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Abstract: We study an infinite-horizon, N -stage, serial production/inventory system with two transportation modes between
stages: regular shipping and expedited shipping. The optimal inventory policy for this system is a top–down echelon base-stock
policy, which can be computed through minimizing 2N nested convex functions recursively (Lawson and Porteus, Oper Res 48
(2000), 878–893). In this article, we first present some structural properties and comparative statics for the parameters of the optimal
inventory policies, we then derive simple, newsvendor-type lower and upper bounds for the optimal control parameters. These
results are used to develop near optimal heuristic solutions for the echelon base-stock policies. Numerical studies show that the
heuristic performs well. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 57: 71–87, 2010
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1. INTRODUCTION

Dynamic leadtime management in supply chains can hedge
against market fluctuations and effectively balance inventory
and customer demand. To achieve flexibility in leadtimes in a
supply chain, a widely adopted strategy is the use of multiple
transportation modes. Although a replenishment with shorter
leadtime can better respond to customer demand, it is usu-
ally more costly. It is, therefore, important for the company
to strategically determine the shipping quantities using dif-
ferent leadtime and cost combinations based on the inventory
status to minimize its total operational costs.

In this article, we consider a periodic-review serial supply
chain with N stages. Each stage replenishes its inventory
from its immediate upstream stage and random customer
demand occurs at the most downstream stage. Excess demand
in each period is backlogged. Two modes of transportation are
available between any adjacent stages, regular shipping and
expedited shipping, and transportation leadtimes are 1 and
0, respectively (an extension to a more general leadtime set-
ting is discussed in Section 5). The expedited shipping cost
is higher than the regular shipping cost. The zero leadtime
allows the firm to ship products from any upstream stage to
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most downstream stage in no time, if needed, by using expe-
dited shipping between stages. There is a linear holding cost
at each stage, and a linear shortage cost at stage 1 when a
backlog of customer demand occurs. The objective is to min-
imize the total discounted cost of the system over an infinite
planning horizon.

This problem has been studied by Lawson and Porteus [13],
who demonstrated that a top–down echelon base-stock policy
was optimal (see also Ref. 14). A top–down echelon base-
stock policy is characterized by two base-stock levels for
each stage, one for expedited ordering and the other for regu-
lar ordering. These optimal echelon base-stock levels can be
obtained by solving 2N nested single-dimensional convex
optimization problems recursively. Although the algorithm
itself is quite simple, computation remains a tedious process,
and its complexity increases with the number of stages.
This motivates us to develop simple newsvendor bounds and
heuristics for the optimal policies of each stage of the multi-
echelon system, which not only can increase their imple-
mentability but also shed light on the effect of system control
parameters.

This article makes two main contributions to the literature.
First, we provide several important structural results for the
optimal expedited and regular base-stock levels. These find-
ings could advance our understanding of the system and the
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properties of the optimal policies. Second, based on these
structural properties, we develop three sets of newsvendor
upper bounds and three sets of newsvendor lower bounds for
the optimal echelon base-stock levels for both the regular
and expedited shipping modes. These bounds can be easily
calculated from the system parameters. A simple heuristic is
then constructed based on these bounds to compute the near-
optimal base-stock levels. Numerical studies show that the
heuristic performs well.

The rest of the article is organized as follows. In Section
2, we review the findings of previous studies in this field. In
Section 3, we explain the model formulation and present some
preliminary results. We provide a computational algorithm
for the optimal base-stock levels and give some structural
results. In Section 4, we derive several sets of lower bounds
and upper bounds for the optimal echelon base-stock levels.
In Section 5, we extend the results to a case with more general
leadtimes. In Section 6, we develop a simple heuristic and test
its effectiveness by numerical studies. We conclude the arti-
cle with a few remarks in Section 7. The omitted proofs are
provided in the Appendix.

Throughout the article, we use the terms “expedited order”
and “expedited shipping” interchangeably. We also use the
terms “increasing” and “decreasing” in a weak sense, as
representing “non-decreasing” and “non-increasing,” respec-
tively. 1(A) is the indicator function taking value 1 if A

is true, and 0 otherwise. For any real numbers a and b,
a ∧ b = min{a, b}, a ∨ b = max{a, b}. For any real-
value, monotone function f (·), we use f −1(·) to represent its
inverse function. Whenever possible, we follow the notation
of Lawson and Porteus [13].

2. LITERATURE REVIEW

The body of research related to this work can be divided
into two major categories. The first analyzes control poli-
cies for single-stage and multi-stage inventory models with
multiple transportation modes, and the second develops sim-
ple bounds and heuristics for the optimal control parame-
ters. We review the various studies in these two categories
separately.

The earliest study of inventory models with two delivery
modes was made by Barankin [1], who studied a single-period
problem. Daniel [5] was the first to consider a multi-period
single-stage model with two shipping modes. The leadtimes
of regular shipping and emergency shipping were 1 and 0,
respectively. Fukuda [10] extended Daniel [5] to the case
where the leadtimes of the two supply modes were L and
L + 1, respectively, for a general non-negative value of L.
Whittemore and Saunders [20] considered the dual-supplier
problem with leadtimes of arbitrary length, and demonstrated
that the optimal control policy was very complicated and

state-dependent if the difference in leadtimes was greater
than 1. Because of the complexity of systems with general
leadtimes, Scheller-Wolf et al. [15] and Veeraraghavan and
Scheller-Wolf [19] focused on the evaluation and optimiza-
tion of two classes of heuristic policies, viz., “single index”
and “dual index” policies. Recently, Sheopuri et al. [17] have
shown that the classical lost sales inventory problem is a
special case of the dual supply modes problem. They also pro-
posed two classes of heuristic policies and showed that one of
them provided an average cost saving of 1.1% over the best
“dual index” policy of Veeraraghavan and Scheller-Wolf [19].
All these studies have focused solely on single-stage inven-
tory systems. Other related work on single-stage inventory
systems with multiple transportation modes has been done
by Feng et al. [8, 9] and Song and Zipkin [18].

For multi-echelon models with the option of expedited
shipping between stages, Lawson and Porteus [13] consid-
ered both finite-horizon and infinite-horizon serial systems
with dual transportation modes. Under the assumptions that
the leadtimes for regular and expedited shipping between
any two adjacent stages were 1 and 0, respectively, and that
shipping costs were additive linear, they established the opti-
mality of a top–down echelon base-stock policy. For such a
policy, the control parameters of each echelon consist of two
numbers, one for regular shipping and the other for expe-
dited shipping. Muharremoglu and Tsitsiklis [14] extended
the model of Lawson and Porteus [13] to a more general
setting by using the unit analysis approach. Under a “super-
modular” cost structure on expedited and regular shipping,
they characterized the optimal policy as an extended echelon
base-stock type.

When there is only one transportation mode, the system of
Lawson and Porteus [13] is reduced to the classical Clark–
Scarf model, which has been extensively studied, notably by
Clark and Scarf [4], Federgruen and Zipkin [7], and Chen and
Zheng [3]. Several studies on simple bounds of cost and opti-
mal policies for the Clark–Scarf model have been reported.
Gallego and Zipkin [11] discussed the issue of stock position-
ing and constructed three heuristics to calculate the average
cost for serial production-transportation systems. Zipkin [21]
introduced a lower bound for a two-stage system by restrict-
ing the possibility of holding inventory at the upper stream
stage. Dong and Lee [6] developed a lower bound for optimal
policies of infinite-horizon serial systems with discounted
cost criterion. For average cost criterion, Shang and Song [16]
obtained simple newsvendor-type of bounds and developed
simple heuristics using a different approach from that of Dong
and Lee [6]. More recently, Chao and Zhou [2] have adopted
another approach, constructing bounds and heuristics for ser-
ial systems that work for both discounted and average costs,
and obtaining a series of bounds for optimal base-stock levels.
A related study on bounds and heuristics for serial systems
has been made by Gallego and Özer [12].
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Comparing the analysis of this article to that in Chao and
Zhou [2] for the Clark–Scarf model with an infinite hori-
zon, we note the following two main differences. First, due
to the existence of expedited ordering, each stage’s regu-
lar order decision in each period depends on its expedited
order decision of the next period, which in turn intertwines
with its downstream stage’s regular order decision. However,
in the Clark–Scarf model, the decision in one period does
not depend on that of the following period since the echelon
base-stock level is myopic and stationary. Second, our system
incurs two types of induced penalty cost. One occurs between
adjacent stages (the cost charged from regular order of stage
i to stage i+1 due to the insufficient stock at stage i+1), and
the other within each stage (the cost charged from expedited
order to regular order of stage i due to insufficient stock from
the regular order), whereas the Clark–Scarf model features
only one induced penalty cost between stages. Our analysis
also shows that the expedited option between stages cannot
be simply considered as an additional stage in the Clark–
Scarf model. These two differences make the derivation of
distribution-function solutions and simple lower and upper
bounds much more complicated and challenging.

3. THE MODEL AND STRUCTURAL RESULTS

Consider an infinite-horizon, periodic-review serial inven-
tory system with N stages, indexed by 1, 2, . . . , N . Customer
demand occurs at stage 1. Stage 1 obtains supplies from stage
2, stage 2 from stage 3, and so on, and stage N replenishes its
inventory from an outside source (stage N +1) with an ample
supply. Unsatisfied demand is fully backlogged at stage 1.
Demands in different periods are independent and identi-
cally distributed (i.i.d.) non-negative random variables. Each
stage has two ordering decisions: expedited order and regu-
lar order. For each stage i, the leadtime lr

i for regular order
is 1, and le

i for expedited order is 0 (an extension that le
i = li

and lr
i = li + 1 for a general non-negative li is discussed

in Section 5). The assumption that the leadtime difference
between a regular and an expedited order must be 1 appears
restrictive, but relaxing it makes the problem too complicated
to yield an optimal control policy that is analytically solvable.
This is because the resulting state space for each stage has to
be augmented to include the pipeline inventory scheduled to
arrive in future periods. In this case, it is known that, even for a
single-stage system N = 1, the optimal policy is complicated
and state-dependent (Whittemore and Saunders [20]).

For each stage i, the unit expedited and regular order cost
from stage i + 1 is kE

i and kR
i , respectively, with kE

i > kR
i .

Echelon holding cost hi is incurred for each unit of on-hand
inventory held in echelon i per period, whereas backlog cost
p is incurred for each unit of backlog at stage 1 per period.
The installation holding cost for stage i is Hi =∑N

j=i hj .
The following additional notation is needed.

D(j) = j -period demand (j -fold convolution of single-
period demand as demands are i.i.d. across periods), j =
1, 2, . . .;

Fj (·) = the cumulative distribution function of D(j),
j = 1, 2, . . .;

F̄j (·) = 1 − Fj (·), j = 1, 2, . . .;
α = the discount factor, i.e., 0 ≤ α < 1.
For notational simplicity, we use D to denote a generic

one-period demand and suppress the subscript of Fj and F̄j

when j = 1, i.e., F(·) = F1(·) and F̄ (·) = F̄1(·).
The sequence of events is as follows. First, at the begin-

ning of every period, each stage receives the regular order
placed in the previous period. Second, starting from stage N ,
each stage places expedited and regular orders sequentially.
Specifically, stage N first places its expedited order from the
outside supplier and receives it immediately. It then places a
regular order which will be delivered at the beginning of next
period (note that stage N ’s expedited order is immediately
available to satisfy the order from stage N − 1). Stage N − 1
then decides its expedited and regular orders from stage N .
Again, the expedited order stage N − 1 received can be used
to satisfy the order from stage N −2. This top–down ordering
process continues until stage 1 places its expedited and regu-
lar orders from stage 2. As an expedited order has a shipping
leadtime 0, the model allows expediting from any upstream
stage to any downstream stage subject to inventory availabil-
ity at the upstream stages. Finally, demand is realized during
the period at stage 1 and all costs are incurred at the end of
the period. The objective is to minimize the total discounted
cost over an infinite planning horizon.

Lawson and Porteus [13] showed that the optimal policy
of this problem1 is of a base-stock type, and that the optimal
base-stock levels can be computed through a nested recursive
algorithm.

First, let cE
i = kE

i − kR
i + hi and cR

i = αkE
i − kR

i . Because
kE
i > kR

i and hi ≥ 0, cE
i > 0. In addition, we assume cR

i ≥ 0.
If this is not the case, then the regular shipping mode will
never be used and the model reduces to the Clark–Scarf model
with a single supply mode between stages. To see that, sup-
pose cR

i < 0 orαkE
i < kR

i , then it is more economical for stage
i to order the unit using expedited shipping in the next period
rather than to order it at the current period using a regular
order. (Lawson and Porteus [13] defined cR

i = kR
i −αkE

i ≤ 0,
but here we keep the cost coefficient non-negative.) We call
cE
i the relative unit expedited ordering cost and cR

i the relative
unit regular ordering cost (in the rest of the article, “relative”
is occasionally skipped for the sake of simplicity).

1 Lawson and Porteus [13] also considered a so-called unit detained
cost at stage i, which is assumed to be 0 in this article for the ease
of exposition. Our results can easily be extended to include such a
cost, if desired.
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We now present the computational algorithm for the
optimal base-stock levels. Let x− = max{−x, 0}. Define
GE

1 (y) = cE
1 y + (H1 + p)E[(y − D)−], which is convex

with minimizer sE
1 . Let, for i = 1, . . . , N ,

GR
i (y) = −cR

i y + GE
i (y ∧ sE

i ) + αE
[
GE

i

(
(y − D) ∨ sE

i

)]
,

(1)

sR
i = arg min

y
GR

i (y), (2)

and, for i = 1, . . . , N − 1,

GE
i+1(y) = cE

i+1y + GR
i (y ∧ sR

i ), (3)

sE
i+1 = arg min

y
GE

i+1(y), (4)

where both GE
i (·) and GR

i (·) are univariate convex functions.
Here, we refer to GE

i (y ∧ sE
i ) and GR

i (y ∧ sR
i ) as the induced

penalty function within stage i and induced penalty func-
tion between stages i and i + 1, respectively.2 Note that
the algorithm above does not directly lead to the minimum
total discounted cost for the system. The optimal top–down
echelon base-stock policy works as follows (see Ref. [13]).
Starting from stage N , each stage tries to raise its eche-
lon inventory level and position to the expedited base-stock
level sE

i and regular base-stock level sR
i , respectively, tak-

ing upstream decisions as given and ignoring downstream
decisions.

Comparing (1)–(4) with the optimization algorithm of the
Clark–Scarf system (see some details in Section 5), we note
the following important differences. First, for each stage i,
consider the regular base-stock level sR

i as the base-stock level
in the Clark–Scarf model. To compute sR

i , we need to first
optimize an additional expedited ordering base-stock level
sE
i using (4). Second, due to the existence of two base-stock

levels for each stage i, the ending inventory level of a period
could be higher than its expedited base-stock level in the next
period. This results in the third term in (1), which is not in the
optimization algorithm of the Clark–Scarf model. It shows
that the regular order decision of the current period depends
on the expedited order decision of the next period, which
then in turn influences its downstream stage’s regular order.
Thus, in the strict sense, the optimal policy is not “myopic”
but one-period ahead and the expedited order decision can-
not be simply regarded as an additional “stage” between two
echelons of the Clark–Scarf model.

In the rest of this section, we present some structural prop-
erties on the optimal policies that will be used to derive simple
bounds for the optimal base-stock levels.

2 A more precise definition of the induced penalty functions should
be GE

i (y∧sE
i )−GE

i (sE
i ) and GR

i (y∧sR
i )−GR

i (sR
i ); but since GE

i (sE
i )

and GR
i (sR

i ) are constant and will not affect the analysis, they are
omitted.

PROPOSITION 1: (i) sE
i < sR

i−1, for i = 2, . . . , N .
(ii) sE

i < sR
i , for i = 1, . . . , N .

PROOF: For part (i), note that sE
i is determined by

(
GE

i (y)
)′ = cE

i + (GR
i−1

(
y ∧ sR

i−1

))′ = 0. (5)

When y = sR
i−1, cE

i + (
GR

i−1

(
sR
i−1

))′ = cE
i > 0. Thus, it

follows from the convexity of GE
i (y) that sE

i < sR
i−1.

Similarly, for part (ii), note that sR
i is the solution of

(
GR

i (y)
)′ = −cR

i + (GE
i

(
y ∧ sE

i

))′
+ αE

[
GE

i

(
(y − D) ∨ sE

i

)]′ = 0. (6)

Since, for y ≤ sE
i , (GE

i (y ∧ sE
i ))′ ≤ 0 and E[GE

i ((y − D) ∨
sE
i )]′ = 0, we have (GR

i (y))′ < 0 as cR
i > 0. The convexity

of GR
i (y) implies sR

i > sE
i . �

In the following paragraphs, we develop solutions for the
optimal base-stock levels sE

i and sR
i , which solely depend on

the demand distribution, which we term distribution-function
solutions. By Eqs. (1)–(4), the optimal base-stock levels sE

i

and sR
i are the solution of (GE

i (y))′ = 0 and (GR
i (y))′ = 0,

respectively. For stage 1, taking derivative of GE
1 (y) with

respect to y yields(
GE

1 (y)
)′ = cE

1 − (H1 + p)P (D > y) = 0, (7)

hence the optimal expedited base-stock level for stage 1 is

sE
1 = F̄−1

(
cE

1

H1 + p

)
. (8)

Note that if cE
1 > H1 +p, then (GE

1 (y))′ > 0 from (7), which
implies that sE

1 = −∞ and the expedited shipping is never
used at stage 1. So, in general for j = 1, 2, . . ., we define
F̄−1

j (x) = −∞ for x > 1
(
F−1

j (x) = −∞ for x < 0
)

and

similarly F̄−1
j (x) = ∞ for x < 0

(
F−1

j (x) = ∞ for x > 1
)
.

To solve sR
1 , it follows from part (ii) of Proposition 1 that

we only need to consider the solution of
(
GR

1 (y)
)′ = 0 on

y ≥ sE
1 . Thus, sR

1 is the solution of

(
GR

1 (y)
)′ = −cR

1 + αcE
1 P
(
D ≤ y − sE

1

)
− α(H1 + p)P

(
D ≤ y − sE

1 , D(2) > y
) = 0, (9)

in which D(2) = D + D′ and D′ is another single-period
demand independent of D. For a single-stage system with
two delivery modes, Eqs. (8) and (9) provide the optimal
solutions, which can be easily computed.
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Applying (9) and Proposition 1, we obtain that sE
2 is the

solution of(
GE

2 (y)
)′ = cE

2 −cR
1 +(cE

1 − (H1 + p)P (D > y)
)

1
(
y < sE

1

)
+ αcE

1 P
(
D ≤ y − sE

1

)− α(H1 + p)

× P
(
D ≤ y − sE

1 , D(2) > y
) = 0, (10)

and that sR
2 is the solution of(

GR
2 (y)

)′ =
−cR

2 + αcE
2 P
(
D ≤ y − sE

2

)− αcR
1

(
D ≤ y−sE

2 , D > y − sR
1

)
+ αcE

1 P
(
D ≤ y − sE

2 , D > y − sE
1

)
+ α2cE

1 P
(
D ≤ y − sE

2 , D > y − sR
1 , D(2) ≤ y − sE

1

)
− α(H1 + p)P

(
D ≤ y − sE

2 , D > y − sE
1 , D(2) > y

)
− α2(H1 + p)P

(
D ≤ y − sE

2 , D > y − sR
1 , D(2)

≤ y − sE
1 , D(3) > y

) = 0.

It is clear that the distribution-function solutions for a two-
stage system with expedited ordering are more complicated
than for a four-stage Clark–Scarf system (see Ref. [2]). This
is mainly due to the last term in Eq. (1) of the computa-
tional algorithm, which further couples each stage’s regular
order and expedited order decisions between two consecutive
periods. This process of deriving distribution-function solu-
tion can be continued for sE

i and sR
i for all i. The expression

naturally becomes more and more complicated as i increases.

PROPOSITION 2: For i = 2, . . . , N , sE
i ≥ sE

i−1 if and only
if cR

i−1 ≥ cE
i .

PROOF: Recall that sE
i is the solution of(

cE
i − cR

i−1

)+ (GE
i−1(y)

)′
1
(
y < sE

i−1

)
+ αE

[(
GE

i−1(y − D)
)′

1
(
y − D ≥ sE

i−1

)] = 0. (11)

We first show that if cR
i−1 ≥ cE

i , then sE
i ≥ sE

i−1. Suppose
cR
i−1 ≥ cE

i , then for any y ≤ sE
i−1, the first two terms on the

left hand side of (11) are nonpositive due to the convexity of
GE

i−1(y) and the optimality of sE
i−1; the third term is equal to

0. Thus, because the left hand side of (11) is increasing in y,
we conclude that sE

i ≥ sE
i−1.

We next prove that, if cR
i−1 < cE

i , then sE
i < sE

i−1.
Substituting y by sE

i−1 in (11), we obtain

(
cE
i − cR

i−1

)+ (GE
i−1(y)

)′
1
(
sE
i−1 < sE

i−1

)
+ αE

[(
GE

i−1

(
sE
i−1−D

))′
1
(
sE
i−1−D ≥ sE

i−1

)] = cE
i −cR

i−1 > 0.

So again, because the left hand side of (11) is increasing in
y, we must have sE

i < sE
i−1. �

The intuition behind this result is as follows. Recall that
cR
i−1 = αkE

i−1 − kR
i−1, which can be regarded as the cost sav-

ing of stage i − 1 by using a regular order of one unit from
stage i in a period instead of expediting one unit next period;
cE
i = kE

i −kR
i +hi is the relative cost of stage i between expe-

diting one unit from stage i +1 that can be used immediately
for stage i − 1 and using regular shipping that arrives next
period. From the perspective of the whole system, if the for-
mer cost saving is higher than the latter extra cost, then stage
i should keep some units available to meet regular ordering
from stage i − 1, i.e., sE

i − sE
i−1 ≥ 0; otherwise, it should not.

This result further provides the condition under which the
optimal expedited base-stock levels are monotone with the
stage index: If cR

i−1 > cE
i for all i, then sE

N ≥ sE
N−1 ≥ · · · ≥

sE
1 . This result can simplify the distribution-function solution.

For example, if cR
1 ≥ cE

2 , then(10) is simplified to

cE
2 − cR

1 + αcE
1 P
(
D ≤ y − sE

1

)
− α(H1 + p)P

(
D ≤ y − sE

1 , D(2) > y
) = 0.

PROPOSITION 3: For i = 2, . . . , N , if

sR
i−1 − sE

i ≤ F−1

(
cR
i

αcE
i

)
,

then sR
i ≥ sR

i−1.

PROOF: Since sR
i is the solution of

−cR
i + αE

[(
cE
i + (GR

i−1(y − D)
)′

1
(
y − D < sR

i−1

))
×1
(
y − D ≥ sE

i

))] = 0,

to show sR
i ≥ sR

i−1, it is sufficient to prove

−cR
i +αE

[(
cE
i +(GR

i−1

(
sR
i−1 −D

))′)
1
(
sR
i−1 −D ≥ sE

i

)] ≤ 0.

Note that for any possible sample path D = d ≥ 0,
(GR

i−1(s
R
i−1 −d))′ ≤ 0. So if −cR

i +αcE
i P (sR

i−1 −D ≥ sE
i ) ≤

0, or

P
(
D ≤ sR

i−1 − sE
i

) ≤ cR
i

αcE
i

,

then the result is valid. The ratio 0 ≤ cR
i /αcE

i ≤ 1 is always
satisfied by the definitions of cR

i and cE
i . �

The previous results not only provide some structural prop-
erties of the optimal base-stock levels but, more importantly,
will also be used in the derivation of bounds for the opti-
mal base-stock levels and computational heuristics in the
following sections.
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We end this section with the following proposition that
presents the comparative statics results of the optimal base-
stock levels.

PROPOSITION 4: (i) sE
i is decreasing in cE

j for j ≤ i,
independent of cE

j for j > i, increasing in cR
j for j < i,

independent of cR
j for j ≥ i and increasing in p.

(ii) sR
i is decreasing in cE

j for j ≤ i, independent of cE
j for

j > i, increasing in cR
j for j ≤ i, independent of cR

j for j > i

and increasing in p.

Proposition 4 shows that the impacts of system cost para-
meters on sE

i and sR
i are similar. This proposition is intuitive,

as these two base-stock levels are complementary to each
other. The result can be explained by the following lines of
reasoning. For each stage i, if its relative expediting cost gets
higher, then stage i is less willing to use expedition, resulting
in a lower expedited base-stock level sE

i . Similarly, if the rel-
ative expediting cost of stage j , j < i, becomes higher, then
less expedited shipping would be used at stage j , with the
result that the echelon expedited base-stock level of stage i

becomes lower. However, if the relative regular ordering cost
of stage i rises (the actual unit regular shipping cost is lower
or the actual expedited shipping cost is higher), then stage i

would use more regular shipping, and hence, the regular eche-
lon base-stock level would become higher. Thus, if stage j ’s,
j < i, relative regular ordering cost becomes higher, then
stage j would tend to keep a higher regular base-stock level,
leading indirectly to an increase in both the echelon expedited
and regular base-stock levels at stage i. That sR

i is decreasing
in cE

j , j < i is because, when the expediting cost of stage j

gets higher, fewer expedited orders would be placed and, as a
result, stage i would try not to keep as much inventory, lead-
ing to a lower echelon base-stock level for regular shipping.
Finally, that both sE

i and sR
i increase with p has its intuitive

appeal: With a higher shortage cost, each stage should keep
a higher (echelon) inventory level to avoid shortage.

4. LOWER AND UPPER BOUNDS

In this section, we develop several sets of newsvendor-type
lower and upper bounds for the optimal echelon base-stock
levels.

Before presenting the results, we first outline the basic
ideas used in developing upper and lower bounds. Note that
sE
i is determined by (GE

i (y))′ = 0 and (GE
i (y))′ is an increas-

ing function of y. If we can find a simple upper bound
function ḡ(y) such that (GE

i (y))′ ≤ ḡ(y), then the solu-
tion of ḡ(y) = 0 is a lower bound for sE

i . Similarly, if we
can find another simple lower bound function g(y) such that
(GE

i (y))′ ≥ g(y), then the solution of g(y) = 0 is an upper

bound for sE
i . The bounds for sR

i can be analogously con-
structed. Moreover, the simpler and tighter the upper bound
function ḡ(y) (lower bound g(y)) is to (GE

i (y))′, the simpler
and better the resulting lower (upper) bound. Hence, the chal-
lenge is to find simple and tight bounding functions ḡ(y) and
g(y). This idea was also adopted by Chao and Zhou [2] to
derive bounds of the optimal base-stock levels for the Clark–
Scarf model. However, the addition of expedition option in
each stage makes the construction and derivation of g(y) and
ḡ(y) more complex and challenging here.

Since sE
1 is known in a closed form, we shall only develop

bounds for sE
i , i ≥ 2, and for sR

i , i ≥ 1. Let cR
0 = 0.

Note that, for i = 1, 2, . . . , N ,
∑i

j=1

(
cE
j − cR

j−1

)
≥ 0 and∑i

j=1 αi−j (cE
j −cR

j−1) ≥ 0, since cE
j −cR

j = (1−α)kE
j +hj >

0 and αcE
j − cR

j = (1 − α)kR
j + αhj ≥ 0.

Before we present the bounds, we give the following result
that specifies conditions under which stage i would never use
the expedited shipping mode.

PROPOSITION 5: For i = 1, . . . , N ,
(i) if cE

i +∑i−1
j=1(αcE

j −cR
j ) > H1 +p, then sE

i = −∞; (ii)

if
∑i

j=1(αcE
j −cR

j ) > H1 +p, then sR
j = −∞ and sE

j = −∞
for j ≥ i;

Therefore, in the following derivation of bounds, we
assume cE

i +∑i−1
j=1(αcE

j − cR
j ) ≤ H1 + p and

∑i
j=1(αcE

j −
cR
j ) ≤ H1 + p for all i. We first present three sets of

newsvendor-type lower bounds.

THEOREM 1: For i = 1, . . . , N , the lower bounds for sE
i

and sR
i are, respectively,

sE1
i = max

{
F̄−1

(∑i
j=1

(
cE
j − cR

j−1

)
H1 + p

)
,

F̄−1

(∑i
j=1 αi−j

(
cE
j − cR

j−1

)
αi−1(H1 + p)

)}
, (12)

and

sR1
i = max

{
F̄−1

(−cR
i +∑i

j=1

(
cE
j − cR

j−1

)
H1 + p

)
,

F̄−1

(−cR
i +∑i

j=1 αi−j+1
(
cE
j − cR

j−1

)
αi(H1 + p)

)}
. (13)

As previously noted, the ratio within each pair of large
parentheses is clearly non-negative. If the ratio is greater than
1, the resulting lower bound is trivial, i.e., it is −∞.
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We illustrate the proof of Theorem 1 using the first term in
the brackets of sR1

1 and sE1
2 . Applying the idea explained at the

outset of this section, we need to find upper bound functions
ḡ(y) for

(
GR

1 (y)
)′

and
(
GE

2 (y)
)′

. Note that(
GR

1 (y)
)′

= −cR
1 +(GE

1 (y)
)′

1
(
y < sE

1

)+αE
[(

GE
1

)′ (
(y − D)∨sE

1

)]
≤ −cR

1 + (GE
1 (y)

)′
1
(
y < sE

1

)+ (GE
1

)′ (
y ∨ sE

1

)
= −cR

1 + (GE
1 (y)

)′
= −cR

1 + cE
1 − (H1 + p)P (D > y)

= ḡ(y), (14)

where the inequality follows from 0 ≤ α < 1 and the
convexity of GE

1 (y). Hence, the solution of ḡ(y) = 0 or
F̄−1

((−cR
1 + cE

1

)
/(H1 + p)

)
is a lower bound for sR

1 .
Now consider sE

2 . We have(
GE

2 (y)
)′ = cE

2 + (GR
1

(
y∧sR

1

))′
≤ cE

2 + (GR
1

(
y∧sR

1

))′ + (GR
1

(
y ∨ sR

1

))′
≤ cE

2 − cR
1 + cE

1 − (H1 + p)P (D > y)

=
2∑

j=1

(
cE
j − cR

j−1

)− (H1 + p)P (D > y)

= ḡ(y),

where the first inequality follows from (GR
1 (y ∨ sR

1 ))′ ≥ 0
and the second inequality follows from (14). Thus, the solu-
tion of ḡ(y) = 0 or F̄−1(

∑2
j=1(c

E
j − cR

j−1)/(H1 + p)) is
a lower bound for sE

2 . The complete proof can be done by
mathematical induction, which we provide in the Appendix.

Before we provide some intuition behind the derivation of
this set of lower bounds, we first define (GE

i (y ∧ sE
i ))′ and

(GR
i (y ∧ sR

i ))′ as the marginal induced penalty cost within
and between stages respectively; and E[(GE

i )′((y−D)∨sE
i )]

as the expected marginal cost from the next period due to the
order of the current period. To derive sR1

i , we ignore one
period demand to amplify the marginal cost increment of the
regular order of this period to the next, so that stage i tends
to keep a lower regular base-stock level. For sE1

i , we essen-
tially impose an additional marginal cost (GR

i−1(y∨sR
i−1))

′ on
the expedited order, and stage i therefore would set a lower
expedited base-stock level.

On the basis of Theorem 1, we can develop another set of
lower bounds. We first define, for i = 1, . . . , N ,

Ai,j = −cE
i + Bi−1,j , j = 1, . . . , i − 1, (15)

Bi,j = cR
i − αA−

i,j , j = 1, . . . , i, (16)

in which Ai,i = 0 and A−
i,j = max{−Ai,j , 0}.

The computation of Ai,j and Bi,j is as follows. First,
A1,1 = 0 and B1,1 is computed from (16). Inductively, sup-
pose Ai,j and Bi,j have been computed for a given i and all
j ≤ i. Then, using Bi,j and (15) we can compute Ai+1,j

for j = 1, . . . , i, and Ai+1,i+1 = 0. And using (16), we can
compute Bi+1,j for j = 1, . . . , i + 1.

THEOREM 2: If
∑i

j=1 αi−j
(
cE
j − cR

j−1

)
≤ αi−1(H1 +

p), for i = 2, . . . , N , then,

sE2
i = max

{
F−1

k

(
Ai,i−k+1∑i−k+1

j=1 αi−j
(
cE
j − cR

j−1

)), k = 2, . . . , i

}
(17)

is a lower bound for sE
i , and for i = 1, . . . , N ,

sR2
i = max

{
F−1

k+1

(
Bi,i−k+1∑i−k+1

j=1 αi−j+1
(
cE
j − cR

j−1

)) ,

k = 1, . . . , i

}
(18)

is a lower bound for sR
i .

Note that the terms in the brackets of (17) and (18) actually
present a sequence of lower bounds for each stage i. To obtain
this sequence of lower bounds for sR

i , we drop GE
j (y ∧ sE

j )

sequentially from j = i to j = 1 in (6). In other words, we
use a smaller induced penalty cost from downstream stage
which results in a lower base-stock level. For sE2

i , we use the
same idea as that for deriving sE1

i . As for the ratios in each
pair of parentheses, we can show they are always less than 1.
If the ratio is negative, the resulting lower bound is −∞.

For each stage i, by ignoring the induced penalty cost
GE

i (y ∧ sE
i ) within that stage and increasing the marginal

cost increment from the next period due to the regular order
of the current period, stage i, therefore, would set lower base-
stock levels. This idea is applied to derive the following set
of lower bounds. Recall that cR

i ≤ αcE
i for all i, so the ratios

in the next theorem are always between 0 and 1.

THEOREM 3: For i = 2, . . . , N , if cR
i−1 − cE

i ≥ 0, then

sE3
i = sE

i−1 + F−1

(
cR
i−1 − cE

i

αcE
i−1

)
(19)

is a lower bound for sE
i . And for i = 1, . . . , N ,

sR3
i = sE

i + F−1

(
cR
i

αcE
i

)
(20)

is a lower bound for sR
i .
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Proposition 3 shows that if cE
i ≤ cR

i−1, a lower bound
for sE

i is sE
i−1. Theorem 3 provides a sharper lower bound

for sE
i under this condition. Although this bound depends

on the optimal sE
i−1 (and sE

i for the lower bound of sR
i ), we

can use the largest available lower bounds for sE
i−1 and sE

i

to obtain newsvendor-type bounds for sE3
i and sR3

i . Further-
more, note from Proposition 3 that, unless cE

i ≤ cR
i−1, the

lower bounds for sE
i cannot be written as the lower bound

of the optimal expedited base-stock level of its downstream
plus a non-negative number. However, from Proposition 1,
the lower bound of sR

i can always be written as the sum of sE
i

and a non-negative number.
We have presented three sets of lower bounds for the opti-

mal expedited and regular base-stock levels. These lower
bounds do not have a dominating relationship. That is,
any lower bound can be a better one, depending on the
problem instance. We will provide some discussion on the
performance of different bounds in the numerical studies
section.

We next present three sets of newsvendor-type upper
bounds by constructing different lower bound functions for
(GE

i (y))′ and (GR
i (y))′. The following set of upper bounds is

developed by using a smaller marginal induced penalty cost
within stage (GE

i (y ∧ sE
i ))′.

THEOREM 4: For i = 1, . . . , N , the upper bounds for sE
i

and sR
i are, respectively:

s̄E1
i = F̄−1

i

(
cE
i − cR

i−1 + αcE
i−1

H1 + p −∑i−2
j=1

(
αcE

j − cR
j

)) ; (21)

and

s̄R1
i = F̄−1

i+1

 αcE
i − cR

i

α

(
H1 + p −∑i−1

j=1

(
αcE

j − cR
j

))
 . (22)

Note that our assumption on cost parameters following
Proposition 5 guarantees that the ratios in the newsvendor
bounds above are between 0 and 1.

Again, we use s̄R1
1 and s̄E1

2 to demonstrate the derivation of
the upper bounds. To derive s̄R1

1 , we first note the following
inequalities.

(
GR

1 (y)
)′ = −cR

1 + (GE
1 (y)

)′
1
(
y ≤ sE

1

)
+ αE

[(
GE

1 (y − D)
)′

1
(
y − D≥sE

1

)]
≥ −cR

1 + E
[(

GE
1 (y − D)

)′
1
(
y − D < sE

1

)]
+ αE

[(
GE

1 (y − D)
)′

1
(
y − D ≥ sE

1

)]

= −cR
1 + cE

1 P
(
y − D < sE

1

)
− (H1 + p)P

(
D(2) > y, y − D < sE

1

)
+ αcE

1 P
(
y − D ≥ sE

1

)
− α(H1 + p)P

(
D(2) > y, y − D ≥ sE

1

)
≥ −cR

1 + αcE
1 − (H1 + p)P (D(2) > y), (23)

where the first inequality follows from that, by the convexity
of GE

1 (y),(
GE

1 (y)
)′

1
(
y ≤ sE

1

) ≥ E
[(

GE
1 (y − D)

)′
1
(
y − D < sE

1

)]
.

Clearly, setting Eqn. (23) to 0 gives an upper bound of
sR

1 . But we can obtain a better bound by observing that
(GE

1 (y))′1(y ≤ sE
1 ) = 0 for y ≥ sE

1 . Hence, as sR
1 ≥ sE

1
from Proposition 1, we have

− cR
1 + αE

[(
GE

1 (y − D)
)′

1
(
y − D ≥ sE

1

)] ≥ −cR
1 + αcE

1

− α(H1 + p)P (D(2) > y) = g(y),

and solving g(y) = 0 we obtain s̄R1
1 . To derive s̄E1

2 , we apply
the inequality (23),(
GE

2 (y)
)′ = cE

2 + (GR
1 (y)

)′
1
(
y < sR

i

)
≥ cE

2 +
[
−cR

1 + αcE
1 − (H1 + p)P (D(2) > y)

]
1
(
y < sR

1

)
≥ cE

2 −
(

H1 + p − (αcE
1 − cR

1

))
P(D(2) > y) = g(y),

where the second inequality follows from −cR
1 + αcE

1 ≥ 0.
Thus, the solution of g(y) = 0 is an upper bound of sE

2 , which
is s̄E1

2 .
The second set of upper bounds is obtained by replac-

ing E[(GE
i (y − D))′1(y − D ≥ sE

i )] in (6) for stage i by
E[(GE

i (y − D))′], i.e., reducing the expected marginal cost
from the next period due to the current period’s regular order.

THEOREM 5: For i = 2, . . . , N ,

s̄E2
i = s̄R2

i−1, (24)

is an upper bound for sE
i , and, let sR

0 = 0, for i = 1, . . . , N ,

s̄R2
i = sR

i−1

+ F̄−1

 αcE
i − cR

i

min

{
αcE

i , α

(
H1 + p −∑i−1

j=1

(
αcE

j − cR
j

))}


(25)

is an upper bound for sR
i .
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Again, to compute (25), the available smallest upper bound
of sR

i−1 is used instead of the optimal one. In particular,
repetitive applications of Theorem 5 yield the following
bounds.

COROLLARY 1: One set of upper bounds for sE
i and sR

i

is

s̄E
i =

i−1∑
�=1

F̄−1

 αcE
� − cR

�

min

{
αcE

� , α

(
H1 + p −∑�−1

j=1

(
αcE

j − cR
j

))}
 ,

s̄R
i =

i∑
�=1

F̄−1

 αcE
� − cR

�

min

{
αcE

� , α

(
H1 + p −∑�−1

j=1

(
αcE

j − cR
j

))}
 .

We now develop another set of upper bounds for the opti-
mal base-stock levels by replacing the marginal induced
penalty cost between stages (GR

i (y ∧ sR
i ))′ with a smaller

one (see details in the Appendix).
Let Ci = cE

i − cR
i−1 − C−

i−1, i = 1, . . . , N , with C0 = 0.

THEOREM 6: For i = 1, . . . , N ,

s̄E3
i = min

{
F̄−1

(
Ci

H1 + p

)
,

F̄−1
2

(
cE
i − cR

i−1 + min{αCi−1, Ci−1}
H1 + p

)}
(26)

is an upper bound for sE
i , and

s̄R3
i = F̄−1

2

(−cR
i + αCi

α(H1 + p)

)
(27)

is an upper bound for sR
i .

As in the case of lower bounds, none of the upper bounds
developed above dominates the others. That is, any one of
these upper bounds can be sharper, depending on the problem
instance.

5. GENERAL LEADTIMES

In the previous sections, the leadtimes for regular and expe-
dited ordering are assumed to be 1 and 0, respectively. In
this section, we extend the results to the case where lead-
times for regular and expedited ordering are lr

i = li + 1 and
le
i = li , respectively, with li being an arbitrary non-negative

integer. Clearly, this represents an extension of Fukuda’s
model [10] to serial multi-echelon systems. This extension
can be obtained from the model in Section 3 by inserting
stages to represent units of leadtime. Specifically, we can
represent each of the li units of leadtime as an auxiliary
stage with only regular shipping mode, zero ordering cost,
and zero echelon holding cost. Under such a cost structure,
once an expedited or a regular shipping is initiated at a non-
auxiliary stage, there is no incentive to keep it in the auxiliary
stages. Mathematically, this is equivalent to setting the opti-
mal echelon base-stock levels for these auxiliary stages at
infinity.

The bottom–up recursive algorithm for computing the opti-
mal echelon base-stock levels for the more general leadtime
case is as follows. Redefine, for i = 1, . . . , N ,

cE
i = kE

i − kR
i + αli hi ,

cR
i = αkE

i − kR
i .

Let

GE
1 (y) = cE

1 y + αl1(H1 + p)E[(y − D(l1 + 1))−],
and let sE

1 be the minimizer of GE
1 (y). For i = 1, . . . , N ,

compute

GR
i (y) = −cR

i y + GE
i

(
y ∧ sE

i

)+ αE
[
GE

i

(
(y − D) ∨ sE

i

)]
,

(28)

sR
i = arg min

y
GR

i (y), (29)

and for i = 1, . . . , N − 1,

GE
i+1(y) = cE

i+1y + αli+1E
[
GR

i

(
(y − D(li+1)) ∧ sR

i

)]
,

(30)

sE
i+1 = arg min

y
GE

i+1(y). (31)

The algorithm above can be derived from the following
argument. First, note that the results of the previous sections
can be easily extended to the case where some stages only
have one transportation mode available. Recall that for the
Clark–Scarf model with only one transportation mode (sup-
pose the unit ordering cost is kR

i , i = 1, . . . , N ) and leadtimes
between stages being 1, the optimal echelon base-stock lev-
els are computed as follows (for a detailed derivation see
Ref. [2]).

G1(y) = (1 − α)kR
1 + αh1y + α(H1 + p)E[(y − D(2))−],
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and s∗
1 = arg min G1(y); for i > 1,

Gi
i−1(y) = Gi−1

(
y ∧ s∗

i−1

)
Gi(y) = (1 − α)kR

i + αhiy + αE
[
Gi

i−1(y − D)
]

,

s∗
i = arg min Gi(y),

in which s∗
i is the optimal base-stock level. Therefore, if, for

example, stage i only has one transportation mode with lead-
time 1, whereas stages i−1 and i+1 have two transportation
modes with leadtimes 0 and 1, then the optimal echelon base-
stock level s∗

i for stage i is obtained by optimizing Gi , where
Gi is calculated as above by taking Gi−1 as GR

i−1 of the previ-
ous sections and s∗

i−1 taking value sR
i−1; GE

i+1(y) is calculated
from Eq. (3), taking Gi as GR

i and sR
i as s∗

i .
We now illustrate how to apply this idea to derive Eqs.

(28)–(31) for a serial system with le
i = li and lr

i = li + 1,
i = 1, . . . , N . Insert l1 stages before the original stage 1,
each of which only has the regular transportation mode with
leadtime 1. We call these l1 stages added stage 1, added
stage 2,. . ., added stage l1 from downstream to upstream.
The added stage 1 faces customer demand and is allocated a
shortage cost p and echelon holding cost 0. We denote the
added stage i by a subscript (a, i). Therefore, G(a,1)(y) =
α(H1 + p)E[(y − D(2))−] with a minimizer being infinity,
and as a result we have G2

(a,1)(y) = G(a,1)(y) and G(a,2)(y) =
αE[G2

(a,1)(y − D)] = α2(H1 + p)E[(y − D(3))−]. This
process continues until the original stage 1 is reached and
we obtain

GE
1 (y) = cE

1 y + G(a,l1)(y)

= cE
1 y + αl1(H1 + p)E

[
(y − D(l1 + 1))−

]
,

where the first equality is due to zero leadtime for the expe-
dited shipping at stage 1 and the minimizer of the added
stage l1 is infinity. It should be noted that we have αl1h1 in cE

1
since the holding cost at original stage 1 will incur l1 periods
later when the order arrives at the added auxiliary stage 1.
Applying algorithm (3) for the original stage 1, we obtain

GR
1 (y) = −cR

1 y + GE
1 (y ∧ sE

1 ) + αE
[
GE

1

(
(y − D) ∨ sE

1

)]
.

This process continues and we obtain that, for stage i + 1,

GE
i+1(y) = cE

i+1y + αli+1E
[
GR

i ((y − D(li+1)) ∧ sR
i

)]
,

in which GR
i (y) is computed from the added li stage before

stage i, and GR
i+1 remains to be given by Eq. (3).

On the basis of the above algorithm, it is clear that Propo-
sition 1 (ii) and Propositions 2–4 in Section 3 continue to
hold under this more general leadtime setting. Proposition 1
(i) does not hold in general because when applying the anal-
ogous argument as the proof of Proposition 1, sE

i may be

greater than sR
i−1 since the solution of cE

i + E[(GR
i−1)

′((y −
D(li))∧sR

i−1)] = 0 may be greater than sR
i−1. (In the previous

analysis, however, D(li) = 0.)
We now demonstrate the changes for each set of lower

and upper bounds under this more general setting of lead-
times. We omit the detailed derivation because it is analogous
to the analysis of the previous sections with the algorithm
(28)–(31). Let L(i,j) =∑j

k=i lk .
The first set of lower bounds with general leadtimes is, for

i = 1, 2, ..., N

sE1
i = max

F̄−1
L(1,i)+1

cE
i +∑i−1

j=1 αL(j+1,i)

(
cE
j − cR

j

)
αL(1,i) (H1 + p)

 ,

F̄−1
L(1,i)+1

cE
i +∑i−1

j=1 αL(j+1,i)+i−j
(
cE
j − cR

j

)
αL(1,i)+i−1(H1 + p)

 ,

and

sR1
i = max

F̄−1
L(1,i)+1

∑i
j=1 αL(j+1,i)

(
cE
j − cR

j

)
αL(1,i) (H1 + p)

 ,

F̄−1
L(1,i)+1

∑i
j=1 αL(j+1,i)+i−j+1

(
cE
j − cR

j

)
αL(1,i)+i (H1 + p)

 ,

where it is clear that the ratio within each pair of parentheses
is non-negative from the definition of cE

i and cR
i . Again, if the

ratio is larger than 1, from our previous definition, the lower
bound is −∞.

To generalize the second set of lower bounds presented in
Theorems 2, we first need to redefine for i = 1, . . . , N ,

Ai,j = −cE
i + αli Bi−1,j , j = 1, . . . , i − 1,

Bi,j = cR
i − αA−

i,j , j = 1, . . . , i,

in which Ai,i = 0 and A−
i,j = max{−Ai,j , 0}. If∑i

j=1 αL(j+1,i)+i−j (cE
j − cR

j−1) ≤ αL(1,i)+i−1(H1 + p), for
i = 2, . . . , N , then,

sE2
i = max

{
F−1

L(1,i)+k

(
Ai,i−k+1∑i−k+1

j=1 αL(j+1,i)+i−j
(
cE
j − cR

j−1

)) ,

k = 2, . . . , i

}
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is a lower bound for sE
i , and for i = 1, . . . , N ,

sR2
i = max

{
F−1

L(1,i)+k+1

(
Bi,i−k+1∑i−k+1

j=1 αL(j+1,i)+i−j+1
(
cE
j − cR

j−1

)),

k = 1, . . . , i

}
The last set of lower bounds here is, for i = 1, . . . , N ,

sE3
i = sE

i−1 + F−1
li+1

(
αli cR

i−1 − cE
i

αli+1cE
i−1

)
.

The expression of sR3
i is the same as (20) because the lead-

time difference between the expedited and regular shipping
is still 1.

The upper bounds with general leadtimes need to be mod-
ified more carefully because we can no longer apply part (i)
of Proposition 1 as we did in the previous derivation.

Consider the first set of upper bounds. As sE
i may not be less

than sR
i−1, the upper bound for sE

i becomes, for i = 1, 2, . . . , N

s̄E1
i = F̄−1

L(1,i)+i

(
cE
i

αL(1,i) (H1 + p) −∑i−1
j=1 αL(j ,i)

(
αcE

j − cR
j

)) .

For the upper bound s̄R1
i , as sE

i ≤ sR
i is still true, we have

s̄R1
i =

F̄−1
L(1,i)+i+1

(
αcE

i − cR
i

α
(
αL(1,i) (H1 + p) −∑i−1

j=1 αL(j ,i)
(
αcE

j − cR
j

))) .

For the second set of the upper bounds, s̄E2
i is no longer

valid. But we still have s̄R2
i , which is modified as follows.

s̄R2
i = sR

i−1

+ F̄−1
li+1

 αcE
i − cR

i

α

(
αL(1,i) (H1 + p) −∑i−1

j=1 αL(j ,i)
(
αcE

j − cR
j

))
 .

Finally, for the last set of upper bounds, redefine Ci =
cE
i − αli (cR

i−1 − C−
i−1), i = 1, . . . , N , with C0 = 0 and

C−
i−1 = max{−Ci−1, 0}. For i = 1, . . . , N ,

s̄E3
i = F̄−1

L(1,i)+1

(
Ci

αL(1,i) (H1 + p)

)
,

and

s̄R3
i = F̄−1

L(1,i)+2

( −cR
i + αCi

αL(1,i)+1(H1 + p)

)
.

Note that we no longer have the second term in the brackets
of (26) for the last set of upper bounds.

6. HEURISTICS AND NUMERICAL STUDIES

In this section, we develop a simple heuristic for the opti-
mal echelon base-stock levels based on the lower and upper
bounds obtained in the preceding sections. We also conduct
a numerical study to demonstrate the effectiveness of the
heuristic. We first focus on the case with le

i = 0. For compu-
tational purposes, the demand distribution is assumed to be
discrete in this section.

For i = 1, 2, . . . , N , let

s˜E

i

= max
{
s

Ej

i , j = 1, 2, 3
}

, s˜R

i

= max
{
s

Rj

i , j = 1, 2, 3
}

;

s̃E
i = min

{
s̄

Ej

i , j = 1, 2, 3
}

, s̃R
i = min

{
s̄

Rj

i , j = 1, 2, 3
}

.

It is clear that s˜E

i

≤ sE
i ≤ s̃E

i and s˜R

i

≤ sR
i ≤ s̃R

i , for

i = 1, . . . , N . Furthermore, it follows from Proposition 2
that if cR

i−1 ≤ cE
i , then sE

i ≤ sE
i−1. Hence, in the following, if

s̃E
i > s̃E

i−1, then we set s̃E
i = s̃E

i−1; and if s˜E

i

> s˜E

i−1
, we set

s˜E

i−1
= s˜E

i

.

For i = 1, 2 . . . , N and 0 ≤ β ≤ 1, set

sEh
i =

[
βs˜E

i

+ (1 − β)s̃E
i

]
,

sRh
i =

[
βs˜R

i

+ (1 − β)s̃R
i

]
,

in which [ ] is the round off operator. We choose β = 0.5 as
the heuristic policy. The heuristic policy works in exactly the
same manner as the original top–down echelon base-stock
policy, but sEh

i and sRh
i are used as the echelon base-stock

levels for stage i.
In the following, we conduct a numerical study to test

the effectiveness of the heuristic. We consider a three-stage
N = 3 system. The system parameters for the examples
are p ∈ {30, 60}, hi ∈ {0.1, 1}, kE

i ∈ {4, 10}, kR
i ∈ {2, 6},

for i = 1, 2, 3, and α = 0.95. We present two groups of
numerical examples classified by the demand distributions.

We use the relative error on the optimal system cost
as the measure for the effectiveness of the heuristic. Let
x = (x1, . . . , xN) with xi being the initial echelon inventory
level at stage i. Denote v(x) and v̂(x) as the optimal cost and
the cost of the heuristic policy with a given x, respectively. To
calculate these costs, we use successive approximation with
a planing horizon T = 100, and we observe that the total dis-
counted cost converges in our numerical results. The relative
error of the heuristic is defined as

Error% = max
−200≤xi≤200,i=1,...,N

{
v̂(x) − v(x)

v(x)
× 100%

}
,

in which, to avoid the influence of the initial state on the
performance of the heuristic, we consider a reasonable large
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Figure 1. Performance summary of the heuristic: le
1 = le

2 = le
3 = 0. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]

number of possible combinations of initial echelon inventory
levels, i.e., xi ∈ [−200, 200] for all i. Figure 1 reports the
distribution of errors with respect to the number of instances
for these two groups of examples.

In Group 1, demand follows Poisson distribution with
parameter λ ∈ {5, 10, 50}. By restricting kE

i > kR
i , we gen-

erate 432 instances by different combinations of the system
parameters for each demand rate. The average relative error
among 432 instances for λ = 5 is 0.57% with the maximum
3.06%, for λ = 10 is 0.52% with the maximum 4.28%, and
for λ = 50 is 0.33% with the maximum 1.70%. The aver-
age relative error for all 1296 instances is 0.47%. From these
results, it can be seen that the average performance of the
heuristic gets better when λ increases.

The demand distribution for the second group of numeri-
cal examples is Negative Binomial with four sets of different
mean and variance (30, 40), (30, 120), (6, 8), and (6, 24).
This allows us to observe the impact of demand variance on
the performance of the heuristic. The coefficient of variation
for each set is 0.21, 0.37, 0.47, and 0.82 correspondingly.
Each pair of demand mean and variance with different sys-
tem cost combinations also generates four sets of numerical

examples and each set includes 432 instances. The average
relative error among 432 instances for the first set is 0.37%
with the maximum 2.65%, for the second is 0.42% with the
maximum 3.62%, for the third is 0.48% with the maximum
2.88%, and for the fourth is 0.49% with the maximum 2.64%.
The average relative error for all 1728 instances is 0.44%. We
observe that the average performance of the heuristic is better
with a smaller coefficient of variation. This result is intuitive,
as a deviation from the optimal solution would cause a larger
cost if the demand is more variable.

For the system in which le
i = li and lr

i = li +1 with li > 0,
a heuristic can be similarly derived once we have the bounds
presented in Section 5. To see how the resulting heuristic
(β = 0.5) performs, we test the preceding two groups of
examples except that the leadtimes are now le

1 = 3, le
2 = 1,

and le
3 = 3 for the expedited orders and lr

i = le
i + 1. When

demand is Poisson, for each of the three sets of instances
differentiated by the demand rate, the average and maximum
errors are (0.56%, 2.11%), (0.42%, 1.57%), and (0.20 %,
1.10%). When demand is Negative Binomial, the average
and maximum errors for each of the four sets of problems are
summarized as: (0.38%, 1.27%); (0.28%, 1.24%); (0.43%,

Figure 2. Performance summary of the heuristic: le
1 = le

3 = 3, le
2 = 1. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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1.44%); and (0.58%, 2.67%). These numerical results show
that the heuristic also works well under this more general
leadtime setting. We report the distribution of errors with
respect to the number of instances in Fig. 2.

We conclude this section with some observations from our
numerical results on the relative performance of different
lower and upper bounds reported in Section 4. We find that,
for lower bounds, in most cases, the first set of lower bound
sE1
i for expedited order and the third set of lower bound sR3

i for
regular order serve as the best lower bounds in our numerical
examples. For instance, among 432 instances of the third set
of Group 2 examples, 432 of s˜E

2
are from sE1

2 and 414 of s˜E

3
are

from sE1
3 ; 324 of s˜R

1
are from sR3

1 , 339 of s˜R

2
are from sR3

2 , and

350 of s˜R

3
are from sR3

3 . With respect to upper bounds, the first

set of upper bound s̄E1
i and the third set of upper bound s̄E3

i

for expedited base-stock levels show a similar performance,
and are better than the second set of upper bound s̄E2

i ; for the
regular base-stock level, the first set of upper bound s̄R1

i is the
most effective one. But in general, no clear pattern seems to
emerge on the impact of system parameters on bounds. We
also test the effectiveness of bounds with different value of
α. We find that when α gets smaller, s̄E3

i and s̄R3
i get better

(closer to the optimal ones), sE3
i becomes worse.

7. CONCLUSION

In this article, we study an infinite-horizon, periodic-
review, serial production/inventory system with expedited
and regular shipping modes available between stages. We
derive structural properties of the optimal policies and
develop newsvendor-type lower and upper bounds for the
optimal echelon base-stock levels. Among the different sets
of lower and upper bounds, some perform better than oth-
ers under different system parameters. These bounds lead
to a simple and effective heuristic for the optimal inven-
tory control policy. Numerical studies show that the heuristic
performs well. We generalize the computational algorithm
and other results to the case where expedited and regular
orders in each stage i have leadtimes li and li + 1, respec-
tively, for an arbitrary non-negative integer li . The bounds
and heuristic policies are given in closed forms in terms of
cumulative demand distribution functions and primitive sys-
tem parameters, hence, they immediately reveal the impact
of the system parameters on the control policies. We believe
that these results shed lights on the structure of the optimal
policies for multi-echelon serial inventory systems with dual
shipping modes, and on their implementability.

APPENDIX

In this appendix, we give the proofs for Propositions 4, 5, and Theorems
1–6. In these proofs, the exchange of expectation and derivative is justified
by Leibniz’s rule.

PROOF OF PROPOSITION 4: In this proof, we denote the density func-
tion of a generic one-period demand by f (·). It follows from the definition
and the convexity of GE

i (y) and GR
i (y) that sE

i is decreasing in cE
i and sR

i

is increasing in cR
i . To show that sR

i is decreasing in cE
i , it suffices to prove

that (GR
i (y))′ is increasing in cE

i . To that end, let (GR
i (y))′ = 0 be written as

g(y, cE
i ) = 0, and let sR

i (cE
i ) be its solution. Recall that g(y, cE

i ) is increasing

in y. Suppose cE
i ≤ cE′

i . If g(y, cE
i ) is increasing in cE

i , then

g
(
sR
i

(
cE′
i

)
, cE

i

) ≤ g
(
sR
i

(
cE′
i

)
, cE′

i

) = 0.

Hence, it follows from g(y, cE
i ) is increasing in y that, sR

i (cE
i ), determined by

g(y, cE
i ) = 0, satisfies sR

i (cE
i ) ≥ sR

i (cE′
i ). This shows that sR

i is decreasing
in cE

i .
Note that

g
(
y, cE

i

) = −cR
i + (

GE
i (y)

)′1(y ≤ sE
i

) + α

∫ y−sE
i

0

(
GE

i (y − t)
)′

dF(t).

Noting (GE
i )′′

y,cE
i

(y) = 1, where (GE
i )′′

y,cE
i

(y) represents the cross derivative

with respective to y and cE
i , we obtain

g′
cE
i

(
y, cE

i

) = 1
(
y < sE

i

)+ (GE
i (y)

)′(1
(
y < sE

i

))′

cE
i

1
(
y < sE

i

)
+ αF

(
y − sE

i

)− α
(
GE

i

(
sE
i

))′
f
(
y − sE

i

)(
sE
i

)′
cE
i

= 1
(
y < sE

i

)+(GE
i (y)

)′(1
(
y < sE

i

))′

cE
i

1
(
y < sE

i

)
+ αF

(
y − sE

i

)
≥ 0,

where the second equality follows from sE
i being the minimizer of GE

i , and
the inequality follows from

(
GE

i (y)
)′ ≤ 0 when y < sE

i , and

(
1
(
y < sE

i

))′

cE
i

≤ 0

because sE
i is decreasing in cE

i . We next show that both sE
i and sR

i are decreas-
ing in cE

j for j < i. Suppose (GE
i (y))′′

y,cE
j

≥ 0 for i, then for i + 1, first take

derivative of GR
i with respect to y,

(
GR

i (y)
)′ = −cR

i + α

∫ y−sE
i

0

(
GE

i (y − ξ)
)′

dF(ξ)

and then take derivative with respect to cE
j ,

(
GR

i (y)
)′′
y,cE

j
= α

∫ y−sE
i

0

(
GE

i (y − ξ)
)′′
y,cE

j
dF (ξ) ≥ 0,

which implies that sR
i is decreasing in cE

j for j < i. For sE
i+1, which is the

solution of (
GE

i+1(y)
)′ = cE

i+1 + (GR
i (y)

)′ = 0

and from the previous analysis, it is clear that(
GE

i+1(y)
)′′
y,cE

j
= (GR

i (y)
)′′
y,cE

j
≥ 0,

which implies that sE
i+1 is decreasing in cE

j for j < i.
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As sE
1 is independent of cR

1 , we first prove sE
2 is increasing in cR

1 . From
Eq. (10), we have (

GE
2 (y)

)′′
y,cR

1
= −1 < 0

which implies that sE
2 is increasing in cR

1 . Now suppose (GE
i (y))′′

y,cR
j

< 0

for j < i, then for sR
i ,

(
GR

i (y)
)′′
y,cR

j
= α

∫ y−sE
i

0

(
GE

i (y − ξ)
)′′
y,cR

j
dF (ξ) < 0

and (
GE

i+1(y)
)′′
y,cR

j
= (GR

i (y)
)′′
y,cR

j
< 0.

Therefore, both sE
i and sR

i are increasing in cR
j for j < i.

The proof of the result that both sE
i and sR

i are increasing in p follows
similar steps and we leave it for interested reader.

PROOF OF PROPOSITION 5: First notice that, if
∑i

j=1(αcE
j − cR

j ) >

H1 + p, then cE
k +∑k−1

j=1(αcE
j − cR

j ) > H1 + p for k ≥ i.
To show part (i), we need to first show that for all i,

(
GE

i (y)
)′ ≥cE

i −
H1 + p −

i−1∑
j=1

(
αcE

j − cR
j

)P(D(i) > y). (32)

If Eq. (32) is valid and if cE
i +∑i−1

j=1(αcE
j − cR

j ) > H1 + p for some i, then

(GE
i (y))′ > 0, and so, sE

i = −∞.
Moreover, from Eq. (32)(

GR
i (y)

)′ = −cR
i + (GE

i (y)
)′1(y ≤ sE

i

)
+ αE

[(
GE

i (y − D)
)′1(y − D ≥ sE

i

)]
≥ −cR

i + E
[(

GE
i (y − D)

)′1(y − D < sE
i

)]
+ αE

[(
GE

i (y − D)
)′1(y − D ≥ sE

i

)]
≥ −cR

i +cE
i P
(
y − D < sE

i

)+ αcE
i P
(
y − D≥sE

i

)
−
(

H1 + p −
i−1∑
j=1

(
αcE

j − cR
j

))
× P

(
D(i + 1) > y, y − D < sE

i

)
− α

(
H1 + p −

i−1∑
j=1

(
αcE

j − cR
j

))
× P

(
D(i + 1) > y, y − D ≥ sE

i

)
≥ −cR

i + αcE
i −

(
H1 + p −

i−1∑
j=1

(
αcE

j − cR
j

))
× P(D(i + 1) > y)

where the first inequality follows from the fact that(
GE

i (y)
)′1(y ≤ sE

i

) ≥ E
[(

GE
i (y − D)

)′1(y − D < sE
i

)]
.

Therefore, if
∑i

j=1(αcE
j − cR

j ) > H1 + p, (GR
i (y))′ > 0 and sR

i = −∞.

Moreover, as
∑i+1

j=1(αcE
j −cR

j ) = αcE
i+1−cR

i+1+
∑i

j=1(αcE
j −cR

j ) > H1+p,

sR
k = −∞ for k ≥ i. And from the prior argument, sE

k = −∞ for k ≥ i.

Now, we prove Eq. (32) by induction. First, for i = 1, Eq. (32) is equality.
Suppose it is true for i. For i + 1, note that(
GE

i+1(y)
)′ = cE

i+1 + (GR
i (y)

)′
1
(
y < sR

i

)
≥ cE

i+1 +
[
−cR

i + αcE
i −

(
H1 + p −

i−1∑
j=1

(
αcE

j − cR
j

))

× P(D(i + 1) > y)

]
1
(
y < sR

i

)
≥ cE

i+1 −
(

H1 + p −
i∑

j=1

(
αcE

j − cR
j

))
P(D(i + 1) > y) (33)

where the first inequality follows from the induction assumption and the
second inequality follows from that −cR

i + αcE
i ≥ 0. So the proof is

completed.

PROOF OF THEOREM 1: Since sE
i and sR

i are the solutions of
(GE

i (y))′ = 0 and (GR
i (y))′ = 0, respectively, to prove the results, it is

sufficient to show that for all i,

(
GE

i (y)
)′ ≤

i∑
j=1

(
cE
j − cR

j−1

)− (H1 + p)P (D > y), (34)

(
GR

i (y)
)′ ≤ −cR

i +
i∑

j=1

(
cE
j − cR

j−1

)− (H1 + p)P (D > y), (35)

and

(
GE

i (y)
)′ ≤

i∑
j=1

αi−j
(
cE
j − cR

j−1

)− αi−1(H1 + p)P (D > y), (36)

(
GR

i (y)
)′ ≤ −cR

i +
i∑

j=1

αi−j+1(cE
j − cR

j−1

)− αi(H1 + p)P (D > y).

(37)

We prove these inequalities by induction. Consider Eqs. (34) and (35)
first. Eq. (34) is clearly true for sE

1 . We have shown Eq. (35) with i = 1 in
Section 3.

Assuming Eqs. (34) and (35) hold for i, we next prove that they hold for
i + 1. First, from Eqs. (1)–(4), an analogous idea as in the proof of GE

2 and
the inductive assumption,(

GE
i+1(y)

)′ = cE
i+1 + (GR

i

(
y ∧ sR

i

))′
≤ cE

i+1 + (GR
i (y)

)′
≤ cE

i+1 − cR
i +

i∑
j=1

(
cE
j − cR

j−1

)− (H1 + p)P (D > y)

=
i+1∑
j=1

(
cE
j − cR

j−1

)− (H1 + p)P (D > y).

We then prove Eq. (35) for i + 1. Note that(
GR

i+1(y)
)′ = −cR

i+1 + (GE
i+1

)′
(y)1

(
y < sE

i+1

)
+ αE

[(
GE

i+1

)′
(y − D)1

(
y − D ≥ sE

i+1

)]
≤ −cR

i+1 + E
[(

GE
i+1

)′
(y)1

(
y < sE

i+1

)]
+ (GE

i+1

)′
(y)1

(
y ≥ sE

i+1

)
≤ −cR

i+1 +
i+1∑
j=1

(
cE
j − cR

j−1

)− (H1 + p)P (D > y),
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where the first inequality follows from the convexity of GE
i+1(y) and

0 ≤ α < 1 and the second inequality is from the inductive assumption.
We proceed to show Eqs. (36) and (37). The inequality Eq. (36) is clearly

true for i = 1. For Eq. (37) and i = 1,

(
GR

1 (y)
)′ = − cR

1 + (GE
1 (y)

)′1(y < sE
1

)+ αE
[(

GE
1

)′(
(y − D) ∨ sE

1

)]
≤ − cR

1 + α
(
GE

1 (y)
)′1(y < sE

1

)+ α
(
GE

1

)′(
y ∨ sE

1

)
= − cR

1 + αcE
1 − α(H1 + p)P (D > y),

where the inequality follows from the convexity of GE
1 .

Assuming Eqs. (36) and (37) hold for i, we prove that they hold for i + 1.
First, for Eq. (36),

(
GE

i+1(y)
)′ ≤ cE

i+1 + (GR
i (y)

)′
≤ cE

i+1 − cR
i +

i∑
j=1

αi−j+1(cE
j − cR

j−1

)
− αi(H1 + p)P (D > y)

=
i+1∑
j=1

αi−j+1(cE
j − cR

j−1

)−αi(H1 + p)P (D>y),

where the second inequality follows from the inductive assumption of Eq.
(37).

We finally prove Eq. (37) for i + 1. Note that

(
GR

i+1(y)
)′ = −cR

i+1 + (GE
i+1

)′
(y)1

(
y < sE

i+1

)
+ αE

[(
GE

i+1

)′
(y − D)1

(
y − D ≥ sE

i+1

)]
≤ −cR

i+1 + α
(
GE

i+1

)′
(y)1

(
y < sE

i+1

)
+ αE

[(
GE

i+1

)′
(y − D)1

(
y − D ≥ sE

i+1

)]
≤ −cR

i+1 + α
(
GE

i+1

)′
(y)1

(
y < sE

i+1

)
+ α

(
GE

i+1

)′
(y)1

(
y ≥ sE

i+1

)
≤ −cR

i+1 +
( i+1∑

j=1

αi−j+2(cE
j − cR

j−1

))
− αi+1(H1 + p)P (D > y),

where the inequalities again follow from the convexity of GE
i+1 and

0 ≤ α < 1. Hence, the proof is completed.

PROOF OF THEOREM 2: For Eqs. (17) and (18), we need to show for
i = 2, . . . , N ,

(
GE

i (y)
)′ ≤ −Ai,i−k+1 +

i−k+1∑
j=1

αi−j
(
cE
j − cR

j−1

)
P(D(k) ≤ y),

k = 2, . . . , i, (38)

and i = 1, . . . , N ,

(
GR

i (y)
)′ ≤ −Bi,i−k+1

+
i−k+1∑
j=1

αi−j+1(cE
j − cR

j−1

)
P(D(k + 1) ≤ y), k = 1, . . . , i. (39)

For i = 1, . . . , N , from Theorem 1,

(
GR

i (y)
)′ = −cR

i + (GE
i (y)

)′1(y < sE
i

)
+ αE

[(
GE

i

)′
(y − D)1

(
y − D ≥ sE

i

)]
≤ −cR

i + αE
[(

GE
i

)′
(y − D)1

(
y − D ≥ sE

i

)]
≤ −cR

i + α

[ i∑
j=1

αi−j
(
cE
j − cR

j−1

)
P
(
y − D ≥ sE

i

)
− αi−1(H1 + p)P

(
D(2) > y, y − D ≥ sE

i

)]

≤ −cR
i + α

[ i∑
j=1

αi−j
(
cE
j − cR

j−1

)
P
(
y − D ≥ sE

i

)

−
i∑

j=1

αi−j
(
cE
j − cR

j−1

)
P
(
D(2) > y, y − D ≥ sE

i

)]

= −cR
i + α

[ i∑
j=1

αi−j
(
cE
j − cR

j−1

)
P
(
y − D ≥ sE

i , D(2) ≤ y
)]

≤ −cR
i +

i∑
j=1

αi−j+1(cE
j − cR

j−1

)
P(D(2) ≤ y)

= −Bi,i +
i∑

j=1

αi−j+1(cE
j − cR

j−1

)
P(D(2) ≤ y),

where the third inequality follows from the assumption that
∑i

j=1 αi−j (cE
j −

cR
j−1) ≤ αi−1(H1 + p). This validates the case k = 1 for Eq. 39. The

derivation above implies that

(
GE

i+1(y)
)′ = cE

i+1 + (GR
i (y)

)′1(y < sR
i

)
≤ cE

i+1 + (GR
i (y)

)′
≤ cE

i+1 − cR
i +

i∑
j=1

αi−j+1(cE
j − cR

j−1

)
P(D(2) ≤ y)

≤ −Ai+1,i +
i∑

j=1

αi−j+1(cE
j − cR

j−1

)
P(D(2) ≤ y).

This proves the case for k = 2 of Eq. (38).
On the basis of these, suppose Eq. (38) holds for some k = j , then for

Eq. (39),

(
GR

i (y)
)′ ≤ −cR

i + αE
[(

GE
i

)′
(y − D)1

(
y − D ≥ sE

i

)]
≤ −cR

i +αE

−Ai,i−j+1P
(
y − D ≥ sE

i

)

+
i−j+1∑

l=1

αi−l
(
cE
l −cR

l−1

)
P
(
D(j+1) ≤ y, y − D≥sE

i

)
≤ −Bi,i−j+1+

i−j+1∑
l=1

αi−l+1(cE
l −cR

l−1

)
P(D(j + 1)≤y),
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thus Eq. (39) holds for k = j + 1. Meanwhile,(
GE

i+1(y)
)′ = cE

i+1 + (GR
i (y)

)′1(y < sR
i

)
≤ cE

i+1 + (GR
i (y)

)′
≤ cE

i+1 − cR
i + αA−

i,i−j+1

+
i∑

l=1

αi−l+1(cE
l − cR

l−1

)
P(D(j + 1) ≤ y)

= −Ai+1,i−j+1 +
i−j+1∑

l=1

αi−l+1(cE
l − cR

l−1

)
P(D(j + 1) ≤ y),

which verifies that Eq. (38) holds for k = j + 1. So, we complete the
induction proof.

PROOF OF THEOREM 3: It suffices to show that for i = 1, 2, . . . , N ,(
GE

i (y)
)′ ≤ cE

i − cR
i−1 + αcE

i−1P
(
D ≤ y − sE

i−1

)
, (40)

and

(
GR

i (y)
)′ ≤ −cR

i + αcE
i P
(
D ≤ y − sE

i

)
. (41)

For Eq. (40), note that(
GE

i (y)
)′ = cE

i + (GR
i−1(y)

)′1(y < sR
i−1

)
≤ cE

i + (GR
i−1(y)

)′
≤ cE

i − cR
i−1 + αE

[(
GE

i−1(y − D)
)′1(y − D ≥ sE

i−1

)]
≤ cE

i − cR
i−1 + αcE

i−1P
(
y − D ≥ sE

i−1

)
where the last inequality follows from that (GE

i−1(y))′ ≤ cE
i−1. The

inequality Eq. (41) follows from

(
GR

i (y)
)′ ≤ −cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sE
i

)]
≤ −cR

i + αcE
i P
(
y − D ≥ sE

i

)
.

Therefore, the theorem is proved.

PROOF OF THEOREM 4: Recall the inequality Eq. (32). As sE
i ≤ sR

i−1,
the solution of

cE
i +
−cR

i−1 + αcE
i−1 −

H1 + p −
i−2∑
j=1

(
αcE

j − cR
j

)P(D(i) > y)

 = 0

must be an upper bound of sE
i , i.e.,

s̄E1
i = F̄−1

i

 cE
i − cR

i−1 + αcE
i−1

H1 + p −∑i−2
j=1

(
αcE

j − cR
j

)
 ≥ sE

i .

To see this, note that if s̄E1
i < sR

i−1 then by Eq. (33), we have on y ≤ sR
i−1,

(
GE

i (y)
)′ ≥ cE

i

+
−cR

i−1 + αcE
i−1 −

H1 + p −
i−2∑
j=1

(
αcE

j − cR
j

)P(D(i) > y)

 ,

hence, (GE
i (s̄E1

i ))′ ≥ 0, and it implies s̄E1
i ≥ sE

i ; On the other hand, if
s̄E1
i ≥ sR

i−1, then the result holds automatically because sE
i ≤ sR

i−1.
We next show Eq. (22). Note that (GE

i (y))′1(y ≤ sE
i ) = 0 on y ≥ sE

i .
Hence, as sR

i ≥ sE
i and for y ≥ sE

i , from Eq. (32),

(
GR

i (y)
)′ = −cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sE
i

)]
≥ −cR

i + αcE
i − α

H1 + p −
i−1∑
j=1

(
αcE

j − cR
j

)P(D(i + 1) > y),

(42)

which implies Eq. (22). To verify Eq. (22) is indeed an upper bound for sR
i ,

we still need to show it is greater than or equal to sE
i . This is true, since plug-

ging y = sE
i in Eq. (42) shows that the right hand side is negative, implying

that Eq. (22) is at least as large as sE
i .

PROOF OF THEOREM 5: The validity of Eq. (24) follows from
Proposition 1. For Eq. (25), note that(
E
[
GE

i (y − D)
])′ = cE

i + E
[(

GR
i−1(y − D)

)′1(y − D < sR
i−1

)]
≥ cE

i +E

−cR
i−1 + αcE

i−1 −
H1 + p −

i−2∑
j=1

(
αcE

j − cR
j

) 1(D(i) > y)


×1
(
y − D < sR

i−1

)
≥ cE

i + E

−
H1 + p −

i−1∑
j=1

(
αcE

j − cR
j

) 1(D(i) > y)


×1
(
y − D < sR

i−1

)
≥ cE

i −
H1 + p −

i−1∑
j=1

(
αcE

j − cR
j

)P
(
D > y − sR

i−1

)
,

where the first inequality follows from Eq. (42), the second one follows from
−cR

i−1 + αcE
i−1 ≥ 0 and the last one from H1 + p −∑i−1

j=1(αcE
j − cR

j ) ≥ 0.

Moreover, as sR
i ≥ sE

i and for y ≥ sE
i ,

(GR
i (y))′ = −cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sE
i

)]
≥ −cR

i + αE
[(

GE
i (y − D)

)′]
≥ −cR

i + αcE
i − α

H1 + p −
i−1∑
j=1

(
αcE

j − cR
j

)P
(
D>y − sR

i−1

)
,

(43)

which implies the second term in the brackets of Eq. (25). It can be shown
that the solution of Eq. (43) is greater than or equal to sE

i since plugging
y = sE

i in the equations above shows that the right hand side of Eq. (43) is
negative. For the first term in Eq. (25), note that for y > sE

i ,(
GR

i (y)
)′ = −cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sE
i

)]
≥ −cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sR
i−1

)]
≥ −cR

i + αcE
i P
(
y − D ≥ sR

i−1

)
= −cR

i + αcE
i − αcE

i P
(
y − D < sR

i−1

)
,

where the first inequality follows from that (GE
i (y))′ ≤ 0 for y ≤ sE

i and
sE
i ≤ sR

i−1 and the second inequality follows from the definition of GE
i (y)

for y > sR
i−1. Therefore, Eq. (25) is valid.
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PROOF OF THEOREM 6: We first show that, for i = 1, . . . , N ,(
GE

i (y)
)′ ≥ Ci − (H1 + p)P (D > y). (44)

This implies the first part of Eq. (26).
As sR

i ≥ sE
i , we have on y ≥ sE

i ,

(
GR

i (y)
)′ = −cR

i + (GE
i (y)

)′1(y ≤ sE
i

)
+ αE

[(
GE

i (y − D)
)′1(y − D ≥ sE

i

)]
= −cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sE
i

)]
≥ −cR

i + αE
[(

GE
i (y − D)

)′]
≥ −cR

i + αCi − α(H1 + p)P (D(2) > y),

which implies Eq. (27). To show that Eq. (27) is greater than or equal to
sE
i , plugging y = sE

i in the equation above shows that the right hand side is
negative and we obtain the desired result.

We prove Eq. (44) by induction. The case of i = 1 is similar to that of
Theorem 3 so we skip it here. Suppose it is true for i, and we proceed to
prove i + 1.(
GE

i+1(y)
)′ = cE

i+1 + (GR
i (y)

)′1(y ≤ sR
i

)
= cE

i+1 + (GE
i (y)

)′1(y ≤ sE
i

)
1
(
y ≤ sR

i

)
+
(
−cR

i + αE
[(

GE
i (y − D)

)′1(y − D ≥ sE
i

)])
1
(
y ≤ sR

i

)
≥ cE

i+1 + (Ci − (H1 + p)P (D > y))1
(
y ≤ sE

i

)− cR
i

≥ cE
i+1 − cR

i − C−
i − (H1 + p)P (D > y)

= Ci+1 − (H1 + p)P (D > y)

where the first inequality follows from the inductive assumption and
(GE

i (y − D))′1(y − D ≥ sE
i ) ≥ 0. Moreover, as sE

i+1 ≤ sR
i , we can obtain

another upper bound which is the solution of

cE
i+1 − cR

i + min{αCi , Ci} − (H1 + p)P (D(2) > y) = 0.

This implies the second term in the brackets of Eq. (26). Thus, we complete
the proof.
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