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Abstract

We present a methodology to image and quantify the shear elastic modulus
of three-dimensional (3D) breast tissue volumes held in compression under
conditions similar to those of a clinical mammography system. Tissue
phantoms are made to mimic the ultrasonic and mechanical properties of
breast tissue. Stiff lesions are created in these phantoms with size and
modulus contrast values, relative to the background, that are within the range
of values of clinical interest. A two-dimensional ultrasound system, scanned
elevationally, is used to acquire 3D images of these phantoms as they are
held in compression. From two 3D ultrasound images, acquired at different
compressed states, a three-dimensional displacement vector field is measured.
The measured displacement field is then used to solve an inverse problem,
assuming the phantom material to be an incompressible, linear elastic solid,
to recover the shear modulus distribution within the imaged volume. The
reconstructed values are then compared to values measured independently by
direct mechanical testing.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ultrasound elasticity imaging, or elastography, offers an attractive adjunct to film and digital
mammography for breast cancer screening applications. Among the various approaches to
elastography, perhaps the most common is that pioneered by Ophir and coworkers (Ophir
et al 1991). This technique is based on ultrasound tracking of quasi-static breast compression
to generate strain images. Several clinical studies (Garra et al 1997, Hall et al 2003, Regner
et al 2006, Giuseppetti et al 2005, Itoh et al 2006, Thomas et al 2006, Zhi et al 2007,
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Burnside et al 2007, Bamber et al 2002) have demonstrated that the resulting strain images
typically improve the diagnostic accuracy over ultrasound alone. While these studies all use
2D ultrasound, there is a trend toward 3D ultrasound imaging (Weismann 2005), including 3D
strain imaging (Lindop et al 2006, Krueger et al 1998, Lorenz et al 1999, Treece et al 2008).

Beyond the ability to create 3D images, three-dimensional ultrasound elastography offers
several potential benefits over 2D ultrasound elastography. Among these is the ability to track
motion in the elevation direction. Another is the ability to use physical constraints, e.g. tissue
incompressiblity, to improve motion tracking from frame to frame. Both of these are used
here. One of the most significant advantages of 3D imaging, potentially, is the obviation of
2D model simplifying assumptions when reconstructing modulus distributions.

One step beyond strain imaging is elastic modulus imaging. This involves solving a (non-
trivial) inverse problem to determine the elastic modulus distribution that is consistent with the
measured strain field. This was pioneered by (Kallel and Bertrand 1996, Raghavan and Yagle
1994, Skovoroda et al 1995), and strain and modulus images were quantitatively compared in
(Doyley et al 2005). More recent approaches can be found in (Doyley et al 2000, Oberai et al
2004, Gokhale et al 2004). In all these cases, 2D ultrasound elastography was used, and so
only planar displacement data were available. As a result, some simplifying assumption, e.g.
plane stress or plane strain, was required. Other authors (Steele et al 2000, Sumi 2006) argue
persuasively and demonstrate that such 2D approximations can lead to significant error when
they are violated.

Here we describe the results of a study designed to evaluate the potential to reconstruct
the 3D modulus distribution in tissue mimicking phantoms from ultrasound measured quasi-
static compressions. The experimental protocol was designed to mimic the use of ultrasound
elasticity imaging as an adjunct to mammographic breast screening. It utilizes a linear
ultrasound array scanned mechanically in the elevation direction to collect a 3D volume of
data. The sample is held between a pair of comparatively rigid compression plates, and the
ultrasound is introduced through a window in one of the plates.

The phantoms used in our study exhibited a variety of inclusion sizes (∼5 mm–13 mm)
and contrasts (∼1–3) and were set in a background with inhomogeneous (layered) properties.
Other novel features of the study include attention to the role of boundary conditions in the
reconstruction (Barbone and Bamber 2002) and a novel 3D displacement estimation method,
which will be introduced in this paper but described in detail elsewhere.

The technique used here to reconstruct the elastic modulus from the measured
displacement fields was adapted from (Oberai et al 2003, 2004). This is based on an
optimization approach. That is, we seek the modulus distribution that, when used in a forward
model to compute a predicted displacement field, gives the best match to the measured
displacement fields. The optimization method chosen here utilizes the BFGS (Broyden
Fletcher Goldfarb Shanno (Nocedal 1980)) method to minimize this difference in displacement
fields. This quasi-Newton algorithm requires only the functional value and the first derivative
(i.e., the gradient) of the functional be calculated explicitly at each iteration. The adjoint
method is used to efficiently calculate the gradient (Oberai et al 2003, 2004).

Section 2 presents our methods for phantom construction, the design of the scanning
apparatus, the 3D ultrasound imaging protocol and the techniques used to independently
measure the phantom’s mechanical properties. Section 3.1 outlines the image-registration-
based algorithm used to measure the displacement vector fields from the 3D ultrasound
images. This technique was developed as an alternative to standard cross-correlation-based
measurement techniques. Section 3.2 gives our formulation of the inverse problem and the
assumptions necessary for modulus reconstruction. Section 4 presents the results from the
displacement estimations and phantom reconstructions. Lastly, in sections 5 and 6 we discuss
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Figure 1. Ultrasound elasticity gelatin phantom.

the implications of our results and the future directions of this work. Appendix outlines
the simulation studies used to determine the appropriate parameter values necessary for the
displacement estimation and reconstruction.

2. Experimental methods

2.1. Phantom manufacture

The phantoms used in this study were a mixture of 300 bloom gelatin and silica made to mimic
the acoustic and elastic properties of soft tissue. Approximately 2% by mass concentration of
silica particles were suspended in gelatin as scatterers to reproduce a full speckle image. The
relative phantom stiffness was modified by varying the gelatin concentration. Phantoms were
cuboid in shape with a base of 60 mm × 60 mm and a height of 50 mm. The background
material of the phantoms was made with an 8% by mass concentration gelatin solution. Close
to the center of the phantom, cylindrical inclusions of varying size were made to mimic
the elevated stiffness of tumors relative to healthy tissue with 10%, 12% or 16% by mass
concentration gelatin solutions. The sizes of the inclusions were varied by changing the size
of the mold used to pour the gelatin. Three cylindrical inclusion sizes were tested with volumes
1280 mm3 (12.8 mm in diameter and 10 mm in height), 390 mm3 (7.94 mm in diameter and
8 mm in height) and 87 mm3 (4.80 mm in diameter and 5 mm in height). A bottom layer
(approximately 10 mm of additional height), with an elevated stiffness typically matching that
of the inclusion, was also added to each phantom. Prior to each additional gelatin pour of a
given phantom, the previous gelatin layer was flushed with warm water to aid adhesion. A
picture of the phantom is shown in figure 1. In this picture, regions with elevated stiffness
appear darker than the background which is at a lower stiffness. A quantity of each type
of gelatin solution used in the phantom was poured into several (typically 4–5 samples total
per gelatin pour) cylindrical cake molds (15 mm diameter × 10 mm height) for independent
stiffness calibrations.

Three inclusion sizes and three modulus contrasts were investigated. They were selected
to identify the spatial and contrast resolution of these techniques. The modulus contrasts
lie at the lower limit of clinical interest in detecting breast cancer, and can be considered as
a stringent test of the proposed methods. The smallest inclusion used is at the limit of the
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Figure 2. Compression and imaging experimental setup.

manufacturing capabilities and once again at the lower limit of current clinical interest. Seven
inclusions total were tested. Only the high contrast inclusion was tested for the largest volume.

2.2. Stiffness calibration

The calibration of each individual gelatin pour was performed using a Q800 dynamic
mechanical analysis machine (TA instruments, New Castle, DE 19720). To determine the
elastic modulus of each sample, an unconfined compression test was used to measure the
force/displacement relationship of each sample in the range of 1–10% strain. During each
test, the samples were visually inspected for signs of slipping, which was minimized by
maintaining a dry surface contact between the gel and the roughened platens of the device.
These boundary conditions, however, produce a nonuniform stress field in the samples which,
in turn, cause the measured force-displacement slope to deviate from the actual modulus
measurement by a multiplicative constant. A numerical simulation using FlexPDE (PDE
Solutions Inc., Spokane Valley, WA 99206) was performed, for the given size and geometry of
these gel samples, to determine this constant and correct our measured values. Each sample
was kept at refrigerator temperature (approximately 4 ◦C) up to the point at which it was tested.
During storage, all samples were kept in an air tight container to limit water loss. The samples
for each phantom were tested within 24 h of the corresponding phantom-imaging experiment.
The duration of the calibration measurements was approximately 1 min per sample.

2.3. Imaging setup

The experimental setup for the phantom experiments was developed using a two-dimensional
ultrasound scanner (Analogic AN2300) and is shown in figure 2. The Analogic AN2300
(Analogic Corp., 8 Centennial Drive, Peabody, MA 01960) allows for full radio frequency
(RF) image capture. The transducer used was a 9.5 MHz center frequency, linear array (Type
8805)(B and K, Mileparken 34, DK-2730 Herlev, Denmark), with a usable bandwidth (stated
by the manufacturer) from 5–12 MHz.
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The phantoms were held in place by two plates on the bottom and top (see figure 2).
The top plate has a section removed to serve as an acoustic window. When the top plate was
brought into contact with the phantom, the window forms a small well which, when filled with
water, allows non-contact acoustic coupling between the transducer and the phantom. The
transducer was scanned elevationally in 0.14 mm steps across this window, using a Newport
stepper motor (Newport Corp., 1791 Deere Avenue, Irvine, CA) with micrometer accuracy,
to obtain a 3D image. After an initial image was obtained, a small compressive strain was
applied (typically ∼1–2%), and then a second post-deformation image was obtained. The
spatial location of the pixels in the axial direction (y) was found using the sampling frequency
of the transducer (40 MHz) and an assumed sound speed of 1535 m s−1. The lateral (x)
and elevational (z) locations were determined by the transducer element spacing and the
stepper motor control, respectively. The scanned volume measured ≈67.0 mm × 30.3 mm ×
26.9 mm in the axial, lateral and elevational directions, respectively. The duration of the
imaging experiment was approximately 1/2 h for each phantom, however, the process has not
yet been optimized for time.

3. Analysis methods

The analysis methods used to create the elastic shear modulus images are comprised of two
optimization algorithms. The first algorithm is an image-registration-based technique which
measures the 3D displacement vector field, from a pair of 3D pre- and post-deformation
ultrasound images acquired using the protocol outlined in section 2. The second algorithm is a
constrained optimization technique which seeks to find a shear modulus distribution which is
most consistent with the observed displacement field. This algorithm requires the assumption
of a linear elastic, isotropic, incompressible material model. These algorithms are briefly
described in the following sections.

3.1. Displacement estimation

Fundamental to the process of elasticity imaging is the ability to measure physically accurate
displacements from image sets of deforming tissues or phantoms. The primary assumption
of this measurement technique is that the deformation required to map one image to another
results directly from the underlying tissue motion alone. That is, suppose we are given the
functions I1(x) and I2(x), which are spatial distributions of the scalar image intensities. Here,
I1(x) represents an initial, predeformation image of some tissue and I2(x) represents the image
of the same tissue after it has undergone some mechanical perturbation. Then it is assumed
that the relation between the images can be approximated as

I1(x) ≈ I2(x + u(x)). (1)

Here, the displacement field u(x) is the underlying tissue motion. In effect, this displacement
field acts as a nonlinear scaling of the position vector defining the intensities of the original
image. In practice, we approximate u(x) using finite element basis functions defined over a
prescribed mesh.

The image registration algorithm used in this study is an iterative optimization technique
which minimizes the image intensity difference of the pre- and post-deformation images with
respect to the measured displacement. Using an optimization technique such as this allows
for the implementation of regularization and other constraints to decrease estimate variance
and avoid erroneous results. It also allows for a higher order interpolation of the underlying
displacement functions. Using a linear interpolation of u(x), for instance, reduces the effect of
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image decorrelation in the displacement estimates by accounting for all locally affine motions
within each element. One disadvantage of the optimization algorithm in comparison with
cross-correlation-based techniques is its rather large computational cost.

The functional minimized in each measurement of the displacement field is

π [u(x)] = 1

2

∫
�

(I1(x) − I2(x + u(x)))2 d� + R[u(x)]. (2)

In this functional, I1 and I2 are the pre- and post-deformation images, respectively, and � is
the spatial domain of interest. The term R[u] includes the regularization and constraint terms
used in this implementation. This functional is minimized using a Gauss–Newton method
which requires both the gradient and an approximation to the Hessian of this functional with
respect to the function u.

In this algorithm, the function u and its variants are discretized using finite element,
trilinear interpolation function approximations. The integration calculations use a three-
dimensional midpoint rule and the images are interpolated at each integration point using
cubic Lagrange polynomials. The integration calculations were parallelized to improve the
speed of the iterations (OpenMP) and the equations were solved using a parallelized linear
solver (PARDISO) (Intel Corp., 2200 Mission College Blvd., Santa Clara, CA 95052) (Schenk
and Gartner 2004, 2006).

To limit the effect of noise, it is often assumed that the solution, in this case u(x), is
smooth (i.e., has a bounded H 1 norm) and thus another term is added to the functional which
penalizes noise in the measurement. The implementation of the above algorithm uses an H 1

semi-norm regularization to penalize large gradients in u(x):

R1[u] = 1

2

∫
�

α1|∇u(x)|2 d�. (3)

Here, the scalar α1 determines the amount or strength of the regularization (smoothing) relative
to the functional. The appropriate value of α1 will depend on the images used, the expected
signal to noise ratio and the magnitude of the strain. Therefore this value is system and
protocol specific and needs to be determined for each system independently.

One advantage of capturing a full three-component 3D vector data set is that the a priori
knowledge that breast tissue is an incompressible material may be used to further constrain
the displacements measured from these image pairs. To implement this, another term is added
to the functional of equation (2) which penalizes nonzero volume change over each finite
element:

R2[u] = 1

2

Nelems∑
e=1

α2

[∫
�e

∇ · u(x) d�

]2

. (4)

The relative strength of the incompressibility term will be determined by the magnitude of
the α2 parameter. This term, however, is not appropriately considered a regularization term.
Rather, it is a constraint that is being enforced via a penalty. Ideally and naively, therefore,
α2 could be taken to infinity. In practice however, α2 is determined as the highest value after
which no improvement in the measured u(x) is observed. The form of equation (4) was chosen
to avoid mesh locking associated with pointwise penalties of volume change (Hughes 1999).
Examples of calculated displacement fields will be shown in section 4.1.

In this study, we follow a systematic procedure for the selection of the processing
parameters, α1 and α2, as described in the appendix.
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3.2. Inverse formulation: theory

The last step in the process of elasticity imaging is to use the measured displacement fields
(i.e., all three vector components) as input to an inverse problem to determine the mechanical
properties of the underlying material. A necessary assumption about the input to this inverse
problem is that the tissue behavior can be accurately predicted by a mathematical model. In
this regard we use a linear elastic (nearly) incompressible, single phase, isotropic model to
predict the tissue behavior. The constraint equations used in the inverse problem, combining
the constitutive equations of the model and the conservation of linear momentum, are

∇ · (−pI + μ(∇u + (∇u)T)) = 0 in � (5)

and

p = −λ(∇ · u) in �. (6)

Here, p is (approximately) the hydrostatic pressure, λ(x) and μ(x) are the Lamé coefficients,
and I is the second-order identity tensor. In this work, λ(x) is taken to be constant and
large (i.e., λ � μ). It is determined by specifying Poisson’s ratio ν, and evaluating
λ = ((2ν)/(1 − 2ν))μref . The reference value of μref is unity, which is also the lower
limit of μ(x) for a given inversion. The boundary conditions are specified in the following
form:

u(x) = q(x) on �q (7)

and

(−pI + μ(∇u + (∇u)T)) · n(x) = h(x) on �h. (8)

At each point on the boundary and in each spatial direction xi , either the traction (hi(x)) or
the displacement (qi(x)) must be prescribed (i.e., � = �h ∪ �q and �h ∩ �q = ∅).

For our analysis, equations (5)–(8) are discretized and solved using (almost) standard
trilinear finite elements. The Lame parameters, μ(x) and λ(x) are interpolated as piece-wise
constant, i.e. constant over each element. Nearly incompressible behavior is addressed with
selective reduced integration, which, on the regular meshes used here, is exactly equivalent to
a mixed method with piece-wise constant pressure interpolation (Hughes 1999). The finite-
element mesh used to represent the displacement field in the inverse problem is identical to
that used in image matching.

The underlying idea of our inverse formulation is to find a modulus distribution which
is most consistent with the observed displacement field. That is, we try to minimize the
difference between the measured displacements um and the displacements predicted by the
constraint equations up (Oberai et al 2003, 2004). The optimization functional is given by

π [μ] = 1

2

∫
�

(T(up(x;μ(x))) − T(um(x)))2 d� + πR[μ]. (9)

Here T is a second-order tensor whose diagonal entries represent a weighted contribution of
each of the displacement components to the functional and whose off-diagonal entries are zero.
This allows for the inversion to account for the difference in the accuracy of the displacement
estimates in each direction. The term πR is a regularization term, discussed below. A BFGS
optimization method was used to minimize this functional and the adjoint method is used to
efficiently calculate the gradient (Oberai et al 2003, 2004).

The regularization used in our algorithm is based on a total variation diminishing (TVD)
type of the penalty term. We chose a TVD regularization because this type of regularization is
well suited to data which exhibit discontinuous jumps in the underlying modulus distributions.
That is, TVD regularization tends to penalize high oscillations in the solutions (i.e., noise) while
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allowing lower frequency jumps (Vogel 2002). The standard TVD regularization functional
term of a scalar function μ(x) is

πR[μ] = αb

∫
�

|∇μ(x)| d�. (10)

In practice, the singularity in the absolute value function must be smoothed. The computational
implementation of equation (10) chosen here is

πR[μ] = αb

∫
�

√
∇μ(x) · ∇μ(x) + β2 d�. (11)

The constant β is user selected and ‘small’ in an appropriate sense. The differential of this
functional is

δπR = αb

∫
�

∇μ · ∇δμ√
∇μ · ∇μ + β2

d�. (12)

With piecewise constant interpolation as used here, equation (12) cannot be used directly; the
gradients must be interpreted in a generalized sense. Carrying this out leads to the following,
in terms of jumps in μ across element boundaries:

δπ ′RB = αb

2

NSB∑
i=1

SAi × (μB − μi)√
(μB − μi)2 + β2

. (13)

Here, μB is the modulus value of the element of integration, μi is that of a bordering element,
SAi is the area of the surface joining these two elements and NSB is a number between 3 and
6 defining the number of surfaces which element B shares with neighboring elements.

As in the image registration code, the integration required to calculate the stiffness matrix
and the right-hand side vectors of the elasticity equations, as well as the gradient and function
evaluations were parallelized to further improve the speed of each iteration (OpenMP). A
parallelized linear solver (PARDISO) is also used to solve each forward problem.

A single iteration of this 3D reconstruction algorithm (two matrix inversions) took
∼200 s (parallelized on nine processors). A 2D reconstruction iteration, with a comparable
axial/lateral mesh size, takes ∼0.25 s (parallelized on two processors). The 3D algorithm
typically took ∼40 iterations to reach the convergence criteria defined above.

4. Results

4.1. Displacement estimates

For each reconstructed image the displacement measurement and subsequent modulus
reconstruction was performed using a uniform mesh of finite elements of size 0.6 mm ×
1.0 mm × 0.6 mm in the x, y and z directions, respectively (40 × 60 × 40 elements). For the
displacement estimation algorithm, the regularization and incompressibility parameters were
set to α1 = 1× 108 and α2 = 1× 1010, respectively. These values were selected from a series
of separate tests performed on synthetic data. These tests are described in the appendix. An
initial guess for u was created based on the overall strain applied during the image acquisition.
The termination point of the displacement matching iterations was found in a two-step process.
First, several iterations and manual updates were performed on the displacement initialization
guess to ensure the displacement estimate avoided any local minima. The algorithm was then
allowed to iterate until u remained relatively constant with iterations, to ensure that it had fully
converged. The accuracy of the registration was monitored within each element by computing
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Figure 3. Displacement estimates from ultrasound phantom images (mm). (a) Lateral displacement
(x-direction), (b) axial displacement (y-direction), (c) elevational displacement (z-direction).

the normalized L2 norm of the difference in the motion compensated image pairs inside each
element. That is, for every element ‘e’, the metric:

se =
∫
�e

(I1 − I2)
2 d�√∫

�e
(I1)2 d�

∫
�e

(I2)2 d�
(14)

was evaluated. In all cases, the mean value of se over the image was less than 0.2. A typical
displacement estimate is shown in figure 3. Displacement estimation typically took on the
order of several hours to converge on the measurement for each image pair processed. For
comparison purposes, the axial and lateral displacement components in a central x–y slice are
shown here along with example displacements measured with a simple 2D cross-correlation
method.
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Figure 4. Example x–y slice of axial displacements measured using the image registration
technique (a) and using a cross-correlation method (b). The corresponding x–y slice of lateral
displacements measured using the image registration technique (c) and using a cross-correlation
method (d).

4.2. Modulus reconstructions

The measured displacements were then input to the inverse algorithm, using the same mesh
size and location. The boundary conditions used to compute the predicted displacement field
were such that the sides of the reconstructed volume (i.e., the x–y and y–z boundary surfaces)
were assumed to have zero normal traction (hn = 0 on �xy and �yz). The remaining boundary
conditions were specified displacements (Dirichlet conditions). A Poisson’s ratio of 0.4995
and a TVD regularization parameter of αb = 1 × 10−4 were used in the reconstructions.
The weighting matrix T was set such that the diagonal components Txx = 1, Tyy = 10 and
Tzz = 1 and the off-diagonal components were set to 0. The type of boundary conditions
and the value of the parameters ν, αb and T were selected from a series of independent
tests performed on synthetic data, as described in the appendix. The initial guess of μ was
homogeneous with value 1 and the iterations were terminated at first iteration n for which
the value (π(μn−5) − π(μn))/π(μn−5) < 0.01. The functional value, used to determine
the stopping criterion, was calculated from the displacement matching term alone, without
the regularization term. Figure 5 shows slices through the volume of a typical modulus
reconstruction.

Table 1 shows the values of the recovered modulus contrasts of each inclusion type
tested as well as the expected modulus contrast values for each inclusion calculated from
the independent mechanical tests. In this table, Cref is the reference modulus contrast of the
independently measured gelatin samples for the inclusion relative to the background, Crec is
the recovered or reconstructed contrast reported for the inclusion relative to the background,
Cstr is the strain contrast measured in the background relative to the inclusion and γsz is the
ratio of the reconstructed inclusion volume to the expected volume of the inclusion when it
was made. To evaluate the recovered contrast and size of the inclusion in the reconstructions,
the half-maximum of the inclusion was determined by inspection. The average modulus of
the elements with modulus values above the half-maximum was evaluated and designated
as the recovered inclusion modulus value. The volume of the inclusion was found by counting
the number of elements with modulus values greater than the half-maximum and multiplying
this number by the volume of each element. Using the axial strain field, created from the
measured displacements, a value of the average strain in the inclusion and in a homogeneous
portion of the background were also calculated. Table 2 shows the central x–y slice from the



Quantitative 3D elasticity imaging 767

0
10

20

0
10

20

0

10

20

30

40

50

x(mm)z(mm)

y
(m

m
)

1

1.2

1.4

1.6

1.8

2

(a)

0
10

20

0
10

20

0

10

20

30

40

50

y
(m

m
)

x(mm)z(mm)
1

1.2

1.4

1.6

1.8

2

(b)

Figure 5. (a) x–y slice of 3D modulus reconstruction for a small inclusion with a 12% by mass
gelatin concentration through the center of the inclusion. (b) x–z slice of 3D modulus reconstruction
for this same inclusion through the center of the inclusion. Note that the cylindrical shape of this
∼5 mm inclusion is apparent.

Table 1. Reconstructed modulus contrast accuracy reported for the inclusion sizes and gelatin
concentrations.

Inclusion Size

Inc. Gel concentration Large (1280 mm3) Medium (390 mm3) Small (87 mm3)

16% by mass Cref = 3.24 ± 0.28 Cref = 3.24 ± 0.28 Cref = 2.56 ± 0.17
Crec = 2.23 ± 0.23 Crec = 2.09 ± 0.20 Crec = 2.04 ± 0.21
Cstr = 1.57 ± 0.12 Cstr = 1.28 ± 0.14 Cstr = 1.26 ± 0.19
γsz = 1.18 γsz = 1.16 γsz = 1.10

12% by mass NA Cref = 2.01 ± 0.22 Cref = 1.89 ± 0.11
Crec = 1.61 ± 0.12 Crec = 1.55 ± 0.10
Cstr = 1.31 ± 0.18 Cstr = 1.45 ± 0.11
γsz = 0.83 γsz = 1.21

10% by mass NA Cref = 1.02 ± 0.23 Cref = 1.02 ± 0.23
Crec = 1.25 ± 0.06 Crec = 1.36 ± 0.07
Cstr = 1.19 ± 0.12 Cstr = 1.28 ± 0.13
γsz = 0.97 γsz = 0.57

modulus reconstruction images of each of the seven reconstructions reported for the various
inclusion sizes and contrasts.

For comparison, table 4 shows the central x–y slice from the strain images of each of
the seven reconstructions reported for the various inclusion sizes and contrasts. Table 3
demonstrates the effect of the choice of boundary conditions on the reconstructed modulus
images. This was accomplished by repeating all the reconstructions reported in table 2 with
displacement (Dirichlet) boundary conditions on all surfaces. All other parameters of the
reconstruction (regularization, convergence criterion etc) were kept unchanged. This leads to
the reconstructions shown in table 3. We observe that these reconstructions are not as accurate
as those reported with traction boundary conditions. For example, they completely fail to
represent the inhomogeneity of the background medium.
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Table 2. Reconstructed modulus image slices (the central x–y slice from each phantom reconstruction) reported for
their respective inclusion sizes and gelatin concentrations.

Inclusion sizeIncl. Gel

concentration Large (1280 mm3) Medium (390 mm3) Small (87 mm3)

16% by mass

12% by mass NA

10% by mass NA

We use several benchmarks by which we evaluate our reconstructions. The first is a
qualitative comparison to the strain images, which may be regarded as a ‘gold standard’ in
quasi-static elastography. A second is a comparison of the reconstructed inclusion contrast to
the calibration measurements of the separate samples. A third is a geometric evaluation of the
size of the inclusion and the presence of the layered background. We discuss these now.

The current standard in elastography practice is strain imaging. In figure 7 we compare
one such strain image with the corresponding modulus image. We see that the latter has fewer
artifacts. In particular, the strain image has a ‘ghost’ layer at the top, and the shape of the
inclusion is not well resolved. Comparing tables 2 and 4 shows that in all cases, the stiff
inclusions are more visible in the modulus reconstructions than in the strain images. The
inclusion locations and sizes are similar in both images, though they appear slightly larger in
the strain images. In several of the strain images the cross-section of the inclusion appears to
be circular, whereas in most modulus images it is (correctly) rectangular. In all but the lowest
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Table 3. Reconstructed modulus image slices (the central x–y slice from each phantom reconstruction), using all
Dirichlet boundary conditions, reported for their respective inclusion sizes and gelatin concentrations.

Incl. Gel
concentration Large (1280 mm3) Medium (390 mm3) Small (87 mm3)

16% by mass
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contrast case, table 1 shows that the reconstructed modulus contrast is closer to the reference
values than the strain contrast for the inclusion. In these qualitative comparisons, the modulus
reconstructions compare very favorably to the strain images.

Quantitatively, we may compare the reconstructed stiffness contrast to the calibration
measurements of the separate samples, as reported in table 1. This table shows that for the two
higher concentrations, the reconstructed contrasts tend to be lower than the reference values.
This apparent bias could be explicable by a number of reasons. For one, we use regularization
in both our displacement estimation algorithm and in our modulus reconstruction methods.
Regularization tends to bias reconstructed contrast downward; cf figure 6(d), in which the
line plot with simulated data shows a diminished inclusion contrast in the 3D reconstruction.
For another, we compute the inclusion stiffness as the arithmetic mean of pixel values within
half-maximum. This average is always lower, and typically significantly lower, than the peak
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Table 4. Axial strain image slices (the central x–y slice from each phantom reconstruction) reported for their
respective inclusion sizes and gelatin concentrations.

Inclusion sizeIncl. Gel

concentration Large (1280 mm3) Medium (390 mm3) Small (87 mm3)

16% by mass

12% by mass NA

10% by mass NA

value of the inclusion stiffness. Finally, the reference contrast values themselves may be in
error as discussed below.

For the two lowest contrast inclusions the discrepancy between the reference contrast and
the reconstructed contrast is likely due to error in the reference contrast. The independent
mechanical tests suggest that the inclusions should be invisible, yet they are clearly seen
in both strain and modulus images. Furthermore, a lack of contrast is at odds with the
gelatin concentrations used in the background and the inclusion, approximately 8% and 10%,
respectively. As we discuss in detail below, the variability of gelatin with temperature, in
conjunction with the variability in the mechanical testing itself, is likely to be responsible for
the lack of measurable contrast in the mechanical tests at the lowest contrast. The fact that the
inclusions were resolved in the strain images and the reconstructed modulus images is highly
suggestive that some contrast does exist between these gelatin concentrations.
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(a) (b) (c) (d)

Figure 6. (a) Example x–y slice of modulus reconstruction using 3D reconstruction and all
three vector components. (b) 2D modulus reconstruction using the center slice of simulated 3D
displacement data and a plane strain reconstruction. (c) 2D modulus reconstruction using the
center slice of simulated 3D displacement data and a plane stress reconstruction. (d) Center axial
line of all three modulus reconstructions in addition to the original modulus distribution used to
create the displacements.

(a) (b)

Figure 7. (a) x–y slice of modulus reconstruction for a small inclusion with a 12% by mass gelatin
concentration. (b) x–y slice of the axial strain (εyy) for this same inclusion. (Images are extracted
from tables 2 and 4)

The volume of the reconstructed inclusion relative to its actual volume shows significant
relative variability, but no apparent bias. In nearly all cases it is within ±1/2 voxel side length
in the linear dimensions of the sample. It seems to be most accurate for the medium-sized
inclusions and highest contrast. Certainly the volume of the reconstructed inclusion will
depend on the somewhat arbitrary selection of the inclusion boundary which was chosen at
the half-maximum of the inclusion modulus value.

4.3. Three-dimensional effects

Three-dimensional reconstructions represent an improvement over their two-dimensional
counterparts not only because they reveal the 3D structure of the underlying material, but also
because they incur no assumptions regarding the stress/strain state. In 2D reconstructions, a
state of plane stress or plane strain must be assumed, even though the actual state may be very
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different from both these cases. This may lead to errors in reconstructions as we demonstrate
in the following example.

Figure 6 shows a comparison between modulus images reconstructed from finite-element
simulated 3D data. The generated data are designed to model a typical ultrasound tissue
mimicking phantom (see section 2.1) in size, geometry and modulus contrast (1 to 3 for
background to inclusion and calibration layer). The boundary conditions applied to generate
the data are made to approximate those of a typical experimental protocol and only that portion
of the displacement field which falls directly below the surface at the acoustic window (i.e., the
‘imaged’ volume) is considered for the inverse problem. In this example, white Gaussian noise
is added to the resulting displacement field such that the signal to noise ratios are approximately
20, 1800 and 20 for the lateral, axial and elevational displacements, respectively.

Figure 6(a) is the center slice of the reconstruction which utilizes all three components of
the displacement field in the entire volume. Figures 6(b) and (c) are reconstructions done using
the axial and lateral displacement components only of the central x–y slice of the simulated data
and a plane strain and plane stress approximation, respectively. Mixed boundary conditions
were used on the lateral sides for all three reconstructions as described above. Figure 6(d)
is a center line cut though the inclusion of all three reconstructions and the original modulus
distribution used to create the simulated displacements.

5. Discussion

5.1. Displacement estimation

This paper introduces a method to measure the displacement from sets of ultrasound images
of breast tissue or breast tissue mimicking materials at two different deformation states. The
novel features of this method include the use of finite element interpolation, the use of global
information for each nodal estimation and the systematic incorporation of prior knowledge to
stabilize the estimated displacements. This is in contrast to typical feature tracking algorithms
common in elastography, utilizing rigid block matching methods which tend to result in noisy
displacement measurements. The finite element interpolation allows for distorted (strain
compensated) elements and nonuniform meshes. The use of regularization improves the
displacement estimates to some extent. Large values of the regularization parameter, however,
can introduce unwanted artifacts in the displacement estimates, decreasing the accuracy of the
algorithm. The incompressibility constraint also helps to decrease the noise in the solution,
however, it is noted that this constraint may not be appropriate for all applications (i.e., tissue
types). The size of the finite element mesh was chosen based on the upper limit of the matrix
size that our hardware would allow. However, it is noted that when computational speed
and size are minimal factors, this value should be chosen as the expected resolution of the
displacement measurements calculated from the resolution and SNR of the ultrasound system
(Walker and Trahey 1995, Weinstein and Weiss 1983, 1984).

As alluded to earlier, one of the drawbacks of this algorithm is the presence of local
minima. The prevalence of these minima is due to the highly oscillatory nature of the RF
US images. To avoid these, the displacement accuracy metric (se, see equation (14)) was
calculated for each element at each iteration. Experience has shown that metric values which
are higher than 0.2 typically indicate regions which are stuck in local minima (a metric value
of 0.2 would correspond to a peak normalized cross-correlation value of approximately 0.9).
Although several methods may be employed to avoid local minima, we chose to identify these
regions with the L2 norm measure and manually smooth these areas with surrounding areas
which are not in local minima.
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5.2. Modulus reconstruction

The inversion and reconstruction algorithm introduced in this paper provides a technique to
infer underlying mechanical properties of tissue, given displacement measurements and an
appropriate choice of model. This method utilizes a quasi-Newton method for optimization.
The novel features of this algorithm include the use of total variation diminishing (TVD)
regularization with piece-wise constant interpolation and the ability to reconstruct a three-
dimensional structure.

The reference stiffness measurements exhibited a high degree of variability. This is
thought to be due to a combination of limitations of the measurement protocol and inherent
variability of gelatin properties. For example, despite efforts to limit slipping at the boundary
during mechanical compression tests, it is possible that some visibly undetectable degree of
slipping took place. If so, this presumably occurred to a different extent in each experiment.
Furthermore, gelatin stiffness itself is known to have a high variability depending on the
length of time between setting and testing, due to water loss, as well as the temperature at
which it was tested (Hall et al 1996). To reduce these effects, both the imaging phantoms
and the calibration samples were tested within 24 h of their construction. They were tested
immediately following their removal from refrigeration and kept sealed during refrigeration
to limit water loss. The difference in size between the imaging phantoms and the calibration
samples may also have contributed to the error. For instance, the small size of the calibration
samples could result in a higher temperature variation across the samples. In addition, the
larger length of the imaging experiment and the relatively large size of the phantoms could
result, at least to some degree, to a larger temperature variation within the phantom volume,
as well as some possible water loss within the phantom, during testing. The effect of the
latter would be to stiffen the phantom non-uniformly, beginning with the exposed surfaces
of the phantom (not the reconstructed surface). The temperature variation, resulting from
both the length of the exam and the US image heating, would effectively soften the phantom
non-uniformly. Although it is assumed in this work that these effects are minimal, they cannot
be ignored. We believe that a combination of all these effects is responsible for the apparent
inability to measure the contrast in the reference samples in the lowest contrast inclusions.
Even considering all these possible sources of error, it was somewhat reassuring that the
reconstructed modulus contrast was within about 35% of the reference values for all cases
considered.

Choosing the value of the regularization constant remains a challenge. The ‘strength’
of the regularization term in the functional is affected not only by the magnitude of the
αb parameter, but also the size and contrast of the underlying modulus distribution. Thus,
regularization will tend to play a larger role in modulus distributions with higher contrasts and
larger sizes. We also note that the presence of the surrounding artifacts is more obvious for
lower inclusion contrasts than larger. It is possible that increasing the regularization in these
cases, to try and further minimize the artifacts, may cause the low contrast inclusion to be
lost. To a certain extent, an optimal choice of regularization constant can be selected using
a priori knowledge of the target contrast of inclusions. Such results present an unrealistic
impression of the effectiveness of inversion in practice, however, where such knowledge
would be unavailable. In this work we tried to avoid such bias by selecting the regularization
parameter through simulated experiments. We then used precisely the same regularization
parameter for all subsequent inversions. In retrospect, we feel it likely that the reconstructions
above are over-regularized, and therefore biased toward low contrasts. An opportunity exists
in the field to develop an adaptive automated regularization method for each construction, to
simultaneously control noise and preserve contrast.
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Our study indicates that the algorithm used for modulus reconstruction is sensitive to the
choice of boundary conditions. This dependence needs to be explored in future research. It
also appears to indicate that traction boundary conditions lead to better reconstructions. This
implies that devices that are able to measure surface traction in addition to making ultrasound
measurements will be very useful in elasticity imaging. Another approach to mitigating the
effect of boundary conditions might be to use more than one deformation field in evaluating
the shear modulus. How much this would help is yet to be determined.

The bottom layer was remarkably difficult to resolve. This is due, in part, to the role
of boundary conditions in computing the predicted displacement field and to the uniqueness
issues tied closely to those boundary conditions. In this inverse problem, the use of Dirichlet
(e.g., displacement) boundary conditions decreases the sensitivity of the inversion near these
boundaries (see table 3). That is, in areas where the boundaries are all Dirichlet, the predicted
displacements are fixed and therefore independent of the estimate of μ. Thus in equation (9)
the derivative of π with respect to μ in these regions is practically zero. A direct consequence
of this is that in these regions the value of μ tends to remain ‘frozen’ at its initial value and
the modulus estimate does not improve. Since the bottom layer is adjacent to a boundary,
reconstructions with all displacement boundary conditions resulted in little to no recovery of
this layer. On the other hand, using traction boundary conditions adds information to the
reconstruction additional to the measured displacement field (see table 2). It was found during
simulations that with the sides of the reconstructed volume (i.e., the x–y and y–z boundary
surfaces) assumed to have zero normal traction (hn = 0 on �

xy
n and �

yz
n ) and the remaining

boundary conditions Dirichlet conditions, the bottom layer and the field as a whole resulted
in the most accurate modulus distributions. Although this choice of boundary conditions
are inexact we expect, based on our phantom geometry and experimental setup, that they
are a reasonable approximation. Indeed, the information they add evidently improves the
reconstruction significantly. At the same time, however, the approximate nature of these
boundary conditions did introduce some artifacts into the images, particularly at the edges
where the calibration layer lies. This, we believe, led to the high variability observed in the
accuracy of the reconstructed bottom layer (see the figures in table 2).

It is clear from figure 6 that the three-dimensional modulus reconstruction results in a
better representation of underlying modulus. In this case, the plane strain reconstruction is
better than the plane stress, but neither is as good as the 3D reconstruction. In addition, it is
worth noting that while plane strain seems better in this example, other examples might be
created where plane stress gives a more accurate reconstruction than does plane strain.

The adjoint method for gradient evaluation is crucial for the practical solution of this
problem. The modulus reconstructions were performed on a 40 × 60 × 40 element
mesh, which leads to 96 × 103 ≈ 105 optimization variables. Any scheme whose major
computational cost scales poorly, even linearly, with the number of optimization variables
would have been impractical in solving this problem. The adjoint method gives us the
gradient with just two forward solves, independent of the number of optimization variables.
This technique makes the solution of this problem feasible.

It has been well documented that the inverse problem considered here has a non-unique
solution (Barbone and Gokhale 2004, Barbone and Bamber 2002, Richards 2007). That is,
several distinct modulus distributions are all equally consistent with the measured displacement
field. We note, however, that our reconstructions are based on more information than just the
measured displacement field. In particular, information is added in three specific places: the
assumed boundary conditions, the optimization formulation and the regularization function.

The sides of the reconstructed volume (i.e., those surfaces parallel to the axial direction)
are assumed to have zero normal traction. That is, we assume there is no confining pressure
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around the sides of the phantom. This is roughly consistent with the physical experiment.
This also helps with the reconstruction as specifying traction boundary conditions substantially
reduce the dimension of the solution space, and thereby alleviate the non-uniqueness of the
problem (Barbone and Bamber 2002, Richards 2007).

The modulus is reconstructed relative to the background value, which we arbitrarily
set at unity. We set this as the lower limit for the modulus distribution, and initialize our
iterations there. Thus, we bias the search to seek stiff inclusions in a compliant homogeneous
background. Finally, the TVD regularization used here biases towards piece-wise constant
modulus distributions. The results indicate that this seems to be a relatively weak effect in our
reconstructions. These three sources of information inform our reconstructions. Significantly
altering any one of them could significantly change the reconstruction, even with exactly the
same input displacement data. Thus the reconstructions represent a synthesis of these different
sources of information, above and beyond what is contained in the measured displacement
field.

6. Conclusions

We have developed and implemented an algorithm for the accurate measurement of a three-
dimensional displacement field from ultrasound images of deforming tissue. The novel
features of this algorithm include the use of finite element discretization, the inclusion of
a priori knowledge of the material’s incompressibility and the use of regularization. We
have also developed an efficient formulation to solve the three-dimensional inverse elasticity
problem using a full three-dimensional displacement field measurement. The novel features of
this approach include the use of a gradient-based algorithm and the efficient computation of the
gradient using the adjoint equations. By using these techniques we have successfully imaged
and reconstructed phantom inclusions as small as 5.0 mm and with contrasts approaching
unity. The development of an accurate, quantitative method by which to measure and image
the mechanical properties of materials, such as is outlined in this paper, is a significant
step forward in the field of elasticity imaging. It offers a noninvasive method to interrogate
mechanical properties in vivo for the purposes of diagnosis and monitoring.

Future work will include further investigation into the uniqueness of the three-dimensional
inverse elasticity problem and the relationship between the imposed boundary conditions and
the modulus reconstructions. In addition, an initial clinical investigation of three-dimensional
breast ultrasound elasticity imaging is currently underway.
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Appendix. Parameter value evaluation

In this section, we describe a series of experiments for each algorithm (displacement
measurement and inversion), which are designed to determine the appropriate choice of
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the algorithms’ parameters. Once these parameters are determined they are used without any
modifications in the actual reconstruction experiments. For each algorithm, artificial input is
created from a known solution so that for the given input we have a reference or ‘true’ value
to compare to the algorithm output. For example, in the case of the displacement estimation
algorithm, we acquired a single 3D US RF image using the phantoms and experimental setup
described in section 2. Then a second, pre-deformation, image is created artificially by defining
the spatial locations of the first image’s pixels (x) and interpolating that image at x + utrue(x)

as is shown in equation (1). In these experiments, utrue(x) is chosen to correspond to an
unconfined compression test with slip boundaries of a homogeneous block of incompressible
linear elastic material at a strain level of 4%. Thus the displacement field is linear in each
direction and volume conserving. The second image was interpolated using MATLAB’s
Interp3 function and cubic interpolation (The MathWorks, Inc., 3 Apple Hill Drive Natick,
MA 01760). Then these images were input to the displacement estimation algorithm, with
various values of the regularization parameter (α1) and the incompressibility parameter (α2),
which then resulted in a corresponding measured displacement field (umeas).

The error in the resulting measurement was then quantified as the Euclidean norm of
the difference in the measurement and reference displacement field

(
erri = ∥∥umeas

i − utrue
i

∥∥)
for each displacement vector component (i). Several values of α1 were tested within a range
spanning the approximate expected value and for each value of α1 several values of α2, again
spanning the relevant range, were also tested. The experiment was repeated for five sets
of images, where the initial, experimentally created image was taken for different phantoms
or different regions within the same phantom to ensure that the resulting image sets were
uncorrelated. The experiment was also repeated for various finite element mesh sizes to
determine the accuracy of the measurement as a function of the resolution.

The values of the α parameters which consistently minimized the total displacement
measurement error

(∑3
i=1 erri

)
were those used in the displacement estimation of all the

subsequent phantom experiments in this paper. In these experiments there was no significant
change in accuracy for the different mesh sizes and thus the mesh size used in this paper
represented the upper limit that our computational resources would allow. It should be noted
that previous experiments have shown that the electronic noise of the imaging system is not
the dominant source of error affecting the accuracy of this algorithm and thus electronic noise
was neglected in this parameter evaluation study (Richards 2007).

A similar set of experiments was performed for the reconstruction algorithm. Here a
modulus distribution (μtrue) is created to model a typical ultrasound tissue-mimicking phantom
in size and geometry, including an inclusion and bottom layer. The size of the inclusion and the
modulus contrast of the inclusion and bottom layer were chosen to be approximately equivalent
to the large-sized inclusion and the highest contrast of those tested in the actual phantom
experiments. An artificial displacement field was then created, using this modulus distribution
and a forward finite element analysis. This displacement field was created on a finite element
mesh which was spatially refined by 1.25 times that of the subsequent reconstruction meshes
to ensure that the forward problem was well resolved. The boundary conditions applied to this
modulus distribution were selected to approximate those of a typical experimental protocol.
Then only that portion of the displacement field, which would correspond to the imaged
volume experimentally, was then considered for this parameter evaluation.

The relevant parameters for the reconstruction algorithm are the Poisson’s ratio (ν), the
boundary conditions used in the reconstruction, the optimal weighting of the displacement
estimates (T) and the regularization parameter (αb). To determine the choice of Poisson’s
ratio for the reconstructions, various displacement fields were created using several different
values of Poisson’s ratio of nearly incompressible materials (ν > 0.4995) in the forward
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problem described above. These displacement fields were then input to the reconstruction
algorithm to create a predicted modulus field μpred. For each choice of Poisson’s ratio in the
forward problem, several reconstructions were performed assuming a similar set of Poisson’s
ratios in the inversion algorithm. Again, the error in the measurement is quantified by the
Euclidean norm of the predicted and reference values (‖μpred − μtrue‖). The results of these
simulations suggested that the accuracy of the modulus reconstruction has little dependence
on the choice of Poisson’s ratio used in the reconstruction or the ‘true’ material Poisson’s ratio
when both were greater than 0.495 and less than 0.5. The boundary conditions for this study’s
reconstructions were prescribed displacements. T was set to the second-order identity tensor
(I) and the regularization parameter (αb) was set to zero.

Contrary to Poisson’s ratio, the choice of boundary conditions can have a large impact
on the reconstruction accuracy. For the purposes of this paper, reconstructions with two types
of boundary conditions were investigated using the same process of forward modeling and
subsequent reconstruction. The first type of boundary conditions investigated all prescribed
displacement, or Dirichlet, boundary conditions. The second type of boundary conditions
investigated allowed a portion of the boundary to be traction free in the direction of the surface
normal. In the latter case, the sides of the reconstructed volume (i.e., those surfaces parallel
to the axial direction) were assumed to have zero normal traction (hn = 0) and the remaining
boundary conditions were Dirichlet conditions. It was found that the ‘zero normal traction’
yielded the highest accuracy for our modulus geometry and thus these boundary conditions
were used in all of the gel phantom reconstructions presented here. However, for comparison
purposes, reconstructions using all Dirichlet boundary conditions for all the phantoms tested
are provided in table 3. There was no noise introduced in this study and as such T was again
set to the identity matrix (I) and the regularization parameter (αb) was set to zero.

The weighting matrix T was determined from estimates of error in the displacement
components. In particular, the diagonal components Txx = 1, Tyy = 10 and Tzz = 1 and the
off-diagonal components were set to 0. These values were based on our estimate that the axial
(y) displacements are a factor of 10 times more accurate than the lateral (x) and elevational
(z) displacements.

To determine the appropriate choice of the reconstruction regularization parameter αb,
a series of reconstructions were performed on artificial displacement fields, created as
described above. White Gaussian noise was added to these displacement estimates, prior
to reconstruction, with error magnitudes equal to those realized in practice (calculated in the
displacement estimation study). A series of reconstructions are performed with various values
of the regularization parameter producing a corresponding predicted modulus distribution.
The accuracy was again monitored by calculating the Euclidian norm ‖μpred − μtrue‖ and the
value of the regularization parameter which minimized this difference was used for all the
subsequent modulus reconstructions in this paper.

It is important to note that, although the parameter evaluations of this section were
determined from studies of only one possible realization of the displacement field (utrue) and
one possible realization of the actual modulus distribution (μtrue), the optimal values of the
parameters found here were held constant for all the measurements and reconstructions done
in the actual phantom experiments.
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