constructs signature vector for each attribute, and the similarity

between attributes are approximated by comparing the vectors. Each element in the

vector should capture a certain aspect of the attributes.

Specific signatures should be decided based on specific domain problem, but there

are some general statistic signatures for this purpose such as min/max, average, co-

efficient of variation (CV) and standard deviation (SD) as explained in [22]. Then,

from each attribute, which we represent as multiset, signature tuple or vector can be

constructed, and the distance between two signature vectors can be used to approx-
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imate the dissimilarity between two attributes.

There are different measures for similarity or dissimilarity between vectors such

as Euclidean distance and cosine similarity. In this research, we use standardized

Euclidean distance (SED) [37] as dissimilarity measure. The measure is different

from Euclidean distance in that square of each signature is inverse weighted by its

variance before added to a sum. This prevents the measure from too sensitive to one

or a few coordinate with larger scale.

The range for standardized Euclidean distance (SED) is [0, ∞], and it is normal-

ized into [0, 1] as:

Normalized SED(a, b) =
SED(a, b)− SEDmin

SEDmax − SEDmin

where SEDmax and SEDmin is the maximum and miniumum distance for all possible

pairs of attributes. Now, similarity T of range [0, 1] is obtained as:

T (a, b) = 1−Normalized SED(a, b)

Specific procedure with a case example is shown in Section 3.5.

Character attribute

There are attributes with character values as its data, such as name or description.

Although there are many methods to compare textual information, e.g., string match-

ing [38, 39, 40] or synonym matching [39], the objective here is to find a similarity

between two (multi) sets of character data, rather than comparing two individual

strings.
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To calculate the character attribute similarity, we use the same procedure used

for numeric attribute similarity. Initially, statistic signatures cannot be found for

textual information, but Li and Clifton [22] proposed to use “number of bytes actu-

ally used to store data” as a numeric equivalent, and the method can be adapted here.

Reference attribute

Reference attributes takes an instance of another concept as its value. For exam-

ple, Pad concept has an attribute that takes a Sketch instance. For the reference

attribute similarity, we use recursive evaluation of concept similarity to which the

attributes are referring. For example, an attribute a in Pad takes Sketch and an

attribute b in Extrude takes Section, the attribute similarity between a and b is

drawn from the concept similarity between Sketch and Section.

In the proposed method, the similarity between two attributes of different types,

e.g., similarity between numeric and reference attributes, is considered to be zero.

Although there might be exceptions, e.g., an attribute “reason to change” in engineer-

ing change management can be in the form of either free form text, or pre-defined

enumeration which is numeric depending on specific systems, we believe that such

cases are negligible in number and would not affect the overall performance.

3.4.3 Concept partition matching

In this step, similarity between concept partitions is calculated from attribute

similarity. Existing work [7, 14, 13] assume that sending and receiving systems share
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the same attributes and that attribute matching is explicitly available, e.g., only the

attributes of same name are considered to be equivalent. When the matching is avail-

able, set theoretic measure, such as Jaccard coefficient or a measure by Tversky [41],

can be used to get the concept similarity.

In the proposed method, we do not have the assumption, and the partition sim-

ilarity will be calculated with attribute similarity obtained from the previous step.

In this step, we first calculate information content of each attribute and update the

similarity such a way that the similarity between the attributes of more informa-

tion content is weighted more. Then, based on the weighted attribute similarity, we

find the attribute pairing by using the solutions for assignment problem, such as

Hungarian algorithm [42, 43] and Gale-Shapley algorithm [44].

Based on the identified pairs, we propose a new measure to calculate the parti-

tion similarity, which obtains overall similarity from a set of similarity pairs. The

matching problem is stated as:

For: concept partition A with attribute a1, a2, . . . , ap from sending system and,

concept partition B with attribute b1, b2, . . . , bq from receiving system

Given: attribute similarity, T (ai, bj) ∈ [0, 1] for all i = 1, 2, . . . , p and j = 1, 2, . . . , q

Find: concept partition similarity, S(A,B) ∈ [0, 1], and

attribute map between the partitions

The overall idea of calculating the partition similarity is that two concept parti-

tions are more similar when they have more similar attributes. To obtain a method

implementing the idea, we first define the boundary conditions, i.e., conditions for
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similarity value at 1 and 0:

S(A,B) =


1 if p = q and there exists a permutation s on bis

such that T (ai, s(bi)) = 1 for all i = 1, 2, . . . , p

0 if T (ai, bj) = 0 for all i = 1, 2, . . . , p and j = 1, 2, . . . , q

Now, we propose a method that works for the ranges in between without violating

those boundary conditions. The method consists of three phases: 1) it first calcu-

lates weight for each attribute and obtains weighted attribute similarity, 2) finds the

pairing (or map) between attributes ais and bjs based on the weighted similarity,

and then, 3) calculates partition similarity from the pairing.

Weighted attribute similarity

Each partition, in general, has multiple attributes, but not all of them are equally

important in describing the concept. For example, “Radius” and ”Edges” attributes

are indispensable to define a concept EdgeBlend in NX, while the feature can be

further controlled with optional attributes like “Roll Over Smooth Edges (ROSM),”

which does not exist in the corresponding concept in other systems, such as EdgeFillet

in CATIA.

In this procedure, attributes are weighted according to its relative importance so

that important attributes are more emphasized when finding the attribute pairing.

We approximate the importance of the attributes with Shannon’s entropy function

H [45], a measure for the information content of a given variable - more weights

are assigned to the attributes with more information content. The rationale is that

less important attributes tend to remain unchanged over different models set to the
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default value for most of the cases. For example, when 95 features have the option

“Roll Over Smooth Edges (ROSM)” out of 100 “EdgeBlend,” the information content

for the attribute is given as:

H(ROSM) = −
n∑
i=1

p(xi) log p(xi) = −(0.95× log 0.95)− (0.05× log 0.05) = 0.086

So far the value itself, 0.086 in the example above, is not informative in itself; the

entropy values will be normalized with the sum of the entropies for all attributes.

We define a normalized entropy as H ′(ai) = H(ai)/
∑p

i=1H(ai).

Then, the weighted attribute similarity T ′(ai, bj) is the attribute similarities

T (ai, bj) multiplied by the average of the normalized entropy H ′(ai) and H ′(bj) for

the involved attributes. That is,

T ′(ai, bj) =
H ′(ai) +H ′(bj)

2
× T (ai, bj)

where H ′(ai) = H(ai)/
∑p

i=1H(ai) and H ′(bj) = H(bj)/
∑q

j=1H(bj).

Next section explains attribute pairing based on the weighted similarities.

Attribute pairing

The objective of attribute pairing is to find a matching between two sets of

attributes that maximizes the total similarity of chosen pairs. This is assignment

problem which is to find a maximum weight matching in a weighted bipartite graph

- attributes becomes vertices with edges between vertices have the weighted similarity

value between the attributes.

In this research problem, number of attributes of compared concepts are different

in general (p 6= q). Because this is a unbalanced case of assignment problem, dummy



36

b3

A B

b2

b1a1

a3

a2

.35

.45

0

b3

A B

b2

b1a1

a3

a2

0

0

0

A B

b2

b1a1

a3

a2

.35

.4

.2

.35

.45

.3

(a) (b) (c)

Figure 3.3: Attribute pairing as bipartite graph matching: (a) (weighted) similarity
values are assigned to the edges in a bipartite graph connecting two
disconnected sets of vertices, i.e., attributes of concept partition A and
B, (b) dummy attribute b3 has been added with all new similarity with 0,
and (c) pairs have been found such that the similarity total is maximized,
i.e., 0.8 in this case.

attributes can be added to make it a balanced case [46]: when p > q, dummy

attributes of bq+1, bq+2, . . . , bp are added to the set of attributes of receiving system.

Since the attributes are dummy, information content for the attributes are set to

0, and also assign 0 to the weighted similarity connected to the attributes, that is,

H ′(bj) = 0 and T ′(ai, bj) = 0 for all i = 1, 2, . . . , p and j = q + 1, q + 2, . . . , p. It

can be handled in the same way when p < q. Figure 3.3 demonstrates the process of

adding dummy attribute when p = 3 and q = 2.

Although the whole solution space for the problem is n! where n = max(p, q),

there are known polynomial time solutions to the problem; Hungarian algorithm

finds the maximum weight matching, i.e., an optimal solution, in O(n3), of which

first version was developed by Kuhn [42], known as Hungarian method, and was later

revised by Munkres [43]. Figure 3.3 shows the final pairing after using the algorithm

with the example. Detailed explanation for the algorithm is found in [43].
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When problem space is large and time becomes an issue in solving the problem,

following alternatives can be considered. Although they do not guarantee the optimal

solution, local solutions can be returned in faster time:

• Greedy matching: In the bipartite graph, the attribute pair with the highest

similarity value is selected for matching. After storing the pair, both vertices

are removed from the graph. It iterates the process until there is no more

vertices and edges in the graph. It returns matching in linear time (O(n)).

• Gale-Shapley algorithm [44]: The algorithm is known for the solution for stable

marriage problem (SMP). When the algorithm is executed, all the attribute

pairs become “stable,” which means, in the resultant one-to-one alignment M ,

any pairs 〈ai, bj〉 ∈ M and 〈al, bm〉 ∈ M satisfy the condition that T ′(ai, bj) +

T ′(al, bm) ≥ T ′(ai, bm)+T ′(al, bj). It returns stable matching in quadratic time

(O(n2)) [47].

The solution (matching) of this step can be represented as a permutation s on

{b1, b2, . . . , br} where ai matches to s(bi) for all i = 1, 2, . . . , r, where r = max(p, q).

Similarity calculation

Given the bipartite graph and matching obtained from the attribute pairing,

we define the similarity as a ratio of the total attribute similarity to a maximum

similarity for the given size of bipartite graph:

S(A,B) =
(total attribute similarity)

(maximum attribute similarity)
=

∑r
i=1 T

′(ai, s(bi))∑r
i=1(

H′(ai)+H′(s(bi))
2

× 1)
=

r∑
i=1

T ′(ai, s(bi))
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where r = max(p, q).

Through the procedures described so far, similarity between two partitions can

be obtained. For a partition in a sending system, the procedures can be iterated

with all the partitions in the receiving system to find a corresponding partition with

which the highest similarity is achieved.

Going back to the original research problem, given a concept in a sending system,

we can find a set of partitions for the concept, and for each of them, we can retrieve

all corresponding partitions from the receiving system. Therefore, we find not only

the corresponding concept(s) in the receiving system, but also the matching between

the attributes with which translation rule can be further identified. Brief example

to find initial translation will be presented at the end of case study in next section.

3.5 Case study

We are not aware of other research/literature in this area that could be used to

evaluate our approach objectively. Therefore, for this chapter, we develop a case

study, and evaluate the resulting semantic maps manually.

Product development involves various types of information such as requirement,

bill of material and geometry information. In this case study, we demonstrate our

method in matching product concepts for geometry information. Geometry informa-

tion is created and managed with computer software, i.e., CAD software, for example,

CATIA, NX or Pro Engineer. However, all those software use different data format,

and the data created in one software cannot be directly used in other software. Fig-
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Revolve
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    …

Edge Blend

    Edges
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    ...

Hole

    ...

Shaft

    Profile/Surface    
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    …
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    Objects
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Round

    Reference
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    ...

Hole

    ...

NX6 CATIA Pro ENGINEER . . .

. . .

Pin model in NX6

Figure 3.4: Pin model created in NX6 is shown in the left. The models can be
represented differently in different CAD software, and the representations
- concept names and attribute names - are shown for NX6, CATIA and
Pro Engineer. The enclosed area with dotted line, i.e., matching Revolve
(NX6) and Shaft (CATIA), shows the specific example dealt with in this
case study.

ure 3.4 shows a pin model created in NX6, and the required features and attributes

for the model in different software to represent the same model.

ISO 10303, informally known as STEP, provides neutral format which enables

translation of product information between different CAD software. However, it only

translates the boundary representation of geometry, and the feature and attribute

information is lost during the translation. In this section, we will demonstrate the

procedure to find the matching between feature and attributes concepts across dif-

ferent CAD software. Specifically, we will use the example case of Revolve (NX6)

and Shaft (CATIA V5).

3.5.1 Preprocessing

To collect the instance information of Revolve (NX) and Shaft (CATIA), programs

have been developed with NX6 and CATIA V5 automation API to extract specific
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feature and attribute information from the CAD files. In this case:

• To collect Revolve instances, 3437 NX models have been checked. Among them,

92 models contain Revolve, and were used in the case study.

• To collect Shaft instances, 4036 CATIA models have been checked. Among

them, 1539 models contain Shaft, and were used in the case study.

The CAD files are the sample files come with each CAD software during installation.

After separating the files with specific features, i.e., Revolve (NX) and Shaft

(CATIA), the feature information is extracted and is partitioned into groups in a way

that each group has a set of instances with same set of attributes. Figure 3.5 shows

the result of the partitioning of Revolve instances. From 92 models, 122 instances

are extracted, and the instances are divided into 3 partitions. Same procedure is

used for Shaft instances but not shown here for space reason.

Once the instances are partitioned and represented as tabular format as in Fig-

ure 3.5, attribute collection is just to collect the values of each column in the table.

In the example, there are 3 partitions, and each has a set of attributes, which is not

mutually exclusive.

3.5.2 Attribute similarity

This section shows attribute similarity between the partition defined by the first

group of Revolve concept (first out of 3 tables in Figure 3.5), and the attributes of

Shaft partition in CATIA which is not shown for brevity.

The compared attributes have two types: numeric and reference attributes. To

get similarity between numeric attributes, standardized Euclidean distance is used
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Figure 3.5: Partitioning of Revolve instances. From NX model files, Revolve features
are extracted, and then the features are divided into the partitions in a
way that each partition has a set of instances with same set of attributes.
In the tables, some attributes are bold faced to show the difference from
other partitions. In the value fields, quotation is used to denote the
enumeration attributes, and ’-’ is used to denote the reference to another
instance.

between 5-tuple signature for each attribute, i.e., <Min, Max, Average, Standard

deviation, Number of distinct values>. Figure 3.6 shows (a) the tuples for each

attribute of Revolve and Shaft partition, and (b) similarity matrix between the at-

tributes. Note that there are attributes with zero entropy, e.g., Thickness 1 and

Thickness 2 for Shaft. Those attributes either have same value or are not used at all

for all the instances considered. They are not shown in the figure for space reason,

and does not affect the ensuing calculation because it makes the weighted attribute

similarity zero all the time. Entropy calculation for each attribute is given in the

next section. Similarity between reference attributes are calculated recursively with

the concepts the attributes refer.

Next section calculates partition similarity based on the attribute similarities.
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Figure 3.6: (a) Signature tuple for attributes of the partitions from Revolve and
Shaft concept, (b) similarity matrix between the attributes. Note that
the upper left values are similarity between numeric attributes and were
calculated from the signature tuples shown in (a). Lower right values
are similarity between reference attributes and from the recursive eval-
uation of concept (partition) similarity. Similarity between numeric and
reference attributes are all set to zero.

3.5.3 Concept partition similarity

From the attribute similarity obtained in the previous step, partition similarity is

calculated. We first calculate entropy and normalized entropy for each attribute and

get weighted similarity between attributes. The result are shown in Figure 3.7 (a);

for each attribute, entropy H and normalized entropy H ′ is shown. Note that the

attributes with 0 entropy are not shown for brevity. With the normalized entropy, we

calculate the weighted similarity between attributes (shown in Figure 3.7 (b)). This

table can be represented as a bipartite graph, and Hungarian algorithm [43] is applied

to find a optimum pairs, which is to maximize the sum of the weighted similarity.

The identified pairs are shown in the figure as shaded cells. Note that Gale-Shapley

algorithm [44] and greedy matching we have briefly explained in Section 3.4.3 also

find the same result in this specific case. The concept similarity from this pairing is
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Figure 3.7: (a) Entropy H and normalized entropy H ′ for the attributes of com-
pared partitions. Attributes of 0 entropy are not shown in the table
for brevity. (b) Weighted attribute similarity calculated from attribute
similarity and normalized entropy. From the similarity matrix, identified
pairs are shown as shaded cells.

the sum of the similarities of the identified pairs, which is:

S(Revolve, Shaft) = T ′(StartLimitV alue, SecondAngle)

+ T ′(EndLimitV alue, F irstAngle)

+ T ′(BodyType,Dummy) + T ′(Tolerance,Dummy)

+ T ′(Section, Sketch) + T ′(Axis, Axis)

= .174 + .225 + 0 + 0 + .180 + .225 = 0.804

The similarity between the first partition of Revolve and a partition from Shaft

is determined as 0.804 through the procedure. Although this value itself does not

finalize the matching, same procedure can be applied for the Revolve partition with
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other concept partitions from CATIA to get the pair with the highest similarity,

which will be the corresponding partition for the given Revolve partition.

3.5.4 Discussion

In this case study, we have presented a procedure to calculate a similarity be-

tween two partitions - Revolve and Shaft. Once the procedure is applied to all

other pairs of partitions, complete similarity matrix between partitions of sending

and receiving systems can be constructed and the matching map is obtained. At this

point, however, such complete evaluation cannot come easily; accessibility to the

CAD data in both software is only partially available through APIs, and converting

them into a standard format, entity relationship model, in this specific case, for fur-

ther processing takes much manual effort. However, there is effort toward more open

CAD format, such as PLM XML by Siemens and 3D XML by Dassault Systemes, and

it would enable further automation of the proposed approach for complete matching

procedure.

Once the correspondence between the partitions are identified, we have useful in-

formation for the translation. Figure 3.8 shows an example where Revolve instance

in NX is translated into an instance of Shaft instance in CATIA, and vice versa.

When Revolve is translated into Shaft, some attributes are lost during the pro-

cess, but necessary information for Shaft is conserved. In the reverse direction, 4

attributes are created automatically during translation - StartLimitType, EndLimit-

Type, BooleanType and OffsetOption. The information is not explicit in the original

instance, but all the instances in the corresponding partition have the same data val-
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Figure 3.8: Translation between Revolve instance (NX) and Shaft instance (CA-
TIA). In translating Revolve into Shaft attribute information is lost -
6 attributes shown as either boldfaced or italicized. In the reverse di-
rection, 4 attributes (boldfaced) are created automatically with correct
values, but values for 2 attributes (italicized) cannot be determined. Note
that further information for reference attributes are omitted and shown
as ’-’. Those are additional instances and can be found through further
translation of the instances.

ues for those attributes and they can be assigned accordingly. Of course, not all the

attributes can be filled up; in the figure, the values are undecided for two attributes,

BodyType and Tolerance. Once the attribute maps are identified, we evaluate their

correctness using our domain knowledge. Such an approach is necessitated, because,

to be best of our knowledge, there is no standard data repository to enable a com-

parative evaluation nor documented results from efforts that might have addressed

this problem in this domain.

In Section 3.4.2, we explained similarity measures for numeric, character and ref-

erence attributes. In the case example, however, there is no character attributes used

(enumeration type is considered to be non-negative integer, thus numeric attribute).

In CAD domain, character attributes are very rare and, if any, it is created auto-

matically, e.g., feature names like Revolve.1. We presented some guidelines for the

character attributes, and specific measures can be determined with respect to the
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specific domain problem. The attribute similarity measure integrates into the over-

all method as a module, thus, there will not be any issues in incorporating different

measures if needed.

3.6 Summary

Identifying a semantic map between the concepts is the first step toward the

integration of heterogeneous systems. So far, existing matching methods have used

schema or definitional information to find the map.

Schema information, however, does not contain implicit semantics of the data

and certain aspects cannot be captured with schema only information. In this re-

search, we have developed an instance-based matching method that can detect 1-to-n

concept maps. Use of instance information enables capturing the implicit semantics;

concepts with multiple definitions can be divided into partitions of unique definition.

This clarifies the map for the concept with respect to the specific instance that the

matching and ultimately translation is aimed at. Furthermore, use of instance in-

formation also provides resources for the attribute matching while existing methods

typically assume the availability of the map at the attribute map.

The proposed method, however, does not override the existing work; rather,

it extends the problem so that it can approach the matching problem as a whole

with more realistic conditions. Also, the performance of the proposed instance-

based matching techniques would be improved when combined with existing schema-

based techniques. Next chapter discusses the method to combine multiple matching

methods for more accurate identification of the semantic map.



CHAPTER IV

FEedback Matching Framework with Implicit
Training (FEMFIT)

As discussed in chapter I, there is a need for a method that accurately combines

the result of the multiple individual matchers to better approximate the semantic

similarity between the concepts from the sending and receiving product development

systems. This chapter explains the approach developed in this research to enable the

same.

4.1 Motivation

Literature documents the role of ontologies and standards in semantic interop-

erability for product data interoperability [29]. Ontologies are typically used to

explicitly capture and represent semantics of information, thus enabling seamless

connectivity across different applications [48]. The first step toward semantic inter-

operability with ontologies is to find a semantic maps between the concepts from

different ontologies [35].

In the domain of product development, approximate semantic similarities are de-

termined using different attributes or features derived from the disparate components

47
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of product data. In addition, different methods or metrics can be applied to calculate

the similarity values. At the same time, there is no formal basis to define a correct

approach and the results may not be reliable. Therefore, there is a need to consider

a variety of features along with the variety of methods to approximate similarity.

There have been approaches to combine the multiple individual measures but not

without limitations, including:

• Linear combination has been used extensively for the combination, but the

determination of the weight values for each measures is left completely to the

expertise of the user without any formal basis. Furthermore, the relation be-

tween the multiple matching methods are not necessarily linear, and nonlinear

relations cannot be captured properly.

• Existing approaches with learning methods can handle the nonlinearity issue,

but they require massive training data to be generated from domain experts

manually.

Next section presents the objective of this research.

4.2 Objective

The objective of this research phase is to develop a method to combine the result

of the individual matchers to better determine the similarity between the concepts

which leads to a better mapping between the product concepts. The requirements

for the intended method include:

• Capturing nonlinearity: The method should be able to capture the possible
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nonlinearity between the individual measures for accurate approximation of

the true similarity between the concepts.

• Minimizing user input: The method should work with only minimal input from

the domain expert, and the procedure should be formally defined.

Next section defines the specific research problem.

4.3 Product concept matching problem

The product concept matching problem is described as:

Given: a product concept cs ∈ Cs, a source ontology

Find: a concept, c∗t ∈ Ct : S∗(cs, c
∗
t ) ≥ S∗(cs, ct),∀ct ∈ Ct, a target ontology

where S∗ is a function that calculates the “true” similarity between two product

concepts, source concept cs and target concept ct, based on which matching should

be decided. However, such function, in general, does not exist as an analytical

formula, and the problem is to find a function S that approximates the function S∗.

Literature documents various methods that calculates the similarity between con-

cepts [11, 34, 35, 36]. Rahm and Bernstein [11] divide the methods into two groups:

individual matchers and combined matchers. Individual matchers are similarity func-

tions that use a specific measure for a specific part of concept information. In most

cases, however, one individual matcher cannot successfully approximate the function

S∗, and combined matcher is used for better approximation. Combined matcher

is a combination of k ∈ N individual matchers, and when Si(cs, ct) denote the ith
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individual matcher where 1 ≤ i ≤ k, i ∈ N, the combined matcher S is described as:

S(cs, ct) : S1(cs, ct)× S2(cs, ct)× . . . Si(cs, ct) . . .× Sk(cs, ct)→ [0, 1]

However, even the combined matcher cannot approximate the true similarity

for all cases, and so far, no matching method has claimed complete automation.

Therefore, based on the result of the combined matcher, human, a domain expert,

should finalize the match for any given product concept.

At the same time, although there are many individual matchers and combination

methods are available, it should be an domain expert to select the methods because

the procedure requires specific domain knowledge. Therefore, the overall procedure

to match product concepts can be divided into 3 sub-parts:

Step 1: Selecting individual matchers There are many matching algorithms are

available, and the user, a domain expert, has to choose a set of individual matchers

that can capture the specific type of similarity based on which the correspondence

will be decided later by the user. For example, sometimes string matching algorithm

is enough for the problem, but sometimes synonym matcher or more complicated

ones are also required.

Step 2: Selecting combination method The user also has to choose a combina-

tion method which combines multiple similarity measures into one similarity value.

Again, there are multiple methods are available, which we explain further in the

next section, and the user has to choose the most appropriate method for their spe-

cific domain problem. The combined similarity is expected to approximate the true

similarity based on which the correspondence should be decided.
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Step 3: Finalizing the match Once the combined similarities for all pairs are

calculated, the user has to finalize the match. Because the matching algorithm

cannot always calculate the true similarity correctly, users are not necessarily to

choose the pair with the highest combined similarity. However, any “good” matching

algorithm is capable of good approximation, and it is expected for the user to find

the corresponding concepts by checking only high-ranked concepts.

The focus of this research is on the second step - combination method. We believe

that a good combination method makes easy not only Step 3, but also reduces load

for Step 1.

Chapter II presented related work regarding combination methods. The proposed

method will be distinguished from the existing work in following aspects:

• Compared to the work in product development domain, it provides formal basis

to determine the relation among the measures. Also, it is able to handle both

linear and nonlinear relations.

• Compared to the learning methods used for concept matching in generic do-

main, it does not under or overestimate the input from the domain expert, and

this leads to more accurate estimation.

• Compared to our previous work, it does not require any explicit training. That

is, the domain expert does not have to provide the similarity value for massive

training data.

After explaining nonlinearity issue in the next section, we will propose a match-
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ing framework which has better accuracy with no additional cost to the users in

Section 4.5.

4.4 Nonlinearity in combination

As explained earlier, multiple similarity measures are combined for better ap-

proximation of the semantic similarity; we call this combined measure as combined

or overall similarity. In this section, we claim that the overall similarity represents a

nonlinear combination of the individual similarities due to the following reasons:

• Nonlinear relation between individual and combined similarity Vari-

ous contributors to the similarity may not be necessarily linearly-related to the

overall similarity.

For example, Figure 4.1 demonstrates the issue in comparing concepts that

capture 2-dimensional (2D) constraints across the CAD software CATIA and

NX. Relevant concepts in CATIA include Radius, Tangency, while concepts

in NX include Perpendicular, EqualRadius, RadiusDim, Tangent and others

that are not shown in Figure 4.1(a) for readability. The individual similarity

(SimName) is calculated using the edit distance proposed by Wagner and Fis-

cher [49]. The overall similarity (SimOverall) is obtained from expert knowledge.

Different pairs of concepts are denoted by P1, P2, . . . as shown in Figure 4.1(b).

Figure 4.1(c) shows that the individual name-based similarity is not necessarily

linear to the overall similarity. Therefore, the overall perception of similarity

is such that a linear combination that uses SimName will not give an accurate
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RadiusDim
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…

(a) Some concepts representing 2D constraints in CATIA and NX

Point CATIA Concept NX Concept SimName SimOverall

P1 Radius Perpendicular 0 0
P2 Radius EqualRadius 0.4545 0
P3 Radius RadiusDum 0.6667 1
. . . . . . . . . . . . . . .

(b) Similarity values obtained by individual similarity, SimName using edit
distance, and overall similarity SimOverall given by the expert
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(c) Nonlinearity of overall similarity in
the context of the individual similarity

Figure 4.1: Relation between an individual name similarity measure and the over-
all similarity measure on the constraint concepts in CATIA and NX. A
nonlinear function is required to capture this relation correctly.

representation of the semantic similarity, since we see that there is a certain

threshold below (or above) which the perceived difference between of the sim-

ilarity values is not really the mathematical distance obtained by using the

metric.

• Dependent measures Several times, some individual similarities are condi-

tionally dependent on other individual similarities. These conditional depen-
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CATIA NX SimName SimDim SimOverall

Parallelism (in 2D) Parallel (in 2D) 0.73 1 1
Parallelism (in 2D) Parallel (in 3D) 0.73 0 0

Figure 4.2: Conditional dependency of Parallelism constraint in CATIA and Parallel
constraint in NX. The similarity measure that considers the dimension
of the space is necessary before considering the name-based similarity
measure

dencies must be captured because they represent significant semantic interre-

lationships. However, linear combinations cannot capture these relationships.

For example, Figure 4.2 shows two basic concepts, Parallelism in CATIA and

Parallel in NX that restrict the relation between different geometric elements.

Both apply to 2D and 3-dimensional (3D) objects. So, a name-based matcher

indicates that they are very similar in every single instance (with a value of

SimName = 0.73). However, this value is insignificant in the absence of the

similarity measure, SimDim that captures the dimensionality of the space, viz.,

2D or 3D. If SimDim = 0, then the value of SimName is irrelevant. In other

words, if the concepts are in different spaces, one in 2D and the other in 3D, then

the overall similarity should be zero regardless of values from other matchers.

• Similarity overlap Different individual matchers might use overlapping cri-

teria to evaluate the individual similarities. Therefore, their results can have

an overlap. Unless the overlap is clearly identified and adjusted, the overall

similarity can implicitly give more weight to the overlapped criteria, and can

reduce the importance of other criteria.



55

Weighted average, which is used in most matching problems, cannot address the

challenges posed due to inherent nonlinearity as discussed above.

In [13], we proposed a matching method based on Support Vector Regression

(SVR) to match assembly information from two different CAD applications, and

has shown that the ability to handle nonlinearity actually improves the matching

accuracy. However, it requires users to assign continuous value in the range of [0,

1] for the pairs in training data, instead of just 1 (match) and 0 (non-match), and

even domain experts cannot objectively pin point the correct similarity value in the

range.

In this research, we propose FEedback Matching Framework with Implicit Train-

ing (FEMFIT) to address the challenges.

4.5 Overview of FEMFIT

Figure 4.3 shows a schematic of FEMFIT. The input to the framework is source

and target ontology, the ontology of sending and receiving system respectively. The

framework works in iteration - in each iteration, a matching concept for one source

concept is identified. Concept ordering is executed once before the iterations to

decide the sequence of the source concepts to proceed.

In the iteration, the machine learning algorithm and the domain expert work in

turn for each iteration to find the matching concept in the receiving system; when the

learning algorithm suggests a ranked list of concepts for a given source concept based

on the information accumulated so far, a domain expert chooses the “true” matching

concept from the list. If the expert chooses a concept which is not in the first rank,
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Figure 4.3: Overview of FEMIT. Solid lines indicate the sequence of execution with
necessary information flow, and the dotted lines indicate the flow of the
training data

the algorithm modifies itself in a way that it reflects the expert’s decision. In that

way, the learning algorithm trains itself with the expert’s input over the iterations.

As the iteration goes on, the algorithm is expected to make decisions as the expert

does, and it is likely that the “true” matching concept is ranked high in the list. That

way, the expert can focus on only small number of high-ranked concepts to make a

decision without looking all the way down to the lower ranked concepts.

The overall framework comprises the following four components (shown as shaded

boxes in Figure 4.3). This section presents a brief explanation of the function of each

of those components.

• Concept ordering The first step is concept ordering which is executed once

on the source ontology. The input to this step is all the concepts from the

source ontology, and the output is an ordered list of the concepts. The actual

matching process which goes in iteration is affected by the sequence of the

source concepts to iterate because of the dependencies among the concepts;

some matching decision cannot be made without the result of other matchings.

In this step, source concepts are ordered so that all the dependent matching
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come after the matching result that they depend on. Detailed description will

be given in the next section.

• Matchers - Calculating individual similarities Once the sequence of

concepts are obtained, the process iterates for each source concept with each

of all concepts from the target ontology. Multiple individual matchers are used

to calculate the (individual) similarities between the source concept and the

concepts from the target ontology. For k matchers, the output will be k arrays

of sizem; ith array’s jth element is a similarity value between the source concept

and jth concept in the target ontology using ith matcher.

• Ranking SVM - Combining multiple measure result Ranking SVM,

trained with the previous decisions from domain expert, combines individual

matcher results (a set of arrays) into one array of overall similarity values;

jth element in the array means the overall similarity between the given source

concept and jth target concept. Detailed description will be given in the next

section.

• Expert decision - Finalizing the match Finally, the domain expert fi-

nalizes the decision on the matching (or equivalently, corresponding) concept

based on the similarities calculated by Ranking SVM. The concept the expert

chooses, which may or may not be the concept of the first rank in the list, is

confirmed as the matching concept for a given source concept, and the result

is fed back to the learning algorithm so that it is trained further.
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Next section further explains each component in detail.

4.6 Details of FEMFIT

In this section, the four components of FEMFIT are explained in further detail.

4.6.1 Concept ordering

Concept ordering is stated as:

Given: a set of (unordered) source concepts Csrc = {c1, c2, . . . , cn},

Find: an ordered set C ′src = {c′1, c′2, . . . , c′n} which is a permutation of Csrc,

such that: for all i and j such that i > j, similarity calculation for c′i is independent

of that of c′j

When we say similarity calculation for a source concept ca is independent of that

of cb, we mean that we can calculate similarity between ca and any of target concepts

without knowing any similarity values between cb and any of target concepts. For

example, for a string matching algorithm on name of the concepts, a NX constraint

concept Angle is independent of Bond because the string comparison between Angle

and any other target concepts is not affected by the similarity of Bond with others.

Dependency is defined in the opposite way. For example, Concentric constraint

in NX has Circle as its attribute. When we use a property matcher, which we further

explain in the case study later, similarity calculation between Concentric with other

target concepts is dependent on the similarity values between Circle and other target

concepts.
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A depends on B and C

B depends on F

C depends on F and G

D depends on E and G
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A, B, C, D, E, F, G, H

A, D, B, C, F, G, E, H

D, E, H, A, B, C, G, F

…

D, A, E, C, B, H, G, F

(a) (b) (c)

Figure 4.4: (a) an example of partially ordered set of depency relation, (b) A directed
acyclic graph (DAG) generated from the set, (c) possible linearizations
of the DAG through topological sorting

With the dependency as partial order binary relation, a whole set of concepts in

an ontology can be represented as a partially ordered set (or poset), and the poset

can be converted into one or more directed acyclic graph (DAG). Figure 4.4 shows

the example of creating the ordered set from an partially ordered set: (a) shows the

partially ordered set with dependency as a binary relation, and (b) shows the DAG

generated from the set.

From the DAG of concepts, a totally ordered set (or equivalently, linearly ordered

set) is obtained by topological sorting [50]. Figure 4.4 (c) shows possible total orders

(or linearizations) of the graph. As can be seen, in general, there are more than

one linearizations, but any solution is fine; in implementing the procedure, we just

stop after getting the first solution. When there are more than one DAG, each DAG

produces a ordered set, and the sets can be concatenated in any order. Finally,

one ordered set is obtained and in the set, an concept with a large index is always

independent from the concept with a smaller index.

Note that there is a case where creating DAG is impossible. For example, Melnik

et al. [51] modify similarities incrementally based on the similarity of each other, and
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in this case, the dependency relation turns into a cyclic graph. However, it is one of

small number of cases compared to the matching algorithms proposed so far, and is

out of our research scope.

Once the source concepts are ordered, next step is to calculate individual simi-

larities between each source concepts and all the target concepts. Next sections has

the discussion.

4.6.2 Matchers - Calculating individual similarities

Individual matchers calculate the similarity between two concepts with respect

to one specific aspect, e.g., name or hierarchical information. In this research, we do

not propose specific individual matchers. Literature documents various matchers in

product domain [14, 12, 33, 13] as well as in generic domain [11, 34, 35, 36].

The domain expert is to choose a set of individual matchers to use. However,

the selection process itself requires an expertise in matching algorithms which the

domain experts in product development systems may not have. With conventional

techniques like linear combination, adding more matchers requires more work - to

make sure that the matcher does not at least degrade the overall performance, and

to decide the weight value for the matcher.

With FEMFIT, however, adding more matchers does not increase any effort to-

ward the domain expert because it trains itself with the exactly same input. In

addition, even the poor matchers do not degrade the overall performance as com-

pared to other combination methods. The experiment and discussion will be given

in the case study.
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Next section discusses how individual measures are combined with Ranking SVM.

4.6.3 Ranking SVM - Combining multiple measure result

To combine the multiple measures from individual matchers, we use Ranking

SVM. Given the multiple source and target concept pairs, the algorithm will output

a ranked list with similarity values for all the pairs (note that for each iteration,

which is for each source concept, we have the same number of pairs as the number

of all the target concepts). In this section, we will first review the basic idea of

Ranking SVM, and then explain how it is used to combine the individual matchers

to determine maps across concepts in product ontologies.

Review: Ranking Support Vector Machine (Ranking SVM)

Ranking SVM was introduced by Joachims [2] to optimize search engines with

clickthrough data. The idea is to attain the ranking of pages given a query based on

the clickthrough data provided by users. With the ranking, a vector W is calculated

such that the collected pages are ranked properly when projected on the vector.

Then, the ranking of the new set of pages can be attained by projecting them onto

the vector.

In more general sense, Ranking SVM is trained with a dataset, each data point

has n independent variable and 1 dependent variable. Training is to find a vector in

a transformed nonlinear space, onto which all the dependent variables of data points

are correctly ordered.

Figure 4.5 shows the schematic to find a weight vector geometrically. In the figure,

a data points are plotted on a plane. Suppose, according to the dependent variables
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p1

W1

W2

p2

p3

p4

Figure 4.5: A ranked set of data points p1, p2, p3 and p4 are plotted on the plane.
Different vectors can be set up but W1 can order the points correctly
when projected onto whereas W2 generates a wrong rank. Ranking SVM
seeks a weight vector like W1 (Adapted from [2])

of dataset, the correct ordering is p1, p2, p3 and p4. There can be a different vectors

onto which points can be projected. In this example, W1 can order them correctly,

whereas W2 results in a wrong order - p3, p2, p1 and p4.

Note that there can be multiple vectors that can order them correctly. Ranking

SVM chooses the one separating the points most when projected onto itself. Ranking

SVM is equipped with the features of conventional SVM: the points can be trans-

formed into a nonlinear feature space for better ordering, and still violating points

can be accommodated with with some penalty over the maximizing the separation.

In addition, the algorithm works without the full ranking of all the points, in

other words, with partial feedback [2]. Then, only available ranking information will

be used as constraint equation in the overall optimization problem. Next section

describes how it is applied to the concept matching problem.
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Ranking SVM for product concept matching

In the proposed framework, the learning algorithm and a domain expert work in

turn: when the learning algorithm generates a ranked list, the domain expert selects

the matching concept in the list. The decision confirms a map for that specific pair,

and also, the decision is used to further train the learning algorithm. The matching

is processed sequentially according the result of the concept ordering.

Suppose, we are now dealing with 3rd source concept c′s3 after the ordering.

Then, we would already know the matching concepts for c′s1 and c′s2, say c′t1 and c′t2

respectively, and this information can be directed into the algorithm as:

S(c′s1, c
′
t1) ≥ S(c′s1, ct), ∀ct ∈ OB, s.t. ct 6= c′t1

S(c′s2, c
′
t2) ≥ S(c′s2, ct), ∀ct ∈ OB, s.t. ct 6= c′t2

where S is a unknown function which returns the overall similarity given two con-

cepts. Now, we define points p in the k-dimensional Euclidean space, kth element

being the result from kth individual matcher, as:

pi∗ = (Sim1(c
′
si, c

′
ti), Sim2(c

′
si, c

′
ti), . . . , Simk(c

′
si, c

′
ti))

pij = (Sim1(c
′
si, ctj), Sim2(c

′
si, ctj), . . . , Simk(c

′
si, ctj))

Then, the the ranking problem for nth concept is given as:

min
~w,~ξ

1

2
~w · ~w + C

∑
ξi,j
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subject to ~w · Φ(pi∗) ≥ ~w · Φ(pij) + 1− ξi,j

ξi,j ≥ 0

for i = 1, 2, . . . , n− 1, and j = 1, 2, . . . ,m

wherem is a number of concepts in OB. Because a vector satisfying all the constraints

may not exist, term ξi,j is used for the the training error of the point from the pair

of ith source concept and jth target concept, and C is a trade-off between training

error and margin.

Figure 4.6 shows the matching procedure with Ranking SVM. First, a nonlinear

transformation Φ(·) is applied to all the points in Euclidean space from the history

and plot them on a feature space. In the feature space, find a vector W projected on

which the similarity ordering is maintained maximizing the minimummargin between

ranked pairs. For a new data set, in this example, pairs with 3rd concept from the

concept ordering, plot them in the feature space and check the projected values

onto the vector W . These values are provided to the user, and the user finalizes

the matching. Note that in the implementation of the algorithm, the nonlinear

transformation is not actually applied and relatively simple calculation handles the

nonlinearity, which is called kernel trick [52].

When the user finalizes the decision on the matching for this concept, this infor-

mation is also stored as history data and used by the algorithm to calculate similar-

ities for next concepts and the matching procedure iterates.
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Figure 4.6: A ranking procedure with Ranking SVM. After the points from previous
history are transformed into a feature space and a vectorW is calculated
projected on which the similarity ordering is maintained maximizing the
minimum margin between ranked pairs. Once the vector is found, new
data set is plotted on the space and is projected onto the vector W .
Based on the value, a user finalizes the matching.

4.6.4 Expert decision - Finalizing the match

When the algorithm finishes the ranking, the domain expert, the user, receives

the list of candidate concepts in the order of similarity, and among the list, the user

is to choose the real correspondence for the given source concept. It is expected that

the corresponding concepts should be on the high ranks, so that the user can finish

the matching by assessing only small number of concepts with high rank.

Besides the rank itself, similarity value helps the decision. For example, if there

is marginal similarity between rank 1, 2 and 3, but big difference in 3 and 4, it is

likely that the corresponding concepts are among the concepts with rank 1, 2 or 3.

Further truncating strategies can be found in [39]. In this research, however, we

do not have such truncation. In product domain, we believe, it would not be very

difficult to decide whether a concept is a correspondence or not without going further

with lower rank pairs.

Once the user finishes the selection, the partial rank information is fed into the
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ranking algorithm.

Next section shows case study where the framework and its result is presented

with specific matching problem with assembly constraints.

4.7 Case study

We are not aware of other research/literature in this area that could be used to

evaluate our approach objectively. Therefore, for this chapter, we develop a case

study, and evaluate the resulting semantic maps manually, but also in comparison

with other methods/measures.

A better management of assembly information can reduce the cost of manufactur-

ing drastically - Lohse et al. [53] state that assemblies account for 80 percent of the

cost of manufacturing a product. Yet, there have been few research on automating

the matching of assembly level information.

Figure 4.7 shows an example of translating cell phone assembly between two

CAD software tools - NX and CATIA. For the translation, assembly concepts from

both software are matched to the standard representation ISO 10303-108. In this

case study, we will demonstrate the procedure to match the assembly concepts from

NX to ISO 10303-108 (part enclosed in a dotted line). Specifically, 9 assembly

constraints in NX will be matched to the corresponding concepts in ISO 10303-108.

In the matching, only 20 candidates are considered for brevity.

4.7.1 Ontological formulation

Ontology has been used to represent various types of product information. NSF’s

Cyberinfrastructure report on Engineering Design specifies the need to develop com-
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Touch _Align

Concentric

Cell phone assembly

(NX)

Cell phone assembly

CATIA

Coincidence

Contact

ISO 10303-108

explicit_geometric_constraint

angle_geometric_constraint

assembly_geometric_constraint

angle_assebmly_constraint

agc_with_dimension

coaxial_assembly_constraint

incidence_assembly_constraint

tangent_assembly_constraint

…

Figure 4.7: Example of a cell phone assembly model with matching concepts to cap-
ture constraints in the software NX, the former Unigraphics, and CATIA.
The translation is through the standard representation ISO 10303-108.
The case study considers only the part from NX to ISO 10303-108 for
brevity (enclosed with dotted line).

mon languages and ontologies to capture technical domain such that they leverage

and extend web services and semantic web standards [54]. The Process Specification

Language (PSL), proposed by NIST, provides a shared ontology to enable informa-

tion of different manufacturing processes to be built upon and exchanged [53, 55].

Currently, to the best of our knowledge, there is no major CAD systems use on-

tology for their representation. To demonstrate the matching between two different

assembly representations, we construct ontologies based on the existing assembly rep-

resentations of NX and ISO 10303-108, and the matching will be on those ontologies.

Specifically, we use Web Ontology Language (OWL) [56] as a specific language, which

is a standard ontology language endorsed by World Wide Web Consortium (W3C).

The part of hierarchical structures of the concepts are shown in Figure 4.8.
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Figure 4.8: Partial concept hierarchies of the ontologies modeling assembly con-
straints in (a) NX and (b) ISO 10303-108 assembly constraints

Ontologies are created by analyzing both representation system: [57] has been

referenced to build ISO 10303-108 assembly constraint ontology and NX user manual

has been referenced for NX ontology.

4.7.2 Concept ordering

Now, we order the source concepts through concept ordering process so that

the matching does not require any information yet to be identified. The source

ontologies are converted into Directed Acyclic Graph (DAG) with the dependency

relations. Partial graph including Distance and Concentric concepts are shown in

Figure 4.9 (a). Then, a linearization can be found through topological sorting. The

final ordering is shown in Figure 4.9 (b).

Note that the data types, i.e., float and int, in this case, are common to any

(OWL) ontology, so its corresponding concepts are always themselves. In this case

study, we assume that we already have a mapping between properties and concepts
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Figure 4.9: Concept ordering example: (a) dependency network for NX assembly
constraints is shown in DAG, (b) a linearization is generated through
topological sorting. In the order set, concepts with larger indices are
independent from the concepts with smaller indices.

at the axiom level such as Line or Circle. It can also be incorporated into the same

matching process, but we only focus on the main assembly constraint concepts for

brevity.

4.7.3 Individual measures

In this case study, we use 3 individual matchers: Name, PathName and Property

matchers. Following sections explain the matchers.

Name matcher

Concept name is determined in a way that it shows the meaning of the concept in

very concise way. Therefore, name is simple yet important information to compare

the concepts, and most of the matching applications includes name matcher. The

matcher uses different types of string matching algorithms depending on the way the

names are represented.

In this case study, we use 20 string matching algorithms from SimMetrics [58]
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which includes Levenshtein distance, cosine similarity, Jaccard similarity. Different

string match algorithms have different strategy. But we use all the available algo-

rithms, and the proposed method using Ranking SVM is supposed to automatically

decide which algorithms are actually helpful in the matching.

PathName matcher

PathName matcher considers the hierarchical information of the ontology. In

this case study, we concatenate the name of the concept and its parent concept

into one string, and compare the concatenated strings. Although there are many

different hierarchical matchers [11], this gives enough hierarchical information for

this case study because the case does not have complicated hierarchical structure in

the ontologies.

As string matching algorithms, we used the same set of string matchers used for

the name matchers.

Property matcher

Property matcher is a simplified version of the concept description matcher pro-

posed by Patil [14]. The idea is to calculate the ratio between the common description

fields and total number of description fields between concepts. In this simplified ver-

sion, we only compare based on the property itself, not considering the actual value

the property takes.

Note that the matching is on the “flattened” concepts. In [14], concepts are mostly

in flat structure and the descriptions are explicitly defined for each concepts. In this

case, we have some hierarchical structure and some logical descriptions are contained
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in parent concepts. Therefore, we “flatten” the concepts before the comparison.

Figure 4.10 shows an example for Angle concept in NX ontology. In the ontol-

ogy, the concept has three ancestor concepts: AssemblyConstraint, Constraint, and

NX_Concepts. Each of them has its own logical expression except forNX_Concepts

because it is the most fundamental concept in this ontology and it does not have

specific logical expression.

CATIA_Concepts

Constraint

AssemblyConstraint

Angle

Angle (flattened)

(a) (b)

NX_Concepts

Constraint

AssemblyConstraint

Angle

NX_Concepts

hasDimension exactly 1

hasGeometry min 1

Constraint

hasDimension has 3

AssemblyConstraint

angleBetweenGeometry exactly 1

hasGeometry only (Line or Plane)

hasGeometry exactly 2

Angle 

(flattened)

hasDimension exactly 1

hasGeometry min 1

hasDimension has 3

angleBetweenGeometry exactly 1

hasGeometry only (Line or Plane)

hasGeometry exactly 2

(a) (b)

Figure 4.10: Concept flattening example: (a) Angle constraint has three ancestors
and they have their own logical descriptions, (b) flattened Angle in-
herit the logical descriptions from its ancestor concepts. Note that the
inherited description can be overriden by its own description. In the
example, hasGeometry min 1 is overriden by hasGeometry exactly 2.

4.7.4 Result

Figure 4.11 shows the process of identifying matching concepts with FEMFIT:

there are all 9 source concepts to find correspondences from 20 target concepts.

Each user selection is followed by the ranking algorithm, and the algorithm ranks

the target concepts according to similarity values. The number below each target

concept is a value used to rank the concepts; only the relative values are considered
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here.

In the figure, only the result of three iterations are shown for brevity. The corre-

spondences for the concepts shown in the example of translating cell phone assembly

(Concentric and Touch_Align) are ranked 1 and 2 in the recommendation list. De-

tailed ranking results and comparison with other algorithms are given in the following

sections. Throughout the result description, we will use Rank to measure the match-

ing accuracy. In ideal case, the corresponding concepts are desired to be ranked 1

all the time; in that case, there is no further effort but choosing just first target

concept in the list. In practice, better combination method is more likely to have

higher rank throughout the iterations so that the user can find the corresponding

concept without checking all the concepts down the ordered list.

Iteration 1 · · · 3 · · · 9
Source concept Angle · · · Concentric · · · Touch_Align
Recommen- (None) · · · coaxial_ac · · · coaxial_ac
dataion (0.09) (0.06)

parallel_ac_wd tangent_ac
(0.08) (-0.51)
incidence_ac incidence_gc
(0.08) (-0.66)
surface_distance_ac_wd agc_wd
(0.07) (-1.24)
· · · · · ·

User selection angle_ac_wd · · · coaxial_ac · · · tangent_ac
ac:assembly_constraint, gc:geometric_constraint, wd:with_dimension

Figure 4.11: Table shows how FEMFIT confirms matching over iteration: for each
iteration, that is, for each source concept, the recommendation is given
as ranked list. When the user select the correct match, it trains them
further and gives the improved recommendation for the ensuing iter-
ations. Note that there is no recommendation in the first iteration;
learning starts from the input of the user after the end of first iteration.
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Comparison with conventional combination methods

We compare the result of FEMFIT with conventional combination methods, i.e.,

Max/Average combination and weighted average with linear regression. Figure 4.12

shows the rank of the corresponding concept in each iteration for different combina-

tion methods. Note that all 3 types of individual matchers, which are 41 in total,

are used for combination.
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Figure 4.12: Ranks of the real corresponding concept in the ordered set by each
combining method for 9 matching processes.

As shown in the figure, the corresponding concepts are ranked very high (4th at

worst) for the set generated with FEMFIT. This means, with this method, users will

find all the corresponding concepts by checking only a few high rank concepts in the

ordered set.

The Max and Average combination show fair performance, but not as good as

FEMFIT. While FEMFIT considers the relative weighting among the individual

matchers implicitly, Average combination uses the same weight for all. Therefore,

when there is are some poor measures are included, those measures can deteriorate

the overall performance. In addition, any highly important measures are treated
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equal with all other mediocre or poor measures, and its information does not affect

the overall result as much as it should.

Max combination blindly chooses the highest similarity value. The requirement

for this algorithm to work well is that all the individual measures has similar range

and distribution; that is, when individual measure A and B says 0.8, the similarity

should really be similar. Although setting to the same range is simple, ensuring the

linearity between all the individual measures and the overall measures are not always

possible [13].

The weight values for weighted average combination is statistically found through

linear regression. While previous approaches like Doan et al. [19] create a training

data set to first find the regression coefficients, we do the regression at the end of

every expert decision assigning training data of 1 (match) and 0 (non-match). In

other words, in the same feedback framework, we compared Ranking SVM and linear

regression. As shown in the figure, the performance if very poor in this experiment.

Note that the Average combination is a special case of weighted average, but the re-

sult of weighted average with linear regression is much worse. This means, although

inability to handle nonlinearity would be a partial cause for poor performance com-

pared to FEMFIT, major reason for the failure is that linear regression with relatively

small data but with large dimension (in this case, 41 matchers) cannot find a stable

set of weights or regression coefficients.

Figure 4.13 shows the averages and standard deviations of the ranks of 9 matching

iterations for different combination methods with different combinations of individual
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measures. Note that the values are equivalent when only property matcher is used.

Because there is only one matcher in that type, there is no combination to apply.

We show this specific result as a comparison with other combinations.
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Figure 4.13: Averages and standard deviations of the ranks for different combination
algorithms with different combinations of individual measures: Name
(N), PathName (PN), and Property (PR) matchers

From the result shown in the figure, we have some major observations:

• Ranking SVM shows better performance - higher rank with less standard devia-

tion - in most cases. We can conclude that the algorithm successfully combines

different individual measures - giving proper weighting to individual measures,

although not explicit. The only exception is the case with name matchers only.

The matcher is not as good as others, but it does help the overall performance

when combined with others.

• Considering the total number of candidate, which is 20, Max and Average

combination also show fair average rank values. However, standard deviation

is large - the performance is not stable over the different matching pairs.

• Combination not necessarily improves the result for Max and Average com-
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bination. Because we have many different string match algorithms, some of

them are not very accurate in similarity estimation, and those will deteriorate

the overall performance while Ranking SVM is capable of weeding out poor

measures.

• The result for linear regression shows an interesting point: there is a tendency

that linear regression works better with less number of matchers combined. We

think the major reason for such trend is the number of training data. In this

experiment, the number of independent variables, which is number of matching

algorithms, is up to 41 when all 3 types of matchers are combined. To correctly

decide the intercepts for all those 41 variables, it will require much larger data

set, while each human decision only adds 20 data points.

Comparison with SVM regression

We also compare the result of FEMFIT with the combination using SVM re-

gression, which is similar to our previous work [13], but not exactly the same. In

this experiment, we feed the same input for SVM regression as we provide for FEM-

FIT. That is, there is no pre-training before the matching. Also, the in-between

training only provides match(1) or non-match(0), rather than the similarity value in

continuous scale of [0, 1]. Figure 4.14 shows the result.

The figure shows that the result of FEMFIT is better than SVM regression overall.

The superiority of FEMFIT is as expected: while FEMFIT uses the expert input as

is, i.e., chosen pair has larger similarity than the other pairs, SVM regression set 1

for the chosen pair and 0 for the other, which is a bias to some extent.
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Figure 4.14: Comparison between the result of FEMFIT and SVM regression: (a)
Rank of the corresponding concepts for each iteration. Note that there
is no result for the first iteration because there is no input before the first
expert decision, (b) Averages and standard deviations of the ranks for
different combinations of individual measures: Name (N), PathName
(PN), and Property (PR) matchers
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The performance difference is not significant, however. Also, in some cases, SVM

regression shows (slightly) better result. We think there are two reasons for this.

First, we just used same default parameter for both FEMFIT and SVM regres-

sion regardless of different combinations of matchers. When both algorithms are

fine tuned separately for individual cases, FEMFIT is improved further than SVM

regression. But we think the above figure is enough to show the overall trend in com-

parison. Second, the case is relatively small in dataset compared to the real product

concept matching problem. We think as the problem becomes more realistic, i.e.,

larger, factors from noise will fade out and the superiority of FEMFIT would become

more evident.

Other nonlinear machine learning technique, Neural Network, can be used in

similar fashion as Sheikholeslami et al. [59] used it to combine the results for the

heterogeneous data to cluster visual data. But we do not include Neural Network

in this experiment; there are some known advantages of SVM over Neural Network:

SVM, as compared to Neural Network, require less manual parameter tuning [60] and

are less likely to converge to a local solution. In addition, it minimizes structural risk

rather than empirical risk, and that keeps it from overfitting of the observed data.

4.8 Summary

Matching concepts, i.e., determining semantic maps across heterogeneous re-

sources, relies on similarities with multiple views on product data; better approxi-

mation of the similarity between concepts requires a combination of different mea-

sures/methods. Typically, a domain expert chooses or develops a set of similarity
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measures, and combines them to capture the similarity between the product concepts.

Finding a correct combination is, however, not a trivial tasks. First of all, there

is no formal ground to decide relative importance of the individual similarities. Fur-

thermore, accurate approximation typically requires nonlinear combination of the

similarities which makes the identification extremely complicated.

In this research, we have proposed FEMFIT, a feedback matching framework; it

finds the combination relation automatically from the expert decision without any

additional cost. The experiment have shown very accurate result in matching hetero-

geneous assembly data resources. In addition, the performance of the framework is

not degraded by poor measures; it will save the overall implementation time because

the user does not need to be concerned much to select only the most appropriate

individual matchers.

We expect that the proposed method will combine multiple measure to find a

correct semantic map between the concepts. Once the concept map is identified,

the translation requires a syntax translation; the data in one system should actually

transform to the syntax in the receiving system. Next chapter presents our research

toward the translation.



CHAPTER V

Translating the concepts

As discussed in chapter I, beyond the concept matching, there is a need for a

method that actually translates the data from the sending system to the receiving

system. This chapter explains the approach developed in this research to enable the

same.

5.1 Motivation

So far, the standard approach toward translation has been through ISO 10303,

informally known as STandard for the Exchange of Product model data (STEP);

most CAD/CAM systems supports translation from/into ISO 10303. In spite of wide

acceptance and success, its coverage is rather limited and important data semantics

is lost during translation [14, 30]; there have been effort toward new standards, such

as CPM [31, 32, 6] and PSRL [7].

As the new, semantically expressive, representations emerges, efforts toward au-

tomated matching has increased, and a similar effort toward automated translation

would be a natural consequence.

80
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So far, however, there has been little effort toward automated product data trans-

lation, and this research aims to present an initial approach toward the translation.

Next section presents the objective of this research.

5.2 Objective

The objective of this research phase is to develop a method that translates the

data from the sending system to the receiving system. The translator is an ag-

gregation of the translation rules for every matching concepts and attributes which

transforms one syntax into another while preserving the same semantics.

The challenge is that every pair requires specific translation rule and finding the

rule not only requires domain knowledges but also is very labor-intensive process.

Therefore, the objective is, specifically, to develop a method to automatically find

the translation rules for any given pair of concepts/attributes.

Next section defines the specific research problem.

5.3 Product concept translation and related work

In modern product development, collaboration of functionally and geographically

distributed teams is an essential aspect to deliver the products in shorter time with

less cost. However, different teams have different roles, and they typically use differ-

ent software. For example, Figure 1.1 in page 3 shows the list of software involved

in automotive industry, and a product-centric enterprise requires data translation

between the software they use.

Currently, there are translators between the product development software. ISO
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10303 is an industry standard as a product representation, and most CAD software

support import/export of their native data format from/into the standard. However,

translation through ISO 10303 does not preserve the semantics of the data [14, 30],

and there have been efforts to a better solution.

There are commercial translation modules between some major CAD software,

for example, translators between Siemens NX6 and CATIA V4/V5. However, it

takes long manual process to build such translators and the coverage is very limited

considering the number of CAD systems. Furthermore, such development process has

not been published and no formal procedure behind the program has been reported.

Academia also has some approaches toward translation. In CAD domain, a

promising approach is history-based translation [61, 62, 63] where a command history

to build a geometric model in one system is translated into a set of command history,

or macro, of another system through an interlingua. Advantages include that it can

directly capture the user intent which has rich semantics, and that the neutral files

can be maintained as relatively small-sized document files, i.e., eXtensible Markup

Language (XML).

Such approach, however, cannot be applied when it comes to a broad spectrum

of product information such as PDM or PLM data where command history is not

typically available. To address the issue, ontology-based approaches have been pro-

posed [64, 7, 65]. Formalizing product information with ontology provides a foun-

dation for automated reasoning, e.g., consistency checking and matching across het-

erogeneous resources, and the ontology concept matching has been an active area of
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research [14, 12, 33, 13].

However, finding concept map is not enough for the data exchange, and it requires

the discovery of actual translation rules between identified matching concepts. Fig-

ure 5.1 shows concept matching and translation between two instances in SolidWorks

and NX, CAD software applications. For the data exchange, first the concept map

should be identified, e.g., Date created is mapped to Created date, not Modified

date, and once the map is found, actual data should be transformed, e.g., “6/1/2009

14:20:28 PM” into “01 Jun 2009 14:20”. To the best of our knowledge, there has been

no research toward formalizing such process in product domain, and this research

will deal with this translation issue.

Extrude instance (NX)

Feature name Extrude (1)

Created date 01 Jun 2009 14:20

Modified date 01 Jun 2009 14:55

… …

Extrude instance (SolidWorks)

Name Extrude1

Date created 6/1/2009 14:20:28 PM

Last modified 6/1/2009 14:55:33 PM

… …

Concept (attribute) matching

Concept translation

Figure 5.1: Extrude instance representations in SolildWorks and NX, CAD software
applications. Concept (attribute) matching is to find correspondence
between the concept/attribute names, and the translation is to actually
transform the instance data for each attribute.

Next section presents a problem formulation.
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5.4 Problem formulation

In the previous section, we explained product data translation problem in general.

This section, we define the problem as:

Given: A source concept A and its attributes a1, a2, . . . , an

A coSucrresponding (target) concept B and its attributes b1, b2, . . . , bm

A set of aligned instance (ia1, ib1), (ia2, ib2), . . . , (iak, ibk)

A set of basis functions F = {f1, f2, . . . , fp}

For: Each target attribute bi

Find: A translation rule Ri such that bi = Ri(a1, a2, . . . , an)

where Ri can be represented with a combination of basis functions F

Note that this problem formulation deals with the translation between two predeter-

mined source and its corresponding target concept. Finding a map between concepts

from sending and receiving systems is an active area of research, and several solution

approaches have been presented [14, 12, 33, 13].

In addition to the fundamental inputs for the translation problem, i.e., source

and target attributes, this problem definition requires two additional resources: 1) a

set of aligned instance, and 2) a set of basis functions.

By aligned instances we mean a pair of corresponding, that is, of same semantics,

instances in the sending and receiving systems. For example, when an instance ia

in a sending system is successfully translated into ib in the receiving system, they

should have the same meaning, and ia and ib are said to be aligned. We believe that
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any organizations interested in automating the translation process would have used

manual translation so far, and have collected a set of aligned instances needed for

this problem formulation.

A basis function, in its original meaning, is an element of the basis for a function

space [66]. That is, 1) any function in the space can be represented as a linear

combination of basis functions, and 2) the basis functions are linearly independent

with each other. In our problem formulation, we borrow the term, but loosely - a

translation rule R, which is also a function, will be represented with a combination,

not necessarily linear, of the basis functions F , and the functions are not necessarily

linearly independent with each other. From this point on, we use the term basis

function in this definition. Further explanation regarding the basis functions will be

presented in the next section with the proposed approach.

5.5 Modeling concept translation with a directed graph

We model the concept translation problem with a directed graph. Figure 5.2

shows a schematic of the graph with a set of source attributes, a1 and a2, and a

target attribute b1. The basic idea is that the source attributes become initial nodes

in the graph, and the graph is expanded as the basis functions are applied to the set

of the existing nodes. When any created node is determined to be equivalent to the

target attribute, it becomes a goal node, and the translation rule is returned with

the functions in the path to the goal node.

A graph is an ordered pair < N,E >, where N is a set of nodes (or equivalently,

vertices), and E is a set of edges, or arcs when the graph is directed. Next sections



86

Start nodes

Initial nodes
a1 a2

… … … … …

b1

f1 f2 f1 f2f3

f3

Goal node

Translation rule R:

b1 = R(a1, a2) = f3(f2(a1),  f1(a2) )

Figure 5.2: Translation problems are modeled as a graph search. Functions in the
path from the initial nodes to the goal node are combined to construct
the translation rule for the given target attribute (b1 in this case).

further explain how nodes and arcs are defined in our model.

5.5.1 Nodes

We define a node as a k-tuple, (v1, v2, . . . , vk), where k is a number of aligned

instances and elements being any data types, e.g., numeric, string, date. In this

problem, we have multiple initial nodes - the number is equal to the number of

attributes in the source concept, and they are defined in following manner: when

there is k instances for a specific source concept and the concept has n attribute,

each instance is n-tuple, which can be represented as a column vector of n-dimension.

Now, a data value matrix V can be created by concatenating those k vectors - from
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the number of instances. Then, the matrix V is given as:

V =



v11 v12 · · · v1k

v21 v22 · · · v2k

· · · · · · · · · · · ·

vn1 vn2 · · · vnk


,

where vij is data value for ith attribute of jth instance. Now, we have n initial nodes,

and ith initial node is characterized by ith row vector in the matrix V .

There is one goal node - the problem is posed for each target attribute in the

target concept as described in the previous section. We have the same number of

instances as for the source concept because they are aligned, and thus, the goal node

can be represented as a single k-tuple like all the initial nodes.

Intermediate nodes, shown as circles without any filling in Figure 5.2, are

nodes that are created from the existing nodes with arcs. The graph initially starts

with only initial nodes, and expands with intermediate nodes and arcs. The arcs and

the expansion process is explained in the next section.

5.5.2 Arcs: basis functions

Each arc in a directed graph is an ordered pair of nodes, say (Nout, Nin). In

our approach, an arc is created when a node Nout is expanded which also creates a

new node Nin. For each arc, one basis function is associated, and the value for the

resulting node Nin is the function of Nout.

Basis functions can be divided into two types depending on the number of input

- single input or multiple input. For example, fSI = ToUpper(str) is a function that

returns the same string as the single input string, but all characters with uppercases.
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When the function is applied to an existing node, say Nout, a new (intermediate)

node Nin will be created, and the node has only 1 incoming arc.

On the other hand, there are functions that take more than one input. For ex-

ample, fMI = concatenate(str1, str2) is a function that returns the concatenation of

two input strings. When the functions are applied, two arcs are created - (Nout1, Nin)

and (Nout2, Nin) with one intermediate node Nin. The node has two incoming arcs.

Note that the nodes are tuples, and the function is applied to each of the element

in the tuple. For example, when a node Nout is expanded with a single input basis

function fSI , a new arc is defined as (Nout, Nin) such thatNin = (fSI(v1), fSI(v2), . . . , fSI(vk))

where Nout = (v1, v2, . . . , vk). We will also represent this as Nout = fSI(Nin) for sim-

plicity.

When a nodeN is expanded, typically multiple arcs and nodes are created because

there are multiple basis functions. For example, when there are r single input basis

functions, there will be up to r nodes and arcs are created - f1(N), f2(N), . . . , fp(N)

and (N, f1(N)), (N, f2(N)), . . . , (N, fp(N)) respectively. Note that not all basis func-

tions can be applied to all the nodes, and certain functions are not applicable to the

tuples of specific data types. For example, f = ToUpper(str) is a function defined

on strings, and cannot be applied to the tuples of numeric values.

The number of created nodes is different for the multiple input basis functions.

When there are k nodes and r multiple input basis functions with multiplicity l,

then, assuming all functions are applicable, there will be r × P(k, l) = r × k!
(k−l)!

possible new nodes at the second depth in the graph (the term depth is typically
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applicable only to tree structure which is a special type of graph, but the graph we

use has initial nodes, and we can count the depth by using those initial nodes as root

nodes). For example, when there are 4 two-input basis functions and 10 initial nodes,

assuming all the functions are applicable, there will be 4× 10× 9 = 360 new nodes

at the depth of two, of which manual evaluation will be a time-consuming task.

Figure 5.3 shows an example of node expansion process - two single input basis

functions are applied to an existing node creating two intermediate nodes. We do

not show any multi-input cases here, but it will be discussed in later section for case

study.

(20, 35, 10)

(0.787, 

1.378,

0.394)

(68, 95, 50)

f1: mm_to_inch

f2: C_to_F

Figure 5.3: The figure shows a process to expand a node to create new nodes. In this
example, there is two single input basis functions - function that converts
mm into inch and the one that converts Celsius into Fahrenheit, and
each produces a new node. The created nodes has a tuple of the same
length with the original node - in this case, it is 3-tuple.

Next section presents how the solution is obtained using a graph search algorithm.

5.6 Graph search to find the translation rule

Previous section presented a graph model for the concept translation. In this

section, we present an algorithm based on best-first search to traverse through the

graph to find the translation rule.
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Best-first search is a graph search algorithm where a node n with the lowest

evaluation function feval(n) is selected for expansion [67]. Figure 5.4 shows the

overall procedure of the proposed method.

Start

Evaluate new nodes

with distance heuristic

Reached

Termination criteria?

Expand the node

with basis functions

Return 

Translation rule

For the node with

the smallest distance

Yes

No

This is the flowchart for the 
approach to find translation rules

Created in 5/7/09

Figure 5.4: The flowchart shows a procedure for the proposed method to find a trans-
lation rule with an approach based on graph search algorithm. Specifi-
cally, best-first search is used - after evaluating the evaluation function
feval(n) for each node n, expand the node with the smallest value, i.e.,
approximately the closest to the goal node. The iteration goes on until
it reaches termination criteria - either successful finding of the goal node
or failure. Note that the figure shows only success cases for brevity.

Now, we explain the 3 components in the procedure: 1) node evaluation, 2)

termination criteria, and 3) generating translation rule after the search.

5.6.1 Node evaluation

An evaluation function feval(n) in graph search is a measure that estimates the

goodness of the current node as a solution. A good selection of the function can
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reduce the number of nodes to evaluate before finding the goal node, thus making

the search faster.

According to the types of the evaluation, best-search is further classified: for

example, greedy-best first search uses only heuristic function h(n) which is an es-

timation of the cheapest path from the current node n to the goal node, and A∗

search also considers the cost g(n) to reach the node n from the start node, while

breadth-first search uses only g(n).

However, in the proposed graph modeling, there is no notion of cost derived from

the path, neither to start (initial) node nor to goal node. In the modeling, each node

is represented as a tuple, and the goodness or distance is only determined by the

tuple itself compared to the tuple of the goal node without any path information.

In fact, there is no path cost at all; no weight values are assigned to the edges/arcs.

Note that we will still use the term distance heuristic for the evaluation function,

which is typically used in many graph search problems.

The absence of weights for arcs implies a difference of this problem to other

shortest-path graph search problem; as we explained in the previous section, the

basis functions are not linearly independent in our problem, and there may exist two

different paths to reach the same node. Because there is no weight associated with

arcs, the search does not prefer the rules with 2 basis functions to the ones with 3

or more functions.

Specific distance function can be determined according to the type of goal node.

For example, if the goal node is a tuple of string values, some string similarity
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(0.787, 
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0.394)

(20, 35, 10)

Node N to evaluate Goal node

1

| 20 .787 |
(20,.787) 0.96

max(| 20 |,| .787 |)
rD


 

2

| 35 1.378 |
(35,1.378) 0.96

max(| 35 |,|1.378 |)
rD


 

3

|10 .394 |
(10,.394) 0.96

max(|10 |,| .394 |)
rD


 

1 2 3( ) ( ) / 3 0.96r r rDist N D D D   

Figure 5.5: The figure shows a process to calculate the distance heuristic for an ex-
ample node given a goal node. In this example, relative distance measure
is used as distance heuristic. Relative distance is obtained for each pair
of values, and averaged into one distance value.

measures, such as edit distance or Hamming distance [68] can be used. When the

values are numeric, some measures like relative difference, Euclidean distance or

its variations, such as standardized Euclidean distance (SED) [37], can be used to

measure the distance. Figure 5.5 shows an example for the node evaluation with

relative difference as a distance heuristic.

5.6.2 Termination criteria

There are two termination criteria - successful and unsuccessful ones. When any

node is evaluated to have 0 distance to the goal node, then the search completes

successfully.

It is not guaranteed, however, that the solution is found at all time. Not all

product development systems have exactly the same features, and their concepts do
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not match exactly. Therefore, it is possible that a specific information in the target

concept does not exist at all in the source concept in any form, and there is no

translation rule at all to bridge them. In such a case, the search will never finish by

above mentioned criteria, and a termination criteria should be defined for this case

which will complete the search unsuccessfully. The specific criteria should be defined

depending on specific problems, and examples include a method limiting a number

of iterations or processing time.

Sometimes, although the translation rule actually exists, but cannot be identified

because of the lack of necessary basis functions, and it will terminate the search

unsuccessfully. The proposed method does not provide any method to distinguish

this case from the above case, and we believe some expert decision will be required

for further clarification here.

When the search is unsuccessful, for either reasons, it should return the closest

node(s), i.e., the node(s) with the smallest heuristic, during the search process so

that the further manual process can follow accordingly.

5.6.3 Translation rule

When the search terminates successfully, the translation rule R for a given target

attribute can be obtained recursively backtracking from the goal node to the initial

node(s). The recursive procedure to find a translation rule Rcur for the current node

Ncur can be defined as:

Rcur =

 finc(Rpred1, Rpred2, ...) if at least one predecessor and incoming arc

ai if no predecessor, and the node is ith initial node ai



94

When the search is unsuccessful, the user can start from the closest available

node and its translation rule, and further basis functions can be added accordingly

to complete the rule.

In the next section, we demonstrate how the method applies to some case exam-

ples.

5.7 Case study

In this section, we demonstrate case examples where the proposed method is

used to find a translation rule for a given target attribute. We are not aware of

other research/literature in this area that could be used to evaluate our approach

objectively. Therefore, we develop a case study, and evaluate the resulting translation

rules manually.

We first show how it applies in element-level translation, and discuss how structure-

level translation is handled. By element-level, we mean that the translation is 1-to-1;

to find the value of a specific target attribute, we will need only one source attribute

to fill the target attribute although we have to find which one is needed. On the

other hand, structure-level translation occurs when there is a structural difference

between the concepts and one target attribute requires more than one attribute in

the sending system to obtain its matching value.

There are other classifications for the types of translation, i.e., syntactic, semantic

and pragmatic translations, as we discussed in Section 5.3. In our problem modeling,

however, we do not care the specific content or operation inside basis functions;

rather, the interface of the functions is concerned. That is, we borrow a set of basis
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functions, and the functions are handled based on the number of inputs - either 1

(element-level) or more than 1 (structure-level).

5.7.1 Element-level translation

CAD is an important part of product development, and the translation between

different CAD software is critical for modern product development. Figure 5.6 shows

a schematic of translating a model information in NX (former Unigraphics) into

SolidWorks. In this section, we will focus on demonstrating how the translation

rule can be constructed for one target attribute (Name attribute in the figure).

Extrude instance

Feature name Extrude (1)

Created date 01 Jun 2009 14:20

Created By John Doe

… …

Part1

- Extrude (1)

- Chamfer (2) 

Chamfer instance

… …

NX

Extrude instance

Name ?

Date created ?

Author ?

… ?

Chamfer instance

… ?

SolidWorks

translate

Figure 5.6: A schematic showing the translation of a part in NX into SolidWorks.
To translate, the attribute values marked as “?” should be identified
from the source instances. In the case study, the process to find only one
attribute value - Name - enclosed with a thick box is demonstrated.

The proposed method requires an evaluation function and a set of basis function.

For the evaluation function, a string similarity measure is needed because the goal

node is string type, and edit distance (also known as Levenshtein distance), a well-

known string similarity measure, is used. Note that the value is normalized with the

string length so that the value is in the range [0, 1].

For the basis functions, only 3 functions will be used to highlight the procedure:
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• f1: removes any parenthesis in the input string.

• f2: converts any numbers in the string into the words, e.g., 1 to one and 2 to

two.

• f3: removes any spaces in the input string.

Figure 5.7 shows the search procedure. It starts with initial nodes (only 3 are

shown for brevity), and expands the node with the smallest distance. When the

search reaches a goal node, a translation rule can be reconstructed with the path

information - basis functions associated with the arcs and the start node. As shown

in the figure, the method successfully finds the translation rule for the given case.

Also, the translation rule has been applied to a different set of aligned instances with

the same attribute, and shows correct translations between the given instances.

There is a structure-level different between heterogeneous product development

systems, and we discuss the case in the next section.

5.7.2 Structure-level translation

In the previous section, node expansion was explained that any new node is cre-

ated from a single node with a set of basis functions. In other words, basis functions

have single input and single output. In product development domain, however, not

all attributes conform to the one-to-one translation pattern. For example, Figure 5.8

shows an color concept definition in different product schema - PLM XML by Siemens

and 3D XML by Dassault Systemes. In PLM XML, a concept RGBAType is represented

as a string with 4 float values separated with white space, while 3D XML has RGBA-
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Extrude (1)

f1: mm_to_inch

f2: C_to_F

Extrude (one)Extrude 1 Extrude(1)

Extrude one

Extrude1

01 Jun 2009 14:20 John Doe

a1: Feature name a2: Created date a3: Created by

b1: Name

Initial nodes

f1

f1

f2

f2

f3

f3

0.27 1.0

0.36

0

0.11
0.200.46

0.88

Goal node

n

fi: basis function

Dedit(n): evaluation function (edit distance)

Dedit(n)

f1: func_remove_paranthesis

f2: func_convert_num_to_string

f3: func_remove_spaceTranslation rule R: b1 = R(a1, a2, a3) = f3( f1(a1) )

Figure 5.7: A translation rule is constructed with a graph search. There are 3 initial
nodes, and the nodes with the smallest distance are evaluated. When
the goal node is reached, the path information (arcs and the start node)
is used to construct the translation rule. Note that the nodes are shown
with only 1-tuple for brevity.

ColorType with 4 attributes - red, green, blue and alpha to represent the equivalent

information.

In the example, the cardinality of the attribute matching is 4-to-1, and it cannot

be represented with only 1-to-1 basis functions. In this example, a multi-input basis

function is used to capture such relation. Specifically, a function f that merges two

string values (separated with a space), is used.

Note that we handle the value of the nodes as string, and use the same edit

distance used in the element-level translation. Figure 5.9 shows the procedure to
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...

<Color xsi:type=“RGBAColorType” red=“0.4” green=“0.7” blue=“1.0” alpha=“0.5”/> 

...

<... borderColour=“0.4 0.7 1.0 0.5” ... >

(b) RGBAColrType in 3D XML: 4 attributes are used

(a) RGBAType in PLM XML: string with 4 float values

Figure 5.8: Instances of color information used in (a) PLM XML by Siemens and (b) 3D
XML by Dassault Systemes. In PLM XML, RGBA information is represented
as a string of 4 values, while 3D XML shows them as separate attributes.
This type of heterogeneity cannot be captured with the 1-to-1 conversion
functions explained in the previous section and we need an extended
function. Note that the nodes are shown with only 1-tuple for brevity.

find the translation rule.

The rule successfully translates the source attributes into the goal attribute for

the given aligned instance. The same rule also provides a correct translation between

other pairs of aligned instances with the same attributes.

Note that in combining nodes to create a new node, we intentionally used a

function that merges only two input strings at a time, rather than merging all 4

nodes at the same time. Using functions with multiple inputs should be considerate

because it may increase search space drastically.

5.8 Summary

Product data translation is an essential part for integration of various product-

centric activities, and there has been a need for a translation systems among the

participating domains.

Creating a translation system is not a trivial task. Even with a semantic map

fully identified, a syntax in the sending system should properly transform to the
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0.4 0.7 1.0 0.5

a1: red a2: green a3: blue a4: alpha

Initial nodes

0.8 0.8 0.8 0.8

0.4 0.70.53

0.4 0.7 1.0 0.27

0.4 0.7 1.0 0.50

n

f: basis function

Dedit(n): evaluation function (edit distance)

Dedit(n)

f: func_merge

f

f

f

Translation rule R: b1 = R(a1, a2, a3, a4) = f( f( f( a1, a2), a3) a4)

b1: Color

Goal node

Figure 5.9: A translation rule for one target attribute is constructed from 4 at-
tributes. Only one basis function is shown to demonstrate the process;
more functions can be included but will not change the result.

syntax in the receiving system while maintaining the same semantics. The challenge

is that even within the same system different concept/attribute use different syntax,

and different matching pairs require different translation rule. Even with the domain

knowledges for both systems, it is time-consuming and error-prone task.

In this chapter, we have proposed a method to find the translation rule between

any given pairs of concept/attributes. Given a set of basis functions - an atomic

translation rule, we use a graph search method to automatically find a translation

rule for a given pair of concepts as a combination of the basis functions.

The complete implementation of translation system will require further research:

First, the scope of the problem is limited to the translation between two concepts.
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However, not all concept translation is 1-to-1, just like not all attribute translation is

1-to-1 as shown in this research. We believe it requires further analysis and modeling

to address the issue. Extending the work to remove the limitation would be an

important step toward the complete translators, and is left for the future work.

Also, we just briefly mentioned the size of problem space, and did not discuss any

optimization issues. Given the multiple input basis functions, the number of nodes

will increase combinatorially as the depth of the graph increases. The problem can

be reduced with some optimizations, e.g., removing the initial nodes by finishing all

element-level translation before dealing with any structure-level translation, but the

further research is left for the future work.



CHAPTER VI

Conclusion

This chapter highlights important contributions of this thesis and discusses di-

rections for future work.

6.1 Research contributions

The success of PLM relies on effective semantic interoperability of product infor-

mation. This research has developed methodologies to determine matching between

concepts in different product development systems.

In order to determine semantic maps, we have proposed a method - Instance-

Based Concept Matching (IBCM) that can detect 1-to-n maps by exploiting implicit

semantics captured in the instances of product models. The use of implicit semantics

adds a new dimension in the area of product development, where most of the previous

research has focused on using schema or data definition that are explicitly defined.

Any single matching method is not enough to determine the semantic maps across

the different systems, since each method presents only one view. We have identi-

fied the challenges in combining multiple views provided by multiple methods and

formalized the combination procedure for the first time in this domain. For this,

101
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we have proposed a method - FEedback Matching Framework with Implicit Training

(FEMFIT) to combine the different matching approaches using ranking Support Vec-

tor Machine (ranking SVM). The method overcomes the need to explicitly train the

algorithm before it is used, and minimizes the decision-making load on the domain

expert. Furthermore, it implicitly captures the expert’s decisions on the matches

without requiring him to input real numbers on similarity. The method can capture

nonlinear relations between the individual matchers.

Finally, we have proposed a framework to automatically determine the translation

rules to enable translation of concepts from one system to another. Even after

the semantic maps are obtained, the syntax in the sending system should properly

transform to the syntax in the receiving system. Existing work in product domain

has focused mostly on finding semantic maps, but we identified the challenges in the

translation process after the mapping. We use a graph search method that obtains

the overall translation rule as a combination of multiple basic functions. Using such

rules, concepts/instances from one system can be easily translated to another system.

6.2 Application to other areas

In this section, we project applications in other areas that can benefit from the

technical contributions of this thesis.

• Other areas in PLM: Bill of Material (BOM) is a central component of product

knowledge and is shared among different activities. Different BOMs view a

product from different perspectives in different phases of the lifecycle, and

therefore, they differ in structure and composition. Each of the three methods
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(Instance-based matching, Combination of different views, and determination

of translation rules) proposed in this research could be used to determine maps

across the different BOMs.

• Matching/translation outside product domain: Interoperability is an issue not

just in the product domain. Just like the heterogeneity issues in product do-

main, matching methods are required to integrate the scattered information in

different schema, and the proposed concepts could be utilized. One example is

the area of health-care, in particular the implementation of electronic records.

• Search/query problem: Finding similar documents, images, and videos are im-

portant issues in various fields. Searches are primarily based on some similarity

between the query and the instances in the database. The proposed concepts,

especially the framework to combine multiple views could be used to combine

the existing similarity measures in these areas.

6.3 Future work

This section discusses future work that addresses certain limitations in the current

work.

• Construction of ontological representations: Complete translation is not pos-

sible unless there are some explicit and open representations of the product

development systems. We think, however, industry is moving toward more

semantically rich representations where we do not need such manual construc-

tion of ontologies. For example, major CAD vendors have recently developed a
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more expressive document representations, such as PLM XML by Siemens and

3D XML by Dassault Systemes. Such representations could reduce significant

amount of manual work in parsing and reasoning about the concepts in the

representations.

• Handling 1:n matches: While the IBCM can handle 1-to-in concept maps,

the FEMFIT, used for combination of different individual methods, and the

automated translation rule generation need to be improved to handle 1-to-n

matches.

• Managing scalability: Further research is required to analyze and modify the

proposed methods to handle scalability, particularly because product data is

large and complex. Procedures should be designed to effectively use resources,

such as parallel computing and the ability to store large datasets.

• Development of a repository: Currently, there is no formal basis to evaluate the

correctness of the results of the research conducted in this dissertation. We have

used our expert knowledge to determine the correctness of the results for the

demonstrative cases that we have developed. However, competing techniques

must be evaluated on a level playing field. There is a need for a repository that

will provide standard datasets to benchmark/validate the different methods

and tools developed by researchers in this field.
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