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ABSTRACT 

 

This dissertation details strategies for the fabrication of sophisticated 

biofunctional materials and their use in biomedical and biotechnological application. 

These unique biointerfaces were designed by integrating biological entities with synthetic 

polymers and extensively characterized using surface analytical tools. 

The first part of this dissertation focuses on the immobilization of specific 

moieties that render surfaces biomimetic. Synthesis of reactive polymers, poly(4-formyl-

p-xylylene-co-p-xylylene) and poly(4-heptadecafluoronononyl-p-xylylene-co-p-xylylene) 

was accomplished via chemical vapor deposition (CVD) polymerization. These reactive 

polymer coatings enabled the immobilization of proteins and oligosaccharides via 

chemoselective carbonyl-hydrazide coupling reaction. On the other hand, an alkyne-

functionalized polymer coating, poly(4-ethynyl-p-xylylene-co-p-xylylene) was 

synthesized for the conjugation of proteins, saccharides and cell-adhesive oligopeptides 

via alkyne-azide “click” reaction, in a spatioselective manner.  These platforms were 

further used for surface-directed adhesion of human endothelial cells. Another 

application of reactive polymers was directed towards the fabrication of polymer 

coatings, which mimic endothelial cells with respect to nitric oxide generation for 

cardiovascular stents. Photo-reactive polymer coatings were deposited using CVD 

polymerization and used to incorporate Cu(II) ligated cyclen (1,4,7,10-

tetraazacyclododecane) onto the surface of a stent. These catalytic sites containing copper 

generated NO from endogenous S-nitrosothiols present in blood, and the measured NO 
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flux approached physiological ranges. These coatings attempt to solve the problems of 

restenosis and thrombosis associated with the placement of coronary artery stents. 

In the second part of the dissertation, a chemically-defined polymer was 

fabricated, which supported long-term human embryonic stem (hES) cell cultures, for the 

first time, in the presence of several different culture media. Polymer, poly[2-

(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] sustained the 

culture of hES cells for at least 25 passages in mouse fibroblast conditioned medium, at 

least 15 passages in commercially-available human cell conditioned medium and at least 

10 passages in defined StemPro medium. Throughout the study, hES cells expressed 

undifferentiated cell markers, retained a normal karyotype and remained pluripotent. 

Development of a standardized culture matrix for hES cells represents a significant step 

towards future clinical applications of hES cells. 

Taken together, these approaches offer novel solutions for target applications in 

tissue engineering, biomedical devices and microfluidics and further expand our toolbox 

of strategies for creating biologically-relevant surfaces. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and background 

In the past few decades, there has been rapid development in the field of surface 

engineering, relating to the control of structure and properties of surfaces, which is of 

utmost importance for applications such as cell biology, tissue engineering, microfluidics, 

optics and electronics.1-3 The main objectives of biomimetic surface engineering are (1) 

to modify the interfaces between biological and non-biological systems; (2) to gain 

valuable insight into the biological interactions at these interfaces; and (3) for the 

advancement of biomedical research.1 The main advantage of surface modification 

strategies is the ability to influence biological interactions by changing the outermost 

surface, while still retaining the key physical properties of the material. If the surface 

modification is properly executed, the mechanical properties and functionality of the 

device will be unchanged, but the interface related biocompatibility will be improved, 

eliminating the need for redesigning the entire device or reevaluating the material.  

Interactions between cells and biomaterials are governed by physicochemical 

properties of the biointerface and chemical cues provided by the ligands integrated on the 

surface.4 Physicochemical parameters such as surface energy, surface topography, surface 

charge and chemical composition of the surface have a profound effect on biological 

response. Surface attributes (such as wettability, charge and surface reactivity) depend on 

the chemical and physical details of the molecular structure at the interface. At the same 

time, the ability to modify inorganic surfaces with organic molecules or biological 
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ligands is also a common requirement for a host of applications. The chemical signals 

provided by various biomolecules such as growth factors and cell-adhesive proteins 

influence the cellular behavior.  

  

Biomolecule immobilization 

A wide variety of biomolecules such as proteins and oligopeptides, sugars and 

polysaccharides, single and double-stranded oligonucleotides and DNA plasmids, simple 

lipids and phospholipids and a wide spectrum of recognition ligands and synthetic drug 

molecules, have been immobilized onto surfaces.5 There are three major immobilization 

methods for biomolecules, namely physical adsorption, physical “entrapment” and 

covalent attachment.5 Physical adsorption methods are generally based on van der Waals, 

electrostatic or other affinity forces. Biomolecules can also be immobilized through 

physical “entrapment” in hydrogels or dispersed in matrix systems. As compared to the 

physical methods, covalent immobilization enhances the stability of the biomolecule and 

prevents desorption.5 

The major requirements for any bioconjugation strategy are that the biomolecules 

attached to the surface should be stable and the immobilization chemistry should preserve 

the conformation and accessibility of the ligands on the surface. The reaction chemistry 

for the conjugation should have fast kinetics and the linkage should be stable. A few 

examples of chemoselective reactive pairs (and type of bonds formed) commonly used in 

bioconjugation are carbonyl-hydrazide (hydrazone bond), carbonyl-aminooxy (oxime 

bond), and thiol-maleimide (thioether bond) reactions.6 The conjugation of proteins to 

surfaces has been achieved through either the amine group (by reacting with the 

pentafluorophenol ester group) or by activating carboxylic acid groups with N-

hydroxysuccinimide (NHS) in the presence of EDC.6, 7 Specific biomolecules such as cell 
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adhesion peptides/proteins have been immobilized in order to control the cell-surface 

interactions. Hydrazide-containing reagents have been used for the conjugation of 

carbonyl-containing compounds where macromolecules containing carbonyl groups 

spontaneously react with hydrazide ligands to form hydrazone bonds.6, 8 Thus, probes 

containing hydrazide functional groups can be used to label carbohydrates and the 

polysaccharide portion of cell surfaces.  Recently, a series of cycloaddition reactions have 

received intense attention due to their extraordinary thermodynamic driving forces.9  

These cycloaddition reactions, often referred to as “click” reactions, are a set of reactions, 

which give stereoselective products, are insensitive to oxygen and water and are 

conducted in benign solvents. The most popular reaction of this group is the Huisgen 1,3-

dipolar cycloaddition of azides and terminal alkynes to generate 1,2,3-triazoles.10 The 

highly energetic azide and alkyne groups have a surprisingly narrow distribution of 

reactivity and are inert towards other functional groups.11 This reaction has been used in 

bioconjugation strategies for microarrays, sensors, proteomics and in drug discovery.12, 13 

 

Biomolecular patterning 

A diverse array of techniques for the spatioselective immobilization of 

biomolecules at submicron and nanoscale have emerged.4, 14, 15 The ability to design 

highly sophisticated and precise surfaces is essential for applications in biotechnology 

and medicine such as biosensors, tissue engineering and biomaterials.16 

Biomolecular patterning requires highly specific conjugation of biomolecules in 

well-defined regions and spacing, while retaining native functionality of the 

biomolecules.14 Furthermore, other regions of the substrate should demonstrate resistivity 

towards the biomolecules. Micro and nanopatterning techniques have been used to 

modulate cell shape, position, adhesive area and differentiation potential.7, 17, 18 Several 
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strategies have been employed for the fabrication of micro- and nano-scale patterns such 

as photolithography, microcontact printing (soft lithography) and dip-pen 

nanolithography.19, 20 These approaches have been used either directly to immobilize 

biomolecules or indirectly as templates for pattern creation.  

Microcontact printing is a soft lithographic technique which has been used for 

patterning of biomolecules such as proteins,7, 21, 22 peptides15 and DNA23. Microcontact 

printing was first demonstrated for creating patterns of alkanethiols on gold.24, 25 Briefly, 

a micropatterned Si master is used to create a patterned poly(dimethylsiloxane) (PDMS) 

stamp. Elastomeric PDMS stamp is inked with the desired solution and then brought into 

contact with the substrate to transfer the ink.   

 

Reactive polymer coatings via chemical vapor deposition (CVD) 

Success of any covalent bioimmobilization step depends on the availability of 

reactive functional groups on the surface. Over the past few years, vapor-based polymer 

coatings have emerged as a promising solution for surface modification due to their 

advanced processibility and excellent intrinsic biocompatibilty.26, 27 Chemical vapor 

deposition (CVD) is a well established technique for the formation of inorganic layers, 

and it has been extended to generate thin conformal polymer coatings. The deposition 

itself is a room temperature process that does not require any catalyst, initiator or solvent 

and no byproducts are generated. Other advantages of this process include control of the 

composition and architecture of the films, high accuracy, and good adhesion to a wide 

variety of substrates (including biomedical and microfluidic devices). Functionalized 

poly(p-xylylenes) can be deposited via CVD polymerization to generate thin polymer 

films (5-100 nm) and, due to pre-defined chemical functionalities, provide a flexible 

solution to surface engineering challenges as they decouple surface design from bulk 
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properties. Hence, the technology comprises essentially a one-step coating procedure to 

generate functionalized surfaces without requiring any non-biological post-treatment on 

the deposited films.28 The simplicity in providing a wide range of functional groups, the 

excellent adhesion to various substrates, and its applicability to devices with three-

dimensional geometries are key advantages when compared to polymers deposited by 

solvent-based methods. 

In the recent past, CVD polymerization of substituted [2,2]paracyclophanes has 

been instrumental in creating a wide array of  functionalized poly(p-xylylenes) with a 

diverse class of functional groups, such as amines,29, 30  esters,31-33 ketones,8, 34-36 and 

alcohols37, 38 (Figure 1.1). The strategy used is based on the fact that the reactive 

functional groups on the polymer can be modulated based on the specific immobilization 

chemistry of the ligand.  These surfaces bring the physical and mechanical advantages of 

the non-functional commercial polymer films together with the reactivity of the 

functional groups. Coronary stents which were coated with a functionalized CVD 

polymer and then used to immobilize the thrombin inhibitor r-hirudin showed a 

remarkable decrease in platelet activity.39 CVD polymerization has also been used to 

synthesize polymeric coatings to immobilize proteins and antibodies inside microfluidic 

devices which can be further used for cell-based bioassays.33 On the other hand, a novel 

photodefinable polymer has been prepared by CVD polymerization and used for the 

fabrication of hydrogel elements.40, 41 This process has also been used to fabricate atom 

transfer radical polymerization (ATRP) initiator coatings,42 and coatings which facilitate 

solvent-less bonding.43 Furthermore, CVD has been extended for the fabrication of multi-

functional polymer coatings with two or more functional groups to enable the 

immobilization of multiple ligands.35, 44, 45    
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1.2 Objectives of this work 

This dissertation aims to develop strategies for the fabrication of biomimetic 

interfaces by integrating structural and recognition motifs, derived from biomolecules, 

with synthetic polymers. Biologically-active surfaces can be used for a variety of 

applications such as protein and oligosaccharide arrays, biomedical device coatings, and 

cell culture platforms. 

 

Based on different targeted applications, the following issues were addressed: 

• To develop strategies for spatioselective immobilization of biomolecules such 

as proteins, oligosaccharides and cell adhesive peptides.  

• To design matrices specifically tailored for long-term human embryonic stem 

cell culture. 

• To develop robust biomimetic polymer coatings applicable to implantable 

devices. 

 

The approaches described in the following chapters will broaden the tool box of 

modern surface engineering.  

 

1.3 Overview of the dissertation 

Chapter 2 describes the covalently conjugation of biotin and saccharides onto 

carbonyl-functionalized polymers via hydrazone formation.  

Chapter 3 describes the spatioselective immobilization of biomolecules on 

alkyne-derivatized vapor-based polymers via “click” chemistry. 

Chapter 4 reports a culture platform for long-term culture of human embryonic 

stem cells. 
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Chapter 5 further extends the application of zwitterionic polymer (described in 

the previous chapter) towards fully-defined culture environments. 

Chapter 6 details our work on the fabrication of nitric oxide generating coatings 

and application to cardiovascular stents. 

Chapter 7 concludes the dissertation and describes potential future directions. 
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1.4 Figures and Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 1.1: Schematic showing the chemical vapor deposition (CVD) polymerization of 
functionalized poly-p-xylylenes.26  
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CHAPTER 2 

BIOIMMOBILIZATION VIA VAPOR-BASED REACTIVE COATINGS 

CONTAINING CARBONYL GROUPS 

The material in this chapter has been adapted with minor modifications from the 

following published articles: 

 H. Nandivada, H.-Y. Chen, and J. Lahann, Vapor-based synthesis of poly[(4-

formyl-p-xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications, 

Macromolecular Rapid Communications (2005) 26, 1794.  

H. Nandivada, H-Y. Chen, Y. Elkasabi, J. Lahann, Reactive polymer coatings for 

biological applications, ACS Symposium Series no. 977, Chapter 17: Polymers for 

biomedical applications (2007). 

Y. Elkasabi, M. Yoshida, H. Nandivada, H-Y. Chen, J. Lahann, Towards 

multipotent coatings: Chemical vapor deposition and biofunctionalization of carbonyl-

substituted copolymers. Macromolecular Rapid Communications (2008) 29, 855-870. 

Y. Elkasabi, H. Nandivada, H-Y. Chen, S. Bhaskar, J. D’Arcy, L. Bondarenko, J. 

Lahann, Vapor-based synthesis of partially fluorinated poly-p-xylylenes synthesized by 

chemical vapor deposition polymerization, Chemical Vapor Deposition (2009), 15 (4-6), 

142-149. 

 

Abstract 

Several functionalized poly-p-xylyenes have been synthesized via CVD 

polymerization of substituted [2.2]paracyclophanes creating a wide range of different 
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reactive polymer coatings. This chapter describes the synthesis and characterization of an 

aldehyde-functionalized poly(p-xylylene), poly[(4-formyl-p-xylylene)-co-(p-xylylene)] 

and an ultrahydrophobic reactive perfluorinated polymer, poly(4-

heptadecafluoronononyl-p-xylylene-co-p-xylylene) via chemical vapor deposition (CVD) 

polymerization. Chemical composition of the resulting polymer thin films was confirmed 

by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy 

(XPS). Furthermore, availability and reactivity of carbonyl groups on the surface of the 

polymers was studied using hydrazone formation. 

 

2.1 Introduction 

Engineering of material surfaces has emerged as a critical challenge in the 

development of a variety of biomedical devices.1 Universally-applicable engineering 

protocols are required to design biological microenvironments for miniaturized systems, 

such as micro-total analysis systems (microTAS), microfabricated cell sorters, cell-based 

assays, microseparators for DNA, proteins, and polysaccharides.2-7 In general, covalent 

linkage of biomolecules to a surface requires suitable chemical groups on the substrate 

that support chemoselective coupling reactions. Since most substrates of interest in the 

biomedical field do not bear reactive groups of appropriate types and densities, they must 

be introduced either in a proper surface functionalization step or via deposition of 

functionalized thin-film coatings. Recently, we established a surface modification 

technique based on the chemical vapor deposition (CVD) polymerization of substituted 

[2,2]paracyclophanes, to prepare a diverse class of functionalized poly(p-xylylenes) with 

a wide variety of functional groups such as amines, esters, and alcohols, which can be 

used for covalent binding of biomolecules.8-14. This technique fulfills the need for a 

simple and broadly applicable surface modification system that creates stable platforms, 
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which present a variety of reactive functional groups. Commercially-available non-

functionalized poly-p-xylylene or parylene coatings have been used in a variety of 

applications such as biomaterials, sensors, packaging, and in MEMS devices. Chemical 

vapor deposition provides a solvent-free environment, controllable polymer composition 

and architecture, good adhesion, and the ability to tailor surface properties within a wide 

range.8, 15  

Although less common, the aldehyde group is a suitable candidate for surface 

modification because of its high specificity toward functional groups such as hydrazide, 

hydroxylamino, and thiosemicarbazide functionalities.16-18 Aldehyde groups have already 

been generated on glass, silicon, and metal surfaces using multi-step silanization process 

or plasma polymerization of aldehyde-containing monomers.19, 20 However, these 

substrate specific protocols result in poorly defined polymers or may involve the use of 

organic solvents and other chemicals which could potentially reduce the biological 

applicability of aldehyde-modified surfaces. Therefore, a substrate-independent 

procedure, such as CVD polymerization, is highly attractive for preparation of aldehyde-

functionalized surfaces.  

Surface wettability is another important attribute, which determines the suitability 

of surfaces for a range of different applications. In this respect, fluorinated polymers with 

low surface energy are particularly attractive due to their water-repellence, inertness, and 

low coefficient of friction.21, 22 Fluorinated polymer films synthesized using CVD such as 

poly(octafluoro-p-xylylene) (also known as parylene-AF4) and poly(tetrafluoro-p-

xylylene) (VT-4) have been demonstrated to exhibit excellent optical properties, low 

dielectric constants and high thermal stability.23, 24 Despite these interesting properties, 

the coatings typically lacked reactive functional groups for further surface modification.  

In order to incorporate the advantages of fluorinated polymers with the concept of 

reactive CVD coatings, fluorinated moieties can be attached to [2.2]paracyclophanes 

prior to CVD polymerization. In the past, several poly-p-xylylenes have been synthesized 
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with shorter fluorinated side chains resulting in relatively hydrophobic coatings.8, 13, 25, 26   

To further enhance this effect, we have now synthesized and CVD polymerized a 

[2.2]paracyclophane with a longer perfluorinated chain. Given the usefulness of non-

functionalized as well as other perfluorinated PPX coatings for coating applications,14, 23, 

24, 27 widening the scope of CVD polymerization by applying this technique to reactive 

partially-fluorinated [2.2]paracyclophanes may significantly advance the field of low-

surface energy coatings.  

In this chapter, CVD polymerization of 4-formyl[2,2]paracyclophane (1) to yield 

an aldehyde-functionalized poly(p-xylylene), poly[(4-formyl-p-xylylene)-co-(p-

xylylene)] (2) is described. Furthermore, ultrahydrophobic reactive perfluorinated 

polymer, poly(4-heptadecafluoronononyl-p-xylylene-co-p-xylylene) (4) was synthesized 

by CVD polymerization of 4-heptadecafluoronononyl[2.2]paracyclophane (3) which 

contained a carbonyl-functionalized derivative with an 8-carbon perfluorinated chain. 

Chemical composition of the resulting polymer thin films was confirmed by Fourier 

transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). 

Furthermore, availability and reactivity of aldehyde groups on the surface of polymer 2 

and 4 was established via specific chemical reaction with hydrazide functionalized 

ligands to yield hydrazone linkages and tethered biotin hydrazide and model sugars to 

these reactive surfaces. 

 

2.2 Methods 

Synthesis of 4-formyl[2.2]paracyclophane (1)  

Synthesis of the precursor, 4-formyl[2.2]paracyclophane (1) has been well studied 

and characterized in the literature.28 Precursor 1 was synthesized through the oxidation of 
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4-hydroxy[2.2]paracyclophane. The resulting product was characterized using 1H NMR, 
13C NMR, FTIR spectroscopy, and Mass spectroscopy. The spectra compared well with 

the values given in the literature.28 
1H NMR (400 MHz, CDCl3, TMS): δ = 2.91–3.30 (m, 7H), 4.07–4.13 (m, 1H), 

6.36–6.39 (d-d, 1H), 6.42–6.44 (d-d, 1H), 6.48–6.51 (d, 1H), 6.55–6.60 (m, 2H), 6.72–

6.74 (d, 1H), 7.01 (d, 1H), 9.94 (s, 1H). 13C NMR (75 MHz, CDCl3, TMS): δ = 33.58, 

34.94, 35.10, 35.23, 132.12, 132.33, 132.88, 133.22, 136.08, 136.30, 136.55, 138.04, 

139.40, 139.45, 140.61, 143.19, 191.90. FTIR (ATR): ν (cm-1) = 873, 908, 1147, 1182, 

1226, 1417, 1552, 1591, 1678, 1734, 2743, 2856, 2934. MS (70 eV): m/z = 36 (M+), 132 

(C8H7CHO+), 104 (C8H8
+), 103 (C8H7

+), 77 (C6H5
+). 

 

CVD Polymerization 

Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] (2) was obtained by the CVD 

polymerization of precursor 1 using a CVD installation consisting of a sublimation zone, 

pyrolysis zone, and deposition chamber. 50 mg of 1 was placed in the sublimation zone 

and substrate was fixed on the sample holder at 10 oC. Compound 1 was slowly sublimed 

at a temperature of 100–120 oC and at a reduced pressure of 0.54 mbar. Argon was used 

as carrier gas at a flow rate of 20 sccm. Under these conditions, precursor 1 was 

transported into the pyrolysis zone, which was heated at a temperature of 670 oC. Finally, 

polymer film 2 was deposited on the substrate at 10 oC. 

Starting material, 4-heptadecafluoronononyl[2.2]paracyclophane (3) was 

synthesized31 and sublimed at 80-90 oC and pyrolyzed at 620 oC. Polymer poly(4-

heptadecafluoronononyl-p-xylylene-co-p-xylylene) (4) was spontaneously formed on 

substrates kept at a temperature of 15 oC  
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Polymer Characterization 

FTIR spectroscopy was performed on a Nicolet 6700 spectrometer utilizing the 

grazing angle accessory (Smart SAGA) at a grazing angle of 85o. The elemental analysis 

of polymer 2 was conducted using XPS on a Perkin Elmer/PHI 5400 spectrometer. All 

spectra were calibrated with respect to non-functionalized aliphatic carbon with a binding 

energy of 285.0 eV. XPS data  for polymer 4 were recorded on Axis Ultra X-ray 

photoelectron spectrometer (Kratos Analyticals, UK) equipped with a monochromatized 

Al Kα X-ray source.  Lens mode was in hybrid, pass energy was set to 160.0 eV with an 

X-ray power of 150 kW, and aperture was 600 µm x 600 µm. Thickness measurements 

were recorded at a wavelength of 532 nm using an EP3-SW ellipsometry (Nanofilm 

Technologie GmbH, Germany).  Nulling experiments were performed at an angle of 

incident of 60o, and an anisotropic Cauchy model was used to model the ellipsometric 

parameters psi and delta. Surface morphology was examined by scanning electron 

microscopy (Philips XL30 ESEM, high vacuum mode). 

Polymer 2: FTIR (grazing angle of 85o): ν (cm-1) =  840, 903, 945, 1158, 1235, 

1267, 1452, 1499, 1567, 1608, 1688, 2734, 2880, 2921. XPS (referenced to hydrocarbon 

at 285.0 eV): C1s: 92.5% (theoretical: 94.4%); O1s: 7.5% (theoretical: 5.6%).  

Polymer 4: FTIR (grazing angle 85o): ν (cm-1) = 2934, 1714, 1568, 1498, 1458, 

1416, 1370, 1330, 1251, 1222, 1154, 1061, 1005, 943, 880, 811. XPS (atomic ratios): 

F1s/C1s: 86.4 (calc. 85.6%), O1s/C1s: 5.9% (calc. 5.0%). 

 

Contact angle measurements 

A microsyringe was used to place a 5 µl droplet on the substrate and picture of the 

droplet was captured using a digital camera (Canon EOS 20D) after 5 sec. An image 
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processing software (ImageJ) was used to analyze the droplet images and calculate the 

contact angle. 

 

Carbonyl-hydrazide reaction kinetics using NMR 

Carbonyl-functionalized p-xylenes were synthesized following an approach 

slightly modified from synthetic procedures previously described for the corresponding 

[2.2]paracyclophanes (PCPs).8, 29, 30 Model reactions of the carbonyl groups with 

hexanoic hydrazide were performed in an NMR tube and a sequence of 1H NMR (Varian 

Inova, 400 MHz) spectra was collected in real-time. Prior to starting the reaction, a base 
1H NMR spectrum was taken as a reference. A slight excess of hexanoic hydrazide (1.1 

equivalents) was dissolved in deuterated ethyl alcohol (Sigma Aldrich), and 

functionalized p-xylene was added. Next, acetic acid was added to initiate the reaction, 

and data acquisition was started immediately after the sample was placed in the NMR 

spectrometer. NMR spectra were acquired every 7 min for 2 h, and a final measurement 

was taken after 12 h. 

 

Immobilization of biotinamidocaproyl hydrazide (5) 

A polydimethylsiloxane (PDMS) stamp was created, as previously described in 

literature.9 The PDMS stamp was treated for 30 min using a UV-ozone cleaner (Model 

no. 342, Jelight company Inc.) to render its surface hydrophilic. The oxidized stamp was 

then inked with a 10 mM solution of biotinamidocaproyl hydrazide (Pierce 

Biotechnology, IL) (5) in ethanol at a pH of 5–6 and stamped onto a surface coated with 

polymer 2. The stamp was kept in contact with the substrate for 2 min and then patterned 

substrate was incubated for 2 h with rhodamine-labeled streptavidin (Pierce 
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Biotechnology, IL) (6) in an aqueous phosphate buffer PBS (pH 7.4, Sigma, MO) 

consisting of 0.1% (w/v) bovine serum albumin (Sigma, MO) and 0.02% (v/v) Tween 20 

(Sigma, MO). Substrate was washed three times with the incubating buffer and rinsed 

with DI-water. Micropatterns on the substrate were visualized using a Nikon TE200 

fluorescence microscope and confocal laser scanning microscope (CLSM) (Olympus 

FluoView 500, USA). 

Patterning experiments with polymer 2: PDMS stamp with  diamond-shaped 

indentations (50 µm diagonal) with a center-center spacing of 75 µm. 

Patterning experiments with polymer 4: PDMS stamp with square-shaped 

indentations (400 µm on a side) with 50 µm gaps between square edges.  

 

Particle patterning 

After incubation with 5, micropatterned surfaces were incubated with biotinylated 

biphasic PLGA microparticles for 2 h and washed extensively with PBS (pH 7.4). 

Particle-patterned surfaces were visualized using confocal laser scanning microscope 

(CLSM) (Olympus FluoView 500, USA). 

 

Immobilization of 2-α-mannobiose (8) 

The PDMS stamp used for microcontact printing consisted of alternating lines of 

15 or 20 µm in width with a spacing of 30 µm. PDMS stamp was oxidized using a UV-

ozone cleaner for 30 min and then inked with a 100 mM solution of adipic acid 

dihydrazide (7) in PBS consisting of 0.1% Tween 20 at a pH of 5–6. The stamp was kept 

in conformal contact with the substrate for 2 min and the substrate was washed repeatedly 

with PBS. Patterned substrate was then incubated for 3 h in a 10 mM solution of 2-α-
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mannobiose (Sigma, MO) (8) in DMF at 60 oC. After washing the substrate with PBS, 

patterned substrate was exposed, for 2 h, to a 100 mg/ml solution of rhodamine-

conjugated concanavalin-A (Molecular Probes, OR) (9) in PBS containing 1 mM CaCl2 

and 1 mM MnCl2. After lectin incubation, the surface was washed with PBS. For 

fluorescence microscopy, samples were examined with a Nikon TE200 microscope. 

 

2.3 Results and discussion 

Precursor synthesis and characterization  

Precursor 4-formyl[2,2]paracyclophane (1) can be synthesized either using the 

two-step synthesis from [2.2]paracyclophane or via oxidation of 4-

hydroxy[2,2]paracyclophane.13, 28 Here, 1 was prepared in high yields via the latter route. 

Data from mass spectroscopy compared well with 1 prepared according to the 

[2.2]paracyclophane route.  

 

Synthesis and characterization of polymer 2  

The resulting dimer 1 was CVD polymerized to yield poly[(4-formyl-p-xylylene)-

co-(p-xylylene)] (2). For CVD polymerization (Figure 2.1), 1 was sublimed in the 

sublimation chamber under a reduced pressure of 0.54 mbar at a temperature of 100–120 
oC. Vaporized dimer 1 was then transported by argon gas into the pyrolysis zone, at a 

temperature of 670 oC, where the methylene bridges were homolytically cleaved and 

quinodimethanes were formed. These monomers were then adsorbed onto the substrate at 

a temperature of 10 oC. Under these conditions, monomers underwent spontaneous 

polymerization on the substrate. Elemental composition of polymer 2 was determined 



21 

using XPS (Table 2.1). From XPS survey spectrum and high-resolution spectra, a value 

of 92.5% for carbon and 7.5% for oxygen was found, compared to the theoretical 

composition of 94.4% for carbon and 5.6% for oxygen. Difference between the 

experimental and theoretical composition can be attributed to contamination during 

sample handling. High-resolution C1s spectrum of polymer 2 (Figure 2.2) showed that 

ratio between the α-carbon of formyl group (C–C=O) and arbonyl carbon (C=O) is 0.88, 

compared to calculated value of 1. Furthermore, signal at 291.2 eV indicated ππ* 

transitions which are a characteristic feature of aromatic polymers and have been 

previously reported for poly(p-xylylenes).8 Symmetric O1s signal at 533.2 eV can be 

attributed to a single energy state for all the oxygen atoms in the polymer. Thus, XPS 

data confirmed the chemical structure of polymer 2 shown in Scheme 1. Strong carbonyl 

stretch at 1688 cm-1 in the FTIR spectrum also confirmed the presence of aldehyde group 

in polymer 2 after CVD polymerization. Further evidence of aldehyde group was 

provided by the characteristic band for aldehyde C–H stretching vibrations at 2734 cm-1.  

Polymer 2 exhibited good adhesion to a wide variety of substrates such as gold, 

silica, glass, and PDMS. Adhesion of polymer 2 was analyzed by pressing scotch tape 

onto a polymer-coated substrate and then peeling it off. Visual examination showed 

intactness of the film and FTIR spectrum confirmed presence of the polymer film (Figure 

2.3). Polymer 2 was insoluble in aqueous solutions as well as in a variety of standard 

organic solvents such as ethanol, acetone, methanol, dichloromethane, chloroform, 

dimethylformamide, and toluene. Insolubility in organic solvents distinguishes these 

polymer films from paracyclophane as well as oligomers and low-molecular weight 

polymers and suggests that high molecular-weight polymers are formed under conditions 

of CVD polymerization described above.  
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Synthesis and characterization of polymer 4  

Polymer coating 4 was synthesized by CVD polymerization of precursor under 

conditions typically used for poly-p-xylylenes (Figure 2.1). Owing to a long fluorinated 

side chain, precursor 3 possessed a higher molecular weight compared to other 

functionalized [2.2]paracyclophanes. Therefore, a sublimation temperature between 90-

100 oC and lower optimum pyrolysis temperature of 630 oC were used. Characterization 

of polymer 4 using FTIR spectroscopy showed a strong peak at 1713 cm-1 indicating the 

carbonyl (C=O) stretch confirming presence of the functional group after CVD 

polymerization (Figure 2.4). Also, peaks at 1329, 1251, 1222, and 1154 cm-1 signified C-

F vibrations. Experimental atomic ratios obtained from XPS were in good agreement 

with theoretical calculations (Table 2.2). Figure 2.5 shows survey and high-resolution C1s 

XPS spectra for polymer 4. In high-resolution C1s spectrum, binding energy of 288.8 eV 

indicated the carbonyl carbon (C=O). Furthermore, ratio of C-F3 to C-F2 carbons equals 

0.143, which agreed well with theoretical value of 0.149, indicating preservation of 

fluorinated ketone during CVD. Overall, high-resolution XPS spectrum reaffirmed the 

FTIR results. 

Contact angle measurements of polymer 4 provided an insight into degree of 

hydrophobicity. Polymer 4 was compared to non-functionalized PPX and three 

fluorinated poly-p-xylylenes namely, poly(4,12-dibromo-1,1,9,9-tetrafluoro-p-xylylene) 

(TFPPX-Br2) , poly(4-trifluoroacetyl-p-xylylene) (PPX-COCF3) and poly(4-

pentafluoropropionyl-p-xylylene) (PPX-COC2F5).25, 31 Differences in position of 

functional group, functionalities and chain lengths influenced the contact angles (Figure 

2.6). Greater degree of fluorination increased the contact angle. 

  Polymer 4 was deposited on a variety of different substrates such as gold, 

silicon, glass, and PDMS on which it showed good adhesion. To ascertain the 

adhesiveness of the polymer film, a piece of scotch tape was pressed onto the film and 
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peeled off.30 Robustness of the film was examined visually (Figure 2.7) and FTIR was 

used for further confirmation. Moreover, polymer 4 was insoluble in aqueous solutions 

and several organic solvents such as ethanol, acetone, methanol, dichloromethane, 

chloroform, dimethylformamide, and toluene. This is an important property which 

differentiates the polymer from its precursor as well as other oligomers and low 

molecular weight polymers, thus indicating formation of a high-molecular weight 

polymer. 

  

Study of carbonyl group reactivity  

It is necessary to understand the relative chemical reactivity of different carbonyl 

groups towards target molecules (hydrazides). Ability to support chemical reactions on 

the surface of a substrate or a device is highly desirable for functionalized coatings. 

Availability and reactivity of carbonyl groups were studied using hydrazone formation. 

Hydrazones are formed via the conversion of aldehydes with hydrazines or hydrazides 

and is a widely used immobilization strategy.18 In this context, reaction kinetics of 

different carbonyl functionalities was analyzed using in-situ 1H NMR spectroscopy. 

Rather than reacting functionalized PCP monomers, corresponding functionalized p-

xylenes were synthesized, because constrained ring system of the PCPs significantly 

alters their chemical reactivity and disqualifies them as model reactants for PPXs. 

Functionalized p-xylenes may be considered as the smallest repetition unit of the polymer 

coatings and, therefore, more closely resembles the PPX chain. By integrating two 

specific peaks on the NMR spectra, one characteristic of the reactants (–CH) and the 

other one indicating the product (–C–N–NH), percentage yield of the product was 

evaluated. Percentage yields were plotted as a function of time for the different reactions 

with functionalized p-xylene derivatives. Figure 2.8 shows kinetic curves fitted to the 
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experimental data. For most p-xylenes, NMR peaks characteristic of the product were 

evident within 15–20 min of initiating the reaction. NMR spectra for benzoyl-

functionalized p-xylene showed no signals characteristic of the product over reaction 

durations as long as 15 h. Fluorinated carbonyl group was more reactive than non-

fluorinated groups. Of the functional groups, COCF3 was most reactive, followed by 

COC2F5, COC2H5, and COC6H5 in order of decreasing reactivity. Benzoyl (COC6H5) 

group yielded no detectable product within the evaluated reaction times. 

 

Biotin immobilization via hydrazone formation 

Using microcontact printing, the condensation reaction between aldehyde groups 

on the surface and a biotinyl hydrazide was performed at pH 5–6. For microcontact 

printing, biotinamidocaproyl hydrazide (5, structure shown in Figure 2.9) was inked onto 

an oxidized PDMS stamp and stamped onto the aldehyde substrate creating a pattern. We 

chose compound 5 as the prototype ligand owing to strong non-covalent interaction 

between biotin and streptavidin and streptavidin’s ability to be used as a universal 

platform for further binding of biotinylated biomolecules.9 After immobilization of 

compound 5, biotin-binding was examined by utilizing rhodamine-labeled streptavidin 

(6) as the binding partner. Rhodamine-labeled streptavidin specifically bound to biotin-

patterned surface (Figure 2.9) creating homogeneous and reproducible patterns on the 

reactive coating, thus showing that aldehyde groups on the surface are reactive and can 

be used as anchoring sites.  

Ability to pattern surface of low surface energy coatings is an important 

requirement for surface engineering. Presence of a reactive keto group in the polymer 

provides an opportunity for surface modification, by using the reaction between keto 

group and hydrazide-containing ligands to form hydrazones.30 Surface reaction between 
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polymer 4 and biotinyl hydrazide 5 was conducted using microcontact printing (Figure 

2.10a). Biotin-patterned substrate was then visualized by incubating the substrate with 

rhodamine-labeled streptavidin (6) (Figure 2.10 b,c). Fluorescence was observed 

predominantly in the regions where the PDMS stamp was pressed onto the coating. This 

demonstrates availability of keto groups on the polymer surface towards surface reaction 

with hydrazide functionalized moieties.  

 

Surface immobilization of saccharides 

Specificity of hydrazides and hydrazines toward aldehydes and ketones also 

makes them superb binding agents for immobilization of saccharides.18 Carbonyl-

containing surfaces can be modified using dihydrazide homobifunctional linkers to form 

hydrazone bonds on one side and yielding alkyl hydrazide spacers on the other side, 

suitable for subsequent reaction with formyl-containing groups available in saccharides.18 

Adipic acid dihydrazide (7) was chosen as the linker due to its intermediate-length spacer 

arm, which leads to accessible reactive sites for further reaction. Using microcontact 

printing, substrate coated with polymer 2 was patterned with linker 7, creating hydrazide-

activated surfaces suitable for targeting saccharides (Figure 2.11). Hydrazide-modified 

polymer surface was further reacted with a disaccharide, 2-α-mannobiose (8). One 

mannose group reacted with hydrazide while leaving the other saccharide group free. 

Saccharide binding was investigated by applying a solution of rhodamine-labeled 

concanavalin A (9), a mannose-specific lectin, that recognizes free mannose units.32 

Patterned substrates were visualized using fluorescence microscopy (Figure 2.11). 

Rhodamine-labeled lectin specifically bound to disaccharide which was immobilized 

onto a substrate coated with polymer 2 and patterned with lines of linker 7. 
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Combination of superhydrophobicity and reactivity 

Superhydrophobicity of a surface is often created by the combination of low 

surface energy materials with a complex hierarchical surface architecture.33 

Superhydrophobic surfaces are described as surfaces with high contact angles (>150o) 

and low contact angle hysteresis meaning water droplets easily roll off the surface.34  For 

instance, superhydrophobicity of natural surfaces such as plant leaves is of great interest 

for studying the self-cleaning behavior.34-36 Specifically, lotus leaves exhibit a 

phenomena called “lotus effect” where water droplets are almost spherical and roll off 

easily. Lotus leaves are covered with a waxy substance which has a contact angle of 103o 

by itself. The surface morphology of the leaves comprises of complicated microstructures 

which are further covered by nanostructures. Such a hierarchical structure traps air 

pockets inside imparting the surfaces the superhydrophobicity.37  

Typically, superhydrophobic surfaces do not possess any reactivity and therefore 

cannot be used for further surface modifications. If perfluorinated coating 4 is applied to 

a substrate with rough topography, properties of a low surface energy reactive polymer 

coating will be enhanced and a reactive/superhydrophobic coating will be achieved. 

Reactive polymer coating 4 was deposited onto a poly(acrylamide) surface displaying a 

rough morphology, which was fabricated using electrohydrodynamic jetting.38, 39  A layer 

of interconnected poly(acrylamide) particles was deposited onto a solid substrate using 

electrohydrodynamic jetting and then a uniform film of polymer 4 was coated onto these 

particles. Scanning electron micrographs (SEM) of the surface (with and without the 

CVD polymer layer) revealed that surface morphology consisted of a random distribution 

of particles with a diameter of 1-2 µm (Figures 2.12). In the past, electrohydrodynamic 

jetting has been used to enhance the surface roughness by creating a network of 

microparticles and nanofibers on flat substrates.40, 41 Contact angle measurements showed 

that this combined film rendered a superhydrophobic character to the solid surface with a 
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contact angle of > 153o (Inset of figure 2.12b). This angle is much higher than contact 

angle of hydrophilic poly(acrylamide) surface (~15o Inset of figure 2.12a) or a smooth 

surface coated with polymer film (108.7o ± 2.3). Moreover, water droplets freely rolled 

off the surface suggesting that surface has a very low hysteresis, one of the key 

characteristics of superhydrophobic surfaces. Finally, to demonstrate reactivity of the 

polymer, surface was reacted with compound 5 (as previously described) and incubated 

with Alexa Fluor 633 Streptavidin. Analysis with confocal scanning laser microscopy 

(CLSM) confirmed the reactivity of this superhydrophobic surface towards hydrazide-

containing ligands (Figure 2.12c).    

Interfacial roughness of the surface decreases the area of contact which in turn 

decreases the adhesive forces.42 Superhydrophobic surfaces also greatly reduce protein 

adhesion due to water repellency of the surface which prevents protein solution 

penetration.42 Superhydrophobic surfaces have also demonstrated anti cell adhesive 

properties which can be useful for clinical applications.   

 

Particle patterning  

In addition, interaction between streptavidin-patterned surfaces and biphasic 

PLGA particles, biotinylated on one compartment, was analyzed. Biotin and protein 

streptavidin interaction was used to create platforms for self-assembly due to widespread 

availability of biotin-functionalized biomolecules and high binding affinity between 

biotin and streptavidin (Ka~ 1013 M-1). Furthermore, streptavidin is a tetrameric protein 

which can bind to four biotin molecules. After incubation of biotin-patterned surfaces 

with streptavidin, surfaces were incubated with biotinylated PLGA particles synthesized 

using electrohydrodynamic co-jetting process (Figure 2.13a). Analysis with CLSM 

confirmed the self-assembly of biotinylated particles onto streptavidin-patterned surfaces 
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(Figure 2.13b).  High resolution confocal images showed an enhanced red signal 

indicating the specific orientation of the biphasic microparticles (Figure 2.13c).  

 

2.4 Conclusions 

In this chapter, the synthesis and characterization of a functionalized poly(p-

xylylene), poly[(4-formyl-p-xylylene)- co-(p-xylylene)], using CVD polymerization was 

described. Usefulness of these polymer coatings for biomimetic surface modifications 

was also demonstrated. The underlying aldehyde-hydrazide coupling chemistry is an 

attractive bioconjugation approach, because it benefits from (1) rapid reaction kinetics 

and (2) relative inactivity of both the hydrazide and the carbonyl functionalities toward 

other biomolecules or biological functionalities, such as alcohols, acids, and thiols.17, 18 

The resulting surfaces may find potential applications for the surface engineering of 

biomaterials and microfluidic devices. 

Furthermore, fluorinated [2.2]paracyclophane precursors with aromatic 

functionalization were polymerized to synthesize poly(4-heptadecafluoronononyl-p-

xylylene-co-p-xylylene). Deposition of the polymer using CVD yielded coatings that 

were stable in a range of different organic solvents and aqueous solutions. Polymer was 

also shown to be reactive towards hydrazide-functionalized biotin, which then linked 

readily with fluorescently-labeled streptavidin. Finally, polymer coating was applied 

towards fabrication of superhydrophobic reactive coatings. This class of functionalized, 

fluorinated poly-p-xylylenes could be of great interest as low energy reactive vapor-based 

coatings for applications such as biomedical, automotive industries, anti-fouling coatings.   
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2.5 Figures and Tables 

 

Figure 2.1: CVD polymerization of carbonyl-functionalized [2.2]paracyclophanes (1 and 
3) yields the corresponding poly-p-xylylenes (2 and 4) respectively. Step I is the 
pyrolysis step and step II is the polymer deposition step. 
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Figure 2.2: High-resolution C1s and O1s (inset) XPS spectra of aldehyde-functionalized 
polymer 2.
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Figure 2.3: Testing the adhesion of polymer 2. Polymer surface was first marked using a 
sharp object and then scotch tape was pressed onto the surface. Surface was observed 
before and after peeling off the tape. (A) Optical micrograph of the polymer surface 
before testing. (B) Optical micrograph of the film after testing showing intactness of the 
film. Corresponding IR spectra are also shown. 
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Figure 2.4: FTIR of polymer 4 deposited on a gold surface. 
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Figure 2.5: High resolution XPS of polymer 4, inset shows the high-resolution C1s 
spectrum 
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Figure 2.6: Comparing contact angles of non-functionalized PPX, TFPPX-Br2, PPX-
COCF3, PPX-COC2F5 and polymer 4. 
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Figure 2.7: Testing the adhesion of polymer 4 using scotch-tape test. Optical micrographs 
before and after testing are shown on the left and right panels, respectively. IR spectra 
remained identical before and after testing 
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Figure 2.8: (a) Protocol used to determine reaction kinetics of different carbonyl-PPXs, 
using functionalized p-xylenes and hexanoic hydrazide as test molecules (b) Percentage 
yield of carbonyl reactions with respect to time, based upon 1H NMR analysis of 
characteristic reactant and product peaks. 
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Figure 2.9: (a) Schematic description of the surface modification procedure used to 
modify polymer 2; (b) a typical fluorescence micrograph of the surface showing 
rhodamine-labeled streptavidin (6) bound to ligand 5, which was patterned onto polymer 
2. 
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Figure 2.10: (a) Schematic of the microcontact printing process used to verify the 
reactivity of polymer 4 towards hydrazides. (b) Fluorescence micrographs of TRITC-
labeled streptavidin (6) immobilized onto biotin hydrazide (5) patterned substrates.
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Figure 2.11: (a) Schematic depiction of the immobilization of oligosaccharides on 
polymer 2; (b) corresponding fluorescence micrograph of the surface with rhodamine-
labeled concanavalin-A (9) bound to 8 which is covalently linked to surfaces patterned 
with adipic acid dihydrazide linker 7; line-profile with line widths of 20 mm (C-D, G-H) 
and 15 mm(A-B, E-F); (c) reaction between hydrazide containing linker 7 and 
disaccharide 8.
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(a)         (b)              (c) 

 
 
Figure 2.12: Scanning electron micrographs of the surface (a) before CVD coating (b) 
after CVD coating of polymer 4. Insets show the corresponding water contact angles. (c) 
Confocal image showing binding of fluorescently-labeled streptavidin to biotinylated, 
micropatterned surfaces.
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Figure 2.13: (a) Self-assembly of biotinylated biphasic microparticles on streptavidin-
patterned polymer 4. Biotinylated compartment contained green fluorescent dye and the 
other non-biotinylated compartment contained the green dye. (b) Confocal micrographs 
showing particles self-assembled onto micropatterned surfaces. (c) High resolution 
confocal images showing an enhanced red signal indicating the specific orientation of the 
biphasic microparticles.
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Table 2.1: Chemical composition of polymer 2 determined using XPS  

 

 

 C-C C-C=O C=O π-π* 
BE (eV) 285.19 286.78 287.86 291.15 

Position (in Figure 2.2) 1 2 3 4 
Calculated (%) 88.2 5.9 5.9 - 

Experimental (%) 87.7 4.4 5.0 2.9 
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Table 2.2: High resolution C1s XPS data for polymer 4. 

 
 Polymer 4 
 BE (eV) Expt. (%) Calc. (%) 

C-C 285.3 42.6 49.63 

C-Br -- -- -- 

C-C=O 286.9 3.7 5.04 

C=O 288.8 5.7 5.04 

C-F -- -- -- 

ππ* 291.1 4.1 -- 

CF2 292 38.2 35.25 

CF3 294.2 5.7 5.04 
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CHAPTER 3 

SPATIOSELECTIVE IMMOBILIZATION OF BIOMOLECULES ONTO 

VAPOR-BASED POLYMERS VIA CLICK CHEMISTRY 

The material in this chapter has been adapted with minor modifications from the 

following published articles: 

 H. Nandivada, H.-Y. Chen, L. Bondarenko, J. Lahann, Reactive polymer coatings 

that "click", Angewandte Chemie International Edition (2006) 45, 20, 3360-3363.  

H. Nandivada, X. Jiang, J. Lahann, Click chemistry: versatility and control in the 

hands of materials scientists, Advanced Materials (2007) 19, 2197-2208. 

H. Nandivada, J. Lahann, Copper-catalyzed “click” chemistry for surface 

engineering; Chapter 12 in “Click Chemistry for Biotechnology and Materials Science”; 

J. Lahann, Ed.; Wiley NY (in press). 

 

Abstract 

Fabrication of biomimetic interfaces through covalent immobilization of 

biomolecules is a key challenge faced by materials scientists today. In this respect, 

copper-catalyzed alkyne-azide “click” chemistry has proved to be an invaluable tool, due 

to benign reaction conditions and functional group tolerance. Numerous strategies have 

been employed to incorporate the alkyne and azide functionalities onto the surface. 

Chemical vapor deposition polymerization is an attractive option which has been used to 

fabricate a wide range of chemical signatures for further surface modifications. 
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In this chapter, the use of copper-catalyzed “click” chemistry is discussed in the 

context of surface engineering. The synthesis and characterization of a vapor-based 

alkyne-functionalized polymer coating, poly(4-ethynyl-p-xylylene-co-p-xylylene) is 

described. Use of alkyne-functionalized polymer coating for spatially-controlled 

conjugation of azide-derivatized biomolecules such as biotin, saccharides and cell-

adhesive peptides via “click” reaction is demonstrated. Furthermore, a surface capable of 

spatially directing endothelial cell attachment was fabricated using micropatterned 

peptide surfaces utilizing the “click” surface chemistry. 

 

3.1 Introduction 

Surface modification or functionalization via covalent coupling is one of the 

many strategies being explored by materials scientists. Surface functionalization reaction 

involves a solid surface interacting with the reactant in liquid or vapor phase and may 

involve complicated steric and kinetic effects. At the same time, most of the coupling 

reactions available for surface chemistry are limited by incomplete conversions, non-

specificity, harsh reaction conditions and side reactions. In this respect, copper-catalyzed 

Huisgen’s 1,3-dipolar cycloaddition between terminal alkyne and azide groups has 

proven to be an excellent choice due to its superior properties such as mild reaction 

conditions, high conversions, selectivity and reproducibility (Figure 3.1).1-6 This reaction 

is compatible with a wide range of functional groups except for groups which disrupt the 

catalytic activity of copper.7 The alkyne-azide “click” reaction demonstrates high 

reactivity in heterogeneous reaction systems, so it is useful for surface reactions. This 

also implies that solvent and catalyst system utilized during “click” reaction is quite 

important.8  
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“Click” active vapor-based polymers 

Surface reaction on thin polymer films requires robust attachment of polymer 

films to the substrate and availability of reactive anchor groups for surface reactions. 

Chemical vapor deposition (CVD) polymerization has been used to fabricate 

functionalized coatings with good adhesion towards a wide variety of substrates.9  This 

vapor-based process provides a solvent-free environment, good film adhesion and 

generates conformal coatings. The CVD process has been extended to create alkyne-

derivatized polymer coatings. Im et al. synthesized an alkyne-functionalized polymer 

coating using an initiated-CVD (iCVD) process.10 Using a single step approach, a 

commercially-available monomer, propargyl methacrylate, was polymerized to form 

poly(propargyl methacrylate). This polymer was also patterned using e-beam lithography 

to form nanometer patterns and the reactivity of the polymer was demonstrated by “click” 

reaction with azide-functionalized biotin.   

 

Spatially-controlled “click” chemistry  

The versatile “click” reaction is also compatible with microcontact printing which 

is a soft-lithographic process frequently employed to create micro or nanoscale patterns 

by depositing molecules on surfaces using a patterned stamp. More recently, Huisgen’s 

click chemistry by microcontact printing was demonstrated on azide-functionalized 

SAMs.11 Reinhoudt and coworkers first treated bromo-terminated SAMs with NaN3 

creating an azide-terminated monolayer. Then octadecyne was printed onto the 

monolayer using a PDMS stamp. The azide-functionalized surface was also reacted with 

fluorescently-labeled alkynes. This microcontact printing approach was conducted in the 

absence of the copper catalyst, because high local concentration of reagents in the 

vicinity of the stamp and the monolayer were believed to be sufficient for the completion 
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of the reaction. The authors suggest that one of the advantages of this strategy is the 

elimination of the copper catalysts, because copper in higher concentrations is typically 

considered cytotoxic and separation of the catalyst after click reaction can be 

cumbersome. This catalyst-free microcontact printing technique was further extended to 

pattern alkyne-containing oligonucleotides onto azide-modified glass slides.12, 13 To 

create surface patterns, a layer of positively-charged dendrimers was first inked onto the 

PDMS stamp which promoted the binding of single-stranded DNA (ss-DNA) “ink” to the 

stamp surface. This stamp was then brought into contact with the azido-substrate without 

the presence of the catalyst and “click” reaction was initiated. Furthermore, covalently 

immobilized oligonucleotides were hybridized with their complementary strands. 

Alternatively, the strain-induced 1,3-dipolar cycloaddition of cyclic alkynes with azides 

has been recognized as a possibility to eliminate the copper catalyst and to potentially 

develop more biologically benign materials.14 

 

“Click” chemistry for bioimmobilization 

Immobilization of biomolecules on surfaces is of tremendous interest for a wide 

variety of applications such as biosensors, microarrays, bioactive implant surfaces and 

tissue engineering. Preservation of the biomolecular activity after the reaction is a key 

attribute for a successful bioconjugation reaction. This typically requires mild reaction 

conditions and absence of cross-reactivity between the functional groups present. By 

definition, “click” chemistry represents a collection of reactions with mild operating 

conditions, high yields and non-reactivity towards other functional groups. Due to their 

tolerance to a wide range of unprotected chemical groups, click reactions have been 

widely used to immobilize sugars, proteins, DNA, and even cells. Therefore, in this 

respect, alkyne-azide “click” reaction is attracting a lot of attention from materials and 
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surface scientists for bioconjugation, specifically due to the inactivity of alkyne and azide 

groups towards other functional groups present in biomolecules. Conjugation of 

molecules like carbohydrates, oligonucleotide probes, proteins and peptide sequences has 

been successfully demonstrated using “click” reaction on surfaces and will be discussed 

in further detail.  

Several reports have described the immobilization of biotin on flat surfaces via 

“click” chemistry and have applied this chemistry to the highly specific albeit non-

covalent biotin-streptavidin binding.15, 16 For example, Lee et al.  used “click” chemistry 

to functionalize polymeric nanobrushes with azide end-groups.16 Ethylene glycol based 

polymer films were synthesized using surface-initiated ATRP onto initiator-containing 

SAMs. Subsequently the bromide-presenting polymer was reacted with sodium azide to 

introduce azide groups on the surface, which were then reacted with alkyne-containing 

biotin. This ethylene glycol based polymer film demonstrated non-biofouling 

characteristics combined with specific reactivity towards alkyne-functionalized ligands.  

Glycan arrays provide an opportunity to study the complex protein-sugar 

interactions and enhance our understanding of the role of glycans present on cell surfaces. 
17 Microarrays also allow the screening of multiple ligands simultaneously with minimal 

use of material. Copper-catalyzed “click” chemistry presents a robust strategy to 

covalently link saccharide molecules to a flat surface, thus mimicking the cell surface 

expressing these glycans.18 Sugar-modified SAMs or glyco-SAMs have been used as 

glycan arrays because they provide better control over the density and orientation of the 

saccharide molecules and can be characterized after immobilization via surface analysis 

techniques. For example, Zhang et al.  employed alkyne-azide “click” reactions to 

immobilize azide-functionalized sugars (mannose, lactose, α-galactose) on to alkyne-

containing SAMs.19 This method is much simpler than the direct assembly of pre-

synthesized thiol-terminated sugar molecules, which require complex synthesis 

procedures. The unique platform displaying sugar-functionalized SAMs was further used 
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to study binding interactions between sugars and lectins by employing electrochemical 

characterization and surface plasmon resonance spectroscopy. This approach represents a 

label-free technique to elucidate real-time structure-activity information. Similarly, 

Kleinart et al. extended this study by synthesizing a series of functionalized thiol 

molecules and comparing the assembly of pre-formed glyco molecules with the 

previously described “click on SAM” approach.20 Miura et al. studied the interactions 

between pathogenic protein Alzheimer amyloid-β (Aβ) and monosaccharide displaying 

silane-based monolayers which were created using Huisgen’s 1,3-cycloaddition.21 This 

study enabled the estimation of the core saccharide interacting structure of the Aβ 

protein.  

“Click” conjugation has also been used to reversibly capture azide-modified 

saccharides on an alkyne-functionalized microtiter plate.22, 23 A disulfide bridge was 

included in the linker to enable the cleavage and release of the captured oligosaccharide 

molecule for further characterization utilizing a reductive treatment with a thiol 

(dithiothreitol, DTT). Using this technique, a breast cancer antigen, Globo-H, was 

captured and analyzed after cleavage; thus demonstrating the utility of this method for 

biosensor applications.23    

Copper-catalyzed Huisgen’s 1,3-dipolar cycloaddition has also been used in 

conjunction with another reaction from the “click” family, namely the Diels-Alder 

reaction, for the immobilization of carbohydrates on solid surfaces.15 Sun et al. 

synthesized a short heterobifunctional PEG linker with alkyne and cyclodiene terminal 

groups on either side. This linker was conjugated to maleimidocaproyl-functionalized 

substrates via Diels Alder reaction leaving the alkyne-terminal end for subsequent 

alkyne-azide “click” reaction with azide-functionalized ligands. This “dual-click” 

approach was used for the successful immobilization of biomolecules such as biotin, 

lactose and r-thrombomodulin. Success of the immobilization step was further confirmed 

using antibody-binding via surface plasmon resonance (SPR) spectroscopy.  



53 

Immobilization of saccharide molecules has also been achieved via microcontact 

printing of alkyne-functionalized carbohydrates onto azido SAMs.12 Michel and Ravoo 

microcontact printed carbohydrate (mannose, glucose, galactose, and maltose) conjugates 

with alkyne functionality and used corresponding lectins to probe the sugars. Arrays 

provide important information regarding structure-function relationships, which may 

ultimately lead to better understanding of the immune responses. 

Protein microarrays can be used to study protein-protein and protein-ligand 

interactions. Immobilized proteins are more robust than non-covalently bound proteins 

and also an enhanced sensitivity has been achieved.24 However it is challenging to 

maintain the activity and conformation of the proteins during immobilization reactions. 

Some research groups have demonstrated the immobilization of proteins using copper-

catalyzed “click” chemistry.25, 26 Azide- or alkyne- modified proteins were covalently 

bound to alkynated or azidated glass slides via click chemistry.26 Interestingly, it was 

observed that immobilization of the alkyne-functionalized protein on to an azide-

presenting surface was more efficient than the other way around. This may indicate that 

alkyne groups were coupling with the copper ions during the reaction, thereby reducing 

the catalytic effects.  

A fascinating approach for the fabrication of a density gradient of cell-adhesion 

peptides by “clicking” RGD azide-peptides onto an alkyne-gradient substrate has been 

reported by Gallant et al.27 Briefly, variable UV-oxidation followed by a bifunctional 

linker was used to synthesize an alkyne-functionalized gradient. Subsequent reaction with 

a RGD azide-modified peptide resulted in a gradient of peptides, which was able to 

modulate smooth muscle cell attachment. The density of the immobilized moiety depends 

on the density of the functional group and the efficiency of the coupling chemistry. 

This chapter focuses on the applicability of CVD polymerization for synthesizing 

alkyne-containing polymer coatings and subsequent spatially-directed Huisgen 1,3-

dipolar cycloaddition on reactive polymer coating. This chapter also highlights the 
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utilization of “click” reaction for surface reactions with a specific focus on conjugation of 

biological ligands such as saccharides, proteins and cell-adhesion peptide sequences. 

 

3.2 Methods 

CVD polymerization and surface characterization 

Precursors, di-ethynyl[2,2]paracyclophane (2) and 4-ethynyl[2,2]paracyclophane 

(3) were synthesized as previously described.30 Di-ethynyl[2,2]paracyclophane (2) (50 

mg) was sublimed at 90-110 oC and carried into the pyrolysis chamber by argon at a flow 

rate of 20 sccm. A pressure of 0.5 mbar was used. Depending on the pyrolysis 

temperature, the resulting polymer was different. Polymer 4 was deposited on the 

substrate at 15 oC.  

4-ethynyl[2,2]paracyclophane (3) (50 mg) was sublimed at 90-110 oC and a 

reduced pressure of 0.5 mbar. Argon, at a flow rate of 20 sccm, was used as the carrier 

gas, which carried the precursors into the pyrolysis chamber at a temperature of 680 oC. 

Polymer poly(4-ethynyl-p-xylylene-co-p-xylylene) (5) was deposited on the substrate at 

15 oC kept in the deposition chamber.  

Fourier transform infrared spectroscopy (FTIR) was performed on a Nicolet 6700 

spectrometer. X-ray photoelectron spectroscopy (XPS) was conducted using an Axis 

Ultra X-ray photoelectron spectrometer (Kratos Analyticals, UK) equipped with a 

monochromatized Al Kα X-ray source.  

Polymer 4: Case 1: Pyrolysis temperature of 650 oC. FTIR (grazing angle of 85°):  

ν (cm-1) = 837, 1039, 1150, 1439, 1505, 1624, 1694, 1910, 2916, 3010, 3048. XPS 

(referenced to hydrocarbon at 285.0 eV): C (96.9%), O (3.1%); Case 2: Pyrolysis 

temperature of 550 oC. FTIR (grazing angle of 85°): ν (cm-1) = 839.35, 877, 922, 1036, 
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1261, 1439, 1623, 1913, 2100, 2848, 2921, 3013, 3052, 3285. XPS (referenced to 

hydrocarbon at 285.0 eV): C (93.7%); O (6.3%).  

Polymer 5: FTIR (grazing angle of 85°):  ν (cm-1) =  833, 894, 1158, 1251, 1411, 

1454, 1493, 1513, 1605, 1699, 1900, 2102, 2859, 2926, 3015, 3286. XPS (referenced to 

hydrocarbon at 285.0 eV): C (98.7%), O (1.3%); XPS signals: 285.6 eV (C1s); 291.7 eV 

(π-π*). 

Height analysis data were recorded using an EP3-SW imaging ellipsometer 

(Nanofilm AG, Germany) at a wavelength of 532 nm. Both, nulling (four zones) and 

mapping experiments were performed at an angle of incidence of 65o. Anisotropic 

Cauchy parameterization model was used for curve fitting.  For the mapping mode, data 

was recorded by an imaging scanner with a lateral resolution of 1 μm with a field of view 

of about 100 μm x 500 μm.   

 

Spatially-directed surface modification  

Microcontact printing of biotinylated ligand (6) on polymer 5: Patterned PDMS 

stamps were created as previously described.28, 29 A thin layer of solution of ligand (6) 

(Photoprobe biotin, Vector labs, 10 µg/ml) and sodium ascorbate (1 mM) in a 2:1 mixture 

of water and tert-butyl alcohol was spread on 5 and the solvent was dried using N2. The 

patterned PDMS stamp was oxidized for 20 min using UV-ozone cleaner (Jelight Co. Inc, 

Irvine, CA) and inked with CuSO4 solution (1 mM in methanol) using a cotton swab. The 

stamp was then kept in contact with the polymer substrate for 12-18 h. After stamp 

removal, the patterned substrate was incubated with rhodamine-labeled streptavidin (50 

µg/ml in aqueous phosphate buffer PBS containing 0.02% (v/v) Tween 20 and 0.1% 

(w/v) bovine serum albumin) for 1 h. Substrate was then repeatedly washed with the 
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incubating buffer, PBS and finally rinsed with DI-water. Fluorescence micrographs were 

captured using a Nikon TE200 fluorescence microscope. 

A similar procedure was used for the immobilization of azido-saccharides1-azido-

1-deoxy-β-D-glucopyranoside (7) and 1-azido-1-deoxy-β-D-galactopyranoside (8). 

As described above, azido-peptide (9) (YIGSR-N3 20 µg/ml) was immobilized via 

microcontact printing. In this instance, the patterned stamp was kept in contact with the 

substrate for 3 h. After peptide patterning, this microcontact printing approach was 

repeated with an unpatterned flat PDMS stamp to immobilize PEG-N3 (MW=5000, 50 

µg/ml) on the remaining areas. Substrates were washed repeatedly with aqueous 

phosphate buffer PBS containing 0.02% (v/v) Tween 20, PBS and finally rinsed with DI-

water. 

 

Human endothelial cell culture 

Cryopreserved human umbilical vein endothelial cells (HUVECs) were purchased 

from Lonza (Walkersville, MD) and cultured in complete Endothelial Growth Medium 

(EGM, Lonza) containing 2% fetal bovine serum. Cells were cultured in 75 cm2 tissue 

culture-treated polystyrene flasks (Corning), maintained at 37 oC in a humidified 

atmosphere of 5% CO2 and cell culture medium was replaced every other day until 80% 

confluency was attained. Cells were harvested from the flasks using 0.25% 

trypsin/ethylene-diaminetetraacetic acid solution (Sigma) and seeded on the substrates as 

needed. 

For the cell patterning studies, peptide-patterned surfaces were rinsed with 

Dulbelcco’s PBS (D-PBS) and placed in a multiwell plate. Cells were harvested from the 

flask and resuspended at a density of 1×104 cells/ml in Endothelial Basal Medium (EBM; 

Lonza) without serum and 1 ml was added to each well. They were allowed to adhere for 
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1 h without serum at 37 oC. Subsequently, this media was replaced with medium 

containing serum (EGM) and cells were maintained for 10 h. Substrates were washed 

with D-PBS, fixed with formaldehyde (4% v/v in D-PBS), permeabilized with TritonX-

100 (0.1% v/v in D-PBS) and stained with rhodamine-conjugated phalloidin (Invitrogen). 

Samples were mounted with Prolong Gold containing DAPI (Invitrogen). Substrates were 

imaged using Olympus BX-51 fluorescence microscope (Microscopy and Image Analysis 

Laboratory, University of Michigan, Ann Arbor). 

 

3.3 Results and discussion 

CVD polymerization and surface characterization 

Prior to polymer deposition using CVD polymerization, the starting materials di-

ethynyl[2,2]paracyclophane (2) and ethynyl[2,2]paracyclophane (3) were prepared from 

the commercially available [2.2]paracyclophane (1), which was first converted to the 

respective di- and mono-formyl derivatives followed by Bestmann’s acetylene 

synthesis.30 Under the conditions of di-alkyne synthesis, pseudo-ortho and pseudo-meta 

derivatives have been reported as the major isomers,30 but were not separated for 

subsequent CVD polymerization. 

First, CVD polymerization of di-alkyne 2 was performed to yield poly(diethynyl-

p-xylylene) (4) (Figure 3.2). For this purpose, 2 was sublimed at 90-110ºC and a reduced 

pressure of 0.5 mbar. Reactants were then transported into pyrolysis chamber (at 650 ºC) 

and then into deposition chamber (at 15 ºC) where spontaneous formation of a polymer 

film was observed. However, FTIR spectrum of polymer films formed under these 

conditions did not show alkyne C-H stretch around 3200 cm-1, indicating the absence of 

alkyne groups. Instead, several side products were formed, which were not further 
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characterized, but could potentially be due to an alkyne-vinylidine rearrangement.31 

Alteration of process conditions, (e.g., pyrolysis temperatures below 550 oC), resulted in 

alkyne-functionalized polymers, with typical ellipsometric thicknesses of about 50 nm 

(for 50 mg of the precursor polymerized onto a 4 inch wafer). Nevertheless, these 

polymer films showed little reactivity, underwent thermal decomposition, and generally 

had quite poor stability towards organic solvents. Thus, they were not pursued further. 

Unlike polymer 4, CVD polymerization of mono-alkyne 3 produced poly(4-

ethynyl-p-xylylene-co-p-xylylene) (5) without appreciable side reactions, even under 

typical CVD conditions (pressure of 0.5 mbar, sublimation, pyrolysis and substrate 

temperatures of 90-110 oC, 680 oC and 15 oC, respectively) (Figure 3.2).32 Moreover, 

FTIR spectrum of 5 revealed a strong alkyne C-H stretch at 3286 cm-1 and signal at 2100 

cm-1 which can be attributed to C-C triple bond. Evidence from FTIR data was reaffirmed 

by X-ray photoelectron spectroscopy (XPS), which was used to quantify the surface 

elemental composition of 5. Polymer 5 consists of about 98.7% carbon and 1.3 % 

oxygen. These traces of oxygen may be due to contaminations during CVD 

polymerization or subsequent sample handling. These data compared well with the 

theoretical composition of 5 (100 % carbon, hydrogen is not detected with XPS). 

Moreover, high resolution C1s spectrum of 5 further revealed a symmetric and narrow 

peak centered at 285.6 eV with a full width at half maximum (FWHM) of 1.13 eV. This 

can be associated with the presence of a single type of carbon, i.e. carbon that is bound to 

carbon or hydrogen.33 The C1s peak spectrum further showed a smaller signal centered at 

291.7 eV, which can be attributed to π-π* shake-up signal characteristic of aromatic π 

electrons and has been observed for similar polymer systems in the past.34 Polymer 5 was 

found to have an thickness of 91.81±0.03 nm (for 50 mg of precursor) and was stable in 

aqueous solutions and organic solvents such as acetone, ethanol, methanol and 

chloroform. Probing the adhesiveness of 5 using the scotch tape test35 showed that the 

film had good adhesion to a wide variety of substrates such as glass, 
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poly(dimethylsiloxane) (PDMS), silicon and gold. Moreover, the polymer showed a 

characteristic excitation peak at 380 nm and a characteristic emission peak at 450 nm. 

These peaks disappeared after heating the polymer to 150 °C for 3 h, presumably due to 

cross-linking of the polymer. To assess the thermal stability of polymer 5, FTIR spectra 

of samples stored at 20 °C, 80 °C, 150 °C, and 250 °C were compared. The C-H stretch at 

3283 cm-1 continuously decreased with increasing temperature and was absent in samples 

stored at 250 °C. Again, this suggests that the polymer has limited thermal stability, most 

likely due to crosslinking of the ethynyl groups. 

 

Immobilization of azide-functionalized biotin 

To assess whether reactive coating 5 can be used for heterogeneous click 

reactions, its reactivity against azides was studied. Specifically, Huisgen’s 1,3-dipolar 

cycloaddition between 5 and an azide-containing biotin-based ligand (6) in the presence 

of copper(II) sulfate and sodium ascorbate was examined (Figure 3.3). As described for 

solvent-based systems, this irreversible fusion reaction occured in the presence of a 

copper(I) catalyst yielding five-membered heterocyclic triazoles.4 Sodium ascorbate acts 

as a reductant, generating Cu(I) ions in situ from CuSO4, which then function as the 

active catalyst of the cycloaddition.4 Compound 6 was chosen as the representative ligand 

in this study, because biotin undergoes a strong non-covalent interaction with 

streptavidin, which in turn has been widely used for binding of a wide range of 

biotinylated biomolecules.36 

To ensure spatial control during the cycloaddition reaction, a microcontact 

printing (µCP) approach was chosen. For this approach to be successful, the Cu(I) 

catalyst and azide reactant 6 had to be decoupled. This was achieved by microcontact 

printing only the Cu(I) catalyst onto a preadsorbed film of ligand 6. In this two-step 
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process illustrated in Figure 3.4, a thin layer of 6 and sodium ascorbate was spread onto 5 

and solvent was dried using N2. Next, a patterned PDMS stamp was inked with a solution 

of CuSO4 and kept in contact with the substrate for 12-18 h. Patterned substrate was 

incubated with an aqueous solution of rhodamine-labeled streptavidin. Fluorescence 

microscopy was used to assess the spatially-directed immobilization of 6 onto polymer 5. 

Fluorescence micrographs shown in Figures 3.5a and 3.5c confirmed selective protein 

coupling in the regions where CuSO4 solution was microcontact printed, thus proving the 

binding of 6 to polymer 5. This supports the conclusion that alkyne groups on the 

polymer surface are reactive and can be effectively used as anchoring sites for surface 

modifications. The two-step approach (pre-adsorption + microcontact printing of 

catalyst) was found to be superior to concurrent microcontact printing of catalyst and 

azide. Furthermore, importance of catalytic activity of Cu(I) for heterogeneous click 

reaction was revealed. Regions without Cu(I) catalyst did not show fluorescence due to a 

lack of azide binding in the absence of the catalyst. To complement the fluorescence 

study, patterned surfaces were further analyzed by imaging ellipsometry in the mapping 

mode. Corresponding ellipsometric images shown in Figures 3.5b and 3.5d reveal protein 

patterns, together with the corresponding fluorescence patterns.  Observed thickness 

differences of about 1-2 nm between biotinylated regions with streptavidin and non-

biotinylated polymer regions are comparable with literature-reported thicknesses of 

protein monolayers.37  

 

Immobilization of saccharides 

To extend the applicability of alkyne-functionalized polymer 2 towards a robust 

platform for biomolecular immobilization, azide-functionalized saccharides were 

covalently coupled to polymer 5 (Figure 3.6). The procedure described above for 
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immobilization of ligand 6 was extended for the conjugation of azide-functionalized 

saccharides to alkyne-functionalized CVD polymer 5. For this purpose, two azide-

functionalized saccharides, 1-Azido-1-deoxy-β-D-glucopyranoside (7) and 1-Azido-1-

deoxy-β-D-galactopyranoside (8) were immobilized on polymer 5 via microcontact 

printing. Briefly, a micro-structured elastomeric stamp was inked with copper catalyst 

and brought into contact with the polymer 5 which had a preadsorbed layer of the desired 

azido-saccharide solution.38 Click reaction between azide-derivatized saccharides and 

alkyne groups on polymer 5 occurred only in regions where the stamp and substrate were 

in conformal contact. Subsequently, saccharide-binding was affirmed by incubating the 

micro-patterned substrates with the corresponding fluorescently-labeled lectins and 

analyzed using fluorescence microscopy. Azido-sugar 7 was probed with a glucose-

binding lectin, fluorescein-conjugated concanavalin A (FITC-Con A) and rhodamine-

labeled peanut agglutinin (TRITC-PNA), specific for β-galactose moieties, was used for 

compound 8. Patterned substrates were visualized using fluorescence microscopy. 

Fluorescence micrographs reveal specific binding of FITC-ConA and TRITC-PNA to 

micro-patterns of 7 (Figure 3.7a) and 8 (Figure 3.7b), respectively, thus confirming the 

reactivity of alkyne-functionalized surface towards azide-functionalized saccharides. 

 

Immobilization of cell-adhesion peptides and cell patterning 

Ability to modulate cellular response by varying the surface properties is a key 

aspect of surface engineering.39, 40 This can be achieved by immobilizing cell-adhesive 

proteins (mainly extracellular matrix proteins) or peptide sequences derived from these 

proteins.40 Immobilizing of bioactive peptides triggers cellular responses such as 

adhesion, migration and cellular differentiation. Short peptide sequences typically convey 

the same bioactivity as the original protein while avoiding non-specific interactions. 
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These peptides also display an enhanced stability and can be used under conditions 

unsuitable for most biomolecules. 

Moreover, laminin-derived peptide sequences have been shown to support 

adhesion of primary cells and also human embryonic stem cells.41 Peptide sequence, 

YIGSR, present on β-chain of laminin molecule was chosen as the model peptide. Azide-

functionalized YIGSR (9) was micropatterned on polymer 5 using microcontact printing 

(Figure 3.6). Inspection of the surface using imaging ellipsometry showed patterns with a 

height difference between the patterned and unpatterned areas of 0.1 nm (Figure 3.8a). 

Further the unpatterned regions of the surface were backfilled with PEG-azide to prevent 

non-specific binding effects.     

Finally, to demonstrate activity of the immobilized peptide moieties towards 

mammalian cells, peptide 9 patterned substrates were tested with human endothelial cells 

(HUVECs) which represent a well-characterized cell culture system. Human endothelial 

cells were first cultured on peptide 9 patterned surfaces in serum-free conditions for 1 h. 

This enabled specific binding of endothelial cells to the surface via cell-adhesive peptide 

sequence 9 and prevented non-specific adhesion of cells due to the proteinaceous nature 

of serum. Serum-containing medium was then added to the culture system and human 

endothelial cells were allowed to grow on the peptide-patterned substrates for 10 h. After 

immunostaining with rhodamine-conjugated phalloidin (for actin) and DAPI (for 

nucleus), the surfaces were analyzed using fluorescence microscopy. It was observed that 

endothelial cells preferentially adhered to regions modified with azide-functionalized 

peptide 9 and minimal cell attachment was seen on the PEG-modified regions (Figure 3.8 

b,c), hence, showing that peptide-patterned surfaces were able to direct the specific 

binding of endothelial cells on the surface. 
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3.4 Conclusions 

In conclusion, alkyne-containing vapor-based polymer 5 showed remarkable 

reactivity towards azides via the chemoselective Huisgen’s 1,3-dipolar cycloaddition. In 

contrast to the di-alkyne containing polymer 4, reactive coating 5 showed excellent 

adhesion and stability. Alkyne-azide “click” reactions were successfully used for 

coupling of different azide functionalized biomolecules such as saccharides and peptides. 

The fact, that spatially-controlled cycloadditions can be conducted under mild reaction 

conditions, will enable the design of topologically differentiated biointerfaces. Key 

feature of this approach is the use of vapor-based coatings for spatially-controlled click-

chemistry of biomolecules. Development of bioactive surfaces is an important step 

towards advanced biomaterials and biointerfaces.  As a flexible bioconjugation platform, 

this regioselective immobilization strategy could be applicable in the design of 

biofunctional surfaces for diagnostics (e.g., microarrays), biosensors, and biomedical 

device coatings. 
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3.5 Figures and Tables 

 

Figure 3.1: Multifunctional materials’ design using “click chemistry”, 
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Figure 3.2: Synthesis of alkyne-containing polymers (4, 5) via CVD polymerization of 
diethynyl-[2,2]paracyclophane (2) and 4-ethynyl-[2,2]paracyclophane (3). 
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Figure 3.3: Huisgen 1,3-dipolar cycloaddition between azide-functionalized ligands (6, 7, 
8 and 9) and the poly(4-ethynyl-p-xylylene-co-p-xylylene) (5). 
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Figure 3.4: Immobilization of azide-containing ligand on the reactive polymer coating. 
The Cu(I) catalyst was microcontact printed on a preadsorbed layer of biotin-based azide-
ligand (6) on the reactive polymer 5. 

 

 



68 

 

 
Figure 3.5: (a, c) Fluorescence micrographs showing the binding of TRITC-streptavidin 
to patterns of biotin azide formed by µCP, (b, d) Corresponding imaging ellipsometric 
images showing thickness maps of the patterned surfaces. 
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Figure 3.6. Illustration of the procedure for spatioselective clicking of biomolecules. (A) 
CVD polymerization. (B) Biomolecule immobilization using click reaction and 
microcontact printing. (C) (a) Using fluorescently-labeled lectins for saccharide patterned 
substrates (b) Human endothelial cell culture on peptide-patterned substrates. 
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Figure 3.7: Fluorescence micrographs showing the immobilization of azide-
functionalized saccharides on polymer 5 detected using fluorescently-labeled lectins: (a) 
FITC-ConA on sugar 7 and (b) TRITC-PNA on sugar 8.  
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Figure 3.8:  (a) Thickness map of peptide 9 patterned surface via imaging ellipsometry. 
(b, c) Fluorescence micrographs of endothelial cells attached to peptide 9 patterned 
surfaces. Red: actin cytoskeleton (rhodamine-phalloidin), blue: nucleus (DAPI). 
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CHAPTER 4 

DEFINED SUBSTRATES FOR HUMAN EMBRYONIC STEM CELL CULTURE 

The material in this chapter has been adapted with minor modifications from the 

following article: 

 L. G. Villa-Diaz*, H. Nandivada*, J. Ding, N. C. Nogueira-de-Souza, P. H. 

Krebsbach, K. S. O’Shea, J. Lahann, G. D Smith, Synthetic polymer coatings for long-

term growth of human embryonic stem cells, (under review) [*co first authors].  

 

Abstract 

In this chapter, a synthetic polymer, poly[2-(methacryloyloxy)ethyl dimethyl-(3-

sulfopropyl)ammonium hydroxide] (PMEDSAH), is identified which possesses the 

unique capability of supporting long-term culture of human embryonic stem cell cultures. 

This represents a considerable advance towards clinically-applicable cultures of human 

embryonic stem cell. Designing a fully-defined synthetic polymer coating that can 

maintain the undifferentiated state of hES cells in long-term cell culture, enables further 

investigation of the interrelationship between synthetic polymer matrices and hES cells. 

 

4.1 Introduction 

Human embryonic stem (hES) cells possess the unique properties of unlimited 

self-renewal and differentiation. hES cells are poised to play a prominent role in 

understanding of early development, in therapeutic applications and regenerative 
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medicine,1, 2 which will fuel the need for culture systems that can provide clinical-grade 

hES cells.  

 

Natural substrates for pluripotent stem cell culture 

Owing to their sensitivity to environmental influences, undifferentiated hES cells 

can only be propagated for extended periods of time, when cultured on certain, naturally-

derived cell substrates, such as mouse or human embryonic fibroblast cells (Figure 

4.1(A)), Matrigel (derived from mouse sarcoma), laminin, hyaluronic acid, or fibronectin 

(Table 4.1).1, 3-15  The naturally-derived substrates currently employed for hES cell 

propagation.have undefined composition, show batch-to-batch inconsistencies, and often 

contain contaminants, such as pathogens16, 17 

Furthermore, feeder-independent cultures typically require the use of feeder-

conditioned medium and high concentrations of basic fibroblast growth factor (bFGF).5, 

18 Matrigel is the most commonly used substrate for feeder-free hES cell culture in mouse 

embryonic fibroblast conditioned medium (MEF-CM).5  

 

Synthetic substrates for pluripotent stem cell culture 

Utilization of biomaterials for hES cell culture eliminates the need for direct 

coculture with supportive feeder layers and reduces contaminations introduced by 

naturally-derived substrates.18 Synthetic culture matrices also improve the reproducibility 

of experimental outcomes. Furthermore, integration of biomolecules such as growth 

factors and cell-adhesive proteins into sophisticated biomaterials has also been used for 

controlled differentiation.   However, to date, synthetic matrices have only sustained 

short-term hES cell propagation (Table 4.1).19-22  
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Synthetic matrices have been extensively used for murine ES cell cultures. An 

assessment of the propagation of murine embryonic stem cells on various poly(α-hydroxy 

esters) such as poly(D,L-lactide), poly(L-lactide), poly(glycolide) and poly(D,L-lactide-

co-glycolide) (PLGA) revealed a significantly higher colonization rate on PLGA surfaces 

than the other poly(α-hydroxy esters).23  PLGA surfaces were successful in colonization 

and maintenance of murine ES cells. In another study, murine ES cells were seeded on 

polymeric hydrogel slabs synthesized by blending hydroxyethyl methacrylate (HEMA) 

with ethylene dimethacrylate (EDMA) or 1-vinyl-2-pyrolidone (VP) with N,N’-

divinylethyleneurea (DVEU) or EDMA.24  Poor ES cell adhesion was observed on 

hydrophilic PVP surfaces. At shorter time periods, ES cells retained their undifferentiated 

state irrespective of the surface properties. 

A synthetic matrix system composed of a semi-interpenetrating polymer network 

was reported for short-term self-renewal of hESCs.25  This polymer hydrogel consisted of 

poly(N-isopropylacrylamide-co-acrylic acid) crosslinked with acrylated peptides and 

interpenetrated with cell adhesion moieties. hES cells cultured on this synthetic matrix 

adhered to the surface, remained viable and exhibited markers of undifferentiated hES 

cells. A combinatorial study showed the effects of laminin-derived peptides on hES cell 

proliferation and found that five out of 18 peptides tested supported short-term hES cell 

culture.20 In addition, encapsulation of hES cells in hydrogel matrix of photoactive 

hyaluronic acid has also been shown to maintain undifferentiated state with preservation 

of karyotype and formation of embryoid bodies when maintained in MEF-CM; although 

this system relies on photopolymerization, DNA damage due to UV irradiation measured 

as expression of p53 was reported to be minimal.26 Recently, a study assessing the ability 

of several biomaterials such as poly-L,D-lactide (PLDLA) and poly(desaminotyrosyl-

tyrosine ethyl ester carbonate) (PDTEC), to support hES cell cultures, found that only 

undefined Matrigel was successful in sustaining long-term cultures.22 
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While these studies contributed toward a fundamental appreciation of the 

importance of the solid microenvironment, they failed to define the essential features of a 

successful cellular matrix in terms of undifferentiated growth and long-term proliferation 

of hES cells.  

In this chapter, a fully-defined synthetic polymer coating, poly[2-

(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH) is 

reported, which sustains long-term human embryonic stem (hES) cell growth. 

Introducing well-defined polymer-based hES cell culture matrices establishes a major 

step would facilitate important insights in developmental biology and hES cell-centered 

clinical therapies. 

 

4.2 Material and Methods 

Polymer synthesis   

All polymer coatings were prepared on tissue culture polystyrene (TCPS) dishes 

(35 mm; Becton Dickinson and Co, Franklin Lakes, NJ).  Graft-polymerization was 

carried out using a 0.25 M solution of methacrylate monomers (Sigma-Aldrich, MO) in a 

4:1 mixture of water and ethanol.27  The TCPS dishes were activated using a UV-ozone 

cleaner (Jelight Co. Inc, Irvine, CA) for 40 min. Surface-activated dishes were immersed 

into the monomer solution at 80 oC for 2.5 h.  Polymer-coated dishes were allowed to 

cool to 50 oC and were rinsed with a warm saline solution (1% NaCl in water, at 50 oC).  

Polymer-coated dishes were then left overnight in saline solution at 50 oC.  Dishes were 

cleaned by ultra-sonication in DI-water and dried under a stream of nitrogen gas.  

Polymer-coated dishes were stored at room temperature prior to cell culture.  For FTIR 
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spectroscopy and elllipsometry, a gold-coated substrate coated with poly-p-xylylene was 

included in each graft-polymerization reactions.28  

 

Characterization of polymer coatings 

Elemental analysis of the polymer coatings was conducted using X-ray 

photoelectron spectroscopy (Axis Ultra XPS, Kratos Analyticals, UK) equipped with a 

monochromatized Al Kα X-ray source.  Spectra were referenced to an unfunctionalized 

aliphatic carbon at 285.0 eV.  Presence of polymer coatings was confirmed using Fourier 

transform infrared (FTIR) spectroscopy (Nicolet 6700 spectrometer) using the grazing 

angle accessory (SAGA) with a grazing angle of 85o.  Coating thickness was recorded at 

a wavelength of 532 nm using EP3-SW imaging ellipsometer (Nanofilm Technology 

GmbH, Germany).  Four-zone nulling was performed at an angle of incidence of 70o and 

an anisotropic Cauchy parameterization model was used for curve fitting. 

Nanoindentation was performed by CSM instruments Inc (Needham, MA) using a CSM 

NanoHardness tester equipped with a conospherical diamond tip (with a radius of 20 µm) 

in the load-control mode.  A typical nanoindentation experiment involved engaging the 

tip under loading rate of 1.00 mN/min, indenting to a maximum load of 0.5 mN, and then 

withdrawing the tip with the same rate as for the loading.  For each hydrogel coating, 

load-displacement data was acquired for 5 indentations.  Reduced modulus (Er) was 

calculated using the unloading portions of these load-displacement curves according to a 

method developed by Gerberich et al.29  
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Preparation of polymer-coated dishes before cell culture 

Before cell seeding, all polymer-coated dishes were sterilized with UV-light for 

overnight (12 h), washed twice with sterile phosphate buffer saline (PBS) and 

equilibrated with culture medium for at least 48 h at 37 oC in 5% CO2 atmosphere.  

 

Matrigel preparation 

Matrigel (BD BioSciences, San Jose, CA) was diluted 1:20 in cold Dulbecco’s 

modified Eagle’s medium/F12 (DMEM/F12; GIBCO, Carlsbad, CA), applied to the 

dishes, and the coating was allowed to form overnight at 4 oC or for 2 h at room 

temperature.30  

 

Cell culture media preparation 

Culture medium for hES cells cultured on irradiated MEFs contained standard 

DMEM/F12 supplemented with 20% KnockOut serum replacement (GIBCO), 0.1 mM β-

mercaptoethanol, 1 mM L-glutamine, 1% non-essential amino acids and 4 ng/ml human 

recombinant basic fibroblast growth factor (Invitrogen; Carlsbad, CA).   

MEF-CM was prepared as described previously.31  Irradiated MEFs (8x106 cells) 

were seeded onto gelatin-coated culture dishes in medium composed of high glucose 

DMEM, 10% fetal bovine serum (FBS; GIBCO), 1% non-essential amino acids, and 200 

mM L-glutamine. After 24 h, MEF culture medium was replaced with the hES cell 

culture medium described above (60 ml).  This medium was left in contact with MEFs 

and was collected as MEF-CM after 24 h of conditioning.  Media exchange was 

conducted daily and MEF-CM was collected for 3 days.  The MEF-CM was frozen at -20 
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oC and was supplemented with 0.1 mM β-mercaptoethanol, 2 mM L-glutamine, and 4 

ng/ml bFGF before use. 

  

Cell culture   

Two federally-approved hES cell lines: BG01 (NIH code: BG01; BresaGen, Inc., 

Athens, GA), and H9 (NIH code: WA09; WiCell, Madison, WI) were used and cultured 

at 37 oC with 5% CO2.  Human ES cell colonies were observed every 48 h using a Leica 

stereomicroscope and differentiated cells were removed mechanically using a sterile 

“pulled-out” glass pipette.  Cell culture medium was replaced every 48 h. 

 

Cell culture media transition and passaging   

Before mechanical harvesting of hES cells growing on MEFs, cell culture 

medium was replaced by MEF-CM.  Cultures were passaged depending on size and 

density of colonies every 7-10 days.  Undifferentiated hES cell colonies were then 

mechanically passaged by cutting small aggregates of cells using a sterile “pulled-out” 

glass pipette, when colonies are large, beginning to merge, and have centers that are 

dense and phase-bright compared to their edges.  About 50-100 hES cell-aggregates were 

transferred to polymer- and Matrigel-coated dishes.  

 

Cell-aggregate adhesion assay  

Number of adhered colonies and number of floating embryoid bodies (EBs) were 

counted 48 h after cell seeding, to calculate the percentage of cell-aggregate adhesion 

using the following formula:   
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Cell-aggregate adhesion (%) = (number of adhered colonies)*(100)/(number of 

adhered colonies + number of EBs floating).  Statistics were performed using an unpaired 

t-test.  

 

Cell population-doubling time 

Cell population-doubling time was calculated in terms of time required for the 

area of a colony to increase two-fold.32  ImageJ software (http://rsb.nih.gov/ij) was used 

to measure area of the colonies. Colony area (n=10) was calculated at five time-points 

(for 5 days after cell seeding), and cell population-doubling time was determined by 

fitting an exponential function.  Mean values were compared using an unpaired t-test.  

 

Immunocytochemistry 

Cells were fixed in 2% paraformaldehyde for 30 min at room temperature and 

then permeabilized with 0.1% Triton X-100 for 10 min.  Primary antibodies were diluted 

in 1% normal donkey serum and incubated overnight at 4 oC and detected by respective 

secondary antibodies.  Samples were imaged and captured using a Leica DM IRB 

inverted microscope with an Olympus DP-30 CCD camera.  Throughout this study, hES 

cells were characterized every fifth passage by detection of the following hES cell 

markers: OCT3/4, SOX2, SSEA4, TRA-1-60 and TRA-1-81. 

ImageJ software was used to count the number of OCT3/4 or SOX2 positive cells 

and number of cell nuclei present in each colony.  Percentage of cells positive for each 

marker was calculated for colonies cultured on PMEDSAH- and Matrigel- coated plates.  

Unpaired t-test was used to calculate p values.  
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Cytogenetic analysis 

Karyotype analysis was performed at Cell Line Genetics (Madison WI) applying 

standard protocols utilizing the GTL-banding method on at least 20 cells. 

 

Evaluation of pluripotency   

Undifferentiated H9 hES cells (< 5x106 cells) cultured on PMEDSAH and 

Matrigel in MEF-CM at passage 25 were injected subcutaneously into CB17 SCID mice 

(Charles River Laboratories, Wilmington, MA) to induce teratomas.  When tumors 

became palpable, mice were euthanized; tumors were harvested, and processed for 

histological analysis at the Center for Organogenesis Morphology core (University of 

Michigan). 

Pluripotency was also evaluated by EB formation from undifferentiated hES cells. 

Colonies were cultured in suspension in hES cell culture medium lacking bFGF to 

promote differentiation, for 10 days.  Alternatively, hES cells were allowed to overgrow 

in MEF-CM without bFGF for 10 days.  

 

Extraction and purification of total RNA 

Cells were manually scraped from dishes and pelleted by centrifugation at 800 g.  

Pellets were then disrupted by vigorous pipetting in 1000 µl of Trizol Reagent 

(Invitrogen).  Chloroform (200 µl) was added to this solution followed by centrifugation 

(~13,000 x g).  Aqueous phase containing RNA was separated and additionally purified 

using the RNeasy Mini-Kit (Qiagen, Valencia, CA) following the manufacturer’s RNA 

Clean-up protocol with the optional On-column DNAse treatment.  RNA quality was 
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checked using RNA 6000 Nano assays performed on the Bioanalyzer 2100 Lab-on-a-

Chip system (Agilent Technologies, Palo Alto, CA). 

 

Reverse-transcription PCR (RT-PCR) analysis 

Total RNA was reverse transcripted using SuperScript™ One-Step RT-PCR with 

platinum® Taq (Invitrogen).  In a single reaction (50 μl), 1 μg of total RNA and 20 pmol 

of forward (f) and reverse (r) primers were used (Supplementary Table II online).  The 

cDNA synthesis and pre-denaturation were carried out in the first cycle at 48 ºC for 45 

min, followed by a second cycle at 94 ºC for 2 min.  The PCR amplification was 

performed for 35 cycles at 94 ºC for 15 sec, 5 ºC for 30 sec, and 72 ºC for 1 min.  The 

final extension cycle was run at 72 ºC for 8 min. Finally, 10 μl of PCR reaction products 

were loaded onto a 1.0% agarose gel and size-fractionated.  

 

Microarray analysis 

Total RNA (10 μg) from hES cells was hybridized to Affymetrix Human Genome 

U133 Plus 2.0 microarray (Affymetrix; Santa Clara, CA) following the manufacturer's 

instructions.  Data analysis was performed using a Robust Multi-array average algorithm 

that converted the plot of perfect match probe intensities into an expression value for 

each gene.33  Based on a variance of 0.05, probe-sets that did not appear to be 

differentially expressed in any sample were filtered and removed.  Differentially 

expressed genes were detected by fitting a linear model to each probe-set and selecting 

those with a multiplicity-adjusted p-value (FDR) of 0.05 or less.34, 35 
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Quantitative Real-time PCR (qPCR) analysis 

Total RNA was reverse-transcribed using MultiScribe™ Reverse Transcriptase 

System (Applied Biosystems; Foster city, CA).  The ABI 7300 PCR and Detection 

System (Applied Biosystems) with SYBR® Green PCR Master Mix (Applied 

Biosystems) were used to conduct real-time PCR in triplicate for each sample.  Primers 

used are listed in Supplementary Table II online.  Human β-Actin was amplified as an 

internal standard. Relative quantification of NANOG, OCT3/4 and SOX2 gene 

expression was performed using the Comparative CT Method.36 

 

4.3 Results and discussion 

Synthetic polymer coatings could be exceptional candidates for hES cell matrix 

replacement strategies because of their highly reproducible fabrication and ease of use 

(Figure 4.1(B)).37 However, actual implementation of these novel materials has been 

challenging38 and no synthetic polymer coating has yet been used to support long-term 

culture of hES cells.21  

 

Polymer synthesis and characterization 

In this study, six polymer coatings were synthesized by surface-initiated graft-

polymerization27 onto tissue culture polystyrene and tested for their ability to promote 

attachment and proliferation of undifferentiated hES cells (Figure 4.2). Compared to 

alternate surface modification techniques, such as tethering of polymer chains onto the 

surface, this approach is known to result in higher surface densities.39 Selected polymers 

shared an identical polymer backbone structure, but differed in their side chain 

chemistries. The polymers were: poly[2-hydroxyethyl methacrylate] (PHEMA), 
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poly[poly(ethylene glycol) methyl ether methacrylate] (PPEGMA), poly[3-sulfopropyl 

methacrylate] (PSPMA), poly[[2-(methacryloyloxy)ethyl]trimethylammonium chloride] 

(PMETAC), poly[carboxybetaine methacrylate] (PCBMA), poly[[3-

(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide] 

(PMAPDSAH) and PMEDSAH. This group of polymer coatings was compared to two 

solvent-cast poly(α-hydroxy esters), PLA and PLGA, as well as Matrigel-coated and 

unmodified TCPS dishes. 

Chemical composition of the polymer coatings was confirmed using X-ray 

photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR).  

To assess differences in their mechanical properties, the coatings were further analyzed 

using nanoindentation.40 This technique enables the measurement of the elastic moduli of 

ultrathin polymer coatings. Interestingly, nanoindentation experiments revealed that 

PMEDSAH coatings were significantly softer than other coatings included in this study 

as indicated by their reduced elastic modulus (Figure 4.2).29, 41 

 

hES cell culture on polymers 

H9 hES cells were mechanically harvested from cultures on mouse embryonic 

fibroblasts (MEF) and placed onto polymer-coated dishes and Matrigel in MEF-

conditioned media (MEF-CM).  While Matrigel supported adhesion and colony 

formation of more than 90% of hES cell-aggregates, no attachment was observed on 

PLA, PLGA and PCBMA. hES cells adhered, but spontaneously differentiated, during 

the first two passages on PMETAC, PSPMA, PHEMA, PPEGMA and unmodified TCPS 

dishes (Figure 4.2) and propagation of undifferentiated cells into subsequent passages 

was not possible.  On the other hand, zwitterionic PMEDSAH supported attachment and 

proliferation of two hES cell lines (BG01 and H9). Furthermore, sulfobetaine-containing 
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polymer, PMAPDSAH also supported proliferation of H9 hES cells (Figure 4.2). 

PMAPDSAH-coated dishes supported the undifferentiated culture of H9 hES cells for 10 

passages in MEF-CM. 

Zwitterions are commonly found in nature in proteins, proteoglycans and in 

cellular surface lipids and in extracellular matrices, therefore zwitterionic materials may 

be biocompatible. More specifically, heparin sulfate which is present in cell surface 

membranes and extracellular matrix protein binds to a wide variety of protein ligands 

(such as growth factors) and regulates several signaling pathways (such as stem cell 

maintenance).42-45 In addition, sulfation of certain natural or synthetic polymers has been 

shown to increase the specific binding of heparin-binding proteins such as growth factors, 

which in turn regulate cellular processes like differentiation and pluripotency.46, 47 

 

Long-term hES cell culture and characterization 

The cells monitored at regular intervals using karyotyping, expression of 

pluripotency markers and in vitro evaluation of pluripotency.48 Throughout 25 passages, 

H9 hES cells seeded on PMEDSAH expressed characteristic hES cell markers, displayed 

a normal karyotype and retained pluripotency. H9 hES cells growing on PMEDSAH 

expressed characteristic pluripotent stem cell markers and transcription factors such as 

OCT3/4, SOX-2, SSEA-4, TRA-1-60 and TRA-1-81, which are associated with the 

undifferentiated state of hES cells (Figure 4.3(A)). After passage 3, 92±3% of the cells 

cultured on PMEDSAH coatings and 93±3% cells were positive for OCT3/4 and SOX-2 

respectively. These results are comparable to results obtained with Matrigel-coated 

samples, which showed 92.1±3.1% OCT3/4 positive and 91.5±3.0% SOX-2 positive cells 

(Figure 4.3(B)). Furthermore, after passage 20, expression levels of undifferentiated and 
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pluripotent markers OCT3/4 (91±3%) and SOX2 (92±2%) were comparable to levels 

expressed by cells cultured on Matrigel. 

Microarray analysis revealed similar expression levels of hES cell-specific genes 

in cells cultured on PMEDSAH and Matrigel. Further validation using qPCR revealed 

comparable RNA expression levels of NANOG, OCT3/4 and SOX2 (Figure 4.3(C)). 

Significantly, there were no differences in Wnt and TGF2 signaling pathways, which are 

important for the maintenance of hES cell pluripotency. No differences were found 

between hES cells cultured on PMEDSAH and Matrigel in expression of genes involved 

in cell-cell and cell-matrix adhesion.   

Presence of a normal euploid karyotype is of paramount importance, because 

long-term cultures of mouse49 and human50-53 ES cells can develop aneuploidies, which 

would be detrimental to future biological utility and clinical applications of hES cells54.  

Standard GTL-banding analyses, at regular intervals throughout the study, revealed that 

hES cells cultured on PMEDSAH maintained a normal karyotype (Figure 4.3(D)). 

Pluripotency of hES cells was assessed by overgrowing hES cells in a 

differentiation inducing medium followed by immunostaining with antibodies specific for 

β III tubulin (ectoderm), smooth-muscle actin (mesoderm) and α-fetoprotein (endoderm) 

to identify differentiated cells from the three germ layers (Figure 4.4(A)). Pluripotency 

was also validated in vitro by formation of embryoid bodies and detection of 

characteristic genes representative of the three embryonic germ layers: ectoderm (KRT-18 

and NESTIN), mesoderm (FLT-1, BMP-4 and VE-CADHERIN) and endoderm (AFP and 

GATA-4) (Figure 4.4(B)).  

Finally, pluripotency was evaluated by injecting undifferentiated hES cells into 

immunosuppressed mice to produce benign tumors called teratomas. Pluripotency of H9 

hES cells was confirmed at passage 25 by trilineage differentiation in teratomas (Figure 

4.4(C)).  
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These experiments indicate that hES cells cultured on PMEDSAH and Matrigel 

remain pluripotent both in vitro and in vivo, even after extended culture. Compared to 

animal-derived matrices, PMEDSAH is chemically defined, can be synthesized 

reproducibly (1,200 plates coated over a 4-year period), and has long-term stability. 

Moreover, long-term storage and UV-sterilization of polymer-coated dishes did not affect 

their ability to support hES cell growth and proliferation. In addition, hES cells cultured 

on PMEDSAH hydrogels were cryopreserved, thawed and successfully re-seeded onto 

fresh PMEDSAH-coated dishes. Under long-term culture conditions, hES cells supported 

by PMEDSAH coatings were phenotypically stable, expressed pluripotency markers, 

maintained a normal karyotype, and retained the capacity to differentiate both in vivo and 

in vitro. 

  

4.4 Conclusions 

The ability of PMEDSAH coatings to support hES cell culture in defined media 

has important implications for its application as a platform for stem cell expansion. 

Additional studies will be required to establish if the effect of PMEDSAH is due to an 

interplay between various physico-chemical properties of the polymer such as wettability, 

mechanical stiffness, surface topography and zeta potential. Unlike natural and 

recombinant matrices, PMEDSAH-coated dishes can be handled and stored with relative 

ease, and is an important step in defining the microenvironmental requirements of 

undifferentiated hES cell growth and directed differentiation. Future work will need to 

address the development of a fully defined microenvironment consisting of a fully 

defined matrix and compositionally-defined culture media. 
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4.5 Figures and Tables 

 

 
 
Figure 4.1: Long-term culture of human embryonic stem (hES) cells. (A) Traditionally, 
hES cell culture is performed on naturally-derived substrates. As an example, coculture 
with feeder cells is depicted here but other natural substrates including Matrigel, laminin 
and fibronectin have been used in the past. (B) An alternate approach based on synthetic 
polymer substrates is proposed in this chapter. Human ES cells cultured on these 
synthetic polymer substrates were compared to those growing on naturally-derived 
matrices. Specifically, hES cells showed normal euploid karyotype, consistently 
displayed markers of undifferentiated hES cells and had stable developmental potential 
forming cells of all three embryonic germ layers. 
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Figure 4.2: Synthesis and characterization of polymer coatings. Schematic diagram 
showing surface-initiated graft-polymerization used to deposit different synthetic 
polymer coatings onto TCPS dishes. The TCPS surfaces were first activated by UV-
ozone and then methacrylate-based monomer was polymerized from the surface. Tables 
list contact angle, reduced elastic modulus (GPa), initial hES cell-aggregate adhesion and 
number of passages achieved on each polymer coating. Polymers PLGA, PLA and 
PCBMA did not allow hES cell attachment. PPEGMA, PHEMA, PSPMA and PMETAC 
promoted initial adhesion, but did not allow extended cell culture. PMEDSAH and 
PMAPDSAH promoted undifferentiated growth and passaging of hES cells over several 
passages.  
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Figure 4.3: Characterization of hES cells cultured on PMEDSAH in MEF-CM. (A) 
Fluorescence micrographs of colonies of H9 cells cultured on PMEDSAH in MEF-CM 
showing expression of undifferentiated markers: OCT3/4, SOX2, SSEA-4 TRA-I-60 and 
TRA-I-81; and phase-contrast image. Scale bar is 500 μm. (B) Percentage (mean ± SEM) 
of hES cells positive for OCT3/4 and SOX2 at passage 3 (P03) and 20 (P20) growing on 
PMEDSAH compared to Matrigel. (C) Relative transcript levels of NANOG, OCT3/4 
and SOX2 from hES cells cultured on PMEDSAH and Matrigel after analysis in RT-
PCR. (D) Representative chromosomal spread of H9 cells cultured on PMEDSAH at 
passage 20 via standard GTL-banding analysis.  
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Figure 4.4: Characterization of hES cells cultured on PMEDSAH in MEF-CM. (A) 
Micrographs showing immunoreactivity for β-III tubulin (ectoderm), smooth muscle 
actin (mesoderm) and α-fetoprotein (endoderm) demonstrating pluripotent state of H9 
cells. Scale bar in micrographs indicates 200 μm. (B) RT-PCR analysis of expression of 
markers of pluripotency (OCT3/4, NANOG, hTERT) from undifferentiated hES cell 
colonies and from ectoderm (KRT-18, NESTIN), mesoderm (BRACHURY, FLT-1, 
BMP-4, VE-CADHERIN) and endoderm (AFP, GATA-4) found in EBs. Negative 
control (Lane 1: no template) and positive control (β-ACTIN). (C) Pluripotency 
demonstrated in vivo by teratoma formation in immunosuppressed mice. H & E stained 
paraffin sections indicating endoderm (goblet-like cells: arrow A), ectoderm 
(neuroepithelial aggregates: arrows B; and cells expressing neuron-restricted protein β-III 
tubulin: arrow B’) and mesodermal derivatives (cartilage, connective tissue and muscle: 
arrow C).  
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Table 4.1: Summary of substrates used for mouse and human ES cell culture from 
literature.18 
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CHAPTER 5 

FULLY-DEFINED CULTURE SYSTEMS FOR HUMAN EMBRYONIC STEM 

CELLS 

The material in this chapter has been adapted with minor modifications from the 

following article: 

 L. G. Villa-Diaz*, H. Nandivada*, J. Ding, N. C. Nogueira-de-Souza, P. H. 

Krebsbach, K. S. O’Shea, J. Lahann, G. D Smith, Synthetic polymer coatings for long-

term growth of human embryonic stem cells, (under review) [*co first authors].  

 

Abstract 

Chemistry, charge, pH and topography of the microenvironment play a critical 

role in determining the behavior of human embryonic stem (hES) cells, thus triggering 

various developmental events, such as cell proliferation, differentiation, migration, and 

apoptosis.1 However, a detailed understanding of the cellular microenvironment has been 

hampered by the lack of well-defined and biologically-functional cell culture matrices. In 

chapter 4, a compositionally-defined synthetic polymer coating, poly[2-

(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH), 

was reported, which supported long-term culture of hES cells in mouse embryonic 

fibroblast conditioned medium (MEF-CM). Nevertheless, MEFs secrete unknown 

components into MEF-CM, which limit the utility of PMEDSAH for further clinical 

applications. Therefore, for a completely defined culture system, it is necessary to 
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demonstrate the applicability of PMEDSAH using clinically-compliant, commercially-

available cell culture media.  

Towards this goal, in this chapter, the efficacy of PMEDSAH was extended for 

hES cell growth in several different culture media including commercially-available 

defined media- mTeSR and StemPro. Further, a second zwitterionic polymer coating, 

poly[[3-(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide] 

(PMAPDSAH; previously mentioned in chapter 4) was investigated for its ability to 

sustain long-term hES cell growth in different defined culture media.  

 

5.1 Introduction 

Several complex factors govern the interactions between cells and material 

surfaces.2, 3 Firstly, cells have a non-rigid membrane which is heterogeneous with respect 

to charges and surface structures. In addition, cells are involved in actively secreting and 

transporting ions, proteins and other biological molecules, which results in the 

transformation or remodeling of the biomaterial surface. 

Creation of platforms for culture of human embryonic stem (hES) cells requires a 

deeper understanding of the factors governing stem cell behavior. Recently, a range of 

physicochemical properties of the microenvironment have been reported to exert control 

over stem cell decisions.4 Studies have shown that parameters such as geometry, 

topography, mechanical properties have a profound influence on the stem cell fate.5-8  

Manipulation of stem cells using materials, which can provide the necessary chemical 

cues based on chemistry, mechanics and molecular delivery, can advance the clinical 

applicability of stem cells.9 

In chapter 4, a chemically-defined polymer PMEDSAH was described, which 

successfully supported the long-term proliferation of undifferentiated hES cell cultures. 



 

101 

The aforementioned polymer coating contains zwitterionic sulfobetaine side chains 

composed of a anionic sulfonate (SO3
-) and positively-charged quarternary ammonium 

(N+) group on each unit. These polyzwitterions are isoelectric at neutral pH with a typical 

dipole moment of 20-30 D.10 The polymeric chains have been shown to undergo strong 

reversible intra- and inter-chain interactions depending on the molecular weight of the 

polymer.11  

 

Development of defined hES cell culture media 

Interactions with unknown components in the media can potentially contribute to 

differentiated cellular phenotype and add variability to the culture environment. In this 

respect, considerable research is being done towards understanding the role of various 

components in the hES cell culture medium and creating better defined media.12, 13  

Traditionally, “feeder-free” cultures of hES cells require the use of feeder-

conditioned medium and absence of this medium leads to spontaneous differentiation of 

the hES cells.9 

Significant progress has been made in the development of defined hES cell 

media,14, 15 however, long-term culture still requires use of recombinant extracellular 

matrix proteins16 or animal-derived matrices,17 which have raised substantial concerns 

because they are sources of variability18 and xenogeneic contamination.19  

Derivation and propagation of hES cells was first demonstrated in defined 

medium (TeSR1),14 which was subsequently modified by replacing some of the 

recombinant components with FDA-approved naturally-derived components and 

mTeSR1 medium was formulated.20 Complete mTeSR1 medium (STEMCELL 

Technologies, Vancouver, BC), which contains recombinant human bFGF and bovine 

serum albumin, has been formulated for use with Matrigel-coated surfaces. This defined 
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medium has been successfully used for extended feeder-free culture of hES cells and 

induced pluripotent stem (iPS) cells.  

Recently, several other commercially-available proprietary media, which claim 

clinical suitability, have become available. StemPro hESC SFM (Invitrogen, Carlsbad, 

CA), a reportedly fully-defined, serum-free and feeder-free medium, has been shown to 

support a number of hES cell lines.15, 21 The components used to create the medium are 

cGMP-manufactured providing a consistent environment for hES cell culture. However 

this medium also requires culture in the presence of Geltrex (reduced growth factor 

basement membrane matrix purified from Engelbreth-Holm-Swarm tumor; similar to 

Matrigel). 

 In an effort to exclude animal-derived components from the culture media, 

several products are being marketed which consist of either human derived components 

or human feeder cells. HEScGRO (Milipore, Billerica, MA) is a serum-free and animal 

component-free medium which has been shown to maintain various hES cell lines in the 

pluripotent state. However, use of mitotically-inactivated human feeder cell layers is 

recommended for successful hES cell culture in this medium. More recently, a serum-free 

medium conditioned with a proprietary human cell type (GlobalStem Inc., Rockville, 

MD) has been developed for culture of undifferentiated and pluripotent hES cells. 

Since long-term culture in the presence of the aforementioned defined media 

requires the use of naturally-derived matrices, development of a synthetic polymer matrix 

that can support hES cell expansion in defined media is important. This will enhance the 

knowledge of factors that regulate stem cell growth and differentiation, furthering the use 

of hES cells in biotechnology, and enable potential clinical applications. In this chapter, 

the application of zwitterionic polymer PMEDSAH (described in chapter 4) was 

extended towards fully-defined culture environments. 
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5.2 Methods 

Polymer synthesis   

Polymer coatings were prepared on tissue culture polystyrene (TCPS) dishes (35 

mm; Becton Dickinson and Co, Franklin Lakes, NJ).  Graft-polymerization was carried 

out using a 0.25 M solution of methacrylate monomers (Sigma-Aldrich, MO) in a 4:1 

mixture of water and ethanol.22  The TCPS dishes were activated using a UV-ozone 

cleaner (Jelight Co. Inc, Irvine, CA) for 40 min. Surface-activated dishes were immersed 

into the monomer solution at 80 oC for 2.5 h.  Polymer-coated dishes were allowed to 

cool to 50 oC and were rinsed with a warm saline solution (1% NaCl in water, at 50 oC).  

Polymer-coated dishes were then left overnight in saline solution at 50 oC.  Dishes were 

cleaned by ultra-sonication in DI-water and dried under a stream of nitrogen gas.  

Polymer-coated dishes were stored at room temperature prior to cell culture.  For FTIR 

spectroscopy and elllipsometry, a gold-coated substrate coated with poly-p-xylylene was 

included in each graft-polymerization reactions.23  

 

Characterization of polymer coatings 

Elemental analysis of the polymer coatings was conducted using X-ray 

photoelectron spectroscopy (Axis Ultra XPS, Kratos Analyticals, UK) equipped with a 

monochromatized Al Kα X-ray source.  Spectra were referenced to an unfunctionalized 

aliphatic carbon at 285.0 eV.  Presence of polymer coatings was confirmed using Fourier 

transform infrared (FTIR) spectroscopy (Nicolet 6700 spectrometer) using the grazing 

angle accessory (SAGA) with a grazing angle of 85o.  Coating thickness was recorded at 

a wavelength of 532 nm using EP3-SW imaging ellipsometer (Nanofilm Technology 

GmbH, Germany).  Four-zone nulling was performed at an angle of incidence of 70o and 
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an anisotropic Cauchy parameterization model was used for curve fitting. 

Nanoindentation was performed by CSM instruments Inc (Needham, MA) using a CSM 

NanoHardness tester equipped with a conospherical diamond tip (with a radius of 20 µm) 

in the load-control mode.  A typical nanoindentation experiment involved engaging the 

tip under loading rate of 1.00 mN/min, indenting to a maximum load of 0.5 mN, and then 

withdrawing the tip with the same rate as for the loading.  For each hydrogel coating, 

load-displacement data was acquired for 5 indentations.  Reduced modulus (Er) was 

calculated using the unloading portions of these load-displacement curves according to a 

method developed by Gerberich et al.24  

 

Enzyme linked immunosorbent assay (ELISA) for bFGF binding 

ELISA kit for bFGF (Raybiotech Inc., Norcross, GA) was used to study 

differences in bFGF binding to PMEDSAH- and PMAPDSAH- coated surfaces. ELISA 

assay was performed on each polymer in triplicates. Defined medium, mTeSR (1 ml) was 

added to each dish and incubated overnight at 37 oC. The dishes were washed with the 

wash buffer (provided in the kit) twice to remove unbound bFGF and incubated with 

biotinylated anti-human FGF (500 µl) for 45 min.  The dishes were washed twice with 

the wash buffer and incubated with HRP-streptavidin (500 µl) for 45 min. After two 

washing cycles, TMB substrate solution (250 µl) was added for 30 min for development 

of color which is  proportional to the amount of bFGF bound to the surface. Finally, a 

stop solution was added which changed the color from blue to yellow and the intensity of 

color was measured at 450 nm using a microplate reader (BioTek). Uncoated TCPS 

dishes were used as control substrates 
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Preparation of polymer-coated dishes before cell culture 

Before cell seeding, all polymer-coated dishes were sterilized with UV-light for 

overnight (12 h), washed twice with sterile phosphate buffer saline (PBS) and 

equilibrated with culture medium for at least 48 h at 37 oC in 5% CO2 atmosphere.  

 

Cell culture media preparation 

Culture medium for hES cells cultured on irradiated MEFs contained standard 

DMEM/F12 supplemented with 20% KnockOut serum replacement (GIBCO), 0.1 mM β-

mercaptoethanol, 1 mM L-glutamine, 1% non-essential amino acids and 4 ng/ml human 

recombinant basic fibroblast growth factor (Invitrogen; Carlsbad, CA).   

MEF-CM was prepared as described previously.25  Irradiated MEFs (8x106 cells) 

were seeded onto gelatin-coated culture dishes in medium composed of high glucose 

DMEM, 10% fetal bovine serum (FBS; GIBCO), 1% non-essential amino acids, and 200 

mM L-glutamine. After 24 h, MEF culture medium was replaced with the hES cell 

culture medium described above (60 ml).  This medium was left in contact with MEFs 

and was collected as MEF-CM after 24 h of conditioning.  Media exchange was 

conducted daily and MEF-CM was collected for 3 days.  The MEF-CM was frozen at -20 
oC and was supplemented with 0.1 mM β-mercaptoethanol, 2 mM L-glutamine, and 4 

ng/ml bFGF before use.  

Human-cell-conditioned-medium (hCCM, GlobalStem, Inc., Rockville, MD), 

mTeSRTM1 (STEMCELL Technologies, Vancouver, BC) and StemPro®hESC SFM 

(Invitrogen, Carlsbad, CA) were prepared according to manufacturers’ protocols, with the 

exception that defined medium, StemPro was prepared with DMEM/F12 plus L-

glutamine and 15 mM HEPES (GIBCO).   Media were pre-equilibrated at 37 oC in 5% 

CO2 atmosphere before use.   
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Media were pre-equilibrated at 37 oC in 5% CO2 atmosphere before use. 

 

Cell culture   

Federally-approved hES cell line H9 (NIH code: WA09; WiCell, Madison, WI) 

was used and cultured at 37 oC with 5% CO2.  Human ES cell colonies were observed 

every 48 h using a Leica stereomicroscope and differentiated cells were removed 

mechanically using a sterile “pulled-out” glass pipette.  Cell culture medium was 

replaced every 48 h. 

 

Cell culture media transition and passaging   

Before mechanical harvesting of hES cells growing on MEFs, cell culture 

medium was replaced by either MEF-CM or hCCM.  Similarly, a transition to defined 

media was performed. Cultures were passaged depending on size and density of colonies 

every 7-10 days.  Undifferentiated hES cell colonies were then mechanically passaged by 

cutting small aggregates of cells using a sterile “pulled-out” glass pipette.  About 50-100 

hES cell-aggregates were transferred to polymer-coated dishes.  

 

Cell-aggregate adhesion assay  

Number of adhered colonies and number of floating embryoid bodies (EBs) were 

counted 48 h after cell seeding, to calculate the percentage of cell-aggregate adhesion 

using the following formula:   
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Cell-aggregate adhesion (%) = (number of adhered colonies)*(100)/(number of 

adhered colonies + number of EBs floating).  Statistics were performed using an unpaired 

t-test.  

 

Cell population-doubling time 

Cell population-doubling time was calculated in terms of time required for the 

area of a colony to increase two-fold.26  ImageJ software (http://rsb.nih.gov/ij) was used 

to measure area of the colonies. Colony area (n=10) was calculated at five time-points 

(for 5 days after cell seeding), and cell population-doubling time was determined by 

fitting an exponential function.  Mean values were compared using an unpaired t-test.  

 

Immunocytochemistry 

Cells were fixed in 2% paraformaldehyde for 30 min at room temperature and 

then permeabilized with 0.1% Triton X-100 for 10 min.  Primary antibodies were diluted 

in 1% normal donkey serum and incubated overnight at 4 oC and detected by respective 

secondary antibodies.  Samples were imaged and captured using a Leica DM IRB 

inverted microscope with an Olympus DP-30 CCD camera.  Throughout this study, hES 

cells were characterized every fifth passage by detection of the following hES cell 

markers: OCT3/4, SOX2, SSEA4, TRA-1-60 and TRA-1-81. 

ImageJ software was used to count the number of OCT3/4 or SOX2 positive cells 

and number of cell nuclei present in each colony.  Percentage of cells positive for each 

marker was calculated for colonies cultured on PMEDSAH- and Matrigel- coated plates.  

Unpaired t-test was used to calculate p values.  
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Cytogenetic analysis 

Karyotype analysis was performed at Cell Line Genetics (Madison WI) applying 

standard protocols utilizing the GTL-banding method on at least 20 cells. 

 

Evaluation of pluripotency   

Undifferentiated H9 hES cells (< 5x106 cells) cultured on PMEDSAH and 

Matrigel in MEF-CM at passage 25 were injected subcutaneously into CB17 SCID mice 

(Charles River Laboratories, Wilmington, MA) to induce teratomas.  When tumors 

became palpable, mice were euthanized; tumors were harvested, and processed for 

histological analysis at the Center for Organogenesis Morphology core (University of 

Michigan). 

Pluripotency was also evaluated by EB formation from undifferentiated hES cells. 

Colonies were cultured in suspension in hES cell culture medium lacking bFGF to 

promote differentiation, for 10 days.  Alternatively, hES cells were allowed to overgrow 

in MEF-CM without bFGF for 10 days.  

 

Extraction and purification of total RNA 

Cells were manually scraped from dishes and pelleted by centrifugation at 800 g.  

Pellets were then disrupted by vigorous pipetting in 1000 µl of Trizol Reagent 

(Invitrogen).  Chloroform (200 µl) was added to this solution followed by centrifugation 

(~13,000 x g).  Aqueous phase containing RNA was separated and additionally purified 

using the RNeasy Mini-Kit (Qiagen, Valencia, CA) following the manufacturer’s RNA 

Clean-up protocol with the optional On-column DNAse treatment.  RNA quality was 
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checked using RNA 6000 Nano assays performed on the Bioanalyzer 2100 Lab-on-a-

Chip system (Agilent Technologies, Palo Alto, CA). 

 

Reverse-transcription PCR (RT-PCR) analysis 

Total RNA was reverse transcripted using SuperScript™ One-Step RT-PCR with 

platinum® Taq (Invitrogen).  In a single reaction (50 μl), 1 μg of total RNA and 20 pmol 

of forward (f) and reverse (r) primers were used (Supplementary Table II online).  The 

cDNA synthesis and pre-denaturation were carried out in the first cycle at 48 ºC for 45 

min, followed by a second cycle at 94 ºC for 2 min.  The PCR amplification was 

performed for 35 cycles at 94 ºC for 15 sec, 5 ºC for 30 sec, and 72 ºC for 1 min.  The 

final extension cycle was run at 72 ºC for 8 min. Finally, 10 μl of PCR reaction products 

were loaded onto a 1.0% agarose gel and size-fractionated.  

 

5.3 Results and discussion 

Physicochemical parameters such as surface topography, surface energy, surface 

charge and chemical composition of the surface have a profound effect on cellular 

response.27 The development of a standardized, controllable and sustainable culture 

matrix for hES cell populations constitutes an important step to elucidate basic stem cell 

function and may contribute towards future biotechnological and medical applications of 

hES cells. 
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Polymer synthesis  and characterization 

PMEDSAH and PMAPDSAH were synthesized by surface-initiated graft-

polymerization directly onto tissue culture polystyrene (TCPS) dishes.22  

Chemical composition of the polymer coatings was confirmed using Fourier 

transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS).  

Distinct IR bands at1732.9 cm-1, 1485 cm-1 and 1208.4 cm-1 indicated presence of 

carbonyl, quaternary ammonium and sulfonate groups respectively and clearly identified 

the PMEDSAH coatings. To further confirm evidence from FTIR studies, the elemental 

composition of PMEDSAH was quantified by means of XPS. Presence of characteristic 

signals associated with nitrogen, sulfur and oxygen at 402.0 eV, 168.0 eV and 532.0 eV, 

respectively as well as the relative composition of these elements showed good 

agreement with the expected chemical composition of PMEDSAH.  In addition, the high 

resolution C1s XPS spectrum of PMEDSAH revealed characteristic signals associated 

with hydrocarbon (C-H/C) at 285.0 eV, ammonium-bond carbon (-C-N+(CH3)2-) at 286.4 

eV, and ester carbon (-COO-) at 288.9 eV (Figure 5.1).  Taken together, FT-IR and XPS 

analyses not only established the chemical composition of PMEDSAH coating, but also 

provided strong evidence for the presence of sulfonate and ammonium groups at the 

surface 

Elemental analysis of PMAPDSAH using XPS revealed the presence of 

characteristic signals associated with carbon (285 eV), nitrogen (402 eV), oxygen (532 

eV) and sulfur (168 eV for S 2p) and the relative composition of these elements showed 

good agreement with the theoretical composition of the polymer (Table 5.1). In addition, 

from the XPS survey spectrum of PMAPDSAH, the ratio of nitrogen to sulfur was 

calculated to be 1.7 which compared well with the theoretical value of 2 and differs from 

that calculated for PMEDSAH (N:S = 1). 
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Contact angle measurements showed that the contact angle of PMAPDSAH was 

60.1±6.4o compared to 17.1±1.1o for PMEDSAH-coated dishes and 90.2±4.6o for 

uncoated TCPS (Table 5.2). Thus, PMAPDSAH-coated surfaces were more hydrophobic 

compared to PMEDSAH but slightly more hydrophilic than the uncoated TCPS surfaces. 

Nanoindentation measurements revealed that PMAPDSAH coatings had a higher 

elastic modulus of 3.3±0.2 GPa than that for PMEDSAH (2.5±0.1 GPa), further 

highlighting the differences between the two polymers (Table 5.2). 

 

Enzyme linked immunosorbent assay (ELISA) for bFGF binding 

It has been demonstrated  that basic fibroblast growth factor (bFGF) is essential 

for the culture of undifferentiated hES cells, especially in feeder-free culture 

environments.28, 29 In addition, bFGF rapidly degrades under standard cell culture 

conditions and requires specific stabilization.30, 31 In the past, it has been observed that 

mouse embryonic fibroblast conditioned medium (MEF-CM) can stabilize about 75% of 

exogenous bFGF, while unconditioned medium requires a higher initial concentration of 

bFGF to offset the bFGF degradation.31 Proteomic analysis of MEF-CM showed that the 

bFGF stabilization effect in MEF-CM was due to heparin sulfate proteoglycans secreted 

by the MEFs.31 This stabilization can be achieved through the addition of exogenous 

stabilization factors such heparin sulfate proteoglycans or structural motifs attached to the 

surface which mimic the effect of heparin.  

To better understand the underlying mechanisms governing the behavior of hES 

cells towards the two zwitterionic polymers, binding of bFGF was studied using an 

enzyme linked immunosorbent assay (ELISA). The polymer-coated and uncoated dishes 

were incubated with mTeSR medium (overnight at 37 oC) and bFGF ELISA was 

performed. The assay revealed that there was 2-fold higher binding of bFGF to the 
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zwitterionic polymer-coated surfaces compared to uncoated TCPS surfaces (Figure 5.2). 

This finding leads to the hypothesis that the zwitterionic sulfobetaine coatings may be 

involved in mediating an increased binding of FGF to the surface, thus stabilizing the 

growth factor longer during culture. 

 

hES cell culture on PMEDSAH in xeno-free conditions 

Towards a clinically-compliant hES cell culture system consisting of the synthetic 

matrix and a xeno-free medium, BG01 and H9 hES cells were grown on PMEDSAH-

coated dishes in the presence of a commercially-available human-cell-conditioned-

medium (hCCM). After 15 passages, BG01 and H9 cells showed similar cell population-

doubling times, expressed hES cell markers, retained normal karyotypes and remained 

pluripotent (Figure 5.3).  Interestingly, a significant increase in H9 hES cell-aggregate 

adhesion was observed on PMEDSAH using hCCM (86±6%) compared to MEF-CM 

(15±1%; Figure 5.4(A)).  Cell-aggregate adhesion was also significantly higher for H9 

cells in hCCM than for BG01 cells cultured under the same conditions (47±5%; Figure 

5.3(C)) suggesting that there may be important biological differences between cell lines 

in their expression of adhesion receptors. 

 

hES cell culture in defined conditions 

PMEDSAH was examined for its ability to support hES cell cultures in two 

serum-free defined media (StemPro and mTeSR).14, 15, 17, 21 StemPro medium was able to 

support 10 passages of H9 hES cells (Figure 5.4) However, BG01 hES cells could not be 

passaged beyond 3 passages in StemPro. After 10 passages of H9 cells in StemPro 

medium, cell population-doubling times, expression of undifferentiated and pluripotent 
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markers, and normal karyotypes were confirmed (Figure 5.4(A,B)). Moreover, H9 cells 

maintained the ability to differentiate into endoderm, mesoderm and ectoderm (Figure 

5.4(C,D)). On the other hand, hES cells grown in mTeSR could not be sustained on 

PMEDSAH. 

Further, PMAPDSAH was investigated for its ability to sustain hES cell culture in 

defined media. Unlike PMEDSAH, H9 cells were grown on PMAPDSAH in mTeSR for 

5 passages. Furthermore, PMAPDSAH also supported the proliferation of H9 hES cells 

in StemPro medium for 5 passages. Under both conditions, the cells expressed standard 

undifferentiated and pluripotent hES cell markers (Figure 5.5).  

 

5.4 Conclusions 

The work presented in this chapter represents a significant step towards a fully 

defined, reproducible culture system for hES cell expansion. Moving forward, this 

defined polymer coating provides us a platform to study the underlying mechanisms 

governing cell-biomaterial interactions, by removing all the variable factors previously 

present in the system. In addition, growth in fully-defined culture conditions has also 

allowed us to identify previously unsuspected differences between hES cell lines. This 

system represents a unique defined cellular microenvironment- chemically-defined 

substrate combined with a defined cell culture medium. 
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5.5 Figures and Tables 

 
 
Figure 5.1: Surface characterization of PMEDSAH. (A) Fourier transform infrared 
(FTIR) spectrum of PMEDSAH coating showing distinct bands at 1732.9 cm-1, 1485 cm-1 
and 1208.4 cm-1 which indicated the presence of carbonyl, quaternary ammonium and 
sulfonate groups, respectively. (B) Table lists elemental composition of PMEDSAH 
attained using X-ray photoelectron spectroscopy (XPS). Relative composition of these 
elements was in agreement with the expected chemical composition of PMEDSAH. 
Second table lists characteristic signals from high resolution C1s XPS spectrum of 
PMEDSAH. Signals associated with different chemical environments of carbon present 
in the polymer chain and the corresponding concentrations are given. These values 
correlate well with the theoretical values calculated based on the chemical structure of the 
polymer. 
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Figure 5.2: Amount of bFGF adsorbed onto PMAPDSAH- and PMEDSAH-coated dishes 
compared to uncoated TCPS dishes detected by bFGF ELISA (*p<0.05). 
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Figure 5.3: Characterization of BG01 and H9 hES cells on PMEDSAH in hCCM. (A) 
Fluorescence micrographs of colonies showing expression of undifferentiated markers: 
OCT3/4, SOX2, SSEA-4 and TRA-I-60. (B) Representative chromosomal spreads and 
RT-PCR analysis of embryoid bodies showing transcript expression of endoderm (AFP), 
ectoderm (NESTIN) and mesoderm (FLT-1).  β-ACTIN was used as positive control and 
for each primer set tested, a reaction lacking RNA was assessed in parallel as a negative 
control. (C) Comparison of percentage of cell-aggregate adhesion and cell population-
doubling time of both cell lines cultured on PMEDSAH in hCCM. 
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Figure 5.4: PMEDSAH supports culture of hES cells in defined medium. (A) Percentage 
of cell-aggregate adhesion (number of aggregates attached with respect to total 
aggregates passaged) and population doubling time (2-fold increase in colony area) for 
H9 hES cells cultured on PMEDSAH in MEF-CM, hCCM and defined medium. (B) 
Fluorescence micrographs of colonies of H9 cells cultured on PMEDSAH in StemPro 
medium showing expression of pluripotency markers: OCT3/4, SOX2, SSEA-4, TRA-I-
60 and TRA-I-81; and phase-contrast image.  (C) RT-PCR analysis of RNA from 
embryoid bodies showing expression of endoderm (GATA-4), ectoderm (KRT-18) and 
mesoderm derivatives (VE-CADHERIN).  β-Actin was used as positive control and for 
each primer set tested, a reaction lacking RNA was assessed in parallel as a negative 
control.  (D) Micrographs showing immunoreactivity for α-fetoprotein (endoderm), β-III 
tubulin (ectoderm) and smooth muscle actin (mesoderm) demonstrating the pluripotent 
state of H9 cells cultured on PMEDSAH in StemPro medium.   Scale bars indicate 200 
µm.
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Figure 5.5: Characterization of hES cells cultured on PMAPDSAH in defined media (a) 
StemPro (b) mTeSR. Fluorescence micrographs of colonies of H9 cells cultured on 
PMAPDSAH showing expression of undifferentiated marker, OCT3/4 and phase-contrast 
image
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Table 5.1: Elemental composition of PMAPDSAH attained using XPS. Relative 
composition of the elements was in agreement with the expected chemical composition of 
PMAPDSAH. 
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Table 5.2: Contact angle, reduced elastic modulus (GPa) for PMEDSAH and 
PMAPDSAH and initial hES cell-aggregate adhesion (%) in different media- MEF-CM, 
StemPro and mTeSR.  



 

121 

 5.6 References 

 
1. Metallo, C.M. et al. Engineering the stem cell microenvironment. Biotechnology 

Progress 23, 18-23 (2007). 
2. Hammer, D.A. & Tirrell, M. Biological adhesion at interfaces. Annu. Rev. Mater. 

Sci. 26, 651-691 (1996). 
3. Nel, A.E. et al. Understanding biophysicochemical interactions at the nano-bio 

interface. Nature Materials 8, 543-557 (2009). 
4. Guilak, F. et al. Control of stem cell fate by physical interactions with the 

extracellular matrix. Cell Stem Cell 5, 17-26 (2009). 
5. Ross, A.M. & Jason, A.B. Controlling stem cell fate with material design. 

Advanced Materials (2009). 
6. Janmey, P.A. & McCulloch, C.A. Cell mechanics: Integrating cell responses to 

mechanical stimuli. Annual Review of Biomedical Engineering 9, 1-34 (2007). 
7. Dawson, E., Mapili, G., Erickson, K., Taqvi, S. & Roy, K. Biomaterials for stem 

cell differentiation. Advanced Drug Delivery Reviews 60, 215-228 (2008). 
8. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs 

stem cell lineage specification. Cell 126, 677-689 (2006). 
9. Abraham, S., Eroshenko, N. & Rao, R.R. Role of bioinspired polymers in 

determination of pluripotent stem cell fate. Regenerative Medicine 4, 561-578 
(2009). 

10. Azzaroni, O., Brown, A.A. & Huck, W.T.S. UCST wetting transitions of 
polyzwitterionic brushes driven by self-association. Angewandte Chemie, 
International Edition 45, 1770-1774 (2006). 

11. Cheng, N., Brown, A.A., Azzaroni, O. & Huck, W.T.S. Thickness-dependent 
properties of polyzwitterionic brushes. Macromolecules 41, 6317-6321 (2008). 

12. Ding, V., Choo, A.B.H. & Oh, S.K.W. Deciphering the importance of three key 
media components in human embryonic stem cell cultures. Biotechnology Letters 
28, 491-495 (2006). 

13. Rajala, K. et al. Testing of nine different xeno-free culture media for human 
embryonic stem cell cultures. Human Reproduction 22, 1231-1238 (2007). 

14. Ludwig, T.E. et al. Derivation of human embryonic stem cells in defined 
conditions. Nat Biotechnol 24, 185-187 (2006). 

15. Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like 
growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, 4111-4119 
(2007). 

16. Braam, S.R. et al. Recombinant vitronectin is a functionally defined substrate that 
supports human embryonic stem cell self-renewal via alpha V beta 5 integrin. 
Stem Cells 26, 2257-2265 (2008). 

17. Brafman, D.A., Shah, K.D., Fellner, T., Chien, S., Williert, K. Defining long-term 
maintenance conditions of human embryonic stem cells with arrayed cellular 
microenvironment technology. Stem Cells and Development 18 (2009). 

18. Mallon, B.S., Park, K.Y., Chen, K.G., Hamilton, R.S., McKay, R.D. Toward 
xeno-free culture of  human embryonic stem cells. Int J Biochem Cell Biol 38, 
1063-1075 (2006). 



 

122 

19. Martin, M.J., Muotri, A., Gage, F. & Varki, A. Human embryonic stem cells 
express an immunogenic nonhuman sialic acid. Nat Med 11, 228-232 (2005). 

20. Ludwig, T.E. et al. Feeder-independent culture of human embryonic stem cells. 
Nature Methods 3, 637-646 (2006). 

21. Prowse, A.B., Wilson, J., Osborne, G.W., Gray, P.P., Wolvetang, E.J. 
Multiplexed staining of live human embryonic stem cells for flow cytometry 
analysis of pluripotency markers. Stem Cells and Development (2009). 

22. Wu, J.M. et al. A surface-modified sperm sorting device with long-term stability. 
Biomedical Microdevices 8, 99-107 (2006). 

23. Lahann, J. & Langer, R. Novel poly(p-xylylenes): Thin films with tailored 
chemical and optical properties. Macromolecules 35, 4380-4386 (2002). 

24. Gerberich, W.W. et al. Elastic loading and elastoplastic unloading from 
nanometer level indentations for modulus determinations. J. Mater. Res. 13, 421-
439 (1998). 

25. Villa-Diaz, L.G. et al. Analysis of the factors that limit the ability of feeder-cells 
to maintain the undifferentiated state of human embryonic stem cells. Stem Cells 
Dev (2008). 

26. Reubinoff, B.E., Pera, M.F., Vajta, G. & Trounson, A.O. Effective 
cryopreservation of human embryonic stem cells by the open pulled straw 
vitrification method. Human reproduction (Oxford, England) 16, 2187-2194 
(2001). 

27. Engel, E., Michiardi, A., Navarro, M., Lacroix, D. & Planell, J.A. 
Nanotechnology in regenerative medicine: the materials side. Trends in 
Biotechnology 26, 39-47 (2008). 

28. Levenstein, M.E. et al. Basic fibroblast growth factor support of human 
embryonic stem cell self-renewal. Stem Cells 24, 568-574 (2006). 

29. Amit, M., Shariki, C., Margulets, V. & Itskovitz-Eldor, J. Feeder layer- and 
serum-free culture of human embryonic stem cells. Biol Reprod 70, 837-845 
(2004). 

30. Kreuger, J., Spillmann, D., Li, J.P. & Lindahl, U. Interactions between heparan 
sulfate and proteins: the concept of specificity. J. Cell Biol. 174, 323-327 (2006). 

31. Levenstein, M.E. et al. Secreted Proteoglycans Directly Mediate Human 
Embryonic Stem Cell-Basic fibroblast growth factor 2 interactions critical for 
proliferation. Stem Cells 26, 3099-3107 (2008). 

 
 



123 

CHAPTER 6 

NITRIC OXIDE GENERATING STENT COATINGS 

Abstract 

This chapter describes a robust polymer coating that includes a novel nitric oxide 

generating chemistry. This coating was applied to intravascular stents such that the 

interface mimics the natural surface of endothelial cells (EC) that line all blood vessels 

with respect to NO generation. Briefly, chemical vapor deposition (CVD) was used to 

deposit functionalized coatings on the metallic stent surface. The functional groups were 

then used to attach catalytic sites that generate NO from endogenous plasma components 

(such as nitrosothiols). These coatings attempt to solve the problems of restenosis and 

thrombosis associated with the placement of coronary artery stents. 

 

6.1 Introduction 

Cardiovascular stents prompt a complex inflammatory healing reaction in the 

body as a result of interaction between the metallic stent surface and components in the 

blood. This includes processes such as protein adhesion, platelet activation, smooth 

muscle cell proliferation and thrombus formation over the stent surface.1  In recent years, 

various surface coatings have been applied to stents in order to reduce in-stent restenosis 

(re-narrowing of a coronary artery after treatment with a stent) and thrombosis.2-4  

Bioactive coatings containing restenosis-preventing drugs combined with a 

polymer-carrier, capable of releasing the drug, have been developed and marketed 
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extensively.5, 6 These drug-eluting stents have become extremely popular because of their 

ability to deliver the drug locally as opposed to systemic drug delivery with high dosages. 

However, these systems are limited by the amount of drug loaded onto the stent and their 

success depends on the favorable interactions between the various components of the 

complex. Furthermore, the use of exogenous drugs to decrease the biological response to 

stents is based upon the assumption that interruption of one of the intermediate processes 

will be sufficient to prevent restenosis 

An ideal stent coating would inhibit multiple pathways (both restenosis and 

thrombosis in addition to inflammation and infection) without causing systemic affects.  

Such a strategy, however, requires not only the identification of suitable therapeutic 

agent(s) with short biological half lives, but also advances in polymer technology to 

fabricate polymers that act as sophisticated drug carriers.  An alternative for the 

development of blood-compatible materials is the creation of coatings which release 

naturally-occurring active agents such as nitric oxide. Nitric oxide has been recognized as 

anti-inflammatory, nonthrombogenic and a promoter of wound-healing, thus highly 

suitable for biomedical coatings.7  NO is a naturally-occurring regulator in the human 

body, which plays a prominent role in the prevention of inflammation, thrombosis, 

atherosclerosis and promotes wound-healing.8  NO is continuously released by vascular 

endothelial cells at an approximate flux of 1×10-10 mol/cm2-min. Moreover, NO has an 

extremely short lifetime in blood (<1 sec) owing to rapid reaction with hemoglobin. 

Thus, the positive effects of nitric oxide can be exploited to enhance the properties of 

blood-contacting biomedical devices.  

A number of coatings have been developed for catheters and sensors, which 

locally release NO from molecules acting as NO donors such as diazeniumdiolates.9-15  

However, long-term applicability of such coatings is limited by the amount of the NO-

adducts loaded onto the stent. 
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It has been recently reported that blood contains a reservoir of NO precursors in 

the form of S-nitrosothiols (RSNO) and polymeric coatings containing lipophillic 

copper(II) complexes are capable of catalytically decomposing these endogenous RSNO 

species to NO in the presence of reducing molecules.16  It was successfully demonstrated 

that films containing a Cu(II) ligated cyclen (1,4,7,10-tetraazacyclododecane) linked to a 

methacrylate polymer network can catalytically generate NO, both in buffer solution and 

in contact with fresh blood.17 These coatings were capable of locally generating NO for 

extended periods of time. Cyclens are strong Cu(II) binders with binding constants 

approaching 1024 M-1.  In addition, the cyclen complex can be easily modified to contain 

functional groups, such as a methacrylate group, which allows for polymerization with 

other monomers.   

In this chapter, the challenge of applying the abovementioned chemistry to a stent 

surface in a robust manner is addressed. Herein, the synthesis of polymer coatings which 

catalytically generate NO in physiological ranges, from endogenous RSNOs and nitrites 

present in the blood, is reported. This mechanically-stable coating was successfully 

applied to stents and NO generation was observed in vitro in buffer solution. The main 

advantages of such a NO-generating stent coating (as opposed to the drug-eluting stents) 

is that it generates a naturally-occurring agent and is not limited by the drug loading. The 

coatings were extensively characterized with respect to chemical composition, adhesion 

and stability. 

 

6.2 Methods 

Synthesis of cyclen methacrylate 

Cyclen methacrylate was synthesized and characterized as previously described.17   
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Modification of stent surface with polymethacrylate/Cu(II)-cyclen coating 

Stainless steel stents were coated with the photoreactive CVD polymer, poly[(4-

benzoyl-p-xylylene)-co-(p-xylylene)] (PPX-CO-Ph), using standard CVD conditions.18, 19   

Starting material, 4-benzoyl[2.2]paracyclophane, was sublimed under vacuum (pressure 

of 0.5 mbar) and was converted by pyrolysis into reactive species, which polymerized 

after condensation on the substrate. Sublimation temperatures were kept between 110-

130 °C, while pyrolysis temperature was 800 °C. Subsequently, polymerization occurred 

on a rotating, cooled sample holder placed inside a stainless steel chamber with a wall 

temperature of 130 °C. A carrier gas was used throughout the CVD polymerization with 

constant argon flow of 20 sccm.  

A solution containing cyclen methacrylate (30%), 2-hydroxyethylmethacrylate 

(HEMA; Sigma-Aldrich, 60%) and polyethylene glycol dimethacrylate (PEG-dMA; 

Sigma-Aldrich, 10%) in methanol was spin-coated onto the stent. The stent was then 

exposed to broad-range UV radiation (~ 320 nm) for 30 min with constant rotation of the 

stent. The stent was then washed with DI-water and incubated in CuCl2 solution (10 mM 

in DI-water) for 3 hours at 50 oC. Finally the coated stent was rigorously washed with DI-

water to remove any non-specifically bound copper. For FTIR and ellipsometric analyses, 

flat stainless steel samples (Goodfellow, Cambridge, UK) were similarly coated. 

  

Characterization of polymer coating 

The elemental composition of the coatings was determined using Axis Ultra X-

ray photoelectron spectrometer (Kratos Analyticals, UK) equipped with a 

monochromatized Al Kα X-ray source.  Lens mode was in hybrid, pass energy was set to 
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160.0 eV with an X-ray power of 150 kW, and aperture was 600µm x 600µm.. Elemental 

maps of carbon (C1s), nitrogen (N1s) and copper (Cu2p) were performed at 285, 400 and 

930 eV respectively with an X-ray power of 150 kW. Fourier transform infrared (FTIR) 

spectroscopy was performed on a Nicolet 6700 spectrometer utilizing the grazing angle 

accessory (Smart SAGA) at a grazing angle of 85o. Scanning electron microscopy (SEM; 

FEI Quanta 200 3D) was employed to observe the morphology of before and after 

coating. 

 

In vitro nitric oxide measurements 

The stent was placed in a vial and PBS buffer (1 ml) was added. The buffer was 

degassed by bubbling nitrogen gas through the system. GSNO and GSH were injected 

into the system. The nitric oxide generated was measured using chemiluminescence 

measurements. NO flux was measured in the presence of 18 µM GSNO, 53.4 µM GSH 

and 2.5 µM EDTA 

 

Results and discussion 

Fabrication of polymethacrylate/Cu(II)-cyclen coating 

One of the main challenges is transferring the bioactive NO-generating polymeric 

coating onto the metallic stent surface. Thus a two-component approach was employed to 

apply the NO-generating polymer to the stent surface  (Figure 6.1). The top-most layer 

was composed of the polymethacrylate part containing the active cyclen-Cu complex. To 

attach the polymethacrylate coating to the metallic stent surface, a thin vapor-based 

polymer film was used as an adhesive layer. This base anchoring layer was a 
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photoreactive polymer (Figure 6.1c) fabricated using chemical vapor deposition (CVD) 

polymerization, employing a CVD installation consisting of a sublimation zone, pyrolysis 

zone and deposition chamber.18-20 For CVD polymerization, the precursor was slowly 

sublimed at a temperature of 110-130 oC and a low pressure of 0.5 mbar. The carrier gas-

argon (flow rate of 20 sccm) carried the precursor into the pyrolysis zone which was at a 

temperature of 800 oC. The samples were placed on a cooled sample holder at 10 oC. The 

photoreactive CVD polymer contained active sites which initiated the polymerization of 

the methacrylate layer upon exposure to UV-radiation. The CVD polymer film possessed 

good adhesion to a variety of substrates and exhibited excellent mechanical properties.  

The methacrylate monomer solution containing cyclen-derivatized methacrylate 

(31.5%), HEMA (66%) and polyethylene glycol dimethacrylate (PEG-dMA, 2.5%) was 

applied onto the photoreactive CVD-polymer coated stents for even distribution of the 

reactants. The stents were then UV-irradiated for 30 min with constant rotation to ensure 

uniform exposure of the complex stent surface, thus creating a crosslinked hydrogel on 

the CVD polymer. This coated stent was finally incubated in a solution containing 

copper(II) ions which conjugated to the cyclen sites present on the polymer coating. Non-

specifically bound copper was removed by rinsing the coated stents with water. 

 

Characterization of the polymer coating 

Surface elemental composition of the coating was discerned using X-ray 

photoelectron spectroscopy (XPS). Imaging capabilities of the XPS instrument were 

utilized for spatially-resolved mapping of the distribution of individual elements on the 

surface (Figure 6.2). A uniform distribution of the elements was observed along the struts 

of the stents in the composition map. More specifically, in the compositional map of 

stents coated with the polymethacrylate layer, a homogeneous distribution of nitrogen 
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and copper was detected, indicating the presence of copper-conjugated cyclen moieties. 

Moreover, from the XPS survey spectrum, ratio of copper to nitrogen was estimated to be 

0.2 which compares well with the theoretical value of 0.25. On the other hand, nitrogen 

and copper elements were not detected in the CVD-polymer coated stents which is 

consistent with the chemical composition of the CVD polymer. 

Furthermore, morphological assessment of the coating on the stent surface using 

scanning electron microscopy (SEM) revealed the presence of a uniform polymer coating 

on the struts of the stent (Figure 6.3). Micrographs obtained from SEM analysis also 

show that the composite film was mechanically stable even after stent expansion.  

Fourier transform infrared (FTIR) spectroscopy confirmed the presence of the 

carbonyl group characteristic of the methacrylates, as indicated by the strong signal at 

1712 cm-1 (Figure 6.4b). The broad peak seen at 3397 cm-1 showed the hydroxyl groups 

present in 2-hydroxyethyl methacrylate (HEMA) which were absent in the CVD polymer 

(Figure 6.4a).  

Taken together, these observations from imaging XPS, SEM and FTIR suggest 

that CVD polymerization combined with UV-polymerization not only produces a 

uniform coating on the stent surface, but the active component of the matrix, namely 

cyclen, is still present and conjugating copper. 

 

Measurement of nitric oxide  

Nitric oxide generated from cyclen-coated stents was measured in buffer solutions 

in vitro. The coated-stents were immersed in PBS buffer containing estimated 

physiological amounts of S-nitrosoglutathione (GSNO) and reducing agent glutathione 

(GSH). The NO generated from the stent was sent to a NO-analyzer which measured the 

NO using chemiluminescence techniques and the final NO-flux was reported based on 
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the stent surface area. As shown in figure 6.5, in two separate injections of GSNO, the 

CVD/polymethacrylate/Cu(II)-cyclen coated stents were able to convert the GSNO to NO 

under physiological conditions (37 oC, pH 7.4). NO generated from the cyclen-

methacrylate coated stents was in the physiological range whereas the CVD polymer-

coated stents demonstrated baseline fluxes. 

 

6.4 Conclusions 

Polymer coatings capable of catalytically generating nitric oxide from 

endogenous RSNOs and nitrites present in the blood, were fabricated. These robust 

coatings were applied to stainless steel stents and were extensively characterized to 

confirm the chemical composition, adhesion and stability of the coatings. Finally, NO 

flux measured from the coated stents was found to be in the physiological range. This 

novel polymer system can be used to improve the biocompatibility of implantable 

medical devices, specifically vascular grafts and stents 
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6.5 Figures and Tables 

 

 
 
Figure 6.1: (a) Scheme depicting the synthesis of polymethacrylate hydrogel coatings 
containing copper-conjugating cyclen complexes covalently linked to photoactivable 
CVD polymer. (b) Schematic showing the NO generation activity of the 
polymethacrylate/Cu(II)-cyclen coating. (c) Chemical structure of photo-reactive CVD 
polymer, poly[(4-benzoyl-p-xylylene)-co-(p-xylylene).
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Figure 6.2: XPS mapping (C1s: 285 eV, N1s: 400 eV and Cu2p: 930 eV) of 
polymethacrylate/Cu(II)-cyclen on CVD coatings on the stainless steel stents. 

C 1s N 1s Cu 2p 
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Figure 6.3: Micrographs obtained using SEM showing the morphology of the 
polymethacrylate/Cu(II)-cyclen on CVD coatings on the stainless steel stents after 
expansion. No defects in the coating were observed even after mechanical expansion of 
the stent. 
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Figure 6.4: Comparison of the infrared spectra of (a) CVD coating (b) 
polymethacrylate/Cu(II)-cyclen on CVD coatings on the stainless steel substrates 
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Figure 6.5: (a) NO flux from the stents coated with polymethacrylate/Cu(II)-cyclen on 
CVD coatings in the presence of 18 µM GSNO, 53.4 µM GSH and 2.5 µM EDTA. (b) 
NO flux measured from CVD polymer coated stents. Each arrow indicates a new 
injection of GSNO. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

7.1 Conclusions 

In this dissertation, a range of different biointerfaces were designed by integrating 

structural motifs from biology into materials to create biofunctional materials, which can 

control the interactions between materials and biology.  

In Chapter 2, two carbonyl-functionalized polymer coatings were synthesized 

using chemical vapor deposition (CVD) polymerization and characterized using surface 

analysis techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier 

transform infrared spectroscopy (FTIR). The polymer was stable in a range of organic 

solvents. The availability and reactivity of aldehyde groups was assessed using hydrazone 

formation by spatio-selective binding of hydrazide-functionalized biotin and sugars. On 

the other hand, polymer containing a perfluorinated side chain was employed to create 

superhydrophobic reactive coatings by combining the low energy coating with complex 

surface architecture. The self-assembly of biotinylated biphasic microparticles was also 

demonstrated by creating micropatterns of streptavidin on the surface of the 

perfluorinated polymer.  

In Chapter 3, alkyne-functionalized vapor-based polymer coating was fabricated 

and characterized using XPS and FTIR. The alkyne-functionalized polymer was 

amenable towards copper-catalyzed “click” reaction. Various azide-conjugated 

biomolecules such as proteins, saccharides and cell-adhesive peptides were covalently 

linked to the alkyne-functionalized surface in a spatio-selective manner. More 
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specifically, surfaces micropatterned with azide-functionalized laminin-derived peptide 

sequences was used to direct endothelial cell attachment. 

In Chapter 4, the issue of developing clinically-relevant defined 

microenvironments for human embryonic stem (hES) cell cultures was addressed. 

Towards this goal, a group of polymer coatings with different side chain chemistries were 

fabricated and tested for initial hES cell attachment and proliferation. Only, zwitterionic 

polymer, PMEDSAH, supported long-term self-renewal and pluripotency of hES cells in 

mouse embryonic fibroblast conditioned medium (MEF-CM). This represents a 

significant advance towards clinically-applicable culture systems. 

In Chapter 5, the effect of zwitterionic sulfobetaine containing polymers on hES 

cells was further extended to include serum-free defined culture media. PMEDSAH 

sustained the culture of hES cells for 15 passages in xeno-free human cell conditioned 

medium and for 10 passages in defined medium StemPro. Furthermore, another 

sulfobetaine-containing polymer, PMAPDSAH supported the proliferation of hES cells in 

both StemPro and mTeSR. This is a substantial improvement over PMEDSAH which 

was unable to support hES cell culture in the presence of mTeSR medium. 

In Chapter 6, a nitric oxide generating polymer coating was fabricated for 

cardiovascular stents. This coating consisted of a copper-conjugating ligand which was 

capable of generating NO using endogenous components of the blood. The polymer 

coating was extensively characterized using XPS, FTIR and SEM. Polymer coated stents 

generated NO in the physiological range, in the presence of nitrosothiols in buffer.  

To summarize, the observations and results detailed in this dissertation provide a 

toolbox of specialized interfaces, that improve the bioresponse towards materials and can 

be utilized in a variety of applications such as microfluidics, tissue engineering, 

biomedical devices and understanding basic biology  
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7.2 Future Directions 

Understanding the interaction between PMEDSAH and hES cells 

The ability of biointerfaces to modulate the behavior of human embryonic stem 

(hES) cells opens several avenues to study basic hES cell biology and applications 

towards lineage-specific differentiation. In order to determine the factors important for 

the hES cell attachment to PMEDSAH and PMAPDSAH, growth factor binding studies 

should be performed using basic fibroblast growth factor (bFGF)  ELISA, comparing all 

the polymer coatings (described in Chapter 4). This can be achieved by incubating the 

polymer-coated dishes with the different cell culture media and measuring the bFGF 

bound to the surface using ELISA. A general protein analysis should be performed using 

techniques such as SDS Page or Western blotting.   

Human ES cells growing on PMEDSAH and PMAPDSAH in the presence of 

StemPro can be compared directly by quantifying the amount of RNA extracted for RT-

PCR. The cells should be mechanically passaged onto PMEDSAH and PMAPDSAH 

coated dishes and cultured until passage point is reached. Amount of RNA extracted can 

be correlated to the number of undifferentiated hES cells growing on each coating. 

 To gain better control of PMEDSAH polymerization process, surface-initiated 

atom transfer radical polymerization (ATRP) can be utilized.1 Surface-initiated ATRP 

has garnered considerable attention because of its compatibility with a range of 

monomers and tolerance of water and excellent control of reaction kinetics. It has been 

successfully used to fabricate films for applications such as biomaterials, biosensors, and 

nano/micro-fabrication.2-7 To create the initiator coatings for ATRP, CVD polymerization 

can be used to fabricate poly(p-xylylene-4-methyl-2-bromoisobutyrate-co-p-xylylene) 

coatings.8 Preliminary experiments have shown that this process can be used to grow 

PMEDSAH films with different thicknesses by varying the concentrations of the catalyst 
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and the reaction time (Figure 7.1a). Chemical composition of the PMEDSAH-modified 

surfaces was confirmed using XPS and FTIR. Table 1 summarizes the XPS survey 

spectra of substrates after different time-points of surface-initiated ATRP for a catalyst 

concentration of 40 mM, which compared well with the theoretical composition of 

PMEDSAH. Contact angles of the films grown with different catalyst concentrations 

were compared with initiator-coated samples (Figure 7.1b).  

Human ES cells can be cultured on PMEDSAH films with varying thicknesses in 

the presence of different defined culture media to assess the importance of various 

physicochemical properties of PMEDSAH on hES cell propagation.. For instance, 

hydrophilicity and protein adsorption have been shown to be dependent on the thickness 

of the PMEDSAH coatings.9-11 Furthermore, thickness of the PMEDSAH films would 

determine the mechanical properties such as stiffness and modulus of the films, which 

influence the differentiation lineage of stem cells.12 The elastic moduli of PMEDSAH 

coatings synthesized using ATRP should be measured using nanoindentation and 

correlated to any observable differences in the cellular behavior.  

Adsorption of basic fibroblast growth factor (bFGF) can be assessed using ELISA 

experiments. In addition, surface plasmon resonance (SPR) spectroscopy can be utililized 

to study the kinetics of biomolecular interactions in real time, monitoring the unlabeled 

analyte molecule adsorption. This technique has a high degree of surface sensitivity that 

allows weakly bound interactions to be monitored in the presence of excess solution 

species. Furthermore, molecular structures of polymer surfaces and interfacial proteins 

can be investigated using a nonlinear optical spectroscopy, sum frequency generation 

(SFG) vibrational spectroscopy. This will enable understanding the interplay between the 

inter- or intrachain behavior of the zwitterionic PMEDSAH and orientation of the 

adsorbed proteins. Orientation and conformation of adsorbed proteins in turn determines 

the behavior of hES cells and can elucidate the unique behavior of PMEDSAH in 

supporting the growth of undifferentiated hES cells as compared to other polymers. 
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Exploration of the physico-chemical properties of the PMEDSAH platform may 

pave the way for exciting studies in basic biology and specific differentiation. Removal 

of unknown and undefined components from hES cell microenvironment will propel 

research towards a detailed analysis of hES cell-substrate interactions. More importantly, 

varying the physical properties of the surface independent of the chemical structure is a 

powerful means for studying the specific parameters influencing cell behavior. 

 

Towards multifaceted biointerfaces 

CVD polymerization has also been extended to create multifunctional polymer 

coatings containing two or more reactive groups which can be utilized for orthogonal 

surface reactions.13 14, 15 Gradients of biological ligands can also be fabricated using 

multifunctional CVD polymerization.15  

This is especially attractive for combining the different approaches mentioned in 

this dissertation in order to create sophisticated multifunctional biointerfaces. For 

instance, a copolymer containing ATRP initiator and alkyne functional groups can be 

used to immobilize azide-derivatized biomolecules together with controlled radical 

polymerization of PMEDSAH. The properties of such a multipotent coating will depend 

on the biomolecule conjugated with the surface, which could include enhanced adhesion, 

migration or lineage-specific differentiation of hES cells. The alkyne group can be used 

for the immobilization of azide-functionalized laminin-derived peptides, which have been 

used to promote attachment of undifferentiated human embryonic stem cells.16  

Furthermore, the multifunctional reactive CVD coatings can be used for covalent 

immobilization of growth factors such as fibroblast growth factor (bFGF) in conjuction 

with PMEDSAH polymerized using ATRP. In addition, bFGF can also be conjugated to 

the surface through non-covalent albeit specific interaction between surface-immobilized 
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heparin and growth factor molecules. These surfaces can be compared to culture systems 

containing soluble growth factors.   

Polyzwitterionic PMEDSAH, supported hES cell proliferation, whereas other 

polymers with the same backbone but differing side chain chemistries did not. The 

presence of both negative and positively charged groups on PMEDSAH can be 

investigated by using model surfaces that can systematically alter the surface charge 

balances to study their role in protein adsorption and cell culture in defined media. The 

CVD co-polymerization can be utilized to create surfaces with either sulfonate or 

ammonium groups as well as homogeneous surfaces with various ratios (CVD co-

polymerization) and gradients (two source CVD polymerization) of the 2 functional 

groups.  

For demonstration of the utility of reactive copolymer coatings for dual-surface 

immobilization, r-hirudin and heparin were used.14 Immobilization of r-hirudin, a 

recombinant protein which deactivates thrombin, may be one remediation approach for 

blood-contacting devices, such as cardiovascular stents. In addition, heparin is a highly-

sulfated glycosaminoglycan anticoagulant. Hirudin and heparin were immobilized onto 

co-polymer coating of PPX-CH2NH2/-COCF3 through aminomethyl group via a 

diisocyanate linker and carbonyl groups via adipic acid dihydrazide, respectively (Figure 

7.2).14 Moreover, co-immobilization of anticoagulant moieties together with the Cu(II)-

cyclen ligand would enhance the performance of blood-contacting devices.  

Finally, integration of the different strategies mentioned in this dissertation for the 

creation of stimuli-responsive materials, which have the ability to dynamically modulate 

surface properties would be a tremendous step for numerous biomedical applications, 

such as cell culture, tissue engineering, biosensors, biofouling and microfluidics. 

Dynamic remodeling of materials and interfaces is a widely observed phenomenon in 

nature, however examples of synthetic systems that can be switched on-demand are 
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scarce. Development of stimuli-responsive biomimetic interfaces will be the ultimate 

future direction for this dissertation. 
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7.3 Figures and tables 
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Figure 7.1: (a) Thickness of PMEDSAH films obtained by varying the concentration of 
CuCl and (b) the corresponding contact angle measurements obtained from those films.  
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Figure 7.2: Immobilization of hirudin and heparin onto vapor-based copolymer coatings. 
(a) Hirudin binding as measured by chromogenic assay. Normalized absorbance at 405 
nm are reported. n=3, *: p<0.05 compared to stainless steel. (b) Heparin binding as 
measured by toluidine blue absorbance. Normalized absorbance at 631 nm are reported. 
n=3, *: p<0.05 compared to stainless steel.
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Table 7.1: Preliminary data from XPS elemental analysis of the PMEDSAH films grown 
using ATRP for 30 min, 1 h, 2 h and 19.5 h compared to theoretical composition. 
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