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focus on developing approximation algorithms for spe-
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1. INTRODUCTION

Traditional facility location problems focus on determin-
ing a set of open facilities and assigning each customer to an
open facility, where the goal is to minimize the sum of facil-
ity opening costs and connection costs of the customers to
the facilities. When, as is often the case, the company needs
to meet the demand of the customers in future time periods
through production and inventory decisions at its facilities,
using a traditional facility location model may be inappropri-
ate because it cannot accurately represent all incurred costs.
In particular, the connection costs often represent transporta-
tion costs only, and even if they attempt to capture production
and inventory holding costs, this can only be done at a very
coarse level. Therefore, using traditional facility location
models may lead to very (and unnecessarily) high production
and inventory costs. In this article, we introduce a new class
of integrated facility location and production planning prob-
lems that generalizes traditional facility location problems by
taking into account the demands of each customer in future
time periods. Our goal is then to minimize the sum of facil-
ity opening costs, connection costs, and production/inventory
costs. We will focus on developing approximation algorithms
for this class of problems.

The class of problems studied in this article can be
described as follows. We are given a set of m facilities, a
set of n customers, and 7 time periods. The demand of cus-
tomerjinperiod¢is givenbyd; G =1,...,mt=1,...,7T).
It will be convenient to also define the cumulative demand of
customer j as d; = Zszl dj;. We wish to assign a customer



J to an open facility i and meet the demand of the customer
through production and inventory decisions at the facility.
There is a connection cost, ¢;;, associated with facility i and
customer j, which is expressed as a cost per unit of demand.
We will assume that connection costs are symmetric, i.e.,
the cost of shipping from facility i to customer j is equal
to the cost of shipping from customer j to facility i, and
satisfy the triangle inequality, i.e., for any facilities i, and
customers j, j/, cij < cjy +cpj +cyj. Although these assump-
tions on the connection costs are restrictive, they are common
in developing constant factor approximation algorithms for
facility location problems. Each facility has an opening cost
of f;, which we must pay if we assign any customers to the
facility. Each facility i has a concave function representing
the cost of producing p units in time period #, Pi;(p), and a
concave function representing the cost of holding / units in
time period ¢, H;; (I). Our uncapacitated facility location and
production planning (UFLPP) problem can be formulated as:

m T
minimize Z (fi}’i + Z(P it (Pir) + Hj; (L‘z)))

i=1 t=1

m n
+Y ) dicyxy

i=1 j=I

subject to
m
D xj=1 forallj=1,....n (1)
i=1
xj <y foralli=1,....m;j=1,...,n 2)
x; €{0,1} foralli=1,...,m;j=1,...,n 3)
yi€{0,1} foralli=1,...,m 4)

n
Ligy +pie = Y diexij + L

j=1
foralli=1,...,m;t=1,...,T (@)
ILii=0 foralli=1,...,m (6)

pit, iy =0 foralli=1,..., mt=1,...,T. (7)

Constraints (1)—(4) are traditional facility location problems
and constraints (5)—(7) are production planning constraints
at each facility to ensure that, in each time period, we meet
the demand of all customers assigned to the facility. If we
know the set of customers assigned to a given facility, then
we simply need to solve an uncapacitated production plan-
ning problem at that facility. Note that we have assumed
that production and inventory variables are uncapacitated.
If the production variables are capacitated at each facility,
it becomes NP-hard to even determine if the UFLPP prob-
lem has a feasible solution. This can be seen since if 7 = 1,
then the UFLPP problem is a capacitated facility location
problem with unsplittable demands. It is relatively straight-
forward to show that the Partition problem has a solution if
and only if an associated capacitated facility location problem

with unsplittable demands has a feasible solution. Therefore,
a study of approximation algorithms for the UFLPP prob-
lem should either focus on models where the production and
inventory variables are uncapacitated or constraints (3) are
relaxed to allow for splittable demands. In this paper, we
focus on the former class of problems.

The field of designing constant factor approximation algo-
rithms for facility location problems and variants has been
extremely active since Shmoys et al. [22] gave the first
constant factor guarantee for the metric uncapacitated facil-
ity location (UFL) problem. Their algorithm used the idea
of rounding the optimal solution to a linear programming
relaxation of the facility location problem. Sviridenko [23]
used an LP-rounding technique to develop an approximation
algorithm with a factor of 1.58. Recently, Byrka [3] used
LP-rounding, the algorithm of Chudak and Shmoys [5], and
the algorithm of Mahdian et al. [17] to achieve an algorithm
with a factor of 1.50. These algorithms have high running
times because they must solve a linear program. Primal-
dual algorithms for the UFL problem are computationally
attractive and can achieve similar approximation guarantees.
Jain et al. [13] offer primal-dual algorithms with approxima-
tion guarantees of 1.861 and 1.61. The current best-known
approximation factor for the metric UFL problem using a
primal-dual algorithm achieves a guarantee of 1.52 and is
due to Mahdian et al. [17]. This algorithm uses the 1.61-
approximation algorithm of Jain et al. [13] and the idea
of scaling (see Charikar and Guha [4]). Guha and Khuller
[11] show that it is not possible to achieve an approximation
guarantee of better than 1.463 for the UFL problem unless
NP C TIME[O(n'°g108™m)].

In Section 3, we will show that an important subclass of
the UFLPP problem can be formulated as a generalization of
the UFL problem where the facility costs are general concave
functions of the amount of demand assigned to the facility.
We will refer to this problem as the concave cost facility
location (CCFL) problem. Hajiaghayi et al. [12] generalize
the 1.861-approximation algorithm of Jain et al. [13] for the
UFL problem to the special case of the CCFL problem in
which each customer has unit demand; this algorithm runs in
O(n? log n) time. In addition, they show that the CCFL prob-
lem with unit demands can be converted to a UFL problem
with n customers and nm facilities and then use the algorithm
of Mahdian et al. [17] to obtain a 1.52-approximation algo-
rithm that runs in O(n°) time. For the CCFL problem with
general integral demand, this approach has a pseudopoly-
nomial running time. In particular, the UFL problem would
have O(nD) customers and O(nmD) facilities where D is
equal to the sum of the demands of the customers. Fur-
ther, for the CCFL problem with general integral demand,
we can develop a (1.52 4 €)-approximation algorithm by
approximating the concave functions with piecewise linear
functions and using a similar reduction as Hajiaghayi et al.
[12] to the UFL problem. However, this approach has a

3
running time of O <n3 ( InD ) ), which is dependent on

In(14-¢€)
both D and on €. In this paper, we provide a generalization
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TABLE 1.

Relevant approximation algorithms for facility location problems.

Reference Problem Approximation factor Running time
Jain et al. [13] UFL 1.861 O(n*logn)
Jain et al. [13] UFL 1.61 on?)
Mabhdian et al. [17] UFL 1.52 Quasi-linear
Hajiaghayi et al. [12] CCFL with unit demands 1.861 O(n® logn)
Hajiaghayi et al. [12] CCFL with unit demands 1.52 o)
Consequence of [12] CCFL with general demands 1.52 Pseudo-polynomial

3

Consequence of [12] CCFL with general demands 1.52+¢ o (n3 (%) )
This paper CCFL with general demands 1.52 O(n*logn)

of the 1.61-approximation algorithm of Jain et al. [13] for
the UFL problem to the CCFL problem with general inte-
gral (or, as we discuss in Section 3.1, rational) demands that
runs in O(n* logn) time. We then use this algorithm and a
scaling idea to generalize the 1.52-approximation algorithm
of Mahdian et al. [17] to the CCFL problem that also runs
in O(n* log n) time. Independent of this work, Magnanti and
Stratila [16] provided a 1.61-approximation algorithm for the
CCFL problem with general integral demands with a running
time of O(n*). A summary of past approximation algorithms
for facility location problems that are relevant to the work in
this paper appears in Table 1.

Given a set of customers assigned to a facility in the
UFLPP problem, we must manage the production and inven-
tory decisions at the facility to ensure we meet the cumulative
demand of the set of customers assigned to the facility in
each time period. The production planning problem that
is faced by a facility is a generalization of the classi-
cal economic lot-sizing problem (see Wagner and Whitin
[27]) where concave production cost functions replace fixed-
charge plus linear production costs and concave holding cost
functions replace linear holding costs. This production plan-
ning problem can be solved in O(T?) time (see Wagner [26]
and Veinott [24]). The economic lot-sizing problem can be
solved in O(T log T') time and can be solved in O(T) time
in the case of non-speculative motives (see Aggarwal and
Park [1], Federgruen and Tzur [7], and Wagelmans et al.
[25]). Krarup and Bilde [14] used a primal-dual algorithm to
show that the facility location formulation of the economic
lot-sizing problem yielded an integral solution. Levi et al.
[15] developed primal-dual algorithms for three important
classes of deterministic inventory problems, including the
economic lot-sizing problem. Their primal-dual algorithm
solved the economic lot-sizing problem to optimality. They
also developed a 2-approximation algorithm for the joint-
replenishment problem (see Zangwill [28], Veinott [24], and
Arkin et al. [2]) and a 2-approximation algorithm for the
multistage assembly problem (see Roundy [19]).

The remainder of this article is organized as follows. In
Section 2 of this article, we show that the UFLPP problem is
as hard as the set cover problem and conclude that, in general,
it is highly unlikely that a constant-factor approximation
algorithm exists. Therefore, we will focus on approximat-
ing special cases of the UFLPP problem. The cases that we
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will study fall into two categories: (i) specializing the pro-
duction and inventory cost structure at the facilities (Section
2) and (ii) specializing the demand pattern of the customers
(Section 3). For problems belonging to (i), we will offer
reductions from the UFLPP problem to previously studied
variants of the metric UFL problem. For the problems in (ii),
we will show that they belong to the CCFL problem with
general rational demand. We will develop an approximation
algorithm with a guarantee of 1.52 for the CCFL problem
with general rational demand.

2. APPROXIMATING THE UFLPP PROBLEM
WITH GENERAL DEMANDS

Before developing an approximation algorithm for the
UFLPP problem, it is necessary to determine the complex-
ity of approximating the UFLPP problem. We begin with a
result that shows that the UFLPP problem is as hard as the
Set Cover problem. The definition of the Set Cover problem

is: Given a collection of items 1,...,n and a collection of
sets S; C {1,...,n} with associated cost f; fori = 1,...,m,
determine a minimum cost set S € {S; : i = 1,...,m} such

that for each j € {1,...,n} there exists S; € S such that
jES.

Theorem 2.1. If there exists an o-approximation algo-
rithm for the UFLPP problem, then there also exists an
«o-approximation algorithm for the Set Cover problem.

Proof. Consider an instance of the Set Cover problem,
and define an instance of the UFLPP problem as follows.

e The set of customers is {1,..., n} and the set of facilities
is{l,...,m}.
o Set ¢;; = 0 for all facility/customer pairs (i,j) and the

facility opening costs to f;.

e Set the number of time periods to be T = n and set the
demand of customer j to be dy = 0if j # ¢t and d;; = 1 if
j=t

e Set the inventory cost function for each time period at each
facility to be Hy(I;;) = I;; - max;=1, . (fi + 2).

e Define the production functions as P;; (p;;) = 0ift =j € S;
and Py (pir) = pir- maxi=1,..(fi + D ift =j €S,

The inventory holding costs ensure that it is most cost-
effective to satisfy demand in period ¢ with production in



period ¢. This implies that if we assign customer j to facility
i, it will (optimally) cost P;(1). It is easy to see that it is
always cheaper to assign customer j to a facility i such that
j € §; than to assign customer j to a facility i where j & S;.
Therefore, an optimal set of open facilities in the UFLPP
problem will be a minimum cost cover. Now if we have an
a-approximation algorithm for the UFLPP problem, we can
easily convert the solution returned by the algorithm to a fea-
sible cover with a cost no worse than the returned solution.
This then would yield an «-approximation algorithm for the
Set Cover problem. "

As Feige [8] showed a hardness result about approxi-
mating the set cover problem, Theorem 2.1 implies that we
cannot develop an approximation algorithm with a guarantee
of better than (1 — €) log n unless NP C TIME[O(n'°¢1°¢")].
Therefore, it is interesting to identify special cases of the
UFLPP problem that can be approximated to within a con-
stant factor. The following two theorems deal with two
different cost structures for the UFLPP problem for which
this is the case. Both results assume that the production cost
functions and inventory cost functions are linear and can be
written as Py (pyy) = bypiy i = 1,...,m;t =1,...,T) and
Hy(ly) = hylyy G = 1,...,m;t = 1,...,T) respectively.
The first result, in addition, assumes that the production and
inventory holding costs do not depend on the facility.

Theorem 2.2. [f there exists an o-approximation algo-
rithm for the metric UFL problem, then there exists an
a-approximation algorithm for the class of instances of the
UFLPP problem with linear and facility-invariant production
and inventory holding costs.

Proof. We will first define a UFL problem based on this
class of instances of the UFLPP problem. In this conversion,
the facility opening costs will remain the same as the facil-
ity opening costs in the UFLPP problem. We will focus on
defining the connection cost of a customer to a facility. Denote
the unit production and inventory holding costs by b;; = b;
and hyy = hy fori = 1,...,mand t = 1,...,T, respec-
tively. First, as production and inventory costs are linear and
production/inventory is uncapacitated, we can determine the
optimal cost of meeting demand in period 7, which we denote
C/, through a simple recursion:

Cl* = min {b[, hl—l + Ct*—l}'

Once we have C} for ¢+ = 1,...,T, the optimal produc-
tion/inventory costs of customer j are given by Zthl dyC}. It
is clear that if we are given a solution to the UFLPP problem
where the production and inventory costs corresponding to
customer j are higher than ZLI d;;C;, then this solution can-
not be optimal since we can lower the production/inventory
costs. Therefore, to solve UFLPP problem, we can restrict
ourselves to solutions where the production and inventory
costs are Y, d;C*.

We define a UFL problem by defining the demands to be
equal to the aggregate demands d; and the connection costs

to be ¢;j = ¢;j + y; where y; = > d;;C; /d;. Now consider
any pair of facilities i, i’ and pair of customers j, ;'

cij =cjj+ vy <cvj+cip+ ety < i+ Gy + Ciy

so that the connection costs satisfy the triangle inequality.
Given an assignment of customers to facilities in this facility
location problem, consider the assignment costs:

m n

m n
Yo diEgx =Y Y diley + vy

i=1 j=1 i=1 j=1

m n n
- Z Zdjcijxij + Zdjtct*xij,
j=1

i=1 j=1

which are the connection costs plus the optimal produc-
tion/inventory costs in the same assignment of customers to
facilities in the UFLPP problem. Similarly, given an assign-
ment of customers to facilities in the UFLPP problem, the
connection costs plus the optimal production/inventory costs
are the same as the assignment costs in the facility location
problem. Therefore, this metric UFL problem solves this spe-
cial class of the UFLPP problem and the parameters of the
problem can be determined in O(nT + nm) time. .

The second result again deals with instances for which the
production cost and holding cost functions are linear. How-
ever, we now assume that an ordering of the facilities exists
such that, in every time period, it is as cost-effective to pro-
duce (or hold) a unit of demand at facility i than it is at facility
i’ > i. Note that we do nor make any assumptions regarding
the facility opening costs, so it may be very expensive to open
a facility with cheap production/inventory costs and very
cheap to open a facility with expensive production/inventory
costs.

Theorem 2.3. There exists a 6-approximation algorithm
for the class of instances of the UFLPP problem with lin-
ear production and inventory holding costs if there exists an
ordering of the facilities such that, if i and i’ are two facilities,
then i < i implies that for all t, by < by and hi; < hys.

Proof. We will convert this class of the UFLPP prob-
lem to a facility location problem with service installation
costs. This problem generalizes the facility location problem
where each customer j has an associated service g(j). We
can install service g(j) at facility i at a cost of fig(’). We then
wish to assign customers to facilities while minimizing the
sum of the facility opening costs, service installation costs,
and connection costs. Shmoys et al. [21] offer a primal-dual
approximation algorithm for this problem with an approxi-
mation guarantee of 6, when there exists an ordering of the
facilities such that if i < i’ then for any service £, we have
fi/Z < ff Note that this ordering makes no assumptions on the
values of the facility opening costs.

In our conversion, the facility opening costs and connec-
tion costs remain the same as in the UFLPP problem. We
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now describe how to determine the service installation costs
at each facility. We can determine the optimal cost of meeting
demand in period ¢ at facility i, C7, through a similar recursion
as in the proof of Theorem 2.2 above. It is clear that if i < i’
then C3 < Cj, forallt = 1,...,T. Now define the (opti-
mal) production/inventory costs associated with assigning
customer j to facility i:

T
fl = Z Cidy.
=1

Similar to the proof of Theorem 2.2, we can restrict our search
for the optimal solution to the UFLPP problem to solutions
where the production/inventory costs of customer j are equal
to ﬁ’ if j is assigned to facility i. We define g(j) = j and
require that service g(j) must be installed at the facility to
which customer j is assigned. It is clear that if we assign a
customer j to a facility i that the service installation cost,
fiJ , is the optimal production/inventory costs for meeting the
demand of customer j at facility i. Similarly, if customer j is
assigned to facility i in a solution to the (UFLPP) problem,
it is clear that optimal production/inventory costs associated
with this assignment will equal the service installation cost
associated with customer j. This conversion can be done in
O(nmT) time and we can apply the algorithm of Shmoys et al.
[21] to approximate this special case of the UFLPP problem
within a factor of 6. .

3. APPROXIMATING THE UFLPP PROBLEM
WITH SEASONAL DEMANDS

In this section, we will study the important subclass of
the UFLPP problem in which the demands follow a sea-
sonal pattern. In particular, we say that a problem in the
class has seasonal demands if each customer’s aggregate
demand is distributed among the 7 periods using a com-
mon (nonnegative) vector of multiplicative seasonal effects,
ol = (o1,...,07), so that the demand of customer j in
period ¢ is given by dj; = o0;d;. For convenience and without
loss of generality we will assume that the seasonal effects are
normalized so that Y/, o; = 1.

Consider the optimal production and inventory holding
costs required at facility i to meet a vector of demands
equal to a nonnegative scalar multiple z of the vector of sea-
sonal effects o as given by the optimal solution value of the
following optimization problem:

T
minimize Z(Pit Pir) + Hi(1ir))

t=1

(PP())

subject to

Ii,l—l +pl[=GfZ+Ill fort:l""vT
lip =0

pit, Iy =0 fort=1,...,T.
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We denote the optimal value function of this problem by
gi(z). Itis clear that we can restrict our search for the optimal
solution to the UFLPP problem to solutions of the UFLPP
problem where the production and inventory costs at a facility
areequal to g; (Z;-’zl djx;;) since otherwise we could improve
the cost of the current solution by altering the production and
inventory variables. With a slight abuse of notation, we define
the function

ifz>0

_ )itei@
fiey= {o if 7 = 0.

We can then represent the total facility opening costs
and optimal production and inventory costs of the UFLPP
problem with seasonal demands as

m n
D i | o dii
i1 \j=I

Let us now consider the connection costs associated with
the UFLPP problem with seasonal demands. We have:

i Zm: (i d/t) Cyjxy = 21: Zn: <dj ZT: U;) cijxi

j=1i=1 \r=1 j=1 i=1 =1
n m

=D dicyx;
j=1 i=l1

since Zthlat = 1. Recalling that the connection costs
cjj are metric, the UFLPP problem is thus an instance of
the following class of generalized metric facility location
problems:

m n
minimize E fi E djx;j
=1 \j=1

subject to P)

n o m
+ Z Z djcijxlj

j=1 i=1

m
injzl forallj=1,...,n
i=1

x; €{0,1} foralli=1,...,mj=1,...,n

The following lemma shows that in any instance of (P)
resulting from the UFLPP problem with seasonal demands
the functions f; are concave by showing that the functions g;
are concave.
Lemma 3.1. The functions g;, i = 1,...,m, are concave.

Proof. Itis well known that the only candidate solutions
that need to be considered for (PP(i)) are those that are char-
acterized by a set of periods in which production takes place,
together with the so-called zero-inventory property that says
that the ending inventory in a period preceding a production
period is equal to zero. It is easy to see that, given a partic-
ular choice of production periods, the value of (PP(i)) as a



function of z is a concave function, so that g; is the minimum
of a family of concave functions, which implies that g; itself
is concave. .

As mentioned in the introduction, we will refer to the prob-
lem class (P) with concave functions f; as the concave cost
facility location (CCFL) problem. Before studying this prob-
lem in more detail, note that it has other applications besides
the UFLPP problem with seasonal demands. For example,
Shenetal. [20] and Daskin etal. [6] consider a jointinventory-
location problem, special cases of which belong to the class
of the CCFL problem. In Section 3.1, we will develop a 1.61-
approximation algorithm for the CCFL problem and use this
algorithm and the idea of cost-scaling to ultimately give a
1.52-approximation algorithm for it. In Section 3.2, we exam-
ine the problem (P) for other structures of the functions f;,
i=1,...,m.

3.1. Approximation Algorithms for the CCFL Problem

Before we begin developing an approximation algorithms
for the CCFL problem, it will be necessary to define the time
required to evaluate the function f;(z) for some fixed value
of z.

Definition 3.2. We let ¢ denote the time required to evaluate
the function f;(z) for a fixed z.

It is important to note that this evaluation may not be triv-
ial for all concave functions f;(z). For example, in the CCFL
problem that arises from the UFLPP problem with seasonal
demands, we have that ¢ = O(T?) for general concave pro-
duction and holding cost functions and ¢ = O(T log T') for
fixed-charge plus linear production costs and linear holding
costs (the cost structure of the economic lot-sizing problem).

Further, for the remainder of this section, we will assume
that the demand level of the customers (d; forj = 1, ...,n)are
integral. We can make this assumption without loss of gen-
erality for the CCFL problem with rational demand levels,
since, if the demand levels are rational, we can multiply the
demand levels of the customers by a large integer while divid-
ing the connection costs and facility cost functions by the
same large integer. In almost all situations, the base demand
level of each customer will be rational, so, therefore, the
integrality assumption is not very restrictive.

We will begin by generalizing the 1.61-approximation
algorithm of Jain et al. [13]. We now informally describe
this algorithm. At any point in the algorithm we will have
two sets of customers: connected customers and unconnected
customers. Each customer will then make an offer to each
facility. The offer of a connected customer to a facility is
equal to the amount the customer would save in paying the
connection to this facility as opposed to paying the connec-
tion cost to the facility it is currently assigned. The offer of
an unconnected customer to a facility will be based on the
customer’s budget and the connection cost to this facility. If
a set of customers offer enough to cover the opening cost of

a facility, the facility will open and each customer in the set
will be assigned to it. If this event occurs, then the amount
offered to the facility by a customer can be thought of as the
customer’s contribution to the opening of the facility. If no
facility is offered enough to open, we raise the budget of each
of the unconnected customers.

There are two crucial elements to this generalization that
differ from the algorithm of Jain et al. [13]: (i) the idea of
“contribution withdrawal,” i.e., if a customer switches facil-
ities, it withdraws some of its contribution to the facility it is
initially connected to and offers it to the facility it switches to
and (ii) efficiently solving a nonlinear fractional binary pro-
gramming problem that is necessary at each iteration of the
algorithm. We then use this algorithm to generalize the two-
phase algorithm of Mahdian et al. [17] to the CCFL problem,
deriving an approximation algorithm for the CFL problem
with a guarantee of 1.52.

We will now describe the notation used in our algorithm
to approximate the CCFL problem. Let D = {l,...,n}
be the set of customers. At any point in the algorithm,
U C {1,...,n} will denote the set of unconnected customers.
Moreover, for any facility i, A; will denote the set of customers
assigned to it by the algorithm so far, and 7; = ) jea,; dj will
be the corresponding total demand currently assigned. There
is a notion of time t associated with the algorithm. For any
j € U, we set the budget of customer j at time t equal to
a;j = 7. Each customer will offer some money from its bud-
get to a facility i, which we denote 0j;. The offer of customer
Jj to facility i (where j ¢ A;) depends on whether customer
Jj has been assigned to a facility earlier than time t. In par-
ticular, at time 7, if j € U, then 0; = d; max{a; — ¢;;,0};
if j € Ay, then 0; = djmax{wjy + c¢yj — ¢;,0} where
Wjir = (i (Ty) — fy (Ty — dj))/d] If j € Ay, then Wijir is the
amount of customer j’s contribution to facility i’ that would
be withdrawn from facility /’ if customer j switches facilities.
Note that the introduction of wj; is significantly different than
the algorithm of Jain et al. [13], which does not allow a cus-
tomer to withdraw some of its contribution from the facility
it is assigned. The idea behind the algorithm is to, as time
progresses, assign a subset of customers to a facility if the
total offer by this set covers the additional facility costs. We
are now in a position to present the algorithm.

Greedy Algorithm
Step0: Set U = {1,...,n}, A; = @, and T; = O for all i =
1,...,m. Initialize T = 0.

Step 1: If U = @, terminate the algorithm. Otherwise, increase ©
until there exists a facility i and a set § € D\A; such that

Soi=fi|Ti+ ) di | — (T

Jjes Jjes

Step 2: Connect the clients in S to facility i, setting A; = A; U S
and 7; = T + ) _jcs dj. Foreachj € SNU, freeze o; = 7.
Set U = U\S. For each i’ # i, set Ay = Ay\S and Ty =

ZjeA,-r d;. Return to Step 1.
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We will now show that the set S in Step 1 (and thereby
the next time at which the Greedy Algorithm assigns a set of
customers to a facility) can be found by solving a particular
optimization problem.

Lemma 3.3. The set S in Step 1 (and thereby the next time
at which the Greedy Algorithm assigns a set of customers to
a facility) can be found by solving the following minimization
problem for eachi = 1,...,m:

STt Lyesos, )~ T+ Eyes,us, diay
ZjeSz d]

min
S1€D\(A;UU),S,€U

((FP()))

where a; = c¢;j ifj € U and aj = —(cyj +wjr — cij) if ] € Ay

Proof. Suppose that we arrive at Step 1 in the algorithm.
We wish to determine the next time in which a set of cus-
tomers (potentially) would be assigned to facility i. We have
two types of customers that may be assigned to facility i:
(i) customers currently connected to other facilities and (ii)
customers currently unconnected. Let S1 € D\(A; U U)
be a set of customers currently connected to other facilities
and S» C U be a set of customers currently unconnected. To
determine the next time an assignment would occur at facility
i, we can solve

minimize T
subject to (SP(®)
Zdj max{wj; + cyj — ¢;j, 0} + Zdj max{z — c;;, 0}
JjeS JjeSH
=fi|lTi+ Y d | —f(T) (8)
jesius,
S1 € D\(A; U U)
S C U,

since (8) ensures that the amount offered to a facility is equal
to the additional amount incurred by the facility in serving
customers in S; U S3. As we are minimizing 7, we can dis-
regard solutions to this problem where we select a customer
that does not offer anything to facility i. In other words, for
potentially optimal solutions to (SP(7)), (8) can be rewritten as

Zdj(wj’j’ + cij —cjj) + Zdj(r —cjj)

JES JjESS

=fi|Ti+ Y d | —£T.

jesius,

If we let aj = —(wjy +cyj —C,'j) ifj € D\(A;UU) and aj = cjj
if j € U, then we see that (8) can be written as

Ydr=fi|Ti+ Y 4| —fT+ Y ad

j€S2 j€S| us, jGSl us,
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This means that we have a closed form expression for 7 given
S1 and Sp by dividing the previous equation by Zje s, dj.-
Therefore, we can write (SP(7)) as a problem (FP(i)):

fi (T,-+ZjE S,US, dj) —filTD+ > jes,us, 44
ZjeSg dJ .

If we let 7; be the optimal solution to (SP(i)) or, equiva-
lently, the optimal solution value of (FP(7)), then the next time
that any set of customers can be connected to some facility
will be T = min;— ., 7;. Therefore, by solving (FP(i)) for
facilities i = 1,...,m, we can determine the next time an
event occurs. [

min
S,eD\(A;UU),S,eU

Lemma 3.3 shows that it suffices to solve the problems
(FP@)) fori = 1,...,mto implement the Greedy Algorithm.
Our nextresult deals with the complexity of solving a problem
of the form (FP(7)).

Lemma 3.4. The problem (FP(i)) can, for a given facil-
ity i, be solved in O(n> max{logn, $}) time, where the time
required to evaluate f;(z) for a given z is ¢.

Proof. Let A* be the value of the optimal solution to
(FP(i)). It can be shown that 1* is equal to the value of X for
which there exists a nontrivial, i.e., S} U Sy # @, optimal
solution with value O to the following optimization problem:

min il T+ Z dj | = fi(T)

S1ED\(A,UV),5,CU .
]ES]USZ

+Y digj+ > dia; — 1. (KPR

JESI JES2

Note further that the optimal solution of (FP(i)) is equal to
a nontrivial optimal solution of (KP(1*)). We will use this
fact, and the structure of the maximal optimal solution (i.e.,
the optimal solution where |S; U S>| is largest), to develop an
efficient algorithm to solve (FP(7)).

Suppose that we wish to solve (KP(4)) for a fixed 1. If we
index the customers in {1,...,n}\A; in nondecreasing order
of aj(A), where a;(A) = aj — A if j € U and g;(A) = aq;
if j ¢ U, it can be shown that there exists an optimal solu-
tion that selects the first £, for some £ = 1,...,n — |A;|,
customers in the order (see Shen et al. [20]). It can also be
shown that if aj(A) = a;j () for customers j,;’, then there
exists an optimal solution to (KP(X)) where we select both
j and j’ or we select neither and therefore we can view j,j’
as a single entity. To solve (FP(i)), it is sufficient to know
the ordering of the customers based on a;(1*), since we may
then evaluate n potential solutions to (FP(i)) to determine the
optimal solution. Therefore, we turn our attention to deter-
mining the number of distinct orderings of the customers and,
more importantly, the number of distinct candidate solutions
arising for the orderings.

First, note that the ordering of the customers j € D\(A; U
U) is independent of A, i.e., it is only based on g;. Similarly,



the ordering of customers j € U is independent of A. As
we increase A, new orderings only arise when a customer in
Jj € D\(A; UU) and a customer j € U switch places. If there
exist j,j’ € D\(A; U U) (orj,j € U) such that a; = a;, then
a;j(A) = ay(A) for any A. Therefore, as mentioned earlier, we
may essentially merge customers j and j/, meaning that we
will either select them both or select neither in evaluating can-
didate optimal solutions to (FP(7)). This immediately yields
abound of O((n—|A;| — |U))|U|) = O(n?) on the number of
distinct orderings of the variables. Without further analysis,
this leads to O(n?) candidate solutions for (FP(i)) by evaluat-
ing the solutions where we choose the first £ = 1,...,n—|A;|
customers in each ordering. It turns out, however, that many
of these candidate solutions are counted multiple times in this
coarse analysis.

A deeper analysis of the number of candidate solutions that
need to be considered to solve (FP(7)) is based on the follow-
ing observations. Let /(1) be the indexing of the customers
based on a;(1) and suppose that we know all the candidate
solutions based on this ordering. Let A be the next value that
changes the indexing of the customers. If exactly two cus-
tomers have swapped places in going from (1) to I(X), we
need to only evaluate a single new candidate solution. In par-
ticular, if customers £ and £ + 1 swapped places, then we only
need to consider the set consisting of the first £ — 1 customers
with the (£ + 1)% customer in /(). Therefore, it is necessary
to evaluate a number of candidate solutions equal to the num-
ber of swaps from I(1) to I(X) to evaluate all new candidate
solutions in 7(). Further, if customers £ and £ + 1 swapped
places, to evaluate the the new candidate solution based on

this swap, we need to know the sums Zf;ll dj + dgy1 and

Zf;ll ajdj + agy1deq1. Once we know these sums, we need

to evaluate the function

-1
S| T4 ) di+desa
j=1

to evaluate the qgndidate solq}ion. Therefore, if we know the
partial sums Y, d; and }_j_, a;d; for j' = 1,...,n before
the swap, we can evaluate the candidate solution in O(¢)
time. Note further that we can update the new partial sums
in O(1) time. Therefore, given an ordering and all the partial
sums corresponding to this ordering, if we perform a swap,
we can evaluate a candidate solution and update the necessary
partial sums based on this swap in O(¢) time.

The algorithm to solve (FP(7)) is then as follows. We view
any j,j’ € D\(A; U U) (orj,j € U) with a; = a; as a single
entity. First, foreachj € U andj’ € D\(A;UU), we determine
the value of A;; where a;(A;) = aj (Ajy). Itis only necessary
to consider values of A that are non-negative. We sort these
values in nondecreasing order, which requires O(n”logn)
time. Then the actual algorithm starts by determining the
indexing of the customers based on the values a;(0) and eval-
uating the O(n) corresponding candidate solutions. As we
evaluate each of these candidate solutions, we record the sum
of the demands for the first £ customers as well as the sum of

the a;jd;-values for the first £ customers, for all values of £. At
this point, we have a particular customer indexing and have
evaluated all candidate solutions according to this indexing.
We then continue the algorithm by examining the minimum
value of Aj;» not yet considered. This yields a new indexing
by swapping the places of customerj’ and j” for each pair ', j
that achieves the minimum value. This leads to a number of
new candidate solutions that must be evaluated (in particular,
one for each pair j’,j” for which Ajj- attains the minimum).
As we have recorded the partial sums of demands and a;d;-
values we can evaluate the new candidate solution and update
the sums appropriately in O(¢) time. As we raise A, each
new candidate solution that must be evaluated is induced by
a swapping of customers. As there are O(n?) such swaps, the

algorithm requires O(n> max{log n, ¢}) time. .

As the Greedy Algorithm can be implemented in a way
that solves (FP(i)) fori = 1, ..., mateach iteration, and since
we assign at least one unconnected customer in each iteration,
Lemma 3.4 implies a running time of O(mn> max{logn, ¢}).
We will now focus on determining the approximation guaran-
tee of the algorithm. This analysis generalizes the algorithm
for the metric uncapacitated facility location problem with
an approximation guarantee of 1.61 presented in Jain et al.
[13]. We begin with a property of the variables «;.

Lemma 3.5. The total cost of the solution produced by the
Greedy Algorithm is no more than Z}L 1 dja.

Proof. At some point in time, consider facility i and A;.
We will first show that the total savings in disconnecting any
subset S C A; is at least ZjeS dj(wj; + c;;). By the definition
of wj; and the concavity of f;, we have

diwji = fi(Tj) — fi(T; — d))

d.
<= @ -fi|Ti-) 4
Zjesdj jes

implying

Do diwitey) <fiT)—fi | Ti= )Y di |+ dicy

jes jes jes

=fi(Ti)+Z djcii—fi \Ti —Zdj —Z djcij

Iy jes ] jeA\S

where the last term is the savings of disconnecting the cus-
tomers in the set S. We will now prove our desired result by
an inductive argument based on 7. We will show that the total
cost of serving customers in D\U is at most } ;. p,\ ;; djet; at
time 7. It is clearly true for t = 0. Assume that it holds for
time t and consider the first t/ > 7 that an event occurs in
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the Greedy Algorithm, i.e., there exists a facility i and set
S C D\A; such that

ZOji = Zf, T; + Zdj —fi(Ty).
jes jes jes

Let S; C S be the set of clients that switched to i from
another facility and S, = S\S;. The additional cost of serving
customers in S at facility i is

Y dicy+£4 [T+ > di | - £

Jjes jes
=) _(dicij +0;)
jes
= Z(djcji +0ji) + Z(djcji + 0ji)
JES JES>
=D dileig+wip) + ) djg
JES JES>

where i; is the facility to which j € §; was previously
connected. As previously shown, the cost in savings in dis-
connecting the customers j € S from the facilities they were
previously connected to is at least ZjeS] dj(ci;j + wj;,) and
therefore the cost is increased by at most } ;cg, djatj. Our
result follows from the induction hypothesis. "

Consider the optimal solution to the CCFL problem and
let AT denote the set of customers assigned to facility i. If we
can show the existence of a pair of constants (R, R.) such
that for every i

D digj <Refi | Y di| +R Y dicy

JeA? JEAT JeA;

then the Greedy Algorithm is an (Ry, R.)-approximation
algorithm. We will now focus on a facility i and the cus-
tomers indexed 1,...,ksuchthat oy < ap < --- < ;. We
will let e; denote the connection cost of the j-th customer
in the ordering to facility i and f = ﬁ(Z]I-;] d;). For each
J € A;, define the critical time of j as the time 7 right before j
is connected to a facility. For any customer ¢ < j, we define
rej = a¢ = o if £ has not been connected to a facility at the
critical time of j and r¢gj = wy;, + c;,¢ if £ is connected to
facility i, at the critical time of j. We will now derive a set of
inequalities involving the variables «; and r¢;. The concept
of “contribution withdrawal” in our algorithm plays a very
important role in deriving these inequalities.

Lemma3.6. [Foranypairof customersj, £, a; < rej+ei+e;.

Proof. Consider the critical time of customer j. If £ is
not connected at this time, then this inequality holds trivially.
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Otherwise, let i’ be the facility to which £ is connected. By
definition, we have

filo) —fr(Tv —do) +fi’(Ti’ +dp) —fi (Tv)
d Y dj

regj=ci¢+

€))
where the inequality holds due to the concavity of fi. It must
be true that
Ji(Ty + dj) — fi(Ty)
+
d;

Qj = Cij

(10)

as otherwise we would have connected customer j to facility
i’ at an earlier time. Combining Equations (9) and (10) yields

aj < cpj+rg—cig.

Applying the triangle inequality to this relation proves our
desired result. n

Lemma 3.6 relates the triangle inequality to our algorithm.
The following lemma derives a set of inequalities involv-
ing the facility opening cost based upon the concavity of the
facility cost function.

Lemma 3.7. Foreveryj=1,...,k,

j—1 k

ng max{ry; — e, 0} + ng max{as — e¢,0} < f.
=1 0=j

Proof. Consider the time at which customer j gets con-
nected to a facility, i.e., T = «;. Let A; and T; be the set of
clients served at facility i and the total demand served ati. The
amount that client £ offers to facility i is dy max{c; — ¢, 0}
if £ > jand d; max{ry; — ey, 0} if £ < j. Let D and D; be the
set of connected and unconnected customers in {1,...,k}.
We have

Z dg max{re; — eq, 0} + Z dy max{ay — eg, 0}
£eD\A; teD,

<fi|Ti+ ). de|—f(T) (AD

te(D\UDy)\A;

since otherwise we would have connected customer k to facil-
ity 7 at an earlier time. By the concavity of f; and the fact that
Ti > ZZEDIQA,- d[, we have

flm+ D0 d] -/

Le(DUD,)\A;

<fil D de+ ), de|-£| D d

£eD N4, £e(D,UD)\A, £eDiNA;
k

ffi(Zde) g > a). 1)
=1 LeD NA;



Combining Equations (11) and (12) yields

Z dy max{ryj — eq, 0} + Z d, max{ay — eg, 0}
£eD\A; teD,

k
<fi (Zde) —fi
=1

We now turn our attention to deriving an inequality for
> tep,na, de max{r; — e, 0}. Because of the concavity of
f;, we have, for each ¢ € A;,

> d|-f;

Z de|. (13)

LeDNA;

filly) = fi(Ti — do) < f;

Z dp —dp

eEDlﬂAi ZEDIM/
- defi (Xep,na, de)
- Z[ED1nAid£
It follows that
Z dg max{rj — eg, 0}
ZED]mAi
= D delrj—e)= ) dowe,
LeDNA; LeDNA;
= Y (T —f(Ti —dp)
@ED]ﬂA[
dof d
y zsz(:ZeeDlﬂ:; J_il v ). as
’eDiNA; teDNA; ¢ teD NA;

Therefore, by combining equations (13) and (14), we have

Z dy max{rg; — ep,0} + Z d¢ max{ry; — eg, 0}
LeD, teD,

k
<fi (Z de) =
=1

Our result follows by noticing that

j—1 k

> " dymax{ri; — e, 0} + > dy max{ay — e, 0}

=1 t=j

= Z dp max{rgJ — ey, 0} + Z dy max{rgJ —ey,0}.
LeD, LteD,

Lemma 3.6 and Lemma 3.7 lead to our main result about
the Greedy Algorithm.

Theorem 3.8. For any Ry > 1, the Greedy Algorithm is
an (Ry, R.)-approximation algorithm, where R, is an upper
bound on the solution of

k
Zj:l djaj — Ryf

maximize
Ek die;
j=14%€j

subject to (FLP)
aj <ajy forallj=1,... k-1
rgj+1§r[j forallﬁ:l,...,j—l;
j=2,...,k
aj <r¢j+e+e forall
=1,....)—1;j=2,...,k
j—1
ng max{rg — ey, 0}
=1
k

+ Y dymax{ag — e, 0V <f forallj=1,....k
t=j

aj,dj,f,re; >0 forallt =1,...,j—1;
Jj=2,...,k.

Problem (FLP) is called the factor revealing linear pro-
gram (see Jain et al. [13]). It was shown by Jain et al. [13]
that for the case of unit demands (d; = 1forj =1,...,k)if
Ry = 1.61thenR. = 1.61 andif Ry = 1then R, = 2. Further,
Mahdian et al. [17] show that if Ry = 1.11 then R, = 1.78,
which will be important in developing a 1.52-approximation
algorithm for the CCFL problem. These results still hold for
general integral d; by replicating each «; by d; copies and
each ry; by dy x d; copies. It can easily be seen that the repli-
cated copies still satisfy the constraints of (FLP). This leads
to the following result.

Lemma3.9. The GreedyAlgorithmisa1.61-approximation
algorithm for the CCFL problem with a running time of
O(mn? max{logn, ¢}).

We can use the Greedy Algorithm and Theorem 3.8 to
generalize the algorithm of Mahdian et al. [17].

Theorem 3.10. There exists a 1.52-approximation algo-
rithm for the CCFL problem with a running time of
O(mn? max{log n, ¢} max{m, n}).

Proof. We develop a two-phase algorithm for the CCFL
problem. In the first phase, we use the concept of scaling
the facility costs that was introduced by Charikar and Guha
[4]. Specifically, we scale up the facility opening costs by a
factor of 8, i.e., i3 1, dixy) = 8fi(3_;_, djxy), and apply
the Greedy Algorithm. Given the solution returned by the first
phase, we scale down the facility cost functions back to the
original facility cost functions at the same rate. If at any point
in this phase, we can reassign a set of customers to a different
facility without increasing the cost of the solution, we perform
the reassignment. If we are at a point in the second phase of
the algorithm, say the facility cost functions are scaled up by
afactor of §¢, where no reassignments can be performed, then
it can be shown that determining the next factor §* where a
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reassignment can be performed is equivalent to determining
the maximum value of §* that satisfies

Zdj max{wijj+ci/j—c,~j,0} =8| T; + Zd] —8"f(T))
JES jes

for some facilityi = 1,...,mand setS € D\A;. Forafacility
i, define the problem

Ki(6) = max 3 dymax{wi; +cij = €;,0)
= jes

=8h | Tt Y _dy | = f8fAT)

jes

where i; is the facility j is currently assigned to and wy;
is defined as above. For a fixed &, this problem belongs
to the same class as the problem KP(A) in the proof of
Lemma 3.4. If we sort the customers in D\A; according to
d; max{wijj +cij — ¢ij, 0} in non-increasing order, then an
optimal solution to K;(8") contains the first k customers in the
ordering. Note that the ordering of the customers is indepen-
dent of §'. Define 8 to be the value of 8" such that the solution
containing the first k customers in the ordering has its objec-
tive value equal to 0. Therefore, the largest value of §, will be
the first time we could perform a reassignment at facility i.
This implies that we can determine §* by applying the above
procedure for each facility, in O(mn max{logn, ¢}) time. If
8* < 1, then we terminate the second phase of the algorithm.
In each reassignment, at least one customer is switched to a
different facility. Each customer can be reassigned to each
facility a constant number of times throughout the second
phase of the algorithm, and therefore we have a bound of
O(mn) reassignments. Therefore, the second phase of the
algorithm runs in O(m?n® max{logn, ¢}) time.

The derivation of the approximation guarantee of the
algorithm uses the results of Mahdian et al. [17]. Mah-
dian et al. [17] showed that their two-phase algorithm is
an (Rf +Ind+e€,1+ %)—approximation algorithm for
any (Ry,R.) given by Theorem 3.8. This analysis relied
on deriving a factor revealing linear program by ana-
lyzing an algorithm that scales down § in L discrete
steps rather continuously. We can apply a similar anal-
ysis as this to show that our two-phase algorithm is an
(Rf +Ind+e€,1+4 %)—approximation algorithm. If we
set (Rf,R:) = (1.11,1.78) and 6 = 1.504, then we have
a(1.11+1In(1.504) + €, 1 + LB=1) = (1.5181 +¢, 1.518)-

1.504
approximation algorithm for the CCFL problem. Therefore,
the two-phase algorithm has a guarantee of 1.52. .

This immediately leads to the following result for the
UFLPP problem with seasonal demands.

Corollary 3.11. There exists a 1.52-approximation algo-
rithm for the UFLPP problem with seasonal demands with a
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running time of O(mn* max{log n, T2} max{m, n}) in the case
of general concave production and holding cost functions and
O(mn® max{log n, T log T} max{m, n}) for fixed-charge plus
linear production costs and linear holding costs.

Proof. For general concave production and holding cost
functions, we can use the algorithm of Wagner [26] or Veinott
[24] to evaluate the function f;(z) in O(T?) time. For fixed-
charge plus linear production costs and linear holding costs,
we can use the algorithm of Aggarwal and Park [1], Feder-
gruen and Tzur [7], or Wagelmans et al. [25] to evaluate the
function f;(z) in O(T log T) time. .

3.2. Results on Generalizations of the CCFL Problem

In this subsection, we will discuss approximation algo-
rithms and results for generalized facility location problems
(P), where the functions f;,i = 1, ..., m, have different struc-
tures. In particular, we examine the problem (P) where the
functions f;,i = 1, ..., m, are subadditive. Recall that a func-
tion f is subadditive if f(x +y) < f(x) + f(y) for any
non-negative x and y. This class of problems was recently
proposed by Gabor and van Ommeren [10]. They discuss
three examples of facility location problems with stochas-
tic demands that belong to this class of problems. Other
examples of facility location problems with subadditive facil-
ity costs can be found in Gabor and van Ommeren [9] and
Rodolakis et al. [18]. Gabor and van Ommeren [10] develop
an approximation algorithm with a guarantee of 2(1 + ¢),
for any € > 0. Also, for a special class of subadditive cost
functions, they develop an approximation algorithm with
a guarantee of 2. It was observed in both Gabor and van
Ommeren [10] and Rodolakis et al. [18] that the concave
envelope of a subadditive function is a 2-approximation of the
function. As the Greedy Algorithm that we developed earlier
is a (1, 2)-approximation algorithm for the CCFL problem,
this yields a (2, 2)-approximation algorithm for the facility
location problem with discrete subadditive cost functions,
given that we can evaluate the concave envelope of a sub-
additive function at a single point in polynomial time. Note
that this is less restrictive than needing to construct the entire
concave envelope of a subadditive function in polynomial
time.

4. SUMMARY AND CONCLUDING REMARKS

In this article, we have studied a model for integrating
facility location and production planning decisions. It was
shown that, in general, this problem is as hard as the set cover
problem. Therefore, we have focused on identifying special
cases of this problem class that can be approximated within
a constant factor. One of the classes of problems for which
we derived a new approximation algorithm can be viewed as
a metric facility location problem where the facility costs are
a concave function of the amount of demand assigned to the
facility. We developed a greedy algorithm for this class of
functions that generalizes an algorithm of Jain et al. [13]. We



then were able to use this greedy algorithm together with the
idea of cost-scaling to develop an approximation algorithm
with a guarantee of 1.52.

An important direction for future research is to identify
additional problems in our class that can be approximated
within a constant factor. For example, it will be interesting to
investigate whether constant factor approximation algorithms
exist for generalizations of the two problem classes examined
in Section 2 that include production setup costs. It may also
be important to develop algorithms, such as a column gen-
eration approach, to solve the problem the UFLPP problem
exactly.
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