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In this article we consider a class of Cayley graphs that
are generated by certain 3-cycles on the alternating group
An . These graphs are generalizations of the alternat-
ing group graph AGn . We look at the case when the
3-cycles form a “tree-like structure,” and analyze its fault
resiliency. We present a number of structural theorems
and prove that even with linearly many vertices deleted,
the remaining graph has a large connected component
containing almost all vertices. © 2009 Wiley Periodicals, Inc.
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1. INTRODUCTION

A static interconnection network has point-to-point com-
munication links among the processors. In the design of such
a network for parallel computing, one has to decide how to
link these processors. Several classes of graphs have been
suggested for this purpose. The n-cubes formed the first major
class of interconnection networks. The star graph, proposed
by [1], has many advantages over the n-cube such as lower
degree and smaller diameter. Since its introduction, a number
of additional classes have been introduced; the most popular
ones are the alternating group graphs [17], their companion
graphs, the split-stars [7], and further generalizations such as
the (n, k)-star graphs [13] and the arrangement graphs [14].
These interconnection networks have gathered considerable
attention with many papers written on them in a wide range
of areas such as topological properties, broadcasting issues,
fault-tolerant routing, strong connectivity, and vulnerability
issues as well as fault-tolerant Hamiltonian properties.

Fault-tolerance can be especially important for intercon-
nection networks, since computers may fail, creating faults
in the network. To be reliable, the rest of the network should
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stay connected. Obviously, this can only be guaranteed if the
number of faults is smaller than the smallest degree in the
network. When the number of faults is the smallest degree,
a new concept of connectivity is necessary, since the graph
may become disconnected. Thus several types of supercon-
nectivity were introduced and examined for various classes
of graphs in [4,7,9,11,12,16,20], including superconnected-
ness and tightly superconnectedness, where only singletons
can appear in the remaining network, and restricted connec-
tivity, where each remaining component must have a certain
minimum size.

As we increase the number of faults in the graph, it is
desirable that most of the network stays connected, with at
most a few processors separated from the rest, since then the
network will continue to be able to function. Many intercon-
nection networks have been examined in this aspect, when
the number of faults is about twice the smallest degree; see
[4, 5, 8, 10, 21]. One can even go further and ask what hap-
pens when more, even linearly many vertices are deleted.
This was examined for the hypercube in [22] and for certain
Cayley graphs generated by transpositions in [10], and it was
shown that the resulting network will have a large component
containing almost all vertices.

We consider the same questions for a class of graphs
that is a generalization of the alternating group graph. These
graphs are Cayley graphs generated by 3-cycles, introduced
in [6]. We show that they have similar properties, i.e., they
are superconnected and tightly superconnected; moreover,
when linearly many vertices are deleted, the remaining graph
stays connected apart from a few vertices. In Section 2 we
introduce the necessary terminology, in Section 3 we discuss
connectivity and superconnectivity, in Section 4 we consider
deleting roughly twice or three times as many vertices as the
connectivity, and finally in Section 5 we examine the case of
linearly many faults.

2. PRELIMINARIES

We will follow the usual graph terminology, which can
be found in [19]. Let G = (V , E) be a graph with vertex set
V = V(G) and edge set E = E(G). The complete graph Kn

NETWORKS—2010—DOI 10.1002/net



FIG. 1. A connected hypergraph.

is the graph on n vertices in which there is an edge between
any two different vertices. A set of edges is called indepen-
dent if no two of them have a common endpoint. Graph G is
k-regular if the degree of every vertex is k. Deleting a set of
vertices H ⊂ V means removing these vertices and all edges
incident to them. A noncomplete graph G is k-connected if
deleting any k − 1 vertices results in a connected graph. A
k-regular graph is maximally connected if it is k-connected.
A maximally connected k-regular graph is tightly supercon-
nected if deleting any k vertices results in either a connected
graph or a graph with exactly two components, one of which
is a single vertex (or singleton). Note that in the latter case the
deleted vertices are exactly the neighbors of the singleton.

Let � be a finite group, and let � be a set of elements of
� such that the identity of the group does not belong to �.
The Cayley graph �(�) is the directed graph with vertex set
� with an arc directed from u to v if and only if there is an
s ∈ � such that u = vs. The Cayley graph �(�) is strongly
connected if and only if � generates �. A Cayley graph is
always vertex-transitive, so it is maximally arc-connected if
it is connected (see [18]); however, it may not be maximally
connected (see [15]). If whenever u ∈ �, we also have its
inverse u−1 ∈ �, then for every arc, the reverse arc is also in
the graph. So we can treat this Cayley graph as an undirected
graph by replacing each pair of such arcs by an edge.

In this article, we choose the finite group to be the alter-
nating group An, the set of even permutations on [n] :=
{1, 2, . . . , n}, and the generating set � to be a set of 3-cycles.
Thus the vertices of the corresponding Cayley graph An(�)

are the even permutations. To get an undirected Cayley graph,
we will assume that whenever a 3-cycle (abc) is in �, so is
its inverse, (acb). Since (abc), (bca), and (cab) represent the
same permutation, the set {a, b, c} uniquely represents this
3-cycle and its inverse. So we can depict � via a hypergraph
with vertex set [n], where a hyperedge of size 3 corresponds
to each pair of a 3-cycle and its inverse in �.

It is easy to see that the Cayley graph generated by
the 3-cycles in � is connected if and only if its corre-
sponding hypergraph is connected. Since an interconnection
network needs to be connected, we require this hypergraph
to be connected; an example is shown in Figure 1. We
would like to represent such a hypergraph by a graph on [n]
whose edges are obtained by forming a K3 (triangle) among

vertices a, b, c for every hyperedge {a, b, c}. Notice that in
general this procedure may form extra K3’s, e.g., for the
hypergraph in Figure 1 the corresponding graph becomes
the graph shown in Figure 2, in which the K3 formed by ver-
tices 1, 2, and 4 does not correspond to a hyperedge in the
original hypergraph. We will avoid this possibility by consid-
ering a simpler case when this graph has a tree-like structure,
such as the graph shown in Figure 3, which consists of K3’s
on {1, 2, 3}, {1, 2, 4}, . . . , {1, 2, n}. The graph formed by K3’s
corresponding to the 3-cycles of � in this manner will be
called the 3-cycle generating graph of An(�) or simply its
generating graph if it is clear from the context.

The alternating group graph AGn can be viewed as the
Cayley graph generated by the graph in Figure 3 having a
tree-like (in fact, star-like) structure of triangles. Such a gen-
eralization of trees has been studied extensively, first in [2,3].
A k-tree Tk,n with n vertices is defined recursively as follows:
A set of k pairwise adjacent vertices constitutes a k-tree Tk,k

and a k-tree Tk,n+1 is any graph obtained by joining a new
vertex to k pairwise adjacent vertices of a k-tree Tk,n. So the
graph in Figure 3 is a 2-tree. (Note that the star graph is
generated by a 1-tree—i.e., a tree—that is a star; see [1] for
details.) We call a vertex in Tk,n with n ≥ k + 1 the tail if
it is the last vertex added in the recursion (this may not be
uniquely determined just by the picture of Tk,n). Notice that
in a k-tree, no k + 1 vertices can be pairwise adjacent unless
one of those vertices were joined to the other k in one step of
the recursion. Hence when the generating graph is a k-tree, it
uniquely determines �, so with a slight abuse of terminology
we will identify � with the generating graph.

In this article we will consider those Cayley graphs whose
generating graphs are 2-trees, so let � be a 2-tree on n ver-
tices. Clearly, the number of 3-cycles in � is exactly 2n − 4,
so An(�) is (2n − 4)-regular on n!/2 vertices.

It is easy to prove that if two 2-trees are isomorphic, then
the corresponding Cayley graphs will be isomorphic as well;
hence without loss of generality we may assume that ver-
tex n is the tail of the 2-tree. Then for n ≥ 4 the vertices
corresponding to even permutations ending with i induce a
subgraph Hi that is also a Cayley graph generated by a 2-tree
�′, which is obtained by deleting the edges corresponding
to the two 3-cycles in � containing n. Thus we obtain the
following easy result concerning the recursive structure of
An(�):

FIG. 2. A graph that is not a 2-tree.
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FIG. 3. The generating graph for AGn.

Proposition 1. Let An(�) be a Cayley graph generated by
the 2-tree �, and let �′ = � − {n}, n ≥ 4. Then

I. An(�) consists of n vertex-disjoint subgraphs, H1,
H2, . . . , Hn, each isomorphic to An−1(�

′).
II. Hi has (n − 1)!/2 vertices, and it is (2n − 6)-regular for

all i.
III. There are exactly (n−2)! independent edges between Hi

and Hj for all i �= j.
IV. Each vertex in Hi has exactly two neighbors outside Hi

(which are called its outside neighbors); these two out-
side neighbors are in different Hk’s, and there is an edge
between them. Thus every vertex forms a triangle with
its two outside neighbors.

For the rest of this article we assume that the Cayley graph
An(�) has this structure. Notice that Properties III and IV
mean that there are a lot of edges between different Hi’s, and
every vertex has neighbors in two other Hi’s. We can use these
properties when the faults in the graph concentrate in up to
two Hi’s:

Lemma 2. Let G = An(�) be a Cayley graph generated
by a 2-tree �. If we delete vertices in at most two Hi’s in G,
then the resulting graph is connected.

Proof. Assume we are deleting vertices in only Hi and
Hj, and let G′ be the resulting graph. Clearly all the remaining
Hk’s, k �= i, j, belong to the same component of G′. Since
every vertex in Hi has two neighbors not in Hi, one of which
is not in Hj, every remaining vertex in Hi will be adjacent to
a vertex in the remaining Hk’s. The same idea applies to Hj,
so G′ is indeed connected. ■

This lemma will be quite useful in proving our results in
the following sections.

3. CONNECTIVITY AND SUPER CONNECTIVITY

We noted that the Cayley graph An(�) is connected and
vertex-transitive, so it is maximally edge-connected. We will
now prove a stronger connectivity property that is also an
intermediate step to our next result.

Theorem 3. Let G = An(�) be a Cayley graph gen-
erated by a 2-tree � for n ≥ 4. Then G is maximally
connected.

Proof. The proof will be by induction on n. For n = 4,
the graph G is the alternating group graph AG4, shown in
Figure 4. By Proposition 1, AG4 consists of four triangles
H1, H2, H3, H4 and two independent edges between each pair
of triangles. The degree of each vertex is 4, so we must show
that removing at most three vertices will result in a connected
graph. By Lemma 2, if the deleted vertices are in at most two
Hi’s, then the resulting graph is connected. The remaining
possibility is that we delete one vertex from each of three
triangles, leaving three K2’s and a triangle. Since originally
there are two edges between any two triangles, there is an
edge between the complete triangle and every other remain-
ing K2, so the graph is connected, and for n = 4 the theorem
holds.

Assume now that n ≥ 5 and that the claim is true for n−1.
Recall that Hi is the subgraph of G spanned by vertices with
i in the last position for 1 ≤ i ≤ n, and each Hi is (2n − 6)-
regular and is isomorphic to a Cayley graph generated by a
2-tree on n − 1 vertices. Let T be a set of vertices in G such
that |T | = 2n − 5. We must show that G − T is connected.
Let Ti = T ∩ V(Hi) and ti = |Ti|, thus

∑n
i=1 ti = 2n − 5.

If there are at most two Hi’s containing all the deleted
vertices, then G − T is connected by Lemma 2. Otherwise
we must have ti ≤ 2n − 7 for all 1 ≤ i ≤ n, hence Hi − Ti

is connected for all i by the induction hypothesis. There are
(n − 2)! independent edges between Hi and Hj for any i �= j,
and (n − 2)! > 2n − 5 for n ≥ 5, so there is at least one edge

FIG. 4. The alternating group graph AG4.

92 NETWORKS—2010—DOI 10.1002/net



remaining between Hi − Ti and Hj − Tj for any i �= j. Thus
G − T is connected, and our claim is proven. ■

Since G is (2n − 4)-connected, our next step will be to
look at all disconnecting sets in G of size 2n − 4, and show
that they must be neighborhoods of one vertex:

Theorem 4. Let G = An(�) be a Cayley graph generated
by a 2-tree �. Then G is tightly superconnected for n ≥ 5. For
n = 4, if we delete four vertices in AG4, then there are three
possibilities for the remaining graph: (1) it is connected; (2)
it has two components, one of which is a singleton; or (3) it
has two components, each of which is a 4-cycle.

Proof. For n = 4 the graph G is just AG4, which is
not tightly superconnected, because if vertices 2431, 3124,
4213, and 1342 are deleted in Figure 4, the remaining graph
consists of two 4-cycles. We show that this is the only excep-
tional case for n = 4. Recall that AG4 contains four triangles,
H1, H2, H3, H4, and there are two independent edges between
each pair of triangles. If the deleted vertices are in at most
two Hi’s, then the remaining graph is connected by Lemma 2.
If we delete two vertices from (without loss of generality) H1

and one from each of H2 and H3, then each of the remaining
K2’s still has an edge to the remaining triangle (since there
are two independent edges between each pair of Hi’s). Thus
the graph has at most two components, and if it does have two
components, one of them is a singleton. Since every degree is
4, the neighbors of this singleton must be the deleted vertices.
Finally, we may delete one vertex from each of the Hi’s. In
this case, we have four K2’s remaining, each of which must
have an edge remaining to at least one of the other K2’s, since
each K2 has two neighbors in one of the other Hi. Thus we
either get a connected graph, or two components of size 4,
which are easily seen to be 4-cycles.

We defer the proof for n ≥ 5 until the next section, because
the result will follow from Theorem 5. ■

In the next section we consider what happens when we
delete more vertices.

4. BEYOND SUPERCONNECTEDNESS

When we delete more vertices than the connectivity of
the graph, it is still important that we get few vertices discon-
nected from the rest of the graph. Theorem 4 says that if 2n−4
vertices are deleted from G = An(�), the resulting graph is
either connected or it has two components, one of which is a
singleton. It is natural to ask the following question:

What is the largest number K such that if at most K ver-
tices are deleted from G = An(�), the resulting graph is
either connected or it has two components, one of which is a
singleton?

Our next structural theorem answers this question:

Theorem 5. Let G = An(�) be a Cayley graph generated
by a 2-tree � for n ≥ 4, and let T be a set of vertices in G

such that |T | ≤ 4n − 11. If n ≥ 5, then G − T satisfies one
of the following conditions:

1. G − T is connected.
2. G − T has two components, one of which is a singleton.
3. G−T has two components, one of which is K2. Moreover,

|T | = 4n − 11, and the set T is formed by the neighbors
of the two vertices in the K2.

When n = 4, there are two additional possibilities. In both
cases G − T has two components, one of which is a 4-cycle.
The other component is either a 4-cycle if |T | = 4 or a path
of length 3 if |T | = 5.

Proof. We will prove the theorem by induction on n. We
base our induction on the case n = 4, even though our the-
orem is only valid for n ≥ 5, because we get an exceptional
possibility just as in Theorem 4. Recall that when n = 4,
the graph G is just AG4, shown in Figure 4, composed of
four triangles H1 through H4, with two independent edges
between each pair of triangles. If we delete up to four ver-
tices, then the claim follows from Theorems 3 and 4. Now
assume that we delete five vertices altogether. If the deleted
vertices lie in at most two Hi’s, then the remaining graph
is connected by Lemma 2. If we delete three vertices from
(without loss of generality) H1, then H1 is completely deleted,
and we delete one vertex each from (say) H2 and H3. Then
there will still be an edge remaining between H4 and each of
the K2’s remaining from H2 and H3 (since originally there
are two independent edges between each), so G − T is con-
nected. If we delete two vertices from H1, two from H2, and
one from H3, the remaining K2 from H3 and the triangle H4

have an edge between them. By the usual argument, the K2

and H4 belong to the same component C in the remaining
graph. Thus the two singletons remaining in H1 and H2 are
in C, or at most one of them is not in C, or both have its outside
neighbor in H3 deleted, in which case they form a K2 by Prop-
erty IV. Finally, we have to look at the case where we delete
two vertices from H1 and one from each of H2, H3, and H4.
The remaining graph consists of a singleton and three K2’s,
with some edges in between them. If the three K2’s belong
to the same component in G − T , then G − T is either con-
nected or has two components, one of which is a singleton.
Otherwise, just as in the proof of Theorem 4, two of the three
remaining K2’s must belong to the same component forming
a 4-cycle. If the singleton from H1 has an edge to the 4-cycle,
then the graph is either connected or has two components,
one of which is a K2. Finally, if the 4-cycle has no edges to
the singleton or the K2, then it is easy to see that the singleton
and the K2 must belong to one component, so the graph has
two components, a 4-cycle and a path of length 3.

Now let n ≥ 5, and assume that the result is true for
n − 1 with the above exceptions for n − 1 = 4. As before,
let Hi be the subgraph of G spanned by vertices with i in
the last position for 1 ≤ i ≤ n. Then Hi is isomorphic to
a Cayley graph generated by a 2-tree on n − 1 vertices. Let
Ti = V(Hi)∩ T and ti = |Ti|, so

∑n
i=1 ti ≤ 4n − 11. We will

break up the proof into several cases.
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Case 1. ti ≤ 2n − 7 for all 1 ≤ i ≤ n.

Since Hi is (2n − 6)-connected, Hi − Ti is connected by
Theorem 3 for all i. There are (n − 2)! edges between Hi and
Hj, and since (n − 2)! > 4n − 14 = 2 · (2n − 7) for n > 5,
there is an edge remaining between Hi − Ti and Hj − Tj for
all pairs i �= j, so G − T is connected. For the n = 5 case we
note that if there are no edges left between Hi −Ti and Hj −Tj

for some i, j, then ti = tj = 3, so we can only delete three
more vertices in the other Hk’s. Thus the remaining Hk −Tk’s
belong to the same component in G − T , and both Hi − Ti

and Hj −Tj will have an edge to Hk −Tk for at least two other
k /∈ {i, j} (whenever tk < 3), hence G − T is connected.

Case 2. 2n − 6 ≤ ti ≤ 4n − 15 for some i, and tj ≤ 2n − 7
for all j �= i.

As in the last case, all the Hj − Tj, j �= i, belong to a
single large component of G − T , say C. From the induction
hypothesis, Hi − Ti has at most two components, where the
smaller one has up to two vertices (except possibly for n = 5).
Let B be the largest component of Hi − Ti. We will show that
B belongs to C. We know that B has at least (n − 1)!/2 −
(4n − 15)− 2 vertices, which have (n − 1)!− 2(4n − 15)− 4
different outside neighbors. Since there are at most (4n −
11) − (2n − 6) = 2n − 5 deleted vertices outside Hi, and
(n − 1)! − 2(4n − 15) − 4 > 2n − 5 for n ≥ 5, there must
be an edge between B and C, so cases (1) through (3) of the
statement in the theorem cover this case. When n = 5, the
same argument applies unless it is the exceptional case. Since
4 ≤ ti ≤ 5, Hi − Ti has two 4-cycles or a 4-cycle and a path
of length 3. There are at most five deleted vertices outside Hi,
and since every vertex in Hi has two outside neighbors (all
distinct), the path of length 3 and the 4-cycle have six and
eight different outside neighbors, respectively. Thus G − T
is connected.

Case 3. 4n − 14 ≤ ti for some i.

Then
∑

j �=i tj ≤ 3. By our previous argument, Hj − Tj

belong to a large component C of G − T for all j �= i (even
for n = 5). If a component B of Hi − Ti has an edge, then
its endpoints have exactly four distinct outside neighbors,
so B belongs to C. Thus only singletons of Hi − Ti may
not be part of C. Since each singleton of Hi − Ti has two
outside neighbors, which are all different, there can be only
one such singleton. Hence G − T is either connected or has
two components, one of which is a singleton.

So far, all our cases have had at most one i with ti ≥ 2n−6.
We cannot have more than two ti ≥ 2n−6, since 3(2n−6) >

4n − 11 for n ≥ 5. So we have one more case to deal with:

Case 4. ti, tj ≥ 2n − 6 for some i �= j.

Then
∑

k �=i,j tk ≤ 1, so all Hk − Tk belong to a large
connected component C of G−T for all k �= i, j (even for n =
5). Every vertex of Hi − Ti has at least one neighbor outside

Hi ∪ Hj, so any nonsingleton component of Hi − Ti is part of
C. The same applies to Hj−Tj. By the same argument, at most
one singleton of Hi − Ti may not be part of C, and similarly
for Hj −Tj. Thus G−T satisfies one of the conditions in (1)–
(3) since by Property IV in Proposition 1 the two singletons
cannot both remain singletons in G − T .

This covers all possibilities. Moreover, it is obvious that
in case (3), if the small component is K2, then T must be
the neighbors of these two vertices, and thus the proof is
complete. ■

Theorem 5 tells us that for n ≥ 5 the maximum number
of vertices we can delete and still always get at most one
vertex disconnected from the rest of the graph is 4n − 12.
Moreover, Theorem 5 implies Theorem 4 for n ≥ 5, since
4n − 12 > 2n − 4 for n ≥ 5.

The next question that we may ask is how many vertices
we can delete to get at most two vertices disconnected. We
have the following result:

Theorem 6. Let G = An(�) be a Cayley graph generated
by a 2-tree � for n ≥ 5, and let T be a set of vertices in G
such that |T | ≤ 6n − 20. Then G − T satisfies one of the
following conditions:

1. G − T is connected.
2. G − T has two components, one of which is a singleton.
3. G − T has two components, one of which is K2.
4. G−T has three components, two of which are singletons.

Proof. Again, our proof will be by induction on n. For
n = 4 we delete at most 4 vertices, so by Theorem 4 either
G − T has two components, each of which is a 4-cycle, or 1
or 2 holds.

Now let n ≥ 5 and assume that the result is true for n − 1
with the above exception for n − 1 = 4. Again, let Hi be the
subgraph of G spanned by vertices with i in the last position
for 1 ≤ i ≤ n. Then Hi is isomorphic to a Cayley graph
generated by a 2-tree on n − 1 vertices. Let Ti = V(Hi) ∩ T
and ti = |Ti|, so that

∑n
i=1 ti ≤ 6n − 20. We will break up

the proof into several cases depending on the location of the
faults.

Case 1. ti ≤ 2n − 7 for all 1 ≤ i ≤ n.

Since Hi is (2n − 6)-connected, Hi − Ti is connected by
Theorem 3 for all i. There are (n − 2)! edges between Hi and
Hj, and since (n − 2)! > 4n − 14 = 2 · (2n − 7) for n > 5,
there is an edge remaining between Hi − Ti and Hj − Tj for
all pairs i �= j, so G − T is connected. For the n = 5 case
we note that if there are no edges left between Hi − Ti and
Hj−Tj for some i, j, then ti = tj = 3. Since we are deleting 10
vertices overall, there is an Hk containing at most two deleted
vertices; thus this Hk − Tk will have an edge to every other
Hm − Tm, and hence G − T is connected.

Next we consider those cases when exactly one ti is larger
than 2n − 7.
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Case 2. 2n − 6 ≤ ti ≤ 6n − 26 for some i and tj ≤ 2n − 7
for all j �= i.

Again, all the Hj − Tj’s are connected for j �= i, and they
belong to a single connected component C in G − T . By the
induction hypothesis, there are at most three components in
Hi −Ti, with two of them having at most two vertices in total
(except for n = 5). Let D be the largest component in Hi −Ti.
It has at least (n−1)!

2 − (6n − 26) − 2 vertices, which have at
least (n − 1)! − 2(6n − 24) distinct outside neighbors. We
have deleted at most 6n − 20 − (2n − 6) = 4n − 14 of these
neighbors, and the rest of them all belong to C, hence there
will be at least one edge between the vertices in D and those
in C outside Hi, since (n − 1)! − 2(6n − 24) > 4n − 14
for n ≥ 5. Thus D belongs to C, and we are done. In the
exceptional case Hi − Ti consists of two 4-cycles, each of
which has eight different outside neighbors. Since we delete
at most six vertices outside Hi, both 4-cycles must belong to
C as well, and we are done.

Case 3. 6n − 25 ≤ ti for some i.

Then
∑

j �=i tj ≤ 5. If there is a j �= i such that tj = 5, then
G−T is connected by Lemma 2. Otherwise, by our previous
argument either all of the Hj − Tj’s with j �= i will belong
to one connected component C of G − T , or there is a j �= i
such that Hj − Tj has at least two components. Assume first
that all Hj − Tj’s with j �= i belong to C. Since every vertex
of Hi − Ti has two outside neighbors, and these neighbors
are all different, there can be at most two vertices of Hi − Ti

not belonging to C, and we are done. On the other hand, if
there is a j �= i such that Hj −Tj has at least two components,
then we must have tj = 4 and n = 5, and the remaining
Hk’s still belong to a large connected component C of G−T .
Every component of Hi − Ti and Hj − Tj of size at least two
will also belong to C, since it will have at least two distinct
neighbors in G − Hi − Hj, and we delete at most one vertex
outside Hi and Hj. By the same reason, there can be at most
one singleton each in Hi − Ti and Hj − Tj not belonging to
C, and we are done.

Next we still have to consider the case when there are two
ti’s greater than 2n − 7. Note that it is impossible for three
ti’s to be greater than 2n − 7, since 6n − 18 > 6n − 20.

Case 4. ti ≥ tj ≥ 2n − 6 for some i �= j.

Then clearly tj ≤ ti ≤ 4n − 14. If ti = 4n − 14, then
tj = 2n − 6, and we are done by Lemma 2. Otherwise we
have ti ≤ 4n−15. First consider ti = 4n−15. If tj = 2n−5,
then we are again done by Lemma 2, so we are left with the
case tj = 2n − 6 and tk = 1 for some k /∈ {i, j}. For all w /∈
{i, j, k} we have tw = 0, and thus Hk − Tk and every Hw − Tw

with w /∈ {i, j, k} belong to a large connected component C
of G − T . Since every vertex in Hi and Hj has two outside
neighbors in different Hz’s, and there is one deleted vertex
outside Hi ∪ Hj, in each of them at most one vertex can be
disconnected from C in G − T , and we are done.

Finally, we consider those cases where tj ≤ ti ≤ 4n−16 =
4(n − 1) − 12. Then by Theorem 5, Hi − Ti and Hj − Tj

have at most one singleton and one large component with
the exception for n = 5, since case (3) cannot occur. For all
k /∈ {i, j} we have tk ≤ 2n−7, so as before, all these Hk −Tk’s
belong to a large component C of G − T . Assume first that
n = 5. Then ti = tj = 4, and we have two deleted vertices
outside Hi∪Hj. Since every vertex in Hi or Hj has two outside
neighbors in different Hk’s, each of Hi − Ti and Hj − Tj can
have at most two vertices not belonging to C. Thus if either
Hi − Ti or Hj − Tj has two 4-cycles as components, the 4-
cycles must belong to C. Thus each of Hi − Ti and Hj − Tj

can have at most one singleton disconnected from C, and we
are done. When n ≥ 6, the deletion of vertices can remove at
most 2(6n − 20) edges of the (n − 2)(n − 2)! edges that Hi

or Hj has to vertices in the other Hk’s (k �= i, j). Since two
edges may be incident to the singleton in Hi − Ti or Hj − Tj,
and (n − 2)(n − 2)! > 2(6n − 20) + 2 for n ≥ 6, the large
components in Hi − Ti and Hj − Tj must be part of C. The
two possible singletons in Hi − Ti and Hj − Tj may either
remain singleton components in G − T , or they could belong
to one component forming a K2, or they could also belong to
C. In each case we are finished, and the proof of the theorem
is complete. ■

Note that Theorem 6 is sharp, since we can take three
vertices of a 4-cycle and delete all their neighbors, altogether
6n − 19 vertices, creating a big connected component and a
path of length 3. This shows that we can delete up to 6n − 20
vertices without creating three vertices disconnected from the
rest of the graph, and this is best possible.

So far we have proved Theorem 3 (An(�) is maximally
connected), Theorem 5 (structural theorem when we have
roughly 2(2n−4) faults in An(�)), and Theorem 6 (structural
theorem when we have roughly 3(2n − 4) faults in An(�)).
All the proofs have a similar theme, using induction and
case analysis based on the distribution of faults. Although
the proofs are not particularly difficult, care must be taken in
the case analysis. A fair question is to ask whether separate
proofs are necessary. Could we prove Theorem 6 right from
the start? The answer is no. In Case 3 of Theorem 6 we use
Theorem 5, and in the proofs of both Theorem 5 and Theorem
6 we use Theorem 3.

A natural question to ask next is what happens if we delete
roughly 4(2n−4) faults. Indeed, such a theorem can be estab-
lished. One can easily come up with the form of the statement;
the difficult part is what “roughly” means, that is, what should
p be if we allow 4(2n − 4) − p faults. Naturally, one would
want the bound to be sharp. However, this may cause the
result to be false for small n. Given that induction is the tech-
nique of choice here, one may have to overcome the difficulty
of checking the base case for a relatively large n. Even if we
establish such a theorem here, the next question is to replace
4 by 5. This leads us to consider deleting k(2n − 4) − f (k)

vertices for every k. Of course, compromises must be made.
The first is that we will no longer describe the possibilities
of the structures of the “small components” in the resulting
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graphs when vertices are deleted. Instead we will focus on
the total number of vertices in the small components. The
second is that our bound will be good only asymptotically,
that is, we will not be overly aggressive in choosing f (k), to
ensure that the statement is true for small n. This result will
be presented in the next section.

5. LINEARLY MANY FAULTS

In this section we look at what happens when the number
of faults is linear in n. Clearly, we can arbitrarily choose
k vertices in the Cayley graph An(�), and isolate them by
deleting all their neighbors. This gives us k singletons and
(probably) a large connected component in the remaining
graph by deleting at most k(2n − 4) = 2kn − 4k vertices.
Thus, we look for a result saying that if you delete 2kn −
f (k) vertices, where f (k) is a constant depending only on k,
then the resulting graph has a large connected component
and small components with up to k − 1 vertices in total.
Finding the best value of f (k) becomes more difficult as k
gets bigger, and is not worth the effort, so we will only aim
for an asymptotically sharp result.

We have already observed that the proof of Theorem 6
(k = 3) depends on Theorem 5 (k = 2) and Theorem 3
(k = 1). Moreover, in each of these proofs induction on n
is used. So it is natural to use double induction to prove our
next result, first on k (strong form), then on n. Note that the
proof is similar to the proof of the main result in [10].

Theorem 7. Let G = An(�) be a Cayley graph generated
by a 2-tree � for n ≥ 4, and let T be a set of vertices in G such
that |T | ≤ k(2n−4)−2k(k−1)−1, where k ≥ 1. Then G−T
has at most k components: one large (connected) component
and small components containing up to k−1 vertices in total.

Proof. We will use induction on k. For k = 1, we delete
up to 2n − 5 vertices, so the claim follows from the fact that
G is (2n − 4)-regular and maximally connected. If k = 2 or
k = 3, we delete up to 4n−13 or 6n−25 vertices, respectively,
so the claim holds by Theorem 5 and Theorem 6 (even for
n = 4).

Let k′ ≥ 4, and assume that the claim is true for all k < k′
and all n ≥ 4. We will prove the claim for k′. If n ≤ k′ + 1,
then we are not deleting any vertices (|T | < 0), so the claim
automatically holds. Thus, we can assume that n ≥ k′+2 and
that T is a set of vertices in G with |T | ≤ k′(2n−4)−2k′(k′−
1) − 1. We must show that G − T has one large connected
component and small components containing at most k′ − 1
vertices in total. For all 1 ≤ i ≤ n, let Hi be defined as before,
and let Ti = T ∩ V(Hi) and ti = |Ti|. We will look at cases
depending on the distribution of faults in the Hi’s, begin-
ning with the case when we remove many vertices from a
single Hi:

Case 1. ti ≥ k′(2n − 6) − 2k′(k′ − 1) for some 1 ≤ i ≤ n.

Then
∑

j �=i tj = |T |− ti ≤ 2k′−1 ≤ 2n−5. We know that
Hj is maximally connected and (2n−6)-regular, so if we also

have tj ≤ 2n−7 for all j �= i, then Hj −Tj stays connected for
all j �= i. Also, there are (n − 2)! independent edges between
each pair of Hj’s, and (n − 2)! ≥ (k′)! > 2k′ − 1 for k′ ≥ 4,
hence at least one of these edges remains in G − T for every
pair of Hj’s, so all the graphs Hj − Tj (j �= i) belong to a
large component C of G−T . Now, each vertex in Hi −Ti has
two outside neighbors lying in different Hj’s. Two vertices
in Hi cannot have a common neighbor outside of Hi, since
each vertex has exactly two outside neighbors in different
Hk’s. This implies that there are at most k′ − 1 vertices not
belonging to C.

On the other hand, if there is a j such that tj ≥ 2n − 6,
then there is at most one deleted vertex outside Hi ∪ Hj, so
clearly all Hk’s, k �= i, j, belong to the same component of
G − T . Since every vertex in Hi ∪ Hj has at least one outside
neighbor not in Hi ∪Hj, there can be at most two vertices not
belonging to the big component and the claim is proven.

Case 2. ti ≤ k′(2n − 6) − 2k′(k′ − 1) − 1 for all 1 ≤ i ≤ n.

Now we will need a second induction on n. We have ti ≤
k′(2k′ − 2)− 2k′(k′ − 1)− 1 < 0 for n = k′ + 2, so this case
is trivial. When n is n′ = k′ + 3, we have

ti ≤ k′(2k′) − 2k′(k′ − 1) − 1 = 2k′ − 1

< 4k′ − 5 = (k′ − 1)(2n′ − 6) − 2(k′ − 1)(k′ − 2) − 1

for all i, where n ≥ 7. Using the induction hypothesis on k
with k ≤ k′ − 1 = (n′ − 2) − 1 on the subgraph Hi, we get
that if ti ≤ k(2n − 6) − 2k(k − 1) − 1, then Hi − Ti has one
large component and small components containing at most
k − 1 vertices in total. If k = k′ − 1, each Hi − Ti has one
large component and small components with at most k′ − 2
vertices in total. Thus, if Hi − Ti has a large component and
small components containing at least k vertices in total, then
ti ≥ k(2n′ − 6) − 2k(k − 1).

To prove the base case for n, we will have to show that
for all Hi − Ti, their largest components stay all connected,
belonging to a single large component, and that the number of
total vertices in the small components does not exceed k′ −1.
We will start with the first claim:

There are (n′ − 2)! independent edges between Hi and
Hj for every pair (i, j) with 1 ≤ i, j ≤ n. If this number of
edges is larger than the number of deleted vertices plus the
number of vertices in the small components, then the large
components of Hi and Hj will be part of the same component.
Thus, we require

(n′ − 2)! > k′(2n′ − 4) − 2k′(k′ − 1) − 1 + 2(k′ − 2).

For n′ = k′ + 3, this is equivalent to (k′ + 1)! > (6k′ − 5),
which is true for k′ ≥ 4. Thus, the largest components of
the Hi − Ti’s are part of the same component in G − T .
Furthermore, as n′ gets larger than k′ + 3, the left-hand side
of the inequality grows much faster than the right-hand side,
so the conclusion remains true for n′ > k′ + 3 as well.

Now we will prove that the number of vertices in the small
components of all Hi−Ti is no larger than k′−1. We will prove
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the claim by contradiction. Assume that the total number
of vertices in the small components is at least k′. Then we
can choose nonnegative integers 0 ≤ k1, k2, . . . , kn′ ≤ k′ −
2 such that k′ = ∑n′

i=1 ki and for each i, Hi − Ti has one
large component and at least ki vertices in total in the small
components. As shown earlier, this implies that ti ≥ ki(2n′ −
6)− 2ki(ki − 1) for all i. We know that at least two of the ki’s
are positive, since ki ≤ k′ − 2 for all i. Consider Hi and Hj

with i �= j and ki, kj > 0. Together, they have at least ki + kj

vertices in the small components, and

ti + tj ≥ (ki + kj)(2n′ − 6) − 2ki(ki − 1) − 2kj(kj − 1)

≥ (ki + kj)(2n′ − 4) − 2(ki + kj)(ki + kj − 1)

since the latter inequality simplifies to (2ki −1)(2kj −1) ≥ 1,
which is true. This number is at least (ki+kj)(2n′−6)−2(ki+
kj)(ki+kj−1), which is of the form (�)(2n′−6)−2(�)(�−1)

(here � represents an expression). Hence we can apply this
repeatedly for each positive ki to get

|T | =
n′∑

i=1

ti ≥
(

n′∑
i=1

ki

)
(2n′ − 4)

− 2

(
n′∑

i=1

ki

) ((
n′∑

i=1

ki

)
− 1

)

= k′(2n′ − 4) − 2k′(k′ − 1),

a contradiction. Thus, the base case n′ = k′ + 3 is proven.
Now we have to consider the case n′ > k′ +3. Let 1 ≤ i ≤

n. If ti ≤ (k′−1)(2n′−6)−2(k′−1)(k′−2)−1, we can apply
the induction hypothesis with k = k′ −1 and all admissible n
as we did before. If (k′−1)(2n′−6)−2(k′−1)(k′−2)−1 <

ti ≤ k′(2n′ − 6) − 2k′(k′ − 1) − 1, then we can use the
induction hypothesis with k = k′ and n = n′ − 1. In both
cases, Hi−Ti has one large component and small components
containing at most k′−1 vertices in total. Then just as before,
for each k ≤ k′ − 1, if Hi − Ti has one large component and
small components containing at least k vertices in total, then
ti ≥ k(2n′ − 6) − 2k(k − 1). The remainder of the argument
is the same, and our proof is complete. ■

6. CONCLUDING REMARKS

We have shown that the Cayley graph An(�) generated by
the 2-tree � has good structural properties: for any k ≥ 1, if
we delete asymptotically kn vertices, the remaining graph has
a large connected component and small components contain-
ing at most k − 1 vertices in total. This means that networks
based on these graphs are extremely fault-resistant, since
deleting roughly kn vertices creates at most k − 1 vertices
disconnected from the rest of the graph.

Note that in our proofs we only used Properties I–IV in
Proposition 1 about the structure of these Cayley graphs, so
our results extend to every graph that is built up according
to those properties starting from AG4 (in fact, the Hi’s do
not even need to be isomorphic). This also means that in

the recursive definition of 2-trees one could allow adding a
3-cycle (abc) and its inverse whenever exactly two of a, b,
and c occur in previous 3-cycles, and the same result would
follow. We chose to keep the more restrictive definition to
keep the nice correspondence between the 3-cycles in � and
the triangles in the generating graph. A natural question is
then what happens if we delete more vertices. How many
vertices do we need to delete to create a component of size
n? Clearly we can delete all neighbors of any n vertices, thus
deleting n2 − O(n) vertices is always enough, but is this best
possible asymptotically?
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