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CHAPTER I

Introduction

1.1 Problem Overview

Over the past few decades, researchers in a wide range of disciplines have been

studying optimal path finding problems within a variety of applications. These ap-

proaches find an optimal way to traverse a complex medium or network under a

diverse set of constraints, and outside influences like weather. Computational ge-

ometry and geographical information systems analyze the shortest paths defined by

Euclidean distance and other metrics, often with the presence of polygonal obsta-

cles and weighted homogeneous regions. Optimal robot routing problems integrate

the system’s physical properties and constraints to find fastest or minimum energy-

consumption paths over various terrain. Naval vessel path-finding and navigation

integrate the vessel’s hull structure and forces exerted by waves and wind to mini-

mize travel time to a destination. Each aforementioned application adds complexity

to the original optimal path-finding problem, while integrating a number of assump-

tions in each scenario to make the problem more tractable. These assumptions often

simplify the problem such that it is inappropriate for real-life applications. In our

research, we relax a number of restrictive assumptions to create an accurate and

tractable model suitable for actual implementation.

1
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We study optimal path finding problems in a direction, location and time depen-

dent environment. Since the objective of a problem depends on the actual applica-

tion, we do not restrict our analysis to a specific objective function whenever possible.

Throughout this dissertation we discuss the problems of minimizing travel time, fuel

consumption, and various motions, as well as more general objective functions. The

main complexity of the problems arises from the dependence of the constraints and

cost function on the location of the mobile agent, the direction it is heading, and

time. Additionally, we integrate the system-dynamics to further constrain a feasible

path by maximum sharpness of the turn that an agent can make to add another

dimension of reality to our model.

Our work delivers a more realistic optimal path-finding model while reducing the

computational time required to find such a path. This is particularly important

since real-time implementation is essential for our applications. In addition, many

analytical results derived here provide insights into the structure of the problem, its

objective function, and the optimal solution. These insights provide a closed-form so-

lution to a large subset of problems where additional assumptions are applicable. For

such problems, we easily construct the analytical solutions instead of implementing

more involved, and often approximate, methods presented in literature.

1.2 Motivation: Optimum Vessel Performance in Evolving Nonlinear
Wave-Fields Project

Our research was motivated by an optimal vessel-routing project entitled “Opti-

mum Vessel Performance in Evolving Nonlinear Wave-Fields.” This five-year project

funded by the Office of Naval Research (ONR) Multidisciplinary University Research

Initiative (MURI) grant is a collaboration with the Department of Naval Architecture

and Marine Engineering at the University of Michigan, the Applied Physics Labora-
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tory at the University of Washington, and the Department of Electrical and Com-

puter Engineering at The Ohio State University. In this section, we provide a brief

overview of the project and the research tasks of the teams involved. Throughout the

dissertation, we continually revisit this project to illustrate the real-life application

of the developed methodology and results.

The goal of this project was to develop a system that can, in real-time, control the

behavior of a vessel, based on real-time measurements and forecasts of the wave-field

surrounding the vessel. Four major groups divided the project into the following

parts based on the areas of expertise:

1. Real-Time Measurement of Ocean Wave-Fields. The first group of researchers

develops and tests a coherent (Doppler) X-band radar for measuring of the ocean

wave-field surrounding a moving or stationary vessel in real-time.

2. Short-Term Forecasts of Evolving Nonlinear Wave-Fields. The second team

uses data collected by the radar to forecast the time-dependent evolution of the

wave-field.

3. Time-Domain Computation of Nonlinear Ship Motions. Based on the fore-

cast of the evolving wave-field, this group develops a numerical model to predict

nonlinear ship motions in the multidirectional wave-field.

4. Dynamic Real-Time Path Optimization and Vessel Control. As part of

the fourth team, we use the developed motion-prediction model to evaluate the

vessel speed, motions and other operability criteria conditional on a path chosen

to traverse the forecasted wave-field. We then integrate this information into

our optimal path finding algorithm to determine the most favorable path. An

adaptive control system developed by our colleagues guides the vessel along the
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found optimal path as closely as possible.

This project considers a wide range of problems, and the objective varies de-

pending on the specific application. Wave-field forecast can be used to predict time

periods and areas of calm seas to ensure a safe landing onto an aircraft carrier or

a successful launch-and-recovery operation in rough weather. Finding a path that

minimizes ship motion is important for improving safety and comfort of the pas-

sengers on board. Minimizing travel time is crucial in emergency rescue missions

and improves efficiency of the ship-to-ship or port-to-ship cargo transfer operations.

Alternatively, finding a path that minimizes fuel consumption instead of the vessel’s

travel time is favorable for some naval transportation problems. Consequently, in

our work we predominantly study a very general set of path finding problems, such

that either one of the aforementioned applications can be addressed with our models.

To summarize, our objective as part of this project is to develop computationally

efficient and numerically robust algorithms to solve path optimization problems in

time-varying media. We are given information about the environment surrounding

the vessel up to the radar visibility horizon and the dynamic restriction of the ves-

sel: operability constraints such as probability of capsizing and maximum root mean

square roll, and minimum turning radius constraining curvature of a feasible path.

We incorporate this information to find an optimal path to a specified desired desti-

nation. It is important to note that the wave forecasting model developed as part of

this project is precise, and the path finding problem is considered to be deterministic

if the initial condition (i.e, the observed wave-field) is accurate.
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1.3 Literature Overview

Existing literature details a wide variety of optimal path finding problems. While

some work analyzes path finding in a location, and possibly, time dependent medium,

others look at the scenarios of anisotropic (i.e., direction-dependent) environment.

However, no previous research studies a generalized model that includes all aforemen-

tioned aspects of the environment into a single analysis. In this section, we present

an overview of various areas of studies and applications that look at the optimal path

finding problems as they relate to our work. The subsequent chapters specify differ-

ent components of our model in more details and provide a more in-depth literature

review related to the chapter topic.

Geometric shortest path finding is a fundamental problem extensively studied in

computational geometry. Mitchell’s survey [45] gives a comprehensive overview of

all current work conducted in this field. Most computational geometry research is

restricted to finding an optimal path defined by Euclidean distance or other metrics,

such as L1-metric (the Manhattan distance) [43] and C-oriented paths [71]. Asym-

metric direction-dependence is occasionally considered in literature [12, 61], how-

ever the introduced anisotropy makes a strong assumption of the distance function

convexity which we relax in our analysis. The path-finding problems in a location-

dependent environment examine a presence of polygonal obstacles [3, 31, 37, 42, 44]

and uniform-weighted regions [11, 47, 67]. On the other hand, all the problems

studied in the field of computational geometry are predominantly static, and time-

dependence is not considered in these settings. It is important to note that Ge-

ographic Information Systems (GIS) is one of the primary application areas for

the computational geometry, and a number of papers published at GIS journals
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[14, 17, 66, 73] also discuss shortest path finding problems.

Optimal path finding research extends to other applications, such as robot, vessel,

airplane and unmanned aerial vehicle routing. In each of these areas, researchers cre-

ate the models specific to said application; unfortunately their analysis and results

cannot be easily transferred to other problems. For example, the problem of com-

puting an optimal path for a mobile robot considers friction and gravity forces for

various regions of terrain, and then uses this direction and location dependent cost

function to find a path that minimizes the total energy consumption of the robot

[34, 62, 63, 68]. Since surface contour does not change over time, this set of problems

only considers path finding in a static environment.

Optimal vessel routing evaluates how waves and wind affect vessel speed and

dynamics in finding an optimal path. For example, Philpott et al. [58] apply math-

ematical programming methods to create a yacht velocity prediction program that

computes the vessel speed for a specified range of wind speeds and yacht headings.

The resulting velocity prediction data is used in stochastic dynamic programming

models to find the yacht fastest path for uncertain weather [2, 56, 57].

A significant amount of work assumes that the vessel speed function can be written

analytically, either generally or specifically. This assumption allows researchers to

invoke various methodologies from calculus of variation and optimal control theory to

characterize an optimal path [24, 25, 39, 54, 55]. However, researchers typically use a

simplified form of the speed function in order to make the analysis more manageable.

Our colleagues working on the Optimum Vessel Performance in Evolving Nonlinear

Wave-Fields project are developing more accurate and involved models to evaluate

vessel dynamics and wave evolution. From our experience of working on this project,

it is clear that analytical functions cannot accurately describe the vessel movement
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through the waves, thus obliging us to look for alternative methods to solve the

problem.

Airline industry researchers analyze how weather affects airplane path planning

and air traffic management. For example, Nilim and his colleagues model the weather

as Markov chains where storms have a certain probability of becoming the obsta-

cles, thus preventing the airplanes from passing through those regions. Then, a path

finding model identifies a path minimizing the expected travel time and dynami-

cally reevaluates the path as more accurate information about the storms becomes

available [50, 49]. In their work, Nilim et al. assume that the airplanes have a con-

stant velocity, consequently reducing the problem to a shortest path finding problem

among stochastic obstacles.

Unmanned Aerial Vehicles (UAVs) have become widely employed in civilian and

military applications over the past few years. The problem of optimal path finding

for mini UAVs subjected to wind is similar in nature to the vessel routing problems,

and has been extensively studied in recent years. The direction dependence of the

speed function is introduced as a uniform wind vector field, which is added to a

constant isotropic ‘wind-free’ speed of the airplane [40, 41]. It is important to note

that the resulting speed function has very distinct structure, and more specifically,

the property of a convex polar plot. We study fastest-path finding problems for

the generalized speed functions. Path curvature restrictions are discussed in the

UAV path planning problems, however the minimum turning radius is assumed to

be constant. In our work, we observe that direction-dependent speed often implies

the direction-dependent nature of the minimum turning radius, and we address such

problems.
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1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter II we discuss optimal path

finding in an anisotropic, time and space homogeneous environment. We find a closed

form solution for the problems with obstacle-free domain and present a step-by-step

algorithm that finds the optimal paths. We employ our findings and adapt a visibil-

ity graph search method of computational geometry to an anisotropic environment.

Consequently, we deliver another algorithm that finds an optimal obstacle-avoiding

path in a direction-dependent medium.

Chapter III extends our analysis of path finding in an anisotropic, time and space

homogeneous environment to a set of problems where path curvature is constrained

by a direction-dependent minimum turning radius function. We invoke techniques

from optimal control theory to demonstrate the problem’s controllability, prove ex-

istence of an optimal path, and derive a necessary condition for optimality. Further

analysis characterizes an optimal path and presents an algorithm that facilitates the

implementation of the presented results.

The assumption of time and space homogeneity is relaxed in Chapter IV, where

we develop a dynamic programming model to find an optimal path in a location,

direction and time dependent environment. The results from preceding chapters are

integrated into the model to improve its accuracy, efficiency and run-time. The path

finding model addresses limited information availability, control-feasibility and com-

putational demands of a time-dependent environment. The application of the devel-

oped path finding model to the Optimum Vessel Performance in Evolving Nonlinear

Wave-Fields project is also presented in this chapter. The dissertation concludes

with Chapter V summarizing the results, contributions and future directions of our



9

work.



CHAPTER II

Optimal Path Finding in an Anisotropic Time and Space
Homogeneous Environment

2.1 Introduction

In this chapter, we address fastest-path finding problems for anisotropic (i.e.,

direction-dependent) speed functions, which occur, for example, in sailing, robotics,

and aircraft navigation. We assume that we know the points of origin and destination,

and that time and space homogenous speed is given to us as a function of heading.

Our objective is to find a path that minimizes the total travel time from the origin

point to the destination. Problems of optimal path finding in an obstacle-free domain

and in the presence of polygonal obstacles are discussed in this chapter.

The difficulty of optimal-path finding in anisotropic medium comes from the fact

that our travel-time function is asymmetric, that is, the time it takes to travel along a

straight line path from a to b, does not necessarily equal the time required to traverse

the reversed path ba. Therefore, our cost function is not a metric, which prevents

us from using more traditional and established approaches to solving optimal-path

finding problems. Furthermore, the anisotropic cost, in general, violates the triangle

inequality, which is another key property exploited in the Euclidean shortest-path

finding problems. Consequently, it is not guaranteed that one of the ‘taut-string’

paths has to be an optimal obstacle-avoiding path. Thus, the traditional approach

10
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of searching among a finite number of taut-string paths might not deliver an optimal

solution.

One of the most important applications for fastest-path finding algorithms for

direction-dependent speed functions is in the area of navigation of autonomous vehi-

cles (AVs). Autonomous vehicles play a crucial role in assisting with a wide range of

military and civilian tasks, and their utilization is rapidly increasing as AVs designs

and capabilities continue to improve. While able to accomplish the same missions

as people thus reducing the risk to human lives, they are also adept in performing

sets of tasks they are uniquely capable for. A recent report of the US Department of

Defence [70] affirms that “unmanned systems will continue to have a central role in

meeting our country’s diverse security needs, especially in the Global War on Terror-

ism.” In the report of the National Research Council of the National Academies [48],

it is argued that progress in the technologies of computing, robotics, and navigation

enables as well as limits the advances in AV capabilities. Therefore, computation-

ally efficient optimal-path finding is an important component to the improvement of

current autonomous systems.

In the absence of humans, unmanned systems heavily rely on autonomous naviga-

tion systems or autopilots. While some vehicles are remotely operated by people, an

increasing number of unmanned systems require only high-level commands from the

human, and then use an onboard computer system to perform the task autonomously.

The autonomous nature of unmanned systems gives rise to the need for computation-

ally efficient onboard optimal path finding programs that can run in real-time. As the

unmanned aerial, ground, and maritime vehicles experience forces created by winds,

uneven terrains and waves, their speed functions exhibit the anisotropic property, the

main focus of this chapter. For example, mini-Unmanned Aerial Vehicles (UAVs)
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that are widely used in military surveillance often face directional wind fields, which

create significant anisotropic effects on its speed. We provide analytical solutions

to the task of determining a fastest path for these and other direction-dependent

domains. The analytic character of these solutions not only provides insight into the

properties of an optimal policy but also offers the opportunity for exceptionally fast

computation of these paths for on-line implementation.

It is important to note that the analysis and results presented in this chapter apply

to a wide range of optimal path finding problems, and not only to the problems of

minimum travel time. Despite the fact that our discussion here is limited to the

direction-dependent speed functions, it can be easily extended to other anisotropic

cost functions, such as fuel and energy consumption or agent’s motions.

2.1.1 Related Work

Optimal path planning problems have been studied for a very long time. However,

the majority of the to date work concentrates on determining the Euclidean shortest

paths (see Mitchell’s extensive survey [45]). Even though a number of extensions

to optimal path planning have been considered (e.g., traversing through polygonal

constantly-weighted regions [47, 67]), most work is restricted to isotropic metrics,

where the cost function is assumed to be independent of the traveling direction.

Some shortest path finding problems discussed in literature [43, 71] introduce the

direction dependency by restricting the feasible paths to a fixed set of orientations,

however the resulting cost function preserves its metric properties.

Optimal path finding problems in the anisotropic media have been discussed for

some specific applications, however the solution approach and results are often cus-

tomized to the application at hand. Furthermore, presence of obstacles is not com-

monly addressed in the published studies. For example, Rowe [62] and Rowe and
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Ross [63] study optimal path finding for a mobile agent (e.g., robot or vehicle) across

hilly terrains, where a simple and specific physical model of friction and gravity forces

is used to compute the anisotropic cost function for the agent.

In the area of optimal yacht sailing, Philpott, Sullivan and Jackson [58] created

a mathematical programming model that evaluates the vessel speed for a specified

range of wind speeds and yacht heading angles. The resulting velocity prediction

data is used to find the yacht fastest path by applying the dynamic programming

algorithms [2, 56, 57]. Alternatively, Sellen [64] studies the optimal sailing routing

problems for a more abstract scenario, and presents results similar to ours by heuris-

tically arguing that an optimal path in an obstacle-free domain consists of at most

two line segments. He also introduces a set of polygonal obstacles and extends his

discussion to this restricted domain. However, Sellen’s analysis is limited to problems

with very specific speed functions represented by piecewise-linear reciprocal functions

(i.e., for a direction-dependent speed function denoted by V (θ), the function 1
V (θ)

is

assumed to be piecewise-linear). Unlike in the aforementioned work, we make abso-

lutely no assumptions on the structure of the speed function, and find closed form

solutions for any time and space homogeneous medium.

Some researchers employ the calculus of variations and optimal control theory for

optimal vessel routing problems. Faulkner [24, 25], and Papadakis and Perakis [54],

utilize Euler’s equations to characterize an optimal path; while Kimball and Story

[33] establish an analogy between traveling light ray and an optimal path seeking

sailboat, and extend the use of optical notions such as Fermat’s principle, Huygens’

principle and Hamilton’s optics to sailing strategies. These optimal-path finding

methods reduce to solving systems of differential equations, which can present a

difficult and challenging task.
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Reif and Sun [61] investigate a problem of time-optimum movement planning

through a set of polygonal regions, where anisotropy is introduced as a uniform flow

assigned to each region. The actual velocity of an object is defined to be the sum of

a flow vector and a chosen control velocity. While the resulting speed function does

display the direction-dependent property, its structure is very specific, and Reif and

Sun’s analysis does not translate to more general problems addressed in this chapter.

In the most recent work on anisotropic movement, Cheng et al. [11] generalize the

problem studied by Reif and Sun, and look at the shortest path finding in anisotropic

regions where the direction-dependency of the speed is not restricted to the effect of

the uniform flow. Nevertheless, Cheng et al. still limit their research to the speed

function with a very specific structure, referred to as a ‘convex distance function’ (first

discussed by Chew and Drysdale [12]). Their convex distance function is equivalent

to our case of a convex linear path attainable region, however the results presented

in our work subsequently relax the convexity assumption and deliver a closed form

fastest path among obstacles for a general anisotropic speed function. In addition,

we provide rigorous proofs previously omitted in the published work that discussed

the convex distance functions.

2.1.2 Overview of the Results

This chapter presents an analytical form solution to the fastest-path finding prob-

lem for any given anisotropic speed function. We demonstrate that an optimal path

in a general obstacle-free, time and space homogeneous medium is piecewise-linear

with at most two line segments (i.e., one waypoint). Consequently, we merge these

results with the visibility graph search methods developed for Euclidean shortest

path problems [3, 37], to develop an obstacle-avoiding fastest-path finding algorithm

for an anisotropic speed function. Our powerful results provide computationally
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fast techniques for finding a closed form solution to the very large class of applied

problems discussed earlier.

While our main results make no assumptions about the structure of the speed

function, we first consider a special case of the problem where the speed polar plot (or

the linear path attainable region) encloses a convex region. This restricted scenario

provides important insight and intuition to the structure of an optimal path for the

more general case. Consequently, we relax the convexity assumption to consider

a case for a very general speed function. One of our main results is presented in

Theorem 2.10, which characterizes a fastest path for an arbitrary speed function

in an obstacle-free domain. Algorithm 1 describes the step-by-step procedure to

construct such an optimal path. (We note that a fastest path between two points is

not necessarily unique, and therefore refrain from using a definite article ‘the’, and

in general refer to it as ‘a fastest path’.) In addition to characterizing a fastest path,

we also compute a bound on the improvement in travel time were one to choose to

follow an optimal path as opposed to traversing the simpler linear path between the

two points. This bound is an important tool for evaluating tradeoffs, as well as for

proving our key theorem.

We employ our findings for fastest path in an obstacle-free domain to the prob-

lems that consider the presence of polygonal obstacles. For the speed functions

corresponding to convex linear path attainable regions, the straight line path is a

fastest path in R2, and the triangle inequality holds true in an obstacle-free do-

main. Consequently, fastest-path finding in a polygonal domain can be restricted

to a modified visibility graph, similarly to Euclidian shortest-path finding problems.

The triangle inequality might not hold true for a general speed function. In that case,

an augmented speed function corresponding to the convex hull of the original speed
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polar plot is used to find a lower bound on the minimum travel time for our problem.

We use the results for an optimal path in the obstacle-free domain to construct an

obstacle-avoiding path that achieves this lower bound, thus implying its optimality.

The rest of the chapter is organized as follows. Subsection 2.1.3 provides the key

notation used throughout the chapter and gives a more rigorous statement of the

problem. Section 2.2 develops and presents fastest paths for an anisotropic speed

function in an obstacle-free domain. This section includes the analysis for a convex

linear path attainable region (Subsection 2.2.1); the construction of a bound on the

optimal travel time for the general speed function (Subsection 2.2.3); and the later

employment of this bound to prove Theorem 2.10 that characterizes a fastest path

in a general anisotropic medium (Subsection 2.2.4). In Subsections 2.2.1 through

2.2.4, we assume that a speed function takes on only positive values, where as in

Subsection 2.2.5 we discuss the problem of feasibility and fastest paths for the case

where speed can be zero for some headings, such as in the cases of stalling or infeasible

headings. Subsection 2.2.6 concludes the section with the description of Algorithm

1 that facilitates the implementation of the presented results.

The following Section 2.3 extends our analysis and results to the obstacle-avoiding

fastest-path finding problems in anisotropic domain. Similarly to our discussion of

the obstacle-free domain, we first find an optimal path for the case of a convex linear

path attainable region (Subsection 2.3.1) and then relax the convexity assumption

to find a path for an arbitrary speed function (Subsection 2.3.2). Algorithms 2 and

3 describe the fastest-path finding procedures corresponding to each of the cases.

Section 2.4 concludes this chapter with the examples of applications of our results

for the vessel and unmanned aerial vehicle routing problems. Finally, Subsection

2.4.2 summarizes the findings and contribution of the presented work.
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2.1.3 Notation and Problem Statement

In this section, we introduce the notation and a precise description of the fastest-

path finding problem that we analyze in this chapter.

The problem of interest is to find a fastest path from one given point to another

for a direction-dependent speed function. We consider two separate scenarios of the

problem: (i) an obstacle-free domain where all the feasible paths must lie in R2;

and (ii) a domain containing a set of polygonal obstacles that must be avoided. We

are given a direction-dependent speed function, which characterizes the movement

within the domain. The speed is assumed to only depend on the heading direction,

implying a time and space homogeneous domain (with the exception of obstacles).

Next, we introduce the notation to be used throughout the chapter.

Let P denote a set of open polygonal obstacles, such that their closures do not

intersect, or in other words, the distance between any two obstacles is assumed to be

greater than zero. Note that since each obstacle is assumed to be an open set, the

movement along its edges is permitted. All the feasible paths, including a starting

points s and a target point t, are assumed to lie in the free space, denoted by F ,

which we define as the compliment of the obstacles, or F := R2\P . For consistency,

we use this notation and terminology for both aforementioned scenarios, including

the obstacle-free case where we set P = ∅.

We define Pst to be the set of all continuous and rectifiable feasible paths from

the start point s to the target point t. That is, Pst = {p : [0, 1] → F such that

p(0) = s, p(1) = t, p is continuous and rectifiable}. Then, for any p ∈ Pst, let t(p)

denote the travel time required to traverse the path p.

Let V (θ) for 0 ≤ θ ≤ 2π denote the maximum attainable speed for a given

heading θ. Unless otherwise specified, we assume that V (θ) > 0 for all θ ∈ [0, 2π].
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Allowing the speed function to take on a value of zero for some headings might

result in an infeasible problem. Consequently, this case requires special attention

and is discussed separately in Section 2.2.5. It is worth noting, that time and space

homogeneous nature of our problem, allows us to assume, without loss of optimality,

that one always travels at the maximum attainable speed, since voluntary speed

reduction would never result in a faster path.

We define Lδ(x) to be the linear path attainable region (LPAR) for a given point

x ∈ R2 and time δ > 0. That is, Lδ(x) is the set of all points that can be reached in

a fixed time period, δ > 0, from point x along a straight line path. In other words,

Lδ(x) = {y ∈ R2 : ‖y−x‖ ≤ δV (θy−x)}, where θy−x and ‖y−x‖ denote the angle and

length of a vector y − x, respectively. Note that V (θ) uniquely defines Lδ(x) for a

given x and δ, and vise versa. In the presence of obstacles (i.e., P �= ∅) it is assumed

that x /∈ P, and δ is too small to reach any obstacles from x. An alternative way

to define Lδ(x), is to introduce an elementary LPAR, L, uniquely defined by V (θ)

as L = {y ∈ R2 : ‖y‖ ≤ V (θy)}. Then from time and space homogeneity we have

Lδ(x) = x + δL. Note that L is equivalent to a region enclosed by a polar graph of

the speed function V (θ), and is often referred to as the ‘speed polar plot’ in some

literature.

Let Aδ(x) be the attainable region (AR). That is, Aδ(x) is the set of all points that

can be reached in a fixed time period, δ > 0, from point x ∈ R2. We can give a more

precise definition of Aδ(x) as follows, Aδ(x) = {y : ∃p ∈ Pxy such that t(p) ≤ δ}.

Note that in the definition of Aδ(x), we do not restrict a path to be the straight

line path, that is, Aδ(x) represents the set of all points that can be reach in time δ

following any rectifiable path from point x. Similarly to the definition of LPAR, we

assume that x /∈ P , and δ is too small to reach any obstacles from x, if P �= ∅.
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Finally, we let the function τ(x, y) : R2 × R2 → R+ denote the travel time from

point x to point y following the straight line path connecting these two points.

We assume that τ(x, y) is only defined if the straight line segment xy does not

intersect the set of obstacles P . Then τ(x, y) = min{δ : y ∈ Lδ(x), δ > 0}. The

value of τ(x, y) can be also computed explicitly using the speed function V (θ) as

τ(x, y) = ‖y−x‖
V (θy−x)

. Note that τ(x, y) is not well defined if V (θy−x) = 0, in which case

we set τ(x, y) = ∞.

Now, we can give the formal statement of our problem.

Problem statement: For a given speed function V (θ) : [0, 2π] → R+, a starting

point s ∈ F , and a target point t ∈ F , find a fastest path from s to t that lies in F .

That is, our objective is to find p∗ ∈ Pst such that t(p∗) ≤ t(p) for all p ∈ Pst.

2.2 Fastest-Path Finding for an Anisotropic Speed Function in an Obstacle-
Free Domain

In this section we study the fastest-path finding problems in an obstacle-free

domain, that is, P = ∅ and F = R2 for the entire Section 2.2.

2.2.1 Fastest Path for a Convex Linear Path Attainable Region

We first analyze a problem restricted to the convex linear path attainable region

(LPAR), as this special case gives an intuitive and insightful analysis of the problem,

and it then can be extended to a general case. Therefore, throughout Section 2.2.1,

we assume that Lδ(x) is convex for all x and δ; in other words, the convex combination

of any two points in the set Lδ(x) is contained by that set (see Figure 2.1). Note

that from the time and space homogeneity of the speed function V (θ), we know that

if Lδ(x) is convex for some specific x and δ, then it is convex for all x ∈ R2 and all

positive δ.
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Figure 2.1: An example of a convex linear path attainable region Lδ(x).

Let m(x) denote the smallest non-negative scalar such that Lm(x)(0, 0) contains

point x. We can also write m(x) := inf{r : x
r
∈ L1(0, 0), r > 0}. Observe that since

L1(0, 0) is a closed set, the infimum is achieved and the definition can we rewritten

as m(x) := min{r : x
r
∈ L1(0, 0), r > 0} as long as x �= (0, 0). Also, note that

since L1(0, 0) = 1
m(x)

Lm(x)(0, 0) is a convex set in R2 and (0, 0) is its interior point,

we conclude that m(x) is the Minkowski functional. We then know from [38] that

the Minkowski functional m(.) satisfies the inequality m(x1 + x2) ≤ m(x1) + m(x2)

for all x1, x2 ∈ R2. A couple of algebraic manipulations lead to the fact that m(x)

reduces to the straight line travel time function τ(.), that is, τ(x, y) = m(y − x) for

all x, y ∈ R2. We now show that the equivalent inequality holds true for the travel

time function τ .

Lemma 2.1. For any x, y, z ∈ R2, we have τ(x, y) ≤ τ(x, z) + τ(z, y). That is,

traveling time along the straight line path from x to y is never greater than the time

it takes to travel along straight lines from x to z and then from z to y. (See Figure

2.2)
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Figure 2.2: Illustration of the inequality from Lemma 2.1, τ(x, y) ≤ τ(x, z) + τ(z, y).

Proof.

τ(x, y) = m(y − x)

= m(y − x + z − z)

= m((z − x) + (y − z))

≤ m(z − x) + m(y − z) = τ(x, z) + τ(z, y).

We now can use the inequality from Lemma 2.1 to show that the straight line

path between two points is a fastest path for a convex LPAR, Lδ(x). Recall that

p ∈ Pst is an arbitrary continuous and rectifiable path from s to t, and that t(p)

denotes the travel time along the path p. Then we can state the following lemma.

Lemma 2.2. For a convex Lδ(x) and an arbitrary continuous and rectifiable path

p ∈ Pst, we have τ(s, t) ≤ t(p). In other words, in the case of a convex LPAR, the

travel time along the straight line path is never greater than that of any other path.

Proof. Since the length of any continuous and rectifiable path p, in the limit, equals to

the length of a piecewise-linear approximation, we can iteratively apply the inequality

from Lemma 2.1 to obtain the desired result.
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Figure 2.3: Polygonal path approximation.

To compute t(p) we apply polygonal approximation to the path p. Choose an

arbitrary partition Π of interval [0, 1], i.e., let Π = (r0, r1, r2, ..., rk) such that 0 =

r0 < r1 < r2 < ... < rk−1 < rk = 1. Let mesh |Π| be the maximum length ri − ri−1 of

a subinterval of Π, that is, |Π| = max1≤i≤k{ri − ri−1}. Then Π defines a polygonal

approximation to p, i.e., the polygonal arc from p(0) to p(1) having successive vertices

p(r0), p(r1), ..., p(rk) (see Figure 2.3).

Then, the traveling time along the polygonal approximation of the path can be

written as η(p, Π) =
∑k

i=1 τ(p(ri−1), p(ri)). However, as we let |Π| approach zero,

thus increasing the number of vertices, the polygonal approximation in the limit is

equal to path p; then so are their travel times (this follows from the assumption that

path p is rectifiable). Given this,

(2.1) t(p) = lim
|Π|→0

η(p, Π).

Note that for any arbitrary partition Π, η(p, Π) = τ(p(r0), p(r1))+τ(p(r1), p(r2))+

...+τ(p(rk−1), p(rk)). After iteratively applying inequality from Lemma 2.1 we obtain

η(p, Π) ≥ τ(s, t). Substituting this into equation (2.1) results in τ(s, t) ≤ t(p).

Lemma 2.2 above provides the fastest path between two points for a convex LPAR.

Furthermore, the following theorem adds that convexity of an LPAR is also a neces-



23

sary condition for the straight line path to be optimal.

Theorem 2.3. A fastest path in R2 from an arbitrary start point s ∈ R2 to any

other point in R2 is a path along the straight line connecting the two points if and

only if the linear path attainable region Lδ(x) is a convex set for all x ∈ R2.

Proof. Lemma 2.2 concludes that a fastest path from an arbitrary start point s ∈ R2

to any other point in R2 is a path along the straight line connecting the two points

if the linear path attainable region Lδ(x) is a convex set for all x ∈ R2.

Now, we prove the only if statement of the theorem by contradiction.

Select an arbitrary start point s ∈ R2 and assume that Lδ(s) is not convex. Then,

there exist x1, x2 ∈ Lδ(s) and λ ∈ [0, 1] such that λx1 + (1 − λ)x2 /∈ Lδ(s), and we

set point y = λx1 + (1 − λ)x2.

Since x1, x2 ∈ Lδ(s), we have τ(s, x1) ≤ δ and τ(s, x2) ≤ δ. Then, consider the

following path p: from point s, we first travel following the vector λ(x1−s) and then

continue on following the vector (1 − λ)(x2 − s) (Figure 2.4). Our path p starts at

point s and ends at point s + λ(x1 − s) + (1 − λ)(x2 − s) = λx1 + (1 − λ)x2 = y.

Note that time and space homogeneity give us that traveling time for this path,

t(p) = λτ(s, x1) + (1− λ)τ(s, x2) ≤ λ · δ + (1− λ) · δ = δ. However, τ(s, y) > δ since

y /∈ Lδ(s). We reach a contradiction that the straight line path from s to any point

in R2 is not necessarily the fastest path if the attainable region is not convex. Thus,

Lδ(s) has to be convex.

It is important to acknowledge that earlier work on ‘convex distance functions’

[9, 11, 12] have stated some results similar to Lemma 2.1 and Theorem 2.3. However,

none of the found literature provides a rigorous proof in its entirety, compelling us

to include our proofs developed independently of the cited literature.
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Figure 2.4: Theorem 2.3 counter example for a non-convex linear path attainable region.

Next, we analyze optimal path finding for a general LPAR, which may or may

not be convex.

2.2.2 Properties of an Attainable Region and the Corresponding Linear Path Attain-
able Region

From this point on, we relax the convexity assumption for the linear path attain-

able region, Lδ(x), and analyze the problem for a general time and space homoge-

neous speed function. In this section, we provide a series of lemmas, theorems and

propositions stating supporting properties of LPARs and the corresponding attain-

able regions, ARs. Lemmas represented here are the building blocks for our main

results presented in the following sections.

Proposition 2.4. Lδ(x) = Aδ(x) if and only if Lδ(x) is convex.

Proof. First, we prove the if direction of the proposition by contradiction.

Assume Lδ(x) �= Aδ(x). From the definitions of Lδ(x) and Aδ(x), we know that

Lδ(x) ⊆ Aδ(x). Then, Lδ(x) ⊂ Aδ(x), that is, ∃y ∈ Aδ(x), s.t. y /∈ Lδ(x). Hence,

there exists a non-linear path p from point x to point y, such that traveling time along

this path is less than traveling time along a straight line path from x to y. However,
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Theorem 2.3 states that for a convex linear path attainable region, a straight line

path is the fastest path between any two points in R2. Thus, we reach a contradiction

and conclude that if Lδ(x) is convex, then Lδ(x) = Aδ(x).

Next, we prove the only if direction of the proposition by contradiction.

Assume that Lδ(x) = Aδ(x) but Lδ(x) is not convex. From Theorem 2.3 we know

that if Lδ(x) is not convex, then ∃x, y ∈ R2 such that the straight line path from x

to y is not a fastest path. Let δxy be the minimum travel time from x to y. Then

y ∈ Aδxy(x) but y /∈ Lδxy(x) since traveling time along the straight line segment from

x to y will be greater than δxy. This contradicts our assumption that Lδ(x) = Aδ(x).

Hence, our assumption that Lδ(x) is not convex was incorrect.

Comparison of Two Distinct LPARs and Their Corresponding ARs.

Consider two arbitrary maximum attainable speed functions V 1(θ) and V 2(θ)

defined on θ ∈ [0, 2π]. Recall that each speed function uniquely defines the linear

path attainable region for a given time interval, and vise versa. Thus, let L1
δ(x)

and L2
δ(x) be the linear path attainable regions corresponding to the speed functions

V 1(θ) and V 2(θ), respectively. Then we can make the following observations about

L1
δ(x) and L2

δ(x).

Lemma 2.5. L1
δ(x) ⊆ L2

δ(x) if and only if V 1(θ) ≤ V 2(θ) for all θ.

Proof. We first show that if V 1(θ) ≤ V 2(θ) ∀θ then L1
δ(x) ⊆ L2

δ(x). Select an

arbitrary point y ∈ L1
δ(x). Then from the definition of L1

δ(x), we have ‖y − x‖ ≤

δV 1(θy−x). Since V 1(θ) ≤ V 2(θ) ∀θ, we know that ‖y − x‖ ≤ δV 2(θy−x) as well.

Hence, y ∈ L2
δ(x). Since point y ∈ L1

δ(x) was chosen arbitrarily, we can conclude

that L1
δ(x) ⊆ L2

δ(x).

Next, we prove the other direction of the lemma by contradiction. We need to show
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that if L1
δ(x) ⊆ L2

δ(x) then V 1(θ) ≤ V 2(θ) ∀θ. Assume that V 1(θ) � V 2(θ) for some

θ. Then, ∃θ∗ ∈ [0, 2π] such V 2(θ∗) < V 1(θ∗). Select y ∈ L1
δ(x) such that θ∗ = θy−x

and ‖y − x‖ = δV 1(θy−x). Then δV 2(θ∗) < δV 1(θ∗) = δV 1(θy−x) = ‖y − x‖ and

y /∈ L2
δ(x). We reach a contradiction, since L1

δ(x) ⊆ L2
δ(x). Hence, our assumption

that V 1(θ) � V 2(θ) for some θ was incorrect.

Lemma 2.6. Let A1
δ(x) and A2

δ(x) be the attainable regions corresponding to linear

path attainable regions L1
δ(x) and L2

δ(x), respectively. Then, L1
δ(x) ⊆ L2

δ(x) implies

A1
δ(x) ⊆ A2

δ(x).

Proof. From Lemma 2.5, we know that if L1
δ(x) ⊆ L2

δ(x) ⇒ V 1(θ) ≤ V 2(θ) ∀θ. Thus,

for any heading direction speed V 2(θ) is always at least as great as V 1(θ). Select an

arbitrary y ∈ A1
δ(x). From the definition of attainable region A1

δ(x), there exists a

continuous path p : [0, 1] → R2 from point x to point y, such that if a mobile agent’s

maximum speed function is V 1(θ), the travel time from x to y is no greater than δ,

i.e., tV 1(p) ≤ δ. Now, consider following this path p with the maximum speed given

by function V 2(θ). Since V 1(θ) ≤ V 2(θ) ∀θ, we know that travel time along path p

with speed corresponding to function V 2(θ), tV 2(p), will be at most tV 1(p). Hence,

tV 2(p) ≤ tV 1(p) ≤ δ and thus, point y also belongs to set A2
δ(x). Since y ∈ A1

δ(x)

was chosen arbitrarily, we can conclude that A1
δ(x) ⊆ A2

δ(x).

Attainable Region Corresponding to a Given Linear Path Attainable Region.

The problem discussed in our work assumes that a maximum attainable speed

function V (θ) is given for all θ ∈ [0, 2π]. Since the speed function uniquely defines

the linear path attainable region for a given x and δ, Lδ(x), one can always use

the definition of the LPAR to find Lδ(x) corresponding to a given function V (θ).

Theorem 2.3 establishes the fact that a straight line is not necessarily the fastest
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path for a non-convex Lδ(x), and from Proposition 2.4 we know that Lδ(x) �= Aδ(x)

if Lδ(x) is not convex. Thus, finding the attainable region, Aδ(x), corresponding

to a given speed function is not always a straight forward task. In this section, we

establish how one can find the attainable region corresponding to a given Lδ(x).

Lemma 2.7. The convex combination of any two points in Lδ(x) is contained in

Aδ(x), i.e., ∀x1, x2 ∈ Lδ(x) and ∀λ ∈ [0, 1], λx1 + (1 − λ)x2 ∈ Aδ(x).

Proof. Select arbitrary x1, x2 ∈ Lδ(x) and λ ∈ [0, 1]. Note that λx1 + (1 − λ)x2 may

not lie in Lδ(x), since set Lδ(x) might not be a convex set. Let y = λx1 + (1− λ)x2.

Since x1, x2 ∈ Lδ(x), τ(x, x1) ≤ δ and τ(x, x2) ≤ δ.

Now consider the following path p: from point x, we travel following the vector

λ(x1−x) and then, continue on following the vector (1−λ)(x2−x) (This path is the

same path as the one constructed in the proof of Theorem 2.3 which can be seen in

Figure 2.4.) Then, our path p starts at point x and ends at point x+λ(x1−x)+(1−

λ)(x2−x) = λx1 +(1−λ)x2 = y. Using time and space homogeneity, we can find the

travel time for this path: t(p) = λτ(x, x1) + (1 − λ)τ(x, x2) ≤ λ · δ + (1 − λ) · δ = δ.

Consequently, y ∈ Aδ(x). Since x1, x2 and λ were chosen arbitrarily, we can conclude

that the set of all convex combinations of points from Lδ(x) lies in Aδ(x).

Theorem 2.8. Attainable region, Aδ(x), is the convex hull of the corresponding

linear path attainable region, Lδ(x), i.e., Aδ(x) = conv(Lδ(x)).

Proof. The statement conv(Lδ(x)) ⊆ Aδ(x) follows directly from Lemma 2.7. It is

worth noting, that path p constructed in the lemma’s proof is not necessarily a fastest

path from x to y, it is just a path that reaches point y in time less than or equal to

δ.
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Next, we show that Aδ(x) ⊆ conv(Lδ(x)). Consider a new linear path attainable

region L′
δ(x) = conv(Lδ(x)). Since our linear path attainable region L′

δ(x) is convex,

from Proposition 2.4 we know that the corresponding attainable region A′
δ(x) =

L′
δ(x). Since Lδ(x) ⊆ L′

δ(x), from Lemma 2.6 it follows that Aδ(x) ⊆ A′
δ(x). And

since A′
δ(x) = conv(Lδ(x)) ⇒ Aδ(x) ⊆ conv(Lδ(x)). Hence, Aδ(x) = conv(Lδ(x)).

2.2.3 Bound on the Optimal Travel Time

From Theorem 2.3, we know that sometimes a straight line path is not necessarily

a fastest path for a given speed function V (θ). In particular, a straight line is the

fastest path for a convex linear path attainable region, but not necessarily so for

a non-convex region. Here, we calculate a bound on the shortest travel time error

if the straight line path is implemented for a non-convex LPAR. A lower bound

on the minimum travel time is not only important for assessing the penalty for

deviating from the optimal path by following a straight line, but the bound also

plays a significant role in the proof of our key result: by showing that in some cases

the travel time for our proposed path is equal to the lower bound, we prove its

optimality.

Consider a non-convex linear path attainable region, L1
δ(x), corresponding to some

speed function V 1(θ). Then, we can calculate a bound on a decrease in the travel time

from point x to point y by following an optimal path instead of the straight line path,

without actually knowing the optimal path. Consider a new linear path attainable

region defined as the convex hull of the original LPAR, that is, L2
δ(x) = conv(L1

δ(x)).

And let V 2(θ) be the maximum attainable speed function associated with the new

LPAR. From Theorem 2.3, we know that for L2
δ(x), the fastest path from x to y

is along the straight line segment connecting these two points, lxy, with the total
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Figure 2.5: Computing a bound on the decrease in travel time for a non-convex linear path attain-
able region, L1

δ(x).

travel time τ2(x, y) = ‖y−x‖
V 2(θy−x)

. Since L1
δ(x) ⊂ L2

δ(x), from Lemma 2.5 we know that

V 1(θ) ≤ V 2(θ) for all θ. Then, the smallest travel time from x to y for the linear

path attainable region L1
δ(x), denoted by t∗

L1
δ(x)

(x, y), is at least as much τ2(x, y), i.e.,

t∗
L1

δ(x)
(x, y) ≥ τ2(x, y).

Define k to be the point of intersection of the line connecting points x and y, and

the boundary of the linear path attainable region L1
δ(x), i.e., k := lxy ∩ bd(L1

δ(x)).

Similarly, we define k′ := lxy ∩ bd(L2
δ(x)) (see Figure 2.5). Note that the sets L1

δ(x)

and L2
δ(x) are closed and therefore contain their boundaries. Also note that the

travel time along the straight line path from x to y corresponding to the linear path

attainable region L1
δ(x) is τ1(x, y) = δ ‖y−x‖

‖k−x‖ . Set β := ‖k−x‖
‖k′−x‖ ≤ 1. Then, we have the

following bounds on t∗
L1

δ(x)
(x, y).

τ2(x, y) ≤ t∗
L1

δ(x)
(x, y) ≤ τ1(x, y)

δ
‖y − x‖
‖k′ − x‖ ≤ t∗

L1
δ(x)

(x, y) ≤ δ
‖y − x‖
‖k − x‖

βδ
‖y − x‖
‖k − x‖ ≤ t∗

L1
δ(x)

(x, y) ≤ δ
‖y − x‖
‖k − x‖

βτ1(x, y) ≤ t∗
L1

δ(x)
(x, y) ≤ τ1(x, y)(2.2)

From inequalities (2.2), we deliver the following proposition.
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Proposition 2.9. The optimal travel time for a non-convex LPAR is at most β

times shorter than following a straight line path from x to y, where β := ‖k−x‖
‖k′−x‖ .

That is, the traveling time would at most decrease by 100(1− β) percent, if one were

to follow an optimal path instead of traveling along the straight line.

This lower bound is next used to show that a proposed path is, in fact, optimal.

2.2.4 Fastest Path for an Arbitrary Linear Path Attainable Region

In the earlier Section 2.2.1 we solved an instance of our fastest-path finding prob-

lem for a convex linear path attainable region (LPAR). In this section, we describe a

closed form solution to our fastest path problem in R2 for any speed function, even

when corresponding Lδ(x) fails to be convex. The following theorem is one of the

key results of this chapter.

Theorem 2.10. Consider a linear path attainable region Lδ(x). For two arbitrarily

given points x, y ∈ R2, let k denote the intersection point of the line connecting x

and y, lxy, and the boundary of the set Lδ(x), i.e., k := lxy ∩ bd(Lδ(x)). Similarly,

let k′ := lxy ∩ bd(conv(Lδ(x))). Then, the fastest path from x to y is described by one

of the following two scenarios.

1. If k = k′, the fastest path from x to y is the straight line segment connecting

these two points (Figure 2.6).

2. If k �= k′, the fastest path from x to y consists of two line segments: the straight

line segment from point x to point z = x + αλ∗(x1 − x) and the second line

segment from point z to point y, where α = ‖y−x‖
‖k′−x‖ and x1, x2 ∈ Lδ(x) s.t. ∃λ∗ ∈

[0, 1] : k′ = λ∗x1 + (1− λ∗)x2. (See Figure 2.7, and note that (y − z)‖(x2 − x)).

Proof. 1. Consider the case where k = k′. From inequalities (2.2), we have βτ(x, y) ≤
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Figure 2.6: Illustration of Theorem 2.10 scenario 1: k = k′.
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Figure 2.7: Illustration of Theorem 2.10 scenario 2: k �= k′.

t∗Lδ(x)(x, y) ≤ τ(x, y), where β := ‖k−x‖
‖k′−x‖ and t∗Lδ(x)(x, y) is the minimum travel

time from x to y. Since k = k′, we have β = 1, and τ(x, y) ≤ t∗Lδ(x)(x, y) ≤

τ(x, y) ⇒ t∗Lδ(x)(x, y) = τ(x, y). This means that the travel time from x to y

along the straight line path equals the minimum travel time, and hence, straight

line path is a fastest path from x to y.

2. Now, we consider the case where k �= k′. From definition of k′, we have that

k′ ∈ conv(Lδ(x)). Then, ∃λ∗ ∈ [0, 1] and ∃x1, x2 ∈ Lδ(x), such that λ∗x1 + (1−

λ∗)x2 = k′. Note, that since x1, x2 ∈ Lδ(x), we know that τ(x, x1) ≤ δ and

τ(x, x2) ≤ δ.

From inequalities (2.2), we have t∗Lδ(x)(x, y) ≥ δ ‖y−x‖
‖k′−x‖ = δα, where t∗Lδ(x)(x, y) is

the minimum travel time from x to y. Now, consider the following path p: from
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point x we follow vector αλ∗(x1 − x), and then, continue on following vector

α(1−λ∗)(x2−x). Note, that the first part of the path is equivalent to following

a straight line segment from point x to point x + αλ∗(x1 − x) = z. And the

second part of the path ends at point x + αλ∗(x1 − x) + α(1 − λ∗)(x2 − x) =

x+α((λ∗)(x1 −x)+ (1−λ∗)(x2 −x)) = x+α(k′−x) = y. Hence, the proposed

path p is the same path as in the statement of the theorem. This proves the

existence of the path described in the theorem.

Next, we want to find the travel time along this path p, t(p). From the space and

time homogeneity property, we have t(p) = αλ∗τ(x, x1) + α(1 − λ∗)τ(x, x2) ≤

αλ∗ ·δ+α(1−λ∗)·δ = αδ. Since travel time for path p is less than or equal to the

lower bound on the minimum travel time from x to y (i.e., t(p) ≤ t∗Lδ(x)(x, y)),

t(p) must be equal to the minimum travel time from x to y. Hence, our path p

is, in fact, a fastest path from x to y.

It is worth noting that in the case when k �= k′ (corresponding to scenario 2 of

Theorem 2.10) the fastest path constructed in the theorem is not uniquely optimal.

It is only one of the infinitely many feasible paths with the same minimum travel

time. Note that any zigzag path from x to y restricted to the traveling directions of

the vectors x1 − x and x2 − x would correspond to the same minimum travel time.

Furthermore, the straight line path in the case of k = k′ might also not be uniquely

optimal. Depending on the structure of the speed function, it is possible that a

piecewise-linear path would have the same optimal travel time as the straight line.
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2.2.5 Problem Feasibility and Fastest-Path Finding for a Non-negative Speed Func-
tion

All the analysis and results presented above assume that V (θ) > 0 for all θ ∈

[0, 2π]. However in practice, the speed function V (θ) can take on the value of zero

for some headings, i.e., leading to a ‘stall’. For example, a vehicle traveling across

some hilly terrain might encounter impermissible headings due to overturn danger

or power limitations [63]. On another hand, a sailing boat can not travel in head

sea corresponding to a zero speed for that heading [57]. In this section, we discuss

how allowing V (θ) to take on zero values for some headings can change the results

presented in the previous sections and in particular, its possible effects on problem

feasibility. Consequently, we will allow V (θ) ≥ 0,∀θ ∈ [0, 2π] for the discussion in

this section. To avoid the trivial case, we assume that there always exists some θ

such that V (θ) > 0.

Feasibility and Optimal Path Finding for a Convex LPAR.

Similar to a positive speed function case, convexity of a linear path attainable

region (LPAR) is a useful property that simplifies the optimal path finding task.

Therefore, we first analyze the case where LPAR, Lδ(s), is convex. In the following

section, we look at a more general case where Lδ(s) does not have to be convex.

Lemma 2.11 below helps establish the existence of a feasible path from s to t.

Lemma 2.11. If V (θ) = 0 for some θ ∈ [0, 2π], and the corresponding linear path

attainable region, Lδ(s), is convex, then there exists a line passing through the starting

point s such that none of the points belonging to one of the half-planes created by this

line can be reached. See Figure 2.8.

Proof. If V (θ) = 0 for some θ, then s has to be a boundary point of the convex set
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L (s) t

Figure 2.8: Example of a convex LPAR where V (θst) = 0; there is no feasible path from s to t.

Lδ(s). Therefore, there exists a supporting line passing through s such that Lδ(s)

lies on one side of this line. Consequently, there is no linear combination of feasible

headings that would deliver us to any point belonging to the other half-space.

Next, Theorem 2.12 describes an optimal path from s to t for a convex LPAR.

Theorem 2.12. Assume that LPAR, Lδ(s), corresponding to some speed function

V (θ) ≥ 0, is convex. Then,

1. if V (θst) = 0, a feasible path from s to t does not exist; and

2. if V (θst) > 0, a fastest path from s to t is along the straight line path st.

Proof. 1. Proof of this statement follows from Lemma 2.11. We can construct

a supporting line to Lδ(s) at point s, that separates the LPAR and point t.

Concluding, that no feasible path from s to t exists (see Figure 2.8).

2. To prove the second statement, we select an arbitrary ε > 0, such that ε <

minθ{V (θ) : V (θ) > 0}. Then, define a new speed function V ′(θ) as follows (see
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Figure 2.9).

(2.3) V ′(θ) =

⎧⎪⎨
⎪⎩

V (θ), if V (θ) > 0

ε, if V (θ) = 0

By construction, V (θ) ≤ V ′(θ) for all θ ∈ [0, 2π]. Then, from Lemma 2.5 and

Lemma 2.6 we know that a fastest path corresponding to the speed function

V (θ) cannot be faster than an optimal path corresponding to V ′(θ). Since

V ′(θ) > 0 for all θ, we can apply Theorem 2.10 to find a fastest path from s to t

corresponding to that speed function. Note that from ε < minθ{V (θ) : V (θ) >

0}, we know that the intersection point of the line st with the boundaries of

LPAR and the intersection point of line st with LPAR’s convex hull are equal

to each other, corresponding to scenario 1 of Theorem 2.10. Therefore, an

optimal path for the speed function V ′(θ) is a straight line path st. Since

V ′(θst) = V (θst), the straight line path is also feasible for the original speed

function, and it has the same travel time. Hence, st is an optimal path for the

original speed function V (θ).

Feasibility and Optimal Path Finding for an Arbitrary LPAR.

We now relax the convexity assumption for a linear path attainable region and

analyze optimal paths for a general Lδ(s). Note that results presented below apply

to a convex as well as a non-convex LPAR cases. However, if one knows that the

linear path attainable region is convex, application of Theorem 2.12 would be more

straight forward.

Recall that θst denotes the heading angle of the vector t − s. It is apparent that

if V (θst) > 0, then the optimal path finding problem is feasible. We are interested
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Figure 2.9: Linear path attainable region corresponding to the speed function V ′(θ).

in describing necessary and sufficient conditions for the problem to be infeasible.

Assuming V (θst) = 0, we can define θ
¯

and θ̄ as given below.

θ = inf{θ∗ : V (θ) = 0,∀θ ∈ [θ∗, θst]}(2.4)

θ̄ = sup{θ∗ : V (θ) = 0,∀θ ∈ [θst, θ
∗]}(2.5)

Note that infimum and supremum in equations (2.4) and (2.5) might not be

actually achieved. Also note that in defining θ
¯

and θ̄ we extend the domain of the

speed function to [−π, 3π], by observing that V (θ) = V (θ + 2π),∀θ. This extension

is necessary to guaranty the continuity of the interval at the boundary points θ = 0

and θ = 2π. Now, we are ready to state our problem feasibility theorem.

Theorem 2.13. A feasible path from s to t does not exist if and only if V (θst) = 0

and θ̄−θ
¯
≥ π.

Proof. To prove the if statement of the theorem, we observe that if V (θ) = 0,∀θ ∈

(θ
¯
, θ̄), θ̄−θ

¯
≥ π and θst ∈ [θ

¯
, θ̄], then no linear combination of feasible headings would

deliver you from point s to point t. Figure 2.8 provides a visual example.
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Figure 2.10: Existence of a feasible path from s to t: path sxt.

Next, we prove the only if direction of the theorem by contradiction. Assume

that there does not exist a feasible path from s to t, but either V (θst) �= 0 or θ̄−θ
¯
< π.

Recall that θ
¯

and θ̄ are not defined if V (θst) �= 0, thus it is not possible for both

conditions to be violated simultaneously. Clearly, if V (θst) �= 0 ⇒ V (θst) > 0,

which would mean that the straight line path from s to t is feasible. On the other

hand, if θ̄−θ
¯
< π, then ∃ε1, ε2 ≥ 0 such that V (θ

¯
−ε1) > 0, V (θ̄ + ε2) > 0 and

(θ̄+ε2)−(θ
¯
−ε1) < π. Therefore, ∃α ∈ [0, 1] such that θst = α(θ

¯
−ε1)+(1−α)(θ̄+ε2);

and hence we can construct a feasible path from s to t by first traveling in the

direction θ
¯
−ε1 and then turning to the direction θ̄ + ε2. See Figure 2.10. We reached

a contradiction which proves that the original assumption of nonexistence of a feasible

path was incorrect.

Next, Theorem 2.14 delivers an optimal path from s to t for a general linear path

attainable region.

Theorem 2.14. Consider V (θ) ≥ 0 for all θ ∈ [0, 2π], and let Lδ(s) be the corre-

sponding linear path attainable region. Then,

1. if V (θst) = 0 and θ̄−θ
¯
≥ π, a feasible path from s to t does not exist; and
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Figure 2.11: An optimal path from s to t, szt.

2. if V (θst) > 0 or θ̄−θ
¯
< π, then a fastest path from s to t is characterized the

same way as in Theorem 2.10, where x = s, y = t and if V (θst) = 0 we set

k = s. (See Figure 2.11.)

Proof. 1. Proof of the first statement follows directly from Theorem 2.13.

2. [Sketch] The proof of this statement is analogous to the proof of Theorem 2.12

part 2. The optimality of a path characterized in Theorem 2.10 has been only

proven for the positive speed function, where s is an interior point of the cor-

responding LPAR. Thus, we first define the new speed function V ′(θ) as given

by equation (2.3), then we apply Theorem 2.10 to the new speed function, and

finally, we show that the found path is also feasible and has the same travel

time for the original speed function V (θ), making it an optimal path for our

problem.

2.2.6 Fastest-Path Finding Algorithm

Sections 2.2.1-2.2.5 characterize an optimal path between any two points in R2

for an arbitrary speed function V (θ). In this section, we discuss the implementation
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of the presented results and provide an algorithm that can be implemented by a

computer program (e.g., on-board autonomous navigation system) to find a fastest

path from a given start point s ∈ R2 to a given target point t ∈ R2. The presented

algorithm checks the feasibility of the problem as discussed in Section 2.2.5 and then

implements the results of Theorem 2.10 in the case of a feasible problem.

Since, in practice, the direction-dependent speed is usually evaluated by a com-

puter program, we assume that the values of a speed function V (θ) is given for a

discrete set of equally spaced heading angles, θ, which we denote by the set of polar

coordinates S = {(θ0, V (θ0), ..., (θn, V (θn)}. (The speed values for the intermediate

heading angles are assumed to be equal to the linear interpolation within a polar

coordinate system, see Figure 2.12 for example.) Note that in the case when an

analytical function of V (θ) is available, we still have to discretize the speed function

in order to be able to implement the fastest-path finding procedure by a computer.

Our first step is to check the feasibility of the problem. Theorem 2.13 states the

necessary and sufficient condition for a problem to be infeasible. If those conditions

are not satisfied, we know that an optimal path exist and we can proceed to finding

such a path.

The first step in finding a fastest path is to construct a convex hull of the linear

path attainable region. Construction of a convex hull of a finite number of points in

R2 is a well studied problem, and its details are omitted. However, we recommend

the use of Graham’s Scan algorithm [16, 28] to accomplish this task. The advantage

of this algorithm is that it uses a technique called “rotational sweep,” processing

vertices in the order of polar angles they form with a reference vertex. The polar

nature of our LPAR makes Graham’s Scan a favorable choice as it forgoes the sorting

procedure required for other algorithms.
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Figure 2.12: L1(s) and its convex hull: ∠ost = θst, ∠osg = θL, ∠osh = θU , ∠osa = θ′L, and
∠osb = θ′U .

After the construction of a convex hull, we obtain a subset S ′ ⊆ S corresponding

to the extreme (corner) points of the resulting convex hull. Furthermore, the convex

combination of two consecutive points in S ′ is part of the boundary of conv(L1(s)).

(Just like, all convex combinations of pairs of consecutive points in S is the boundary

of L1(s).) Let lst denote the straight line passing through points s and t, and θst the

heading angle of the vector t− s. Then, to apply Theorem 2.10, we need to find the

point of intersection of lst with the boundary of L1(s), denoted by k, and the point

of intersection of lst with the boundary of a convex hull of L1(s), denoted by k′. To

do so, we find between which two headings in sets S and S ′ our θst falls. We label

such headings as θL and θU , and θ′L and θ′U , respectively (See Figure 2.12, L and U

stand for the lower and upper headings).

We know that k lies on the line segment connecting points (θL, V (θL)) and (θU , V (θU)),

and k′ lies on the line segment connecting points (θ′L, V (θ′L)) and (θ′U , V (θ′U)). Based

on that, we can use the found θL, θU , θ′L and θ′U to determine whether k = k′ without

actually finding the points k and k′. Note that if points (θL, V (θL)), (θU , V (θU)), (θ′L, V (θ′L))

and (θ′U , V (θ′U)) (corresponding to points g, h, a and b on Figure 2.12) are all collinear,
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then k must equal k′, and k �= k′ otherwise. If k = k′, we conclude that line segment

st is the fastest path as proven in scenario 1 of Theorem 2.10. If k �= k′, our problem

reduces to scenario 2 of the theorem, and we need to compute the values of α and

λ∗, as defined in Theorem 2.10. After some algebraic manipulations omitted here,

we find that

(2.6) αλ∗ =
‖t − s‖ sin(θ′U − θst)

V (θ′L) sin(θ′U − θ′L)
.

Then, we know that a fastest path is piecewise-linear with a single waypoint z =

s + αλ∗(cos(θ′U), sin(θ′U)).

The following algorithm outlines a step-by-step procedure of finding the fastest

path from s to t.

Algorithm 1 Fastest Path from s to t in an Obstacle-Free Domain.

Step 1. Find θ
¯

and θ̄ using equations (2.4) and (2.5).
If V (θst) = 0 and θ̄−θ

¯
≥ π, STOP. The problem is infeasible.

Else, go to step 2.

Step 2. Find the convex hull of the linear path attainable region L1(s).

Step 3. Find the heading angle θst and compute the values of θL, θU , θ
′
L and θ′U .

Step 4. If points (θL, V (θL)), (θU , V (θU )), (θ′L, V (θ′L)) and (θ′U , V (θ′U )) are collinear (i.e., if k = k′),
STOP. Straight line path st is an optimal path.
Else (i.e., if k �= k′), go to step 5.

Step 5. Compute αλ∗ using equation (2.6).
Set z = s + αλ∗(cos(θ′U ), sin(θ′U )) ∈ R2. A fastest path from s to t is the two consecutive
straight line segments sz and then zt.

2.3 Obstacle-Avoiding Fastest-Path Finding for an Anisotropic Speed
Function

In this section we discuss obstacle-avoiding fastest-path finding by relaxing the as-

sumption made in Section 2.2 that P = ∅. Throughout this section, P is a nonempty

set of polygonal obstacles that are not permitted to be intersected by any feasible

path.
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2.3.1 Fastest Path for a Convex Linear Path Attainable Region

Similarly to our analysis of path finding problems in an obstacle-free domain,

we first restrict our attention to problems with speed functions corresponding to

the convex linear path attainable regions (LPARs). The analysis of this special case

demonstrates an interesting insight into the structure of the solution for the problems

with arbitrary speed functions. In the following subsection, we relax the convexity

assumption and show how the results presented here are extended to the unrestricted

time and space homogenous anisotropic speed functions.

The visibility graph search method, used to solve Euclidean shortest-path find-

ing problems, exploits the triangle inequality property of the distance function and

restricts the optimal path search to the set of ‘taut strings’ connecting the points

of origin and destination. Similar properties can be established for the fastest-path

finding problem at hand. Our Theorem 2.10 states that in the case of a convex LPAR

a fastest path between any two points in an obstacle-free anisotropic domain is the

connecting straight line segment. Consequently, the triangle inequality, restated in

Corollary 2.15 for completeness, also holds true for our anisotropic cost function

(travel time). We use this property to develop a fastest-path finding algorithm anal-

ogous to the one used for Euclidean shortest path problems.

Corollary 2.15. If a speed function V (θ) corresponds to a convex linear path attain-

able region, then the travel-time function τ(.) has the ‘triangle inequality’ property,

that is, τ(a, b) ≤ τ(a, c) + τ(c, b), ∀a, b, c ∈ F = R2\P, as long as neither one of the

linear paths are obstructed by obstacles.

Proof. Follows directly from Lemma 2.1.

The triangle inequality stated in Corollary 2.15 provides the grounds for a direct
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extension of the earlier mentioned visibility graph search method to our anisotropic

problem. In the case of minimizing Euclidean distance, “an easy geometric argument

shows that in general the shortest path between two points must be a polygonal

chain whose vertices are vertices of obstacles” [3]. A similar observation is true for

our anisotropic medium, which validates the search of a modified visibility graph as

an appropriate solution approach for our problem.

Theorem 2.16. If a linear path attainable region Lδ(x) is convex, then there exists a

fastest path from s to t in F , which is piecewise-linear with all its waypoints (vertices)

corresponding to the vertices of obstacles in P.

Proof. Corollary 2.15 and the polygonal structure of the obstacles imply that any

continuous path p ∈ F from s to t can be replaced by a piecewise-linear path from s

to t such that the travel time of the piecewise-linear path is not greater than that of

the initial path p. Therefore, there exists a piecewise-linear path which is a fastest

path from s to t. (See Figure 2.13 for a visual illustration.)

Figure 2.13: For a convex LPAR, the travel time along the piecewise-linear path sabcdt is not
greater than along the curve p.

Next, we show that there exists an optimal piecewise-linear path such that all its

vertices correspond to the obstacle vertices. Consider a piecewise-linear path with

some vertex a not equal to a vertex of any obstacle in P . Then, there exist two points
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b and c lying on each of the two line segments of the polygonal path joined by vertex

a, such that the line segment bc does not intersect P . We construct a new path by

replacing the bac part of the path with a straight line segment bc. From the triangle

inequality of Corollary 2.15 we know that the travel time for the resulting path is

not greater than the travel time for the original path. It follows that there exists a

fastest path which is piecewise-linear and its vertices correspond to the vertices of

obstacles in P . (See Figure 2.14.)

Figure 2.14: For a convex LPAR, the travel time along the piecewise-linear path sbct is not greater
than along the path sat.

Theorem 2.16 implies that when a given speed function corresponds to a convex

linear path attainable region, a fastest-path search can be restricted to a directed

visibility graph with the edge cost defined to be the travel time along the straight

line connecting its nodes. Henceforth, we adapt the shortest path visibility graph

approach to develop the algorithm below, which finds an obstacle-avoiding fastest

path for an anisotropic speed function corresponding to a convex LPAR.

Published work discussing Euclidean shortest path problems notes that in some

cases the visibility graph has quadratic size (i.e., the construction time of a graph

with n vertices is O(n2)), and is not the most efficient approach for such problems

[45]. An alternative method, referred to as continuous Dijkstra, involves simulating

the effect of a ‘wavefront’ propagating out from the source s and constructs the linear-
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Algorithm 2 Obstacle-Avoiding Fastest Path for a Speed Function V (θ) Corresponding to a
Convex LPAR.

Step 1. Construct a visibility graph VGV as follows.

• The set of VGV vertices is composed of all the vertices of the obstacles in P, as well as
points s and t.

• The set of VGV edges consists of all the straight line edges interconnecting these vertices
such that they do not intersect any of the obstacles in P.

• The cost associated with an edge (i, j) is equal to the travel time τ(i, j) = ||j−i||
V (θj−i)

. (Note
that unlike the case of Euclidean metric, our visibility graph has to be directed since the
cost of an arc (i, j) does not generally equal to the cost of an arc (j, i).)

Figure 2.15 provides an example of constructing a visibility graph by illustrating all the
visibility graph nodes and edges.

Step 2. Apply Dijkstra’s algorithm [19] to find an optimal path in the constructed network VGV

from node s to node t. The resulting path is an obstacle-avoiding fastest path.

Figure 2.15: Construction of a visibility graph.

size shortest path map directly [46, 47]. While this method was originally developed

for the Euclidean shortest-path problems, applications to other scenarios have been

also considered (e.g., L1 shortest paths in the plane [43], and construction of Voronoi

diagrams for convex distance functions [12]). We thus note that Algorithm 2 is not

the only possible method to address our problem, and the extension of a continuous

Dijkstra algorithm to an anisotropic medium with a convex LPAR is also a plausible

approach.
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2.3.2 Fastest Path for an Arbitrary Anisotropic Speed Function

Subsection 2.3.1 discusses a direct extension of the shortest-path visibility graph

approach to the obstacle-avoiding fastest-path finding problems with convex LPAR.

However, the proposed algorithm does not apply to a general speed function V (θ) in

the case when the correspond Lδ(x) is not convex. In Theorem 2.3 we have shown

that a straight line path between a pair of points is not necessarily optimal for an

arbitrary direction-dependent speed function. Therefore, in general, the triangle

inequality does not hold true for the travel time function τ(.), and we cannot restrict

our fastest-path search to the set of taut strings connecting s and t. In this subsection,

we relax the convexity assumption of an LPAR, and analyze fastest-path finding

problems for a general anisotropic speed function.

Consider an arbitrary speed function V (θ) and the corresponding linear path at-

tainable region Lδ(x) which may or may not be convex. We introduce an augmented

speed function V ′(θ), such that, its corresponding LPAR, L′
δ(x), is the convex hull of

Lδ(x), i.e., L′
δ(x) := conv(Lδ(x)) (see Figure 2.16). Note that the set L′

δ(x) and the

speed function V ′(θ) are unique, due to the uniqueness of a convex hull. By defini-

tion, a linear path attainable region L′
δ(x) is convex. Therefore, by constructing the

visibility graph VGV ′ as described in Algorithm 2, we can find an obstacle-avoiding

fastest path from s to t corresponding to the new speed function V ′(θ). We let pV ′

represent this optimal path and tV ′(pV ′) denote the travel time along the path pV ′

while traveling with speed V ′(θ). Then, Proposition 2.17 below states that the min-

imum travel time from s to t corresponding to the original speed function V (θ) has

to be greater than or equal to tV ′(pV ′).

Proposition 2.17. The traveling time along a fastest path corresponding to an ar-
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Figure 2.16: Example of Lδ(x) and L′
δ(x) := conv(Lδ(x)).

bitrary speed function V (θ) has to be greater than or equal to the travel time along a

fastest path corresponding to the speed function V ′(θ), where L′
δ(x) = conv(Lδ(x)).

Proof. [by contradiction] Let pV denote a fastest path from s to t corresponding to

a speed function V (θ), and tV (pV ) be the path travel time at speed V (θ). Assume

that tV (pV ) < tV ′(pV ′). From Lemma 2.5 we know that since Lδ(x) ⊆ L′
δ(x), then

V (θ) ≤ V ′(θ),∀θ. Consequently, traveling along the path pV with the speed described

by function V ′(θ) (denoted by tV ′(pV )), constrains the travel time to be less than or

equal to tV (pV ). Hence, we find a feasible path corresponding to the speed function

V ′(θ) with the travel time less than or equal to tV (pV ). Then, the travel time along

an optimal path corresponding to the speed function V ′(θ) will be less than or equal

to the travel time along this feasible path. That is tV ′(pV ′) ≤ tV ′(pV ) ≤ tV (pV ),

implying that assumption tV (pV ) < tV ′(pV ′) is contradictory, and thus proving the

proposition.

Proposition 2.17 concludes that if we let pV denote an obstacle-avoiding fastest

path for speed V (θ), then tV (pV ) ≥ tV ′(pV ′). This provides a lower bound on the

minimum travel time for our original problem, which is an important component to

characterizing an optimal path. We use this bound to demonstrate that the travel

time for a path proposed below is equal to its lower bound, consequently proving the
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path’s optimality.

Since path pV ′ lies in the visibility graph VGV ′ , it is piecewise-linear with the

waypoints corresponding to the vertices of P , and points s and t. Consequently, the

total travel time of the path can be written as the sum of travel times along each

individual link. Recall that the travel time for each linear link (i, j) of the path pV ′

is equal to τ ′(i, j) = ‖j−i‖
V ′(θj−i)

(see Figure 2.17). From Theorem 2.10, our obstacle-free

analysis describes a fastest path from i to j for an arbitrary speed function V (θ) with

the optimal travel time equal to τ ′(i, j). Applying the theorem to each linear link

of the path pV ′ and then combining them together results in a path corresponding

to the original speed function V (θ) with the travel time equal to the lower bound

tV ′(pV ′).

Figure 2.17: Fastest path corresponding to the speed function V ′(θ) is shown in bold. Its travel
time tV ′(pV ′) = τ ′(s, i) + τ ′(i, j) + τ ′(j, t).

Recall that an optimal path described in the second scenario of Theorem 2.10 is

not unique; it is just one of infinitely many paths with the same minimum travel

time. In fact, as we attempt to implement the one-waypoint path along each linear

link of the path pV ′ we might intersect the obstacle space P . However, due to time

and space homogeneity of the cost function, i.e., V (θ), we can construct a zigzag path

with the same travel time by alternating the traveling directions between headings
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corresponding to vectors x1 − x and x2 − x as many times as needed. Our problem

statement assumes that the distance between any two obstacles is always greater

than zero. Therefore, we can always construct a zigzag path close enough to the line

xy, such that it does not intersect with the neighboring obstacles. (See Figure 2.18.)

Figure 2.18: A feasible zigzag path from x to y with the total travel time equal to τ ′(x, y).

We now introduce an algorithm for finding an obstacle-avoiding fastest path for

an arbitrary speed function.

Algorithm 3 Obstacle-Avoiding Fastest Path for an Arbitrary Speed Function V (θ).

Step 1. Find V ′(θ) for θ ∈ [0, 2π] such that L′
δ(x) = conv(Lδ(x)).

Step 2. Use Algorithm 2 to find an optimal path corresponding to the speed function V ′(θ). Let
pV ′ denote the determined path, and let (k0, k1, k2, ..., kn) be the sequence of vertices path
pV ′ is traversing. Note that k0 = s and kn = t. Then the corresponding travel time along the
path pV ′ , denoted by tV ′(pV ′), can we written as

(2.7) tV ′(pV ′) = Σn
i=1τ

′(ki−1, ki)

Step 3. For each pair of consecutive points in (k0, k1, ..., kn), apply Algorithm 1 to find a fastest
path between the two points corresponding to the speed function V (θ). If a given one waypoint
path is infeasible due to the presence of obstacles, increase the number of waypoints in a zigzag
path as discussed above.

Step 4. Combine together the optimal paths found in Step 3. The resulting path has a travel
time equal to tV ′(pV ′) and is therefore a fastest obstacle-avoiding path for an arbitrary speed
function V (θ). (See Figure 2.19.)
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Figure 2.19: Example of a fastest path for speed function V ′(θ) (dashed line), and an optimal path
for speed V (θ) (solid line).

2.4 Applications and Conclusion

2.4.1 Applications

A fastest-path finding problem for the direction-dependent speed functions arises

in a wide range of applications. For example, the speed of a sail boat depends on

the traveling heading angle it makes with wind, and a vehicle speed varies as the

agent traverses up and down a hill. Airplanes have to deal with an anisotropic

speed due to wind, while motor boats have similar effects caused by waves. The two

areas of application that we analyze in more details are optimal short-range routing

of vessels in a seaway, and the optimal path finding for Tactical Mini-Unmanned

Aerial Vehicles (TACMAVs), also referred to as mini Unmanned Aerial Vehicles

(mini UAVs) or miniature drones.

Optimal Short-Range Routing of Vessels in a Seaway.

Any vessel traveling at a seaway encounters waves which add drag and affect

the vessel’s performance. In our collaboration with colleagues working on Optimal

Vessel Performance in Evolving Nonlinear Wave-Fields project [20], we evaluate the

added drag by computing the time average wave force acting on the vessel in the

longitudinal direction. Then, by superimposing the added drag on the steady drag
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experienced by the moving ship in calm waters, we compute the maximum mean

attainable speed for each given sea state (which describes the distribution of the

waves) and the heading angles in the range from 0◦ to 180◦. Figure 2.20, borrowed

from [20], illustrates an example of the linear path attainable region for the S-175

containership at Sea State no.7. Here, heading is measured as the angle a vessel

makes with the dominant wave direction, which is assumed to be in the southerly

direction.
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Figure 2.20: “An example of linear path attainable regions for the S-175 corresponding to voluntary
speed loss at Sea State no.7” [20].

For the given LPAR, we can use Theorem 2.10 to find a fastest path; Algorithm

1 describes the step-by-step procedure to construct such an optimal path. As an

example, we consider two scenarios. In first case, let the target point t1 lie directly

east from the starting point s. This example corresponds to the scenario 1 of Theorem

2.10, since the straight line st1 intersects the boundary of the linear path attainable

region Lδ(s) and the boundary of its convex hull at the same point. Hence, we can

conclude that the straight line path st1 is a fastest path from s to t1, illustrated in
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Figure 2.21.
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Figure 2.21: Illustration of the fastest paths from point s to points t1 and t2, paths st1 and szt2,
respectively.

In the second example, let the target point t2 lie south-west from the starting

point s. Then, the intersection points of the line st2 with the boundary of Lδ(s) and

the boundary of Lδ(s)’s convex hull are not the same (i.e., k �= k′), corresponding to

the scenario 2 of Theorem 2.10. From the theorem we can conclude that a fastest

path from s to t2 is piecewise-linear with one waypoint. Thus, to reach the point

t2 as fast as possible, the vessel should first travel SSE, or 30◦ clockwise from the

south direction, and then complete the travel heading 75◦ clockwise from south. This

corresponds to the path szt2, illustrated on the Figure 2.21.

In addition to finding a fastest path from s to t2, we can use equations (2.2) to

calculate how much improvement in travel time a vessel observes as it follows the

optimal path szt2 instead of following a straight line path st2. By dividing the length

of sk by the length of sk′, we find that β = 0.688, which implies that by following an

optimal path we can decrease our travel time at most by approximately 31.2%. This

kind of information is particulary useful in evaluating the tradeoffs between following

an optimal path as opposed to following a straight line.

In some applications seaway regions might be restricted for vessel’s use due to
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severe weather, presence of land, other vessels, or imposed regulations. For such

problems we approximate the restricted regions with polygonal obstacles and apply

Algorithm 3 to find an optimal obstacle-avoiding path to the destination.

Optimal Path Finding for Tactical Mini-Unmanned Aerial Vehicles (TACMAVs).

Unmanned Aerial Vehicles (UAVs) are extensively used in a wide range of military

and civilian applications. While UAVs significantly vary in size and utilization,

we direct our attention to mini-UAVs that are primarily used for surveillance and

intelligence gathering. These mini-drones are called Tactical Mini-Unmanned Aerial

Vehicles (TACMAVs) and can be seen in Figure 2.22 borrowed from [4]. TACMAV

system includes a control unit and communication equipment that allows a person on

the ground to choose points of interest for the miniature drone to visit. Two cameras

mounted on a TACMAV capture the live video of the targets as the unmanned aerial

vehicle flies over them. An onboard autopilot program navigates the mini-UAV

between the points of interest.

With the wing span varying between 21 and 26 inches, and a total weight of

only 0.8 lbs. to 1.6 lbs. [4, 70], TACMAVs are very susceptible to wind, which

has a significant nonlinear effect on the guidance algorithms, and therefore must be

accounted for in optimal path planning [52]. Since the TACMAV battery can only

endure a flight time of 70 to 90 minutes, a fastest-path finding algorithm is essential

for the best use of the mini-drone.

The TACMAN limited range of flight supports the assumption that the wind

distribution is stationary during its flight. This provides time and space homogeneity

assumed in this chapter. Calculating the wind effects on the mini-drone speed results

in a direction-dependent speed function, V (θ). Once the speed function is known,

we construct the corresponding linear path attainable region, apply Theorem 2.10,
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Figure 2.22: Tactical Mini-Unmanned Aerial Vehicle (TACMAV) from Applied Research Asso-
ciates, Inc. [4]

and then use Algorithm 1 to find a fastest path.

In some applications the agent’s speed is maintained constant by utilizing a greater

amount of fuel or battery charge. Our solution approach easily extends to such

problems. We redefine the linear path attainable region to represent the set of

points one can reach consuming a single unit of fuel or energy. Then, by using the

algorithms presented in this chapter we can find a path minimizing fuel consumption

instead of traveling time. Furthermore, a set of obstacles can be used to model UAVs

restrictions such as enemy detection regions or the presence of buildings and other

physical barriers.

2.4.2 Conclusion

In this chapter, we find the solution to a fastest-path finding problem for a

direction-dependent time and space homogeneous speed function. We demonstrate

that in an obstacle-free domain an optimal path is piecewise-linear with at most two

line segments, regardless of the underline structure of the speed function. This an-

alytical character of our results provides a computationally fast method for finding

an optimal path, making it suitable for online applications. We also provide a tight
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bound on the improvement in travel time by following an optimal path as opposed

to traversing a simpler straight line path. Algorithm 1 presented in the chapter

facilitates a simple implementation of these results.

We also use these results to address the obstacle-avoiding fastest-path problems in

the anisotropic media. We use the properties of speed functions with the convex polar

plots to adapt the visibility graph search method, traditionally used for Euclidean

shortest-path problems, to find a solution for this type of problems. Algorithm 2

outlines the fastest-path finding procedure for solving the problems with the convex

speed polar plots. We then address the case of an arbitrary speed function, which

may not correspond to a convex liner path attainable region. For the general scenario,

we introduce an augmented speed function such that its polar plot is the convex hull

of the original speed plot. Then, to find a lower bound on the minimum travel time

for our original problem we apply Algorithm 2 to the augmented speed function. By

applying a fastest piecewise-linear path between the nodes of the visibility graph, we

constructe a path with the travel time equal to its lower bound, thus establishing

its optimality. Algorithm 3 gives the detailed steps to finding an optimal obstacle-

avoiding path for a general time and space homogeneous speed function.



CHAPTER III

Optimal Path with Bounded Curvature in an Anisotropic
Medium

3.1 Introduction

Chapter II showed that an optimal path in an anisotropic time and space homoge-

neous environment has a piecewise-linear structure. Unfortunately, the instantaneous

heading change required to follow a piecewise-linear path is infeasible for most ap-

plications, at least on a small scale, including the navigation of aerial, surface and

naval vehicles. For these problems, the control system of an agent constrains the

set of feasible paths and these restrictions must be integrated into in the optimal

path finding process. In this chapter, we introduce a direction-dependent minimum

turning radius function that constrains the curvature of a feasible path to find an

optimal path with bounded curvature in an anisotropic time and space homogeneous

environment.

The problem’s objective is to find a fastest path that starts at the starting point

and heading angle, ends at a destination point with a predetermined final heading,

and has a curvature bounded by a specified minimum turning radius function. Most

published work that discusses fastest-path finding problems with bounded curvature

assumes constant speed and minimum turning radius. We analyze the problems in

the anisotropic media where both the agent’s speed and minimum tuning radius

56
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are described by the direction-dependent functions. The anisotropic nature of this

problem implies the asymmetry of a travel time function as discussed in Chapter

II. Additionally, the non-constant turning radius results in complex sharpest turn

curves, as opposed to a circle, which is an essential part of an optimal path for the

isotropic problems. These facts make the task of extending the problem of optimal

path finding with minimum curvature to the anisotropic case a significant challenge.

3.1.1 Related Work

The problem of finding a fastest path with bounded curvature was first introduced

by L. E. Dubins in 1957 [22]. Since then, it has been referred to as the Dubins car

problem. Unlike our problem of interest, Dubins assumes that the vehicle speed and

the minimum turning radius are constant and not direction-dependent. His intricate

set of geometric statements and propositions show that “an R-geodesic is necessarily

a continuous differentiable curve which consists of not more than three pieces, each

of which is either a straight line segment or an arc of a circle of radius R” [22]. A

simplified proof is later developed by two independent research teams, Boissonnat

et al. [7] and Sussmann and Tang [69], and it is based on techniques of modern

control theory and the minimum principle of Pontryagin [59]. Fortune’s analysis

of the problem [27] establishes the controllability of Dubins car by proving that a

feasible path exists for any starting and final settings of the problem.

The optimal control theory based approach to Dubins car problem has generated

a great interest in the field of robotics, and numerous variations and extensions of

the problem are discussed in the literature. Reeds and Shepp [60] study optimal

paths with bounded curvature for a car that can move forward and backwards,

resulting in paths with cusps. Boissonnat et al. [6] propose a dynamic extension

of Dubins car problem by constraining the angular acceleration of the agent instead
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of its angular velocity. Some researchers consider problems with a more complex

mobile robot configuration such as trailer-truck systems navigation [65]. Chitsaz

and LaValle [13], on the other hand, extend Dubins car to having altitude, leading

to problems studying a time-optimal trajectory for airplanes. Despite a wide variety

of the aforementioned extensions, the assumption of constant speed and minimum

turning radius (or angular acceleration in the case of [6]) restricts the analysis to the

isotropic case.

Some researchers address the direction-dependent problems while considering spe-

cific applications. Unmanned aerial vehicle (UAV) routing is the predominant area of

such applications, where researchers conduct an analysis of the effects of directional

wind on the UAV optimal paths. In the majority of published work, the aircraft

velocity and wind velocity are assumed to be constant, and the actual speed of the

vehicle is equal to the sum of the two vectors [52, 40]. This assumption imposes

a very specific structure on the actual direction-dependent speed function and the

minimum turning radius of an agent; we make no such restrictions in our forthcoming

analysis.

McNeely et al. [41] consider the problem of constructing a minimum-time trajec-

tory for UAVs in the presence of a time-dependent wind vector field. Analogous to

work discussed above, the realized speed of a vehicle is computed by adding the wind

vector field to the constant velocity of an agent. To solve their problem, McNeely and

her colleagues transform space by the wind vector, implement Dubins car solution

in the new space and iteratively apply Newton’s method to converge to the correct

destination (boundary condition). The authors prove the existence and uniqueness

of the optimal solution, along with the convergence of the algorithm. While we con-

sider a time homogeneous environment, our work presented in this chapter explicitly
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characterizes an optimal path and facilitates a straightforward construction of such

a path.

3.1.2 Overview of the Results

In the current chapter, we deliver an analytical characterization of a fastest path

with bounded curvature in an anisotropic medium. We restrict our analysis to the

set of direction-dependent speed functions corresponding to a convex linear path at-

tainable region (i.e., convex speed polar plot) and an arbitrary direction-dependent

minimum turning radius. We employ the methodology from optimal control theory

(Pontryagin’s Principle) and derive a necessary condition for path optimality. The

subsequent analysis invokes the properties derived in Chapter II and further inves-

tigates the structure of an optimal path, resulting in a closed form characterization

of such path.

We show that the structure of an optimal path in an anisotropic medium is similar

to the solution of a Dubins car problem and consists of either three sharpest turn

arcs with an alternating direction, or a sharpest turn curve followed by a straight line

segment and concluded by a second sharpest turn arc. It is important to note that

while the characterization of the optimal paths for two classes of problems is similar,

the sharpest turn curves of our problem have a very general, and often complex,

structure. An algorithm presented at the end of the chapter provides a detailed set

of steps that delivers an optimal path in an anisotropic medium.

The rest of the chapter is arranged as follows. Section 3.1.3 provides the precise

problem statement and includes a list of technical assumptions necessary to ensure

the rigorous analysis throughout the chapter. Section 3.2 discusses the application

of techniques from optimal control theory in order to establish the problem’s con-

trollability (reduction to Dubins car problem), prove existence of an optimal path
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(Filippov’s Theorem) and derive the necessary condition for optimality (Pontrya-

gin’s Principle). Section 3.3 assumes a convex linear path attainable region and

employs the optimality condition and further analysis of the problem structure to

deliver an optimal path. This section also contains Algorithm 4, which facilitates

the implementation of our results and delivers an explicit path finding procedure.

Finally, Section 3.4 concludes this chapter with the summary of our results and the

discussion of future work related to this problem.

3.1.3 Problem Statement

Given a starting point s = (xs, ys) ∈ R2 and a target point t = (xt, yt) ∈ R2, find

a fastest path such that a mobile agent departs the starting point at time t0 = 0 at

a heading angle θs ∈ [0, 2π] and arrives at the target point with a heading direction

θt ∈ [0, 2π]. The path curvature is restricted by a minimum turning radius function

R(θ) : [0, 2π] → R+ dependent on the vehicle traveling direction. Anisotropic speed

function V (θ) : [0, 2π] → R+ denotes the maximum attainable speed the vehicle can

achieve for each heading angle.

System assumptions.

We address a general fastest-path finding problem in a direction-dependent en-

vironment and do not restrict our analysis to any particular application or specific

speed and minimum turning radius functions. To ensure the completeness and rigor

of the presented analysis, we next state the assumptions necessary for our discussion.

However, it is important to note that most of the listed assumptions are relatively

unrestrictive and valid for all practical applications.

Assumption 3.1. An agent’s speed is always equal to its maximum attainable speed

V (θ).
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The speed of a mobile agent is a set parameter for any given instance of the

problem. Intuitively, it appears that in a time-homogeneous medium it is never

advantageous to voluntarily decrease the speed, questioning the need for this as-

sumption. However, it might be beneficial to slow down if a lower speed permits

sharper turns and allows paths with shorter distance. In that scenario, the minimum

turning radius function R would explicitly depend on the vehicle speed, in addition

to the heading angle. If a mobile agent had an option to change its speed along a

path, we could add the speed control variable to the system decision space. The

additional controller significantly increases the complexity of a model, and we do

not consider such problems in the presented analysis. However, the relaxation of

Assumption 3.1 is an interesting extension to be considered in our future work.

Assumption 3.2. The minimum turning radius function can only take on positive

values, i.e., R(θ) > 0,∀θ.

Assumption 3.3. The speed function can only take on positive values, i.e., V (θ) >

0,∀θ.

Assumption 3.4. The minimum turning radius function R(θ) is bounded, that is,

∃Rmax, such that R(θ) ≤ Rmax, ∀θ ∈ [0, 2π].

Assumption 3.5. The speed function V (θ) is bounded, that is, ∃Vmax, such that

V (θ) ≤ Vmax,∀θ ∈ [0, 2π].

Assumption 3.6. The minimum turning radius, R(θ), is a C1 function, that is,

dR(θ)
dθ

is continuous.

Assumption 3.7. The speed function, V (θ), is a C1 function, that is, dV (θ)
dθ

is con-

tinuous.
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3.2 Optimal Control Modeling and Analysis of the Problem

In this section, we apply the optimal control theory techniques to demonstrate

the problem’s controllability, to prove the existence of an optimal path, and to derive

the system’s necessary condition for optimality. For completeness, we dedicate Sub-

section 3.2.1 to describing Pontryagin’s Principle of Optimality, which is one of the

main techniques used in our analysis. In Subsection 3.2.2, we describe the detailed

application of Pontryagin’s Principle and other optimal control methodology to our

problem.

3.2.1 Overview of Pontryagin’s Minimum Principle

The content of this section is based on The Mathematical Theory of Optimal

Processes by Pontryagin et al. [59]. In their work, Pontryagin and his colleagues

introduce the key theorem as the maximum principle. However, most of the control

literature following the publication of Pontryagin’s book defines the Hamiltonian to

be the negative of the ‘Pontryagin’s Hamiltonian’, consequently transforming the

principle from ‘maximum’ to ‘minimum’. In the following discussion, we choose to

adapt Pontryagin’s original claim to the minimum principle in order to conform to

a larger part of published work in the field of optimal control.

Optimal Control Problem

Consider a control process where x(t) = (x1(t), ..., xn(t)) ∈ Rn for some t ∈ [t0, tf ]

is the vector characterizing the process (state of the system) at time t, and u(t) =

(u1(t), ..., ur(t)) ∈ U is the control vector function (given for t0 ≤ t ≤ tf ) which

determines the course of the process. The range of the control function is given by

a control region U ⊆ Rr, and xi(t0) = x0
i , i = 1, ..., n denote the initial state of the

system. We analyze a control process described by a system of ordinary differential
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equations:

(3.1) ẋi(t) =
dxi(t)

dt
= fi(x1(t), ..., xn(t), u1(t), ..., ur(t)), i = 1, 2, ..., n.

Note that the system (3.1) is autonomous, i.e., its right-hand side does not depend

explicitly on the time t. Pontryagin et al. also discuss the non-autonomous systems

in their book; however, they are not relevant to our problem.

Our objective is to find a piecewise continuous u(t) that minimizes the functional

J , as defined below, such that x(t0) = x0 and x(tf ) = xf .

(3.2) J =

∫ tf

t0

f0(x1(t), ...., xn(t), u1(t), ..., ur(t))dt.

Here, f0(x(t), u(t)) is a given function, and tf is not fixed (i.e., it is a free parameter).

It is important to note that the discussion and results presented in this section

are limited to the scenarios when the following assumptions hold true.

1. The control region U is assumed to be a closed set.

2. The control function u(t) is piecewise continuous. Furthermore, we assume that

u(t) is either right- or left-continuous at each point of discontinuity, leading to

the fact that every control u(t) is bounded even if U is not.

3. The state coordinates (x1(t), ..., xn(t)) are continuous and piecewise differen-

tiable.

4. The functions fi(x, u) are assumed to be continuous in x1, ..., xn, u1, ..., ur, and

continuously differentiable with respect to x1, ..., xn.

Adjoin a new coordinate x0(t) to the state coordinates x1(t), ..., xn(t), and let

x0(t) vary according to the law

(3.3) ẋ0(t) =
dx0(t)

dt
= f0(x(t), u(t)),
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where right-hand side does not depend on x0(t). Then, x0(t0) = 0 and x0(tf ) = J .

For convenience, introduce a new notation x(t) = (x0(t), x(t)) = (x0(t), x1(t), ...,

xn(t)), not to be confused with x(t) = (x1(t), ..., xn(t)).

The Minimum Principle

In addition to the fundamental system of equations:

(3.4) ẋi(t) = fi(x(t), u(t)), i = 0, 1, 2, ..., n,

consider another system of equations in the auxiliary (adjoint) variables ψ0, ψ1, ...., ψn

defined by:

(3.5) ψ̇i(t) = −
n∑

α=0

∂fα(x(t), u(t))

∂xi

ψα(t), i = 0, 1, ..., n.

It is important to note that if we choose an admissible control u(t), t0 ≤ t ≤ tf ,

and have the corresponding state trajectory x(t) of the system (3.4) with the initial

condition x(t0) = x0, then for any initial conditions ψ(t0), system (3.5) has a unique

solution ψ(t) = (ψ0(t), ψ1(t), ...., ψn(t)), t0 ≤ t ≤ tf .

Also note that the vector function ψ(t) is continuous and has everywhere contin-

uous derivative with respect to t, except at a finite number of points corresponding

to the points of discontinuity of u(t).

Now, we combine x and ψ to define the ‘Hamiltonian’ as

(3.6) H(ψ, x, u) = 〈ψ, f(x, u)〉 =
n∑

α=0

ψαfα(x, u).

Then the above systems (3.4) and (3.5) can be written as

ẋi =
∂H(ψ, x, u)

∂ψi

, i = 0, 1, ..., n(3.7)

ψ̇i = −∂H(ψ, x, u)

∂xi

, i = 0, 1, ..., n(3.8)
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Treating ψ(t) and x(t) as fixed parameters at each time t, the function H becomes

a function of the parameter u ∈ U . Let us define the minimum of H as

(3.9) M(ψ, x) = min
u∈U

H(ψ, x, u).

Now, we are ready to state Pontryagin’s Minimum Principle that provides a necessary

condition for control function u(t) to be optimal.

Theorem 3.8 (adapted from [59]). Let u(t), t0 ≤ t ≤ t1 be an admissible control

and x(t) the corresponding trajectory that begins at the point x0 at the time t0. In

order that u(t) and x(t) be optimal, it is necessary that there exist a nonzero contin-

uous vector function ψ(t) = (ψ0(t), ψ1(t), ..., ψn(t)) corresponding to u(t) and x(t)

(i.e., the equations (3.7) and (3.8) are satisfied), such that

1. ∀t, t0 ≤ t ≤ t1, the function H(ψ(t), x(t), u) of the variable u ∈ U attains its

minimum at the point u = u(t). That is,

(3.10) H(ψ(t), x(t), u(t)) = M(ψ(t), x(t));

2. ∀t, t0 ≤ t ≤ t1, M(ψ(t), x(t)) = 0 and ψ0(t) ≡ ψ0(t0) ≥ 0.

In another words, Pontryagin and his colleagues show that the optimal control

function must minimize H(ψ(t), x(t), u(t)), and furthermore, the minimum M must

be equal to zero (since tf is a free parameter), and the function ψ0(t) must be a

non-negative constant for all t ∈ [t0, t1].

3.2.2 Application of Pontryagin’s Minimum Principle

In this section we apply Pontryagin’s minimum principle and other methods of

the optimal control theory to the problem introduced in Section 3.1.3.
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Control Model

Let α(t) denote the polar angle of the tangent to the path, or the heading angle

at time t. We define the state of our system to be (x(t), y(t), α(t)) for t ∈ [0, T ],

where (x(t), y(t)) is the position of a vehicle in R2 at time t (see Figure 3.1). We

set the system steering controller u(t) for t ∈ [0, T ] to represent the change in the

vehicle heading at time t.

Figure 3.1: The state of the system is (x(t), y(t), α(t)), where (x(t), y(t)) is the position of a vehicle
in R2 and α(t) is its heading angle at time t.

The objective of our problem is to minimize the total travel time denoted by Ju,

which is defined as:

(3.11) Ju =

∫ T

0

f0(x(t), y(t), α(t), u(t))dt =

∫ T

0

√
ẋ(t)2 + ẏ(t)2

V (α(t))
dt

To apply Pontryagin’s minimum principle, we let x0(t) denote the travel cost

accumulated by time t. Then the objective of our problem can be written as:

(3.12) x0(T ) = Ju =

∫ T

0

√
ẋ(t)2 + ẏ(t)2

V (α(t))
dt

The differential system describing the dynamics of our system is

ẋ(t) = f1(x(t), y(t), α(t), u(t)) = V (α(t)) cos(α(t)),(3.13)

ẏ(t) = f2(x(t), y(t), α(t), u(t)) = V (α(t)) sin(α(t)),(3.14)

α̇(t) = f3(x(t), y(t), α(t), u(t)) =
V (α(t))

R(α(t))
u(t),(3.15)

ẋ0(t) = f0(x(t), y(t), α(t), u(t)) =

√
ẋ(t)2 + ẏ(t)2

V (α(t))
= 1,(3.16)
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with the boundary conditions:

(x(0), y(0), α(0)) = (xs, ys, θs),(3.17)

(x(T ), y(T ), α(T )) = (xt, yt, θt),(3.18)

x0(0) = 0.(3.19)

Then, we can simplify equation (3.11) as

(3.20) Ju =

∫ T

0

√
ẋ(t)2 + ẏ(t)2

V (α(t))
dt =

∫ T

0

dt = T

Note that while the minimum turning radius R(α(t)) depends on the heading

along the path, the control region U (i.e., all admissible controllers u(t) ∈ U) cannot

be dependent on the state of the system. To accommodate this restriction, we set

U = [−1, 1] and scale the path curvature by the residual of a minimum turning

radius, 1
R(α(t))

, as can be seen in Equation (3.15). (Assumption 3.2 guarantees that

we never divide by zero.)

System Controllability

The first step of finding an optimal path is to prove that the problem is control-

lable, that there exists a feasible path for all possible starting and target states of the

system. Dubins car problem of finding a fastest path with bounded curvature in the

case of a constant speed has been shown to be controllable for a constant minimum

turning radius, RD(θ) = r for all θ ∈ [0, 2π] (see [27, 35]). Assumption 3.4 states

that the minimum turning radius function is bounded above which ensures that there

exists a minimum turning radius value large enough to be feasible for all headings,

i.e., let Rmax = supθ R(θ). Then, a problem of fastest-path finding with curvature

restricted by a minimum turning radius equal to Rmax for all headings is reduced to

Dubins car problem which we know to be controllable. Consequently, we can always
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find a feasible path from an arbitrary point (xs, ys) and the starting heading θs to

any destination point and heading angle (xt, yt, θt), thus implying the controllability

of our problem.

Existence of an Optimal Path

To prove the existence of an optimal path, we apply a variation of Filippov’s

theorem [26] for minimum-time problems as stated by Souères and Boissonnat in

[65]. For completeness, we state the theorem here with a slight modification to

match our notation.

Let M be an open subset of R3 and U a subset of R. Then, when f := (f1, f2, f3)

is a linear function of the control parameter u of the form:

(3.21) f(x, y, α, u) = g1(x, y, α) + g2(x, y, α)u,

we have the following version of Filippov’s theorem.

Theorem 3.9 (adapted from [65]). Let (xs, ys, θs) and (xt, yt, θt) be two points

in M . Under the following hypotheses there exists an optimal trajectory solution of

(3.21) linking (xs, ys, θs) and (xt, yt, θt).

H1 : The g1 and g2 are locally lipschitzian functions of x, y and α.

H2 : The control set U is a compact convex subset of R.

H3 : There exists an admissible trajectory from (xs, ys, θs) to (xt, yt, θt).

H4 : The system is complete, in the sense that given any point (xs, ys, θs) ∈ M , and

any admissible control law u(t) defined for t ∈ [0, T ], there exists a corresponding

trajectory (x(t, u), y(t, u), α(t, u)) defined on the whole time interval [0, T ] and

verifying (x(0), y(0), α(0)) = (xs, ys, θs).
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To demonstrate that Theorem 3.9 applies to our problem, first rewrite f as a

linear function of the control parameter u from equations (3.13)-(3.15).

(3.22) f(x, y, α, u) =

⎛
⎜⎜⎜⎜⎜⎝

V (α) cos(α)

V (α) sin(α)

0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

0

0

V (α)
R(α)

⎞
⎟⎟⎟⎟⎟⎠

u.

The four hypotheses of the theorem hold true:

H1 : Recall that a function is called locally Lipschitz continuous if for any point

on its domain there exists a neighborhood such that function restricted to this

neighborhood is Lipschitz continuous. From that definition we can observe that

any C1 (continuously differentiable) function is locally lipschitzian, as continuous

function on a locally compact space is locally bounded.

From Assumptions 3.6 and 3.7, we know that V (α) cos(α) and V (α) sin(α) are

C1 functions and consequently, are locally lipschitzian. The function V (α)
R(α)

is

also locally Lipschitz continuous since its derivative, dV (α)/dα
R(α)

− V (α)dR(α)/dα
R2(α)

, is

continuous. Thus, we can conclude the first hypothesis of Theorem 3.9.

H2 : The control region of our problem is U = [−1, 1], which is a compact subset of

R.

H3 : System controllability demonstrated earlier in this section implies that there

exists an admissible trajectory from (xs, ys, θs) to (xt, yt, θt).

H4 : Since the domain of a path is not restricted by obstacles or other constraints,

any admissible control would result in a feasible path, implying the completeness

of the system.

As shown above, all four hypotheses of Theorem 3.9 hold true, therefore we can
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conclude the existence of an optimal path for any starting and target states of the

system.

It is important to note that Filippov’s theorem proves the existence of an optimal

path in a larger class of controls which are only assumed to be measurable. However,

Pontryagin’s principle also applies to this larger class (see Chapter II of [59]), and

our further analysis proves that the optimal controls do belong to the smaller class

of piecewise continuous functions. Consequently, we justify the discussion restricted

to that class of controls, which improves the clarity and applicability of our work.

Necessary Conditions for Optimality: Pontryagin’s Minimum Principle

Let (ψ0(t), ψ1(t), ψ2(t), ψ3(t)) be the adjoint variables corresponding to (x0(t), x(t),

y(t), α(t)). We find the Hamiltonian H(ψ0(t), ψ1(t), ψ2(t), ψ3(t), x0(t), x(t), y(t), α(t), u(t))

as defined in equation (3.6). To simplify the notation we let H(.) denote the Hamil-

tonian, implying the same set of dependent variables as above.

(3.23)

H(.) = ψ0(t) + ψ1(t)V (α(t)) cos(α(t)) + ψ2(t)V (α(t)) sin(α(t)) + ψ3(t)
V (α(t))

R(α(t))
u(t),

and the adjoint system found using equation (3.8) is

ψ̇0(t) = −∂H(.)

∂x0

= 0(3.24)

ψ̇1(t) = −∂H(.)

∂x
= 0(3.25)

ψ̇2(t) = −∂H(.)

∂y
= 0(3.26)

ψ̇3(t) = −∂H(.)

∂α
=(3.27)

= ψ1(t)V (α(t)) sin(α(t)) − ψ1(t)V
′(α(t)) cos(α(t)) −

−ψ2(t)V (α(t)) cos(α(t)) − ψ2(t)V
′(α(t)) sin(α(t)) +

+ψ3(t)
V (α(t))R′(α(t))

R(α(t))2
u(t) − ψ3(t)

V ′(α(t))

R(α(t))
u(t),
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where V ′(α(t)) = dV (α(t))
dα

and R′(α(t)) = dR(α(t))
dα

.

Then ψ0, ψ1 and ψ2 are constants on [0, T ]. To simplify the notation, let ψ1 =

λ cos(φ) and ψ2 = λ sin(φ), where λ =
√

ψ2
1 + ψ2

2 ≥ 0 and φ < 2π such that

tan(φ) = ψ2

ψ1
(see Figure 3.2 for an intuitive interpretation).

Figure 3.2: Relabeling ψ1 and ψ2 as λ cos(φ) and λ sin(φ), respectively.

We can then rewrite Hamiltonian and ψ̇3 as follows.

H(.) = ψ0 + λV (α(t)) cos(α(t) − φ) + ψ3(t)
V (α(t))

R(α(t))
u(t)(3.28)

ψ̇3(t) = λV (α(t)) sin(α(t) − φ) − λV ′(α(t)) cos(α(t) − φ) +(3.29)

+ψ3(t)
V (α(t))R′(α(t))

R(α(t))2
u(t) − ψ3(t)

V ′(α(t))

R(α(t))
u(t).

From Pontryagin’s Minimum Principle (Theorem 3.8) we know that if u∗(t) is an

optimal control function, then for all t ∈ [0, T ] we have

(3.30) u∗(t) = arg min
u∈[−1,1]

{ψ0 + λV (α(t)) cos(α(t) − φ) + ψ3(t)
V (α(t))

R(α(t))
u}

where ψ3(t) is defined by equation (3.29).

Furthermore, we know that

(3.31) ψ0 + λV (α(t)) cos(α(t) − φ) + ψ3(t)
V (α(t))

R(α(t))
u∗(t) = 0,∀t

and

(3.32) ψ0 ≥ 0.
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From Condition 1 of Theorem 3.8 we know that for an optimal control u∗(t), along

any C2 piece of the optimal path, we have

(3.33) ψ3(t)
V (α(t))

R(α(t))
u(t) ≤ 0.

Assumptions 3.3 and 3.4 simplify Equation (3.33) as follows:

(3.34) ψ3(t)u(t) ≤ 0.

Furthermore, along any C2 piece of an optimal path either one of the following

two cases holds [7]:

1. ∂H
∂u

≡ 0,∀t, which implies ψ3(t)
V (α(t))
R(α(t))

≡ 0. Since V (θ) > 0,∀θ (Assumption 3.3)

and R(θ) is bounded (Assumption 3.4), we know ψ3(t) = 0,∀t. Then ψ̇3(t) ≡ 0,

implying λV (α(t)) sin(α(t) − φ) − λV ′(α(t)) cos(α(t) − φ) = 0 (see equation

(3.29)).

If λ �= 0, from calculus (e.g., [72] page 676) V ′(α(t)) = V (α(t)) cot(ϕ(α(t))),

where ϕ(α(t)) is an angle between the tangent and radial lines of the V (α(t))

polar plot. See Figure 3.3. Then we can solve the equation ψ̇3(t) = 0 as follows.

Figure 3.3: ϕ(α) denotes an angle between the tangent and radial lines of the V (α) polar plot.
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λV (α(t)) sin(α(t) − φ) − λV ′(α(t)) cos(α(t) − φ) = 0 | ÷ λV (α(t))

sin(α(t) − φ) − cot(ϕ(α(t))) cos(α(t) − φ) = 0 | · sin(ϕ(α(t)))

sin(ϕ(α(t))) sin(α(t) − φ) − cos(ϕ(α(t))) cos(α(t) − φ) = 0

cos(ϕ(α(t)) + α(t) − φ) = 0

ϕ(α(t)) + α(t) − φ = ±π

2

ϕ(α(t)) + α(t) = φ ± π

2
.(3.35)

Note that ϕ(α(t))+α(t) is the slope of the line tangent to the speed polar plot.

Setting this angle to constant φ corresponds to a straight line path with a fixed

heading angle equal to α(t).

If λ = 0, then ψ1 = ψ2 = 0, and equation (3.28) implies that ψ0 = 0. However,

Pontryagin Principle does not permit the vector (ψ0, ψ1, ψ2, ψ3) to be zero. So

λ cannot equal to zero for this scenario.

2. Otherwise, ∂H
∂u

�= 0,∀t, implying ψ3(t)
V (α(t))
R(α(t))

�= 0 ∀t, then equation (3.30) states

that u∗ = ±1 corresponding to the sharpest possible turn.

Thus, we can state the following proposition based on the application of Pontrya-

gin’s Principle.

Proposition 3.10. Any optimal path is the concatenation of the arcs with minimum

turning radius R(θ) and the straight line segments all parallel to the fixed directions

defined by equation (3.35).

3.3 Further Analysis of an Optimal Path Structure

In the previous section, we demonstrated the controllability of our problem,

proved existence of an optimal path and derived the necessary condition for op-

timality (Proposition 3.10). Pontryagin’s Principle provides very important infor-
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mation about the structure of an optimal path; however, the derived results are only

necessary conditions for optimality and define a very large set of potential optimal

paths. In this section, we present further analysis of an optimal path structure and

characterize a more specific, and significantly smaller, set of optimal path candidates.

In Section 3.3.1, we introduce terminology and notation to be used through out the

chapter. Section 3.3.2 lists general observations and properties that follow directly

from the definitions and control model of the problem. These statements are used

extensively in the upcoming proofs and provide a more intuitive understanding of

our analysis. Finally, Section 3.3.3 describes the detailed analysis and the resulting

characterization of an optimal path when the polar plot of an agent’s speed is convex.

Section 3.3.4 presents an algorithm that facilitates the construction of an optimal

path.

3.3.1 Terminology and Notation

• Dst - the displacement vector from the starting point (xs, ys) to the destination

point (xt, yt), that is Dst = (xt, yt) − (xs, ys) (see Figure 3.4).

• α(Dst) - angle of the displacement vector Dst (see Figure 3.4).

Figure 3.4: The displacement vector Dst = (xt, yt) − (xs, ys).

• Right-hand sharpest turn curve - a continuous curve in R2 corresponding to a

clockwise turn with the minimum turning radius, i.e., u(t) = −1 in Equation

(3.15) (see Figure 3.5).
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• Left-hand sharpest turn curve - a continuous curve in R2 corresponding to a

counterclockwise turn with the minimum turning radius, i.e., u(t) = 1 in Equa-

tion (3.15) (see Figure 3.5).

Figure 3.5: Right-hand and left-hand sharpest turn curves.

• CR(θ1, θ2) - a continuous segment (arc) of the right-hand sharpest turn curve

that starts at the heading angle θ1, ends at the angle θ2, and spans an interval of

headings smaller than 2π. The curve is defined for θ1, θ2 ∈ [0, 2π]. Consequently,

if θ2 > θ1 we assume that the curve ends at the angle θ2 − 2π. See Figure 3.6.

Figure 3.6: Polar plot of ΘR(θ1, θ2) and ΘL(θ1, θ2), and the corresponding curves CR(θ1, θ2) and
CL(θ1, θ2).

• ΘR(θ1, θ2) - a set of heading angles spanned by the right-hand sharpest turn

curve CR(θ1, θ2), see Figure 3.6. Since the heading angle cannot be changed

instantaneously, it is natural for the set of spanned angles to be a continuous
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interval of heading angles. However for consistency, we assume that ΘR(θ1, θ2) ⊆

[0, 2π]. Consequently,

(3.36) ΘR(θ1, θ2) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[θ2, θ1], if θ1 > θ2

[0, θ1]∪[θ2, 2π], if θ2 > θ1

∅ if θ1 = θ2

.

• CL(θ1, θ2) - a continuous segment (arc) of the left-hand sharpest turn curve that

starts at the heading angle θ1, ends at the angle θ2, and spans an interval of

headings smaller than 2π. The curve is defined for θ1, θ2 ∈ [0, 2π]. Consequently,

if θ1 > θ2 we assume that the curve ends at the angle θ2 + 2π. See Figure 3.6.

• ΘL(θ1, θ2) - a set of heading angles spanned by the left-hand sharpest turn

curve CL(θ1, θ2), see Figure 3.6. Since the heading angle cannot be changed

instantaneously, it is natural for the set of spanned angles to be a continuous

interval of heading angles. However for consistency, we assume that ΘL(θ1, θ2) ⊆

[0, 2π]. Consequently,

(3.37) ΘL(θ1, θ2) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[θ1, θ2], if θ1 < θ2

[0, θ2]∪[θ1, 2π], if θ2 < θ1

∅ if θ1 = θ2

.

• C.(θ1, θ2) - a sharpest turn curve representing either CR(θ1, θ2) or CL(θ1, θ2). To

simplify the notation, we sometimes omit the subscripts R and L and write

C.(θ1, θ2) when the actual direction of the curve has no significant value to the

statement. Consequently, it is assumed that any statement made regarding

C.(θ1, θ2) is true for both CR(θ1, θ2) and CL(θ1, θ2).

• Θ.(θ1, θ2) - a set of heading angles spanned by the curve C.(θ1, θ2), where the

omitted subscript denoted by ‘.’ can be replaced by either R or L. It is implied
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that in any single statement the direction of the curve C.(θ1, θ2) and the set

Θ.(θ1, θ2) match.

• C.,2π(θ1) - a sharpest turn curve that makes a complete 2π turn and starts (as

well as ends) at the heading angle θ1, see Figure 3.7. We often refer to the curve

as a 2π-curve.

Figure 3.7: Definition of CR,2π(θ1), CL,2π(θ1) and the corresponding displacement vector.

• τ(.) - a travel time function that returns the total travel time along a path

specified as an input. For example, τ(CR(θ1, θ2)) denotes the travel time along

curve CR(θ1, θ2).

• D(.) - a displacement vector (from the start point to the end point) for a path

given as an input. For example, D(CR(θ1, θ2)) denotes the displacement vector

corresponding to a curve CR(θ1, θ2), see Figure 3.6.

• α(.) - a heading angle of a vector specified as an input. See α(Dst) and Figure

3.4 for example.

• ‖Θ.(θ1, θ2)‖ - denotes the size of the set Θ.(θ1, θ2), which is equal to the sum of

the lengths of the angle intervals belonging to the set.

• (xR, yR) := (xs, ys)+D(CR(θs, θt)) - the end point of a right-hand sharpest turn

curve CR(θs, θt) that starts at point (xs, ys), see Figure 3.8.
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• (xL, yL) := (xs, ys) + D(CL(θs, θt)) - the end point of a left-hand sharpest turn

curve CL(θs, θt) that starts at point (xs, ys), see Figure 3.8.

Figure 3.8: Definition of (xR, yR) and (xL, yL).

• (Time) reversed curve of some curve - a curve that spans the same set of head-

ings but in the reversed order. For example, curve CL(θ2, θ1) is the (time)

reversed curve of (or corresponding to) CR(θ1, θ2), see Figure 3.11.

• Time reversed path - a path corresponding to a specified heading angle sequence

traversed in the reversed order. This is a generalization of a time reversed curve.

3.3.2 Some General Observations and Properties

In this section, we provide general observations and properties of the sharpest

turn curves as defined above. In addition to being a foundation for our further

analysis of an optimal path, these statements provide an intuitive understanding of

the problem structure. Listed properties are the direct derivations from the problem

statement and the control model established in equations (3.13)-(3.16). Therefore,

we choose to omit their proofs since they are straightforward exercises from calculus

and differential equations.

Observation 3.11. For any θ1, θ2 ∈ [0, 2π], the minimum turning radius func-

tion R(θ) uniquely characterizes the right-hand and left-hand sharpest turn curves
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CR(θ1, θ2) and CL(θ1, θ2).

Observation 3.12. Speed function V (θ) describes how fast a vehicle moves along

a sharpest turn curve (or any other path); that is, V (θ) uniquely characterizes the

functional τ(.).

Property 3.13. The slope of a displacement vector for an arbitrary curve must be-

long to the set of heading angles spanned by that curve, if the size of the spanned

angles set is less than or equal to π. That is, for some θ1 and θ2, α(D(C.(θ1, θ2))) ∈

Θ.(θ1, θ2) if ||Θ.(θ1, θ2)|| ≤ π. (See curve CR(θ1, θ2) and the corresponding displace-

ment vector D(CR(θ1, θ2)) in Figure 3.6 for a visual illustration.)

Property 3.14. Consider an arbitrary curve C.(θ1, θ2) with ||Θ.(θ1, θ2)|| ≤ π and

the following two lines: l1 passing through the start point of the curve with the slope

θ1, and l2 passing through the end point of the curve with slope θ2. Then, the curve

C.(θ1, θ2) does not intersect l1 and l2 except for its start and end points, respectively.

Furthermore, if Θ.(θ1, θ2) < π, the curve lies in the triangle region bounded by

lines l1, l2 and D(C.(θ1, θ2)), see Figure 3.9.

Figure 3.9: Illustration of Property 3.14.

Property 3.15. A sharpest turn curve C.(θ1, θ2) with ||Θ.(θ1, θ2)|| > π can have

at most one point of intersection with itself. Furthermore, its displacement vector

D(C.(θ1, θ2)) /∈ Θ.(θ1, θ2) only if the curve has an intersection point with itself. And
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D(C.(θ1, θ2)) ∈ Θ.(θ1, θ2) if the curve C.(θ1, θ2) does not have a point of intersection,

see Figure 3.10.

Figure 3.10: Illustration of the possible sharpest turn curves as described in Property 3.15.

Property 3.16. The travel times and the displacement vectors for a pair of time

reversed curves are equal to each other. That is, τ(CR(θ1, θ2)) = τ(CL(θ2, θ1)) and

D(CR(θ1, θ2)) = D(CL(θ2, θ1)) for arbitrary θ1, θ2 ∈ [0, 2π], see Figure 3.11.

More generally, the travel times and displacement vectors are the same for a pair

of paths that are time reversed of each other.

Figure 3.11: Illustration of CR(θ1, θ2) and CL(θ2, θ1) properties.
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Property 3.17. The travel time and displacement vector are the same for a 2π-

curve regardless of the starting (and ending) heading angle. That is, τ(C.,2π(θ1)) =

τ(C.,2π(θ2)) and D(C.,2π(θ1)) = D(C.,2π(θ2)) for any θ1 and θ2, see Figure 3.12.

Figure 3.12: Properties of τ(C.,2π(θ1)) and D(C.,2π(θ1)).

Since the travel time τ(.) and the displacement vector D(.) are equal for the right-

hand and left-hand 2π sharpest turn curves (Property 3.16), as well as for any pair

of starting heading angles (Property 3.17), we simplify our notation to the following.

• τ(C2π) := τ(C.,2π(θ1)), ∀θ1.

• D(C2π) := D(C.,2π(θ1)), ∀θ1.

Property 3.18. Due to the additivity property of time and displacement, the total

travel time and the total displacement vector for any given path are equal to the sum

of travel times and displacements for the path segments, respectively.

Property 3.19. Consider an arbitrary feasible path divided into a finite number of

path segments which are then arbitrarily rearranged into an alternative continuous

path. Time and space homogeneous properties of the functions R(θ) and V (θ) and
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Property 3.18 imply that the rearranged path has the same total travel time and

displacement vector as the original path.

3.3.3 Characterization of an Optimal Path for a Convex Linear Path Attainable Re-
gion

In this section, we conduct an in-depth analysis of problems with a speed func-

tion, V (θ), that corresponds to a convex linear path attainable region (LPAR), as it

is defined in section 2.1.3. This characteristic structure of the agent’s speed is also

referred to as a ‘convex speed polar plot’ in literature, and we use the two terms

interchangeably. Prior to proceeding with the discussion of an optimal path with

bounded curvature, we recall one of the key results for a convex LPAR, which is de-

rived in Chapter II. We employ this result to establish further properties of the paths

and the corresponding travel times that are beneficial to our subsequent analysis.

Properties of a Fastest Path for a Convex Linear Path Attainable Region

In the previous chapter, we discuss fastest-path finding for the problems with-

out any constraints on the minimum turning radius (i.e., R(θ) = 0,∀θ). For that

scenario, we find an optimal path between any two points to be a straight line seg-

ment when the speed function corresponds to a convex linear path attainable region.

For completeness, we restate the paraphrased version of the lemma here without

providing the proof.

Lemma 3.20. In the case of a convex linear path attainable region, the travel time

along the straight line path from a ∈ R2 to b ∈ R2 is never greater than that of any

other path from a to b.

Proof. See Lemma 2.2.
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The result of Lemma 3.20 is a cornerstone of our analysis; however a present con-

straint on the minimum turning radius makes a straight line path infeasible for most

of the cases. Therefore, a more general result is needed for our further investigation.

The following theorem provides a key property of the paths corresponding to the

convex speed polar plots.

Theorem 3.21. Consider a rectifiable path p∗ from point a ∈ R2 to point b ∈ R2

such that the curve p∗ and a line segment ab enclose a convex set Sp∗ ⊆ R2. (We call

such path to be a convex path). Consider another path p from a to b, and let Sp ⊆ R2

denote the set of points enclosed by the curve p and a line segment ab. When the

movement along any path is defined by a speed function corresponding to a convex

linear path attainable region, the travel time along path p∗, denoted by t(p∗), is never

greater than the travel time along path p, t(p), if Sp∗ ⊆ Sp (see Figure 3.13).

Figure 3.13: Example of paths p∗ and p as described in Theorem 3.21.

Proof. To compute t(p∗) we apply polygonal approximation to the path p∗ : [0, 1] →

R2. Choose an arbitrary partition Π of the interval [0, 1], i.e., let Π = (r0, r1, r2, ..., rk)

such that 0 = r0 < r1 < r2 < ... < rk−1 < rk = 1. Let mesh |Π| be the maximum

length ri − ri−1 of a subinterval of Π, that is, |Π| = max1≤i≤k{ri − ri−1}. Then Π



84

defines a polygonal approximation to p∗, i.e., the polygonal arc from p∗(0) = a to

p∗(1) = b having successive vertices p∗(r0), p∗(r1), ..., p∗(rk) (see Figure 3.14).

Figure 3.14: Illustration of the proof of Theorem 3.21.

Then, the travel time along a polygonal approximation of the path can be written

as η(p∗, Π) =
∑k

i=1 τ(p∗(ri−1), p
∗(ri)), where a function τ(c, d) denotes the travel

time along a straight line segment cd. However, as we let |Π| approach zero, thus

increasing the number of vertices, the polygonal approximation in the limit is equal

to path p∗; then so are their travel times (this follows from the assumption that path

p∗ is rectifiable). Given this,

(3.38) t(p∗) = lim
|Π|→0

η(p∗, Π).

Next, we compare t(p∗) to t(p). Since Sp∗ is convex and Sp∗ ⊆ Sp, a line containing

segment p∗(ri)p
∗(ri+1) for any 0 ≤ i < k has to intersect curve p at least once. We

let p(ri+1) denote the intersection point closest to point p∗(ri+1) and such that the

line segment p∗(ri)p(ri+1) contains point p∗(ri+1). Then, if we let t(p(ri, ri+1)) to

represent the travel time along a segment of the curve p between the points p(ri)

and p(ri+1), Lemma 3.20 implies the following inequalities for i ∈ [0, ..., k − 1] (see
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Figure 3.14).

(3.39)

τ(p∗(ri), p(ri))+t(p(ri, ri+1)) ≥ τ(p∗(ri), p(ri+1)) = τ(p∗(ri), p
∗(ri+1))+τ(p∗(ri+1), p(ri+1)).

Note that p∗(r0) = p(r0) and p∗(rk) = p(rk) implying that τ(p∗(r0), p(r0)) =

τ(p∗(rk), p(rk)) = 0.

Summing together inequalities (3.39) for all i ∈ [0, ..., k−1] results in the following

inequality.

Σk−1
i=0 t(p(ri, ri+1)) + Σk−1

i=0 τ(p∗(ri), p(ri)) ≥ Σk−1
i=0 τ(p∗(ri), p

∗(ri+1)) + Σk
i=1τ(p∗(ri), p(ri))

Σk−1
i=0 t(p(ri, ri+1)) + τ(p∗(r0), p(r0)) ≥ Σk−1

i=0 τ(p∗(ri), p
∗(ri+1)) + τ(p∗(rk), p(rk))

Σk−1
i=0 t(p(ri, ri+1)) ≥ Σk−1

i=0 τ(p∗(ri), p
∗(ri+1))

t(p) ≥ η(p∗, Π)(3.40)

Combining together equation (3.38) and inequality (3.40) we obtain the desired

result t(p) ≥ t(p∗).

Initial Analysis of an Optimal Path Structure

We now return to the discussion of a fastest-path finding problem when the cur-

vature of a path is constrained by a minimum turning radius function R(θ). From

Pontryagin’s Principle and the derived Proposition 3.10 we know that there exists

an optimal path that consists of the sharpest turn curves and straight line segments.

Observe that following a sharpest turn curve is the only way to change the heading

angle. On the other hand, in the case of a convex speed polar plot, following a

straight line path is faster than following any other path (Lemma 3.20). So intu-

itively, one follows a sharpest turn curve to change the heading as fast as possible

whenever it is necessary to do so; however, one prefers to travel along a straight
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line segment whenever that is possible in order to reach the destination sooner. The

problem consists of finding an optimal combination of the sharpest turn curves and

line segments.

For a distinct pair of starting and target heading angles (i.e., θs �= θt) we know

that somewhere along an optimal path one has to traverse a right-hand or a left-

hand sharpest turn curve from θs until θt. In other words, an optimal path must

contain either CR(θs, θt) or CL(θs, θt), which may or may not be split into a finite

number of segments throughout the path. (If θs = θt, we set C.(θs, θt) = ∅ and

follow the same discussion.) Property 3.19 implies that we can separate all path

segments that make up the sharpest turn curve from θs until θt and rearrange them

into such curve. Thus we divide an optimal path into a sharpest turn curve (either

CR(θs, θt) or CL(θs, θt)) and the ‘sub-path’ containing the remaining path segments.

Consequently, an optimal path from (xs, ys) to (xt, yt) corresponds to either one of

the following two cases (see Figure 3.15):

1. the curve CR(θs, θt) and an optimal sub-path from point (xR, yR) to (xt, yt)

(with some restrictions on the heading angles along the sub-path which will be

discussed later); or

2. the curve CL(θs, θt) and an optimal sub-path from point (xL, yL) to (xt, yt) (with

some restrictions on the heading angles along the sub-path which will be dis-

cussed later).

In the subsequent sections we find fastest paths corresponding to each of the two

scenarios; the path that has the smaller travel time among the two cases is established

to be a fastest path for our problem. To simplify the notation, we let DRt denote

the displacement vector from (xR, yR) to (xt, yt), that is DRt := Dst − D(CR(θs, θt)).
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Figure 3.15: An optimal path can be broken down into a sharpest turn curve from θs until θt (bold
solid lines) and the remaining sub-path (bold dashed lines).

Similarly, let DLt := Dst − D(CL(θs, θt)).

Lower and upper bounds on the minimum travel time

Next, we use our initial analysis of an optimal path and Lemma 3.20 to compute

the lower and upper bounds on the minimum travel time. These bounds are im-

portant for evaluating potential improvement of a feasible solution and the tradeoff

between the resources required to find an optimal path and decrease in travel time.

In addition, we employ the lower bounds to establish the optimality of a proposed

path and utilize the upper bounds to constrain a set of optimal-path candidates.

We know that an optimal path has to contain either a right-hand turn curve

CR(θs, θt) or a left-hand turn curve CL(θs, θt), so we find lower and upper travel time

bounds conditioned on the curve direction. The scenario corresponding to a smaller

lower (or upper) bound determines the lower (or upper) bound for our problem.

First, we find a lower bound on the minimum travel time when an optimal path

has to contain a right-hand sharpest turn curve CR(θs, θt); we denote such bound

by LBR. We already established that an optimal path corresponding to this case

contains the curve CR(θs, θt) and an optimal sub-path from point (xR, yR) to point
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(xt, yt). There are additional constraints on the heading angles along the sub-path,

however they do not need to be incorporated into the lower bound calculation. From

Lemma 3.20 we know that a straight line path is a fastest path for a convex linear path

attainable region. Therefore, a travel time along an optimal sub-path from (xR, yR)

to (xt, yt) cannot be less than the travel time along the straight line connecting the

two points, DRt. Consequently,

(3.41) LBR = τ(CR(θs, θt)) + τ(DRt).

Analogously to the right-hand sharpest turn curve case, we find a lower bound on

the minimum travel time when an optimal path has to contain a left-hand sharpest

turn curve CL(θs, θt). (The lower bound for this case is denoted by LBL.)

(3.42) LBL = τ(CL(θs, θt)) + τ(DLt).

Considering that an optimal path has to correspond to one of the two scenarios

discussed above, we can conclude that the overall lower bound on the minimum travel

time, denoted by LB, is the minimum of the two bounds. That is,

LB = min{LBR; LBL}(3.43)

= min{τ(CR(θs, θt)) + τ(DRt); τ(CL(θs, θt)) + τ(DLt)}.

To find an upper bound on the minimum travel time, we construct a feasible

path which may or may not be optimal. Consider a path containing a 2π-curve,

either CR,2π(.) or CL,2π(.). Then, a straight line with any slope is a feasible part of

the path and can be inserted into the path without violating the minimum turning

radius constraint. Consequently in the case when an optimal path has to contain the

right-hand turn curve CR(θs, θt), a feasible sub-path can consist of a 2π-curve and
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the straight line segment connecting point (xR, yR) + D(C2π) to (xt, yt). This path

provides an upper bound on the minimum travel time, denoted by UBR.

(3.44) UBR = τ(CR(θs, θt)) + τ(C2π) + τ(DRt − D(C2π)).

Similarly, we find an upper bound on the minimum travel time when an optimal

path has to contain a left-hand sharpest turn curve CL(θs, θt); we denote such bound

by UBL.

(3.45) UBL = τ(CL(θs, θt)) + τ(C2π) + τ(DLt − D(C2π)).

Due to the fact that both of the constructed paths are feasible, the minimum of

the two bounds delivers a tighter upper bound.

UB = min{UBR; UBL}.(3.46)

The constructed upper and lower bounds are used in our subsequent characteri-

zation of an optimal sub-path.

Characterization of an optimal sub-path.

We established earlier that an optimal path can be divided into a sharpest turn

curve, either CR(θs, θt) or CL(θs, θt), and the remaining part of the path called ‘sub-

path’. As we rearrange the segments of an optimal path into a sharpest turn curve

C.(θs, θt), the remaining segments are organized into a continuous sub-path from

either (xR, yR) or (xL, yL) to (xt, yt) (see Figure 3.16). Note that the resulting sub-

path might have points of discontinuous heading angle where the segments are joined

together.

In order for a path to be optimal, any part of the path also has to be optimal.

Therefore, we are interested in characterizing the optimal sub-paths from points
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Figure 3.16: An optimal path consists of the segments making up the curve CR(θs, θt) (bold solid
lines), and the remaining segments (bold dashed lines).

(xR, yR) and (xL, yL) to the target point (xt, yt). The analysis for both cases (starting

at (xR, yR) and (xL, yL)) is practically identical, and we limit our discussion to the

case of an optimal sub-path starting at point (xR, yR) without loss of generality.

We first look at a special case of the problem when an optimal sub-path can be

derived directly from the lower bound computation.

Proposition 3.22. The straight line segment from (xR, yR) to (xt, yt) is a fastest

sub-path, if the slope of the displacement vector from (xR, yR) to (xt, yt), i.e., DRt,

is equal to one of the heading angles spanned by the right-hand sharpest turn curve

CR(θs, θt).

In other words, if α(DRt) ∈ ΘR(θs, θt) then a fastest path from (xs, ys) to (xt, yt)

containing a right-hand sharpest turn curve is equal to the curve CR(θs, α(DRt)), fol-

lowed by a straight line segment DRt and finally followed by the curve CR(α(DRt), θt),

see Figure 3.17.

Proof. Straight line is a fastest path in the case of a convex speed polar plot, and the

straight line segment from (xR, yR) to (xt, yt) gives a lower bound on the minimum

travel time for the sub-path (see LBR and equation (3.41)). If α(DRt) ∈ ΘR(θs, θt),

the straight line segment DRt is feasible, and LBR implies it is an optimal sub-
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Figure 3.17: Construction of an optimal path as described in Proposition 3.22.

path.

Proposition 3.22 describes an optimal sub-path (and the resulting path) when

α(DRt) ∈ ΘR(θs, θt). The proposition is not applicable when the straight line from

(xR, yR) to (xt, yt) is not feasible. Therefore, we continue the analysis of an op-

timal sub-path while assuming that α(DRt) /∈ ΘR(θs, θt), which implies α(DRt) ∈

ΘL(θs, θt).

The necessary heading change from the starting angle θs to the target angle θt is

already accomplished by the curve CR(θs, θt) preceding the sub-path. Therefore, the

total heading change along the sub-path must be equal to zero (or 2π in some cases).

Consequently, every sharpest turn curve along the sub-path must be accompanied

by the corresponding time reversed curve to negate the resulting heading change.

The only exception is a curve along the sub-path spanning a complete 2π range of

headings, in which case the total heading angle also does not change. The earlier

computation of an upper bound UB leads to the following fastest sub-path when a
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2π-curve is part of an optimal path.

Proposition 3.23. A fastest sub-path consists of a curve CR,2π(.) or CL,2π(.) and a

straight line segment from point (xR, yR) + D(C2π) to the target point (xt, yt), if an

optimal sub-path contains a 2π-curve.

Proof. From the upper bound computation, see equation (3.44), we know that when

an optimal sub-path contains a 2π-curve CR,2π(.) or CL,2π(.), the remaining of the

sub-path is a straight line.

From Proposition 3.23 we know the structure of an optimal sub-path if it contains

a 2π-curve. Consider the characterization of an optimal sub-path which is assumed

not to contain a curve spanning the complete set [0, 2π], and when every sharpest

turn curve must be accompanied by the corresponding time reversed curve.

The convex property of a linear path attainable region does not guarantee that a

travel time function will satisfy the strict triangle inequality, implying that an optimal

path might not be unique. Therefore, we are interested in characterizing only one of

the optimal sub-paths from (xR, yR) to (xt, yt). We prove a set of propositions where

each consecutive statement adds more detail to the structure of an optimal sub-path

without violating the preceding propositions. As a result, we obtain a very specific

structure of a sub-path known to be optimal. Note, the assumption that an optimal

sub-path does not contain a 2π-curve is implied in all of the following statements.

Proposition 3.24. There exists a fastest sub-path that does not contain any curves

spanning the heading angles belonging to the ‘interior’ of ΘR(θs, θt). In other words,

we can construct an optimal sub-path such that any curve C.(θ1, θ2) is not a part of

it if Θ.(θ1, θ2)
⋂

(ΘR(θs, θt)/{θs, θt}) �= ∅.
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Proof. In the case when an arbitrary curve C.(θ1, θ2) with the corresponding Θ.(θ1,

θ2) ⊆ ΘR(θs, θt) is part of an optimal sub-path we can replace the curve by a straight

line segment equal to D(C.(θ1, θ2)). Without loss of generality, we assume that

‖Θ.(θ1, θ2)‖ ≤ π, since a curve not satisfying this assumption can be split into two

curves C.(θ1, θ
′) and C.(θ′, θ2), for θ′ ∈ Θ.(θ1, θ2). Property 3.13 then implies that

D(C.(θ1, θ2)) ∈ Θ.(θ1, θ2) ⊆ ΘR(θs, θt) and the feasibility of a straight line segment

D(C.(θ1, θ2)).

The convexity of the linear path attainable region and Lemma 3.20 guarantees

that the travel time for the resulting path is not greater than for the original path

containing the curve. Furthermore, because every curve is accompanied by its re-

versed curve, we apply the linear substitution to the time-revered pair of curves, to

ensure that the total change in heading angle in the original part of the path and the

replaced part of the path are equivalent (i.e., both equal to zero). In such manner,

we replace all the ‘interior’ curves by the straight line segments resulting in the path

described in the proposition statement.

Proposition 3.25. There exists an optimal sub-path such that the only curves it

can contain are CL(θs, θ
∗
s) (accompanied by CR(θ∗s , θs)) and CR(θt, θ

∗
t ) (accompanied

by CL(θ∗t , θt)), for some θ∗s , θ
∗
t ∈ [0, 2π] such that ΘL(θs, θ

∗
s)

⋂
ΘR(θt, θ

∗
t ) = ∅.

Proof. From Proposition 3.24 we know that there exists an optimal sub-path such

that none of the curves span the set ΘR(θs, θt) except for its ‘boundary’ points θs

and θt. At the same time, the minimum turning radius constraint implies that there

cannot be any discontinuity in the interval of heading angles spanned by the complete

path. Consequently, the curve segments must start (and end, when followed by the

corresponding time reversed curve) with the heading angles either equal to θs or
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θt. Proposition 3.24 also implies that a curve starting with heading θs cannot be a

right-hand turn curve, and a curve starting with θt cannot be a left-hand turn curve.

Finally, the set of headings spanned by the two pairs of curves cannot intersect,

otherwise the intersection can be replaced by a straight line similar to the proof

of Proposition 3.24. The same proposition implies that there would not be any

additional curves spanning the angles belonging to set ΘR(θ∗s , θ
∗
t ).

It is important to note that both pairs of the curves described in Proposition

3.25 ({CL(θs, θ
∗
s), CR(θ∗s , θs)} and {CR(θt, θ

∗
t ), CL(θ∗t , θt)}) do not have to be part of an

optimal sub-path. In many scenarios, only one of these pairs belongs to an optimal

sub-path. For consistency of notation, we let θ∗s = θs or θ∗t = θt when either curve

CL(θs, θ
∗
s) or curve CR(θt, θ

∗
t ) is not part of an optimal sub-path, respectively. In

such manner, we always refer to curves CL(θs, θ
∗
s) and CR(θt, θ

∗
t ), recognizing that the

curve’s length might be equal to zero, implying that it is not part of the path.

It is interesting to observe that in the extreme case when ΘL(θs, θ
∗
s) or ΘR(θt, θ

∗
t )

is equal to ΘL(θs, θt), the scenario is equivalent to the path with a left-hand sharpest

turn curve CL(θs, θt), the 2π-curve CR,2π(.) and the straight line corresponding to the

discussed upper bound UBL, see equation (3.45).

Proposition 3.26. There exists an optimal sub-path such that it either does not

contain any line segments, or all the line segments have the same heading angle and

can be rearranged into a single straight line.

Proof. Consider an optimal sub-path that contains two directed line segments D1 and

D2 with the distinct heading angles θ1 and θ2, respectively. Our goal is to construct

an alternative path that can replace D1 and D2 part of the given sub-path, contains

at most one line segment, and has a travel time no greater than the sum of travel
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times for D1 and D2. The alternative path has to have the total displacement equal

to D1 +D2. Furthermore, the total heading change along the alternative path has to

be equal to zero. Therefore, we construct an alternative path only replacing 1
2
D1 and

1
2
D2 parts of the path without the restriction on the total heading change. Property

3.16 implies that by replacing the second part of 1
2
(D1 + D2) with the time-reversed

path results in the proper alternative path and negates the overall heading change.

Continuity of the heading angle along a feasible path implies that either CR(θ1, θ2)

or CL(θ1, θ2) has to be part of the path containing D1 and D2. Without loss of gener-

ality, assume CR(θ1, θ2) is part of the path. Consequently, any proposed alternative

path has to start with the heading angle in ΘR(θ1, θ2) to ensure its feasibility.

Case 1: α(D1 + D2) ∈ ΘR(θ1, θ2).

When α(D1 + D2) ∈ ΘR(θ1, θ2), the straight line segment equal to the displace-

ment D1 + D2 is feasible to include into the path, and we can replace D1 and

D2 by that single line segment. Lemma 3.20 states that the travel time for the

resulting path is not greater than for the original path, thus maintaining its

optimality.

Case 2: α(D1 + D2) /∈ ΘR(θ1, θ2) ⇒ α(D1 + D2) ∈ ΘL(θ1, θ2).

Since α(D1 + D2) ∈ ΘL(θ1, θ2), we know that ‖ΘL(θ1, θ2)‖ ≤ π. Let θ′ :=

α(D(CL(θ1, θ2))), then Property 3.13 implies θ′ ∈ ΘL(θ1, θ2).

Due to the symmetry of CR(θ2, θ1) and CL(θ1, θ2), we assume α(D1 + D2) ∈

ΘL(θ1, θ
′) as opposed to ΘL(θ′, θ2), without loss of generality. Let the curve

CL(θ1, θ2) and the displacement vector 1
2
(D1 + D2) start at the same point,

denoted by a. Then, the curve must intersect the line containing the dis-

placement vector 1
2
(D1 + D2), and we call the intersection point d. Let θd ∈
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ΘL(θ1, θ2) denote the heading angle of the curve CL(θ1, θ2) at point d, that is,

1
2
(D1 +D2)||D(CL(θ1, θd). Then, if c := a+ 1

2
(D1 +D2), either d ∈ ac or c ∈ ad,

and we consider the following two subcases separately.

Case 2a: d ∈ ac (see Figure 3.18).

We can complete the path from a to c by adding the line segment dc to the

curve CL(θ1, θd). Note that since ΘL(θ1, θd) ⊆ ΘL(θ1, θ2) and ‖ΘL(θ1, θ2)‖ ≤

π, Property 3.13 implies that α(dc) = α(D(CL(θ1, θd))) ∈ ΘL(θ1, θd). The

resulting path consists of CL(θ1, α(dc)) followed by the line segment dc and

then the curve CL(α(dc), θd). It is a convex path enclosed by a path 1
2
D1

followed by 1
2
D2, and Theorem 3.21 states that its travel time satisfies the

requirements to maintain the optimality of the proposed path.

Figure 3.18: Illustration of Proposition 3.26 Case 2a.

Case 2b: c ∈ ad (see Figure 3.19).

Let point b denote the end of segment 1
2
D1 starting at a, that is, b = a+ 1

2
D1.

Then bc = 1
2
D2. We also let Ca denote the curve CL(θ1, θ2) starting at a.

The fact that c ∈ ad and α(ac) ∈ ΘL(θ1, θ
′) implies that curve Ca intersects

bc, since it does not intersect ac and it cannot intersect ab (Property 3.14).

Similarly, we let Cc to denote the curve CL(θ1, θ2) ending at point c. Then,

curve Cc must intersect ab and curve Ca, we call e := Ca

⋂ Cc. Furthermore,
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the intersection point must lie inside the triangle defined by vertexes abc.

Then, the alternative proposed path is to follow curve Ca from point a

to point e and then follow curve Cc from e to c. The constructed path

is a convex path enclosed by a path 1
2
D1 followed by 1

2
D2, and Theorem

3.21 states that its travel time satisfies the requirements to maintain the

optimality of the proposed path.

Figure 3.19: Illustration of Proposition 3.26 Case 2b.

Proposition 3.27. There exists an optimal sub-path such that it can only contain

the curve pairs {CL(θs, θ
∗
s), CR(θ∗s , θs)} and {CR(θt, θ

∗
t ), CL(θ∗t , θt)} and a line segment

with the slope either equal to θ∗s or θ∗t .

Proof. Proposition 3.25 states that there exists an optimal sub-path that can only

contain the curves {CL(θs, θ
∗
s), CR(θ∗s , θs)} and {CR(θt, θ

∗
t ), CL(θ∗t , θt)}. And Proposi-

tion 3.26 proves that we can have an optimal sub-path with at most one line segment.

The two propositions do not contradict each other, and we can conclude that there

exists an optimal sub-path that can only contain the given two pairs of curves and

a single line segment. Thus, we are left to prove that the heading angle of the line

can only be equal to θ∗s or θ∗t , instead of the ‘interior’ defined as ΘR(θ∗s , θ
∗
t )/{θ∗s , θ∗t }.
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Consider a path containing line segment D1 with the corresponding heading angle

θ1, such that θ1 ∈ ΘR(θ∗s , θ
∗
t )/{θ∗s , θ∗t }. Since ‖ΘR(θ∗s , θ

∗
t )‖ ≤ 2π, either ‖ΘR(θ∗s , θ1)‖ ≤

π or ‖ΘR(θ1, θ
∗
t )‖ ≤ π. Due to the symmetry of the argument, we assume ‖ΘR(θ1, θ

∗
t )‖ ≤

π, without loss of generality. Then, our goal is to construct an alternative path with

a travel time not greater than the current path, and such that the slope of an alter-

native line segment has a heading angle equal to θ∗s or θ∗t . Note that θ∗s and θ∗t are

not the specific angle values, but a notation used to denote the ‘boundaries’ of the

set of headings spanned by a path.

Employing Property 3.19, consider a part of the path consisting of D1 and

CR(θ1, θ
∗
t ) accompanied by CL(θ∗t , θ1) which is arranged as follows (see Figure 3.20).

Let curve Ca denote a curve CR(θ1, θ
∗
t ) starting at some point a and let point b denote

the end of Ca, that is, b = a + D(Ca). The line segment D1 is assumed to start at

point b and end at point c, where c = b + D1. Finally, a curve denoted by Cc is the

curve CL(θ∗t , θ1) starting at point c and ending at point d. We let point e denote the

midpoint of the line segment bc.

Figure 3.20: Illustration of Proposition 3.27 proof.

Since D(Ca) ∈ ΘR(θ1, θ
∗
t ), the curve Ca and line segment ab enclose a convex set,

and point e lies outside this set. Then, we construct two tangent lines to this convex

set passing through point e and one of those lines is tangential to curve Ca. We let
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point g denote this tangential point and θg ∈ Θ(θ1, θ
∗
t ) be the slope of the tangent

line ge, which is also the heading angle of the curve Ca at point g. Note that the

symmetry of curves Ca and Cc relative to point e implies that the line containing

segment ge is also tangent to curve Cc at a point we denote by h. The symmetry

also implies that the heading angle of the curve Cc at point h is equal to θg. Then,

the part of the path consisting of D1, CR(θ1, θ
∗
t ) and CL(θ∗t , θ1) can be replaced by

a curve CR(θ1, θg), the directed line segment gh, and curve CL(θg, θ1). Subsequently,

heading θg becomes the new θ∗t .

Note that since we replace CR(θg, θ
∗
t ), CL(θ∗t , θg) and D1 by a straight line segment

with the equivalent displacement, Lemma 3.20 ensures that the alternative path will

have a travel time no greater than the original path, thus maintaining its optimality.

Proposition 3.28. There exists an optimal sub-path described by one of the following

statements:

1. It consists of only two curve pairs {CL(θs, θ
∗
s), CR(θ∗s , θs)} are {CR(θt, θ

∗
t ), CL(θ∗t ,

θt)} .

2. It consists of only one curve pair {CL(θs, θ
∗
s), CR(θ∗s , θs)} or {CR(θt, θ

∗
t ), CL(θ∗t ,

θt)} and a straight line segment with the slope θ∗s or θ∗t , respectively.

Proof. Proposition 3.27 states that there exists an optimal sub-path that can only

contain the curve pairs {CL(θs, θ
∗
s), CR(θ∗s , θs)} and {CR(θt, θ

∗
t ), CL(θ∗t , θt)}, and a straight

line segment D1 with the heading angle either equal to θ∗s or θ∗t . We show that there

exists an optimal sub-path that would not contain all three components.

Consider a path containing {CL(θs, θ
∗
s), CR(θ∗s , θs)}, {CR(θt, θ

∗
t ), CL(θ∗t , θt)} and a

straight line segment D1, where θ∗s �= θs and θ∗t �= θt. Due to the symmetry of the
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discussion, we assume that the heading angle of D1 is equal to θ∗t , without loss of

generality. Employing Property 3.16, we consider one half of the path that consists

of curve CR(θt, θ
∗
t ), curve CR(θ∗s , θs), and a line segment 1

2
D1. Our goal is to replace

this part of the path with either two sharpest turn curves or one curve and a line

segment. Then, implementation of a time reversed path for the second half delivers

the necessary results.

Let point a denote the start point of curve CR(θt, θ
∗
t ), and point b denote the curve’s

end point. Then, we assume the line segment 1
2
D1 starts at b and ends at c = b+ 1

2
D1.

Finally, we assume CR(θ∗s , θs) starts at point c and ends at point d. Note that the line

segment ad is equal to 1
2
DRt, implying that α(ad) ∈ ΘL(θs, θt) = ΘR(θt, θs). Next,

we consider all possible scenarios of the current half-path and prove the proposition

for each case individually.

Case 1: Curves CR(θt, θ
∗
t ) and CR(θ∗s , θs) intersect at some point e (see Figure 3.21).

Consider an alternative path consisting of only two curves: part of the curve

CR(θt, θ
∗
t ) between points a and e, followed by part of the curve CR(θ∗s , θs) be-

tween points e and d. Because the proposed path is part of the original path,

its travel time has to be less than or equal to the original travel time.

Figure 3.21: Illustration of Proposition 3.28 Case 1.

Case 2: Curve CR(θt, θ
∗
t ) intersects itself (see Figure 3.22).
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We assume that point d does not lie inside the region enclosed by the loop

of curve CR(θt, θ
∗
t ), otherwise curves CR(θt, θ

∗
t ) and CR(θ∗s , θs) have to intersect

corresponding to Case 1. Then, there exists at least one line tangent to curve

CR(θt, θ
∗
t ) and passing through point d. Let e denote the tangent point of the

line to the curve CR(θt, θ
∗
t ), such that the heading of the curve at that point is

equal to α(ed). Consider an alternative path consisting of only one arc and a

line segment: part of the curve CR(θt, θ
∗
t ) between points a and e and a straight

line segment ed. Since we replace part of the original path with a straight line

segment, Lemma 3.20 implies that travel time of the alternative path is not

greater than that of the original path.

Figure 3.22: Illustration of Proposition 3.28 Case 2.

Case 3: α(cd) ∈ ΘL(θ∗t , θ
∗
t + π) (see Figure 3.23).

There exists a line segment ed that is tangent to curve CR(θt, θ
∗
t ) at point e, such

that the heading of the curve at that point is equal to α(ed). We construct an

alternative path containing one curve an a line segment as discussed in Case 2.

Case 4: α(cd) ∈ ΘR(θ∗t , θ
∗
t + π).

A curve CR(θ∗t , θs) starting at point b must either intersect the line segment bd
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Figure 3.23: Illustration of Proposition 3.28 Case 3.

or curve CR(θ∗s , θs), before a possible intersection with the line segment bc.

Case 4a: Curve CR(θ∗t , θs) starting at point b intersects line segment bd (see

Figure 3.24).

There exists a line segment ed that is tangent to curve CR(θ∗t , θs) at point e,

such that the heading of the curve at that point is equal to α(ed). Consider

an alternative path consisting of a single curve and a line segment: part

of the curve CR(θt, θs) between points a and e, followed by a straight line

segment ed. Theorem 3.21 implies that travel time of the alternative path

is not greater than that of the original path.

Figure 3.24: Illustration of Proposition 3.28 Case 4a.

Case 4b: Curve CR(θ∗t , θs) starting at point b intersects curve CR(θ∗s , θs) (see



103

Figure 3.25).

Let e denote the intersection point of the two curves. Then a path consisting

of two curves: a part of the curve CR(θt, θs) between points a and e, and

a part of the curve CR(θ∗s , θs) between points e and d, has a travel time no

greater than the original path (Theorem 3.21). Note that the set of heading

angles spanned by the two new curves cannot intersect.

Figure 3.25: Illustration of Proposition 3.28 Case 4b.

Characterization of an optimal path

Theorem 3.29. An optimal path from (xs, ys, θs) to (xt, yt, θt) is of the form {C, C, C},

or {C, S, C}, where C denotes a sharpest turn curve and S denotes the straight line

segment. It is implied that a path of the form {C, C, C} alternatively switches between

left-hand and right-hand sharpest turn curves.

Proof. The preceding propositions list all the possible forms of the optimal path

candidates and show that each one is either of the form {C, C, C} or {CSC}. We

discuss the case when an optimal path has to contain CR(θs, θt); the case when an
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optimal path has to contain the curve CL(θs, θt) is analogous.

Case 1: An optimal sub-path is a straight line equal to DRt (Proposition 3.22).

A path consisting of the curve CR(θs, α(DRt)) followed by a straight line segment

DRt which is followed by the curve CR(α(DRt), θt) is of the form {C,S, C}.

Case 2: A fastest sub-path consists of a 2π-curve and a straight line segment from

point (xR, yR) + D(C2π) to the target point (xt, yt) (Proposition 3.23).

Let D1 denote a displacement vector from point (xR, yR)+D(C2π) to the target

point (xt, yt). Then an optimal path is as follows: a curve {CR(θs, θt), CR(θt,

α(D1))}, followed by a line segment equal to D1, and concluded with a curve

CR(α(D1), θt), which is of the form {C,S, C}.

Case 3: An optimal sub-path consists of only curves CL(θs, θ
∗
s) (accompanied by

CR(θ∗s , θs)) and CR(θt, θ
∗
t ) (accompanied by CL(θ∗t , θt)) (Proposition 3.28).

An optimal path is as follows (in order to maintain the continuity of head-

ing): a curve CL(θs, θ
∗
s), followed by a curve CR(θ∗s , θ

∗
t ) = {CR(θ∗s , θs), CR(θs, θt),

CR(θt, θ
∗
t )} and followed by another curve CL(θ∗t , θt), which is of the form {C, C, C}

Case 4: An optimal sub-path consists of only one curve pair {CL(θs, θ
∗
s), CR(θ∗s , θs)}

and a straight line segment with the slope θ∗s (Proposition 3.28).

Then an optimal path is a curve CL(θs, θ
∗
s), a straight line segment with the

slope θ∗s , and then followed by a curve CR(θ∗s , θt) = {CR(θ∗s , θs), CR(θs,

θt)}. This path is of the form {C,S, C}.

Case 5: An optimal sub-path consists of only one curve pair {CR(θt, θ
∗
t ), CL(θ∗t , θt)}

and a straight line segment with the slope θ∗t (Proposition 3.28).

Then an optimal path is a curve CR(θs, θ
∗
t ) = {CR(θs, θt), CR(θt, θ

∗
t )}, a straight
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line segment with the slope θ∗t , followed by a curve CL(θ∗t , θt). This path is of

the form {C,S, C}.

Theorem 3.29, which explicitly characterizes an optimal path in the case of a

convex speed polar plot, is the key theorem of this chapter. It is interesting to

note that the structure of our optimal path is similar to that of an isotropic Dubins

car problem. However, it is important to remember that curves in our case do not

generally correspond to the circles like in Dubins car problem. Instead, they might

have very complex forms. Despite the very general form of the sharpest-turn curves,

we show that our problem is controllable and has an optimal solution as characterized

in Theorem 3.29.

3.3.4 Optimal Path Finding Algorithm for a Convex Linear Path Attainable Region

We develope a path finding algorithm to facilitate the implementation of an op-

timal path with bounded curvature as characterized in Theorem 3.29. While the

main premise of our algorithm is the result of Theorem 3.29, we state additional

propositions in order to further characterize an optimal path based on the relative

location of the target state (xt, yt, θt).

Proposition 3.30. If an optimal sub-path does not contain a 2π-curve, there exists

an optimal sub-path from point (xR, yR) to point (xt, yt) such that it passes through

the mid-point of the connecting line, DRt.

Proof. From Proposition 3.27 we know that any sharpest turn curve of an optimal

sub-path must be accompanied by the corresponding time-revered curve. Further-

more, Property 3.16 states that the displacement vector for a curve and its reversed



106

curve are equal. Similarly, we can split a straight line segment part of an optimal sub-

path into two segments with equal lengths. Then, we can construct a sub-path such

that the first and second halves of the path (in respect of time) are time-reversed of

each other. We know that the total displacement vector for the first half of the path

must be equal to the second half, and therefore corresponding to vector 1
2
DRt.

Any part of an optimal path also has to be optimal, therefore we construct half of

an optimal sub-path with the displacement equal to 1
2
DRt. Then, applying Proposi-

tion 3.30 we set the second half of the sub-path to be the corresponding time-reversed

path. Thus, Proposition 3.30 facilitates the construction of an optimal sub-path as

characterized in Theorem 3.29.

Before stating the proposition, we introduce notation to ensure the clarity of our

arguments. Let point a = (xR, yR) and point b denote the mid-point of DRt starting

at a, that is b = a + 1
2
DRt. Let curves Ca,L = CL(θs, θt) and Ca,R = CR(θt, θs) that

start at point a and end at point c = a + D(Ca,L) = a + D(Ca,R). We let SR ⊆ R2 to

denote a region enclosed the curve Ca,R and a line segment ac. Similarly, SL is the

region enclosed by Ca,L and ac. We set S ′ = SR

⋃SL.

Proposition 3.31. When α(DRt) /∈ ΘR(θs, θt) and a 2π-curve is not part of an

optimal sub-path, one of the following cases describes the half of an optimal sub-path,

from a to b.

Case 1: α(cb) ∈ ΘR(θt, θs) and b /∈ S ′ (see Figure 3.26).

There exist two lines passing through point b, such that one line is tangent to

curve Ca,L and one is tangent to curve Ca,R, at the corresponding points dL and

dR, and the slopes θdL
= α(dLb) and θdR

= α(dRb), respectively. Then the half

of a fastest sub-path is either the curve CL(θs, θdL
) followed by a line segment
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dLb, or the curve CR(θt, θdR
) followed by dRb.

Figure 3.26: Illustration of Proposition 3.31 Case 1.

Case 2: α(cb) /∈ ΘR(θt, θs) and b /∈ S ′ (see Figure 3.27).

There exists only one line passing through point b that is tangent to either curve

Ca,L or Ca,R. We call the tangent point d and the heading of the sharpest turn

curve at that point θd = α(db). The half of a fastest sub-path is the curve

C.(θs, θd) followed by a line segment db.

Figure 3.27: Illustration of Proposition 3.31 Case 2.

Case 3: α(cb) ∈ ΘR(θt, θs) and b ∈ S ′ (see Figure 3.28).
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Due to symmetry of the argument, we assume b ∈ SL, without loss of generality.

There exists a line passing through point b, tangent to curve Ca,R, at point d with

the heading of the sharpest turn curve at that point θd = α(db). In addition,

a curve CL(θs, θt) ending at point b, denoted by Cb,L(θs, θt), intersects the curve

Ca,L = CL(θs, θt) at some point denoted by e. Then, the half of a fastest sub-path

will be one of the two paths: (1) curve CR(θt, θd) followed by a line segment db,

or (2) part of the curve Ca,L = CL(θs, θt) between points a and e followed by part

of the curve Cb,L = CL(θs, θt) between points e and b.

Figure 3.28: Illustration of Proposition 3.31 Case 3.

Case 4: α(cb) /∈ ΘR(θt, θs) and b ∈ S ′ (see Figure 3.29).

Due to symmetry of the argument, we assume b ∈ SL, without loss of generality.

Then, a curve CL(θs, θt) ending at point b, denoted by Cb,L(θs, θt), intersects the

curve Ca,L = CL(θs, θt) at a point denoted by e. And, the half of a fastest sub-

path is part of the curve Ca,L = CL(θs, θt) between points a and e followed by part

of the curve Cb,L = CL(θs, θt) between points e and b.

Proof. For each case, we demonstrate that the proposed path is faster than other

candidate paths characterized in Proposition 3.28.
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Figure 3.29: Illustration of Proposition 3.31 Case 4.

Case 1: When, α(cb) ∈ ΘR(θt, θs) and b /∈ S ′, the constructed straight line segments

dRb and dLb are faster than part of a second sharpest turn curve ending at point

b (Theorem 3.21), since the second curves ending at point b either would not

intersect the curves starting at point a or the set of heading angles spanned by

parts of the two curves would overlap.

Case 2: The constructed path is the only feasible candidate. A second curve ending

at point b either would not intersect a curve starting at point a or the set of

heading angles spanned by parts of the two curves would overlap.

Case 3: Analogous to Case 1 for a candidate path (1). For a candidate path (2), it

is then only feasible candidate including a curve Ca,L = CL(θs, θt).

Case 4: The constructed path is the only feasible candidate. A second curve ending

at point b either would not intersect a curve starting at point a or the set of

heading angles spanned by parts of the two curves would overlap.

We would like to note that in order to ensure that our analysis and results can be
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implemented to a wide variety of applications, we make no specific restrictions on the

minimum turning radius function. However, this very general direction-dependent

function produces a diverse set of sharpest turn curve and limits how specific and

definitive our path characteristic can be. Therefore, despite similar characterizations,

the construction of an optimal path for our problem is more evolved than for Dubins

car problem.

We now present an algorithm that finds a fastest path with bounded curvature

for a direction-dependent speed function corresponding to a convex LPAR. We know

that an optimal path has to contain a curve CR(θs, θt) or CL(θs, θt), and without

knowing more specific information about the functions R(θ) and V (θ) we cannot

conclude which one of these cases is optimal. Consequently, we construct paths for

each scenario and compare the minimum travel time for each case.

Algorithm 4 Fastest Path with Bounded Curvature for a Convex Speed Polar Plot.

Step 1. For both cases k = R and k = L, corresponding to the scenarios where an optimal path
must contain a right-hand sharpest turn curve CR(θs, θt), and a left-hand sharpest turn curve
CL(θs, θt), respectively, perform the following steps 1a - 1d.

Step 1a. Set τk = ∞.

Step 1b. Let point a = (xs, ys)+D(Ck(θs, θt)), and the displacement vectorDat = (xt, yt)−a.
If α(Dat) ∈ Θk(θs, θt), compute the travel time τk = τ(Ck(θs, θt)) + τ(Dat). STOP.
Repeat steps 1a - 1d for the other k if needed, otherwise go to Step 2.

Step 1c. Set point a′ = a+D(C2π) and the displacement vector Da′t = (xt, yt) − a′.
Update the travel time τk = min{τk, τ(Ck(θs, θt)) + τ(C2π) + τ(Da′t)}.

Step 1d. Set b = a+ 1
2Dat. Construct an optimal sub-path as described in Proposition 3.31

and update τk if the found path is faster.

Step 2. Compare τR and τL, the smaller value is the minimum travel time, and a path correspond-
ing to that travel time is optimal.

3.4 Conclusion

This chapter presents a closed form characterization of a fastest path with bounded

curvature where the mobile agents speed and minimum turning radius are direction-
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dependent functions. While path finding with curvature constraint is extensively

studied in the fields of robotics and UAV routing, this work is the first to analyti-

cally characterize an optimal path in a generalized direction-dependent environment.

Furthermore, the presented algorithm provides an explicit procedure for constructing

an optimal path for given starting and target states of the system.

It is important to note that, while our main results are restricted to the problems

with convex speed polar plots, most of our discussion pertains to a very general

anisotropic speed function. We establish problem controllability, prove existence of

an optimal path, and derive a necessary condition of optimality (an optimal path

contains only sharpest turn arcs and straight line segments), without restricting the

speed function to correspond to a convex linear path attainable region. In our future

work, we plan to extend our analysis of an optimal path to a non-convex speed

polar plot and derive an analytical characterization of a fastest path for a general

anisotropic case.



CHAPTER IV

Dynamic Programming Modeling for Optimal Path Finding
in a Direction, Location and Time Dependent Environment

4.1 Introduction

In previous chapters, an optimal path in a time and space homogeneous direction-

dependent environment was found; in other words, the cost function and constraints

are assumed to be independent of the time and location of an agent. In the current

chapter, we relax the assumption of homogeneity and discuss a dynamic program-

ming modeling for optimal path finding in a direction, location and time dependent

environment.

Current technological advancement in real-time data collection and forecasting

calls for an explicit incorporation of the available information into the decision mak-

ing process. Innovative on-board sensors, such as a doppler radar in the Optimum

Vessel Performance in Evolving Nonlinear Wave-Fields (OVPENWF) project, collect

information about the surrounding environment in real time. The optimal path find-

ing model presented in this chapter makes use of the gathered information. Physical

sensors have a limited visibility horizon and cannot gather information about the

medium beyond a specified distance. Consequently, the model presumes to have

complete information about the environment (i.e., cost function and constraints)

within the radar visibility horizon and limited information beyond that horizon.

112
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The majority of optimal path finding problems require integration of additional

constraints in order to facilitate real life implementation. In the navigation of aerial,

ground and naval vehicles, the curvature of a feasible path is constrained by a min-

imum turning radius function. This prevents us from using a traditional dynamic

programming path finding model that optimizes over a set of piecewise-linear paths.

Subsequently, instead of addressing the optimal-path finding and path-following as-

pects of the problem separately, we integrate the systems operability and dynamics

constraints into an optimization model resulting in a control-feasible solution.

The benefits of innovative sensor technology and real-time data collection are sub-

ject to timely utilization of the available information in a decision making process.

Therefore, computational demand and run-time of the optimal path finding model

is of particular significance. Traditional modeling of a path finding algorithm for a

dynamic network (i.e., time-dependent cost functions) requires the addition of a time

variable to the model state space. This increase in the dimension of a state space

increments the computational time of an algorithm by orders of magnitude. In our

optimal path finding model, we undertake this, and other, computationally demand-

ing aspects of the problem and present modeling and implementation methods that

significantly improve the run-time.

The optimal path finding model presented in this chapter is motivated by the

MURI Optimum Vessel Performance in Evolving Nonlinear Wave-Fields project dis-

cussed in the introduction of this dissertation. Consequently, we address the problems

faced while working on this project. Nevertheless, all the discussed features of our

model arise in a great number of applications. And we ensure that the analysis and

results presented here are general enough to be applicable to a large group of prob-

lems and can be easily translated to other applications. The vessel routing problem
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is an example to illustrate a practical application and motivation of the model.

4.1.1 Related Work

In this subsection, we give a broad overview of the published work that is related

to the optimal path finding problems in a direction, location and time dependent

medium. In the forthcoming sections of the chapter, a more detailed analysis of the

relevant publications as they pertain to the specific focus of each section is presented.

An optimal path finding problem in a location, and possibly time, dependent

environment is widely studied in the literature. For example, the Zermelo Navigation

Problem, introduced by Zermelo in 1931 [74], is to steer a vessel along a minimum-

time path through a region of the position-dependent strong current vectors, while

the ship’s velocity relative to water is assumed to be constant. This is a classic

problem in the fields of calculus of variation and optimal control theory [8], and a

number of extensions and variations have been studied since the introduction of the

problem.

The majority of the published work assumes that a closed form speed function

is available to the user, facilitating an application of various optimal control and

calculus tools to the analytical function [24, 25, 39, 54, 55]. However, a closed

form cost function implies a simplistic model of the surrounding environment and

its effect on the moving agent, consequently jeopardizing the accuracy of an optimal

path finding model and its solution. In addition, the construction of an analytical

function from data gathered by the on-board sensors in a discrete form is often too

time consuming to facilitate its implementation in real-time.

When analytical cost and constraint functions are not available, discrete dynamic

programming (DP) provides an efficient optimal path finding model. Dynamic pro-

gramming has been widely studied and applied to an extensive list of problems for
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over half a century, since the publication of a ground-breaking book by Richard Bell-

man in 1957 [5]. As Eric Denardo later writes, “It was Bellman who seized upon the

principle of optimality and, with remarkable ingenuity, used it to analyze hundreds of

optimization problems in mathematics, engineering, economics, operations research,

and other fields” [18]. Application of dynamic programming is particulary beneficial

to the complex problems requiring a sequential decision making. DP simplifies the

problem at hand by creating a set of sub-problems, solutions of which results in an

optimal solution to the original problem. Dynamic programming modeling of the

path finding problems involves the discretization of the path domain into a set of

‘waypoints’ (or nodes), consequently reducing the problem to optimization in a di-

rected network [18]. We expand this approach to deliver a control-feasible path in a

dynamic environment while decreasing the algorithm’s run-time and computational

demand.

4.1.2 Overview of the Results

This chapter analyzes the optimal path finding problems with a direction, location

and time dependent medium. We relax the assumption of time and space homogene-

ity from the preceding chapters and deliver an efficient path finding algorithm that

incorporates the detailed real-time information about the surrounding environment.

Information about the neighboring environment and the corresponding cost func-

tion (e.g., agent’s speed) is evaluated by the discreet computer simulations and fore-

casting models. Therefore, a cost function in closed form is not available, and an

optimal path cannot be found analytically. We discretize the path space into a set

of waypoints and construct a dynamic programming model that finds an optimal

ordered set of waypoints to traverse from a start point to a target point.

A traditional dynamic programming formulation of an optimal path finding prob-
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lem implements a straight line segment between a pair of consecutive waypoints.

Alternatively, we present a model that delivers a control-feasible path and does not

violate the system dynamics restrictions. We add mobile agent’s heading angle to the

state space of our model and evaluate a local minimum turning radius function that

constrains the curvature of the feasible paths between the waypoints. The assump-

tion of stationary distribution for the local environment (a region including the next

set of waypoints to be considered at a given DP state) facilitates the implementation

of our earlier results for fastest path with bounded curvature (Algorithm 4) in order

to find an arc cost between a pair of states.

To incorporate the physical limitations of the data-collecting sensors and radars,

we introduced a ‘visibility horizon’ that restricts how far from the agent’s current

location detailed information about the medium is available. Due to limited knowl-

edge of the invisible region, the environment beyond the visibility horizon is assumed

to be time and space homogeneous. Consequently, by implementing our results from

previous chapters (Algorithm 1, Algorithm 3 or Algorithm 4) we find an optimal

path to continue the travel from the visibility horizon to the target point located in

the invisible region.

Finally, we address the computational demand associated with path finding in a

time-dependent environment. A traditional approach to path finding in a dynamic

network is to include the time variable into the DP state. We present a dynamic

programming model that integrates the agent’s speed controller, consequently elimi-

nating the time variable form the model’s state space. We redefine the cost function

to denote the smallest elapse of time between the arrivals to a given waypoint and

the subsequent waypoint along the path. This new arc cost implies that it is always

optimal to reach the intermediate points of a path as fast possible and eliminates
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the need to keep track of all the feasible arrival times to each waypoint. Algorithm

5 presented in this chapter integrates all the discussed aspects of the path finding

model into a single algorithm facilitating its implementation.

The rest of this chapter is organized as follows. Subsection 4.1.3 introduces the

notation to be used throughout the chapter and gives a formal statement of the prob-

lem. The following three sections discuss the three main aspects that are addressed

in the path finding model: limited visibility horizon of the on-board sensors (Sec-

tion 4.2), integration of the agent’s dynamic constraints (Section 4.3), and efficient

integration of the medium time-dependency (Section 4.4).

Section 4.5 integrates all the discussed aspects into a single path finding model.

An algorithm is delivered that brings together all of the work presented in this

dissertation into a single optimal path finding model for a direction, location and

time dependent environment. Section 4.6 discusses specific techniques that further

improve the efficiency of our Algorithm 5 at its implementation and programming

stage. We also present the results of implementing the path finding model to the

Optimum Vessel Performance in Evolving Nonlinear Wave-Fields project. Our main

discussion of this chapter focuses on a fastest-path finding problems, however in

Section 4.7 we discuss the general optimal path finding problems where the objective

is to minimize a cost function other than the path travel time. Finally, Section 4.8

concludes this chapter.

4.1.3 Notation and Problem Statement

We are interested in finding a fastest path from a starting point s = (xs, ys) ∈ R2

to a target point t = (xt, yt) ∈ R2, where t0 denotes the start time. Without loss of

generality, we assume t0 = 0. Since the curvature of any feasible path is constrained

by a minimum turning radius function, the initial and target heading angles at points
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s and t can affect the set of feasible paths considered in our problem. Therefore,

we integrate the starting heading, denoted by θs ∈ [0, 2π], and the final heading,

θt ∈ [0, 2π], as an input to our problem. For many applications, the target heading

angle is not specified, in which case we find a path minimizing the travel time over

all possible values of θt.

All paths from s to t lie in a direction, location and time dependent environment

in R2. We let RH denote a radar visibility horizon that restricts how far the onboard

sensors can collect information about the surrounding environment relative to the

agent’s current location. Thus, for any point a inside the visible region and ta ≥ t0,

we are given the functions V (a, θa, ta), denoting a maximum attainable speed, and

R(a, θa, ta), indicating the minimum turning radius, for a mobile agent located at the

point a and heading in the direction θa at time ta. We assume that in addition to

knowing information about the environment at time t0, the forecasting tools use real-

time data and evaluate the functions V (a, θa, ta) and R(a, θa, ta) for ta ≥ t0. We do

not explicitly integrate an upper bound on ta for which the information is available,

implying that an agent leaves the visible region prior to achieving the forecasting

upper bound.

The definition of RH implies that we do not have the explicit V (a, θa, ta) and

R(a, θa, ta) functions outside the radar visibility horizon. We defer our discussion on

how to collect, characterize and integrate the necessary information for the region

beyond RH to Section 4.2.

Now, we give the formal statement of our problem.

Problem statement: Find a fastest path starting at time t0 = 0 from the initial

state (s, θs) ∈ R2 × [0, 2π] to the target state (t, θt) ∈ R2 × [0, 2π], where for all

a ∈ R2 : ‖s− a‖ ≤ RH and all ta ≥ t0 the curvature of a feasible path is constrained
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by a minimum turning radius function R(a, θa, ta), and the maximum attainable

speed is described by function V (a, θa, ta).

For completeness of this subsection, we introduce additional notation that is not

necessary for the problem statement, but is used throughout the chapter in the

discussion of our DP model. To construct a discrete dynamic programming path

finding model we have to discretize our R2 path domain. We let l denote a dynamic

programming discretization parameter representing the distance between any pair of

consecutive waypoints connected by an arc. We assume that a ‘local region’ with its

radius equal to l can be approximated by a time and space homogeneous environment.

In addition, we let NH denote a discrete set of waypoints (or nodes) on the

visibility horizon through which all the paths from s to t considered by our model

have to pass (assuming ‖t−s‖ > RH). That is, ∀a ∈ NH , ‖a−s‖ = RH . Usually, set

NH consists of equally spaced points on the circle centered at s with a radius equal

to RH . A more detailed discussion of the discretization parameters is presented later

in the sections as they are introduced in our modeling.

4.2 Limited Visibility Horizon

Despite the continuous improvement of sensor and data-collection technology, all

physical systems have limitations, and it would be unrealistic for an optimization

model to assume an unlimited availability of information. To incorporate this limi-

tation, we introduce the concept of visibility horizon and let RH denote the radius

of the sensor-visible region surrounding a mobile agent. Thus, the on-board sensor

system is assumed to collect and forecast all the necessary information about the

environment (i.e., V (a, θa, ta) and R(a, θa, ta)) within the visibility horizon. Alterna-

tively, the model does not have access to the detailed real-time information for the
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medium lying further than RH distance away from the current location.

Depending on a specific application, there are various ways to estimate and charac-

terize the invisible environment. In some cases, information collected by the sensors

inside the visibility region can be extrapolated beyond the horizon RH . Alterna-

tively, prior experience and historical data for a given or similar region can be used

to evaluate a stationary distribution of the environment that an agent expects to

observe. In other cases, supplementary forecast and sensor technology can be em-

ployed to give a global estimation for the medium. For example, most airplanes and

vessels use meteorological and hydrological forecasts provided by the national and

international agencies to obtain information about the surrounding environment.

The forecasts described above provide information about the environment on a

global scale and describe an expected distribution of waves or wind an agent will face.

As a result, the limited information beyond RH requires us to assume a stationary

environment for that region, implying time and space homogeneity of the cost func-

tion and constraints. Consequently, we assume that the environment outside the

visibility horizon is a stationary distributed stochastic system, and for each instance

of the problem a single fixed parameter can characterize this random distribution.

For example, in the case of naval navigation, a parameter called ‘sea state’ describes

the wave spectrum as a stationary random process over a short-term “time period

in the range from 1
2

hour to maybe 10 hours” [23].

Time and space homogeneity in the region beyond the radar visibility horizon

implies that there is no need for a dynamic programming model to evaluate an

optimal path for that part of the travel. Instead, the closed form solutions presented

in Chapter II and Chapter III can quickly deliver an optimal path in the stationary

random process, when an expected speed function and constraints are known for a
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given distribution of the environment (e.g., sea state). Consequently, we develop

a dynamic programming model that evaluates the fastest paths to a discrete set

of points on the border of the visible region, i.e., all the points in set NH . Then,

either Algorithms 1 (Chapter II) or Algorithm 4 (Chapter III) for a homogeneous

medium finds the best path to continue from RH border to the target point, t. Note

that when the distance to a destination point is relatively long compared to the

minimum turning radius of an agent, the curvature constraint can be neglected and

the results of Chapter II (Algorithm 1) can be used to evaluate an optimal path

to traverse through the invisible region, see Figure 4.1. Furthermore, the extreme

weather conditions and physical obstacles beyond RH can be integrated into the

optimization model by implementing Algorithm 3 instead of Algorithm 1.

Figure 4.1: DP model evaluates the fastest paths to the points on RH , and Algorithm 1 finds the
best paths to continue.

Real-time data collection and timely implementation of the fastest-path finding

algorithm allows us to continuously update the information about the surrounding

environment and reevaluate an optimal path to reflect the most current information.

As an agent moves along the path getting closer to the destination point, the radar

visibility region moves towards t as well. Our goal is to deliver an optimal path finding

algorithm with the computational time small enough to allow a user to reevaluate
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an optimal path before a vehicle travels outside the visibility horizon. Then, the

mobile agent never traverses the sensors’ invisible region and additional real-time

information is collected prior to the agent reaching that region.

Continuous reevaluation of an optimal path is similar in concept to a common

dynamic programming practice called ‘rolling horizon’ [1, 36, 53]. However, it is

important to differentiate that in a traditional DP rolling horizon approach the user

makes a choice of how far out into the future the algorithm should look before

making a decision for the next time period. In our case, one has no choice of how

much information to integrate into the optimization model, and our goal is to find

the most accurate optimal path while utilizing all the available information about

the medium.

To illustrate the scale of a visibility horizon, we provide an example from the

Optimum Vessel Performance in Evolving Nonlinear Wave-Fields project. In this

particular application, we are interested in missions with the target point located

approximately 30 to 90 minutes of travel time away from the start. It is clear that

more sophisticated radar equipment with greater visibility radius always delivers a

more accurate path finding model. However, our colleagues working on this project

approximate that the current limitations of the radar restrict the visibility radius

to approximately 10 minutes worth of travel time. While this implies that we do

not have the complete information about the environment from the path start to its

finish, we have a sufficiently large RH to be able to reevaluate an optimal path before

traveling outside the visible region.
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4.3 System Dynamics Restrictions

Next, we discuss the details of a dynamic programming model to be implemented

inside the visible region that finds the fastest paths from point s to all the points in

NH . In this section, we direct our attention to integration of the system dynamic

constraints.

Dynamic programming is a predominant approach to the fastest-path finding

problems in a time and/or location dependent environment. A traditional DP path

finding model discretizes the domain of a path into a set of ‘waypoints’ (or nodes)

and a straight line path is implemented between a pair of neighboring waypoints. As

a result, the classical dynamic programming model finds an optimal piecewise-linear

path. However, in many applications (e.g., vessels, airplanes and cars) a mobile

agent cannot instantaneously change its heading, making the piecewise-linear paths

infeasible.

This control-infeasibility of an optimal path comes from a traditional approach

where optimal-path finding and path-following are considered to be the separate

stages of the problem. First, an optimization model is used to find a fastest path

neglecting the system dynamics. Then, a control model is implemented to facilitate

an agent following the optimal path as closely as possible. Since we know that an

optimal path found by the traditional DP model is control infeasible, the inherited

error cannot be avoided during the implementation of such a path. To address this

concern, we integrate the system’s operability and dynamics constraints into the

optimization model, which in turn, delivers a control-feasible solution.

As described in Section 4.1.3, a minimum turning radius function R(a, θa, ta) re-

stricts the curvature of a feasible path and has to be accounted for in the optimization
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model. Therefore, instead of implementing a straight line path between a pair of way-

points as it is done in a traditional DP model, we integrate agent’s heading angle

into the state space of the model and find a fastest path satisfying the curvature

constraints between a pair of the new DP states.

We introduce a dynamic programming discretization parameter l > 0 that denotes

a distance between any pair of consecutive waypoints. That is, at any particular

waypoint, say point a, an algorithm chooses a waypoint to travel to next among all

the points that are l distance away from point a. Then, in order to compute the

travel time for a pair of our DP states (a specified waypoint and a corresponding

heading angle), we assume local homogeneity at each discretized waypoint. In other

words, a circular region centered at a given waypoint with a radius equal to l is

assumed to be time and space homogeneous. Consequently, the problem of finding

a minimum travel time path from one state of the model to the next is reduced to a

problem of fastest path with bounded curvature in the anisotropic media, which we

discuss in Chapter III.

To summarize, in order to integrate the system dynamic restrictions into a DP

path finding model, we define the state of the system to be the agent’s location in R2

and the heading at which it arrived. Then, for a given waypoint and heading angle,

a dynamic programming model selects a waypoint to travel to next and the arrival

direction at that point. We use information about the environment and functions

V (a, θa, ta) and R(a, θa, ta) to approximate the local (within radius l) time and space

homogeneous medium and the corresponding functions V (θ) and R(θ). Finally, the

fastest path with bounded curvature presented in Chapter III (see Algorithm 4)

computes the minimum time to travel to the next waypoint, assigning that to be

the arc’s cost. The forthcoming Section 4.5 goes into more details and illustrates
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mathematical integration of the proposed method into the dynamic programming

model.

4.4 Computational Demand of a Time-Dependent Environment

We continue the discussion of a dynamic programming path-finding model that we

implement inside the visible region. In this section, we address the time-dependency

of the medium. Recall that path finding through a discretized set of waypoints is

equivalent to optimization in a directed network [18]. Therefore, we use the termi-

nology from both fields interchangeably: a ‘network node’ and a ‘waypoint’ denote

the same entity, and a ‘network arc’ is equivalent to a path connecting a pair of

waypoints l distance away from each other.

A time-dependent environment implies that it is not always optimal to arrive

at an intermediate waypoint of a path as soon as possible. For example, a mobile

agent arriving at some point along a path just a few minutes later might observe

more favorable weather, resulting in an overall better cost. To account for this

fact, a time variable is traditionally added to the DP state in order to keep track

of all possible times at which an agent might arrive at, and consequently leave,

a particular waypoint. This additional variable significantly increases the number

of dynamic programming states to be considered by an algorithm. We present an

alternative formulation of the DP functional equation that allows us to eliminate the

time variable from the DP state space.

4.4.1 Related Work

A number of papers have been published that study fastest-path finding problems

for a time-dependent network. In such problems, the traveling time from an arbitrary

node i to some other node j, denoted by dij(ti), is a function of the time one leaves
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node i, denoted by ti. The majority of the literature considers two cases of this

problem. First, no waiting is permitted in the network nodes, implying that the

time one leaves a given node is equal to the arrive time for that node. In the second

case, waiting is allowed in the network nodes and node departure time can be greater

than arrival time. We discuss the related work for each case in more details.

A general fastest-path finding problem that prohibits waiting at the nodes is more

difficult to solve than a problem with unlimited waiting time. In fact, Orda and Rom

[51] show that some instances of this problem are NP hard. However, Kaufman and

Smith [32] introduce a consistency condition (also referred to in literature as first in

first out or FIFO property) which guaranties that one would always want to arrive

at each intermediate node of the optimal path as soon as possible and continue

the travel without a delay. Kaufman and Smith show that under consistency, the

time-dependent fastest path can be calculated with exactly the same computational

complexity as the static fastest path. However, the consistency condition is too

restrictive and does not apply to a number of applications areas, such as aerial and

naval vehicle navigation.

Path finding algorithms have also been presented for problems that do not satisfy

the consistency condition. Cooke and Halsey [15] propose an algorithm for the ‘no-

waiting-is-allowed problem’ which is restricted to the discrete cost functions whose

domain and range lie in the positive integers set. Their algorithm first finds an upper

bound on the total travel time to the destination node. It then uses this bound to

set the boundary condition for the DP backward recursive equations used to solve

the problem. Alternatively, Chabini [10] assumes that all the travel time functions,

dij(ti), are constant for all ti ≥ M , implying that the problem becomes static for

any start time greater than M . This assumption lets Chabini use the static shortest
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path to set the boundary condition for his dynamic programming formulation. Both

papers propose the backward DP formulations of the problem with a time variable

being part of the DP state. Furthermore, their methods are close to enumerating all

the possible paths since their algorithms interpolate the fastest paths for all possible

times of arrival at the destination node.

In the case when unlimited waiting in the nodes is allowed, the dynamic fastest

path problem can be solved using Dijkstra’s algorithm just as efficiently as in the case

of a static network. Stuart Dreyfus [21] is the first to demonstrate this. He redefines

the cost function dij(ti), so that “if travel schedules are such that a delay before

departure decreases the time of arrival, dij(ti) represents the elapsed time between

time t and the earliest possible time of arrival.” This alternative definition of dij(ti)

results in a straight forward dynamic programming formulation of the problem, where

DP state only stores the current location in the network. However, stopping at the

waypoints is impractical or infeasible for many application. For example, an airplane

cannot stop in mid-air to wait for a storm to pass by. Similarly, it is not practical for

a large vessel to come to a complete stop before continuing the travel. Consequently,

we do not allow stopping or waiting in our model. Instead, we extend Dreyfus’

approach to a path finding model permitting voluntarily speed loss (i.e., slow down)

along a path.

Similarly to Dreyfus, Halpern [29] discusses the problems where waiting at any

given node is only permitted for a fixed set of time intervals specific to each node.

In that case, it is not necessarily optimal to arrive at an intermediate node of a

path as fast as possible. Halpern presents an algorithm that stores the possible

arrival times at each node as they are discovered, analogous to an approach for the

no-waiting-is-allowed case.
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Orda and Rom [51] also study a third type of the fastest-path finding problems,

which is not discussed elsewhere in the literature. They look at the problems where

waiting is only allowed at the source node of the network. The authors show that

if the cost function dij(ti) is continuous or piecewise continuous with only negative

discontinuities (i.e., ∀ti dij(t
−
i ) ≥ dij(t

+
i )) and such that for all ti either dij(ti) =

dij(t
−
i ) or dij(ti) = dij(t

+
i ), then every shortest topological path in the unrestricted

waiting model is also a shortest topological path in the source waiting model, having

the same total travel cost. Orda and Rom then provide an algorithm based on this

notion that finds the optimal waiting time in the source node before starting the

travel along an optimal path.

4.4.2 Dynamic Programming for a Time-Dependent Environment

The main difficulty of finding a fastest path in a time-dependent network comes

from the fact that it is not necessarily optimal to arrive at each intermediate node

of a path as fast as possible. Since the time to traverse between a pair of nodes from

i to j (i.e., arc (i, j)) depends on when we start the travel, it might be beneficial to

arrive to node i at a later time and observe a smaller travel time. In this section, we

discuss in more details Dreyfus’s method of reducing a time-dependent problem to a

static network [21], and then adapt his approach to our problem.

Dreyfus analyzes a fastest-path finding problem in a time-dependent network

where unlimited waiting is allowed in all nodes. Since in such problems, a mo-

bile agent is permitted to wait at any given node until the optimal time to continue

its travel, it is favorable to arrive at each node as fast as possible. Then, the opti-

mal waiting time at each node is part of the decision a fastest path algorithm must

make. It might appear that adding waiting time to the decision space of the model

increases the complexity of the optimal path finding procedure, the reality turns out
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to be otherwise.

Dreyfus redefines a traversing time function for an arc (i, j), such that when a de-

layed departure from node i decreases the time of arrival, the traverse time function

represents the elapsed time between the time of arrival to node i and the correspond-

ing earliest possible time of arrival to node j. With this alternative definition of the

arc cost, the consistency condition defined by Kaufman and Smith [32] holds true.

Therefore, we can formulate the dynamic programming functional equation without

the time variable being present in the DP state. In this manner, the problem is

reduced to the optimal path finding problem in a static network. Correspondingly,

the optimal solution to a fastest-path finding problem with unrestricted wait consists

of the ordered set of nodes and the optimal delay (or waiting time) at each of those

nodes.

As we discussed earlier, waiting at the nodes is not permitted for the problems of

interest. However, by allowing an agent to vary its speed, it is possible to slow down

enough for the vehicle to arrive at node i at the optimal time to continue traversing

the following arc (i, j). Thus, instead of arriving at node i as soon as possible and

waiting until the optimal time to depart it, our mobile agent intentionally arrives at

node i at the precise time of the optimal departure.

To illustrate this, assume that Dreyfus’ method finds that it is optimal to leave

node i at time ti, travel along the arc (i, j) arriving at node j at time tj, and then

wait for some time wj before continuing the travel. Then we choose to leave node i

at the same time ti but at a lower speed, such that we arrive to node j at the exact

time equal to tj + wj, and then continue on without waiting at node j. In such a

way, we use the solution found by Dreyfus’ algorithm to construct an optimal path

feasible for the problem.
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When we implement Dreyfus’ algorithm to find the optimal times to depart each

waypoint, we use maximum attainable speed of the mobile agent to evaluate the arc

cost. Then, we assume that it is always feasible to travel along an arc with any

speed less than or equal to the maximum attainable speed. We also assume that

there are no constraints on how quickly we can change the speed for any given arc.

If this assumption is not valid, applying a slower speed for some arc might not allow

an agent to speed up enough to reach the desired speed for the following arc of an

optimal path. In our future work, we plan to integrate bounded acceleration and

deceleration into the optimal path finding model.

The following Section 4.5 give a more detailed and rigorous implementation of the

approach discussed in this section.

4.5 A Dynamic Programming Model and an Optimal Path Planning
Algorithm

In the preceding sections we discuss how to address various aspects of an optimal

path finding DP model: limited visibility horizon in Section 4.2, mobile system dy-

namics restrictions in Section 4.3, and computational demand of the time-dependent

environment in Section 4.4. In this section, we integrate all the components dis-

cussed above into a single dynamic programming path finding model and provide an

algorithm to facilitate its implementation.

Let τ(a, θa, b, θb, ta) denote the travel time along a fastest path with bounded

curvature from point a to point b starting with a heading angle θa at time ta and

arriving at b with a heading angle θb. We use the input parameters a and ta to

approximate the local medium (within a distance equal to l) as a stationary time

and space homogeneous environment. As discussed in Section 4.3, we implement our

earlier results for finding a fastest path with bounded curvature in an anisotropic
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medium (see Algorithm 4 in Chapter III) to evaluate an optimal path from initial

state (a, θa) at time ta to the target state (b, θb), assuming that a mobile agent moves

with its maximum attainable speed. The value of τ(a, θa, b, θb, ta) is equal to the

travel time associated with the found path.

Next, we define T (a, θa, b, θb, ta) to be the smallest elapse of time from the moment

of arrival at point a at time ta until arriving at the state (b, θb) (this definition is

adapted from Dreyfus [21]). In other words, we allow an agent to leave point a at

any time after arriving there at time ta, with an objective to arrive at the state (b, θb)

at the earliest possible time. Alternatively, we can define T (.) as follows,

(4.1) T (a, θa, b, θb, ta) := min
Δt≥0

{Δt + τ(a, θa, b, θb, ta + Δt)}.

It is important to note that in the minimization of equation (4.1), we have a

natural upper bound on the value of Δt, which is equal to τ(a, θa, b, θb, ta). Since

τ(a, θa, b, θb, ta) is the minimum travel time corresponding to an agent leaving point

a without a delay, it is never advantageous to delay the departure longer than that

time value. As a result, for each state of the system (e.g., (a, θa)) we only consider

the departure times belonging to the interval [ta, ta + max(b,θb){τ(a, θa, b, θb, ta)}].

Alternatively, a traditional DP formulation of an optimal path finding problem in

a dynamic network considers the departure times belonging to an interval [ta, T
∗],

where T ∗ is an upper bound on the agent’s arrival time at the target point of the

network (see [10, 15] for examples). Since T ∗ >> ta + max(b,θb){τ(a, θa, b, θb, ta)} for

most states, our model significantly decreases the computational time of the path

finding algorithm.

We now present our dynamic programming functional equation. For each state

(a, θa) : a ∈ R2, ‖a − s‖ ≤ RH and θa ∈ [0, 2π], define the optimal value function

g(a, θa), such that g(a, θa) is the minimum travel time over all the paths from the
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initial position (s, θs) to point a, that start at time t0 and arrive at a with the heading

angle θa. Recall that t0 = 0. Then, we have the following dynamic programming

forward functional equation,

(4.2) g(b, θb) =

⎧⎪⎨
⎪⎩

min{a,θa:‖b−a‖=l}{g(a, θa) + T (a, θa, b, θb, g(a, θa))}

0 for (b, θb) = (s, θs)

A recursive application of the functional equation (4.2) delivers the fastest paths

from (s, θs) to all the points in NH . To find these optimal paths, one can apply

Dijkstra’s algorithm [19], an A* algorithm [30] or any other efficient algorithms for

a static network. However, we find the implementation of Dijkstra’s method to be

more advantageous since it automatically delivers the optimal paths to all the nodes

in the network. Consequently, we obtain the fastest paths to all waypoints in NH

with one run of the dynamic programming algorithm.

Every optimal solution found using equation (4.2) includes an ordered set of states

and an optimal wait time for each node along the path. However, our problem

statement assumes that no stopping is permitted anywhere along the path. Thus,

we use the found optimal wait times to calculate the speed for each arc, in order to

ensure that a node arrival time is equal to the optimal node departure time.

To calculate the optimal speed, consider an arbitrary arc belonging to an opti-

mal path that connects the states (a, θa) and (b, θb). We are also given an optimal

departure time for node a, denoted by t′a, and an optimal wait time at node b, de-

noted by wb. Then, when an agent leaves state (a, θa) at time t′a and travels with

the maximum attainable speed along a fastest path with bounded curvature (see

Algorithm 4 in Chapter III), it arrives at state (b, θb) at time t′a + τ(a, θa, b, θb, t
′
a).

However, the optimal time to depart state (b, θb) is equal to t′a +τ(a, θa, b, θb, t
′
a)+wb.

Consequently, we need to adjust the agent’s travel time from (a, θa) to (b, θb) by a
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factor ρ(a,θa),(b,θb) ≥ 1, where

(4.3) ρ(a,θa),(b,θb) =
τ(a, θa, b, θb, t

′
a) + wb

τ(a, θa, b, θb, t′a)
.

An agent then adjusts the speed (by varying engine revolutions-per-minute, or other

controllers) to a 1/ρ(a,θa),(b,θb) fraction of the maximum attainable speed in order to

arrive at state (b, θb) precisely at the time equal to t′a + τ(a, θa, b, θb, t
′
a) + wb.

Note that the minimum turning radius function defined in Chapter III is only

dependent on the heading angle and does not explicitly depend on the agent’s speed.

Therefore, slowing down along an arc does not affect the curvature constraint and the

feasibility of the originally constructed path. For some applications, this assumption

might not be realistic. As we stated in Chapter III, we plan to relax this assumption

in our future work. However, we would like to note that in most practical scenarios

a slower speed of an agent results in smaller minimum turning radius, and does

not restrict the feasibility of a path with the maximum attainable speed. In the

case when a slow speed results in a larger minimum turning radius (e.g., our vessel

routing project) the continuity of a feasible speed and system controllability (see

Section 3.2.2) allows us to find a feasible path from (a, θa) to (b, θb) with the desired

travel time for most practical applications.

The following Algorithm 5 summarizes our discussion and provides a concise step-

by-step procedure of finding an optimal path from (s, θs) to (t, θt).

4.6 Application and Numerical Results

Algorithm 5 integrates all analysis and results presented in this dissertation into a

single fastest-path finding model. In this section, we discuss the practical aspects of

the algorithm implementation and demonstrate its application to the Optimal Vessel

Performance in Evolving Nonlinear Wave-Fields (OVPENWF) project. While we
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Algorithm 5 Fastest Path from (s, θs) to (t, θt).

Step 1. Apply Algorithm 4 to compute the values of τ(a, θa, b, θb, ta) for all inputs where
‖a− s‖ ≤ RH , ‖b− s‖ ≤ RH and ‖a− b‖ = l.

Step 2. Compute the smallest elapse of time function T (a, θa, b, θb, ta) using equation (4.1).

Step 3. Apply Dijkstra’s algorithm to the DP recursive equation (4.2) to find the fastest paths
from (s, θs) to all the points in NH .

Step 4. Depending on the specific problem, apply Algorithm 1, Algorithm 3 or Algorithm 4 to
find the fastest paths from all points in NH to the target state (t, θt).

Step 5. Find the point in NH that has the smallest sum of the corresponding travel times found
in Step 3 and Step 4. A fastest path passing through such point is the optimal path.

Step 6. For the optimal path found in Step 5, adjust the speed for each arc by a factor 1/ρ as
described in equation (4.3).

restrict this section’s discussion to the vessel routing problem, the implementation

techniques used to further improve the efficiency of the algorithm can be applied to

any optimal path finding problem.

One of the main objectives of our work is to produce a fast and computationally

efficient path finding algorithm. Hence, a fast code implementing our algorithm is an

important part of this goal. We have aimed to improve the run-time of our code to

the greatest of our ability; however, it is important to note that an expert computer

scientist should be able to improve the efficiency of the code even further. The main

purpose of the program developed as part of this dissertation is to test the algorithm

and the found optimal paths, which is successfully achieved.

4.6.1 Efficient Implementation

In the introduction section of this chapter we discuss that the computational time

of the optimal path finding algorithm is essential for real-time implementation. We

now present some coding-specific methods that ensure a time-efficient implementa-

tion of Algorithm 5.

One of the main techniques to speed up the run-time of the algorithm is to pre-



135

process as much of the algorithm as possible. Thus, we perform a portion of the

calculations off-line, before the vessel starts its travel. In fact, a set of calculations

need to only be evaluated once for a specific vessel, and the results are stored in the

form of a look-up table as part of the navigation software.

Observe that the values of the travel time function τ(a, θa, b, θb, ta) in Step 1

can be pre-computed for all possible stationary distributions of a local environment.

Thus, we use the input parameters a and ta to evaluate and then characterize the

local medium (e.g., sea state). Because the distance between a pair of consecutive

waypoints is fixed, for a given sea state, only values of θab, θa and θb are used to look

up the value of the τ() function in a pre-computed table.

Similarly to Step 1 of the algorithm, we can pre-compute Step 4 either for all

possible global sea states or perform the calculations shortly before the start of a

particular trip when the distribution of the global environment becomes available.

Unlike evaluating the values of the τ() function in Step 1, the distance between

points in NH and t is not fixed, however the characterization of paths found in Step

4 stays the same regardless of the distance. This is especially true when we choose

to implement Algorithm 1 or Algorithm 3, neglecting the minimum turning radius.

In addition, we partially pre-compute Step 2 of Algorithm 5, by evaluating when

for some instances of the function τ(a, θa, b, θb, ta) the delay is never beneficial. For

example, for some sea states we observe the minimum value of the function, implying

that any other departure time (possibly corresponding to a different distribution of

the local medium) would never result in a smaller travel time making delay subop-

timal. We also evaluate an upper bound on the possible decrease in travel time by

comparing a given value of the τ() function to the best case scenario, which pro-

vides a tighter bound on the interval of Δt values considered in the minimization of
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equation (4.1).

Another effective technique for decreasing the run-time of our algorithm is parallel

computing, where a number of calculations are carried out simultaneously. With the

rapid advancement of computing power, the parallelization of the algorithm is no

longer restricted by the number of processors available to a user. While our test runs

are performed on a single processor, there could be a potential run-time improvement

if multiple processors are used for the implementation.

4.6.2 Computational Results

At the final stage of the Optimum Vessel Performance in Evolving Nonlinear

Wave-Fields project, the components developed by research groups working on the

project will be integrated into a single onboard navigation system to be validated

during the forthcoming field tests. When the radar prototype and other elements

of the project are completed, our path finding algorithm will be tested onboard an

actual vessel traveling through the ocean waves. However, until the other project

subtasks are accomplished, we test our algorithm in a simulated wave-field using the

S-175 containership model, the same 175-meter-long vessel as discussed in Chapter

II.

We randomly generate a wave-field region by specifying the wave distribution

parameters corresponding to a desired sea state. The wave propagation model, de-

veloped by our colleague, Dr.Okey Nwogu, forecasts the evolution of the created

wave-field over a time interval. Next, the evolving wave-field data is used to produce

a ‘local sea state’ map for the location and time dependent environment. As a result,

we obtain a lookup table that delivers the local sea state parameter for each waypoint

and time instance considered by the dynamic programming algorithm.

The previously derived maximum attainable speed table provides the maximum
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vessel speed that can be achieved for each local sea state and heading angle without

violating the operability constraints (e.g., root mean squared roll and probability of

wet deck). (See [20] for the detailed computation of the speed values and operability

constraints.) Our colleagues, Dr. Jing Sun and Dr. Zhen Li, provided the minimum

turning radius table specified for each value of local sea state and vessel heading

angle. The speed and turning radius input tables are used to compute the τ() values

for each pair of consecutive waypoints. That is, we create a lookup table that, for

the given sea state and vessel heading angle, returns the next set of DP states (i.e.,

each waypoint location and heading angle) and the cost of traversing to each of those

states. Note that for a specific vessel these calculations are done only once, and they

do not contribute to the run-time of our path finding model.

Algorithm Run-Time

The main objective of the presented code is to facilitate integration of the path

finding algorithm with the other components of the OVPENWF project. To ease

the communication and compatibility of various parts of the project, we chose to

implement our algorithm using MATLAB in order to stay consistent with our col-

leagues. MATLAB is considered to be more user friendly than other programming

languages, and it is a preferred language in many engineering fields. However, it is

important to note that C++ is well known to have a significantly faster run-time

and experienced programmers report improvement by factors ranging between 30

and 50. For example, in order to speed up our code, we integrated a sorting function

(the major component of Dijkstra’s algorithm) written using C++ language into our

MATLAB code. This modification decreased the sorting time of our program by a

factor greater ten. We anticipate that all parts of the navigation system developed

as a result of this project will be translated into C++ for implementation in real-life.
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As a result, we expect the run-time of our algorithm to decrease significantly.

All the test runs are performed on a PC machine with the Microsoft Windows

Vista operating system and a single 2.9 GHz processor. For each run we record

the number of DP states that have to be ‘explored’ by the algorithm in order to

find an optimal path. A dynamic programming state is considered to be ‘explored’

when the algorithm finds the minimum cost associated with reaching that state and

updates the optimal value function g(a, θa) for the states that immediately follow

it (i.e., its successors). Each of our test runs explored between 57,000 and 132,000

DP states with the corresponding run-time ranging linearly between 105 and 413

seconds. As mentioned earlier, the run-time is expected to decrease significantly once

the algorithm is reprogrammed using C++. After the acceleration of the sorting

function, the current program spends approximately 65% of the time performing

other computations. Based on our experience with sorting, the conservative estimate

is that we can decrease the time required to perform those computations by 10 times,

resulting in the overall decrease in runtime by a factor of 2.5. In addition, faster

processors are currently available on the market with the speed of up to 3.5 GHz,

which would correspond to a decrease in the computational time by at least 15%.

Optimal Path

To evaluate the improvement in vessel travel time when Algorithm 5 is imple-

mented, we test our model in the simulated wave-field corresponding to sea state

number 6.5. The significant wave height (the mean wave height of the one third

highest waves) for such sea state is equal to 7 meters, and the peak wave period is

equal to 15 seconds. We choose this particular wave-field to illustrate some interest-

ing scenarios of the path finding problem. Due to the large size of the vessel (175

meters long) and its limited maneuverability (the minimum turning radius values
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Figure 4.2: Linear path attainable region and the corresponding paths found using Algorithm 1 for
sea state no. 6.5.

range between 290 and 305 meters), the smaller waves of lower sea states do not

have as much impact on the vessel speed and do not always justify its maneuvers

around the waves. The global sea state characterizing the waves beyond the radar

visibility horizon is also set to 6.5 to ensure consistency when comparing the travel

time for various paths. Figure 4.2 illustrates the linear path attainable region for

sea state 6.5 that we use in our simulation, as well as the corresponding structure of

the optimal paths in time and space homogeneous environment. We create a lookup

table corresponding to the optimal paths for all target points equidistant from the

start (the red circle on the figure). The paths and travel time are later scaled to fit

a particular case.

One of the project objectives is to develop a radar that can accurately collect the

information about the surrounding environment as far out as possible. The current

conservative estimate of the radar visibility horizon is approximately 1.5 to 2 miles,

equivalent to approximately 2,500 to 3,000 meters. While our colleagues’ goal is to
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increase the visibility to 5 miles or 8,000 meters, the wave-field region generated for

our test runs corresponds to current radar capabilities (i.e., RH = 2500 meter).

The predominant application of this project involves the short range trips. To

reflect this fact, we consider a set of target points approximately 18,000 meters away

from the current location. Considering the direction-dependent nature of our prob-

lem, the target points are positioned such that the directions to all the points span

360 degrees with a 20-degree increment. The distance between a pair of consecu-

tive waypoints is set to 250 meters (l = 250), and we consider all consecutive states

that can be reached from the predecessor without leaving the local sea state region.

In Step 4 of Algorithm 5, we apply Algorithm 1 to compute the path travel time

through the radar invisible region beyond RH .

For each considered target point we run the MATLAB code to find an optimal

path. The resulting travel time is then compared to that of the three alternative

paths:

Suboptimal path 1 (p1): a straight line path from starting point s to the target

point t;

Suboptimal path 2 (p2): a one-waypoint path from s to t found using Algorithm

1 where vessel makes a left turn at the waypoint; and

Suboptimal path 3 (p3): a one-waypoint path from s to t found using Algorithm

1 where vessel makes a right turn at the waypoint.

It is also important to note that when the location of a target point corresponds

to a convex part of the linear path attainable region (i.e., scenario 1 of Theorem

2.10), Algorithm 1 delivers a straight line path, and all suboptimal paths p1, p2 and

p3 are the same.
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Results of Chapter II show that the one-waypoint paths p2 and p3 are optimal for

the time and space homogeneous environment. Therefore, by comparing the optimal

path to these suboptimal paths, we observe the travel time improvement one achieves

by integrating the collected wave-field information into the path planning process.

To make the comparison of travel times as accurate as possible, we set the initial

heading of the vessel equal to the direction from the starting to the target point,

denoted by θst. Nevertheless, since our dynamic programming model integrates the

minimum turning radius constraint while neglecting it in the travel time calculations

for paths p2 and p3, the actual travel time for the suboptimal paths has to be greater

than our estimates, resulting in even more significant improvement in the minimum

travel time than we report.

To compute the travel time for suboptimal paths p1, p2 and p3, we use the wave-

field data and find the local sea states a vessel traverses while following the specified

path. This information is used to evaluate the actual travel time of the vessel within

the visibility horizon. Analogous to finding the optimal travel time, the global sea

state is used to evaluate the travel time for the remaining part of the path in the

region beyond RH .

Recall that in the time and space homogeneous environment, any path restricted

to the two heading angles found in Algorithm 1 results in the same travel time. This

is not the case when we take into account the available wave information inside the

visibility horizon. Since p2 and p3 correspond to different paths (and travel times)

within the visible region, the two cases with different orders in which the line segments

of the one-waypoint path are implemented have to be considered separately.

Algorithm 1 is used to find the part of an optimal path outside the radar visibility

horizon, as well as to evaluate the suboptimal paths p2 and p3; consequently, a large
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part of these three paths is the same and has the same travel time. This is particularly

true when the radar visibility horizon is small relative to the distance between the

starting and target points. In such a case, the directions from all the points on the

boundary of RH to the target point t are very close to each other, implying that

the invisible region part of the optimal path and of the alternative paths p2 and p3

consist of the linear segments with the same heading angles (see Figure 4.5). Due

to time and space homogeneity of the region outside RH , we find the ‘merge points’

x2 and x3 that lie in that region. These points are defined such that paths p2 and

p3, respectively, differ from an optimal path between the start point and the merge

point, and the suboptimal paths are the same as optimal path for the remaining part

of travel.

In comparing the minimum trave time to suboptimal paths p2 and p3, we only

use travel times of each path between the start point s and the corresponding merge

points. Recall that as the vessel moves along a path, the new wave-field information is

collected and an optimal path is reevaluated. Therefore, by the time a vessel reaches

a merge point, the paths are reevaluated and we expect to see the same benefit

of following a new optimal path for the next part of the path. The continuous

reevaluation of an optimal path justifies the comparison of travel time only for the

first part of paths leading up to the merge point.

Similar approach is used in comparing the optimal travel time when paths p2

and p3 correspond to a single line segment. When the heading angle of suboptimal

straight line path is similar to that of the optimal path beyond RH , we consider

a closer target point equivalent to the merge point of a piecewise linear path. See

Figure 4.3 and Figure 4.4 at the end of this section for illustration.

Table 4.1 summarizes the results of our test runs. The angle between starting
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and target points is denoted by θst and the minimum travel time is represented by

t∗. We let t(pi) for i = 1, 2, 3 denote the trave time along a path pi from the starting

point s to the corresponding merge point as discussed above. For consistency, it is

implied that t∗ is the travel time along an optimal path between the same pair of

points (start and merge), when comparison is conducted. The values in the third

column (t∗/t(p1)) that are labeled by ‘∗’ correspond to the cases when the total travel

time from s to t are compared, as considering a closer target point would alter the

structure of an optimal path. In such cases, a large part of both paths are assumed to

pass through the time and space homogeneous environment, and the values presented

in the table are significantly lower than expected to be observed during the real-life

implementation. The ‘N/A’ in Table 4.1 corresponds to the case when all three

suboptimal paths are identical and we only report the run time improvement in the

column corresponding to a straight line path.

Based on our analysis, we observe up to 9.7% improvement and on average be-

tween 4% and 6% improvement, in comparison to implementing Algorithm 1 while

neglecting the wave-field data collected by the radar. The improvement reported here

is expected to be significantly higher in the real-life applications, since the current

models simulating the wave-field and vessel dynamics (e.g., speed) are very restric-

tive and do not fully capture the non-homogeneity of the system. In the following

subsection, we discuss in details the limitations of the data available to us for the

numerical test runs and their adverse effect on the reported travel time improvement.

Also note that the travel time decrease presented in Table 4.1 is a very conservative

estimate, since our analysis neglects the bounded curvature for paths p1, p2 and p3.

In addition, the initial heading of the vessel is set to the direction θst, and the found

optimal paths involve lesser vessel maneuvers than we would see for other starting
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Run No. θst (deg) t∗/t(p1) t∗/t(p2) t∗/t(p3)

1 0 0.9994 N/A N/A

2 20 0.9418 N/A N/A

3 40 0.9125 0.9476 0.9473

4 60 0.9846∗ 0.9334 0.9230

5 80 0.9456 N/A N/A

6 100 0.9835∗ 0.9377 0.9684

7 120 0.9796∗ 0.9516 0.9605

8 140 0.9650 N/A N/A

9 160 0.9033 N/A N/A

10 180 0.9890 0.9601 0.9506

11 200 0.9307 N/A N/A

12 220 1.0000 N/A N/A

13 240 0.9634∗ 0.9488 0.9497

14 260 0.9822∗ 0.9479 0.9593

15 280 0.9823 N/A N/A

16 300 0.9882∗ 0.9350 0.9495

17 320 0.9838∗ 0.9458 0.9526

18 340 0.9433 N/A N/A

Table 4.1: Comparison of minimum travel time to the trave times for paths p1, p2 and p3.
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heading angle. However, it is important to remember that one of the advantages

of our dynamic programming model is the integration of heading angle and turning

radius constraints of the vessel into the path finding model. Therefore, the presented

path-finding model not only improves the travel time, but it also delivers a control-

feasible path for any initial and target positions of the vessel.

The following Figure 4.3, Figure 4.4, Figure 4.5 and Figure 4.6 illustrate examples

of the found optimal paths and the alternative suboptimal paths.

Figure 4.3: Test run number 5, where θst = 80 degrees.



146

Figure 4.4: Test run number 5 with the target point relocated closer to point s.

Figure 4.5: Test run number 7, where θst = 120 degrees. The merge points for paths p2 and p3 are
denoted by x2 and x3, respectively.
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Figure 4.6: A detailed figure for test run number 7, illustrating the paths within the radar visible
region.

Limitations of the Data Available for Numerical Analysis

The results of test runs summarized in Table 4.1 illustrate an improvement in

the vessel travel time for 16 out of 18 cases, corresponding to a decrease ranging

between 1.8% and 9.7%. However, due to the limitations of the data available to

us for the numerical analysis, the reported benefits of our path finding model are

extremely conservative, and we anticipate, in practice, to observe a significantly

greater decrease in vessel travel time. In this section, we discuss the limitations of

the data available for numerical results and their effects on our analysis.

The analysis is conducted for a large 175-meter long container ship that has

relatively slow speed (ranging between 12 knots and 22.15 knots, or equivalently 6.2

- 11.4 meters per second) and a large turning radius (ranging between 290 and 305

meters). Since an average wave length for the considered sea state (No. 6.5) is equal

to 90 meters, the vessel is not maneuverable enough to navigate around the large

waves. Consequently, the presented path finding algorithm is not used to its fullest
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potential. While all the gathered information about the surrounding wave-field is

integrated into the path planning process, a significant amount of that information

has no effect on the navigation for such a large vessel. For comparison, we scale the

minimum turning radius of a vessel by a factor of 0.5 and recompute an optimal

path for test run number 3 (i.e, θst = 40 degrees). The minimum travel time for the

new optimal path corresponds to the improvement of 14.6%, 9.5% and 15.4% when

comparing to the travel times for paths p1, p2 and p3, respectively, instead of 8.8%,

5.3% and 5.3% improvement for the original vessel as seen in Table 4.1. In addition

to improved maneuverability, smaller vessels are also more suspectable to the effects

of individual waves, further increasing the benefits of navigation around each wave.

In addition to limited maneuverability of the vessel, the model currently used to

compute the added drag and corresponding vessel speed reduction is not as detailed

and accurate as the model we anticipate to integrate upon the completion of this

project. The maximum attainable speed function is currently averaged over a dis-

tribution of waves that a vessel is expected to observe for a specified sea state and

heading angle. Therefore, it does not explicitly incorporate the effect an individual

wave has on the vessel. We expect that a more intricate vessel motion model will

result in the more complex optimal paths and the great time savings, especially so

for the lower sea states.

To compare the minimum travel time to the alternative suboptimal paths, we use a

simulation program to generate a realization of a time-evolving wave-field. The input

to the program is a set of parameters characterizing the distributions of the waves,

which results in the simulation generating a stationary wave-field. Subsequently,

the large vessel turning radius and limitations of the vessel speed prediction model

reduce our problem to optimal path finding in an ergodic system. This overall
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‘averaging’ of the waves encountered by a vessel significantly limit an improvement

in travel time observed by our model. The main advantage of real-time sensor data

collection is that the environment does not have to be assumed or approximated

by a stationary distribution. Therefore, in real-life applications, we expect to see

significantly greater benefits of navigating around rough parts of the sea, and our

path finding model would result in a greater decrease in travel time.

The estimates of travel time improvement presented in Table 4.1 are also greatly

understated due to the fact that the minimum turning radius restriction is integrated

into the optimal path, while the constraint is relaxed for the suboptimal paths p1,

p2 and p3. Integration of the turning constraint for the alternative paths would

significantly increase their travel times and the corresponding improvement of the

optimal path.

We would like to emphasize that the objective of the presented path finding code

is to verify the algorithm validity and feasibility of the required run-time; and the

reported benefits of our optimal path finding algorithm implementation are highly

understated due to the very limited data available at this point of the project.

4.7 Optimal Path Finding for a Cost Function Other Than Travel Time

Throughout this and earlier chapters of the dissertation, we discuss an optimal

path finding problems with the objective to minimize the agent’s travel time. We

often mention that our analysis and results can be directly extended to problems

minimizing other cost functions. In many applications, we face an optimal path

finding problem with alternative objective functions. For example in the case of

the OVPENWF project, in addition to finding a fastest path, we are interested

in minimizing root-mean-squared (RMS) motions and other measures of the path
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‘quality’. However, the extension of our analysis and presented path finding model

is not straightforward for dynamic networks and path finding in a time-dependent

environment. In this section we discuss how an optimal path finding algorithm

changes when the objective function is other than travel time.

The problem of minimizing cost in a dynamic network is briefly discussed in the

literature. In addition to the earlier discussed time-dependent fastest path problems,

Chabini [10] looks at the minimum cost functions where travel time functions dij(ti)

and cost functions cij(ti) are time-dependent. He extends backward DP formulation

of the fastest path problems to this minimum cost path finding problem. Chabini

assumes that dij(ti) and cij(ti) are constant for any time greater than some specified

value, resulting in a static problem. This static problem solution is then used as the

boundary condition for the dynamic programming formulation of the problem.

The difference between our earlier analysis of the fastest-path finding problems

and modeling of a problem with a general cost function is that we can not eliminate

the time variable from the dynamic programming state space (see Section 4.4 and

equation (4.2)). Therefore, we have to set the DP state to be (a, θa, ta) and consider

all possible times of arrival at a given waypoint. Consequently, the resulting DP

model delivers a classical functional equation and a straightforward application of

Dijkstra’s method or Chabini’s approach can be used to find an optimal path. Since

we do not present any significant improvement of the dynamic programming function

equation for this set of problems, we will not go into any further details. We want

to mention the difference between the models for the two types of problems.

We would also like to note that the cost function has to be additive to apply

the standard dynamic programming recursive equation. However, the model can be

adjusted to other objective functions. For example, the averaging measures of path
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quality, like RMS motion, can be implemented by fixing a constant number of arcs

for all considered feasible paths, or by adding a variable keeping record of the number

of arcs traveled of the dynamic programming state space.

4.8 Conclusion

In this chapter, we relax the time and space homogeneous assumption of previous

chapters and deliver an efficient model for finding an optimal path in a direction,

location and time dependent environment. Our dynamic programming model inte-

grates a number of aspects that are neglected by the traditional path finding DP

models. We integrate the limitation of information available beyond a specified visi-

bility horizon, by applying our results for a time and space homogeneous environment

from the earlier chapters. To incorporate the dynamic constraints of the system, we

employ our algorithm for optimal paths with bounded curvature and evaluate a fea-

sible and optimal arc to traverse between a pair of DP states. Finally, by allowing

a mobile agent to adjust its speed along a path, we are able to eliminate the time

variable from the dynamic programming state space and significantly improve the

run-time of our algorithm.

The developed Algorithm 5 is one of the key contributions of this dissertation. And

while a number of individual results presented in the earlier chapters have significant

stand-alone contributions to the various scientific areas, this chapter and Algorithm

5, in particular, bring together all the analysis and results presented throughout the

dissertation into a single coherent optimal path finding model.
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Conclusions

This dissertation discusses optimal path finding in a direction, location and time

dependent environment. We deliver a computationally-efficient path finding algo-

rithm with a sufficiently small run-time for real-time implementation. A traditional

dynamic programming path finding model makes a number of restrictive assump-

tions that jeopardize its applicability to real-life problems. Alternatively, we present

a model that integrates and addresses a set of limiting aspects previously neglected

in the literature:

• Our dynamic programming (DP) path finding model integrates a limited visi-

bility horizon and accounts for the lack of detailed information about a medium

beyond a certain distance from the mobile agents current location.

• The presented DP model finds a smooth and control-feasible fastest path by

integrating the systems dynamics into the optimization process.

• By integrating the agents controller (speed) into the decision space of the al-

gorithm, the resulting model eliminates a time variable form the dynamic pro-

gramming state space and improves efficiency and run-time of our model.

A number of special case problems corresponding to the assumption of a time

and space homogeneous environment are solve analytically, and we present detailed

152
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algorithms that facilitate the finding of closed-form solutions. These results deliver

significant contribution to the studies of the anisotropic (direction-dependent) prob-

lems.

In future work, we plan to extend our results for a fastest path with bounded

curvature to a very general set of direction-dependent speed functions, by relaxing

convexity of a speed polar plot (Chapter III). By further analyzing the problem’s

properties, we also plan to dramatically simplify the proofs for the case of a convex

linear path attainable region.

We are also interested in integrating the additional system constraints, such as

bounded acceleration and deceleration, into the optimal path finding model in order

to improve its accuracy and applicability. Finally, we plan to integrate uncertainty

associated with data-collection and forecasting errors of the future environment.

Our goal is to continue the study of integration of real-time data collection into the

optimization models, especially with application to unmanned systems.
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